TargetSpy: a supervised machine learning approach for microRNA target prediction.
Sturm, Martin; Hackenberg, Michael; Langenberger, David; Frishman, Dmitrij
2010-05-28
Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences.In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I) no seed match requirement, II) seed match requirement, and III) conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed) predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on mouse and performs well in human and drosophila, suggesting that it may be applicable to a broad range of species. Moreover, we have demonstrated that the application of machine learning techniques in combination with upcoming deep sequencing data results in a powerful microRNA target site prediction tool http://www.targetspy.org.
TargetSpy: a supervised machine learning approach for microRNA target prediction
2010-01-01
Background Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. Results We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences. In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I) no seed match requirement, II) seed match requirement, and III) conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed) predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Conclusion Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on mouse and performs well in human and drosophila, suggesting that it may be applicable to a broad range of species. Moreover, we have demonstrated that the application of machine learning techniques in combination with upcoming deep sequencing data results in a powerful microRNA target site prediction tool http://www.targetspy.org. PMID:20509939
Learning Instance-Specific Predictive Models
Visweswaran, Shyam; Cooper, Gregory F.
2013-01-01
This paper introduces a Bayesian algorithm for constructing predictive models from data that are optimized to predict a target variable well for a particular instance. This algorithm learns Markov blanket models, carries out Bayesian model averaging over a set of models to predict a target variable of the instance at hand, and employs an instance-specific heuristic to locate a set of suitable models to average over. We call this method the instance-specific Markov blanket (ISMB) algorithm. The ISMB algorithm was evaluated on 21 UCI data sets using five different performance measures and its performance was compared to that of several commonly used predictive algorithms, including nave Bayes, C4.5 decision tree, logistic regression, neural networks, k-Nearest Neighbor, Lazy Bayesian Rules, and AdaBoost. Over all the data sets, the ISMB algorithm performed better on average on all performance measures against all the comparison algorithms. PMID:25045325
An improved multi-domain convolution tracking algorithm
NASA Astrophysics Data System (ADS)
Sun, Xin; Wang, Haiying; Zeng, Yingsen
2018-04-01
Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.
Chen, Zhiru; Hong, Wenxue
2016-02-01
Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.
Research of maneuvering target prediction and tracking technology based on IMM algorithm
NASA Astrophysics Data System (ADS)
Cao, Zheng; Mao, Yao; Deng, Chao; Liu, Qiong; Chen, Jing
2016-09-01
Maneuvering target prediction and tracking technology is widely used in both military and civilian applications, the study of those technologies is all along the hotspot and difficulty. In the Electro-Optical acquisition-tracking-pointing system (ATP), the primary traditional maneuvering targets are ballistic target, large aircraft and other big targets. Those targets have the features of fast velocity and a strong regular trajectory and Kalman Filtering and polynomial fitting have good effects when they are used to track those targets. In recent years, the small unmanned aerial vehicles developed rapidly for they are small, nimble and simple operation. The small unmanned aerial vehicles have strong maneuverability in the observation system of ATP although they are close-in, slow and small targets. Moreover, those vehicles are under the manual operation, therefore, the acceleration of them changes greatly and they move erratically. So the prediction and tracking precision is low when traditional algorithms are used to track the maneuvering fly of those targets, such as speeding up, turning, climbing and so on. The interacting multiple model algorithm (IMM) use multiple models to match target real movement trajectory, there are interactions between each model. The IMM algorithm can switch model based on a Markov chain to adapt to the change of target movement trajectory, so it is suitable to solve the prediction and tracking problems of the small unmanned aerial vehicles because of the better adaptability of irregular movement. This paper has set up model set of constant velocity model (CV), constant acceleration model (CA), constant turning model (CT) and current statistical model. And the results of simulating and analyzing the real movement trajectory data of the small unmanned aerial vehicles show that the prediction and tracking technology based on the interacting multiple model algorithm can get relatively lower tracking error and improve tracking precision comparing with traditional algorithms.
A range-based predictive localization algorithm for WSID networks
NASA Astrophysics Data System (ADS)
Liu, Yuan; Chen, Junjie; Li, Gang
2017-11-01
Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.
Motion prediction of a non-cooperative space target
NASA Astrophysics Data System (ADS)
Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan
2018-01-01
Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.
Predicting drug-target interactions by dual-network integrated logistic matrix factorization
NASA Astrophysics Data System (ADS)
Hao, Ming; Bryant, Stephen H.; Wang, Yanli
2017-01-01
In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.
Macromolecular target prediction by self-organizing feature maps.
Schneider, Gisbert; Schneider, Petra
2017-03-01
Rational drug discovery would greatly benefit from a more nuanced appreciation of the activity of pharmacologically active compounds against a diverse panel of macromolecular targets. Already, computational target-prediction models assist medicinal chemists in library screening, de novo molecular design, optimization of active chemical agents, drug re-purposing, in the spotting of potential undesired off-target activities, and in the 'de-orphaning' of phenotypic screening hits. The self-organizing map (SOM) algorithm has been employed successfully for these and other purposes. Areas covered: The authors recapitulate contemporary artificial neural network methods for macromolecular target prediction, and present the basic SOM algorithm at a conceptual level. Specifically, they highlight consensus target-scoring by the employment of multiple SOMs, and discuss the opportunities and limitations of this technique. Expert opinion: Self-organizing feature maps represent a straightforward approach to ligand clustering and classification. Some of the appeal lies in their conceptual simplicity and broad applicability domain. Despite known algorithmic shortcomings, this computational target prediction concept has been proven to work in prospective settings with high success rates. It represents a prototypic technique for future advances in the in silico identification of the modes of action and macromolecular targets of bioactive molecules.
Novel Modeling of Combinatorial miRNA Targeting Identifies SNP with Potential Role in Bone Density
Coronnello, Claudia; Hartmaier, Ryan; Arora, Arshi; Huleihel, Luai; Pandit, Kusum V.; Bais, Abha S.; Butterworth, Michael; Kaminski, Naftali; Stormo, Gary D.; Oesterreich, Steffi; Benos, Panayiotis V.
2012-01-01
MicroRNAs (miRNAs) are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models were considered. ComiR (Combinatorial miRNA targeting), a novel algorithm we developed, incorporates the improved predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of multiple miRNAs using ComiR improves predictions over the naïve method for target combination. ComiR scoring scheme can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly associated with decreased bone mineral density (BMD) in two independent cohorts indicating that the miR-488-5p/NCOA1 regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-throughput datasets from patients ComiR is expected to become an essential tool for miRNA-related studies. PMID:23284279
Enhanced clinical pharmacy service targeting tools: risk-predictive algorithms.
El Hajji, Feras W D; Scullin, Claire; Scott, Michael G; McElnay, James C
2015-04-01
This study aimed to determine the value of using a mix of clinical pharmacy data and routine hospital admission spell data in the development of predictive algorithms. Exploration of risk factors in hospitalized patients, together with the targeting strategies devised, will enable the prioritization of clinical pharmacy services to optimize patient outcomes. Predictive algorithms were developed using a number of detailed steps using a 75% sample of integrated medicines management (IMM) patients, and validated using the remaining 25%. IMM patients receive targeted clinical pharmacy input throughout their hospital stay. The algorithms were applied to the validation sample, and predicted risk probability was generated for each patient from the coefficients. Risk threshold for the algorithms were determined by identifying the cut-off points of risk scores at which the algorithm would have the highest discriminative performance. Clinical pharmacy staffing levels were obtained from the pharmacy department staffing database. Numbers of previous emergency admissions and admission medicines together with age-adjusted co-morbidity and diuretic receipt formed a 12-month post-discharge and/or readmission risk algorithm. Age-adjusted co-morbidity proved to be the best index to predict mortality. Increased numbers of clinical pharmacy staff at ward level was correlated with a reduction in risk-adjusted mortality index (RAMI). Algorithms created were valid in predicting risk of in-hospital and post-discharge mortality and risk of hospital readmission 3, 6 and 12 months post-discharge. The provision of ward-based clinical pharmacy services is a key component to reducing RAMI and enabling the full benefits of pharmacy input to patient care to be realized. © 2014 John Wiley & Sons, Ltd.
Kim, Minsuk; Sun, Gwanggyu; Lee, Dong-Yup; Kim, Byung-Gee
2017-01-01
Modulation of regulatory circuits governing the metabolic processes is a crucial step for developing microbial cell factories. Despite the prevalence of in silico strain design algorithms, most of them are not capable of predicting required modifications in regulatory networks. Although a few algorithms may predict relevant targets for transcriptional regulator (TR) manipulations, they have limited reliability and applicability due to their high dependency on the availability of integrated metabolic/regulatory models. We present BeReTa (Beneficial Regulator Targeting), a new algorithm for prioritization of TR manipulation targets, which makes use of unintegrated network models. BeReTa identifies TR manipulation targets by evaluating regulatory strengths of interactions and beneficial effects of reactions, and subsequently assigning beneficial scores for the TRs. We demonstrate that BeReTa can predict both known and novel TR manipulation targets for enhanced production of various chemicals in Escherichia coli Furthermore, through a case study of antibiotics production in Streptomyces coelicolor, we successfully demonstrate its wide applicability to even less-studied organisms. To the best of our knowledge, BeReTa is the first strain design algorithm exclusively designed for predicting TR manipulation targets. MATLAB code is available at https://github.com/kms1041/BeReTa (github). byungkim@snu.ac.krSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.
Hao, Ming; Bryant, Stephen H; Wang, Yanli
2018-02-06
While novel technologies such as high-throughput screening have advanced together with significant investment by pharmaceutical companies during the past decades, the success rate for drug development has not yet been improved prompting researchers looking for new strategies of drug discovery. Drug repositioning is a potential approach to solve this dilemma. However, experimental identification and validation of potential drug targets encoded by the human genome is both costly and time-consuming. Therefore, effective computational approaches have been proposed to facilitate drug repositioning, which have proved to be successful in drug discovery. Doubtlessly, the availability of open-accessible data from basic chemical biology research and the success of human genome sequencing are crucial to develop effective in silico drug repositioning methods allowing the identification of potential targets for existing drugs. In this work, we review several chemogenomic data-driven computational algorithms with source codes publicly accessible for predicting drug-target interactions (DTIs). We organize these algorithms by model properties and model evolutionary relationships. We re-implemented five representative algorithms in R programming language, and compared these algorithms by means of mean percentile ranking, a new recall-based evaluation metric in the DTI prediction research field. We anticipate that this review will be objective and helpful to researchers who would like to further improve existing algorithms or need to choose appropriate algorithms to infer potential DTIs in the projects. The source codes for DTI predictions are available at: https://github.com/minghao2016/chemogenomicAlg4DTIpred. Published by Oxford University Press 2018. This work is written by US Government employees and is in the public domain in the US.
MultiMiTar: a novel multi objective optimization based miRNA-target prediction method.
Mitra, Ramkrishna; Bandyopadhyay, Sanghamitra
2011-01-01
Machine learning based miRNA-target prediction algorithms often fail to obtain a balanced prediction accuracy in terms of both sensitivity and specificity due to lack of the gold standard of negative examples, miRNA-targeting site context specific relevant features and efficient feature selection process. Moreover, all the sequence, structure and machine learning based algorithms are unable to distribute the true positive predictions preferentially at the top of the ranked list; hence the algorithms become unreliable to the biologists. In addition, these algorithms fail to obtain considerable combination of precision and recall for the target transcripts that are translationally repressed at protein level. In the proposed article, we introduce an efficient miRNA-target prediction system MultiMiTar, a Support Vector Machine (SVM) based classifier integrated with a multiobjective metaheuristic based feature selection technique. The robust performance of the proposed method is mainly the result of using high quality negative examples and selection of biologically relevant miRNA-targeting site context specific features. The features are selected by using a novel feature selection technique AMOSA-SVM, that integrates the multi objective optimization technique Archived Multi-Objective Simulated Annealing (AMOSA) and SVM. MultiMiTar is found to achieve much higher Matthew's correlation coefficient (MCC) of 0.583 and average class-wise accuracy (ACA) of 0.8 compared to the others target prediction methods for a completely independent test data set. The obtained MCC and ACA values of these algorithms range from -0.269 to 0.155 and 0.321 to 0.582, respectively. Moreover, it shows a more balanced result in terms of precision and sensitivity (recall) for the translationally repressed data set as compared to all the other existing methods. An important aspect is that the true positive predictions are distributed preferentially at the top of the ranked list that makes MultiMiTar reliable for the biologists. MultiMiTar is now available as an online tool at www.isical.ac.in/~bioinfo_miu/multimitar.htm. MultiMiTar software can be downloaded from www.isical.ac.in/~bioinfo_miu/multimitar-download.htm.
2012-09-01
regulated by miR-99a/let7c/125b-2 cluster. Using bioinformatic prediction algorithm TargetScan, we identified 7 genes that are commonly targeted by miR-99a...HPeak, a Hidden Markov Model (HMM)-based peak identifying algorithm (http://www.sph.umich.edu/csg/qin/HPeak/). Seven AR binding sites were reported by...and ARBS2 by ALGGEN- PROMO, a matrix algorithm for predicting transcription factor binding sites based on TRANSFAC (http://alggen.lsi.upc.es/cgi- bin
DIANA-microT web server: elucidating microRNA functions through target prediction.
Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G
2009-07-01
Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.
A difference tracking algorithm based on discrete sine transform
NASA Astrophysics Data System (ADS)
Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun
2018-04-01
Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.
HomoTarget: a new algorithm for prediction of microRNA targets in Homo sapiens.
Ahmadi, Hamed; Ahmadi, Ali; Azimzadeh-Jamalkandi, Sadegh; Shoorehdeli, Mahdi Aliyari; Salehzadeh-Yazdi, Ali; Bidkhori, Gholamreza; Masoudi-Nejad, Ali
2013-02-01
MiRNAs play an essential role in the networks of gene regulation by inhibiting the translation of target mRNAs. Several computational approaches have been proposed for the prediction of miRNA target-genes. Reports reveal a large fraction of under-predicted or falsely predicted target genes. Thus, there is an imperative need to develop a computational method by which the target mRNAs of existing miRNAs can be correctly identified. In this study, combined pattern recognition neural network (PRNN) and principle component analysis (PCA) architecture has been proposed in order to model the complicated relationship between miRNAs and their target mRNAs in humans. The results of several types of intelligent classifiers and our proposed model were compared, showing that our algorithm outperformed them with higher sensitivity and specificity. Using the recent release of the mirBase database to find potential targets of miRNAs, this model incorporated twelve structural, thermodynamic and positional features of miRNA:mRNA binding sites to select target candidates. Copyright © 2012 Elsevier Inc. All rights reserved.
BIG DATA ANALYTICS AND PRECISION ANIMAL AGRICULTURE SYMPOSIUM: Data to decisions.
White, B J; Amrine, D E; Larson, R L
2018-04-14
Big data are frequently used in many facets of business and agronomy to enhance knowledge needed to improve operational decisions. Livestock operations collect data of sufficient quantity to perform predictive analytics. Predictive analytics can be defined as a methodology and suite of data evaluation techniques to generate a prediction for specific target outcomes. The objective of this manuscript is to describe the process of using big data and the predictive analytic framework to create tools to drive decisions in livestock production, health, and welfare. The predictive analytic process involves selecting a target variable, managing the data, partitioning the data, then creating algorithms, refining algorithms, and finally comparing accuracy of the created classifiers. The partitioning of the datasets allows model building and refining to occur prior to testing the predictive accuracy of the model with naive data to evaluate overall accuracy. Many different classification algorithms are available for predictive use and testing multiple algorithms can lead to optimal results. Application of a systematic process for predictive analytics using data that is currently collected or that could be collected on livestock operations will facilitate precision animal management through enhanced livestock operational decisions.
Trajectory Control of Rendezvous with Maneuver Target Spacecraft
NASA Technical Reports Server (NTRS)
Zhou, Zhinqiang
2012-01-01
In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.
Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree.
Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad
2015-01-01
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen-host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules.
Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree
Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad
2015-01-01
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen–host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules. PMID:26649272
Betel, Doron; Koppal, Anjali; Agius, Phaedra; Sander, Chris; Leslie, Christina
2010-01-01
mirSVR is a new machine learning method for ranking microRNA target sites by a down-regulation score. The algorithm trains a regression model on sequence and contextual features extracted from miRanda-predicted target sites. In a large-scale evaluation, miRanda-mirSVR is competitive with other target prediction methods in identifying target genes and predicting the extent of their downregulation at the mRNA or protein levels. Importantly, the method identifies a significant number of experimentally determined non-canonical and non-conserved sites.
PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3′ UTRs and coding sequences
Šulc, Miroslav; Marín, Ray M.; Robins, Harlan S.; Vaníček, Jiří
2015-01-01
The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3′ untranslated regions (3′ UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3′ UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA–mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA–mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. PMID:25948580
Tracking a convoy of multiple targets using acoustic sensor data
NASA Astrophysics Data System (ADS)
Damarla, T. R.
2003-08-01
In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.
Lim, Hansaim; Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; He, Di; Zhuang, Luke; Meng, Patrick; Xie, Lei
2016-10-01
Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and side effect prediction. The software and benchmark are available at https://github.com/hansaimlim/REMAP.
Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; Meng, Patrick; Xie, Lei
2016-01-01
Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and side effect prediction. The software and benchmark are available at https://github.com/hansaimlim/REMAP. PMID:27716836
Echigoya, Yusuke; Mouly, Vincent; Garcia, Luis; Yokota, Toshifumi; Duddy, William
2015-01-01
The use of antisense ‘splice-switching’ oligonucleotides to induce exon skipping represents a potential therapeutic approach to various human genetic diseases. It has achieved greatest maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy (DMD), for which several clinical trials are completed or ongoing, and a large body of data exists describing tested oligonucleotides and their efficacy. The rational design of an exon skipping oligonucleotide involves the choice of an antisense sequence, usually between 15 and 32 nucleotides, targeting the exon that is to be skipped. Although parameters describing the target site can be computationally estimated and several have been identified to correlate with efficacy, methods to predict efficacy are limited. Here, an in silico pre-screening approach is proposed, based on predictive statistical modelling. Previous DMD data were compiled together and, for each oligonucleotide, some 60 descriptors were considered. Statistical modelling approaches were applied to derive algorithms that predict exon skipping for a given target site. We confirmed (1) the binding energetics of the oligonucleotide to the RNA, and (2) the distance in bases of the target site from the splice acceptor site, as the two most predictive parameters, and we included these and several other parameters (while discounting many) into an in silico screening process, based on their capacity to predict high or low efficacy in either phosphorodiamidate morpholino oligomers (89% correctly predicted) and/or 2’O Methyl RNA oligonucleotides (76% correctly predicted). Predictions correlated strongly with in vitro testing for sixteen de novo PMO sequences targeting various positions on DMD exons 44 (R2 0.89) and 53 (R2 0.89), one of which represents a potential novel candidate for clinical trials. We provide these algorithms together with a computational tool that facilitates screening to predict exon skipping efficacy at each position of a target exon. PMID:25816009
Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity.
Kim, Hui Kwon; Min, Seonwoo; Song, Myungjae; Jung, Soobin; Choi, Jae Woo; Kim, Younggwang; Lee, Sangeun; Yoon, Sungroh; Kim, Hyongbum Henry
2018-03-01
We present two algorithms to predict the activity of AsCpf1 guide RNAs. Indel frequencies for 15,000 target sequences were used in a deep-learning framework based on a convolutional neural network to train Seq-deepCpf1. We then incorporated chromatin accessibility information to create the better-performing DeepCpf1 algorithm for cell lines for which such information is available and show that both algorithms outperform previous machine learning algorithms on our own and published data sets.
Toward Optimal Target Placement for Neural Prosthetic Devices
Cunningham, John P.; Yu, Byron M.; Gilja, Vikash; Ryu, Stephen I.; Shenoy, Krishna V.
2008-01-01
Neural prosthetic systems have been designed to estimate continuous reach trajectories (motor prostheses) and to predict discrete reach targets (communication prostheses). In the latter case, reach targets are typically decoded from neural spiking activity during an instructed delay period before the reach begins. Such systems use targets placed in radially symmetric geometries independent of the tuning properties of the neurons available. Here we seek to automate the target placement process and increase decode accuracy in communication prostheses by selecting target locations based on the neural population at hand. Motor prostheses that incorporate intended target information could also benefit from this consideration. We present an optimal target placement algorithm that approximately maximizes decode accuracy with respect to target locations. In simulated neural spiking data fit from two monkeys, the optimal target placement algorithm yielded statistically significant improvements up to 8 and 9% for two and sixteen targets, respectively. For four and eight targets, gains were more modest, as the target layouts found by the algorithm closely resembled the canonical layouts. We trained a monkey in this paradigm and tested the algorithm with experimental neural data to confirm some of the results found in simulation. In all, the algorithm can serve not only to create new target layouts that outperform canonical layouts, but it can also confirm or help select among multiple canonical layouts. The optimal target placement algorithm developed here is the first algorithm of its kind, and it should both improve decode accuracy and help automate target placement for neural prostheses. PMID:18829845
Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar
2016-01-01
Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design. PMID:27958331
Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar
2016-12-13
Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design.
PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3' UTRs and coding sequences.
Šulc, Miroslav; Marín, Ray M; Robins, Harlan S; Vaníček, Jiří
2015-07-01
The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3' untranslated regions (3' UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3' UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA-mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA-mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Ship Movement Trajectory Prediction Algorithm Using Navigational Data Fusion.
Borkowski, Piotr
2017-06-20
It is essential for the marine navigator conducting maneuvers of his ship at sea to know future positions of himself and target ships in a specific time span to effectively solve collision situations. This article presents an algorithm of ship movement trajectory prediction, which, through data fusion, takes into account measurements of the ship's current position from a number of doubled autonomous devices. This increases the reliability and accuracy of prediction. The algorithm has been implemented in NAVDEC, a navigation decision support system and practically used on board ships.
The Ship Movement Trajectory Prediction Algorithm Using Navigational Data Fusion
Borkowski, Piotr
2017-01-01
It is essential for the marine navigator conducting maneuvers of his ship at sea to know future positions of himself and target ships in a specific time span to effectively solve collision situations. This article presents an algorithm of ship movement trajectory prediction, which, through data fusion, takes into account measurements of the ship’s current position from a number of doubled autonomous devices. This increases the reliability and accuracy of prediction. The algorithm has been implemented in NAVDEC, a navigation decision support system and practically used on board ships. PMID:28632176
Literature-based condition-specific miRNA-mRNA target prediction.
Oh, Minsik; Rhee, Sungmin; Moon, Ji Hwan; Chae, Heejoon; Lee, Sunwon; Kang, Jaewoo; Kim, Sun
2017-01-01
miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary, Context-MMIA allows the user to specify a context of the experimental data to predict miRNA targets, and we believe that Context-MMIA is very useful for predicting condition-specific miRNA targets.
NASA Astrophysics Data System (ADS)
Bukhari, W.; Hong, S.-M.
2016-03-01
The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient’s breathing cycle. The algorithm, named EKF-GPRN+ , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN+ prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN+ implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN+ . The experimental results show that the EKF-GPRN+ algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN+ algorithm can further reduce the prediction error by employing the gating function, albeit at the cost of reduced duty cycle. The error reduction allows the clinical target volume to planning target volume (CTV-PTV) margin to be reduced, leading to decreased normal-tissue toxicity and possible dose escalation. The CTV-PTV margin is also evaluated to quantify clinical benefits of EKF-GPRN+ prediction.
TAPIR, a web server for the prediction of plant microRNA targets, including target mimics.
Bonnet, Eric; He, Ying; Billiau, Kenny; Van de Peer, Yves
2010-06-15
We present a new web server called TAPIR, designed for the prediction of plant microRNA targets. The server offers the possibility to search for plant miRNA targets using a fast and a precise algorithm. The precise option is much slower but guarantees to find less perfectly paired miRNA-target duplexes. Furthermore, the precise option allows the prediction of target mimics, which are characterized by a miRNA-target duplex having a large loop, making them undetectable by traditional tools. The TAPIR web server can be accessed at: http://bioinformatics.psb.ugent.be/webtools/tapir. Supplementary data are available at Bioinformatics online.
Multiple Target Laser Designator (MTLD)
2007-03-01
Optimized Liquid Crystal Scanning Element Optimize the Nonimaging Predictive Algorithm for Target Ranging, Tracking, and Position Estimation...commercial potential. 3.0 PROGRESS THIS QUARTER 3.1 Optimization of Nonimaging Holographic Antenna for Target Tracking and Position Estimation (Task 6) In
NASA Astrophysics Data System (ADS)
Bukhari, W.; Hong, S.-M.
2015-01-01
Motion-adaptive radiotherapy aims to deliver a conformal dose to the target tumour with minimal normal tissue exposure by compensating for tumour motion in real time. The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting and gating respiratory motion that utilizes a model-based and a model-free Bayesian framework by combining them in a cascade structure. The algorithm, named EKF-GPR+, implements a gating function without pre-specifying a particular region of the patient’s breathing cycle. The algorithm first employs an extended Kalman filter (LCM-EKF) to predict the respiratory motion and then uses a model-free Gaussian process regression (GPR) to correct the error of the LCM-EKF prediction. The GPR is a non-parametric Bayesian algorithm that yields predictive variance under Gaussian assumptions. The EKF-GPR+ algorithm utilizes the predictive variance from the GPR component to capture the uncertainty in the LCM-EKF prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification allows us to pause the treatment beam over such instances. EKF-GPR+ implements the gating function by using simple calculations based on the predictive variance with no additional detection mechanism. A sparse approximation of the GPR algorithm is employed to realize EKF-GPR+ in real time. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPR+. The experimental results show that the EKF-GPR+ algorithm effectively reduces the prediction error in a root-mean-square (RMS) sense by employing the gating function, albeit at the cost of a reduced duty cycle. As an example, EKF-GPR+ reduces the patient-wise RMS error to 37%, 39% and 42% in percent ratios relative to no prediction for a duty cycle of 80% at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The experiments also confirm that EKF-GPR+ controls the duty cycle with reasonable accuracy.
Research on cross - Project software defect prediction based on transfer learning
NASA Astrophysics Data System (ADS)
Chen, Ya; Ding, Xiaoming
2018-04-01
According to the two challenges in the prediction of cross-project software defects, the distribution differences between the source project and the target project dataset and the class imbalance in the dataset, proposing a cross-project software defect prediction method based on transfer learning, named NTrA. Firstly, solving the source project data's class imbalance based on the Augmented Neighborhood Cleaning Algorithm. Secondly, the data gravity method is used to give different weights on the basis of the attribute similarity of source project and target project data. Finally, a defect prediction model is constructed by using Trad boost algorithm. Experiments were conducted using data, come from NASA and SOFTLAB respectively, from a published PROMISE dataset. The results show that the method has achieved good values of recall and F-measure, and achieved good prediction results.
ITrace: An implicit trust inference method for trust-aware collaborative filtering
NASA Astrophysics Data System (ADS)
He, Xu; Liu, Bin; Chen, Kejia
2018-04-01
The growth of Internet commerce has stimulated the use of collaborative filtering (CF) algorithms as recommender systems. A CF algorithm recommends items of interest to the target user by leveraging the votes given by other similar users. In a standard CF framework, it is assumed that the credibility of every voting user is exactly the same with respect to the target user. This assumption is not satisfied and thus may lead to misleading recommendations in many practical applications. A natural countermeasure is to design a trust-aware CF (TaCF) algorithm, which can take account of the difference in the credibilities of the voting users when performing CF. To this end, this paper presents a trust inference approach, which can predict the implicit trust of the target user on every voting user from a sparse explicit trust matrix. Then an improved CF algorithm termed iTrace is proposed, which takes advantage of both the explicit and the predicted implicit trust to provide recommendations with the CF framework. An empirical evaluation on a public dataset demonstrates that the proposed algorithm provides a significant improvement in recommendation quality in terms of mean absolute error.
Prediction based active ramp metering control strategy with mobility and safety assessment
NASA Astrophysics Data System (ADS)
Fang, Jie; Tu, Lili
2018-04-01
Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.
Bisognin, Andrea; Sales, Gabriele; Coppe, Alessandro; Bortoluzzi, Stefania; Romualdi, Chiara
2012-01-01
MAGIA2 (http://gencomp.bio.unipd.it/magia2) is an update, extension and evolution of the MAGIA web tool. It is dedicated to the integrated analysis of in silico target prediction, microRNA (miRNA) and gene expression data for the reconstruction of post-transcriptional regulatory networks. miRNAs are fundamental post-transcriptional regulators of several key biological and pathological processes. As miRNAs act prevalently through target degradation, their expression profiles are expected to be inversely correlated to those of the target genes. Low specificity of target prediction algorithms makes integration approaches an interesting solution for target prediction refinement. MAGIA2 performs this integrative approach supporting different association measures, multiple organisms and almost all target predictions algorithms. Nevertheless, miRNAs activity should be viewed as part of a more complex scenario where regulatory elements and their interactors generate a highly connected network and where gene expression profiles are the result of different levels of regulation. The updated MAGIA2 tries to dissect this complexity by reconstructing mixed regulatory circuits involving either miRNA or transcription factor (TF) as regulators. Two types of circuits are identified: (i) a TF that regulates both a miRNA and its target and (ii) a miRNA that regulates both a TF and its target. PMID:22618880
A comparison of SAR ATR performance with information theoretic predictions
NASA Astrophysics Data System (ADS)
Blacknell, David
2003-09-01
Performance assessment of automatic target detection and recognition algorithms for SAR systems (or indeed any other sensors) is essential if the military utility of the system / algorithm mix is to be quantified. This is a relatively straightforward task if extensive trials data from an existing system is used. However, a crucial requirement is to assess the potential performance of novel systems as a guide to procurement decisions. This task is no longer straightforward since a hypothetical system cannot provide experimental trials data. QinetiQ has previously developed a theoretical technique for classification algorithm performance assessment based on information theory. The purpose of the study presented here has been to validate this approach. To this end, experimental SAR imagery of targets has been collected using the QinetiQ Enhanced Surveillance Radar to allow algorithm performance assessments as a number of parameters are varied. In particular, performance comparisons can be made for (i) resolutions up to 0.1m, (ii) single channel versus polarimetric (iii) targets in the open versus targets in scrubland and (iv) use versus non-use of camouflage. The change in performance as these parameters are varied has been quantified from the experimental imagery whilst the information theoretic approach has been used to predict the expected variation of performance with parameter value. A comparison of these measured and predicted assessments has revealed the strengths and weaknesses of the theoretical technique as will be discussed in the paper.
Ambroise, Jérôme; Robert, Annie; Macq, Benoit; Gala, Jean-Luc
2012-01-06
An important challenge in system biology is the inference of biological networks from postgenomic data. Among these biological networks, a gene transcriptional regulatory network focuses on interactions existing between transcription factors (TFs) and and their corresponding target genes. A large number of reverse engineering algorithms were proposed to infer such networks from gene expression profiles, but most current methods have relatively low predictive performances. In this paper, we introduce the novel TNIFSED method (Transcriptional Network Inference from Functional Similarity and Expression Data), that infers a transcriptional network from the integration of correlations and partial correlations of gene expression profiles and gene functional similarities through a supervised classifier. In the current work, TNIFSED was applied to predict the transcriptional network in Escherichia coli and in Saccharomyces cerevisiae, using datasets of 445 and 170 affymetrix arrays, respectively. Using the area under the curve of the receiver operating characteristics and the F-measure as indicators, we showed the predictive performance of TNIFSED to be better than unsupervised state-of-the-art methods. TNIFSED performed slightly worse than the supervised SIRENE algorithm for the target genes identification of the TF having a wide range of yet identified target genes but better for TF having only few identified target genes. Our results indicate that TNIFSED is complementary to the SIRENE algorithm, and particularly suitable to discover target genes of "orphan" TFs.
Meng, Jun; Shi, Lin; Luan, Yushi
2014-01-01
Background Confident identification of microRNA-target interactions is significant for studying the function of microRNA (miRNA). Although some computational miRNA target prediction methods have been proposed for plants, results of various methods tend to be inconsistent and usually lead to more false positive. To address these issues, we developed an integrated model for identifying plant miRNA–target interactions. Results Three online miRNA target prediction toolkits and machine learning algorithms were integrated to identify and analyze Arabidopsis thaliana miRNA-target interactions. Principle component analysis (PCA) feature extraction and self-training technology were introduced to improve the performance. Results showed that the proposed model outperformed the previously existing methods. The results were validated by using degradome sequencing supported Arabidopsis thaliana miRNA-target interactions. The proposed model constructed on Arabidopsis thaliana was run over Oryza sativa and Vitis vinifera to demonstrate that our model is effective for other plant species. Conclusions The integrated model of online predictors and local PCA-SVM classifier gained credible and high quality miRNA-target interactions. The supervised learning algorithm of PCA-SVM classifier was employed in plant miRNA target identification for the first time. Its performance can be substantially improved if more experimentally proved training samples are provided. PMID:25051153
Tiemann, Katrin; Höhn, Britta; Ehsani, Ali; Forman, Stephen J.; Rossi, John J.; Sætrom, Pål
2010-01-01
We have developed an algorithm for the prediction of dual-targeting short interfering RNAs (siRNAs) in which both strands are deliberately designed to separately target different mRNA transcripts with complete complementarity. An advantage of this approach versus the use of two separate duplexes is that only two strands, as opposed to four, are competing for entry into the RNA-induced silencing complex. We chose to design our dual-targeting siRNAs as Dicer substrate 25/27mer siRNAs, since design features resembling pre-microRNAs (miRNAs) can be introduced for Dicer processing. Seven different dual-targeting siRNAs targeting genes that are potential targets in cancer therapy have been developed including Bcl2, Stat3, CCND1, BIRC5, and MYC. The dual-targeting siRNAs have been characterized for dual target knockdown in three different cell lines (HEK293, HCT116, and PC3), where they were as effective as their corresponding single-targeting siRNAs in target knockdown. The algorithm developed in this study should prove to be useful for predicting dual-targeting siRNAs in a variety of different targets and is available from http://demo1.interagon.com/DualTargeting/. PMID:20410240
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.
Liu, Hua; Wu, Wen
2017-03-31
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking
Liu, Hua; Wu, Wen
2017-01-01
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking. PMID:28362347
Qeli, Ermir; Omasits, Ulrich; Goetze, Sandra; Stekhoven, Daniel J; Frey, Juerg E; Basler, Konrad; Wollscheid, Bernd; Brunner, Erich; Ahrens, Christian H
2014-08-28
The in silico prediction of the best-observable "proteotypic" peptides in mass spectrometry-based workflows is a challenging problem. Being able to accurately predict such peptides would enable the informed selection of proteotypic peptides for targeted quantification of previously observed and non-observed proteins for any organism, with a significant impact for clinical proteomics and systems biology studies. Current prediction algorithms rely on physicochemical parameters in combination with positive and negative training sets to identify those peptide properties that most profoundly affect their general detectability. Here we present PeptideRank, an approach that uses learning to rank algorithm for peptide detectability prediction from shotgun proteomics data, and that eliminates the need to select a negative dataset for the training step. A large number of different peptide properties are used to train ranking models in order to predict a ranking of the best-observable peptides within a protein. Empirical evaluation with rank accuracy metrics showed that PeptideRank complements existing prediction algorithms. Our results indicate that the best performance is achieved when it is trained on organism-specific shotgun proteomics data, and that PeptideRank is most accurate for short to medium-sized and abundant proteins, without any loss in prediction accuracy for the important class of membrane proteins. Targeted proteomics approaches have been gaining a lot of momentum and hold immense potential for systems biology studies and clinical proteomics. However, since only very few complete proteomes have been reported to date, for a considerable fraction of a proteome there is no experimental proteomics evidence that would allow to guide the selection of the best-suited proteotypic peptides (PTPs), i.e. peptides that are specific to a given proteoform and that are repeatedly observed in a mass spectrometer. We describe a novel, rank-based approach for the prediction of the best-suited PTPs for targeted proteomics applications. By building on methods developed in the field of information retrieval (e.g. web search engines like Google's PageRank), we circumvent the delicate step of selecting positive and negative training sets and at the same time also more closely reflect the experimentalist´s need for selecting e.g. the 5 most promising peptides for targeting a protein of interest. This approach allows to predict PTPs for not yet observed proteins or for organisms without prior experimental proteomics data such as many non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Kruger, Jen; Pollard, Daniel; Basarir, Hasan; Thokala, Praveen; Cooke, Debbie; Clark, Marie; Bond, Rod; Heller, Simon; Brennan, Alan
2015-10-01
. Health economic modeling has paid limited attention to the effects that patients' psychological characteristics have on the effectiveness of treatments. This case study tests 1) the feasibility of incorporating psychological prediction models of treatment response within an economic model of type 1 diabetes, 2) the potential value of providing treatment to a subgroup of patients, and 3) the cost-effectiveness of providing treatment to a subgroup of responders defined using 5 different algorithms. . Multiple linear regressions were used to investigate relationships between patients' psychological characteristics and treatment effectiveness. Two psychological prediction models were integrated with a patient-level simulation model of type 1 diabetes. Expected value of individualized care analysis was undertaken. Five different algorithms were used to provide treatment to a subgroup of predicted responders. A cost-effectiveness analysis compared using the algorithms to providing treatment to all patients. . The psychological prediction models had low predictive power for treatment effectiveness. Expected value of individualized care results suggested that targeting education at responders could be of value. The cost-effectiveness analysis suggested, for all 5 algorithms, that providing structured education to a subgroup of predicted responders would not be cost-effective. . The psychological prediction models tested did not have sufficient predictive power to make targeting treatment cost-effective. The psychological prediction models are simple linear models of psychological behavior. Collection of data on additional covariates could potentially increase statistical power. . By collecting data on psychological variables before an intervention, we can construct predictive models of treatment response to interventions. These predictive models can be incorporated into health economic models to investigate more complex service delivery and reimbursement strategies. © The Author(s) 2015.
Inferring genetic interactions via a nonlinear model and an optimization algorithm.
Chen, Chung-Ming; Lee, Chih; Chuang, Cheng-Long; Wang, Chia-Chang; Shieh, Grace S
2010-02-26
Biochemical pathways are gradually becoming recognized as central to complex human diseases and recently genetic/transcriptional interactions have been shown to be able to predict partial pathways. With the abundant information made available by microarray gene expression data (MGED), nonlinear modeling of these interactions is now feasible. Two of the latest advances in nonlinear modeling used sigmoid models to depict transcriptional interaction of a transcription factor (TF) for a target gene, but do not model cooperative or competitive interactions of several TFs for a target. An S-shape model and an optimization algorithm (GASA) were developed to infer genetic interactions/transcriptional regulation of several genes simultaneously using MGED. GASA consists of a genetic algorithm (GA) and a simulated annealing (SA) algorithm, which is enhanced by a steepest gradient descent algorithm to avoid being trapped in local minimum. Using simulated data with various degrees of noise, we studied how GASA with two model selection criteria and two search spaces performed. Furthermore, GASA was shown to outperform network component analysis, the time series network inference algorithm (TSNI), GA with regular GA (GAGA) and GA with regular SA. Two applications are demonstrated. First, GASA is applied to infer a subnetwork of human T-cell apoptosis. Several of the predicted interactions are supported by the literature. Second, GASA was applied to infer the transcriptional factors of 34 cell cycle regulated targets in S. cerevisiae, and GASA performed better than one of the latest advances in nonlinear modeling, GAGA and TSNI. Moreover, GASA is able to predict multiple transcription factors for certain targets, and these results coincide with experiments confirmed data in YEASTRACT. GASA is shown to infer both genetic interactions and transcriptional regulatory interactions well. In particular, GASA seems able to characterize the nonlinear mechanism of transcriptional regulatory interactions (TIs) in yeast, and may be applied to infer TIs in other organisms. The predicted genetic interactions of a subnetwork of human T-cell apoptosis coincide with existing partial pathways, suggesting the potential of GASA on inferring biochemical pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Jung, J; Yoon, D
Purpose: Respiratory gated radiation therapy (RGRT) gives accurate results when a patient’s breathing is stable and regular. Thus, the patient should be fully aware during respiratory pattern training before undergoing the RGRT treatment. In order to bypass the process of respiratory pattern training, we propose a target location prediction system for RGRT that uses only natural respiratory volume, and confirm its application. Methods: In order to verify the proposed target location prediction system, an in-house phantom set was used. This set involves a chest phantom including target, external markers, and motion generator. Natural respiratory volume signals were generated using themore » random function in MATLAB code. In the chest phantom, the target takes a linear motion based on the respiratory signal. After a four-dimensional computed tomography (4DCT) scan of the in-house phantom, the motion trajectory was derived as a linear equation. The accuracy of the linear equation was compared with that of the motion algorithm used by the operating motion generator. In addition, we attempted target location prediction using random respiratory volume values. Results: The correspondence rate of the linear equation derived from the 4DCT images with the motion algorithm of the motion generator was 99.41%. In addition, the average error rate of target location prediction was 1.23% for 26 cases. Conclusion: We confirmed the applicability of our proposed target location prediction system for RGRT using natural respiratory volume. If additional clinical studies can be conducted, a more accurate prediction system can be realized without requiring respiratory pattern training.« less
Synthetic aperture radar image formation for the moving-target and near-field bistatic cases
NASA Astrophysics Data System (ADS)
Ding, Yu
This dissertation addresses topics in two areas of synthetic aperture radar (SAR) image formation: time-frequency based SAR imaging of moving targets and a fast backprojection (BP) algorithm for near-field bistatic SAR imaging. SAR imaging of a moving target is a challenging task due to unknown motion of the target. We approach this problem in a theoretical way, by analyzing the Wigner-Ville distribution (WVD) based SAR imaging technique. We derive approximate closed-form expressions for the point-target response of the SAR imaging system, which quantify the image resolution, and show how the blurring in conventional SAR imaging can be eliminated, while the target shift still remains. Our analyses lead to accurate prediction of the target position in the reconstructed images. The derived expressions also enable us to further study additional aspects of WVD-based SAR imaging. Bistatic SAR imaging is more involved than the monostatic SAR case, because of the separation of the transmitter and the receiver, and possibly the changing bistatic geometry. For near-field bistatic SAR imaging, we develop a novel fast BP algorithm, motivated by a newly proposed fast BP algorithm in computer tomography. First we show that the BP algorithm is the spatial-domain counterpart of the benchmark o -- k algorithm in bistatic SAR imaging, yet it avoids the frequency-domain interpolation in the o -- k algorithm, which may cause artifacts in the reconstructed image. We then derive the band-limited property for BP methods in both monostatic and bistatic SAR imaging, which is the basis for developing the fast BP algorithm. We compare our algorithm with other frequency-domain based algorithms, and show that it achieves better reconstructed image quality, while having the same computational complexity as that of the frequency-domain based algorithms.
An algorithm for direct causal learning of influences on patient outcomes.
Rathnam, Chandramouli; Lee, Sanghoon; Jiang, Xia
2017-01-01
This study aims at developing and introducing a new algorithm, called direct causal learner (DCL), for learning the direct causal influences of a single target. We applied it to both simulated and real clinical and genome wide association study (GWAS) datasets and compared its performance to classic causal learning algorithms. The DCL algorithm learns the causes of a single target from passive data using Bayesian-scoring, instead of using independence checks, and a novel deletion algorithm. We generate 14,400 simulated datasets and measure the number of datasets for which DCL correctly and partially predicts the direct causes. We then compare its performance with the constraint-based path consistency (PC) and conservative PC (CPC) algorithms, the Bayesian-score based fast greedy search (FGS) algorithm, and the partial ancestral graphs algorithm fast causal inference (FCI). In addition, we extend our comparison of all five algorithms to both a real GWAS dataset and real breast cancer datasets over various time-points in order to observe how effective they are at predicting the causal influences of Alzheimer's disease and breast cancer survival. DCL consistently outperforms FGS, PC, CPC, and FCI in discovering the parents of the target for the datasets simulated using a simple network. Overall, DCL predicts significantly more datasets correctly (McNemar's test significance: p<0.0001) than any of the other algorithms for these network types. For example, when assessing overall performance (simple and complex network results combined), DCL correctly predicts approximately 1400 more datasets than the top FGS method, 1600 more datasets than the top CPC method, 4500 more datasets than the top PC method, and 5600 more datasets than the top FCI method. Although FGS did correctly predict more datasets than DCL for the complex networks, and DCL correctly predicted only a few more datasets than CPC for these networks, there is no significant difference in performance between these three algorithms for this network type. However, when we use a more continuous measure of accuracy, we find that all the DCL methods are able to better partially predict more direct causes than FGS and CPC for the complex networks. In addition, DCL consistently had faster runtimes than the other algorithms. In the application to the real datasets, DCL identified rs6784615, located on the NISCH gene, and rs10824310, located on the PRKG1 gene, as direct causes of late onset Alzheimer's disease (LOAD) development. In addition, DCL identified ER category as a direct predictor of breast cancer mortality within 5 years, and HER2 status as a direct predictor of 10-year breast cancer mortality. These predictors have been identified in previous studies to have a direct causal relationship with their respective phenotypes, supporting the predictive power of DCL. When the other algorithms discovered predictors from the real datasets, these predictors were either also found by DCL or could not be supported by previous studies. Our results show that DCL outperforms FGS, PC, CPC, and FCI in almost every case, demonstrating its potential to advance causal learning. Furthermore, our DCL algorithm effectively identifies direct causes in the LOAD and Metabric GWAS datasets, which indicates its potential for clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Behavioral-Based Predictors of Workplace Violence in the Army STARRS
2014-10-01
Dawes RM, Faust D, Meehl PE. Clinical versus actuarial judgment. Science . 1989;243(4899): 1668-1674. 46. Grove WM, Zald DH, Lebow BS, Snitz BE, Nelson...develop an actuarial risk algorithm predicting suicide in the 12 months after US Army soldier inpatient treatment of a psychiatric disorder to target...generate an actuarial post- hospitalization suicide risk algorithm. Previous research has revealed that actuarial suicide prediction is much more
Top-attack modeling and automatic target detection using synthetic FLIR scenery
NASA Astrophysics Data System (ADS)
Weber, Bruce A.; Penn, Joseph A.
2004-09-01
A series of experiments have been performed to verify the utility of algorithmic tools for the modeling and analysis of cold-target signatures in synthetic, top-attack, FLIR video sequences. The tools include: MuSES/CREATION for the creation of synthetic imagery with targets, an ARL target detection algorithm to detect imbedded synthetic targets in scenes, and an ARL scoring algorithm, using Receiver-Operating-Characteristic (ROC) curve analysis, to evaluate detector performance. Cold-target detection variability was examined as a function of target emissivity, surrounding clutter type, and target placement in non-obscuring clutter locations. Detector metrics were also individually scored so as to characterize the effect of signature/clutter variations. Results show that using these tools, a detailed, physically meaningful, target detection analysis is possible and that scenario specific target detectors may be developed by selective choice and/or weighting of detector metrics. However, developing these tools into a reliable predictive capability will require the extension of these results to the modeling and analysis of a large number of data sets configured for a wide range of target and clutter conditions. Finally, these tools should also be useful for the comparison of competitive detection algorithms by providing well defined, and controllable target detection scenarios, as well as for the training and testing of expert human observers.
A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs).
Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong
2014-01-01
Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.
Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline.
Zhang, Jie; Li, Qingyang; Caselli, Richard J; Thompson, Paul M; Ye, Jieping; Wang, Yalin
2017-06-01
Alzheimer's Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms.
Stitzel, Joel D; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Schoell, Samantha L; Doud, Andrea N; Martin, R Shayn; Meredith, J Wayne
2016-06-01
Advanced Automatic Crash Notification algorithms use vehicle telemetry measurements to predict risk of serious motor vehicle crash injury. The objective of the study was to develop an Advanced Automatic Crash Notification algorithm to reduce response time, increase triage efficiency, and improve patient outcomes by minimizing undertriage (<5%) and overtriage (<50%), as recommended by the American College of Surgeons. A list of injuries associated with a patient's need for Level I/II trauma center treatment known as the Target Injury List was determined using an approach based on 3 facets of injury: severity, time sensitivity, and predictability. Multivariable logistic regression was used to predict an occupant's risk of sustaining an injury on the Target Injury List based on crash severity and restraint factors for occupants in the National Automotive Sampling System - Crashworthiness Data System 2000-2011. The Advanced Automatic Crash Notification algorithm was optimized and evaluated to minimize triage rates, per American College of Surgeons recommendations. The following rates were achieved: <50% overtriage and <5% undertriage in side impacts and 6% to 16% undertriage in other crash modes. Nationwide implementation of our algorithm is estimated to improve triage decisions for 44% of undertriaged and 38% of overtriaged occupants. Annually, this translates to more appropriate care for >2,700 seriously injured occupants and reduces unnecessary use of trauma center resources for >162,000 minimally injured occupants. The algorithm could be incorporated into vehicles to inform emergency personnel of recommended motor vehicle crash triage decisions. Lower under- and overtriage was achieved, and nationwide implementation of the algorithm would yield improved triage decision making for an estimated 165,000 occupants annually. Copyright © 2016. Published by Elsevier Inc.
Alsbou, Nesreen; Ahmad, Salahuddin; Ali, Imad
2016-05-17
A motion algorithm has been developed to extract length, CT number level and motion amplitude of a mobile target from cone-beam CT (CBCT) images. The algorithm uses three measurable parameters: Apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm are tested with mobile targets having different well-known sizes that are made from tissue-equivalent gel which is inserted into a thorax phantom. The phantom moves sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0-20 mm. Using this motion algorithm, three unknown parameters are extracted that include: Length of the target, CT number level, speed or motion amplitude for the mobile targets from CBCT images. The motion algorithm solves for the three unknown parameters using measured length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agrees with the measured lengths which are dependent on the target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, the target length and motion amplitude. Motion frequency and phase do not affect the elongation and CT number distribution of the mobile target and could not be determined. A motion algorithm has been developed to extract three parameters that include length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement of motion tracking and sorting of the images into different breathing phases. The motion model developed here works well for tumors that have simple shapes, high contrast relative to surrounding tissues and move nearly in regular motion pattern that can be approximated with a simple sinusoidal function. This algorithm has potential applications in diagnostic CT imaging and radiotherapy in terms of motion management.
Modeling the effects of contrast enhancement on target acquisition performance
NASA Astrophysics Data System (ADS)
Du Bosq, Todd W.; Fanning, Jonathan D.
2008-04-01
Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content, by better utilizing the available gray levels either globally or locally. This paper assesses the range-performance effects of various contrast enhancement algorithms for target identification with well contrasted vehicles. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing linearly scaled images and various contrast enhancement processed images. Contrast enhancement is modeled in the US Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of feature saturation or enhancement. To account for the equivalent blur associated with each contrast enhancement algorithm, an additional effective MTF was calculated and added to the model. The measured results are compared with the predicted performance based on the target task difficulty metric used in NVThermIP.
Deep-Learning-Based Drug-Target Interaction Prediction.
Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei
2017-04-07
Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.
Prediction-based Dynamic Energy Management in Wireless Sensor Networks
Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei
2007-01-01
Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.
Frnakenstein: multiple target inverse RNA folding.
Lyngsø, Rune B; Anderson, James W J; Sizikova, Elena; Badugu, Amarendra; Hyland, Tomas; Hein, Jotun
2012-10-09
RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein.
Frnakenstein: multiple target inverse RNA folding
2012-01-01
Background RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. Results In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Conclusions Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are real structures, while no deterioration was observed for predicted structures. Design for two structure targets is considerably more difficult, but far from impossible, demonstrating the feasibility of automated design of artificial riboswitches. The Python implementation is available at http://www.stats.ox.ac.uk/research/genome/software/frnakenstein. PMID:23043260
In Silico Prediction and Validation of Gfap as an miR-3099 Target in Mouse Brain.
Abidin, Shahidee Zainal; Leong, Jia-Wen; Mahmoudi, Marzieh; Nordin, Norshariza; Abdullah, Syahril; Cheah, Pike-See; Ling, King-Hwa
2017-08-01
MicroRNAs are small non-coding RNAs that play crucial roles in the regulation of gene expression and protein synthesis during brain development. MiR-3099 is highly expressed throughout embryogenesis, especially in the developing central nervous system. Moreover, miR-3099 is also expressed at a higher level in differentiating neurons in vitro, suggesting that it is a potential regulator during neuronal cell development. This study aimed to predict the target genes of miR-3099 via in-silico analysis using four independent prediction algorithms (miRDB, miRanda, TargetScan, and DIANA-micro-T-CDS) with emphasis on target genes related to brain development and function. Based on the analysis, a total of 3,174 miR-3099 target genes were predicted. Those predicted by at least three algorithms (324 genes) were subjected to DAVID bioinformatics analysis to understand their overall functional themes and representation. The analysis revealed that nearly 70% of the target genes were expressed in the nervous system and a significant proportion were associated with transcriptional regulation and protein ubiquitination mechanisms. Comparison of in situ hybridization (ISH) expression patterns of miR-3099 in both published and in-house-generated ISH sections with the ISH sections of target genes from the Allen Brain Atlas identified 7 target genes (Dnmt3a, Gabpa, Gfap, Itga4, Lxn, Smad7, and Tbx18) having expression patterns complementary to miR-3099 in the developing and adult mouse brain samples. Of these, we validated Gfap as a direct downstream target of miR-3099 using the luciferase reporter gene system. In conclusion, we report the successful prediction and validation of Gfap as an miR-3099 target gene using a combination of bioinformatics resources with enrichment of annotations based on functional ontologies and a spatio-temporal expression dataset.
Monga, Isha; Qureshi, Abid; Thakur, Nishant; Gupta, Amit Kumar; Kumar, Manoj
2017-01-01
Allele-specific siRNAs (ASP-siRNAs) have emerged as promising therapeutic molecules owing to their selectivity to inhibit the mutant allele or associated single-nucleotide polymorphisms (SNPs) sparing the expression of the wild-type counterpart. Thus, a dedicated bioinformatics platform encompassing updated ASP-siRNAs and an algorithm for the prediction of their inhibitory efficacy will be helpful in tackling currently intractable genetic disorders. In the present study, we have developed the ASPsiRNA resource (http://crdd.osdd.net/servers/aspsirna/) covering three components viz (i) ASPsiDb, (ii) ASPsiPred, and (iii) analysis tools like ASP-siOffTar. ASPsiDb is a manually curated database harboring 4543 (including 422 chemically modified) ASP-siRNAs targeting 78 unique genes involved in 51 different diseases. It furnishes comprehensive information from experimental studies on ASP-siRNAs along with multidimensional genetic and clinical information for numerous mutations. ASPsiPred is a two-layered algorithm to predict efficacy of ASP-siRNAs for fully complementary mutant (Effmut) and wild-type allele (Effwild) with one mismatch by ASPsiPredSVM and ASPsiPredmatrix, respectively. In ASPsiPredSVM, 922 unique ASP-siRNAs with experimentally validated quantitative Effmut were used. During 10-fold cross-validation (10nCV) employing various sequence features on the training/testing dataset (T737), the best predictive model achieved a maximum Pearson’s correlation coefficient (PCC) of 0.71. Further, the accuracy of the classifier to predict Effmut against novel genes was assessed by leave one target out cross-validation approach (LOTOCV). ASPsiPredmatrix was constructed from rule-based studies describing the effect of single siRNA:mRNA mismatches on the efficacy at 19 different locations of siRNA. Thus, ASPsiRNA encompasses the first database, prediction algorithm, and off-target analysis tool that is expected to accelerate research in the field of RNAi-based therapeutics for human genetic diseases. PMID:28696921
A Systematic Investigation of Computation Models for Predicting Adverse Drug Reactions (ADRs)
Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong
2014-01-01
Background Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. Principal Findings In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Conclusion Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms. PMID:25180585
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Ahmad, S; Alsbou, N
Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulatemore » respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases which has potential applications in diagnostic CT imaging and radiotherapy.« less
Wang, Nanyi; Wang, Lirong; Xie, Xiang-Qun
2017-11-27
Molecular docking is widely applied to computer-aided drug design and has become relatively mature in the recent decades. Application of docking in modeling varies from single lead compound optimization to large-scale virtual screening. The performance of molecular docking is highly dependent on the protein structures selected. It is especially challenging for large-scale target prediction research when multiple structures are available for a single target. Therefore, we have established ProSelection, a docking preferred-protein selection algorithm, in order to generate the proper structure subset(s). By the ProSelection algorithm, protein structures of "weak selectors" are filtered out whereas structures of "strong selectors" are kept. Specifically, the structure which has a good statistical performance of distinguishing active ligands from inactive ligands is defined as a strong selector. In this study, 249 protein structures of 14 autophagy-related targets are investigated. Surflex-dock was used as the docking engine to distinguish active and inactive compounds against these protein structures. Both t test and Mann-Whitney U test were used to distinguish the strong from the weak selectors based on the normality of the docking score distribution. The suggested docking score threshold for active ligands (SDA) was generated for each strong selector structure according to the receiver operating characteristic (ROC) curve. The performance of ProSelection was further validated by predicting the potential off-targets of 43 U.S. Federal Drug Administration approved small molecule antineoplastic drugs. Overall, ProSelection will accelerate the computational work in protein structure selection and could be a useful tool for molecular docking, target prediction, and protein-chemical database establishment research.
Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline
Zhang, Jie; Li, Qingyang; Caselli, Richard J.; Thompson, Paul M.; Ye, Jieping; Wang, Yalin
2017-01-01
Alzheimer’s Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms. PMID:28943731
Artemov, Artem; Aliper, Alexander; Korzinkin, Michael; Lezhnina, Ksenia; Jellen, Leslie; Zhukov, Nikolay; Roumiantsev, Sergey; Gaifullin, Nurshat; Zhavoronkov, Alex; Borisov, Nicolas; Buzdin, Anton
2015-10-06
A new generation of anticancer therapeutics called target drugs has quickly developed in the 21st century. These drugs are tailored to inhibit cancer cell growth, proliferation, and viability by specific interactions with one or a few target proteins. However, despite formally known molecular targets for every "target" drug, patient response to treatment remains largely individual and unpredictable. Choosing the most effective personalized treatment remains a major challenge in oncology and is still largely trial and error. Here we present a novel approach for predicting target drug efficacy based on the gene expression signature of the individual tumor sample(s). The enclosed bioinformatic algorithm detects activation of intracellular regulatory pathways in the tumor in comparison to the corresponding normal tissues. According to the nature of the molecular targets of a drug, it predicts whether the drug can prevent cancer growth and survival in each individual case by blocking the abnormally activated tumor-promoting pathways or by reinforcing internal tumor suppressor cascades. To validate the method, we compared the distribution of predicted drug efficacy scores for five drugs (Sorafenib, Bevacizumab, Cetuximab, Sorafenib, Imatinib, Sunitinib) and seven cancer types (Clear Cell Renal Cell Carcinoma, Colon cancer, Lung adenocarcinoma, non-Hodgkin Lymphoma, Thyroid cancer and Sarcoma) with the available clinical trials data for the respective cancer types and drugs. The percent of responders to a drug treatment correlated significantly (Pearson's correlation 0.77 p = 0.023) with the percent of tumors showing high drug scores calculated with the current algorithm.
Actigraphy features for predicting mobility disability in older adults
USDA-ARS?s Scientific Manuscript database
Actigraphy has attracted much attention for assessing physical activity in the past decade. Many algorithms have been developed to automate the analysis process, but none has targeted a general model to discover related features for detecting or predicting mobility function, or more specifically, mo...
Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics
NASA Astrophysics Data System (ADS)
Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.
2006-06-01
Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.
Use of a machine learning framework to predict substance use disorder treatment success
Kelmansky, Diana; van der Laan, Mark; Sahker, Ethan; Jones, DeShauna; Arndt, Stephan
2017-01-01
There are several methods for building prediction models. The wealth of currently available modeling techniques usually forces the researcher to judge, a priori, what will likely be the best method. Super learning (SL) is a methodology that facilitates this decision by combining all identified prediction algorithms pertinent for a particular prediction problem. SL generates a final model that is at least as good as any of the other models considered for predicting the outcome. The overarching aim of this work is to introduce SL to analysts and practitioners. This work compares the performance of logistic regression, penalized regression, random forests, deep learning neural networks, and SL to predict successful substance use disorders (SUD) treatment. A nationwide database including 99,013 SUD treatment patients was used. All algorithms were evaluated using the area under the receiver operating characteristic curve (AUC) in a test sample that was not included in the training sample used to fit the prediction models. AUC for the models ranged between 0.793 and 0.820. SL was superior to all but one of the algorithms compared. An explanation of SL steps is provided. SL is the first step in targeted learning, an analytic framework that yields double robust effect estimation and inference with fewer assumptions than the usual parametric methods. Different aspects of SL depending on the context, its function within the targeted learning framework, and the benefits of this methodology in the addiction field are discussed. PMID:28394905
Use of a machine learning framework to predict substance use disorder treatment success.
Acion, Laura; Kelmansky, Diana; van der Laan, Mark; Sahker, Ethan; Jones, DeShauna; Arndt, Stephan
2017-01-01
There are several methods for building prediction models. The wealth of currently available modeling techniques usually forces the researcher to judge, a priori, what will likely be the best method. Super learning (SL) is a methodology that facilitates this decision by combining all identified prediction algorithms pertinent for a particular prediction problem. SL generates a final model that is at least as good as any of the other models considered for predicting the outcome. The overarching aim of this work is to introduce SL to analysts and practitioners. This work compares the performance of logistic regression, penalized regression, random forests, deep learning neural networks, and SL to predict successful substance use disorders (SUD) treatment. A nationwide database including 99,013 SUD treatment patients was used. All algorithms were evaluated using the area under the receiver operating characteristic curve (AUC) in a test sample that was not included in the training sample used to fit the prediction models. AUC for the models ranged between 0.793 and 0.820. SL was superior to all but one of the algorithms compared. An explanation of SL steps is provided. SL is the first step in targeted learning, an analytic framework that yields double robust effect estimation and inference with fewer assumptions than the usual parametric methods. Different aspects of SL depending on the context, its function within the targeted learning framework, and the benefits of this methodology in the addiction field are discussed.
TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuemann, J; Grassberger, C; Paganetti, H
2014-06-15
Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50)more » were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend treatment plan verification using Monte Carlo simulations for patients with complex geometries.« less
Prediction of miRNA-mRNA associations in Alzheimer's disease mice using network topology.
Noh, Haneul; Park, Charny; Park, Soojun; Lee, Young Seek; Cho, Soo Young; Seo, Hyemyung
2014-08-03
Little is known about the relationship between miRNA and mRNA expression in Alzheimer's disease (AD) at early- or late-symptomatic stages. Sequence-based target prediction algorithms and anti-correlation profiles have been applied to predict miRNA targets using omics data, but this approach often leads to false positive predictions. Here, we applied the joint profiling analysis of mRNA and miRNA expression levels to Tg6799 AD model mice at 4 and 8 months of age using a network topology-based method. We constructed gene regulatory networks and used the PageRank algorithm to predict significant interactions between miRNA and mRNA. In total, 8 cluster modules were predicted by the transcriptome data for co-expression networks of AD pathology. In total, 54 miRNAs were identified as being differentially expressed in AD. Among these, 50 significant miRNA-mRNA interactions were predicted by integrating sequence target prediction, expression analysis, and the PageRank algorithm. We identified a set of miRNA-mRNA interactions that were changed in the hippocampus of Tg6799 AD model mice. We determined the expression levels of several candidate genes and miRNA. For functional validation in primary cultured neurons from Tg6799 mice (MT) and littermate (LM) controls, the overexpression of ARRDC3 enhanced PPP1R3C expression. ARRDC3 overexpression showed the tendency to decrease the expression of miR139-5p and miR3470a in both LM and MT primary cells. Pathological environment created by Aβ treatment increased the gene expression of PPP1R3C and Sfpq but did not significantly alter the expression of miR139-5p or miR3470a. Aβ treatment increased the promoter activity of ARRDC3 gene in LM primary cells but not in MT primary cells. Our results demonstrate AD-specific changes in the miRNA regulatory system as well as the relationship between the expression levels of miRNAs and their targets in the hippocampus of Tg6799 mice. These data help further our understanding of the function and mechanism of various miRNAs and their target genes in the molecular pathology of AD.
She, Ji; Wang, Fei; Zhou, Jianjiang
2016-01-01
Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance. PMID:28009819
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.
2017-10-01
The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been extensively validated and provides a flexible process for signature evaluation and algorithm development.
Hao, Ming; Wang, Yanli; Bryant, Stephen H
2016-02-25
Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work, a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algorithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm achieves the state-of-the-art results with area under precision-recall curve (AUPR) of 0.915, 0.925, 0.853 and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR) based on 10 fold cross-validation. The performance can further be improved by using a recalculated kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of the top ranked interaction predictions can be validated by experimental data reported in the literature, bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as polypharmacology, and may help to accelerate drug discovery by identifying novel drug targets. Published by Elsevier B.V.
Earthquake prediction analysis based on empirical seismic rate: the M8 algorithm
NASA Astrophysics Data System (ADS)
Molchan, G.; Romashkova, L.
2010-12-01
The quality of space-time earthquake prediction is usually characterized by a 2-D error diagram (n, τ), where n is the fraction of failures-to-predict and τ is the local rate of alarm averaged in space. The most reasonable averaging measure for analysis of a prediction strategy is the normalized rate of target events λ(dg) in a subarea dg. In that case the quantity H = 1 - (n + τ) determines the prediction capability of the strategy. The uncertainty of λ(dg) causes difficulties in estimating H and the statistical significance, α, of prediction results. We investigate this problem theoretically and show how the uncertainty of the measure can be taken into account in two situations, viz., the estimation of α and the construction of a confidence zone for the (n, τ)-parameters of the random strategies. We use our approach to analyse the results from prediction of M >= 8.0 events by the M8 method for the period 1985-2009 (the M8.0+ test). The model of λ(dg) based on the events Mw >= 5.5, 1977-2004, and the magnitude range of target events 8.0 <= M < 8.5 are considered as basic to this M8 analysis. We find the point and upper estimates of α and show that they are still unstable because the number of target events in the experiment is small. However, our results argue in favour of non-triviality of the M8 prediction algorithm.
Mortality prediction system for heart failure with orthogonal relief and dynamic radius means.
Wang, Zhe; Yao, Lijuan; Li, Dongdong; Ruan, Tong; Liu, Min; Gao, Ju
2018-07-01
This paper constructs a mortality prediction system based on a real-world dataset. This mortality prediction system aims to predict mortality in heart failure (HF) patients. Effective mortality prediction can improve resources allocation and clinical outcomes, avoiding inappropriate overtreatment of low-mortality patients and discharging of high-mortality patients. This system covers three mortality prediction targets: prediction of in-hospital mortality, prediction of 30-day mortality and prediction of 1-year mortality. HF data are collected from the Shanghai Shuguang hospital. 10,203 in-patients records are extracted from encounters occurring between March 2009 and April 2016. The records involve 4682 patients, including 539 death cases. A feature selection method called Orthogonal Relief (OR) algorithm is first used to reduce the dimensionality. Then, a classification algorithm named Dynamic Radius Means (DRM) is proposed to predict the mortality in HF patients. The comparative experimental results demonstrate that mortality prediction system achieves high performance in all targets by DRM. It is noteworthy that the performance of in-hospital mortality prediction achieves 87.3% in AUC (35.07% improvement). Moreover, the AUC of 30-day and 1-year mortality prediction reach to 88.45% and 84.84%, respectively. Especially, the system could keep itself effective and not deteriorate when the dimension of samples is sharply reduced. The proposed system with its own method DRM can predict mortality in HF patients and achieve high performance in all three mortality targets. Furthermore, effective feature selection strategy can boost the system. This system shows its importance in real-world applications, assisting clinicians in HF treatment by providing crucial decision information. Copyright © 2018 Elsevier B.V. All rights reserved.
Ahadi, Alireza; Sablok, Gaurav; Hutvagner, Gyorgy
2017-04-07
MicroRNAs (miRNAs) are ∼19-22 nucleotides (nt) long regulatory RNAs that regulate gene expression by recognizing and binding to complementary sequences on mRNAs. The key step in revealing the function of a miRNA, is the identification of miRNA target genes. Recent biochemical advances including PAR-CLIP and HITS-CLIP allow for improved miRNA target predictions and are widely used to validate miRNA targets. Here, we present miRTar2GO, which is a model, trained on the common rules of miRNA-target interactions, Argonaute (Ago) CLIP-Seq data and experimentally validated miRNA target interactions. miRTar2GO is designed to predict miRNA target sites using more relaxed miRNA-target binding characteristics. More importantly, miRTar2GO allows for the prediction of cell-type specific miRNA targets. We have evaluated miRTar2GO against other widely used miRNA target prediction algorithms and demonstrated that miRTar2GO produced significantly higher F1 and G scores. Target predictions, binding specifications, results of the pathway analysis and gene ontology enrichment of miRNA targets are freely available at http://www.mirtar2go.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Yan, Yumeng; Tao, Huanyu; Huang, Sheng-You
2018-05-26
A major subclass of protein-protein interactions is formed by homo-oligomers with certain symmetry. Therefore, computational modeling of the symmetric protein complexes is important for understanding the molecular mechanism of related biological processes. Although several symmetric docking algorithms have been developed for Cn symmetry, few docking servers have been proposed for Dn symmetry. Here, we present HSYMDOCK, a web server of our hierarchical symmetric docking algorithm that supports both Cn and Dn symmetry. The HSYMDOCK server was extensively evaluated on three benchmarks of symmetric protein complexes, including the 20 CASP11-CAPRI30 homo-oligomer targets, the symmetric docking benchmark of 213 Cn targets and 35 Dn targets, and a nonredundant test set of 55 transmembrane proteins. It was shown that HSYMDOCK obtained a significantly better performance than other similar docking algorithms. The server supports both sequence and structure inputs for the monomer/subunit. Users have an option to provide the symmetry type of the complex, or the server can predict the symmetry type automatically. The docking process is fast and on average consumes 10∼20 min for a docking job. The HSYMDOCK web server is available at http://huanglab.phys.hust.edu.cn/hsymdock/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabhouti, H; Sanli, E; Cebe, M
Purpose: Brain stereotactic radiosurgery involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of Truebeam 2.0 and Cyberknife M6 treatment plans were made. Methods: For Truebeam 2.0 machine, treatment planning were done using 2 full arc VMAT technique with 6 FFF beam on the CT scan of Randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using Eclipse treatment planning system with Acuros XB algorithm. The treatment planningmore » of the same target were also done for Cyberknife M6 machine with Multiplan treatment planning system using Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For Truebeam plans, the gamma analysis passing rates were 99.1% and 95.5% for target and peripheral region of target respectively. Conclusion: Although, target dose distribution calculated accurately by Acuros XB and Monte Carlo algorithms, Monte carlo calculation algorithm predicts dose distribution around the peripheral region of target more accurately than Acuros algorithm.« less
Oulas, Anastasis; Karathanasis, Nestoras; Louloupi, Annita; Pavlopoulos, Georgios A; Poirazi, Panayiota; Kalantidis, Kriton; Iliopoulos, Ioannis
2015-01-01
Computational methods for miRNA target prediction are currently undergoing extensive review and evaluation. There is still a great need for improvement of these tools and bioinformatics approaches are looking towards high-throughput experiments in order to validate predictions. The combination of large-scale techniques with computational tools will not only provide greater credence to computational predictions but also lead to the better understanding of specific biological questions. Current miRNA target prediction tools utilize probabilistic learning algorithms, machine learning methods and even empirical biologically defined rules in order to build models based on experimentally verified miRNA targets. Large-scale protein downregulation assays and next-generation sequencing (NGS) are now being used to validate methodologies and compare the performance of existing tools. Tools that exhibit greater correlation between computational predictions and protein downregulation or RNA downregulation are considered the state of the art. Moreover, efficiency in prediction of miRNA targets that are concurrently verified experimentally provides additional validity to computational predictions and further highlights the competitive advantage of specific tools and their efficacy in extracting biologically significant results. In this review paper, we discuss the computational methods for miRNA target prediction and provide a detailed comparison of methodologies and features utilized by each specific tool. Moreover, we provide an overview of current state-of-the-art high-throughput methods used in miRNA target prediction.
Monga, Isha; Qureshi, Abid; Thakur, Nishant; Gupta, Amit Kumar; Kumar, Manoj
2017-09-07
Allele-specific siRNAs (ASP-siRNAs) have emerged as promising therapeutic molecules owing to their selectivity to inhibit the mutant allele or associated single-nucleotide polymorphisms (SNPs) sparing the expression of the wild-type counterpart. Thus, a dedicated bioinformatics platform encompassing updated ASP-siRNAs and an algorithm for the prediction of their inhibitory efficacy will be helpful in tackling currently intractable genetic disorders. In the present study, we have developed the ASPsiRNA resource (http://crdd.osdd.net/servers/aspsirna/) covering three components viz (i) ASPsiDb , (ii) ASPsiPred , and (iii) analysis tools like ASP-siOffTar ASPsiDb is a manually curated database harboring 4543 (including 422 chemically modified) ASP-siRNAs targeting 78 unique genes involved in 51 different diseases. It furnishes comprehensive information from experimental studies on ASP-siRNAs along with multidimensional genetic and clinical information for numerous mutations. ASPsiPred is a two-layered algorithm to predict efficacy of ASP-siRNAs for fully complementary mutant (Eff mut ) and wild-type allele (Eff wild ) with one mismatch by ASPsiPred SVM and ASPsiPred matrix , respectively. In ASPsiPred SVM , 922 unique ASP-siRNAs with experimentally validated quantitative Eff mut were used. During 10-fold cross-validation (10nCV) employing various sequence features on the training/testing dataset (T737), the best predictive model achieved a maximum Pearson's correlation coefficient (PCC) of 0.71. Further, the accuracy of the classifier to predict Eff mut against novel genes was assessed by leave one target out cross-validation approach (LOTOCV). ASPsiPred matrix was constructed from rule-based studies describing the effect of single siRNA:mRNA mismatches on the efficacy at 19 different locations of siRNA. Thus, ASPsiRNA encompasses the first database, prediction algorithm, and off-target analysis tool that is expected to accelerate research in the field of RNAi-based therapeutics for human genetic diseases. Copyright © 2017 Monga et al.
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML)
Lechevalier, D.; Ak, R.; Ferguson, M.; Law, K. H.; Lee, Y.-T. T.; Rachuri, S.
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain. PMID:29202125
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML).
Park, J; Lechevalier, D; Ak, R; Ferguson, M; Law, K H; Lee, Y-T T; Rachuri, S
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain.
Ogorzalek, Tadeusz L; Hura, Greg L; Belsom, Adam; Burnett, Kathryn H; Kryshtafovych, Andriy; Tainer, John A; Rappsilber, Juri; Tsutakawa, Susan E; Fidelis, Krzysztof
2018-03-01
Experimental data offers empowering constraints for structure prediction. These constraints can be used to filter equivalently scored models or more powerfully within optimization functions toward prediction. In CASP12, Small Angle X-ray Scattering (SAXS) and Cross-Linking Mass Spectrometry (CLMS) data, measured on an exemplary set of novel fold targets, were provided to the CASP community of protein structure predictors. As solution-based techniques, SAXS and CLMS can efficiently measure states of the full-length sequence in its native solution conformation and assembly. However, this experimental data did not substantially improve prediction accuracy judged by fits to crystallographic models. One issue, beyond intrinsic limitations of the algorithms, was a disconnect between crystal structures and solution-based measurements. Our analyses show that many targets had substantial percentages of disordered regions (up to 40%) or were multimeric or both. Thus, solution measurements of flexibility and assembly support variations that may confound prediction algorithms trained on crystallographic data and expecting globular fully-folded monomeric proteins. Here, we consider the CLMS and SAXS data collected, the information in these solution measurements, and the challenges in incorporating them into computational prediction. As improvement opportunities were only partly realized in CASP12, we provide guidance on how data from the full-length biological unit and the solution state can better aid prediction of the folded monomer or subunit. We furthermore describe strategic integrations of solution measurements with computational prediction programs with the aim of substantially improving foundational knowledge and the accuracy of computational algorithms for biologically-relevant structure predictions for proteins in solution. © 2018 Wiley Periodicals, Inc.
Behavioral Modeling for Mental Health using Machine Learning Algorithms.
Srividya, M; Mohanavalli, S; Bhalaji, N
2018-04-03
Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.
Development and Testing of Data Mining Algorithms for Earth Observation
NASA Technical Reports Server (NTRS)
Glymour, Clark
2005-01-01
The new algorithms developed under this project included a principled procedure for classification of objects, events or circumstances according to a target variable when a very large number of potential predictor variables is available but the number of cases that can be used for training a classifier is relatively small. These "high dimensional" problems require finding a minimal set of variables -called the Markov Blanket-- sufficient for predicting the value of the target variable. An algorithm, the Markov Blanket Fan Search, was developed, implemented and tested on both simulated and real data in conjunction with a graphical model classifier, which was also implemented. Another algorithm developed and implemented in TETRAD IV for time series elaborated on work by C. Granger and N. Swanson, which in turn exploited some of our earlier work. The algorithms in question learn a linear time series model from data. Given such a time series, the simultaneous residual covariances, after factoring out time dependencies, may provide information about causal processes that occur more rapidly than the time series representation allow, so called simultaneous or contemporaneous causal processes. Working with A. Monetta, a graduate student from Italy, we produced the correct statistics for estimating the contemporaneous causal structure from time series data using the TETRAD IV suite of algorithms. Two economists, David Bessler and Kevin Hoover, have independently published applications using TETRAD style algorithms to the same purpose. These implementations and algorithmic developments were separately used in two kinds of studies of climate data: Short time series of geographically proximate climate variables predicting agricultural effects in California, and longer duration climate measurements of temperature teleconnections.
Combinatorial therapy discovery using mixed integer linear programming.
Pang, Kaifang; Wan, Ying-Wooi; Choi, William T; Donehower, Lawrence A; Sun, Jingchun; Pant, Dhruv; Liu, Zhandong
2014-05-15
Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set. Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/. zhandong.liu@bcm.edu Supplementary data are available at Bioinformatics online.
Docking and scoring protein interactions: CAPRI 2009.
Lensink, Marc F; Wodak, Shoshana J
2010-11-15
Protein docking algorithms are assessed by evaluating blind predictions performed during 2007-2009 in Rounds 13-19 of the community-wide experiment on critical assessment of predicted interactions (CAPRI). We evaluated the ability of these algorithms to sample docking poses and to single out specific association modes in 14 targets, representing 11 distinct protein complexes. These complexes play important biological roles in RNA maturation, G-protein signal processing, and enzyme inhibition and function. One target involved protein-RNA interactions not previously considered in CAPRI, several others were hetero-oligomers, or featured multiple interfaces between the same protein pair. For most targets, predictions started from the experimentally determined structures of the free (unbound) components, or from models built from known structures of related or similar proteins. To succeed they therefore needed to account for conformational changes and model inaccuracies. In total, 64 groups and 12 web-servers submitted docking predictions of which 4420 were evaluated. Overall our assessment reveals that 67% of the groups, more than ever before, produced acceptable models or better for at least one target, with many groups submitting multiple high- and medium-accuracy models for two to six targets. Forty-one groups including four web-servers participated in the scoring experiment with 1296 evaluated models. Scoring predictions also show signs of progress evidenced from the large proportion of correct models submitted. But singling out the best models remains a challenge, which also adversely affects the ability to correctly rank docking models. With the increased interest in translating abstract protein interaction networks into realistic models of protein assemblies, the growing CAPRI community is actively developing more efficient and reliable docking and scoring methods for everyone to use. © 2010 Wiley-Liss, Inc.
Multiplex primer prediction software for divergent targets
Gardner, Shea N.; Hiddessen, Amy L.; Williams, Peter L.; Hara, Christine; Wagner, Mark C.; Colston, Bill W.
2009-01-01
We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets to amplify all members of large, diverse and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers (∼3700 18-mers or ∼2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus (FMDV), hemagglutinin (HA) and neuraminidase (NA) segments of influenza A virus, Norwalk virus, and HIV-1. We empirically demonstrated the application of the software with a multiplex set of 16 short (10 nt) primers designed to amplify the Poxviridae family to produce a specific amplicon from vaccinia virus. PMID:19759213
CUFID-query: accurate network querying through random walk based network flow estimation.
Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun
2017-12-28
Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive performance evaluation based on biological networks with known functional modules, we show that CUFID-query outperforms the existing state-of-the-art algorithms in terms of prediction accuracy and biological significance of the predictions.
Tracking children's mental states while solving algebra equations.
Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M
2012-11-01
Behavioral and function magnetic resonance imagery (fMRI) data were combined to infer the mental states of students as they interacted with an intelligent tutoring system. Sixteen children interacted with a computer tutor for solving linear equations over a six-day period (days 0-5), with days 1 and 5 occurring in an fMRI scanner. Hidden Markov model algorithms combined a model of student behavior with multi-voxel imaging pattern data to predict the mental states of students. We separately assessed the algorithms' ability to predict which step in a problem-solving sequence was performed and whether the step was performed correctly. For day 1, the data patterns of other students were used to predict the mental states of a target student. These predictions were improved on day 5 by adding information about the target student's behavioral and imaging data from day 1. Successful tracking of mental states depended on using the combination of a behavioral model and multi-voxel pattern analysis, illustrating the effectiveness of an integrated approach to tracking the cognition of individuals in real time as they perform complex tasks. Copyright © 2011 Wiley Periodicals, Inc.
Airborne target tracking algorithm against oppressive decoys in infrared imagery
NASA Astrophysics Data System (ADS)
Sun, Xiechang; Zhang, Tianxu
2009-10-01
This paper presents an approach for tracking airborne target against oppressive infrared decoys. Oppressive decoy lures infrared guided missile by its high infrared radiation. Traditional tracking algorithms have degraded stability even come to tracking failure when airborne target continuously throw out many decoys. The proposed approach first determines an adaptive tracking window. The center of the tracking window is set at a predicted target position which is computed based on uniform motion model. Different strategies are applied for determination of tracking window size according to target state. The image within tracking window is segmented and multi features of candidate targets are extracted. The most similar candidate target is associated to the tracking target by using a decision function, which calculates a weighted sum of normalized feature differences between two comparable targets. Integrated intensity ratio of association target and tracking target, and target centroid are examined to estimate target state in the presence of decoys. The tracking ability and robustness of proposed approach has been validated by processing available real-world and simulated infrared image sequences containing airborne targets and oppressive decoys.
NASA Astrophysics Data System (ADS)
Wulansari, I. H.; Wibowo, W. E.; Pawiro, S. A.
2017-05-01
In lung cancer cases, there exists a difficulty for the Treatment Planning System (TPS) to predict the dose at or near the mass interface. This error prediction might influence the minimum or maximum dose received by lung cancer. In addition to target motion, the target dose prediction error also contributes in the combined error during the course of treatment. The objective of this work was to verify dose plan calculated by adaptive convolution algorithm in Pinnacle3 at the mass interface against a set of measurement. The measurement was performed using Gafchromic EBT 3 film in static and dynamic CIRS phantom with amplitudes of 5 mm, 10 mm, and 20 mm in superior-inferior motion direction. Static and dynamic phantom were scanned with fast CT and slow CT before planned. The results showed that adaptive convolution algorithm mostly predicted mass interface dose lower than the measured dose in a range of -0,63% to 8,37% for static phantom in fast CT scanning and -0,27% to 15,9% for static phantom in slow CT scanning. In dynamic phantom, this algorithm was predicted mass interface dose higher than measured dose up to -89% for fast CT and varied from -17% until 37% for slow CT. This interface of dose differences caused the dose mass decreased in fast CT, except for 10 mm motion amplitude, and increased in slow CT for the greater amplitude of motion.
Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening
Tyner, Jeffrey W.; Yang, Wayne F.; Bankhead, Armand; Fan, Guang; Fletcher, Luke B.; Bryant, Jade; Glover, Jason M.; Chang, Bill H.; Spurgeon, Stephen E.; Fleming, William H.; Kovacsovics, Tibor; Gotlib, Jason R.; Oh, Stephen T.; Deininger, Michael W.; Zwaan, C. Michel; Den Boer, Monique L.; van den Heuvel-Eibrink, Marry M.; O’Hare, Thomas; Druker, Brian J.; Loriaux, Marc M.
2012-01-01
Kinases are dysregulated in most cancer but the frequency of specific kinase mutations is low, indicating a complex etiology in kinase dysregulation. Here we report a strategy to rapidly identify functionally important kinase targets, irrespective of the etiology of kinase pathway dysregulation, ultimately enabling a correlation of patient genetic profiles to clinically effective kinase inhibitors. Our methodology assessed the sensitivity of primary leukemia patient samples to a panel of 66 small-molecule kinase inhibitors over 3 days. Screening of 151 leukemia patient samples revealed a wide diversity of drug sensitivities, with 70% of the clinical specimens exhibiting hypersensitivity to one or more drugs. From this data set, we developed an algorithm to predict kinase pathway dependence based on analysis of inhibitor sensitivity patterns. Applying this algorithm correctly identified pathway dependence in proof-of-principle specimens with known oncogenes, including a rare FLT3 mutation outside regions covered by standard molecular diagnostic tests. Interrogation of all 151 patient specimens with this algorithm identified a diversity of gene targets and signaling pathways that could aid prioritization of deep sequencing data sets, permitting a cumulative analysis to understand kinase pathway dependence within leukemia subsets. In a proof-of-principle case, we showed that in vitro drug sensitivity could predict both a clinical response and the development of drug resistance. Taken together, our results suggested that drug target scores derived from a comprehensive kinase inhibitor panel could predict pathway dependence in cancer cells while simultaneously identifying potential therapeutic options. PMID:23087056
Blow, Nikolaus; Biswas, Pradipta
2017-01-01
As computers become more and more essential for everyday life, people who cannot use them are missing out on an important tool. The predominant method of interaction with a screen is a mouse, and difficulty in using a mouse can be a huge obstacle for people who would otherwise gain great value from using a computer. If mouse pointing were to be made easier, then a large number of users may be able to begin using a computer efficiently where they may previously have been unable to. The present article aimed to improve pointing speeds for people with arm or hand impairments. The authors investigated different smoothing and prediction models on a stored data set involving 25 people, and the best of these algorithms were chosen. A web-based prototype was developed combining a polynomial smoothing algorithm with a time-weighted gradient target prediction model. The adapted interface gave an average improvement of 13.5% in target selection times in a 10-person study of representative users of the system. A demonstration video of the system is available at https://youtu.be/sAzbrKHivEY.
Camacho, Carlos J
2005-08-01
The CAPRI-II experiment added an extra level of complexity to the problem of predicting protein-protein interactions by including 5 targets for which participants had to build or complete the 3-dimensional (3D) structure of either the receptor or ligand based on the structure of a close homolog. In this article, we describe how modeling key side-chains using molecular dynamics (MD) in explicit solvent improved the recognition of the binding region of a free energy- based computational docking method. In particular, we show that MD is able to predict with relatively high accuracy the rotamer conformation of the anchor side-chains important for molecular recognition as suggested by Rajamani et al. (Proc Natl Acad Sci USA 2004;101:11287-11292). As expected, the conformations are some of the most common rotamers for the given residue, while latch side-chains that undergo induced fit upon binding are forced into less common conformations. Using these models as starting conformations in conjunction with the rigid-body docking server ClusPro and the flexible docking algorithm SmoothDock, we produced valuable predictions for 6 of the 9 targets in CAPRI-II, missing only the 3 targets that underwent significant structural rearrangements upon binding. We also show that our free energy- based scoring function, consisting of the sum of van der Waals, Coulombic electrostatic with a distance-dependent dielectric, and desolvation free energy successfully discriminates the nativelike conformation of our submitted predictions. The latter emphasizes the critical role that thermodynamics plays on our methodology, and validates the generality of the algorithm to predict protein interactions.
Infrared dim and small target detecting and tracking method inspired by Human Visual System
NASA Astrophysics Data System (ADS)
Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Shen, Lurong; Bai, Shengjian
2014-01-01
Detecting and tracking dim and small target in infrared images and videos is one of the most important techniques in many computer vision applications, such as video surveillance and infrared imaging precise guidance. Recently, more and more algorithms based on Human Visual System (HVS) have been proposed to detect and track the infrared dim and small target. In general, HVS concerns at least three mechanisms including contrast mechanism, visual attention and eye movement. However, most of the existing algorithms simulate only a single one of the HVS mechanisms, resulting in many drawbacks of these algorithms. A novel method which combines the three mechanisms of HVS is proposed in this paper. First, a group of Difference of Gaussians (DOG) filters which simulate the contrast mechanism are used to filter the input image. Second, a visual attention, which is simulated by a Gaussian window, is added at a point near the target in order to further enhance the dim small target. This point is named as the attention point. Eventually, the Proportional-Integral-Derivative (PID) algorithm is first introduced to predict the attention point of the next frame of an image which simulates the eye movement of human being. Experimental results of infrared images with different types of backgrounds demonstrate the high efficiency and accuracy of the proposed method to detect and track the dim and small targets.
DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue.
Wang, QuanQiu; Xu, Rong
2015-01-01
Dengue is a viral disease of expanding global incidence without cures. Here we present a drug repositioning system (DenguePredict) leveraging upon a unique drug treatment database and vast amounts of disease- and drug-related data. We first constructed a large-scale genetic disease network with enriched dengue genetics data curated from biomedical literature. We applied a network-based ranking algorithm to find dengue-related diseases from the disease network. We then developed a novel algorithm to prioritize FDA-approved drugs from dengue-related diseases to treat dengue. When tested in a de-novo validation setting, DenguePredict found the only two drugs tested in clinical trials for treating dengue and ranked them highly: chloroquine ranked at top 0.96% and ivermectin at top 22.75%. We showed that drugs targeting immune systems and arachidonic acid metabolism-related apoptotic pathways might represent innovative drugs to treat dengue. In summary, DenguePredict, by combining comprehensive disease- and drug-related data and novel algorithms, may greatly facilitate drug discovery for dengue.
NASA Astrophysics Data System (ADS)
Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.
1995-06-01
A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.
Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2.
Ritchie, David W
2003-07-01
This article describes and reviews our efforts using Hex 3.1 to predict the docking modes of the seven target protein-protein complexes presented in the CAPRI (Critical Assessment of Predicted Interactions) blind docking trial. For each target, the structure of at least one of the docking partners was given in its unbound form, and several of the targets involved large multimeric structures (e.g., Lactobacillus HPr kinase, hemagglutinin, bovine rotavirus VP6). Here we describe several enhancements to our original spherical polar Fourier docking correlation algorithm. For example, a novel surface sphere smothering algorithm is introduced to generate multiple local coordinate systems around the surface of a large receptor molecule, which may be used to define a small number of initial ligand-docking orientations distributed over the receptor surface. High-resolution spherical polar docking correlations are performed over the resulting receptor surface patches, and candidate docking solutions are refined by using a novel soft molecular mechanics energy minimization procedure. Overall, this approach identified two good solutions at rank 5 or less for two of the seven CAPRI complexes. Subsequent analysis of our results shows that Hex 3.1 is able to place good solutions within a list of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawisza, I; Yan, H; Yin, F
Purpose: To assure that tumor motion is within the radiation field during high-dose and high-precision radiosurgery, real-time imaging and surrogate monitoring are employed. These methods are useful in providing real-time tumor/surrogate motion but no future information is available. In order to anticipate future tumor/surrogate motion and track target location precisely, an algorithm is developed and investigated for estimating surrogate motion multiple-steps ahead. Methods: The study utilized a one-dimensional surrogate motion signal divided into three components: (a) training component containing the primary data including the first frame to the beginning of the input subsequence; (b) input subsequence component of the surrogatemore » signal used as input to the prediction algorithm: (c) output subsequence component is the remaining signal used as the known output of the prediction algorithm for validation. The prediction algorithm consists of three major steps: (1) extracting subsequences from training component which best-match the input subsequence according to given criterion; (2) calculating weighting factors from these best-matched subsequence; (3) collecting the proceeding parts of the subsequences and combining them together with assigned weighting factors to form output. The prediction algorithm was examined for several patients, and its performance is assessed based on the correlation between prediction and known output. Results: Respiratory motion data was collected for 20 patients using the RPM system. The output subsequence is the last 50 samples (∼2 seconds) of a surrogate signal, and the input subsequence was 100 (∼3 seconds) frames prior to the output subsequence. Based on the analysis of correlation coefficient between predicted and known output subsequence, the average correlation is 0.9644±0.0394 and 0.9789±0.0239 for equal-weighting and relative-weighting strategies, respectively. Conclusion: Preliminary results indicate that the prediction algorithm is effective in estimating surrogate motion multiple-steps in advance. Relative-weighting method shows better prediction accuracy than equal-weighting method. More parameters of this algorithm are under investigation.« less
Analysis of a simulation algorithm for direct brain drug delivery
Rosenbluth, Kathryn Hammond; Eschermann, Jan Felix; Mittermeyer, Gabriele; Thomson, Rowena; Mittermeyer, Stephan; Bankiewicz, Krystof S.
2011-01-01
Convection enhanced delivery (CED) achieves targeted delivery of drugs with a pressure-driven infusion through a cannula placed stereotactically in the brain. This technique bypasses the blood brain barrier and gives precise distributions of drugs, minimizing off-target effects of compounds such as viral vectors for gene therapy or toxic chemotherapy agents. The exact distribution is affected by the cannula positioning, flow rate and underlying tissue structure. This study presents an analysis of a simulation algorithm for predicting the distribution using baseline MRI images acquired prior to inserting the cannula. The MRI images included diffusion tensor imaging (DTI) to estimate the tissue properties. The algorithm was adapted for the devices and protocols identified for upcoming trials and validated with direct MRI visualization of Gadolinium in 20 infusions in non-human primates. We found strong agreement between the size and location of the simulated and gadolinium volumes, demonstrating the clinical utility of this surgical planning algorithm. PMID:21945468
TarPmiR: a new approach for microRNA target site prediction.
Ding, Jun; Li, Xiaoman; Hu, Haiyan
2016-09-15
The identification of microRNA (miRNA) target sites is fundamentally important for studying gene regulation. There are dozens of computational methods available for miRNA target site prediction. Despite their existence, we still cannot reliably identify miRNA target sites, partially due to our limited understanding of the characteristics of miRNA target sites. The recently published CLASH (crosslinking ligation and sequencing of hybrids) data provide an unprecedented opportunity to study the characteristics of miRNA target sites and improve miRNA target site prediction methods. Applying four different machine learning approaches to the CLASH data, we identified seven new features of miRNA target sites. Combining these new features with those commonly used by existing miRNA target prediction algorithms, we developed an approach called TarPmiR for miRNA target site prediction. Testing on two human and one mouse non-CLASH datasets, we showed that TarPmiR predicted more than 74.2% of true miRNA target sites in each dataset. Compared with three existing approaches, we demonstrated that TarPmiR is superior to these existing approaches in terms of better recall and better precision. The TarPmiR software is freely available at http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/ CONTACTS: haihu@cs.ucf.edu or xiaoman@mail.ucf.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Huber, Samuel; Dunau, Patrick; Wellig, Peter; Stein, Karin
2017-10-01
Background: In target detection, the success rates depend strongly on human observer performances. Two prior studies tested the contributions of target detection algorithms and prior training sessions. The aim of this Swiss-German cooperation study was to evaluate the dependency of human observer performance on the quality of supporting image analysis algorithms. Methods: The participants were presented 15 different video sequences. Their task was to detect all targets in the shortest possible time. Each video sequence showed a heavily cluttered simulated public area from a different viewing angle. In each video sequence, the number of avatars in the area was altered to 100, 150 and 200 subjects. The number of targets appearing was kept at 10%. The number of marked targets varied from 0, 5, 10, 20 up to 40 marked subjects while keeping the positive predictive value of the detection algorithm at 20%. During the task, workload level was assessed by applying an acoustic secondary task. Detection rates and detection times for the targets were analyzed using inferential statistics. Results: The study found Target Detection Time to increase and Target Detection Rates to decrease with increasing numbers of avatars. The same is true for the Secondary Task Reaction Time while there was no effect on Secondary Task Hit Rate. Furthermore, we found a trend for a u-shaped correlation between the numbers of markings and RTST indicating increased workload. Conclusion: The trial results may indicate useful criteria for the design of training and support of observers in observational tasks.
Predicting DNA hybridization kinetics from sequence
NASA Astrophysics Data System (ADS)
Zhang, Jinny X.; Fang, John Z.; Duan, Wei; Wu, Lucia R.; Zhang, Angela W.; Dalchau, Neil; Yordanov, Boyan; Petersen, Rasmus; Phillips, Andrew; Zhang, David Yu
2018-01-01
Hybridization is a key molecular process in biology and biotechnology, but so far there is no predictive model for accurately determining hybridization rate constants based on sequence information. Here, we report a weighted neighbour voting (WNV) prediction algorithm, in which the hybridization rate constant of an unknown sequence is predicted based on similarity reactions with known rate constants. To construct this algorithm we first performed 210 fluorescence kinetics experiments to observe the hybridization kinetics of 100 different DNA target and probe pairs (36 nt sub-sequences of the CYCS and VEGF genes) at temperatures ranging from 28 to 55 °C. Automated feature selection and weighting optimization resulted in a final six-feature WNV model, which can predict hybridization rate constants of new sequences to within a factor of 3 with ∼91% accuracy, based on leave-one-out cross-validation. Accurate prediction of hybridization kinetics allows the design of efficient probe sequences for genomics research.
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Z. H.
2016-04-01
This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.
Bartsch, Georg; Mitra, Anirban P; Mitra, Sheetal A; Almal, Arpit A; Steven, Kenneth E; Skinner, Donald G; Fry, David W; Lenehan, Peter F; Worzel, William P; Cote, Richard J
2016-02-01
Due to the high recurrence risk of nonmuscle invasive urothelial carcinoma it is crucial to distinguish patients at high risk from those with indolent disease. In this study we used a machine learning algorithm to identify the genes in patients with nonmuscle invasive urothelial carcinoma at initial presentation that were most predictive of recurrence. We used the genes in a molecular signature to predict recurrence risk within 5 years after transurethral resection of bladder tumor. Whole genome profiling was performed on 112 frozen nonmuscle invasive urothelial carcinoma specimens obtained at first presentation on Human WG-6 BeadChips (Illumina®). A genetic programming algorithm was applied to evolve classifier mathematical models for outcome prediction. Cross-validation based resampling and gene use frequencies were used to identify the most prognostic genes, which were combined into rules used in a voting algorithm to predict the sample target class. Key genes were validated by quantitative polymerase chain reaction. The classifier set included 21 genes that predicted recurrence. Quantitative polymerase chain reaction was done for these genes in a subset of 100 patients. A 5-gene combined rule incorporating a voting algorithm yielded 77% sensitivity and 85% specificity to predict recurrence in the training set, and 69% and 62%, respectively, in the test set. A singular 3-gene rule was constructed that predicted recurrence with 80% sensitivity and 90% specificity in the training set, and 71% and 67%, respectively, in the test set. Using primary nonmuscle invasive urothelial carcinoma from initial occurrences genetic programming identified transcripts in reproducible fashion, which were predictive of recurrence. These findings could potentially impact nonmuscle invasive urothelial carcinoma management. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Investigation of a New Handover Approach in LTE and WiMAX
Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin
2014-01-01
Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms' performance, it is compared with the existing RSS and multiple criteria handover decision algorithms. PMID:25379524
Investigation of a new handover approach in LTE and WiMAX.
Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin
2014-01-01
Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms' performance, it is compared with the existing RSS and multiple criteria handover decision algorithms.
Amber J. Vanden Wymelenberg; Grzegorz Sabat; Diego Martinez; Alex S. Rajangam; Tuula T. Teeri; Jill A. Gaskell; Philip J. Kersten; Daniel Cullen
2005-01-01
The white rot basidiomycete, Phanerochaete chrysosporium, employs an array of extracellular enzymes to completely degrade the major polymers of wood : cellulose, hemicellulose and lignin. Towards the identification of participating enzymes, 268 likely secreted proteins were predicted using SignalP and TargetP algorithms. To assess the reliability of secretome...
Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI
NASA Astrophysics Data System (ADS)
Seregni, M.; Paganelli, C.; Lee, D.; Greer, P. B.; Baroni, G.; Keall, P. J.; Riboldi, M.
2016-01-01
In-room cine-MRI guidance can provide non-invasive target localization during radiotherapy treatment. However, in order to cope with finite imaging frequency and system latencies between target localization and dose delivery, tumour motion prediction is required. This work proposes a framework for motion prediction dedicated to cine-MRI guidance, aiming at quantifying the geometric uncertainties introduced by this process for both tumour tracking and beam gating. The tumour position, identified through scale invariant features detected in cine-MRI slices, is estimated at high-frequency (25 Hz) using three independent predictors, one for each anatomical coordinate. Linear extrapolation, auto-regressive and support vector machine algorithms are compared against systems that use no prediction or surrogate-based motion estimation. Geometric uncertainties are reported as a function of image acquisition period and system latency. Average results show that the tracking error RMS can be decreased down to a [0.2; 1.2] mm range, for acquisition periods between 250 and 750 ms and system latencies between 50 and 300 ms. Except for the linear extrapolator, tracking and gating prediction errors were, on average, lower than those measured for surrogate-based motion estimation. This finding suggests that cine-MRI guidance, combined with appropriate prediction algorithms, could relevantly decrease geometric uncertainties in motion compensated treatments.
Ebtehaj, Isa; Bonakdari, Hossein
2014-01-01
The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.
Reinforcement learning and decision making in monkeys during a competitive game.
Lee, Daeyeol; Conroy, Michelle L; McGreevy, Benjamin P; Barraclough, Dominic J
2004-12-01
Animals living in a dynamic environment must adjust their decision-making strategies through experience. To gain insights into the neural basis of such adaptive decision-making processes, we trained monkeys to play a competitive game against a computer in an oculomotor free-choice task. The animal selected one of two visual targets in each trial and was rewarded only when it selected the same target as the computer opponent. To determine how the animal's decision-making strategy can be affected by the opponent's strategy, the computer opponent was programmed with three different algorithms that exploited different aspects of the animal's choice and reward history. When the computer selected its targets randomly with equal probabilities, animals selected one of the targets more often, violating the prediction of probability matching, and their choices were systematically influenced by the choice history of the two players. When the computer exploited only the animal's choice history but not its reward history, animal's choice became more independent of its own choice history but was still related to the choice history of the opponent. This bias was substantially reduced, but not completely eliminated, when the computer used the choice history of both players in making its predictions. These biases were consistent with the predictions of reinforcement learning, suggesting that the animals sought optimal decision-making strategies using reinforcement learning algorithms.
Circadian Phase Resetting via Single and Multiple Control Targets
Bagheri, Neda; Stelling, Jörg; Doyle, Francis J.
2008-01-01
Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm) out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness. PMID:18795146
TaDb: A time-aware diffusion-based recommender algorithm
NASA Astrophysics Data System (ADS)
Li, Wen-Jun; Xu, Yuan-Yuan; Dong, Qiang; Zhou, Jun-Lin; Fu, Yan
2015-02-01
Traditional recommender algorithms usually employ the early and recent records indiscriminately, which overlooks the change of user interests over time. In this paper, we show that the interests of a user remain stable in a short-term interval and drift during a long-term period. Based on this observation, we propose a time-aware diffusion-based (TaDb) recommender algorithm, which assigns different temporal weights to the leading links existing before the target user's collection and the following links appearing after that in the diffusion process. Experiments on four real datasets, Netflix, MovieLens, FriendFeed and Delicious show that TaDb algorithm significantly improves the prediction accuracy compared with the algorithms not considering temporal effects.
Prediction of Effective Drug Combinations by an Improved Naïve Bayesian Algorithm.
Bai, Li-Yue; Dai, Hao; Xu, Qin; Junaid, Muhammad; Peng, Shao-Liang; Zhu, Xiaolei; Xiong, Yi; Wei, Dong-Qing
2018-02-05
Drug combinatorial therapy is a promising strategy for combating complex diseases due to its fewer side effects, lower toxicity and better efficacy. However, it is not feasible to determine all the effective drug combinations in the vast space of possible combinations given the increasing number of approved drugs in the market, since the experimental methods for identification of effective drug combinations are both labor- and time-consuming. In this study, we conducted systematic analysis of various types of features to characterize pairs of drugs. These features included information about the targets of the drugs, the pathway in which the target protein of a drug was involved in, side effects of drugs, metabolic enzymes of the drugs, and drug transporters. The latter two features (metabolic enzymes and drug transporters) were related to the metabolism and transportation properties of drugs, which were not analyzed or used in previous studies. Then, we devised a novel improved naïve Bayesian algorithm to construct classification models to predict effective drug combinations by using the individual types of features mentioned above. Our results indicated that the performance of our proposed method was indeed better than the naïve Bayesian algorithm and other conventional classification algorithms such as support vector machine and K-nearest neighbor.
Automated Dynamic Demand Response Implementation on a Micro-grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuppannagari, Sanmukh R.; Kannan, Rajgopal; Chelmis, Charalampos
In this paper, we describe a system for real-time automated Dynamic and Sustainable Demand Response with sparse data consumption prediction implemented on the University of Southern California campus microgrid. Supply side approaches to resolving energy supply-load imbalance do not work at high levels of renewable energy penetration. Dynamic Demand Response (D 2R) is a widely used demand-side technique to dynamically adjust electricity consumption during peak load periods. Our D 2R system consists of accurate machine learning based energy consumption forecasting models that work with sparse data coupled with fast and sustainable load curtailment optimization algorithms that provide the ability tomore » dynamically adapt to changing supply-load imbalances in near real-time. Our Sustainable DR (SDR) algorithms attempt to distribute customer curtailment evenly across sub-intervals during a DR event and avoid expensive demand peaks during a few sub-intervals. It also ensures that each customer is penalized fairly in order to achieve the targeted curtailment. We develop near linear-time constant-factor approximation algorithms along with Polynomial Time Approximation Schemes (PTAS) for SDR curtailment that minimizes the curtailment error defined as the difference between the target and achieved curtailment values. Our SDR curtailment problem is formulated as an Integer Linear Program that optimally matches customers to curtailment strategies during a DR event while also explicitly accounting for customer strategy switching overhead as a constraint. We demonstrate the results of our D 2R system using real data from experiments performed on the USC smartgrid and show that 1) our prediction algorithms can very accurately predict energy consumption even with noisy or missing data and 2) our curtailment algorithms deliver DR with extremely low curtailment errors in the 0.01-0.05 kWh range.« less
Particle Swarm Optimization for Programming Deep Brain Stimulation Arrays
Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.
2017-01-01
Objective Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main Results The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (≤9.2%) and ROA (≤1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n=3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies of <1% between approaches. Significance The PSO algorithm provides a computationally efficient way to program DBS systems especially those with higher electrode counts. PMID:28068291
Particle swarm optimization for programming deep brain stimulation arrays
NASA Astrophysics Data System (ADS)
Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.
2017-02-01
Objective. Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach. Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main results. The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (⩽9.2%) and ROA (⩽1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n = 3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies of <1% between approaches. Significance. The PSO algorithm provides a computationally efficient way to program DBS systems especially those with higher electrode counts.
Statistics based sampling for controller and estimator design
NASA Astrophysics Data System (ADS)
Tenne, Dirk
The purpose of this research is the development of statistical design tools for robust feed-forward/feedback controllers and nonlinear estimators. This dissertation is threefold and addresses the aforementioned topics nonlinear estimation, target tracking and robust control. To develop statistically robust controllers and nonlinear estimation algorithms, research has been performed to extend existing techniques, which propagate the statistics of the state, to achieve higher order accuracy. The so-called unscented transformation has been extended to capture higher order moments. Furthermore, higher order moment update algorithms based on a truncated power series have been developed. The proposed techniques are tested on various benchmark examples. Furthermore, the unscented transformation has been utilized to develop a three dimensional geometrically constrained target tracker. The proposed planar circular prediction algorithm has been developed in a local coordinate framework, which is amenable to extension of the tracking algorithm to three dimensional space. This tracker combines the predictions of a circular prediction algorithm and a constant velocity filter by utilizing the Covariance Intersection. This combined prediction can be updated with the subsequent measurement using a linear estimator. The proposed technique is illustrated on a 3D benchmark trajectory, which includes coordinated turns and straight line maneuvers. The third part of this dissertation addresses the design of controller which include knowledge of parametric uncertainties and their distributions. The parameter distributions are approximated by a finite set of points which are calculated by the unscented transformation. This set of points is used to design robust controllers which minimize a statistical performance of the plant over the domain of uncertainty consisting of a combination of the mean and variance. The proposed technique is illustrated on three benchmark problems. The first relates to the design of prefilters for a linear and nonlinear spring-mass-dashpot system and the second applies a feedback controller to a hovering helicopter. Lastly, the statistical robust controller design is devoted to a concurrent feed-forward/feedback controller structure for a high-speed low tension tape drive.
Integration of Irma tactical scene generator into directed-energy weapon system simulation
NASA Astrophysics Data System (ADS)
Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.
2003-08-01
Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.
Romero-Durán, Francisco J; Alonso, Nerea; Yañez, Matilde; Caamaño, Olga; García-Mera, Xerardo; González-Díaz, Humberto
2016-04-01
The use of Cheminformatics tools is gaining importance in the field of translational research from Medicinal Chemistry to Neuropharmacology. In particular, we need it for the analysis of chemical information on large datasets of bioactive compounds. These compounds form large multi-target complex networks (drug-target interactome network) resulting in a very challenging data analysis problem. Artificial Neural Network (ANN) algorithms may help us predict the interactions of drugs and targets in CNS interactome. In this work, we trained different ANN models able to predict a large number of drug-target interactions. These models predict a dataset of thousands of interactions of central nervous system (CNS) drugs characterized by > 30 different experimental measures in >400 different experimental protocols for >150 molecular and cellular targets present in 11 different organisms (including human). The model was able to classify cases of non-interacting vs. interacting drug-target pairs with satisfactory performance. A second aim focus on two main directions: the synthesis and assay of new derivatives of TVP1022 (S-analogues of rasagiline) and the comparison with other rasagiline derivatives recently reported. Finally, we used the best of our models to predict drug-target interactions for the best new synthesized compound against a large number of CNS protein targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Exploring prediction uncertainty of spatial data in geostatistical and machine learning Approaches
NASA Astrophysics Data System (ADS)
Klump, J. F.; Fouedjio, F.
2017-12-01
Geostatistical methods such as kriging with external drift as well as machine learning techniques such as quantile regression forest have been intensively used for modelling spatial data. In addition to providing predictions for target variables, both approaches are able to deliver a quantification of the uncertainty associated with the prediction at a target location. Geostatistical approaches are, by essence, adequate for providing such prediction uncertainties and their behaviour is well understood. However, they often require significant data pre-processing and rely on assumptions that are rarely met in practice. Machine learning algorithms such as random forest regression, on the other hand, require less data pre-processing and are non-parametric. This makes the application of machine learning algorithms to geostatistical problems an attractive proposition. The objective of this study is to compare kriging with external drift and quantile regression forest with respect to their ability to deliver reliable prediction uncertainties of spatial data. In our comparison we use both simulated and real world datasets. Apart from classical performance indicators, comparisons make use of accuracy plots, probability interval width plots, and the visual examinations of the uncertainty maps provided by the two approaches. By comparing random forest regression to kriging we found that both methods produced comparable maps of estimated values for our variables of interest. However, the measure of uncertainty provided by random forest seems to be quite different to the measure of uncertainty provided by kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. These preliminary results raise questions about assessing the risks associated with decisions based on the predictions from geostatistical and machine learning algorithms in a spatial context, e.g. mineral exploration.
Zhou, Hongyi; Skolnick, Jeffrey
2010-01-01
In this work, we develop a method called FTCOM for assessing the global quality of protein structural models for targets of medium and hard difficulty (remote homology) produced by structure prediction approaches such as threading or ab initio structure prediction. FTCOM requires the Cα coordinates of full length models and assesses model quality based on fragment comparison and a score derived from comparison of the model to top threading templates. On a set of 361 medium/hard targets, FTCOM was applied to and assessed for its ability to improve upon the results from the SP3, SPARKS, PROSPECTOR_3, and PRO-SP3-TASSER threading algorithms. The average TM-score improves by 5%–10% for the first selected model by the new method over models obtained by the original selection procedure in the respective threading methods. Moreover the number of foldable targets (TM-score ≥0.4) increases from least 7.6% for SP3 to 54% for SPARKS. Thus, FTCOM is a promising approach to template selection. PMID:20455261
van Laarhoven, Twan; Marchiori, Elena
2013-01-01
In silico discovery of interactions between drug compounds and target proteins is of core importance for improving the efficiency of the laborious and costly experimental determination of drug-target interaction. Drug-target interaction data are available for many classes of pharmaceutically useful target proteins including enzymes, ion channels, GPCRs and nuclear receptors. However, current drug-target interaction databases contain a small number of drug-target pairs which are experimentally validated interactions. In particular, for some drug compounds (or targets) there is no available interaction. This motivates the need for developing methods that predict interacting pairs with high accuracy also for these 'new' drug compounds (or targets). We show that a simple weighted nearest neighbor procedure is highly effective for this task. We integrate this procedure into a recent machine learning method for drug-target interaction we developed in previous work. Results of experiments indicate that the resulting method predicts true interactions with high accuracy also for new drug compounds and achieves results comparable or better than those of recent state-of-the-art algorithms. Software is publicly available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2013/.
Le, Duc-Hau; Verbeke, Lieven; Son, Le Hoang; Chu, Dinh-Toi; Pham, Van-Huy
2017-11-14
MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous network that not only considers miRNAs but also the corresponding target genes in the network model. Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based method. Interestingly, we could relate this performance gain to the emergence of "disease modules" in the heterogeneous miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable, performing well when using both experimentally validated and predicted miRNA-target gene interaction data for network construction. Finally, using RWRMTN, we identified 76 novel miRNAs associated with 23 disease phenotypes which were present in a recent database of known disease-miRNA associations. Summarizing, using random walks on mutual miRNA-target networks improves the prediction of novel disease-associated miRNAs because of the existence of "disease modules" in these networks.
Distinctive Behaviors of Druggable Proteins in Cellular Networks
Workman, Paul; Al-Lazikani, Bissan
2015-01-01
The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/. PMID:26699810
Collaborative filtering on a family of biological targets.
Erhan, Dumitru; L'heureux, Pierre-Jean; Yue, Shi Yi; Bengio, Yoshua
2006-01-01
Building a QSAR model of a new biological target for which few screening data are available is a statistical challenge. However, the new target may be part of a bigger family, for which we have more screening data. Collaborative filtering or, more generally, multi-task learning, is a machine learning approach that improves the generalization performance of an algorithm by using information from related tasks as an inductive bias. We use collaborative filtering techniques for building predictive models that link multiple targets to multiple examples. The more commonalities between the targets, the better the multi-target model that can be built. We show an example of a multi-target neural network that can use family information to produce a predictive model of an undersampled target. We evaluate JRank, a kernel-based method designed for collaborative filtering. We show their performance on compound prioritization for an HTS campaign and the underlying shared representation between targets. JRank outperformed the neural network both in the single- and multi-target models.
Cao, Han; Ng, Marcus C K; Jusoh, Siti Azma; Tai, Hio Kuan; Siu, Shirley W I
2017-09-01
[Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM . Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers
NASA Astrophysics Data System (ADS)
Cao, Han; Ng, Marcus C. K.; Jusoh, Siti Azma; Tai, Hio Kuan; Siu, Shirley W. I.
2017-09-01
α-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM. Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian
2017-01-01
Abstract Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Contact: deane@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28453681
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian; Deane, Charlotte M
2017-05-01
Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Xu, Dong; Zhang, Jian; Roy, Ambrish; Zhang, Yang
2011-01-01
I-TASSER is an automated pipeline for protein tertiary structure prediction using multiple threading alignments and iterative structure assembly simulations. In CASP9 experiments, two new algorithms, QUARK and FG-MD, were added to the I-TASSER pipeline for improving the structural modeling accuracy. QUARK is a de novo structure prediction algorithm used for structure modeling of proteins that lack detectable template structures. For distantly homologous targets, QUARK models are found useful as a reference structure for selecting good threading alignments and guiding the I-TASSER structure assembly simulations. FG-MD is an atomic-level structural refinement program that uses structural fragments collected from the PDB structures to guide molecular dynamics simulation and improve the local structure of predicted model, including hydrogen-bonding networks, torsion angles and steric clashes. Despite considerable progress in both the template-based and template-free structure modeling, significant improvements on protein target classification, domain parsing, model selection, and ab initio folding of beta-proteins are still needed to further improve the I-TASSER pipeline. PMID:22069036
NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.
Ruyssinck, Joeri; Huynh-Thu, Vân Anh; Geurts, Pierre; Dhaene, Tom; Demeester, Piet; Saeys, Yvan
2014-01-01
One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms) and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made publicly available.
Domain Adaptation for Pedestrian Detection Based on Prediction Consistency
Huan-ling, Tang; Zhi-yong, An
2014-01-01
Pedestrian detection is an active area of research in computer vision. It remains a quite challenging problem in many applications where many factors cause a mismatch between source dataset used to train the pedestrian detector and samples in the target scene. In this paper, we propose a novel domain adaptation model for merging plentiful source domain samples with scared target domain samples to create a scene-specific pedestrian detector that performs as well as rich target domain simples are present. Our approach combines the boosting-based learning algorithm with an entropy-based transferability, which is derived from the prediction consistency with the source classifications, to selectively choose the samples showing positive transferability in source domains to the target domain. Experimental results show that our approach can improve the detection rate, especially with the insufficient labeled data in target scene. PMID:25013850
Autonomous Motion Planning Using a Predictive Temporal Method
2009-01-01
interception test. ......150 5-20 Target and solution path heading angles for target interception test. ..............................151 10 LIST...environment as a series of distances and angles . Regardless of the technique, this knowledge of the surrounding area is crucial for the issue of...to, the rather simplistic vector driver algorithms which compute the angle between the current vehicle heading and the heading to the goal and
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Brown, A.; Brown, J.
The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud, and these objects may not always be resolvable in individual data frames. In the present paper, the performance of the developed algorithms is demonstrated using real-world data containing resident space objects observed from the MSX platform, with backgrounds varying from celestial to combined celestial and earth limb, with instances of extremely bright aurora clutter. Simulation results are also presented for parameterized variations in signal-to-clutter levels (down to 1/1000) and signal-to-noise levels (down to 1/6) for simulated targets against real-world terrestrial clutter backgrounds. We also discuss algorithm processing requirements and C++ software processing capabilities from our on-going MDA- and AFRL-sponsored development of an image processing toolkit (iPTK). In the current effort, the iPTK is being developed to a Technology Readiness Level (TRL) of 6 by mid-2010, in preparation for possible integration with STSS-like, SBIRS high-like and SBSS-like surveillance suites.
Lee, Juyong; Lee, Jinhyuk; Sasaki, Takeshi N; Sasai, Masaki; Seok, Chaok; Lee, Jooyoung
2011-08-01
Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and conformational space annealing (CSA) algorithm. In DFA, model structures are scored by continuous functions constructed based on short- and long-range structural restraint information from a fragment library. Here, DFA is represented by the full-atom model by CHARMM with the addition of the empirical potential of DFIRE. The relative contributions between various energy terms are optimized using linear programming. The conformational sampling was carried out with CSA algorithm, which can find low energy conformations more efficiently than simulated annealing used in the existing DFA study. The newly introduced DFA energy function and CSA sampling algorithm are implemented into CHARMM. Test results on 30 small single-domain proteins and 13 template-free modeling targets of the 8th Critical Assessment of protein Structure Prediction show that the current method provides comparable and complementary prediction results to existing top methods. Copyright © 2011 Wiley-Liss, Inc.
Fernandez, Ana; Salvador-Carulla, Luis; Choi, Isabella; Calvo, Rafael; Harvey, Samuel B; Glozier, Nicholas
2018-01-01
Common mental disorders are the most common reason for long-term sickness absence in most developed countries. Prediction algorithms for the onset of common mental disorders may help target indicated work-based prevention interventions. We aimed to develop and validate a risk algorithm to predict the onset of common mental disorders at 12 months in a working population. We conducted a secondary analysis of the Household, Income and Labour Dynamics in Australia Survey, a longitudinal, nationally representative household panel in Australia. Data from the 6189 working participants who did not meet the criteria for a common mental disorders at baseline were non-randomly split into training and validation databases, based on state of residence. Common mental disorders were assessed with the mental component score of 36-Item Short Form Health Survey questionnaire (score ⩽45). Risk algorithms were constructed following recommendations made by the Transparent Reporting of a multivariable prediction model for Prevention Or Diagnosis statement. Different risk factors were identified among women and men for the final risk algorithms. In the training data, the model for women had a C-index of 0.73 and effect size (Hedges' g) of 0.91. In men, the C-index was 0.76 and the effect size was 1.06. In the validation data, the C-index was 0.66 for women and 0.73 for men, with positive predictive values of 0.28 and 0.26, respectively Conclusion: It is possible to develop an algorithm with good discrimination for the onset identifying overall and modifiable risks of common mental disorders among working men. Such models have the potential to change the way that prevention of common mental disorders at the workplace is conducted, but different models may be required for women.
Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening
NASA Technical Reports Server (NTRS)
Diskin, Boris
1999-01-01
This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation obtained by AMA is always better than the required accuracy; the computational complexity of the AMA algorithm is (nearly) optimal (comparable with the complexity of the FMG algorithm applied to solve the problem on the optimally spaced target grid).
Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues.
Chen, Jin-Long; Chen, Fang; Zhang, Ting-Ting; Liu, Nai-Fu
2016-06-01
Epithelial ovarian cancer (EOC), the sixth most common cancer in women worldwide, is the most commonly fatal gynecologic malignancy in developed countries. One of the main reasons for this is that relatively little was known about the molecular events responsible for the development of this highly aggressive disease. In the present study, we demonstrated that salt‑inducible kinase 1 (SIK1; which is also known as MSK/SIK/SNF1LK) was downregulated in ovarian cancer tissue samples. Using HEY ovarian cancer cells, we noted that SIK1 overexpression inhibited proliferation as well as cancer stem cell-associated traits. Silencing SIK1 promoted the proliferation of the EG ovarian cancer cell line. We performed an analysis of potential microRNAs (miRNAs or miRs) target sites using three commonly used prediction algorithms: miRanda, TargetScan and PicTar. All three algorithms predicted that miR-141 targets the 3'UTR of SIK1. Subsequent experiments not only confirmed this prediction, but also showed that miR-141 was associated with the progression of this disease. Finally, we found that miR-141 promoted proliferation of EG cells, whereas silencing miR-141 restored SIK1 expression and inhibited the proliferation of the HEY cells. Elucidating the molecular mechanism of ovarian cancer not only enables us to further understand the pathogenesis and progression of the disease, but also provides new targets for effective therapies.
Shi, Jian-Yu; Yiu, Siu-Ming; Li, Yiming; Leung, Henry C M; Chin, Francis Y L
2015-07-15
Predicting drug-target interaction using computational approaches is an important step in drug discovery and repositioning. To predict whether there will be an interaction between a drug and a target, most existing methods identify similar drugs and targets in the database. The prediction is then made based on the known interactions of these drugs and targets. This idea is promising. However, there are two shortcomings that have not yet been addressed appropriately. Firstly, most of the methods only use 2D chemical structures and protein sequences to measure the similarity of drugs and targets respectively. However, this information may not fully capture the characteristics determining whether a drug will interact with a target. Secondly, there are very few known interactions, i.e. many interactions are "missing" in the database. Existing approaches are biased towards known interactions and have no good solutions to handle possibly missing interactions which affect the accuracy of the prediction. In this paper, we enhance the similarity measures to include non-structural (and non-sequence-based) information and introduce the concept of a "super-target" to handle the problem of possibly missing interactions. Based on evaluations on real data, we show that our similarity measure is better than the existing measures and our approach is able to achieve higher accuracy than the two best existing algorithms, WNN-GIP and KBMF2K. Our approach is available at http://web.hku.hk/∼liym1018/projects/drug/drug.html or http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html. Copyright © 2015 Elsevier Inc. All rights reserved.
Method of identifying hairpin DNA probes by partial fold analysis
Miller, Benjamin L [Penfield, NY; Strohsahl, Christopher M [Saugerties, NY
2009-10-06
Method of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.
Method of identifying hairpin DNA probes by partial fold analysis
Miller, Benjamin L.; Strohsahl, Christopher M.
2008-10-28
Methods of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.
Linear and nonlinear trending and prediction for AVHRR time series data
NASA Technical Reports Server (NTRS)
Smid, J.; Volf, P.; Slama, M.; Palus, M.
1995-01-01
The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.
Zhukov, V A; Shishkina, L N; Safatov, A S; Sergeev, A A; P'iankov, O V; Petrishchenko, V A; Zaĭtsev, B N; Toporkov, V S; Sergeev, A N; Nesvizhskiĭ, Iu V; Vorob'ev, A A
2010-01-01
The paper presents results of testing a modified algorithm for predicting virus ID50 values in a host of interest by extrapolation from a model host taking into account immune neutralizing factors and thermal inactivation of the virus. The method was tested for A/Aichi/2/68 influenza virus in SPF Wistar rats, SPF CD-1 mice and conventional ICR mice. Each species was used as a host of interest while the other two served as model hosts. Primary lung and trachea cells and secretory factors of the rats' airway epithelium were used to measure parameters needed for the purpose of prediction. Predicted ID50 values were not significantly different (p = 0.05) from those experimentally measured in vivo. The study was supported by ISTC/DARPA Agreement 450p.
Predicting cancer-relevant proteins using an improved molecular similarity ensemble approach.
Zhou, Bin; Sun, Qi; Kong, De-Xin
2016-05-31
In this study, we proposed an improved algorithm for identifying proteins relevant to cancer. The algorithm was named two-layer molecular similarity ensemble approach (TL-SEA). We applied TL-SEA to analyzing the correlation between anticancer compounds (against cell lines K562, MCF7 and A549) and active compounds against separate target proteins listed in BindingDB. Several associations between cancer types and related proteins were revealed using this chemoinformatics approach. An analysis of the literature showed that 26 of 35 predicted proteins were correlated with cancer cell proliferation, apoptosis or differentiation. Additionally, interactions between proteins in BindingDB and anticancer chemicals were also predicted. We discuss the roles of the most important predicted proteins in cancer biology and conclude that TL-SEA could be a useful tool for inferring novel proteins involved in cancer and revealing underlying molecular mechanisms.
Track-Before-Detect Algorithm for Faint Moving Objects based on Random Sampling and Consensus
NASA Astrophysics Data System (ADS)
Dao, P.; Rast, R.; Schlaegel, W.; Schmidt, V.; Dentamaro, A.
2014-09-01
There are many algorithms developed for tracking and detecting faint moving objects in congested backgrounds. One obvious application is detection of targets in images where each pixel corresponds to the received power in a particular location. In our application, a visible imager operated in stare mode observes geostationary objects as fixed, stars as moving and non-geostationary objects as drifting in the field of view. We would like to achieve high sensitivity detection of the drifters. The ability to improve SNR with track-before-detect (TBD) processing, where target information is collected and collated before the detection decision is made, allows respectable performance against dim moving objects. Generally, a TBD algorithm consists of a pre-processing stage that highlights potential targets and a temporal filtering stage. However, the algorithms that have been successfully demonstrated, e.g. Viterbi-based and Bayesian-based, demand formidable processing power and memory. We propose an algorithm that exploits the quasi constant velocity of objects, the predictability of the stellar clutter and the intrinsically low false alarm rate of detecting signature candidates in 3-D, based on an iterative method called "RANdom SAmple Consensus” and one that can run real-time on a typical PC. The technique is tailored for searching objects with small telescopes in stare mode. Our RANSAC-MT (Moving Target) algorithm estimates parameters of a mathematical model (e.g., linear motion) from a set of observed data which contains a significant number of outliers while identifying inliers. In the pre-processing phase, candidate blobs were selected based on morphology and an intensity threshold that would normally generate unacceptable level of false alarms. The RANSAC sampling rejects candidates that conform to the predictable motion of the stars. Data collected with a 17 inch telescope by AFRL/RH and a COTS lens/EM-CCD sensor by the AFRL/RD Satellite Assessment Center is used to assess the performance of the algorithm. In the second application, a visible imager operated in sidereal mode observes geostationary objects as moving, stars as fixed except for field rotation, and non-geostationary objects as drifting. RANSAC-MT is used to detect the drifter. In this set of data, the drifting space object was detected at a distance of 13800 km. The AFRL/RH set of data, collected in the stare mode, contained the signature of two geostationary satellites. The signature of a moving object was simulated and added to the sequence of frames to determine the sensitivity in magnitude. The performance compares well with the more intensive TBD algorithms reported in the literature.
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.
Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto
2012-11-21
This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data
2012-01-01
Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000
Prediction of anti-cancer drug response by kernelized multi-task learning.
Tan, Mehmet
2016-10-01
Chemotherapy or targeted therapy are two of the main treatment options for many types of cancer. Due to the heterogeneous nature of cancer, the success of the therapeutic agents differs among patients. In this sense, determination of chemotherapeutic response of the malign cells is essential for establishing a personalized treatment protocol and designing new drugs. With the recent technological advances in producing large amounts of pharmacogenomic data, in silico methods have become important tools to achieve this aim. Data produced by using cancer cell lines provide a test bed for machine learning algorithms that try to predict the response of cancer cells to different agents. The potential use of these algorithms in drug discovery/repositioning and personalized treatments motivated us in this study to work on predicting drug response by exploiting the recent pharmacogenomic databases. We aim to improve the prediction of drug response of cancer cell lines. We propose to use a method that employs multi-task learning to improve learning by transfer, and kernels to extract non-linear relationships to predict drug response. The method outperforms three state-of-the-art algorithms on three anti-cancer drug screen datasets. We achieved a mean squared error of 3.305 and 0.501 on two different large scale screen data sets. On a recent challenge dataset, we obtained an error of 0.556. We report the methodological comparison results as well as the performance of the proposed algorithm on each single drug. The results show that the proposed method is a strong candidate to predict drug response of cancer cell lines in silico for pre-clinical studies. The source code of the algorithm and data used can be obtained from http://mtan.etu.edu.tr/Supplementary/kMTrace/. Copyright © 2016 Elsevier B.V. All rights reserved.
Forecasting Occurrences of Activities.
Minor, Bryan; Cook, Diane J
2017-07-01
While activity recognition has been shown to be valuable for pervasive computing applications, less work has focused on techniques for forecasting the future occurrence of activities. We present an activity forecasting method to predict the time that will elapse until a target activity occurs. This method generates an activity forecast using a regression tree classifier and offers an advantage over sequence prediction methods in that it can predict expected time until an activity occurs. We evaluate this algorithm on real-world smart home datasets and provide evidence that our proposed approach is most effective at predicting activity timings.
Bridging a translational gap: using machine learning to improve the prediction of PTSD.
Karstoft, Karen-Inge; Galatzer-Levy, Isaac R; Statnikov, Alexander; Li, Zhiguo; Shalev, Arieh Y
2015-03-16
Predicting Posttraumatic Stress Disorder (PTSD) is a pre-requisite for targeted prevention. Current research has identified group-level risk-indicators, many of which (e.g., head trauma, receiving opiates) concern but a subset of survivors. Identifying interchangeable sets of risk indicators may increase the efficiency of early risk assessment. The study goal is to use supervised machine learning (ML) to uncover interchangeable, maximally predictive combinations of early risk indicators. Data variables (features) reflecting event characteristics, emergency department (ED) records and early symptoms were collected in 957 trauma survivors within ten days of ED admission, and used to predict PTSD symptom trajectories during the following fifteen months. A Target Information Equivalence Algorithm (TIE*) identified all minimal sets of features (Markov Boundaries; MBs) that maximized the prediction of a non-remitting PTSD symptom trajectory when integrated in a support vector machine (SVM). The predictive accuracy of each set of predictors was evaluated in a repeated 10-fold cross-validation and expressed as average area under the Receiver Operating Characteristics curve (AUC) for all validation trials. The average number of MBs per cross validation was 800. MBs' mean AUC was 0.75 (95% range: 0.67-0.80). The average number of features per MB was 18 (range: 12-32) with 13 features present in over 75% of the sets. Our findings support the hypothesized existence of multiple and interchangeable sets of risk indicators that equally and exhaustively predict non-remitting PTSD. ML's ability to increase prediction versatility is a promising step towards developing algorithmic, knowledge-based, personalized prediction of post-traumatic psychopathology.
Kessler, Ronald C; Rose, Sherri; Koenen, Karestan C; Karam, Elie G; Stang, Paul E; Stein, Dan J; Heeringa, Steven G; Hill, Eric D; Liberzon, Israel; McLaughlin, Katie A; McLean, Samuel A; Pennell, Beth E; Petukhova, Maria; Rosellini, Anthony J; Ruscio, Ayelet M; Shahly, Victoria; Shalev, Arieh Y; Silove, Derrick; Zaslavsky, Alan M; Angermeyer, Matthias C; Bromet, Evelyn J; de Almeida, José Miguel Caldas; de Girolamo, Giovanni; de Jonge, Peter; Demyttenaere, Koen; Florescu, Silvia E; Gureje, Oye; Haro, Josep Maria; Hinkov, Hristo; Kawakami, Norito; Kovess-Masfety, Viviane; Lee, Sing; Medina-Mora, Maria Elena; Murphy, Samuel D; Navarro-Mateu, Fernando; Piazza, Marina; Posada-Villa, Jose; Scott, Kate; Torres, Yolanda; Carmen Viana, Maria
2014-10-01
Post-traumatic stress disorder (PTSD) should be one of the most preventable mental disorders, since many people exposed to traumatic experiences (TEs) could be targeted in first response settings in the immediate aftermath of exposure for preventive intervention. However, these interventions are costly and the proportion of TE-exposed people who develop PTSD is small. To be cost-effective, risk prediction rules are needed to target high-risk people in the immediate aftermath of a TE. Although a number of studies have been carried out to examine prospective predictors of PTSD among people recently exposed to TEs, most were either small or focused on a narrow sample, making it unclear how well PTSD can be predicted in the total population of people exposed to TEs. The current report investigates this issue in a large sample based on the World Health Organization (WHO)'s World Mental Health Surveys. Retrospective reports were obtained on the predictors of PTSD associated with 47,466 TE exposures in representative community surveys carried out in 24 countries. Machine learning methods (random forests, penalized regression, super learner) were used to develop a model predicting PTSD from information about TE type, socio-demographics, and prior histories of cumulative TE exposure and DSM-IV disorders. DSM-IV PTSD prevalence was 4.0% across the 47,466 TE exposures. 95.6% of these PTSD cases were associated with the 10.0% of exposures (i.e., 4,747) classified by machine learning algorithm as having highest predicted PTSD risk. The 47,466 exposures were divided into 20 ventiles (20 groups of equal size) ranked by predicted PTSD risk. PTSD occurred after 56.3% of the TEs in the highest-risk ventile, 20.0% of the TEs in the second highest ventile, and 0.0-1.3% of the TEs in the 18 remaining ventiles. These patterns of differential risk were quite stable across demographic-geographic sub-samples. These results demonstrate that a sensitive risk algorithm can be created using data collected in the immediate aftermath of TE exposure to target people at highest risk of PTSD. However, validation of the algorithm is needed in prospective samples, and additional work is warranted to refine the algorithm both in terms of determining a minimum required predictor set and developing a practical administration and scoring protocol that can be used in routine clinical practice. Copyright © 2014 World Psychiatric Association.
Using the Detectability Index to Predict P300 Speller Performance
Mainsah, B.O.; Collins, L.M.; Throckmorton, C.S.
2017-01-01
Objective The P300 speller is a popular brain-computer interface (BCI) system that has been investigated as a potential communication alternative for individuals with severe neuromuscular limitations. To achieve acceptable accuracy levels for communication, the system requires repeated data measurements in a given signal condition to enhance the signal-to-noise ratio of elicited brain responses. These elicited brain responses, which are used as control signals, are embedded in noisy electroencephalography (EEG) data. The discriminability between target and non-target EEG responses defines a user’s performance with the system. A previous P300 speller model has been proposed to estimate system accuracy given a certain amount of data collection. However, the approach was limited to a static stopping algorithm, i.e. averaging over a fixed number of measurements, and the row-column paradigm. A generalized method that is also applicable to dynamic stopping algorithms and other stimulus paradigms is desirable. Approach We developed a new probabilistic model-based approach to predicting BCI performance, where performance functions can be derived analytically or via Monte Carlo methods. Within this framework, we introduce a new model for the P300 speller with the Bayesian dynamic stopping (DS) algorithm, by simplifying a multi-hypothesis to a binary hypothesis problem using the likelihood ratio test. Under a normality assumption, the performance functions for the Bayesian algorithm can be parameterized with the detectability index, a measure which quantifies the discriminability between target and non-target EEG responses. Main results Simulations with synthetic and empirical data provided initial verification of the proposed method of estimating performance with Bayesian DS using the detectability index. Analysis of results from previous online studies validated the proposed method. Significance The proposed method could serve as a useful tool to initially asses BCI performance without extensive online testing, in order to estimate the amount of data required to achieve a desired accuracy level. PMID:27705956
Using the detectability index to predict P300 speller performance
NASA Astrophysics Data System (ADS)
Mainsah, B. O.; Collins, L. M.; Throckmorton, C. S.
2016-12-01
Objective. The P300 speller is a popular brain-computer interface (BCI) system that has been investigated as a potential communication alternative for individuals with severe neuromuscular limitations. To achieve acceptable accuracy levels for communication, the system requires repeated data measurements in a given signal condition to enhance the signal-to-noise ratio of elicited brain responses. These elicited brain responses, which are used as control signals, are embedded in noisy electroencephalography (EEG) data. The discriminability between target and non-target EEG responses defines a user’s performance with the system. A previous P300 speller model has been proposed to estimate system accuracy given a certain amount of data collection. However, the approach was limited to a static stopping algorithm, i.e. averaging over a fixed number of measurements, and the row-column paradigm. A generalized method that is also applicable to dynamic stopping (DS) algorithms and other stimulus paradigms is desirable. Approach. We developed a new probabilistic model-based approach to predicting BCI performance, where performance functions can be derived analytically or via Monte Carlo methods. Within this framework, we introduce a new model for the P300 speller with the Bayesian DS algorithm, by simplifying a multi-hypothesis to a binary hypothesis problem using the likelihood ratio test. Under a normality assumption, the performance functions for the Bayesian algorithm can be parameterized with the detectability index, a measure which quantifies the discriminability between target and non-target EEG responses. Main results. Simulations with synthetic and empirical data provided initial verification of the proposed method of estimating performance with Bayesian DS using the detectability index. Analysis of results from previous online studies validated the proposed method. Significance. The proposed method could serve as a useful tool to initially assess BCI performance without extensive online testing, in order to estimate the amount of data required to achieve a desired accuracy level.
A bio-inspired swarm robot coordination algorithm for multiple target searching
NASA Astrophysics Data System (ADS)
Meng, Yan; Gan, Jing; Desai, Sachi
2008-04-01
The coordination of a multi-robot system searching for multi targets is challenging under dynamic environment since the multi-robot system demands group coherence (agents need to have the incentive to work together faithfully) and group competence (agents need to know how to work together well). In our previous proposed bio-inspired coordination method, Local Interaction through Virtual Stigmergy (LIVS), one problem is the considerable randomness of the robot movement during coordination, which may lead to more power consumption and longer searching time. To address these issues, an adaptive LIVS (ALIVS) method is proposed in this paper, which not only considers the travel cost and target weight, but also predicting the target/robot ratio and potential robot redundancy with respect to the detected targets. Furthermore, a dynamic weight adjustment is also applied to improve the searching performance. This new method a truly distributed method where each robot makes its own decision based on its local sensing information and the information from its neighbors. Basically, each robot only communicates with its neighbors through a virtual stigmergy mechanism and makes its local movement decision based on a Particle Swarm Optimization (PSO) algorithm. The proposed ALIVS algorithm has been implemented on the embodied robot simulator, Player/Stage, in a searching target. The simulation results demonstrate the efficiency and robustness in a power-efficient manner with the real-world constraints.
Decision tree methods: applications for classification and prediction.
Song, Yan-Yan; Lu, Ying
2015-04-25
Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.
Ai, Tomohiko; Tabe, Yoko; Takemura, Hiroyuki; Kimura, Konobu; Takahashi, Toshihiro; Yang, Haeun; Tsuchiya, Koji; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Ohsaka, Akimichi
2018-01-01
Morphological microscopic examinations of nucleated cells in body fluid (BF) samples are performed to screen malignancy. However, the morphological differentiation is time-consuming and labor-intensive. This study aimed to develop a new flowcytometry-based gating analysis mode "XN-BF gating algorithm" to detect malignant cells using an automated hematology analyzer, Sysmex XN-1000. XN-BF mode was equipped with WDF white blood cell (WBC) differential channel. We added two algorithms to the WDF channel: Rule 1 detects larger and clumped cell signals compared to the leukocytes, targeting the clustered malignant cells; Rule 2 detects middle sized mononuclear cells containing less granules than neutrophils with similar fluorescence signal to monocytes, targeting hematological malignant cells and solid tumor cells. BF samples that meet, at least, one rule were detected as malignant. To evaluate this novel gating algorithm, 92 various BF samples were collected. Manual microscopic differentiation with the May-Grunwald Giemsa stain and WBC count with hemocytometer were also performed. The performance of these three methods were evaluated by comparing with the cytological diagnosis. The XN-BF gating algorithm achieved sensitivity of 63.0% and specificity of 87.8% with 68.0% for positive predictive value and 85.1% for negative predictive value in detecting malignant-cell positive samples. Manual microscopic WBC differentiation and WBC count demonstrated 70.4% and 66.7% of sensitivities, and 96.9% and 92.3% of specificities, respectively. The XN-BF gating algorithm can be a feasible tool in hematology laboratories for prompt screening of malignant cells in various BF samples.
A new approach to human microRNA target prediction using ensemble pruning and rotation forest.
Mousavi, Reza; Eftekhari, Mahdi; Haghighi, Mehdi Ghezelbash
2015-12-01
MicroRNAs (miRNAs) are small non-coding RNAs that have important functions in gene regulation. Since finding miRNA target experimentally is costly and needs spending much time, the use of machine learning methods is a growing research area for miRNA target prediction. In this paper, a new approach is proposed by using two popular ensemble strategies, i.e. Ensemble Pruning and Rotation Forest (EP-RTF), to predict human miRNA target. For EP, the approach utilizes Genetic Algorithm (GA). In other words, a subset of classifiers from the heterogeneous ensemble is first selected by GA. Next, the selected classifiers are trained based on the RTF method and then are combined using weighted majority voting. In addition to seeking a better subset of classifiers, the parameter of RTF is also optimized by GA. Findings of the present study confirm that the newly developed EP-RTF outperforms (in terms of classification accuracy, sensitivity, and specificity) the previously applied methods over four datasets in the field of human miRNA target. Diversity-error diagrams reveal that the proposed ensemble approach constructs individual classifiers which are more accurate and usually diverse than the other ensemble approaches. Given these experimental results, we highly recommend EP-RTF for improving the performance of miRNA target prediction.
Network-based ranking methods for prediction of novel disease associated microRNAs.
Le, Duc-Hau
2015-10-01
Many studies have shown roles of microRNAs on human disease and a number of computational methods have been proposed to predict such associations by ranking candidate microRNAs according to their relevance to a disease. Among them, machine learning-based methods usually have a limitation in specifying non-disease microRNAs as negative training samples. Meanwhile, network-based methods are becoming dominant since they well exploit a "disease module" principle in microRNA functional similarity networks. Of which, random walk with restart (RWR) algorithm-based method is currently state-of-the-art. The use of this algorithm was inspired from its success in predicting disease gene because the "disease module" principle also exists in protein interaction networks. Besides, many algorithms designed for webpage ranking have been successfully applied in ranking disease candidate genes because web networks share topological properties with protein interaction networks. However, these algorithms have not yet been utilized for disease microRNA prediction. We constructed microRNA functional similarity networks based on shared targets of microRNAs, and then we integrated them with a microRNA functional synergistic network, which was recently identified. After analyzing topological properties of these networks, in addition to RWR, we assessed the performance of (i) PRINCE (PRIoritizatioN and Complex Elucidation), which was proposed for disease gene prediction; (ii) PageRank with Priors (PRP) and K-Step Markov (KSM), which were used for studying web networks; and (iii) a neighborhood-based algorithm. Analyses on topological properties showed that all microRNA functional similarity networks are small-worldness and scale-free. The performance of each algorithm was assessed based on average AUC values on 35 disease phenotypes and average rankings of newly discovered disease microRNAs. As a result, the performance on the integrated network was better than that on individual ones. In addition, the performance of PRINCE, PRP and KSM was comparable with that of RWR, whereas it was worst for the neighborhood-based algorithm. Moreover, all the algorithms were stable with the change of parameters. Final, using the integrated network, we predicted six novel miRNAs (i.e., hsa-miR-101, hsa-miR-181d, hsa-miR-192, hsa-miR-423-3p, hsa-miR-484 and hsa-miR-98) associated with breast cancer. Network-based ranking algorithms, which were successfully applied for either disease gene prediction or for studying social/web networks, can be also used effectively for disease microRNA prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abadi, Shiran; Yan, Winston X; Amar, David; Mayrose, Itay
2017-10-01
The adaptation of the CRISPR-Cas9 system as a genome editing technique has generated much excitement in recent years owing to its ability to manipulate targeted genes and genomic regions that are complementary to a programmed single guide RNA (sgRNA). However, the efficacy of a specific sgRNA is not uniquely defined by exact sequence homology to the target site, thus unintended off-targets might additionally be cleaved. Current methods for sgRNA design are mainly concerned with predicting off-targets for a given sgRNA using basic sequence features and employ elementary rules for ranking possible sgRNAs. Here, we introduce CRISTA (CRISPR Target Assessment), a novel algorithm within the machine learning framework that determines the propensity of a genomic site to be cleaved by a given sgRNA. We show that the predictions made with CRISTA are more accurate than other available methodologies. We further demonstrate that the occurrence of bulges is not a rare phenomenon and should be accounted for in the prediction process. Beyond predicting cleavage efficiencies, the learning process provides inferences regarding patterns that underlie the mechanism of action of the CRISPR-Cas9 system. We discover that attributes that describe the spatial structure and rigidity of the entire genomic site as well as those surrounding the PAM region are a major component of the prediction capabilities.
Integrative genetic risk prediction using non-parametric empirical Bayes classification.
Zhao, Sihai Dave
2017-06-01
Genetic risk prediction is an important component of individualized medicine, but prediction accuracies remain low for many complex diseases. A fundamental limitation is the sample sizes of the studies on which the prediction algorithms are trained. One way to increase the effective sample size is to integrate information from previously existing studies. However, it can be difficult to find existing data that examine the target disease of interest, especially if that disease is rare or poorly studied. Furthermore, individual-level genotype data from these auxiliary studies are typically difficult to obtain. This article proposes a new approach to integrative genetic risk prediction of complex diseases with binary phenotypes. It accommodates possible heterogeneity in the genetic etiologies of the target and auxiliary diseases using a tuning parameter-free non-parametric empirical Bayes procedure, and can be trained using only auxiliary summary statistics. Simulation studies show that the proposed method can provide superior predictive accuracy relative to non-integrative as well as integrative classifiers. The method is applied to a recent study of pediatric autoimmune diseases, where it substantially reduces prediction error for certain target/auxiliary disease combinations. The proposed method is implemented in the R package ssa. © 2016, The International Biometric Society.
Evaluation and Prediction of Water Resources Based on AHP
NASA Astrophysics Data System (ADS)
Li, Shuai; Sun, Anqi
2017-01-01
Nowadays, the shortage of water resources is a threat to us. In order to solve the problem of water resources restricted by varieties of factors, this paper establishes a water resources evaluation index model (WREI), which adopts the fuzzy comprehensive evaluation (FCE) based on analytic hierarchy process (AHP) algorithm. After considering influencing factors of water resources, we ignore secondary factors and then hierarchical approach the main factors according to the class, set up a three-layer structure. The top floor is for WREI. Using analytic hierarchy process (AHP) to determine weight first, and then use fuzzy judgment to judge target, so the comprehensive use of the two algorithms reduce the subjective influence of AHP and overcome the disadvantages of multi-level evaluation. To prove the model, we choose India as a target region. On the basis of water resources evaluation index model, we use Matlab and combine grey prediction with linear prediction to discuss the ability to provide clean water in India and the trend of India’s water resources changing in the next 15 years. The model with theoretical support and practical significance will be of great help to provide reliable data support and reference for us to get plans to improve water quality.
A large-scale evaluation of computational protein function prediction
Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo
2013-01-01
Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650
Common spaceborne multicomputer operating system and development environment
NASA Technical Reports Server (NTRS)
Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.
1994-01-01
A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.
Know how to maximize maintenance spending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrino, A.J.; Jones, R.B.; Platt, W.E.
Solomon has developed a methodology to determine a large optimum point where availability meets maintenance spending for Powder River Basin (PRB) coal-fired units. Using a database of sufficient size and composition across various operating ranges, Solomon generated an algorithm that predicts the relationship between maintenance spending and availability. Coupling this generalized algorithm with a unit-specific market-loss curve determines the optimum spending for a facility. The article presents the results of the analysis, how this methodology can be applied to develop optimum operating and financial targets for specific units and markets and a process to achieve those targets. It also describesmore » how this methodology can be used for other types of fossil-fired technologies and future enhancements to the analysis. 5 figs.« less
Encke-Beta Predictor for Orion Burn Targeting and Guidance
NASA Technical Reports Server (NTRS)
Robinson, Shane; Scarritt, Sara; Goodman, John L.
2016-01-01
The state vector prediction algorithm selected for Orion on-board targeting and guidance is known as the Encke-Beta method. Encke-Beta uses a universal anomaly (beta) as the independent variable, valid for circular, elliptical, parabolic, and hyperbolic orbits. The variable, related to the change in eccentric anomaly, results in integration steps that cover smaller arcs of the trajectory at or near perigee, when velocity is higher. Some burns in the EM-1 and EM-2 mission plans are much longer than burns executed with the Apollo and Space Shuttle vehicles. Burn length, as well as hyperbolic trajectories, has driven the use of the Encke-Beta numerical predictor by the predictor/corrector guidance algorithm in place of legacy analytic thrust and gravity integrals.
NASA Astrophysics Data System (ADS)
Bagheri, Zahra M.; Cazzolato, Benjamin S.; Grainger, Steven; O'Carroll, David C.; Wiederman, Steven D.
2017-08-01
Objective. Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. Approach. We used our recent recordings from ‘small target motion detector’ neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. Significance. Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system.
Methods and Simulations of Muon Tomography and Reconstruction
NASA Astrophysics Data System (ADS)
Schreiner, Henry Fredrick, III
This dissertation investigates imaging with cosmic ray muons using scintillator-based portable particle detectors, and covers a variety of the elements required for the detectors to operate and take data, from the detector internal communications and software algorithms to a measurement to allow accurate predictions of the attenuation of physical targets. A discussion of the tracking process for the three layer helical design developed at UT Austin is presented, with details of the data acquisition system, and the highly efficient data format. Upgrades to this system provide a stable system for taking images in harsh or inaccessible environments, such as in a remote jungle in Belize. A Geant4 Monte Carlo simulation was used to develop our understanding of the efficiency of the system, as well as to make predictions for a variety of different targets. The projection process is discussed, with a high-speed algorithm for sweeping a plane through data in near real time, to be used in applications requiring a search through space for target discovery. Several other projections and a foundation of high fidelity 3D reconstructions are covered. A variable binning scheme for rapidly varying statistics over portions of an image plane is also presented and used. A discrepancy in our predictions and the observed attenuation through smaller targets is shown, and it is resolved with a new measurement of low energy spectrum, using a specially designed enclosure to make a series of measurements underwater. This provides a better basis for understanding the images of small amounts of materials, such as for thin cover materials.
Ravikumar, Balaguru; Parri, Elina; Timonen, Sanna; Airola, Antti; Wennerberg, Krister
2017-01-01
Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001) between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel-based modeling approach offers practical benefits for probing novel insights into the mode of action of investigational compounds, and for the identification of new target selectivities for drug repurposing applications. PMID:28787438
PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
Ng, Marcus C K; Fong, Simon; Siu, Shirley W I
2015-06-01
Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .
Applying Spatial-Temporal Model and Game Theory to Asymmetric Threat Prediction
2007-06-01
Genshe Chen, Denis Garagic, Xiaohuan Tan, Dongxu Li, Dan Shen, Mo Wei, Xu Wang, “Team Dynamics and Tactics for Mission Planning,” Proceedings...Cruz, Jr., Genshe Chen, Dongxu Li, and Denis Garagic, “Target Selection in UAV Cooperative Control Under Uncertain Environment: Genetic Algorithm
2011-01-01
Background Gene regulatory networks play essential roles in living organisms to control growth, keep internal metabolism running and respond to external environmental changes. Understanding the connections and the activity levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks, they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element. Results This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have been detected by using our reconstructed network. Conclusions The GTRNetwork algorithm introduces the hidden layer TFA into classic relevance score-based gene regulatory network reconstruction processes. Integrating the TFA biological information with regulatory network reconstruction algorithms significantly improves both detection of new links and reduces that rate of false positives. The application of GTRNetwork on E. coli gene transcriptome data gives a set of potential regulatory links with promising biological significance for isobutanol stress and other conditions. PMID:21668997
NASA Technical Reports Server (NTRS)
Morris, Richard; Anderson, R.; Clegg, S. M.; Bell, J. F., III
2010-01-01
Laser-induced breakdown spectroscopy (LIBS) uses pulses of laser light to ablate a material from the surface of a sample and produce an expanding plasma. The optical emission from the plasma produces a spectrum which can be used to classify target materials and estimate their composition. The ChemCam instrument on the Mars Science Laboratory (MSL) mission will use LIBS to rapidly analyze targets remotely, allowing more resource- and time-intensive in-situ analyses to be reserved for targets of particular interest. ChemCam will also be used to analyze samples that are not reachable by the rover's in-situ instruments. Due to these tactical and scientific roles, it is important that ChemCam-derived sample compositions are as accurate as possible. We have compared the results of partial least squares (PLS), multilayer perceptron (MLP) artificial neural networks (ANNs), and cascade correlation (CC) ANNs to determine which technique yields better estimates of quantitative element abundances in rock and mineral samples. The number of hidden nodes in the MLP ANNs was optimized using a genetic algorithm. The influence of two data preprocessing techniques were also investigated: genetic algorithm feature selection and averaging the spectra for each training sample prior to training the PLS and ANN algorithms. We used a ChemCam-like laboratory stand-off LIBS system to collect spectra of 30 pressed powder geostandards and a diverse suite of 196 geologic slab samples of known bulk composition. We tested the performance of PLS and ANNs on a subset of these samples, choosing to focus on silicate rocks and minerals with a loss on ignition of less than 2 percent. This resulted in a set of 22 pressed powder geostandards and 80 geologic samples. Four of the geostandards were used as a validation set and 18 were used as the training set for the algorithms. We found that PLS typically resulted in the lowest average absolute error in its predictions, but that the optimized MLP ANN and the CC ANN often gave results comparable to PLS. Averaging the spectra for each training sample and/or using feature selection to choose a small subset of wavelengths to use for predictions gave mixed results, with degraded performance in some cases and similar or slightly improved performance in other cases. However, training time was significantly reduced for both PLS and ANN methods by implementing feature selection, making this a potentially appealing method for initial, rapid-turn-around analyses necessary for Chemcam's tactical role on MSL. Choice of training samples has a strong influence on the accuracy of predictions. We are currently investigating the use of clustering algorithms (e.g. k-means, neural gas, etc.) to identify training sets that are spectrally similar to the unknown samples that are being predicted, and therefore result in improved predictions
Risk and return: evaluating Reverse Tracing of Precursors earthquake predictions
NASA Astrophysics Data System (ADS)
Zechar, J. Douglas; Zhuang, Jiancang
2010-09-01
In 2003, the Reverse Tracing of Precursors (RTP) algorithm attracted the attention of seismologists and international news agencies when researchers claimed two successful predictions of large earthquakes. These researchers had begun applying RTP to seismicity in Japan, California, the eastern Mediterranean and Italy; they have since applied it to seismicity in the northern Pacific, Oregon and Nevada. RTP is a pattern recognition algorithm that uses earthquake catalogue data to declare alarms, and these alarms indicate that RTP expects a moderate to large earthquake in the following months. The spatial extent of alarms is highly variable and each alarm typically lasts 9 months, although the algorithm may extend alarms in time and space. We examined the record of alarms and outcomes since the prospective application of RTP began, and in this paper we report on the performance of RTP to date. To analyse these predictions, we used a recently developed approach based on a gambling score, and we used a simple reference model to estimate the prior probability of target earthquakes for each alarm. Formally, we believe that RTP investigators did not rigorously specify the first two `successful' predictions in advance of the relevant earthquakes; because this issue is contentious, we consider analyses with and without these alarms. When we included contentious alarms, RTP predictions demonstrate statistically significant skill. Under a stricter interpretation, the predictions are marginally unsuccessful.
NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms
Ruyssinck, Joeri; Huynh-Thu, Vân Anh; Geurts, Pierre; Dhaene, Tom; Demeester, Piet; Saeys, Yvan
2014-01-01
One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms) and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made publicly available. PMID:24667482
Algorithms for a Closed-Loop Artificial Pancreas: The Case for Model Predictive Control
Bequette, B. Wayne
2013-01-01
The relative merits of model predictive control (MPC) and proportional-integral-derivative (PID) control are discussed, with the end goal of a closed-loop artificial pancreas (AP). It is stressed that neither MPC nor PID are single algorithms, but rather are approaches or strategies that may be implemented very differently by different engineers. The primary advantages to MPC are that (i) constraints on the insulin delivery rate (and/or insulin on board) can be explicitly included in the control calculation; (ii) it is a general framework that makes it relatively easy to include the effect of meals, exercise, and other events that are a function of the time of day; and (iii) it is flexible enough to include many different objectives, from set-point tracking (target) to zone (control to range). In the end, however, it is recognized that the control algorithm, while important, represents only a portion of the effort required to develop a closed-loop AP. Thus, any number of algorithms/approaches can be successful—the engineers involved in the design must have experience with the particular technique, including the important experience of implementing the algorithm in human studies and not simply through simulation studies. PMID:24351190
Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation
Scellier, Benjamin; Bengio, Yoshua
2017-01-01
We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution) toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST task. PMID:28522969
Ko, Gene M; Garg, Rajni; Bailey, Barbara A; Kumar, Sunil
2016-01-01
Quantitative structure-activity relationship (QSAR) models can be used as a predictive tool for virtual screening of chemical libraries to identify novel drug candidates. The aims of this paper were to report the results of a study performed for descriptor selection, QSAR model development, and virtual screening for identifying novel HIV-1 integrase inhibitor drug candidates. First, three evolutionary algorithms were compared for descriptor selection: differential evolution-binary particle swarm optimization (DE-BPSO), binary particle swarm optimization, and genetic algorithms. Next, three QSAR models were developed from an ensemble of multiple linear regression, partial least squares, and extremely randomized trees models. A comparison of the performances of three evolutionary algorithms showed that DE-BPSO has a significant improvement over the other two algorithms. QSAR models developed in this study were used in consensus as a predictive tool for virtual screening of the NCI Open Database containing 265,242 compounds to identify potential novel HIV-1 integrase inhibitors. Six compounds were predicted to be highly active (plC50 > 6) by each of the three models. The use of a hybrid evolutionary algorithm (DE-BPSO) for descriptor selection and QSAR model development in drug design is a novel approach. Consensus modeling may provide better predictivity by taking into account a broader range of chemical properties within the data set conducive for inhibition that may be missed by an individual model. The six compounds identified provide novel drug candidate leads in the design of next generation HIV- 1 integrase inhibitors targeting drug resistant mutant viruses.
Lingner, Thomas; Kataya, Amr R. A.; Reumann, Sigrun
2012-01-01
We recently developed the first algorithms specifically for plants to predict proteins carrying peroxisome targeting signals type 1 (PTS1) from genome sequences.1 As validated experimentally, the prediction methods are able to correctly predict unknown peroxisomal Arabidopsis proteins and to infer novel PTS1 tripeptides. The high prediction performance is primarily determined by the large number and sequence diversity of the underlying positive example sequences, which mainly derived from EST databases. However, a few constructs remained cytosolic in experimental validation studies, indicating sequencing errors in some ESTs. To identify erroneous sequences, we validated subcellular targeting of additional positive example sequences in the present study. Moreover, we analyzed the distribution of prediction scores separately for each orthologous group of PTS1 proteins, which generally resembled normal distributions with group-specific mean values. The cytosolic sequences commonly represented outliers of low prediction scores and were located at the very tail of a fitted normal distribution. Three statistical methods for identifying outliers were compared in terms of sensitivity and specificity.” Their combined application allows elimination of erroneous ESTs from positive example data sets. This new post-validation method will further improve the prediction accuracy of both PTS1 and PTS2 protein prediction models for plants, fungi, and mammals. PMID:22415050
Lingner, Thomas; Kataya, Amr R A; Reumann, Sigrun
2012-02-01
We recently developed the first algorithms specifically for plants to predict proteins carrying peroxisome targeting signals type 1 (PTS1) from genome sequences. As validated experimentally, the prediction methods are able to correctly predict unknown peroxisomal Arabidopsis proteins and to infer novel PTS1 tripeptides. The high prediction performance is primarily determined by the large number and sequence diversity of the underlying positive example sequences, which mainly derived from EST databases. However, a few constructs remained cytosolic in experimental validation studies, indicating sequencing errors in some ESTs. To identify erroneous sequences, we validated subcellular targeting of additional positive example sequences in the present study. Moreover, we analyzed the distribution of prediction scores separately for each orthologous group of PTS1 proteins, which generally resembled normal distributions with group-specific mean values. The cytosolic sequences commonly represented outliers of low prediction scores and were located at the very tail of a fitted normal distribution. Three statistical methods for identifying outliers were compared in terms of sensitivity and specificity." Their combined application allows elimination of erroneous ESTs from positive example data sets. This new post-validation method will further improve the prediction accuracy of both PTS1 and PTS2 protein prediction models for plants, fungi, and mammals.
Predicting drug-target interactions using restricted Boltzmann machines.
Wang, Yuhao; Zeng, Jianyang
2013-07-01
In silico prediction of drug-target interactions plays an important role toward identifying and developing new uses of existing or abandoned drugs. Network-based approaches have recently become a popular tool for discovering new drug-target interactions (DTIs). Unfortunately, most of these network-based approaches can only predict binary interactions between drugs and targets, and information about different types of interactions has not been well exploited for DTI prediction in previous studies. On the other hand, incorporating additional information about drug-target relationships or drug modes of action can improve prediction of DTIs. Furthermore, the predicted types of DTIs can broaden our understanding about the molecular basis of drug action. We propose a first machine learning approach to integrate multiple types of DTIs and predict unknown drug-target relationships or drug modes of action. We cast the new DTI prediction problem into a two-layer graphical model, called restricted Boltzmann machine, and apply a practical learning algorithm to train our model and make predictions. Tests on two public databases show that our restricted Boltzmann machine model can effectively capture the latent features of a DTI network and achieve excellent performance on predicting different types of DTIs, with the area under precision-recall curve up to 89.6. In addition, we demonstrate that integrating multiple types of DTIs can significantly outperform other predictions either by simply mixing multiple types of interactions without distinction or using only a single interaction type. Further tests show that our approach can infer a high fraction of novel DTIs that has been validated by known experiments in the literature or other databases. These results indicate that our approach can have highly practical relevance to DTI prediction and drug repositioning, and hence advance the drug discovery process. Software and datasets are available on request. Supplementary data are available at Bioinformatics online.
Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features
Shi, Xiao-He; Hu, Le-Le; Kong, Xiangyin; Cai, Yu-Dong; Chou, Kuo-Chen
2010-01-01
Background Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. Methods/Principal Findings To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Conclusion/Significance Our results indicate that the network prediction system thus established is quite promising and encouraging. PMID:20300175
Abo, Ryan P; Ducar, Matthew; Garcia, Elizabeth P; Thorner, Aaron R; Rojas-Rudilla, Vanesa; Lin, Ling; Sholl, Lynette M; Hahn, William C; Meyerson, Matthew; Lindeman, Neal I; Van Hummelen, Paul; MacConaill, Laura E
2015-02-18
Genomic structural variation (SV), a common hallmark of cancer, has important predictive and therapeutic implications. However, accurately detecting SV using high-throughput sequencing data remains challenging, especially for 'targeted' resequencing efforts. This is critically important in the clinical setting where targeted resequencing is frequently being applied to rapidly assess clinically actionable mutations in tumor biopsies in a cost-effective manner. We present BreaKmer, a novel approach that uses a 'kmer' strategy to assemble misaligned sequence reads for predicting insertions, deletions, inversions, tandem duplications and translocations at base-pair resolution in targeted resequencing data. Variants are predicted by realigning an assembled consensus sequence created from sequence reads that were abnormally aligned to the reference genome. Using targeted resequencing data from tumor specimens with orthogonally validated SV, non-tumor samples and whole-genome sequencing data, BreaKmer had a 97.4% overall sensitivity for known events and predicted 17 positively validated, novel variants. Relative to four publically available algorithms, BreaKmer detected SV with increased sensitivity and limited calls in non-tumor samples, key features for variant analysis of tumor specimens in both the clinical and research settings. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Slama, Matous; Benes, Peter M.; Bila, Jiri
2015-01-01
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time. PMID:25893194
Prediction of TF target sites based on atomistic models of protein-DNA complexes
Angarica, Vladimir Espinosa; Pérez, Abel González; Vasconcelos, Ana T; Collado-Vides, Julio; Contreras-Moreira, Bruno
2008-01-01
Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs) plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition. PMID:18922190
Bukovsky, Ivo; Homma, Noriyasu; Ichiji, Kei; Cejnek, Matous; Slama, Matous; Benes, Peter M; Bila, Jiri
2015-01-01
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanli, E; Mabhouti, H; Cebe, M
Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target weremore » also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose.« less
Identification of human microRNA targets from isolated argonaute protein complexes.
Beitzinger, Michaela; Peters, Lasse; Zhu, Jia Yun; Kremmer, Elisabeth; Meister, Gunter
2007-06-01
MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that regulate gene expression on the level of translation and/or mRNA stability. Mammalian miRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences in the 3' untranslated region (UTR) of specific target mRNAs. Computer algorithms based on factors such as free binding energy or sequence conservation have been used to predict miRNA target mRNAs. Based on such predictions, up to one third of all mammalian mRNAs seem to be under miRNA regulation. However, due to the low degree of complementarity between the miRNA and its target, such computer programs are often imprecise and therefore not very reliable. Here we report the first biochemical identification approach of miRNA targets from human cells. Using highly specific monoclonal antibodies against members of the Ago protein family, we co-immunoprecipitate Ago-bound mRNAs and identify them by cloning. Interestingly, most of the identified targets are also predicted by different computer programs. Moreover, we randomly analyzed six different target candidates and were able to experimentally validate five as miRNA targets. Our data clearly indicate that miRNA targets can be experimentally identified from Ago complexes and therefore provide a new tool to directly analyze miRNA function.
Quantum partial search for uneven distribution of multiple target items
NASA Astrophysics Data System (ADS)
Zhang, Kun; Korepin, Vladimir
2018-06-01
Quantum partial search algorithm is an approximate search. It aims to find a target block (which has the target items). It runs a little faster than full Grover search. In this paper, we consider quantum partial search algorithm for multiple target items unevenly distributed in a database (target blocks have different number of target items). The algorithm we describe can locate one of the target blocks. Efficiency of the algorithm is measured by number of queries to the oracle. We optimize the algorithm in order to improve efficiency. By perturbation method, we find that the algorithm runs the fastest when target items are evenly distributed in database.
Unmasking Upstream Gene Expression Regulators with miRNA-corrected mRNA Data
Bollmann, Stephanie; Bu, Dengpan; Wang, Jiaqi; Bionaz, Massimo
2015-01-01
Expressed micro-RNA (miRNA) affects messenger RNA (mRNA) abundance, hindering the accuracy of upstream regulator analysis. Our objective was to provide an algorithm to correct such bias. Large mRNA and miRNA analyses were performed on RNA extracted from bovine liver and mammary tissue. Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%). Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%) and four levels of the magnitude of miRNA effect (ME) on mRNA expression (30%, 50%, 75%, and 83% mRNA reduction), we generated 17 different datasets (including the original dataset). For each dataset, we performed upstream regulator analysis using two bioinformatics tools. We detected an increased effect on the upstream regulator analysis with larger miRNA:mRNA pair bins and higher ME. The miRNA correction allowed identification of several upstream regulators not present in the analysis of the original dataset. Thus, the proposed algorithm improved the prediction of upstream regulators. PMID:27279737
A statistical model for radar images of agricultural scenes
NASA Technical Reports Server (NTRS)
Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.; Stiles, J. A.
1982-01-01
The presently derived and validated statistical model for radar images containing many different homogeneous fields predicts the probability density functions of radar images of entire agricultural scenes, thereby allowing histograms of large scenes composed of a variety of crops to be described. Seasat-A SAR images of agricultural scenes are accurately predicted by the model on the basis of three assumptions: each field has the same SNR, all target classes cover approximately the same area, and the true reflectivity characterizing each individual target class is a uniformly distributed random variable. The model is expected to be useful in the design of data processing algorithms and for scene analysis using radar images.
Efficient Modeling and Active Learning Discovery of Biological Responses
Naik, Armaghan W.; Kangas, Joshua D.; Langmead, Christopher J.; Murphy, Robert F.
2013-01-01
High throughput and high content screening involve determination of the effect of many compounds on a given target. As currently practiced, screening for each new target typically makes little use of information from screens of prior targets. Further, choices of compounds to advance to drug development are made without significant screening against off-target effects. The overall drug development process could be made more effective, as well as less expensive and time consuming, if potential effects of all compounds on all possible targets could be considered, yet the cost of such full experimentation would be prohibitive. In this paper, we describe a potential solution: probabilistic models that can be used to predict results for unmeasured combinations, and active learning algorithms for efficiently selecting which experiments to perform in order to build those models and determining when to stop. Using simulated and experimental data, we show that our approaches can produce powerful predictive models without exhaustive experimentation and can learn them much faster than by selecting experiments at random. PMID:24358322
Multiplexing Short Primers for Viral Family PCR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, S N; Hiddessen, A L; Hara, C A
We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets for large, diverse, and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers ({approx}3700 18-mers or {approx}2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and formore » several diverse species such as foot-and-mouth disease virus, hemagglutinin and neuraminidase segments of influenza A virus, Norwalk virus, and HIV-1.« less
Multi-Target Regression via Robust Low-Rank Learning.
Zhen, Xiantong; Yu, Mengyang; He, Xiaofei; Li, Shuo
2018-02-01
Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.
Analysis of A Drug Target-based Classification System using Molecular Descriptors.
Lu, Jing; Zhang, Pin; Bi, Yi; Luo, Xiaomin
2016-01-01
Drug-target interaction is an important topic in drug discovery and drug repositioning. KEGG database offers a drug annotation and classification using a target-based classification system. In this study, we gave an investigation on five target-based classes: (I) G protein-coupled receptors; (II) Nuclear receptors; (III) Ion channels; (IV) Enzymes; (V) Pathogens, using molecular descriptors to represent each drug compound. Two popular feature selection methods, maximum relevance minimum redundancy and incremental feature selection, were adopted to extract the important descriptors. Meanwhile, an optimal prediction model based on nearest neighbor algorithm was constructed, which got the best result in identifying drug target-based classes. Finally, some key descriptors were discussed to uncover their important roles in the identification of drug-target classes.
Low-rank regularization for learning gene expression programs.
Ye, Guibo; Tang, Mengfan; Cai, Jian-Feng; Nie, Qing; Xie, Xiaohui
2013-01-01
Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective algorithms for inferring gene expression programs. Here we propose a new form of regulation that constrains the number of independent connectivity patterns between regulators and targets, motivated by the modular design of gene regulatory programs and the belief that the total number of independent regulatory modules should be small. We formulate a multi-target linear regression framework to incorporate this type of regulation, in which the number of independent connectivity patterns is expressed as the rank of the connectivity matrix between regulators and targets. We then generalize the linear framework to nonlinear cases, and prove that the generalized low-rank regularization model is still convex. Efficient algorithms are derived to solve both the linear and nonlinear low-rank regularized problems. Finally, we test the algorithms on three gene expression datasets, and show that the low-rank regularization improves the accuracy of gene expression prediction in these three datasets.
Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Ma, Zhiwei; Grinter, Sam Z; Zou, Xiaoqin
2017-03-01
Protein-protein interactions are either through direct contacts between two binding partners or mediated by structural waters. Both direct contacts and water-mediated interactions are crucial to the formation of a protein-protein complex. During the recent CAPRI rounds, a novel parallel searching strategy for predicting water-mediated interactions is introduced into our protein-protein docking method, MDockPP. Briefly, a FFT-based docking algorithm is employed in generating putative binding modes, and an iteratively derived statistical potential-based scoring function, ITScorePP, in conjunction with biological information is used to assess and rank the binding modes. Up to 10 binding modes are selected as the initial protein-protein complex structures for MD simulations in explicit solvent. Water molecules near the interface are clustered based on the snapshots extracted from independent equilibrated trajectories. Then, protein-ligand docking is employed for a parallel search for water molecules near the protein-protein interface. The water molecules generated by ligand docking and the clustered water molecules generated by MD simulations are merged, referred to as the predicted structural water molecules. Here, we report the performance of this protocol for CAPRI rounds 28-29 and 31-35 containing 20 valid docking targets and 11 scoring targets. In the docking experiments, we predicted correct binding modes for nine targets, including one high-accuracy, two medium-accuracy, and six acceptable predictions. Regarding the two targets for the prediction of water-mediated interactions, we achieved models ranked as "excellent" in accordance with the CAPRI evaluation criteria; one of these two targets is considered as a difficult target for structural water prediction. Proteins 2017; 85:424-434. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
da Silva, Thaísa Leal; Agostini, Luciano Volcan; da Silva Cruz, Luis A.
2014-05-01
Intra prediction is a very important tool in current video coding standards. High-efficiency video coding (HEVC) intra prediction presents relevant gains in encoding efficiency when compared to previous standards, but with a very important increase in the computational complexity since 33 directional angular modes must be evaluated. Motivated by this high complexity, this article presents a complexity reduction algorithm developed to reduce the HEVC intra mode decision complexity targeting multiview videos. The proposed algorithm presents an efficient fast intra prediction compliant with singleview and multiview video encoding. This fast solution defines a reduced subset of intra directions according to the video texture and it exploits the relationship between prediction units (PUs) of neighbor depth levels of the coding tree. This fast intra coding procedure is used to develop an inter-view prediction method, which exploits the relationship between the intra mode directions of adjacent views to further accelerate the intra prediction process in multiview video encoding applications. When compared to HEVC simulcast, our method achieves a complexity reduction of up to 47.77%, at the cost of an average BD-PSNR loss of 0.08 dB.
2015-04-24
xs , ys , xe , ye ) double EndPo in t s [L...Distribution Statement A. Approved for public release. #26161 350 400 450 100 150 200 250 300 350 400 450 500 550 600 x (m) y (m ) Start Target U0 = 10...longitudinal speed 350 400 450 100 150 200 250 300 350 400 450 500 550 600 x (m) y (m ) Start Target (a) Trajectory 0 5 10 15 0 1 t (s) f ( U0 = 30
Krishnaraj, R Navanietha; Chandran, Saravanan; Pal, Parimal; Berchmans, Sheela
2013-12-01
There is an immense interest among the researchers to identify new herbicides which are effective against the herbs without affecting the environment. In this work, photosynthetic pigments are used as the ligands to predict their herbicidal activity. The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a good target for the herbicides. Homology modeling of the target enzyme is done using Modeler 9.11 and the model is validated. Docking studies were performed with AutoDock Vina algorithm to predict the binding of the natural pigments such as β-carotene, chlorophyll a, chlorophyll b, phycoerythrin and phycocyanin to the target. β-carotene, phycoerythrin and phycocyanin have higher binding energies indicating the herbicidal activity of the pigments. This work reports a procedure to screen herbicides with computational molecular approach. These pigments will serve as potential bioherbicides in the future.
NASA Astrophysics Data System (ADS)
Delogu, A.; Furini, F.
1991-09-01
Increasing interest in radar cross section (RCS) reduction is placing new demands on theoretical, computation, and graphic techniques for calculating scattering properties of complex targets. In particular, computer codes capable of predicting the RCS of an entire aircraft at high frequency and of achieving RCS control with modest structural changes, are becoming of paramount importance in stealth design. A computer code, evaluating the RCS of arbitrary shaped metallic objects that are computer aided design (CAD) generated, and its validation with measurements carried out using ALENIA RCS test facilities are presented. The code, based on the physical optics method, is characterized by an efficient integration algorithm with error control, in order to contain the computer time within acceptable limits, and by an accurate parametric representation of the target surface in terms of bicubic splines.
The Next Era: Deep Learning in Pharmaceutical Research.
Ekins, Sean
2016-11-01
Over the past decade we have witnessed the increasing sophistication of machine learning algorithms applied in daily use from internet searches, voice recognition, social network software to machine vision software in cameras, phones, robots and self-driving cars. Pharmaceutical research has also seen its fair share of machine learning developments. For example, applying such methods to mine the growing datasets that are created in drug discovery not only enables us to learn from the past but to predict a molecule's properties and behavior in future. The latest machine learning algorithm garnering significant attention is deep learning, which is an artificial neural network with multiple hidden layers. Publications over the last 3 years suggest that this algorithm may have advantages over previous machine learning methods and offer a slight but discernable edge in predictive performance. The time has come for a balanced review of this technique but also to apply machine learning methods such as deep learning across a wider array of endpoints relevant to pharmaceutical research for which the datasets are growing such as physicochemical property prediction, formulation prediction, absorption, distribution, metabolism, excretion and toxicity (ADME/Tox), target prediction and skin permeation, etc. We also show that there are many potential applications of deep learning beyond cheminformatics. It will be important to perform prospective testing (which has been carried out rarely to date) in order to convince skeptics that there will be benefits from investing in this technique.
Balosso, Jacques
2017-01-01
Background During the past decades, in radiotherapy, the dose distributions were calculated using density correction methods with pencil beam as type ‘a’ algorithm. The objectives of this study are to assess and evaluate the impact of dose distribution shift on the predicted secondary cancer risk (SCR), using modern advanced dose calculation algorithms, point kernel, as type ‘b’, which consider change in lateral electrons transport. Methods Clinical examples of pediatric cranio-spinal irradiation patients were evaluated. For each case, two radiotherapy treatment plans with were generated using the same prescribed dose to the target resulting in different number of monitor units (MUs) per field. The dose distributions were calculated, respectively, using both algorithms types. A gamma index (γ) analysis was used to compare dose distribution in the lung. The organ equivalent dose (OED) has been calculated with three different models, the linear, the linear-exponential and the plateau dose response curves. The excess absolute risk ratio (EAR) was also evaluated as (EAR = OED type ‘b’ / OED type ‘a’). Results The γ analysis results indicated an acceptable dose distribution agreement of 95% with 3%/3 mm. Although, the γ-maps displayed dose displacement >1 mm around the healthy lungs. Compared to type ‘a’, the OED values from type ‘b’ dose distributions’ were about 8% to 16% higher, leading to an EAR ratio >1, ranged from 1.08 to 1.13 depending on SCR models. Conclusions The shift of dose calculation in radiotherapy, according to the algorithm, can significantly influence the SCR prediction and the plan optimization, since OEDs are calculated from DVH for a specific treatment. The agreement between dose distribution and SCR prediction depends on dose response models and epidemiological data. In addition, the γ passing rates of 3%/3 mm does not translate the difference, up to 15%, in the predictions of SCR resulting from alternative algorithms. Considering that modern algorithms are more accurate, showing more precisely the dose distributions, but that the prediction of absolute SCR is still very imprecise, only the EAR ratio could be used to rank radiotherapy plans. PMID:28811995
I-TASSER: fully automated protein structure prediction in CASP8.
Zhang, Yang
2009-01-01
The I-TASSER algorithm for 3D protein structure prediction was tested in CASP8, with the procedure fully automated in both the Server and Human sections. The quality of the server models is close to that of human ones but the human predictions incorporate more diverse templates from other servers which improve the human predictions in some of the distant homology targets. For the first time, the sequence-based contact predictions from machine learning techniques are found helpful for both template-based modeling (TBM) and template-free modeling (FM). In TBM, although the accuracy of the sequence based contact predictions is on average lower than that from template-based ones, the novel contacts in the sequence-based predictions, which are complementary to the threading templates in the weakly or unaligned regions, are important to improve the global and local packing in these regions. Moreover, the newly developed atomic structural refinement algorithm was tested in CASP8 and found to improve the hydrogen-bonding networks and the overall TM-score, which is mainly due to its ability of removing steric clashes so that the models can be generated from cluster centroids. Nevertheless, one of the major issues of the I-TASSER pipeline is the model selection where the best models could not be appropriately recognized when the correct templates are detected only by the minority of the threading algorithms. There are also problems related with domain-splitting and mirror image recognition which mainly influences the performance of I-TASSER modeling in the FM-based structure predictions. Copyright 2009 Wiley-Liss, Inc.
Dhanda, Sandeep Kumar; Grifoni, Alba; Pham, John; Vaughan, Kerrie; Sidney, John; Peters, Bjoern; Sette, Alessandro
2018-01-01
Unwanted immune responses against protein therapeutics can reduce efficacy or lead to adverse reactions. T-cell responses are key in the development of such responses, and are directed against immunodominant regions within the protein sequence, often associated with binding to several allelic variants of HLA class II molecules (promiscuous binders). Herein, we report a novel computational strategy to predict 'de-immunized' peptides, based on previous studies of erythropoietin protein immunogenicity. This algorithm (or method) first predicts promiscuous binding regions within the target protein sequence and then identifies residue substitutions predicted to reduce HLA binding. Further, this method anticipates the effect of any given substitution on flanking peptides, thereby circumventing the creation of nascent HLA-binding regions. As a proof-of-principle, the algorithm was applied to Vatreptacog α, an engineered Factor VII molecule associated with unintended immunogenicity. The algorithm correctly predicted the two immunogenic peptides containing the engineered residues. As a further validation, we selected and evaluated the immunogenicity of seven substitutions predicted to simultaneously reduce HLA binding for both peptides, five control substitutions with no predicted reduction in HLA-binding capacity, and additional flanking region controls. In vitro immunogenicity was detected in 21·4% of the cultures of peptides predicted to have reduced HLA binding and 11·4% of the flanking regions, compared with 46% for the cultures of the peptides predicted to be immunogenic. This method has been implemented as an interactive application, freely available online at http://tools.iedb.org/deimmunization/. © 2017 John Wiley & Sons Ltd.
Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates.
Hou, X; Tanguay, J; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A
2016-01-21
In response to the recognized fragility of reactor-produced (99)Mo supply, direct production of (99m)Tc via (100)Mo(p,2n)(99m)Tc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with (99m)Tc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical (99m)Tc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.
Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates
NASA Astrophysics Data System (ADS)
Hou, X.; Tanguay, J.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.
2016-01-01
In response to the recognized fragility of reactor-produced 99Mo supply, direct production of 99mTc via 100Mo(p,2n)99mTc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with 99mTc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical 99mTc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.
A hierarchical framework for air traffic control
NASA Astrophysics Data System (ADS)
Roy, Kaushik
Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation in NextGen will affect the overall performance of air traffic control. The dissertation also provides solutions to several key estimation problems that support corresponding control tasks. Throughout the development of these estimation algorithms, aircraft motion is modeled using hybrid systems, which encapsulate both the discrete flight mode of an aircraft and the evolution of continuous states such as position and velocity. The target-tracking problem is posed as one of hybrid state estimation, and two new algorithms are developed to exploit structure specific to aircraft motion, especially near airports. First, discrete mode evolution is modeled using state-dependent transitions, in which the likelihood of changing flight modes is dependent on aircraft state. Second, an estimator is designed for systems with limited mode changes, including arrival aircraft. Improved target tracking facilitates increased safety in collision avoidance and trajectory design problems. A multiple-target tracking and identity management algorithm is developed to improve situational awareness for controllers about multiple maneuvering targets in a congested region. Finally, tracking algorithms are extended to predict aircraft landing times; estimated time of arrival prediction is one example of important decision support information for air traffic control.
NASA Astrophysics Data System (ADS)
Bal, A.; Alam, M. S.; Aslan, M. S.
2006-05-01
Often sensor ego-motion or fast target movement causes the target to temporarily go out of the field-of-view leading to reappearing target detection problem in target tracking applications. Since the target goes out of the current frame and reenters at a later frame, the reentering location and variations in rotation, scale, and other 3D orientations of the target are not known thus complicating the detection algorithm has been developed using Fukunaga-Koontz Transform (FKT) and distance classifier correlation filter (DCCF). The detection algorithm uses target and background information, extracted from training samples, to detect possible candidate target images. The detected candidate target images are then introduced into the second algorithm, DCCF, called clutter rejection module, to determine the target coordinates are detected and tracking algorithm is initiated. The performance of the proposed FKT-DCCF based target detection algorithm has been tested using real-world forward looking infrared (FLIR) video sequences.
Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach
Emig, Dorothea; Ivliev, Alexander; Pustovalova, Olga; Lancashire, Lee; Bureeva, Svetlana; Nikolsky, Yuri; Bessarabova, Marina
2013-01-01
The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases. Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent years, several such algorithms have been developed, some focusing on local network properties only, and others taking the complete network topology into account. Common to all approaches is the understanding that novel disease-associated candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates using diabetes type 1 as an example. PMID:23593264
Comparison of human and algorithmic target detection in passive infrared imagery
NASA Astrophysics Data System (ADS)
Weber, Bruce A.; Hutchinson, Meredith
2003-09-01
We have designed an experiment that compares the performance of human observers and a scale-insensitive target detection algorithm that uses pixel level information for the detection of ground targets in passive infrared imagery. The test database contains targets near clutter whose detectability ranged from easy to very difficult. Results indicate that human observers detect more "easy-to-detect" targets, and with far fewer false alarms, than the algorithm. For "difficult-to-detect" targets, human and algorithm detection rates are considerably degraded, and algorithm false alarms excessive. Analysis of detections as a function of observer confidence shows that algorithm confidence attribution does not correspond to human attribution, and does not adequately correlate with correct detections. The best target detection score for any human observer was 84%, as compared to 55% for the algorithm for the same false alarm rate. At 81%, the maximum detection score for the algorithm, the same human observer had 6 false alarms per frame as compared to 29 for the algorithm. Detector ROC curves and observer-confidence analysis benchmarks the algorithm and provides insights into algorithm deficiencies and possible paths to improvement.
Tabe, Yoko; Takemura, Hiroyuki; Kimura, Konobu; Takahashi, Toshihiro; Yang, Haeun; Tsuchiya, Koji; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Ohsaka, Akimichi
2018-01-01
Morphological microscopic examinations of nucleated cells in body fluid (BF) samples are performed to screen malignancy. However, the morphological differentiation is time-consuming and labor-intensive. This study aimed to develop a new flowcytometry-based gating analysis mode “XN-BF gating algorithm” to detect malignant cells using an automated hematology analyzer, Sysmex XN-1000. XN-BF mode was equipped with WDF white blood cell (WBC) differential channel. We added two algorithms to the WDF channel: Rule 1 detects larger and clumped cell signals compared to the leukocytes, targeting the clustered malignant cells; Rule 2 detects middle sized mononuclear cells containing less granules than neutrophils with similar fluorescence signal to monocytes, targeting hematological malignant cells and solid tumor cells. BF samples that meet, at least, one rule were detected as malignant. To evaluate this novel gating algorithm, 92 various BF samples were collected. Manual microscopic differentiation with the May-Grunwald Giemsa stain and WBC count with hemocytometer were also performed. The performance of these three methods were evaluated by comparing with the cytological diagnosis. The XN-BF gating algorithm achieved sensitivity of 63.0% and specificity of 87.8% with 68.0% for positive predictive value and 85.1% for negative predictive value in detecting malignant-cell positive samples. Manual microscopic WBC differentiation and WBC count demonstrated 70.4% and 66.7% of sensitivities, and 96.9% and 92.3% of specificities, respectively. The XN-BF gating algorithm can be a feasible tool in hematology laboratories for prompt screening of malignant cells in various BF samples. PMID:29425230
Linear genetic programming application for successive-station monthly streamflow prediction
NASA Astrophysics Data System (ADS)
Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit
2014-09-01
In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.
Öhrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas
2010-01-01
One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes. PMID:20864443
MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen, E-mail: lizhen7111@163.com; Liu, Yun-hui; Diao, Hong-yu
In this study, we analyzed the functional role of miR-661 in glioma cell proliferation, migration and invasion. We found that overexpression of miR-661 obviously suppressed the proliferation, migration and invasion of glioma cells. MiRNA target prediction algorithms implied that hTERT is a candidate target gene for miR-661. A fluorescent reporter assay confirmed that miR-661 could lead to hTERT gene silencing by recognizing and specifically binding to the predicted site of the hTERT mRNA 3′ untranslated region (3′UTR) specifically. Furthermore, hTERT knockdown significantly decreased the growth and viability of glioma cells. These results indicate that miR-661 can inhibit glioma cell proliferation,more » migration and invasion by targeting hTERT. - Highlights: • MiR-661 was downregulated in glioma tissues and functional as a tumor suppressor. • MiR-661 modulates cell proliferation, invasion and migration of glioma cells. • MiR-661 directly target hTERT in glioma cells. • MiR-661 inhibits glioma cell tumorgenesis by targeting hTERT.« less
Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy.
Asadi, Hamed; Dowling, Richard; Yan, Bernard; Mitchell, Peter
2014-01-01
Stroke is a major cause of death and disability. Accurately predicting stroke outcome from a set of predictive variables may identify high-risk patients and guide treatment approaches, leading to decreased morbidity. Logistic regression models allow for the identification and validation of predictive variables. However, advanced machine learning algorithms offer an alternative, in particular, for large-scale multi-institutional data, with the advantage of easily incorporating newly available data to improve prediction performance. Our aim was to design and compare different machine learning methods, capable of predicting the outcome of endovascular intervention in acute anterior circulation ischaemic stroke. We conducted a retrospective study of a prospectively collected database of acute ischaemic stroke treated by endovascular intervention. Using SPSS®, MATLAB®, and Rapidminer®, classical statistics as well as artificial neural network and support vector algorithms were applied to design a supervised machine capable of classifying these predictors into potential good and poor outcomes. These algorithms were trained, validated and tested using randomly divided data. We included 107 consecutive acute anterior circulation ischaemic stroke patients treated by endovascular technique. Sixty-six were male and the mean age of 65.3. All the available demographic, procedural and clinical factors were included into the models. The final confusion matrix of the neural network, demonstrated an overall congruency of ∼ 80% between the target and output classes, with favourable receiving operative characteristics. However, after optimisation, the support vector machine had a relatively better performance, with a root mean squared error of 2.064 (SD: ± 0.408). We showed promising accuracy of outcome prediction, using supervised machine learning algorithms, with potential for incorporation of larger multicenter datasets, likely further improving prediction. Finally, we propose that a robust machine learning system can potentially optimise the selection process for endovascular versus medical treatment in the management of acute stroke.
Therapeutic target discovery using Boolean network attractors: improvements of kali
Guziolowski, Carito
2018-01-01
In a previous article, an algorithm for identifying therapeutic targets in Boolean networks modelling pathological mechanisms was introduced. In the present article, the improvements made on this algorithm, named kali, are described. These improvements are (i) the possibility to work on asynchronous Boolean networks, (ii) a finer assessment of therapeutic targets and (iii) the possibility to use multivalued logic. kali assumes that the attractors of a dynamical system, such as a Boolean network, are associated with the phenotypes of the modelled biological system. Given a logic-based model of pathological mechanisms, kali searches for therapeutic targets able to reduce the reachability of the attractors associated with pathological phenotypes, thus reducing their likeliness. kali is illustrated on an example network and used on a biological case study. The case study is a published logic-based model of bladder tumorigenesis from which kali returns consistent results. However, like any computational tool, kali can predict but cannot replace human expertise: it is a supporting tool for coping with the complexity of biological systems in the field of drug discovery. PMID:29515890
Mohd Fauzi, Fazlin; Koutsoukas, Alexios; Lowe, Robert; Joshi, Kalpana; Fan, Tai-Ping; Glen, Robert C; Bender, Andreas
2013-03-25
Traditional Chinese medicine (TCM) and Ayurveda have been used in humans for thousands of years. While the link to a particular indication has been established in man, the mode-of-action (MOA) of the formulations often remains unknown. In this study, we aim to understand the MOA of formulations used in traditional medicine using an in silico target prediction algorithm, which aims to predict protein targets (and hence MOAs), given the chemical structure of a compound. Following this approach we were able to establish several links between suggested MOAs and experimental evidence. In particular, compounds from the 'tonifying and replenishing medicinal' class from TCM exhibit a hypoglycemic effect which can be related to activity of the ingredients against the Sodium-Glucose Transporters (SGLT) 1 and 2 as well as Protein Tyrosine Phosphatase (PTP). Similar results were obtained for Ayurvedic anticancer drugs. Here, both primary anticancer targets (those directly involved in cancer pathogenesis) such as steroid-5-alpha-reductase 1 and 2 were predicted as well as targets which act synergistically with the primary target, such as the efflux pump P-glycoprotein (P-gp). In addition, we were able to elucidate some targets which may point us to novel MOAs as well as explain side effects. Most notably, GPBAR1, which was predicted as a target for both 'tonifying and replenishing medicinal' and anticancer classes, suggests an influence of the compounds on metabolism. Understanding the MOA of these compounds is beneficial as it provides a resource for NMEs with possibly higher efficacy in the clinic than those identified by single-target biochemical assays.
AlzhCPI: A knowledge base for predicting chemical-protein interactions towards Alzheimer's disease.
Fang, Jiansong; Wang, Ling; Li, Yecheng; Lian, Wenwen; Pang, Xiaocong; Wang, Hong; Yuan, Dongsheng; Wang, Qi; Liu, Ai-Lin; Du, Guan-Hua
2017-01-01
Alzheimer's disease (AD) is a complicated progressive neurodegeneration disorder. To confront AD, scientists are searching for multi-target-directed ligands (MTDLs) to delay disease progression. The in silico prediction of chemical-protein interactions (CPI) can accelerate target identification and drug discovery. Previously, we developed 100 binary classifiers to predict the CPI for 25 key targets against AD using the multi-target quantitative structure-activity relationship (mt-QSAR) method. In this investigation, we aimed to apply the mt-QSAR method to enlarge the model library to predict CPI towards AD. Another 104 binary classifiers were further constructed to predict the CPI for 26 preclinical AD targets based on the naive Bayesian (NB) and recursive partitioning (RP) algorithms. The internal 5-fold cross-validation and external test set validation were applied to evaluate the performance of the training sets and test set, respectively. The area under the receiver operating characteristic curve (ROC) for the test sets ranged from 0.629 to 1.0, with an average of 0.903. In addition, we developed a web server named AlzhCPI to integrate the comprehensive information of approximately 204 binary classifiers, which has potential applications in network pharmacology and drug repositioning. AlzhCPI is available online at http://rcidm.org/AlzhCPI/index.html. To illustrate the applicability of AlzhCPI, the developed system was employed for the systems pharmacology-based investigation of shichangpu against AD to enhance the understanding of the mechanisms of action of shichangpu from a holistic perspective.
Applications of information theory, genetic algorithms, and neural models to predict oil flow
NASA Astrophysics Data System (ADS)
Ludwig, Oswaldo; Nunes, Urbano; Araújo, Rui; Schnitman, Leizer; Lepikson, Herman Augusto
2009-07-01
This work introduces a new information-theoretic methodology for choosing variables and their time lags in a prediction setting, particularly when neural networks are used in non-linear modeling. The first contribution of this work is the Cross Entropy Function (XEF) proposed to select input variables and their lags in order to compose the input vector of black-box prediction models. The proposed XEF method is more appropriate than the usually applied Cross Correlation Function (XCF) when the relationship among the input and output signals comes from a non-linear dynamic system. The second contribution is a method that minimizes the Joint Conditional Entropy (JCE) between the input and output variables by means of a Genetic Algorithm (GA). The aim is to take into account the dependence among the input variables when selecting the most appropriate set of inputs for a prediction problem. In short, theses methods can be used to assist the selection of input training data that have the necessary information to predict the target data. The proposed methods are applied to a petroleum engineering problem; predicting oil production. Experimental results obtained with a real-world dataset are presented demonstrating the feasibility and effectiveness of the method.
Lee, Ciaran M; Davis, Timothy H; Bao, Gang
2018-04-01
What is the topic of this review? In this review, we analyse the performance of recently described tools for CRISPR/Cas9 guide RNA design, in particular, design tools that predict CRISPR/Cas9 activity. What advances does it highlight? Recently, many tools designed to predict CRISPR/Cas9 activity have been reported. However, the majority of these tools lack experimental validation. Our analyses indicate that these tools have poor predictive power. Our preliminary results suggest that target site accessibility should be considered in order to develop better guide RNA design tools with improved predictive power. The recent adaptation of the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system for targeted genome engineering has led to its widespread application in many fields worldwide. In order to gain a better understanding of the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design, these studies have spawned a plethora of guide RNA (gRNA) design tools with algorithms based solely on direct or indirect sequence features. Here, we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore, we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimization, we hypothesize that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Research on target tracking algorithm based on spatio-temporal context
NASA Astrophysics Data System (ADS)
Li, Baiping; Xu, Sanmei; Kang, Hongjuan
2017-07-01
In this paper, a novel target tracking algorithm based on spatio-temporal context is proposed. During the tracking process, the camera shaking or occlusion may lead to the failure of tracking. The proposed algorithm can solve this problem effectively. The method use the spatio-temporal context algorithm as the main research object. We get the first frame's target region via mouse. Then the spatio-temporal context algorithm is used to get the tracking targets of the sequence of frames. During this process a similarity measure function based on perceptual hash algorithm is used to judge the tracking results. If tracking failed, reset the initial value of Mean Shift algorithm for the subsequent target tracking. Experiment results show that the proposed algorithm can achieve real-time and stable tracking when camera shaking or target occlusion.
Xiong, Dapeng; Zeng, Jianyang; Gong, Haipeng
2017-09-01
Residue-residue contacts are of great value for protein structure prediction, since contact information, especially from those long-range residue pairs, can significantly reduce the complexity of conformational sampling for protein structure prediction in practice. Despite progresses in the past decade on protein targets with abundant homologous sequences, accurate contact prediction for proteins with limited sequence information is still far from satisfaction. Methodologies for these hard targets still need further improvement. We presented a computational program DeepConPred, which includes a pipeline of two novel deep-learning-based methods (DeepCCon and DeepRCon) as well as a contact refinement step, to improve the prediction of long-range residue contacts from primary sequences. When compared with previous prediction approaches, our framework employed an effective scheme to identify optimal and important features for contact prediction, and was only trained with coevolutionary information derived from a limited number of homologous sequences to ensure robustness and usefulness for hard targets. Independent tests showed that 59.33%/49.97%, 64.39%/54.01% and 70.00%/59.81% of the top L/5, top L/10 and top 5 predictions were correct for CASP10/CASP11 proteins, respectively. In general, our algorithm ranked as one of the best methods for CASP targets. All source data and codes are available at http://166.111.152.91/Downloads.html . hgong@tsinghua.edu.cn or zengjy321@tsinghua.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Time Series Technique for Aerosol Retrievals over Land from MODIS: Algorithm MAIAC
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Wang, Yujie
2008-01-01
Atmospheric aerosols interact with sun light by scattering and absorbing radiation. By changing irradiance of the Earth surface, modifying cloud fractional cover and microphysical properties and a number of other mechanisms, they affect the energy balance, hydrological cycle, and planetary climate [IPCC, 2007]. In many world regions there is a growing impact of aerosols on air quality and human health. The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and operational aerosol retrievals over land. With the wide swath (2300 km) of MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007] currently complemented with the Deep Blue method [Hsu et al., 2004] provides daily global view of planetary atmospheric aerosol. The MISR algorithm [Martonchik et al., 1998; Diner et al., 2005] makes high quality aerosol retrievals in 300 km swaths covering the globe in 8 days. With MODIS aerosol program being very successful, there are still several unresolved issues in the retrieval algorithms. The current processing is pixel-based and relies on a single-orbit data. Such an approach produces a single measurement for every pixel characterized by two main unknowns, aerosol optical thickness (AOT) and surface reflectance (SR). This lack of information constitutes a fundamental problem of the remote sensing which cannot be resolved without a priori information. For example, MODIS Dark Target algorithm makes spectral assumptions about surface reflectance, whereas the Deep Blue method uses ancillary global database of surface reflectance composed from minimal monthly measurements with Rayleigh correction. Both algorithms use Lambertian surface model. The surface-related assumptions in the aerosol retrievals may affect subsequent atmospheric correction in unintended way. For example, the Dark Target algorithm uses an empirical relationship to predict SR in the Blue (B3) and Red (B1) bands from the 2.1 m channel (B7) for the purpose of aerosol retrieval. Obviously, the subsequent atmospheric correction will produce the same SR in the red and blue bands as predicted, i.e. an empirical function of 2.1. In other words, the spectral, spatial and temporal variability of surface reflectance in the Blue and Red bands appears borrowed from band B7. This may have certain implications for the vegetation and global carbon analysis because the chlorophyll-sensing bands B1, B3 are effectively substituted in terms of variability by band B7, which is sensitive to the plant liquid water. This chapter describes a new recently developed generic aerosol-surface retrieval algorithm for MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm simultaneously retrieves AOT and surface bi-directional reflection factor (BRF) using the time series of MODIS measurements.
Enabling phenotypic big data with PheNorm.
Yu, Sheng; Ma, Yumeng; Gronsbell, Jessica; Cai, Tianrun; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Liao, Katherine P; Cai, Tianxi
2018-01-01
Electronic health record (EHR)-based phenotyping infers whether a patient has a disease based on the information in his or her EHR. A human-annotated training set with gold-standard disease status labels is usually required to build an algorithm for phenotyping based on a set of predictive features. The time intensiveness of annotation and feature curation severely limits the ability to achieve high-throughput phenotyping. While previous studies have successfully automated feature curation, annotation remains a major bottleneck. In this paper, we present PheNorm, a phenotyping algorithm that does not require expert-labeled samples for training. The most predictive features, such as the number of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes or mentions of the target phenotype, are normalized to resemble a normal mixture distribution with high area under the receiver operating curve (AUC) for prediction. The transformed features are then denoised and combined into a score for accurate disease classification. We validated the accuracy of PheNorm with 4 phenotypes: coronary artery disease, rheumatoid arthritis, Crohn's disease, and ulcerative colitis. The AUCs of the PheNorm score reached 0.90, 0.94, 0.95, and 0.94 for the 4 phenotypes, respectively, which were comparable to the accuracy of supervised algorithms trained with sample sizes of 100-300, with no statistically significant difference. The accuracy of the PheNorm algorithms is on par with algorithms trained with annotated samples. PheNorm fully automates the generation of accurate phenotyping algorithms and demonstrates the capacity for EHR-driven annotations to scale to the next level - phenotypic big data. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Cooper, Andrew James; Redman, Chelsea Anne; Stoneham, David Mark; Gonzalez, Luis Felipe; Etse, Victor Kwesi
2015-08-28
This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.
Cooper, Andrew James; Redman, Chelsea Anne; Stoneham, David Mark; Gonzalez, Luis Felipe; Etse, Victor Kwesi
2015-01-01
This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement. PMID:26343680
The Superior Lambert Algorithm
NASA Astrophysics Data System (ADS)
der, G.
2011-09-01
Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most numerical integration methods.
Godsey, Brian; Heiser, Diane; Civin, Curt
2012-01-01
MicroRNAs (miRs) are known to play an important role in mRNA regulation, often by binding to complementary sequences in "target" mRNAs. Recently, several methods have been developed by which existing sequence-based target predictions can be combined with miR and mRNA expression data to infer true miR-mRNA targeting relationships. It has been shown that the combination of these two approaches gives more reliable results than either by itself. While a few such algorithms give excellent results, none fully addresses expression data sets with a natural ordering of the samples. If the samples in an experiment can be ordered or partially ordered by their expected similarity to one another, such as for time-series or studies of development processes, stages, or types, (e.g. cell type, disease, growth, aging), there are unique opportunities to infer miR-mRNA interactions that may be specific to the underlying processes, and existing methods do not exploit this. We propose an algorithm which specifically addresses [partially] ordered expression data and takes advantage of sample similarities based on the ordering structure. This is done within a Bayesian framework which specifies posterior distributions and therefore statistical significance for each model parameter and latent variable. We apply our model to a previously published expression data set of paired miR and mRNA arrays in five partially ordered conditions, with biological replicates, related to multiple myeloma, and we show how considering potential orderings can improve the inference of miR-mRNA interactions, as measured by existing knowledge about the involved transcripts.
Kilambi, Krishna Praneeth; Pacella, Michael S; Xu, Jianqing; Labonte, Jason W; Porter, Justin R; Muthu, Pravin; Drew, Kevin; Kuroda, Daisuke; Schueler-Furman, Ora; Bonneau, Richard; Gray, Jeffrey J
2013-12-01
Rounds 20-27 of the Critical Assessment of PRotein Interactions (CAPRI) provided a testing platform for computational methods designed to address a wide range of challenges. The diverse targets drove the creation of and new combinations of computational tools. In this study, RosettaDock and other novel Rosetta protocols were used to successfully predict four of the 10 blind targets. For example, for DNase domain of Colicin E2-Im2 immunity protein, RosettaDock and RosettaLigand were used to predict the positions of water molecules at the interface, recovering 46% of the native water-mediated contacts. For α-repeat Rep4-Rep2 and g-type lysozyme-PliG inhibitor complexes, homology models were built and standard and pH-sensitive docking algorithms were used to generate structures with interface RMSD values of 3.3 Å and 2.0 Å, respectively. A novel flexible sugar-protein docking protocol was also developed and used for structure prediction of the BT4661-heparin-like saccharide complex, recovering 71% of the native contacts. Challenges remain in the generation of accurate homology models for protein mutants and sampling during global docking. On proteins designed to bind influenza hemagglutinin, only about half of the mutations were identified that affect binding (T55: 54%; T56: 48%). The prediction of the structure of the xylanase complex involving homology modeling and multidomain docking pushed the limits of global conformational sampling and did not result in any successful prediction. The diversity of problems at hand requires computational algorithms to be versatile; the recent additions to the Rosetta suite expand the capabilities to encompass more biologically realistic docking problems. Copyright © 2013 Wiley Periodicals, Inc.
Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures.
Méndez, Raúl; Leplae, Raphaël; Lensink, Marc F; Wodak, Shoshana J
2005-08-01
The current status of docking procedures for predicting protein-protein interactions starting from their three-dimensional (3D) structure is reassessed by evaluating blind predictions, performed during 2003-2004 as part of Rounds 3-5 of the community-wide experiment on Critical Assessment of PRedicted Interactions (CAPRI). Ten newly determined structures of protein-protein complexes were used as targets for these rounds. They comprised 2 enzyme-inhibitor complexes, 2 antigen-antibody complexes, 2 complexes involved in cellular signaling, 2 homo-oligomers, and a complex between 2 components of the bacterial cellulosome. For most targets, the predictors were given the experimental structures of 1 unbound and 1 bound component, with the latter in a random orientation. For some, the structure of the free component was derived from that of a related protein, requiring the use of homology modeling. In some of the targets, significant differences in conformation were displayed between the bound and unbound components, representing a major challenge for the docking procedures. For 1 target, predictions could not go to completion. In total, 1866 predictions submitted by 30 groups were evaluated. Over one-third of these groups applied completely novel docking algorithms and scoring functions, with several of them specifically addressing the challenge of dealing with side-chain and backbone flexibility. The quality of the predicted interactions was evaluated by comparison to the experimental structures of the targets, made available for the evaluation, using the well-agreed-upon criteria used previously. Twenty-four groups, which for the first time included an automatic Web server, produced predictions ranking from acceptable to highly accurate for all targets, including those where the structures of the bound and unbound forms differed substantially. These results and a brief survey of the methods used by participants of CAPRI Rounds 3-5 suggest that genuine progress in the performance of docking methods is being achieved, with CAPRI acting as the catalyst.
Engineering synthetic TAL effectors with orthogonal target sites
Garg, Abhishek; Lohmueller, Jason J.; Silver, Pamela A.; Armel, Thomas Z.
2012-01-01
The ability to engineer biological circuits that process and respond to complex cellular signals has the potential to impact many areas of biology and medicine. Transcriptional activator-like effectors (TALEs) have emerged as an attractive component for engineering these circuits, as TALEs can be designed de novo to target a given DNA sequence. Currently, however, the use of TALEs is limited by degeneracy in the site-specific manner by which they recognize DNA. Here, we propose an algorithm to computationally address this problem. We apply our algorithm to design 180 TALEs targeting 20 bp cognate binding sites that are at least 3 nt mismatches away from all 20 bp sequences in putative 2 kb human promoter regions. We generated eight of these synthetic TALE activators and showed that each is able to activate transcription from a targeted reporter. Importantly, we show that these proteins do not activate synthetic reporters containing mismatches similar to those present in the genome nor a set of endogenous genes predicted to be the most likely targets in vivo. Finally, we generated and characterized TALE repressors comprised of our orthogonal DNA binding domains and further combined them with shRNAs to accomplish near complete repression of target gene expression. PMID:22581776
Trajectory prediction for ballistic missiles based on boost-phase LOS measurements
NASA Astrophysics Data System (ADS)
Yeddanapudi, Murali; Bar-Shalom, Yaakov
1997-10-01
This paper addresses the problem of the estimation of the trajectory of a tactical ballistic missile using line of sight (LOS) measurements from one or more passive sensors (typically satellites). The major difficulties of this problem include: the estimation of the unknown time of launch, incorporation of (inaccurate) target thrust profiles to model the target dynamics during the boost phase and an overall ill-conditioning of the estimation problem due to poor observability of the target motion via the LOS measurements. We present a robust estimation procedure based on the Levenberg-Marquardt algorithm that provides both the target state estimate and error covariance taking into consideration the complications mentioned above. An important consideration in the defense against tactical ballistic missiles is the determination of the target position and error covariance at the acquisition range of a surveillance radar in the vicinity of the impact point. We present a systematic procedure to propagate the target state and covariance to a nominal time, when it is within the detection range of a surveillance radar to obtain a cueing volume. Mont Carlo simulation studies on typical single and two sensor scenarios indicate that the proposed algorithms are accurate in terms of the estimates and the estimator calculated covariances are consistent with the errors.
Drug-target interaction prediction: A Bayesian ranking approach.
Peska, Ladislav; Buza, Krisztian; Koller, Júlia
2017-12-01
In silico prediction of drug-target interactions (DTI) could provide valuable information and speed-up the process of drug repositioning - finding novel usage for existing drugs. In our work, we focus on machine learning algorithms supporting drug-centric repositioning approach, which aims to find novel usage for existing or abandoned drugs. We aim at proposing a per-drug ranking-based method, which reflects the needs of drug-centric repositioning research better than conventional drug-target prediction approaches. We propose Bayesian Ranking Prediction of Drug-Target Interactions (BRDTI). The method is based on Bayesian Personalized Ranking matrix factorization (BPR) which has been shown to be an excellent approach for various preference learning tasks, however, it has not been used for DTI prediction previously. In order to successfully deal with DTI challenges, we extended BPR by proposing: (i) the incorporation of target bias, (ii) a technique to handle new drugs and (iii) content alignment to take structural similarities of drugs and targets into account. Evaluation on five benchmark datasets shows that BRDTI outperforms several state-of-the-art approaches in terms of per-drug nDCG and AUC. BRDTI results w.r.t. nDCG are 0.929, 0.953, 0.948, 0.897 and 0.690 for G-Protein Coupled Receptors (GPCR), Ion Channels (IC), Nuclear Receptors (NR), Enzymes (E) and Kinase (K) datasets respectively. Additionally, BRDTI significantly outperformed other methods (BLM-NII, WNN-GIP, NetLapRLS and CMF) w.r.t. nDCG in 17 out of 20 cases. Furthermore, BRDTI was also shown to be able to predict novel drug-target interactions not contained in the original datasets. The average recall at top-10 predicted targets for each drug was 0.762, 0.560, 1.000 and 0.404 for GPCR, IC, NR, and E datasets respectively. Based on the evaluation, we can conclude that BRDTI is an appropriate choice for researchers looking for an in silico DTI prediction technique to be used in drug-centric repositioning scenarios. BRDTI Software and supplementary materials are available online at www.ksi.mff.cuni.cz/∼peska/BRDTI. Copyright © 2017 Elsevier B.V. All rights reserved.
Mars Pathfinder Atmospheric Entry Navigation Operations
NASA Technical Reports Server (NTRS)
Braun, R. D.; Spencer, D. A.; Kallemeyn, P. H.; Vaughan, R. M.
1997-01-01
On July 4, 1997, after traveling close to 500 million km, the Pathfinder spacecraft successfully completed entry, descent, and landing, coming to rest on the surface of Mars just 27 km from its target point. In the present paper, the atmospheric entry and approach navigation activities required in support of this mission are discussed. In particular, the flight software parameter update and landing site prediction analyses performed by the Pathfinder operations navigation team are described. A suite of simulation tools developed during Pathfinder's design cycle, but extendible to Pathfinder operations, are also presented. Data regarding the accuracy of the primary parachute deployment algorithm is extracted from the Pathfinder flight data, demonstrating that this algorithm performed as predicted. The increased probability of mission success through the software parameter update process is discussed. This paper also demonstrates the importance of modeling atmospheric flight uncertainties in the estimation of an accurate landing site. With these atmospheric effects included, the final landed ellipse prediction differs from the post-flight determined landing site by less then 0.5 km in downtrack.
NASA Astrophysics Data System (ADS)
Li, Decang; Meng, Jianjun; Bai, Huan; Xu, Ruxun
2018-07-01
This paper focuses on the safety of high-speed trains under strong crosswind conditions. A new active control strategy is proposed based on the adaptive predictive control theory. The new control strategy aims at adjusting the attitudes of a train by controlling the new-type intelligent giant magnetostrictive actuator (GMA). It combined adaptive control with dynamic matrix control; parameters of predictive controller was real-time adjusted by online distinguishing to enhance the robustness of the control algorithm. On this basis, a correction control algorithm is also designed to regulate the parameters of predictive controller based on the step response of a controlled objective. Finally, the simulation results show that the proposed control strategy can adjust the running attitudes of high-speed trains under strong crosswind conditions; they also indicate that the new active control strategy is effective and applicable in improving the safety performance of a train based on a host-target computer technology provided by Matlab/Simulink.
In silico MCMV Silencing Concludes Potential Host-Derived miRNAs in Maize
Iqbal, Muhammad Shahzad; Jabbar, Basit; Sharif, Muhammad Nauman; Ali, Qurban; Husnain, Tayyab; Nasir, Idrees A.
2017-01-01
Maize Chlorotic Mottle Virus (MCMV) is a deleterious pathogen which causes Maize Lethal Necrosis Disease (MLND) that results in substantial yield loss of Maize crop worldwide. The positive-sense RNA genome of MCMV (4.4 kb) encodes six proteins: P32 (32 kDa protein), RNA dependent RNA polymerases (P50 and P111), P31 (31 kDa protein), P7 (7 kDa protein), coat protein (25 kDa). P31, P7 and coat protein are encoded from sgRNA1, located at the 3′end of the genome and sgRNA2 is located at the extremity of the 3′genome end. The objective of this study is to locate the possible attachment sites of Zea mays derived miRNAs in the genome of MCMV using four diverse miRNA target prediction algorithms. In total, 321 mature miRNAs were retrieved from miRBase (miRNA database) and were tested for hybridization of MCMV genome. These algorithms considered the parameters of seed pairing, minimum free energy, target site accessibility, multiple target sites, pattern recognition and folding energy for attachment. Out of 321 miRNAs only 10 maize miRNAs are predicted for silencing of MCMV genome. The results of this study can hence act as the first step towards the development of MCMV resistant transgenic Maize plants through expression of the selected miRNAs. PMID:28400775
The Next Era: Deep Learning in Pharmaceutical Research
Ekins, Sean
2016-01-01
Over the past decade we have witnessed the increasing sophistication of machine learning algorithms applied in daily use from internet searches, voice recognition, social network software to machine vision software in cameras, phones, robots and self-driving cars. Pharmaceutical research has also seen its fair share of machine learning developments. For example, applying such methods to mine the growing datasets that are created in drug discovery not only enables us to learn from the past but to predict a molecule’s properties and behavior in future. The latest machine learning algorithm garnering significant attention is deep learning, which is an artificial neural network with multiple hidden layers. Publications over the last 3 years suggest that this algorithm may have advantages over previous machine learning methods and offer a slight but discernable edge in predictive performance. The time has come for a balanced review of this technique but also to apply machine learning methods such as deep learning across a wider array of endpoints relevant to pharmaceutical research for which the datasets are growing such as physicochemical property prediction, formulation prediction, absorption, distribution, metabolism, excretion and toxicity (ADME/Tox), target prediction and skin permeation, etc. We also show that there are many potential applications of deep learning beyond cheminformatics. It will be important to perform prospective testing (which has been carried out rarely to date) in order to convince skeptics that there will be benefits from investing in this technique. PMID:27599991
Spectral Target Detection using Schroedinger Eigenmaps
NASA Astrophysics Data System (ADS)
Dorado-Munoz, Leidy P.
Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and those similar pixels are clustered in a predictable region of the low-dimensional representation is used to define a decision rule that allows one to identify target pixels over the rest of pixels in a given image. In addition, a knowledge propagation scheme is used to combine spectral and spatial information as a means to propagate the "potential constraints" to nearby points. The propagation scheme is introduced to reinforce weak connections and improve the separability between most of the target pixels and the background. Experiments using different HSI data sets are carried out in order to test the proposed methodology. The assessment is performed from a quantitative and qualitative point of view, and by comparing the SE-based methodology against two other detection methodologies that use linear/non-linear algorithms as transformations and the well-known Adaptive Coherence/Cosine Estimator (ACE) detector. Overall results show that the SE-based detector outperforms the other two detection methodologies, which indicates the usefulness of the SE transformation in spectral target detection problems.
Texture orientation-based algorithm for detecting infrared maritime targets.
Wang, Bin; Dong, Lili; Zhao, Ming; Wu, Houde; Xu, Wenhai
2015-05-20
Infrared maritime target detection is a key technology for maritime target searching systems. However, in infrared maritime images (IMIs) taken under complicated sea conditions, background clutters, such as ocean waves, clouds or sea fog, usually have high intensity that can easily overwhelm the brightness of real targets, which is difficult for traditional target detection algorithms to deal with. To mitigate this problem, this paper proposes a novel target detection algorithm based on texture orientation. This algorithm first extracts suspected targets by analyzing the intersubband correlation between horizontal and vertical wavelet subbands of the original IMI on the first scale. Then the self-adaptive wavelet threshold denoising and local singularity analysis of the original IMI is combined to remove false alarms further. Experiments show that compared with traditional algorithms, this algorithm can suppress background clutter much better and realize better single-frame detection for infrared maritime targets. Besides, in order to guarantee accurate target extraction further, the pipeline-filtering algorithm is adopted to eliminate residual false alarms. The high practical value and applicability of this proposed strategy is backed strongly by experimental data acquired under different environmental conditions.
A Performance Weighted Collaborative Filtering algorithm for personalized radiology education.
Lin, Hongli; Yang, Xuedong; Wang, Weisheng; Luo, Jiawei
2014-10-01
Devising an accurate prediction algorithm that can predict the difficulty level of cases for individuals and then selects suitable cases for them is essential to the development of a personalized training system. In this paper, we propose a novel approach, called Performance Weighted Collaborative Filtering (PWCF), to predict the difficulty level of each case for individuals. The main idea of PWCF is to assign an optimal weight to each rating used for predicting the difficulty level of a target case for a trainee, rather than using an equal weight for all ratings as in traditional collaborative filtering methods. The assigned weight is a function of the performance level of the trainee at which the rating was made. The PWCF method and the traditional method are compared using two datasets. The experimental data are then evaluated by means of the MAE metric. Our experimental results show that PWCF outperforms the traditional methods by 8.12% and 17.05%, respectively, over the two datasets, in terms of prediction precision. This suggests that PWCF is a viable method for the development of personalized training systems in radiology education. Copyright © 2014. Published by Elsevier Inc.
Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis
2015-09-01
To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs
2016-01-01
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages. PMID:27074285
LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.
Ma, Chao; Wang, Lirong; Yang, Peng; Myint, Kyaw Z; Xie, Xiang-Qun
2013-01-28
The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets another closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development of CB2 ligands in order to minimize their effects on the CB1 receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of categorical molecular properties. Here, we report extension of the application of LiCABEDS to the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The performance of LiCABEDS was systematically compared with another popular classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 and CB2 selective ligands. The structure determination from data mining could be useful for the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through successful identification of newly synthesized CB2 selective compounds.
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs.
Wagner, Jeffrey R; Lee, Christopher T; Durrant, Jacob D; Malmstrom, Robert D; Feher, Victoria A; Amaro, Rommie E
2016-06-08
Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages.
Infrared small target tracking based on SOPC
NASA Astrophysics Data System (ADS)
Hu, Taotao; Fan, Xiang; Zhang, Yu-Jin; Cheng, Zheng-dong; Zhu, Bin
2011-01-01
The paper presents a low cost FPGA based solution for a real-time infrared small target tracking system. A specialized architecture is presented based on a soft RISC processor capable of running kernel based mean shift tracking algorithm. Mean shift tracking algorithm is realized in NIOS II soft-core with SOPC (System on a Programmable Chip) technology. Though mean shift algorithm is widely used for target tracking, the original mean shift algorithm can not be directly used for infrared small target tracking. As infrared small target only has intensity information, so an improved mean shift algorithm is presented in this paper. How to describe target will determine whether target can be tracked by mean shift algorithm. Because color target can be tracked well by mean shift algorithm, imitating color image expression, spatial component and temporal component are advanced to describe target, which forms pseudo-color image. In order to improve the processing speed parallel technology and pipeline technology are taken. Two RAM are taken to stored images separately by ping-pong technology. A FLASH is used to store mass temp data. The experimental results show that infrared small target is tracked stably in complicated background.
NASA Astrophysics Data System (ADS)
Svejkosky, Joseph
The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that do not account for the target BRDF. The algorithms are compared using a test environment in which observed spectral reflectance signatures from the BRDF sampling experiment are implanted into aerial hyperspectral imagery that contain large quantities of vehicles.
PreCisIon: PREdiction of CIS-regulatory elements improved by gene's positION.
Elati, Mohamed; Nicolle, Rémy; Junier, Ivan; Fernández, David; Fekih, Rim; Font, Julio; Képès, François
2013-02-01
Conventional approaches to predict transcriptional regulatory interactions usually rely on the definition of a shared motif sequence on the target genes of a transcription factor (TF). These efforts have been frustrated by the limited availability and accuracy of TF binding site motifs, usually represented as position-specific scoring matrices, which may match large numbers of sites and produce an unreliable list of target genes. To improve the prediction of binding sites, we propose to additionally use the unrelated knowledge of the genome layout. Indeed, it has been shown that co-regulated genes tend to be either neighbors or periodically spaced along the whole chromosome. This study demonstrates that respective gene positioning carries significant information. This novel type of information is combined with traditional sequence information by a machine learning algorithm called PreCisIon. To optimize this combination, PreCisIon builds a strong gene target classifier by adaptively combining weak classifiers based on either local binding sequence or global gene position. This strategy generically paves the way to the optimized incorporation of any future advances in gene target prediction based on local sequence, genome layout or on novel criteria. With the current state of the art, PreCisIon consistently improves methods based on sequence information only. This is shown by implementing a cross-validation analysis of the 20 major TFs from two phylogenetically remote model organisms. For Bacillus subtilis and Escherichia coli, respectively, PreCisIon achieves on average an area under the receiver operating characteristic curve of 70 and 60%, a sensitivity of 80 and 70% and a specificity of 60 and 56%. The newly predicted gene targets are demonstrated to be functionally consistent with previously known targets, as assessed by analysis of Gene Ontology enrichment or of the relevant literature and databases.
Advanced studies of electromagnetic scattering
NASA Technical Reports Server (NTRS)
Ling, Hao
1994-01-01
In radar signature applications it is often desirable to generate the range profiles and inverse synthetic aperture radar (ISAR) images of a target. They can be used either as identification tools to distinguish and classify the target from a collection of possible targets, or as diagnostic/design tools to pinpoint the key scattering centers on the target. The simulation of synthetic range profiles and ISAR images is usually a time intensive task and computation time is of prime importance. Our research has been focused on the development of fast simulation algorithms for range profiles and ISAR images using the shooting and bouncing ray (SBR) method, a high frequency electromagnetic simulation technique for predicting the radar returns from realistic aerospace vehicles and the scattering by complex media.
Yan, Yumeng; Wen, Zeyu; Wang, Xinxiang; Huang, Sheng-You
2017-03-01
Protein-protein docking is an important computational tool for predicting protein-protein interactions. With the rapid development of proteomics projects, more and more experimental binding information ranging from mutagenesis data to three-dimensional structures of protein complexes are becoming available. Therefore, how to appropriately incorporate the biological information into traditional ab initio docking has been an important issue and challenge in the field of protein-protein docking. To address these challenges, we have developed a Hybrid DOCKing protocol of template-based and template-free approaches, referred to as HDOCK. The basic procedure of HDOCK is to model the structures of individual components based on the template complex by a template-based method if a template is available; otherwise, the component structures will be modeled based on monomer proteins by regular homology modeling. Then, the complex structure of the component models is predicted by traditional protein-protein docking. With the HDOCK protocol, we have participated in the CPARI experiment for rounds 28-35. Out of the 25 CASP-CAPRI targets for oligomer modeling, our HDOCK protocol predicted correct models for 16 targets, ranking one of the top algorithms in this challenge. Our docking method also made correct predictions on other CAPRI challenges such as protein-peptide binding for 6 out of 8 targets and water predictions for 2 out of 2 targets. The advantage of our hybrid docking approach over pure template-based docking was further confirmed by a comparative evaluation on 20 CASP-CAPRI targets. Proteins 2017; 85:497-512. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bellmunt, Joaquim; Calvo, Emiliano; Castellano, Daniel; Climent, Miguel Angel; Esteban, Emilio; García del Muro, Xavier; González-Larriba, José Luis; Maroto, Pablo; Trigo, José Manuel
2009-03-01
For almost the last two decades, interleukin-2 and interferon-alpha have been the only systemic treatment options available for metastatic renal cell carcinoma. However, in recent years, five new targeted therapies namely sunitinib, sorafenib, temsirolimus, everolimus and bevacizumab have demonstrated clinical activity in these patients. With the availability of new targeted agents that are active in this disease, there is a need to continuously update the treatment algorithm of the disease. Due to the important advances obtained, the Spanish Oncology Genitourinary Group (SOGUG) has considered it would be useful to review the current status of the disease, including the genetic and molecular biology factors involved, the current predicting models for development of metastases as well as the role of surgery, radiotherapy and systemic therapies in the early- or late management of the disease. Based on this previous work, a treatment algorithm was developed.
Consensus-based distributed estimation in multi-agent systems with time delay
NASA Astrophysics Data System (ADS)
Abdelmawgoud, Ahmed
During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.
NASA Astrophysics Data System (ADS)
Jiang, Guo-Qing; Xu, Jing; Wei, Jun
2018-04-01
Two algorithms based on machine learning neural networks are proposed—the shallow learning (S-L) and deep learning (D-L) algorithms—that can potentially be used in atmosphere-only typhoon forecast models to provide flow-dependent typhoon-induced sea surface temperature cooling (SSTC) for improving typhoon predictions. The major challenge of existing SSTC algorithms in forecast models is how to accurately predict SSTC induced by an upcoming typhoon, which requires information not only from historical data but more importantly also from the target typhoon itself. The S-L algorithm composes of a single layer of neurons with mixed atmospheric and oceanic factors. Such a structure is found to be unable to represent correctly the physical typhoon-ocean interaction. It tends to produce an unstable SSTC distribution, for which any perturbations may lead to changes in both SSTC pattern and strength. The D-L algorithm extends the neural network to a 4 × 5 neuron matrix with atmospheric and oceanic factors being separated in different layers of neurons, so that the machine learning can determine the roles of atmospheric and oceanic factors in shaping the SSTC. Therefore, it produces a stable crescent-shaped SSTC distribution, with its large-scale pattern determined mainly by atmospheric factors (e.g., winds) and small-scale features by oceanic factors (e.g., eddies). Sensitivity experiments reveal that the D-L algorithms improve maximum wind intensity errors by 60-70% for four case study simulations, compared to their atmosphere-only model runs.
Xu, Weijun; Lucke, Andrew J; Fairlie, David P
2015-04-01
Accurately predicting relative binding affinities and biological potencies for ligands that interact with proteins remains a significant challenge for computational chemists. Most evaluations of docking and scoring algorithms have focused on enhancing ligand affinity for a protein by optimizing docking poses and enrichment factors during virtual screening. However, there is still relatively limited information on the accuracy of commercially available docking and scoring software programs for correctly predicting binding affinities and biological activities of structurally related inhibitors of different enzyme classes. Presented here is a comparative evaluation of eight molecular docking programs (Autodock Vina, Fitted, FlexX, Fred, Glide, GOLD, LibDock, MolDock) using sixteen docking and scoring functions to predict the rank-order activity of different ligand series for six pharmacologically important protein and enzyme targets (Factor Xa, Cdk2 kinase, Aurora A kinase, COX-2, pla2g2a, β Estrogen receptor). Use of Fitted gave an excellent correlation (Pearson 0.86, Spearman 0.91) between predicted and experimental binding only for Cdk2 kinase inhibitors. FlexX and GOLDScore produced good correlations (Pearson>0.6) for hydrophilic targets such as Factor Xa, Cdk2 kinase and Aurora A kinase. By contrast, pla2g2a and COX-2 emerged as difficult targets for scoring functions to predict ligand activities. Although possessing a high hydrophobicity in its binding site, β Estrogen receptor produced reasonable correlations using LibDock (Pearson 0.75, Spearman 0.68). These findings can assist medicinal chemists to better match scoring functions with ligand-target systems for hit-to-lead optimization using computer-aided drug design approaches. Copyright © 2015 Elsevier Inc. All rights reserved.
Kirschner, Andreas; Frishman, Dmitrij
2008-10-01
Prediction of beta-turns from amino acid sequences has long been recognized as an important problem in structural bioinformatics due to their frequent occurrence as well as their structural and functional significance. Because various structural features of proteins are intercorrelated, secondary structure information has been often employed as an additional input for machine learning algorithms while predicting beta-turns. Here we present a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN) capable of predicting multiple mutually dependent structural motifs and demonstrate its efficiency in recognizing three aspects of protein structure: beta-turns, beta-turn types, and secondary structure. The advantage of our method compared to other predictors is that it does not require any external input except for sequence profiles because interdependencies between different structural features are taken into account implicitly during the learning process. In a sevenfold cross-validation experiment on a standard test dataset our method exhibits the total prediction accuracy of 77.9% and the Mathew's Correlation Coefficient of 0.45, the highest performance reported so far. It also outperforms other known methods in delineating individual turn types. We demonstrate how simultaneous prediction of multiple targets influences prediction performance on single targets. The MOLEBRNN presented here is a generic method applicable in a variety of research fields where multiple mutually depending target classes need to be predicted. http://webclu.bio.wzw.tum.de/predator-web/.
A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.
Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei
2017-10-01
The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.
Staatz, Christine E; Tett, Susan E
2011-12-01
This review seeks to summarize the available data about Bayesian estimation of area under the plasma concentration-time curve (AUC) and dosage prediction for mycophenolic acid (MPA) and evaluate whether sufficient evidence is available for routine use of Bayesian dosage prediction in clinical practice. A literature search identified 14 studies that assessed the predictive performance of maximum a posteriori Bayesian estimation of MPA AUC and one report that retrospectively evaluated how closely dosage recommendations based on Bayesian forecasting achieved targeted MPA exposure. Studies to date have mostly been undertaken in renal transplant recipients, with limited investigation in patients treated with MPA for autoimmune disease or haematopoietic stem cell transplantation. All of these studies have involved use of the mycophenolate mofetil (MMF) formulation of MPA, rather than the enteric-coated mycophenolate sodium (EC-MPS) formulation. Bias associated with estimation of MPA AUC using Bayesian forecasting was generally less than 10%. However some difficulties with imprecision was evident, with values ranging from 4% to 34% (based on estimation involving two or more concentration measurements). Evaluation of whether MPA dosing decisions based on Bayesian forecasting (by the free website service https://pharmaco.chu-limoges.fr) achieved target drug exposure has only been undertaken once. When MMF dosage recommendations were applied by clinicians, a higher proportion (72-80%) of subsequent estimated MPA AUC values were within the 30-60 mg · h/L target range, compared with when dosage recommendations were not followed (only 39-57% within target range). Such findings provide evidence that Bayesian dosage prediction is clinically useful for achieving target MPA AUC. This study, however, was retrospective and focussed only on adult renal transplant recipients. Furthermore, in this study, Bayesian-generated AUC estimations and dosage predictions were not compared with a later full measured AUC but rather with a further AUC estimate based on a second Bayesian analysis. This study also provided some evidence that a useful monitoring schedule for MPA AUC following adult renal transplant would be every 2 weeks during the first month post-transplant, every 1-3 months between months 1 and 12, and each year thereafter. It will be interesting to see further validations in different patient groups using the free website service. In summary, the predictive performance of Bayesian estimation of MPA, comparing estimated with measured AUC values, has been reported in several studies. However, the next step of predicting dosages based on these Bayesian-estimated AUCs, and prospectively determining how closely these predicted dosages give drug exposure matching targeted AUCs, remains largely unaddressed. Further prospective studies are required, particularly in non-renal transplant patients and with the EC-MPS formulation. Other important questions remain to be answered, such as: do Bayesian forecasting methods devised to date use the best population pharmacokinetic models or most accurate algorithms; are the methods simple to use for routine clinical practice; do the algorithms actually improve dosage estimations beyond empirical recommendations in all groups that receive MPA therapy; and, importantly, do the dosage predictions, when followed, improve patient health outcomes?
Alvarez, M Lucrecia
2014-01-01
Different target prediction algorithms have been developed to provide a list of candidate target genes for a given animal microRNAs (miRNAs). However, these computational approaches provide both false-positive and false-negative predictions. Therefore, the target genes of a specific miRNA identified in silico should be experimentally validated. In this chapter, we describe a step-by-step protocol for the experimental validation of a direct miRNA target using a faster Dual Firefly-Renilla Luciferase Reporter Assay. We describe how to construct reporter plasmids using the simple, fast, and highly efficient cold fusion cloning technology, which does not require ligase, phosphatase, or restriction enzymes. In addition, we provide a protocol for co-transfection of reporter plasmids with either miRNA mimics or miRNA inhibitors in human embryonic kidney 293 (HEK293) cells, as well as a description on how to measure Firefly and Renilla luciferase activity using the Dual-Glo Luciferase Assay kit. As an example of the use of this technology, we will validate glucose-6-phosphate dehydrogenase (G6PD) as a direct target of miR-1207-5p.
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter
2015-10-01
Health monitoring of rotating structures (e.g. wind turbines and helicopter blades) has historically been a challenge due to sensing and data transmission problems. Unfortunately mechanical failure in many structures initiates at components on or inside the structure where there is no sensor located to predict the failure. In this paper, a wind turbine was mounted with a semi-built-in configuration and was excited using a mechanical shaker. A series of optical targets was distributed along the blades and the fixture and the displacement of those targets during excitation was measured using a pair of high speed cameras. Measured displacements with three dimensional point tracking were transformed to all finite element degrees of freedom using a modal expansion algorithm. The expanded displacements were applied to the finite element model to predict the full-field dynamic strain on the surface of the structure as well as within the interior points. To validate the methodology of dynamic strain prediction, the predicted strain was compared to measured strain by using six mounted strain-gages. To verify if a simpler model of the turbine can be used for the expansion, the expansion process was performed both by using the modes of the entire turbine and modes of a single cantilever blade. The results indicate that the expansion approach can accurately predict the strain throughout the turbine blades from displacements measured by using stereophotogrammetry.
NASA Astrophysics Data System (ADS)
Ehrman, Lisa M.
2005-07-01
Rather than emitting pulses, passive radar systems rely on "illuminators of opportunity," such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, further scaling the RCS. A Rician likelihood model compares the scaled RCS of the illuminated aircraft with those of the potential targets. To improve the robustness of the result, the algorithm jointly optimizes over feasible orientation profiles and target types via dynamic programming.
NASA Astrophysics Data System (ADS)
Chen, Gang; Yang, Bing; Zhang, Xiaoyun; Gao, Zhiyong
2017-07-01
The latest high efficiency video coding (HEVC) standard significantly increases the encoding complexity for improving its coding efficiency. Due to the limited computational capability of handheld devices, complexity constrained video coding has drawn great attention in recent years. A complexity control algorithm based on adaptive mode selection is proposed for interframe coding in HEVC. Considering the direct proportionality between encoding time and computational complexity, the computational complexity is measured in terms of encoding time. First, complexity is mapped to a target in terms of prediction modes. Then, an adaptive mode selection algorithm is proposed for the mode decision process. Specifically, the optimal mode combination scheme that is chosen through offline statistics is developed at low complexity. If the complexity budget has not been used up, an adaptive mode sorting method is employed to further improve coding efficiency. The experimental results show that the proposed algorithm achieves a very large complexity control range (as low as 10%) for the HEVC encoder while maintaining good rate-distortion performance. For the lowdelayP condition, compared with the direct resource allocation method and the state-of-the-art method, an average gain of 0.63 and 0.17 dB in BDPSNR is observed for 18 sequences when the target complexity is around 40%.
Human L-DOPA decarboxylase mRNA is a target of miR-145: A prediction to validation workflow.
Papadopoulos, Emmanuel I; Fragoulis, Emmanuel G; Scorilas, Andreas
2015-01-10
l-DOPA decarboxylase (DDC) is a multiply-regulated gene which encodes the enzyme that catalyzes the biosynthesis of dopamine in humans. MicroRNAs comprise a novel class of endogenously transcribed small RNAs that can post-transcriptionally regulate the expression of various genes. Given that the mechanism of microRNA target recognition remains elusive, several genes, including DDC, have not yet been identified as microRNA targets. Nevertheless, a number of specifically designed bioinformatic algorithms provide candidate miRNAs for almost every gene, but still their results exhibit moderate accuracy and should be experimentally validated. Motivated by the above, we herein sought to discover a microRNA that regulates DDC expression. By using the current algorithms according to bibliographic recommendations we found that miR-145 could be predicted with high specificity as a candidate regulatory microRNA for DDC expression. Thus, a validation experiment followed by firstly transfecting an appropriate cell culture system with a synthetic miR-145 sequence and sequentially assessing the mRNA and protein levels of DDC via real-time PCR and Western blotting, respectively. Our analysis revealed that miR-145 had no significant impact on protein levels of DDC but managed to dramatically downregulate its mRNA expression. Overall, the experimental and bioinformatic analysis conducted herein indicate that miR-145 has the ability to regulate DDC mRNA expression and potentially this occurs by recognizing its mRNA as a target. Copyright © 2014. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Decarlo, Francesco; Stalio, Roberto; Trampus, Paolo; Broadfoot, A. Lyle; Sandel, Bill R.; Sicuranza, Giovanni
1993-01-01
We describe an algorithm for star identification and pointing/tracking of a spaceborne electro-optical system and simulation analyses to test the algorithm. The algorithm will be implemented in the guiding system of UVSTAR, a spectrographic telescope for observations of astronomical and planetary sources operating in the 500-1250 A waveband at approximately 1 A resolution. The experiment is an attached payload and will fly as a Hitchhiker-M payload on the Shuttle. UVSTAR includes capabilities for independent target acquisition and tracking. The spectrograph package has internal gimbals that allow angular movement of plus or minus 3 deg from the central position. Rotation about the azimuth axis (parallel to the Shuttle z axis) and elevation axis (parallel to the Shuttle x axis) will actively position the field of view to center the target of interest in the fields of the spectrographs. The algorithm is based on an on-board catalog of stars. To identify star fields, the algorithm compares the positions of stars recorded by the guiding imager to positions computed from the on-board catalog. When the field has been identified, its position within the guiding imager field of view can be used to compute the pointing corrections necessary to point to a target of interest. In tracking mode, the software uses the past history to predict the quasi-periodic attitude control motions of the shuttle and sends pointing commands to cancel the motion and stabilize UVSTAR on the target. The guiding imager (guider) will have an 80-mm focal length and f/1.4 optics giving a field of view of 6 deg x 4.5 deg using a 385 x 288 pixel intensified CCD. It will be capable of providing high accuracy (better than 2 arc-sec) attitude determination from coarse (6 deg x 4.5 deg) initial knowledge of the pointing direction; and of pointing toward the target. It will also be capable of tracking at the same high accuracy with a processing time of less than a few hundredths of a second.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mestrovic, Ante; Clark, Brenda G.; Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia
2005-11-01
Purpose: To develop a method of predicting the values of dose distribution parameters of different radiosurgery techniques for treatment of arteriovenous malformation (AVM) based on internal geometric parameters. Methods and Materials: For each of 18 previously treated AVM patients, four treatment plans were created: circular collimator arcs, dynamic conformal arcs, fixed conformal fields, and intensity-modulated radiosurgery. An algorithm was developed to characterize the target and critical structure shape complexity and the position of the critical structures with respect to the target. Multiple regression was employed to establish the correlation between the internal geometric parameters and the dose distribution for differentmore » treatment techniques. The results from the model were applied to predict the dosimetric outcomes of different radiosurgery techniques and select the optimal radiosurgery technique for a number of AVM patients. Results: Several internal geometric parameters showing statistically significant correlation (p < 0.05) with the treatment planning results for each technique were identified. The target volume and the average minimum distance between the target and the critical structures were the most effective predictors for normal tissue dose distribution. The structure overlap volume with the target and the mean distance between the target and the critical structure were the most effective predictors for critical structure dose distribution. The predicted values of dose distribution parameters of different radiosurgery techniques were in close agreement with the original data. Conclusions: A statistical model has been described that successfully predicts the values of dose distribution parameters of different radiosurgery techniques and may be used to predetermine the optimal technique on a patient-to-patient basis.« less
DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows.
Paraskevopoulou, Maria D; Georgakilas, Georgios; Kostoulas, Nikos; Vlachos, Ioannis S; Vergoulis, Thanasis; Reczko, Martin; Filippidis, Christos; Dalamagas, Theodore; Hatzigeorgiou, A G
2013-07-01
MicroRNAs (miRNAs) are small endogenous RNA molecules that regulate gene expression through mRNA degradation and/or translation repression, affecting many biological processes. DIANA-microT web server (http://www.microrna.gr/webServer) is dedicated to miRNA target prediction/functional analysis, and it is being widely used from the scientific community, since its initial launch in 2009. DIANA-microT v5.0, the new version of the microT server, has been significantly enhanced with an improved target prediction algorithm, DIANA-microT-CDS. It has been updated to incorporate miRBase version 18 and Ensembl version 69. The in silico-predicted miRNA-gene interactions in Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans exceed 11 million in total. The web server was completely redesigned, to host a series of sophisticated workflows, which can be used directly from the on-line web interface, enabling users without the necessary bioinformatics infrastructure to perform advanced multi-step functional miRNA analyses. For instance, one available pipeline performs miRNA target prediction using different thresholds and meta-analysis statistics, followed by pathway enrichment analysis. DIANA-microT web server v5.0 also supports a complete integration with the Taverna Workflow Management System (WMS), using the in-house developed DIANA-Taverna Plug-in. This plug-in provides ready-to-use modules for miRNA target prediction and functional analysis, which can be used to form advanced high-throughput analysis pipelines.
DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows
Paraskevopoulou, Maria D.; Georgakilas, Georgios; Kostoulas, Nikos; Vlachos, Ioannis S.; Vergoulis, Thanasis; Reczko, Martin; Filippidis, Christos; Dalamagas, Theodore; Hatzigeorgiou, A.G.
2013-01-01
MicroRNAs (miRNAs) are small endogenous RNA molecules that regulate gene expression through mRNA degradation and/or translation repression, affecting many biological processes. DIANA-microT web server (http://www.microrna.gr/webServer) is dedicated to miRNA target prediction/functional analysis, and it is being widely used from the scientific community, since its initial launch in 2009. DIANA-microT v5.0, the new version of the microT server, has been significantly enhanced with an improved target prediction algorithm, DIANA-microT-CDS. It has been updated to incorporate miRBase version 18 and Ensembl version 69. The in silico-predicted miRNA–gene interactions in Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans exceed 11 million in total. The web server was completely redesigned, to host a series of sophisticated workflows, which can be used directly from the on-line web interface, enabling users without the necessary bioinformatics infrastructure to perform advanced multi-step functional miRNA analyses. For instance, one available pipeline performs miRNA target prediction using different thresholds and meta-analysis statistics, followed by pathway enrichment analysis. DIANA-microT web server v5.0 also supports a complete integration with the Taverna Workflow Management System (WMS), using the in-house developed DIANA-Taverna Plug-in. This plug-in provides ready-to-use modules for miRNA target prediction and functional analysis, which can be used to form advanced high-throughput analysis pipelines. PMID:23680784
Biased normalized cuts for target detection in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Zhang, Xuewen; Dorado-Munoz, Leidy P.; Messinger, David W.; Cahill, Nathan D.
2016-05-01
The Biased Normalized Cuts (BNC) algorithm is a useful technique for detecting targets or objects in RGB imagery. In this paper, we propose modifying BNC for the purpose of target detection in hyperspectral imagery. As opposed to other target detection algorithms that typically encode target information prior to dimensionality reduction, our proposed algorithm encodes target information after dimensionality reduction, enabling a user to detect different targets in interactive mode. To assess the proposed BNC algorithm, we utilize hyperspectral imagery (HSI) from the SHARE 2012 data campaign, and we explore the relationship between the number and the position of expert-provided target labels and the precision/recall of the remaining targets in the scene.
Brainstorming: weighted voting prediction of inhibitors for protein targets.
Plewczynski, Dariusz
2011-09-01
The "Brainstorming" approach presented in this paper is a weighted voting method that can improve the quality of predictions generated by several machine learning (ML) methods. First, an ensemble of heterogeneous ML algorithms is trained on available experimental data, then all solutions are gathered and a consensus is built between them. The final prediction is performed using a voting procedure, whereby the vote of each method is weighted according to a quality coefficient calculated using multivariable linear regression (MLR). The MLR optimization procedure is very fast, therefore no additional computational cost is introduced by using this jury approach. Here, brainstorming is applied to selecting actives from large collections of compounds relating to five diverse biological targets of medicinal interest, namely HIV-reverse transcriptase, cyclooxygenase-2, dihydrofolate reductase, estrogen receptor, and thrombin. The MDL Drug Data Report (MDDR) database was used for selecting known inhibitors for these protein targets, and experimental data was then used to train a set of machine learning methods. The benchmark dataset (available at http://bio.icm.edu.pl/∼darman/chemoinfo/benchmark.tar.gz ) can be used for further testing of various clustering and machine learning methods when predicting the biological activity of compounds. Depending on the protein target, the overall recall value is raised by at least 20% in comparison to any single machine learning method (including ensemble methods like random forest) and unweighted simple majority voting procedures.
Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea
2015-12-21
PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δφ = 0.3 ± 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC = 0.66 ± 0.04), Positive Predictive Value (PPV = 0.81 ± 0.06) and Sensitivity (Sen. = 0.49 ± 0.05). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol) = 40 ± 30, DSC = 0.71 ± 0.07 and PPV = 0.90 ± 0.13). High accuracy in target tracking position (ΔME) was obtained for experimental and clinical data (ΔME(exp) = 0 ± 3 mm; ΔME(clin) 0.3 ± 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.
NASA Astrophysics Data System (ADS)
Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea
2015-12-01
PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC = 0.66+/- 0.04 ), Positive Predictive Value (PPV = 0.81+/- 0.06 ) and Sensitivity (Sen. = 0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol) = 40+/- 30 , DSC = 0.71+/- 0.07 and PPV = 0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.
Estimating the circuit delay of FPGA with a transfer learning method
NASA Astrophysics Data System (ADS)
Cui, Xiuhai; Liu, Datong; Peng, Yu; Peng, Xiyuan
2017-10-01
With the increase of FPGA (Field Programmable Gate Array, FPGA) functionality, FPGA has become an on-chip system platform. Due to increase the complexity of FPGA, estimating the delay of FPGA is a very challenge work. To solve the problems, we propose a transfer learning estimation delay (TLED) method to simplify the delay estimation of different speed grade FPGA. In fact, the same style different speed grade FPGA comes from the same process and layout. The delay has some correlation among different speed grade FPGA. Therefore, one kind of speed grade FPGA is chosen as a basic training sample in this paper. Other training samples of different speed grade can get from the basic training samples through of transfer learning. At the same time, we also select a few target FPGA samples as training samples. A general predictive model is trained by these samples. Thus one kind of estimation model is used to estimate different speed grade FPGA circuit delay. The framework of TRED includes three phases: 1) Building a basic circuit delay library which includes multipliers, adders, shifters, and so on. These circuits are used to train and build the predictive model. 2) By contrasting experiments among different algorithms, the forest random algorithm is selected to train predictive model. 3) The target circuit delay is predicted by the predictive model. The Artix-7, Kintex-7, and Virtex-7 are selected to do experiments. Each of them includes -1, -2, -2l, and -3 different speed grade. The experiments show the delay estimation accuracy score is more than 92% with the TLED method. This result shows that the TLED method is a feasible delay assessment method, especially in the high-level synthesis stage of FPGA tool, which is an efficient and effective delay assessment method.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing
2018-01-01
For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.
Identification of Patients Expected to Benefit from Electronic Alerts for Acute Kidney Injury.
Biswas, Aditya; Parikh, Chirag R; Feldman, Harold I; Garg, Amit X; Latham, Stephen; Lin, Haiqun; Palevsky, Paul M; Ugwuowo, Ugochukwu; Wilson, F Perry
2018-06-07
Electronic alerts for heterogenous conditions such as AKI may not provide benefit for all eligible patients and can lead to alert fatigue, suggesting that personalized alert targeting may be useful. Uplift-based alert targeting may be superior to purely prognostic-targeting of interventions because uplift models assess marginal treatment effect rather than likelihood of outcome. This is a secondary analysis of a clinical trial of 2278 adult patients with AKI randomized to an automated, electronic alert system versus usual care. We used three uplift algorithms and one purely prognostic algorithm, trained in 70% of the data, and evaluated the effect of targeting alerts to patients with higher scores in the held-out 30% of the data. The performance of the targeting strategy was assessed as the interaction between the model prediction of likelihood to benefit from alerts and randomization status. The outcome of interest was maximum relative change in creatinine from the time of randomization to 3 days after randomization. The three uplift score algorithms all gave rise to a significant interaction term, suggesting that a strategy of targeting individuals with higher uplift scores would lead to a beneficial effect of AKI alerting, in contrast to the null effect seen in the overall study. The prognostic model did not successfully stratify patients with regards to benefit of the intervention. Among individuals in the high uplift group, alerting was associated with a median reduction in change in creatinine of -5.3% ( P =0.03). In the low uplift group, alerting was associated with a median increase in change in creatinine of +5.3% ( P =0.005). Older individuals, women, and those with a lower randomization creatinine were more likely to receive high uplift scores, suggesting that alerts may benefit those with more slowly developing AKI. Uplift modeling, which accounts for treatment effect, can successfully target electronic alerts for AKI to those most likely to benefit, whereas purely prognostic targeting cannot. Copyright © 2018 by the American Society of Nephrology.
Horlbeck, Max A; Gilbert, Luke A; Villalta, Jacqueline E; Adamson, Britt; Pak, Ryan A; Chen, Yuwen; Fields, Alexander P; Park, Chong Yon; Corn, Jacob E; Kampmann, Martin; Weissman, Jonathan S
2016-01-01
We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA (Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that incorporates chromatin, position, and sequence features to accurately predict highly effective single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general strategy for identifying Cas9 target sites. DOI: http://dx.doi.org/10.7554/eLife.19760.001 PMID:27661255
Sensor management in RADAR/IRST track fusion
NASA Astrophysics Data System (ADS)
Hu, Shi-qiang; Jing, Zhong-liang
2004-07-01
In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.
Can multivariate models based on MOAKS predict OA knee pain? Data from the Osteoarthritis Initiative
NASA Astrophysics Data System (ADS)
Luna-Gómez, Carlos D.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Galván-Tejada, Carlos E.; Celaya-Padilla, José M.
2017-03-01
Osteoarthritis is the most common rheumatic disease in the world. Knee pain is the most disabling symptom in the disease, the prediction of pain is one of the targets in preventive medicine, this can be applied to new therapies or treatments. Using the magnetic resonance imaging and the grading scales, a multivariate model based on genetic algorithms is presented. Using a predictive model can be useful to associate minor structure changes in the joint with the future knee pain. Results suggest that multivariate models can be predictive with future knee chronic pain. All models; T0, T1 and T2, were statistically significant, all p values were < 0.05 and all AUC > 0.60.
NASA Astrophysics Data System (ADS)
Ly, Canh
2004-08-01
Scan-MUSIC algorithm, developed by the U.S. Army Research Laboratory (ARL), improves angular resolution for target detection with the use of a single rotatable radar scanning the angular region of interest. This algorithm has been adapted and extended from the MUSIC algorithm that has been used for a linear sensor array. Previously, it was shown that the SMUSIC algorithm and a Millimeter Wave radar can be used to resolve two closely spaced point targets that exhibited constructive interference, but not for the targets that exhibited destructive interference. Therefore, there were some limitations of the algorithm for the point targets. In this paper, the SMUSIC algorithm is applied to a problem of resolving real complex scatterer-type targets, which is more useful and of greater practical interest, particular for the future Army radar system. The paper presents results of the angular resolution of the targets, an M60 tank and an M113 Armored Personnel Carrier (APC), that are within the mainlobe of a Κα-band radar antenna. In particular, we applied the algorithm to resolve centroids of the targets that were placed within the beamwidth of the antenna. The collected coherent data using the stepped-frequency radar were compute magnitudely for the SMUSIC calculation. Even though there were significantly different signal returns for different orientations and offsets of the two targets, we resolved those two target centroids when they were as close as about 1/3 of the antenna beamwidth.
Minimalist ensemble algorithms for genome-wide protein localization prediction.
Lin, Jhih-Rong; Mondal, Ananda Mohan; Liu, Rong; Hu, Jianjun
2012-07-03
Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.
Minimalist ensemble algorithms for genome-wide protein localization prediction
2012-01-01
Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi. PMID:22759391
Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.
Gredell, Joseph A; Berger, Angela K; Walton, S Patrick
2008-07-01
The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5'- and 3'-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5'-end or 3'-end were silenced, on average, approximately 10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate siRNAs. (c) 2008 Wiley Periodicals, Inc.
Impact of target mRNA structure on siRNA silencing efficiency: a large-scale study
Gredell, Joseph A.; Berger, Angela K.; Walton, S. Patrick
2009-01-01
The selection of active siRNAs is generally based on identifying siRNAs with certain sequence and structural properties. However, the efficiency of RNA interference has also been shown to depend on the structure of the target mRNA, primarily through studies using exogenous transcripts with well-defined secondary structures in the vicinity of the target sequence. While these studies provide a means for examining the impact of target sequence and structure independently, the predicted secondary structures for these transcripts are often not reflective of structures that form in full-length, native mRNAs where interactions can occur between relatively remote segments of the mRNAs. Here, using a combination of experimental results and analysis of a large dataset, we demonstrate that the accessibility of certain local target structures on the mRNA is an important determinant in the gene silencing ability of siRNAs. siRNAs targeting the enhanced green fluorescent protein were chosen using a minimal siRNA selection algorithm followed by classification based on the predicted minimum free energy structures of the target transcripts. Transfection into HeLa and HepG2 cells revealed that siRNAs targeting regions of the mRNA predicted to have unpaired 5’- and 3’-ends resulted in greater gene silencing than regions predicted to have other types of secondary structure. These results were confirmed by analysis of gene silencing data from previously published siRNAs, which showed that mRNA target regions unpaired at either the 5’-end or 3’-end were silenced, on average, ~10% more strongly than target regions unpaired in the center or primarily paired throughout. We found this effect to be independent of the structure of the siRNA guide strand. Taken together, these results suggest minimal requirements for nucleation of hybridization between the siRNA guide strand and mRNA and that both mRNA and guide strand structure should be considered when choosing candidate siRNAs. PMID:18306428
Hua, Hong-Li; Zhang, Fa-Zhan; Labena, Abraham Alemayehu; Dong, Chuan; Jin, Yan-Ting; Guo, Feng-Biao
Investigation of essential genes is significant to comprehend the minimal gene sets of cell and discover potential drug targets. In this study, a novel approach based on multiple homology mapping and machine learning method was introduced to predict essential genes. We focused on 25 bacteria which have characterized essential genes. The predictions yielded the highest area under receiver operating characteristic (ROC) curve (AUC) of 0.9716 through tenfold cross-validation test. Proper features were utilized to construct models to make predictions in distantly related bacteria. The accuracy of predictions was evaluated via the consistency of predictions and known essential genes of target species. The highest AUC of 0.9552 and average AUC of 0.8314 were achieved when making predictions across organisms. An independent dataset from Synechococcus elongatus , which was released recently, was obtained for further assessment of the performance of our model. The AUC score of predictions is 0.7855, which is higher than other methods. This research presents that features obtained by homology mapping uniquely can achieve quite great or even better results than those integrated features. Meanwhile, the work indicates that machine learning-based method can assign more efficient weight coefficients than using empirical formula based on biological knowledge.
Holmes, Ann M; Ackermann, Ronald T; Katz, Barry P; Downs, Stephen M; Inui, Thomas S
2010-12-01
Capacity constraints and efficiency considerations require that disease management programs identify patients most likely to benefit from intervention. Predictive modeling with available administrative data has been used as a strategy to match patients with appropriate interventions. Administrative data, however, can be plagued by problems of incompleteness and delays in processing. In this article, we examine the effects of these problems on the effectiveness of using administrative data to identify suitable candidates for disease management, and we evaluate various proposed solutions. We build prospective models using regression analysis and evaluate the resulting stratification algorithms using R² statistics, areas under receiver operator characteristic curves, and cost concentration ratios. We find delays in receipt of data reduce the effectiveness of the stratification algorithm, but the degree of compromise depends on what proportion of the population is targeted for intervention. Surprisingly, we find that supplementing partial data with a longer panel of more outdated data produces algorithms that are inferior to algorithms based on a shorter window of more recent data. Demographic data add little to algorithms that include prior claims data, and are an inadequate substitute when claims data are unavailable. Supplementing demographic data with additional information on self-reported health status improves the stratification performance only slightly and only when disease management is targeted to the highest risk patients. We conclude that the extra costs associated with surveying patients for health status information or retrieving older claims data cannot be justified given the lack of evidence that either improves the effectiveness of the stratification algorithm.
Wacker, Soren; Noskov, Sergei Yu
2018-05-01
Drug-induced abnormal heart rhythm known as Torsades de Pointes (TdP) is a potential lethal ventricular tachycardia found in many patients. Even newly released anti-arrhythmic drugs, like ivabradine with HCN channel as a primary target, block the hERG potassium current in overlapping concentration interval. Promiscuous drug block to hERG channel may potentially lead to perturbation of the action potential duration (APD) and TdP, especially when with combined with polypharmacy and/or electrolyte disturbances. The example of novel anti-arrhythmic ivabradine illustrates clinically important and ongoing deficit in drug design and warrants for better screening methods. There is an urgent need to develop new approaches for rapid and accurate assessment of how drugs with complex interactions and multiple subcellular targets can predispose or protect from drug-induced TdP. One of the unexpected outcomes of compulsory hERG screening implemented in USA and European Union resulted in large datasets of IC 50 values for various molecules entering the market. The abundant data allows now to construct predictive machine-learning (ML) models. Novel ML algorithms and techniques promise better accuracy in determining IC 50 values of hERG blockade that is comparable or surpassing that of the earlier QSAR or molecular modeling technique. To test the performance of modern ML techniques, we have developed a computational platform integrating various workflows for quantitative structure activity relationship (QSAR) models using data from the ChEMBL database. To establish predictive powers of ML-based algorithms we computed IC 50 values for large dataset of molecules and compared it to automated patch clamp system for a large dataset of hERG blocking and non-blocking drugs, an industry gold standard in studies of cardiotoxicity. The optimal protocol with high sensitivity and predictive power is based on the novel eXtreme gradient boosting (XGBoost) algorithm. The ML-platform with XGBoost displays excellent performance with a coefficient of determination of up to R 2 ~0.8 for pIC 50 values in evaluation datasets, surpassing other metrics and approaches available in literature. Ultimately, the ML-based platform developed in our work is a scalable framework with automation potential to interact with other developing technologies in cardiotoxicity field, including high-throughput electrophysiology measurements delivering large datasets of profiled drugs, rapid synthesis and drug development via progress in synthetic biology.
GTARG - The TOPEX/Poseidon ground track maintenance maneuver targeting program
NASA Technical Reports Server (NTRS)
Shapiro, Bruce E.; Bhat, Ramachandra S.
1993-01-01
GTARG is a computer program used to design orbit maintenance maneuvers for the TOPEX/Poseidon satellite. These maneuvers ensure that the ground track is kept within +/-1 km with of an = 9.9 day exact repeat pattern. Maneuver parameters are determined using either of two targeting strategies: longitude targeting, which maximizes the time between maneuvers, and time targeting, in which maneuvers are targeted to occur at specific intervals. The GTARG algorithm propagates nonsingular mean elements, taking into account anticipated error sigma's in orbit determination, Delta v execution, drag prediction and Delta v quantization. A satellite unique drag model is used which incorporates an approximate mean orbital Jacchia-Roberts atmosphere and a variable mean area model. Maneuver Delta v magnitudes are targeted to precisely maintain either the unbiased ground track itself, or a comfortable (3 sigma) error envelope about the unbiased ground track.
Shirdel, Elize A.; Xie, Wing; Mak, Tak W.; Jurisica, Igor
2011-01-01
Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level. PMID:21364759
Tertiary structure-based analysis of microRNA–target interactions
Gan, Hin Hark; Gunsalus, Kristin C.
2013-01-01
Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009
Identifying patients likely to have atopic dermatitis: development of a pilot algorithm.
Farage, Miranda A; Bowtell, Philip; Katsarou, Alexandra
2010-01-01
A quick method to distinguish people who are predisposed to skin complaints would be useful in a variety of fields. Certain subgroups, such as people with atopic dermatitis, might be more susceptible to skin irritation than the typical consumer and may be more likely to report product-related complaints. To develop a rapid, questionnaire-based algorithm to predict whether or not individuals who report skin complaints have atopic dermatitis. A 9-item questionnaire on self-perceived skin sensitivity and product categories reportedly associated with skin reactions was administered to two groups of patients from a dermatology clinic: one with clinically diagnosed, active atopic dermatitis (n = 25) and a control group of patients with dermatologic complaints unrelated to atopic dermatitis (n = 25). Questionnaire responses were correlated with the patients' clinical diagnoses in order to derive the minimum number of questions needed to best predict the patients' original diagnoses. We demonstrated that responses to a sequence of three targeted questions related to self-perceived skin sensitivity, preference for hypoallergenic products, and reactions to or avoidance of alpha-hydroxy acids were highly predictive of atopic dermatitis among a population of dermatology clinic patients. The predictive algorithm concept may be useful in postmarketing surveillance programs to rapidly assess the possible status of consumers who report frequent or persistent product-related complaints. Further refinement and validation of this concept is planned with samples drawn from the general population and from consumers who report skin complaints associated with personal products.
Asteroid collisions: Target size effects and resultant velocity distributions
NASA Technical Reports Server (NTRS)
Ryan, Eileen V.
1993-01-01
To study the dynamic fragmentation of rock to simulate asteroid collisions, we use a 2-D, continuum damage numerical hydrocode which models two-body impacts. This hydrocode monitors stress wave propagation and interaction within the target body, and includes a physical model for the formation and growth of cracks in rock. With this algorithm we have successfully reproduced fragment size distributions and mean ejecta speeds from laboratory impact experiments using basalt, and weak and strong mortar as target materials. Using the hydrocode, we have determined that the energy needed to fracture a body has a much stronger dependence on target size than predicted from most scaling theories. In addition, velocity distributions obtained indicate that mean ejecta speeds resulting from large-body collisions do not exceed escape velocities.
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
Predicting the survival of diabetes using neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Data mining techniques at the present time are used in predicting diseases of health care industries. Neural Network is one among the prevailing method in data mining techniques of an intelligent field for predicting diseases in health care industries. This paper presents a study on the prediction of the survival of diabetes diseases using different learning algorithms from the supervised learning algorithms of neural network. Three learning algorithms are considered in this study: (i) The levenberg-marquardt learning algorithm (ii) The Bayesian regulation learning algorithm and (iii) The scaled conjugate gradient learning algorithm. The network is trained using the Pima Indian Diabetes Dataset with the help of MATLAB R2014(a) software. The performance of each algorithm is further discussed through regression analysis. The prediction accuracy of the best algorithm is further computed to validate the accurate prediction
GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction.
Curtis, Farren; Li, Xiayue; Rose, Timothy; Vázquez-Mayagoitia, Álvaro; Bhattacharya, Saswata; Ghiringhelli, Luca M; Marom, Noa
2018-04-10
We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.
Stare and chase of space debris targets using real-time derived pointing data
NASA Astrophysics Data System (ADS)
Steindorfer, Michael A.; Kirchner, Georg; Koidl, Franz; Wang, Peiyuan; Antón, Alfredo; Fernández Sánchez, Jaime; Merz, Klaus
2017-09-01
We successfully demonstrate Stare & Chase: Space debris laser ranging to uncooperative targets has been achieved without a priori knowledge of any orbital information. An analog astronomy CCD with a standard objective, piggyback mounted on our 50 cm Graz SLR receive telescope, 'stares' into the sky in a fixed direction. The CCD records the stellar background within a field of view of approx. 7°. From the stellar X/Y positions on the sensor a plate solving algorithm determines the pointing data of the image center with an accuracy of approx. 15 arc seconds. If a sunlit target passes through this field of view, its equatorial coordinates are calculated, stored and a Consolidated Prediction Format (CPF) file is created in near real time. The derived CPF data is used to start laser ranging ('chase' the object) within the same pass to retrieve highly accurate distance information. A comparison of Stare & Chase CPFs with standard TLE predictions shows the possibilities and limits of this method.
NASA Astrophysics Data System (ADS)
Sinha, Subarna; Thomas, Daniel; Chan, Steven; Gao, Yang; Brunen, Diede; Torabi, Damoun; Reinisch, Andreas; Hernandez, David; Chan, Andy; Rankin, Erinn B.; Bernards, Rene; Majeti, Ravindra; Dill, David L.
2017-05-01
Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological targets; however, identifying them by cell line-based methods is challenging. Here we develop MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour data to identify mutation-specific SL partners for specific cancers. We apply MiSL to 12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known mutation-specific SL partners. Comparisons with functional screens show that MiSL predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction identified by MiSL between the IDH1 mutation and ACACA in leukaemia using gene targeting and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology by identifying mutation-specific targets and biomarkers.
RaptorX server: a resource for template-based protein structure modeling.
Källberg, Morten; Margaryan, Gohar; Wang, Sheng; Ma, Jianzhu; Xu, Jinbo
2014-01-01
Assigning functional properties to a newly discovered protein is a key challenge in modern biology. To this end, computational modeling of the three-dimensional atomic arrangement of the amino acid chain is often crucial in determining the role of the protein in biological processes. We present a community-wide web-based protocol, RaptorX server ( http://raptorx.uchicago.edu ), for automated protein secondary structure prediction, template-based tertiary structure modeling, and probabilistic alignment sampling.Given a target sequence, RaptorX server is able to detect even remotely related template sequences by means of a novel nonlinear context-specific alignment potential and probabilistic consistency algorithm. Using the protocol presented here it is thus possible to obtain high-quality structural models for many target protein sequences when only distantly related protein domains have experimentally solved structures. At present, RaptorX server can perform secondary and tertiary structure prediction of a 200 amino acid target sequence in approximately 30 min.
Research on infrared dim-point target detection and tracking under sea-sky-line complex background
NASA Astrophysics Data System (ADS)
Dong, Yu-xing; Li, Yan; Zhang, Hai-bo
2011-08-01
Target detection and tracking technology in infrared image is an important part of modern military defense system. Infrared dim-point targets detection and recognition under complex background is a difficulty and important strategic value and challenging research topic. The main objects that carrier-borne infrared vigilance system detected are sea-skimming aircrafts and missiles. Due to the characteristics of wide field of view of vigilance system, the target is usually under the sea clutter. Detection and recognition of the target will be taken great difficulties .There are some traditional point target detection algorithms, such as adaptive background prediction detecting method. When background has dispersion-decreasing structure, the traditional target detection algorithms would be more useful. But when the background has large gray gradient, such as sea-sky-line, sea waves etc .The bigger false-alarm rate will be taken in these local area .It could not obtain satisfactory results. Because dim-point target itself does not have obvious geometry or texture feature ,in our opinion , from the perspective of mathematics, the detection of dim-point targets in image is about singular function analysis .And from the perspective image processing analysis , the judgment of isolated singularity in the image is key problem. The foregoing points for dim-point targets detection, its essence is a separation of target and background of different singularity characteristics .The image from infrared sensor usually accompanied by different kinds of noise. These external noises could be caused by the complicated background or from the sensor itself. The noise might affect target detection and tracking. Therefore, the purpose of the image preprocessing is to reduce the effects from noise, also to raise the SNR of image, and to increase the contrast of target and background. According to the low sea-skimming infrared flying small target characteristics , the median filter is used to eliminate noise, improve signal-to-noise ratio, then the multi-point multi-storey vertical Sobel algorithm will be used to detect the sea-sky-line ,so that we can segment sea and sky in the image. Finally using centroid tracking method to capture and trace target. This method has been successfully used to trace target under the sea-sky complex background.
Novel biomarkers for cardiovascular risk assessment: current status and future directions.
MacNamara, James; Eapen, Danny J; Quyyumi, Arshed; Sperling, Laurence
2015-09-01
Cardiovascular disease (CVD) is the leading cause of mortality in the modern world. Traditional risk algorithms may miss up to 20% of CVD events. Therefore, there is a need for new cardiac biomarkers. Many fields of research are dedicated to improving cardiac risk prediction, including genomics, transcriptomics and proteomics. To date, even the most promising biomarkers have only demonstrated modest associations and predictive ability. Few have undergone randomized control trials. A number of biomarkers are targets to new therapies aimed to reduce cardiovascular risk. Currently, some of the most promising risk prediction has been demonstrated with panels of multiple biomarkers. This article reviews the current state and future of proteomic biomarkers and aggregate biomarker panels.
NASA Technical Reports Server (NTRS)
Smith, Kelly M.
2016-01-01
NASA is scheduled to launch the Orion spacecraft atop the Space Launch System on Exploration Mission 1 in late 2018. When Orion returns from its lunar sortie, it will encounter Earth's atmosphere with speeds in excess of 11 kilometers per second, and Orion will attempt its first precision-guided skip entry. A suite of flight software algorithms collectively called the Entry Monitor has been developed in order to enhance crew situational awareness and enable high levels of onboard autonomy. The Entry Monitor determines the vehicle capability footprint in real-time, provides manual piloting cues, evaluates landing target feasibility, predicts the ballistic instantaneous impact point, and provides intelligent recommendations for alternative landing sites if the primary landing site is not achievable. The primary engineering challenges of the Entry Monitor is in the algorithmic implementation in making a highly reliable, efficient set of algorithms suitable for onboard applications.
NASA Technical Reports Server (NTRS)
Cao, Chang-Yong; Blonski, Slawomir; Ryan, Robert; Gasser, Jerry; Zanoni, Vicki
1999-01-01
The verification and validation (V&V) target range developed at Stennis Space Center is a useful test site for the calibration of remote sensing systems. In this paper, we present a simple algorithm for generating synthetic radiance scenes or digital models of this target range. The radiation propagation for the target in the solar reflective and thermal infrared spectral regions is modeled using the atmospheric radiative transfer code MODTRAN 4. The at-sensor, in-band radiance and spectral radiance for a given sensor at a given altitude is predicted. Software is developed to generate scenes with different spatial and spectral resolutions using the simulated at-sensor radiance values. The radiometric accuracy of the simulation is evaluated by comparing simulated with AVIRIS acquired radiance values. The results show that in general there is a good match between AVIRIS sensor measured and MODTRAN predicted radiance values for the target despite the fact that some anomalies exist. Synthetic scenes provide a cost-effective way for in-flight validation of the spatial and radiometric accuracy of the data. Other applications include mission planning, sensor simulation, and trade-off analysis in sensor design.
An Improved Vision-based Algorithm for Unmanned Aerial Vehicles Autonomous Landing
NASA Astrophysics Data System (ADS)
Zhao, Yunji; Pei, Hailong
In vision-based autonomous landing system of UAV, the efficiency of target detecting and tracking will directly affect the control system. The improved algorithm of SURF(Speed Up Robust Features) will resolve the problem which is the inefficiency of the SURF algorithm in the autonomous landing system. The improved algorithm is composed of three steps: first, detect the region of the target using the Camshift; second, detect the feature points in the region of the above acquired using the SURF algorithm; third, do the matching between the template target and the region of target in frame. The results of experiment and theoretical analysis testify the efficiency of the algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaskowiak, J; Ahmad, S; Ali, I
Purpose: To investigate quantitatively the performance of different deformable-image-registration algorithms (DIR) with helical (HCT), axial (ACT) and cone-beam CT (CBCT) by evaluating the variations in the CT-numbers and lengths of targets moving with controlled motion-patterns. Methods: Four DIR-algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from the DIRART-software are used to register CT-images of a mobile-phantom. A mobile-phantom is scanned with different imaging techniques that include helical, axial and cone-beam CT. The phantom includes three targets with different lengths that are made from water-equivalent material and inserted in low-density-foam which is moved with adjustable motion-amplitudes and frequencies. Results: Most of themore » DIR-algorithms are able to produce the lengths of the stationary-targets, however, they do not produce the CT-number values in CBCT. The image-artifacts induced by motion are more regular in CBCT imaging where the mobile-target elongation increases linearly with motion-amplitude. In ACT and HCT, the motion-artifacts are irregular where some mobile -targets are elongated or shrunk depending on the motion-phase during imaging. The DIR-algorithms are successful in deforming the images of the mobile-targets to the images of the stationary-targets producing the CT-number values and length of the target for motion-amplitudes < 20 mm. Similarly in ACT, all DIR-algorithms produced the actual CT-number and length of the stationary-targets for motion-amplitudes < 15 mm. As stronger motion-artifacts are induced in HCT and ACT, DIR-algorithms fail to produce CT-values and shape of the stationary-targets and fast-demons-algorithm has worst performance. Conclusion: Most of DIR-algorithms produce the CT-number values and lengths of the stationary-targets in HCT and ACT images that has motion-artifacts induced by small motion-amplitudes. As motion-amplitudes increase, the DIR-algorithms fail to deform mobile-target images to the stationary-images in HCT and ACT. In CBCT, DIR-algorithms are successful in producing length and shape of the stationary-targets, however, they fail to produce the accurate CT-number level.« less
Nielsen, Tine B; Wieslander, Elinore; Fogliata, Antonella; Nielsen, Morten; Hansen, Olfred; Brink, Carsten
2011-05-01
To investigate differences in calculated doses and normal tissue complication probability (NTCP) values between different dose algorithms. Six dose algorithms from four different treatment planning systems were investigated: Eclipse AAA, Oncentra MasterPlan Collapsed Cone and Pencil Beam, Pinnacle Collapsed Cone and XiO Multigrid Superposition, and Fast Fourier Transform Convolution. Twenty NSCLC patients treated in the period 2001-2006 at the same accelerator were included and the accelerator used for treatments were modeled in the different systems. The treatment plans were recalculated with the same number of monitor units and beam arrangements across the dose algorithms. Dose volume histograms of the GTV, PTV, combined lungs (excluding the GTV), and heart were exported and evaluated. NTCP values for heart and lungs were calculated using the relative seriality model and the LKB model, respectively. Furthermore, NTCP for the lungs were calculated from two different model parameter sets. Calculations and evaluations were performed both including and excluding density corrections. There are found statistical significant differences between the calculated dose to heart, lung, and targets across the algorithms. Mean lung dose and V20 are not very sensitive to change between the investigated dose calculation algorithms. However, the different dose levels for the PTV averaged over the patient population are varying up to 11%. The predicted NTCP values for pneumonitis vary between 0.20 and 0.24 or 0.35 and 0.48 across the investigated dose algorithms depending on the chosen model parameter set. The influence of the use of density correction in the dose calculation on the predicted NTCP values depends on the specific dose calculation algorithm and the model parameter set. For fixed values of these, the changes in NTCP can be up to 45%. Calculated NTCP values for pneumonitis are more sensitive to the choice of algorithm than mean lung dose and V20 which are also commonly used for plan evaluation. The NTCP values for heart complication are, in this study, not very sensitive to the choice of algorithm. Dose calculations based on density corrections result in quite different NTCP values than calculations without density corrections. It is therefore important when working with NTCP planning to use NTCP parameter values based on calculations and treatments similar to those for which the NTCP is of interest.
Hsu, David
2015-09-27
Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression,more » also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes.« less
2010-01-01
Background The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. Results In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. Conclusion High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data. PMID:20122245
Seok, Junhee; Kaushal, Amit; Davis, Ronald W; Xiao, Wenzhong
2010-01-18
The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data.
Imbalanced target prediction with pattern discovery on clinical data repositories.
Chan, Tak-Ming; Li, Yuxi; Chiau, Choo-Chiap; Zhu, Jane; Jiang, Jie; Huo, Yong
2017-04-20
Clinical data repositories (CDR) have great potential to improve outcome prediction and risk modeling. However, most clinical studies require careful study design, dedicated data collection efforts, and sophisticated modeling techniques before a hypothesis can be tested. We aim to bridge this gap, so that clinical domain users can perform first-hand prediction on existing repository data without complicated handling, and obtain insightful patterns of imbalanced targets for a formal study before it is conducted. We specifically target for interpretability for domain users where the model can be conveniently explained and applied in clinical practice. We propose an interpretable pattern model which is noise (missing) tolerant for practice data. To address the challenge of imbalanced targets of interest in clinical research, e.g., deaths less than a few percent, the geometric mean of sensitivity and specificity (G-mean) optimization criterion is employed, with which a simple but effective heuristic algorithm is developed. We compared pattern discovery to clinically interpretable methods on two retrospective clinical datasets. They contain 14.9% deaths in 1 year in the thoracic dataset and 9.1% deaths in the cardiac dataset, respectively. In spite of the imbalance challenge shown on other methods, pattern discovery consistently shows competitive cross-validated prediction performance. Compared to logistic regression, Naïve Bayes, and decision tree, pattern discovery achieves statistically significant (p-values < 0.01, Wilcoxon signed rank test) favorable averaged testing G-means and F1-scores (harmonic mean of precision and sensitivity). Without requiring sophisticated technical processing of data and tweaking, the prediction performance of pattern discovery is consistently comparable to the best achievable performance. Pattern discovery has demonstrated to be robust and valuable for target prediction on existing clinical data repositories with imbalance and noise. The prediction results and interpretable patterns can provide insights in an agile and inexpensive way for the potential formal studies.
A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality
NASA Astrophysics Data System (ADS)
Liu, Li; Zhuang, Xinhua
2009-01-01
It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.
Adaptive block online learning target tracking based on super pixel segmentation
NASA Astrophysics Data System (ADS)
Cheng, Yue; Li, Jianzeng
2018-04-01
Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.
Husain, N; Blais, P; Kramer, J; Kowalkowski, M; Richardson, P; El-Serag, H B; Kanwal, F
2014-10-01
In practice, nonalcoholic fatty liver disease (NAFLD) is diagnosed based on elevated liver enzymes and confirmatory liver biopsy or abdominal imaging. Neither method is feasible in identifying individuals with NAFLD in a large-scale healthcare system. To develop and validate an algorithm to identify patients with NAFLD using automated data. Using the Veterans Administration Corporate Data Warehouse, we identified patients who had persistent ALT elevation (≥2 values ≥40 IU/mL ≥6 months apart) and did not have evidence of hepatitis B, hepatitis C or excessive alcohol use. We conducted a structured chart review of 450 patients classified as NAFLD and 150 patients who were classified as non-NAFLD by the database algorithm, and subsequently refined the database algorithm. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) for the initial database definition of NAFLD were 78.4% (95% CI: 70.0-86.8%), 74.5% (95% CI: 68.1-80.9%), 64.1% (95% CI: 56.4-71.7%) and 85.6% (95% CI: 79.4-91.8%), respectively. Reclassifying patients as having NAFLD if they had two elevated ALTs that were at least 6 months apart but within 2 years of each other, increased the specificity and PPV of the algorithm to 92.4% (95% CI: 88.8-96.0%) and 80.8% (95% CI: 72.5-89.0%), respectively. However, the sensitivity and NPV decreased to 55.0% (95% CI: 46.1-63.9%) and 78.0% (95% CI: 72.1-83.8%), respectively. Predictive algorithms using automated data can be used to identify patients with NAFLD, determine prevalence of NAFLD at the system-wide level, and may help select a target population for future clinical studies in veterans with NAFLD. © 2014 John Wiley & Sons Ltd.
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
A new method of small target detection based on neural network
NASA Astrophysics Data System (ADS)
Hu, Jing; Hu, Yongli; Lu, Xinxin
2018-02-01
The detection and tracking of moving dim target in infrared image have been an research hotspot for many years. The target in each frame of images only occupies several pixels without any shape and structure information. Moreover, infrared small target is often submerged in complicated background with low signal-to-clutter ratio, making the detection very difficult. Different backgrounds exhibit different statistical properties, making it becomes extremely complex to detect the target. If the threshold segmentation is not reasonable, there may be more noise points in the final detection, which is unfavorable for the detection of the trajectory of the target. Single-frame target detection may not be able to obtain the desired target and cause high false alarm rate. We believe the combination of suspicious target detection spatially in each frame and temporal association for target tracking will increase reliability of tracking dim target. The detection of dim target is mainly divided into two parts, In the first part, we adopt bilateral filtering method in background suppression, after the threshold segmentation, the suspicious target in each frame are extracted, then we use LSTM(long short term memory) neural network to predict coordinates of target of the next frame. It is a brand-new method base on the movement characteristic of the target in sequence images which could respond to the changes in the relationship between past and future values of the values. Simulation results demonstrate proposed algorithm can effectively predict the trajectory of the moving small target and work efficiently and robustly with low false alarm.
Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation
2007-05-30
with large region of attraction about the true minimum. The physical optics models provide features for high confidence identification of stationary...the detection test are used to estimate 3D object scattering; multiple images can be noncoherently combined to reconstruct a more complete object...Proc. SPIE Algorithms for Synthetic Aper- ture Radar Imagery XIII, The International Society for Optical Engineering, April 2006. [40] K. Varshney, M. C
Performance of resonant radar target identification algorithms using intra-class weighting functions
NASA Astrophysics Data System (ADS)
Mustafa, A.
The use of calibrated resonant-region radar cross section (RCS) measurements of targets for the classification of large aircraft is discussed. Errors in the RCS estimate of full scale aircraft flying over an ocean, introduced by the ionospheric variability and the sea conditions were studied. The Weighted Target Representative (WTR) classification algorithm was developed, implemented, tested and compared with the nearest neighbor (NN) algorithm. The WTR-algorithm has a low sensitivity to the uncertainty in the aspect angle of the unknown target returns. In addition, this algorithm was based on the development of a new catalog of representative data which reduces the storage requirements and increases the computational efficiency of the classification system compared to the NN-algorithm. Experiments were designed to study and evaluate the characteristics of the WTR- and the NN-algorithms, investigate the classifiability of targets and study the relative behavior of the number of misclassifications as a function of the target backscatter features. The classification results and statistics were shown in the form of performance curves, performance tables and confusion tables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org; Beadle, Beth M.
2015-09-15
Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to themore » planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55–0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. Conclusions: The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.« less
A prior-based integrative framework for functional transcriptional regulatory network inference
Siahpirani, Alireza F.
2017-01-01
Abstract Transcriptional regulatory networks specify regulatory proteins controlling the context-specific expression levels of genes. Inference of genome-wide regulatory networks is central to understanding gene regulation, but remains an open challenge. Expression-based network inference is among the most popular methods to infer regulatory networks, however, networks inferred from such methods have low overlap with experimentally derived (e.g. ChIP-chip and transcription factor (TF) knockouts) networks. Currently we have a limited understanding of this discrepancy. To address this gap, we first develop a regulatory network inference algorithm, based on probabilistic graphical models, to integrate expression with auxiliary datasets supporting a regulatory edge. Second, we comprehensively analyze our and other state-of-the-art methods on different expression perturbation datasets. Networks inferred by integrating sequence-specific motifs with expression have substantially greater agreement with experimentally derived networks, while remaining more predictive of expression than motif-based networks. Our analysis suggests natural genetic variation as the most informative perturbation for network inference, and, identifies core TFs whose targets are predictable from expression. Multiple reasons make the identification of targets of other TFs difficult, including network architecture and insufficient variation of TF mRNA level. Finally, we demonstrate the utility of our inference algorithm to infer stress-specific regulatory networks and for regulator prioritization. PMID:27794550
Dweep, Harsh; Sticht, Carsten; Pandey, Priyanka; Gretz, Norbert
2011-10-01
MicroRNAs are small, non-coding RNA molecules that can complementarily bind to the mRNA 3'-UTR region to regulate the gene expression by transcriptional repression or induction of mRNA degradation. Increasing evidence suggests a new mechanism by which miRNAs may regulate target gene expression by binding in promoter and amino acid coding regions. Most of the existing databases on miRNAs are restricted to mRNA 3'-UTR region. To address this issue, we present miRWalk, a comprehensive database on miRNAs, which hosts predicted as well as validated miRNA binding sites, information on all known genes of human, mouse and rat. All mRNAs, mitochondrial genes and 10 kb upstream flanking regions of all known genes of human, mouse and rat were analyzed by using a newly developed algorithm named 'miRWalk' as well as with eight already established programs for putative miRNA binding sites. An automated and extensive text-mining search was performed on PubMed database to extract validated information on miRNAs. Combined information was put into a MySQL database. miRWalk presents predicted and validated information on miRNA-target interaction. Such a resource enables researchers to validate new targets of miRNA not only on 3'-UTR, but also on the other regions of all known genes. The 'Validated Target module' is updated every month and the 'Predicted Target module' is updated every 6 months. miRWalk is freely available at http://mirwalk.uni-hd.de/. Copyright © 2011 Elsevier Inc. All rights reserved.
Testing an earthquake prediction algorithm
Kossobokov, V.G.; Healy, J.H.; Dewey, J.W.
1997-01-01
A test to evaluate earthquake prediction algorithms is being applied to a Russian algorithm known as M8. The M8 algorithm makes intermediate term predictions for earthquakes to occur in a large circle, based on integral counts of transient seismicity in the circle. In a retroactive prediction for the period January 1, 1985 to July 1, 1991 the algorithm as configured for the forward test would have predicted eight of ten strong earthquakes in the test area. A null hypothesis, based on random assignment of predictions, predicts eight earthquakes in 2.87% of the trials. The forward test began July 1, 1991 and will run through December 31, 1997. As of July 1, 1995, the algorithm had forward predicted five out of nine earthquakes in the test area, which success ratio would have been achieved in 53% of random trials with the null hypothesis.
Kim, Minsuk; Yi, Jeong Sang; Lakshmanan, Meiyappan; Lee, Dong-Yup; Kim, Byung-Gee
2016-03-01
In silico model-driven analysis using genome-scale model of metabolism (GEM) has been recognized as a promising method for microbial strain improvement. However, most of the current GEM-based strain design algorithms based on flux balance analysis (FBA) heavily rely on the steady-state and optimality assumptions without considering any regulatory information. Thus, their practical usage is quite limited, especially in its application to secondary metabolites overproduction. In this study, we developed a transcriptomics-based strain optimization tool (tSOT) in order to overcome such limitations by integrating transcriptomic data into GEM. Initially, we evaluated existing algorithms for integrating transcriptomic data into GEM using Streptomyces coelicolor dataset, and identified iMAT algorithm as the only and the best algorithm for characterizing the secondary metabolism of S. coelicolor. Subsequently, we developed tSOT platform where iMAT is adopted to predict the reaction states, and successfully demonstrated its applicability to secondary metabolites overproduction by designing actinorhodin (ACT), a polyketide antibiotic, overproducing strain of S. coelicolor. Mutants overexpressing tSOT targets such as ribulose 5-phosphate 3-epimerase and NADP-dependent malic enzyme showed 2 and 1.8-fold increase in ACT production, thereby validating the tSOT prediction. It is expected that tSOT can be used for solving other metabolic engineering problems which could not be addressed by current strain design algorithms, especially for the secondary metabolite overproductions. © 2015 Wiley Periodicals, Inc.
Ultra wide band 3-D cross section (RCS) holography
NASA Astrophysics Data System (ADS)
Collins, H. D.; Hall, T. E.
1992-07-01
Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.
NASA Astrophysics Data System (ADS)
Qian, Kun; Zhou, Huixin; Rong, Shenghui; Wang, Bingjian; Cheng, Kuanhong
2017-05-01
Infrared small target tracking plays an important role in applications including military reconnaissance, early warning and terminal guidance. In this paper, an effective algorithm based on the Singular Value Decomposition (SVD) and the improved Kernelized Correlation Filter (KCF) is presented for infrared small target tracking. Firstly, the super performance of the SVD-based algorithm is that it takes advantage of the target's global information and obtains a background estimation of an infrared image. A dim target is enhanced by subtracting the corresponding estimated background with update from the original image. Secondly, the KCF algorithm is combined with Gaussian Curvature Filter (GCF) to eliminate the excursion problem. The GCF technology is adopted to preserve the edge and eliminate the noise of the base sample in the KCF algorithm, helping to calculate the classifier parameter for a small target. At last, the target position is estimated with a response map, which is obtained via the kernelized classifier. Experimental results demonstrate that the presented algorithm performs favorably in terms of efficiency and accuracy, compared with several state-of-the-art algorithms.
Maden, Orhan; Balci, Kevser Gülcihan; Selcuk, Mehmet Timur; Balci, Mustafa Mücahit; Açar, Burak; Unal, Sefa; Kara, Meryem; Selcuk, Hatice
2015-12-01
The aim of this study was to investigate the accuracy of three algorithms in predicting accessory pathway locations in adult patients with Wolff-Parkinson-White syndrome in Turkish population. A total of 207 adult patients with Wolff-Parkinson-White syndrome were retrospectively analyzed. The most preexcited 12-lead electrocardiogram in sinus rhythm was used for analysis. Two investigators blinded to the patient data used three algorithms for prediction of accessory pathway location. Among all locations, 48.5% were left-sided, 44% were right-sided, and 7.5% were located in the midseptum or anteroseptum. When only exact locations were accepted as match, predictive accuracy for Chiang was 71.5%, 72.4% for d'Avila, and 71.5% for Arruda. The percentage of predictive accuracy of all algorithms did not differ between the algorithms (p = 1.000; p = 0.875; p = 0.885, respectively). The best algorithm for prediction of right-sided, left-sided, and anteroseptal and midseptal accessory pathways was Arruda (p < 0.001). Arruda was significantly better than d'Avila in predicting adjacent sites (p = 0.035) and the percent of the contralateral site prediction was higher with d'Avila than Arruda (p = 0.013). All algorithms were similar in predicting accessory pathway location and the predicted accuracy was lower than previously reported by their authors. However, according to the accessory pathway site, the algorithm designed by Arruda et al. showed better predictions than the other algorithms and using this algorithm may provide advantages before a planned ablation.
Scoring and staging systems using cox linear regression modeling and recursive partitioning.
Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H
2006-01-01
Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.
Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing
2013-01-01
The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.
Luo, Jiawei; Xiao, Qiu
2017-02-01
MicroRNAs (miRNAs) play a critical role by regulating their targets in post-transcriptional level. Identification of potential miRNA-disease associations will aid in deciphering the pathogenesis of human polygenic diseases. Several computational models have been developed to uncover novel miRNA-disease associations based on the predicted target genes. However, due to the insufficient number of experimentally validated miRNA-target interactions as well as the relatively high false-positive and false-negative rates of predicted target genes, it is still challenging for these prediction models to obtain remarkable performances. The purpose of this study is to prioritize miRNA candidates for diseases. We first construct a heterogeneous network, which consists of a disease similarity network, a miRNA functional similarity network and a known miRNA-disease association network. Then, an unbalanced bi-random walk-based algorithm on the heterogeneous network (BRWH) is adopted to discover potential associations by exploiting bipartite subgraphs. Based on 5-fold cross validation, the proposed network-based method achieves AUC values ranging from 0.782 to 0.907 for the 22 human diseases and an average AUC of almost 0.846. The experiments indicated that BRWH can achieve better performances compared with several popular methods. In addition, case studies of some common diseases further demonstrated the superior performance of our proposed method on prioritizing disease-related miRNA candidates. Copyright © 2017 Elsevier Inc. All rights reserved.
Analytical performance evaluation of SAR ATR with inaccurate or estimated models
NASA Astrophysics Data System (ADS)
DeVore, Michael D.
2004-09-01
Hypothesis testing algorithms for automatic target recognition (ATR) are often formulated in terms of some assumed distribution family. The parameter values corresponding to a particular target class together with the distribution family constitute a model for the target's signature. In practice such models exhibit inaccuracy because of incorrect assumptions about the distribution family and/or because of errors in the assumed parameter values, which are often determined experimentally. Model inaccuracy can have a significant impact on performance predictions for target recognition systems. Such inaccuracy often causes model-based predictions that ignore the difference between assumed and actual distributions to be overly optimistic. This paper reports on research to quantify the effect of inaccurate models on performance prediction and to estimate the effect using only trained parameters. We demonstrate that for large observation vectors the class-conditional probabilities of error can be expressed as a simple function of the difference between two relative entropies. These relative entropies quantify the discrepancies between the actual and assumed distributions and can be used to express the difference between actual and predicted error rates. Focusing on the problem of ATR from synthetic aperture radar (SAR) imagery, we present estimators of the probabilities of error in both ideal and plug-in tests expressed in terms of the trained model parameters. These estimators are defined in terms of unbiased estimates for the first two moments of the sample statistic. We present an analytical treatment of these results and include demonstrations from simulated radar data.
A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments
Colburn, H. Steven
2016-01-01
Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model. PMID:27698261
A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments.
Mi, Jing; Colburn, H Steven
2016-10-03
Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model. © The Author(s) 2016.
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks.
Yi, Faliu; Yang, Lin; Wang, Shidan; Guo, Lei; Huang, Chenglong; Xie, Yang; Xiao, Guanghua
2018-02-27
Pathological angiogenesis has been identified in many malignancies as a potential prognostic factor and target for therapy. In most cases, angiogenic analysis is based on the measurement of microvessel density (MVD) detected by immunostaining of CD31 or CD34. However, most retrievable public data is generally composed of Hematoxylin and Eosin (H&E)-stained pathology images, for which is difficult to get the corresponding immunohistochemistry images. The role of microvessels in H&E stained images has not been widely studied due to their complexity and heterogeneity. Furthermore, identifying microvessels manually for study is a labor-intensive task for pathologists, with high inter- and intra-observer variation. Therefore, it is important to develop automated microvessel-detection algorithms in H&E stained pathology images for clinical association analysis. In this paper, we propose a microvessel prediction method using fully convolutional neural networks. The feasibility of our proposed algorithm is demonstrated through experimental results on H&E stained images. Furthermore, the identified microvessel features were significantly associated with the patient clinical outcomes. This is the first study to develop an algorithm for automated microvessel detection in H&E stained pathology images.
Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints
NASA Astrophysics Data System (ADS)
Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea
2018-05-01
This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.
Immunohistochemistry for predictive biomarkers in non-small cell lung cancer.
Mino-Kenudson, Mari
2017-10-01
In the era of targeted therapy, predictive biomarker testing has become increasingly important for non-small cell lung cancer. Of multiple predictive biomarker testing methods, immunohistochemistry (IHC) is widely available and technically less challenging, can provide clinically meaningful results with a rapid turn-around-time and is more cost efficient than molecular platforms. In fact, several IHC assays for predictive biomarkers have already been implemented in routine pathology practice. In this review, we will discuss: (I) the details of anaplastic lymphoma kinase (ALK) and proto-oncogene tyrosine-protein kinase ROS (ROS1) IHC assays including the performance of multiple antibody clones, pros and cons of IHC platforms and various scoring systems to design an optimal algorithm for predictive biomarker testing; (II) issues associated with programmed death-ligand 1 (PD-L1) IHC assays; (III) appropriate pre-analytical tissue handling and selection of optimal tissue samples for predictive biomarker IHC.
Immunohistochemistry for predictive biomarkers in non-small cell lung cancer
2017-01-01
In the era of targeted therapy, predictive biomarker testing has become increasingly important for non-small cell lung cancer. Of multiple predictive biomarker testing methods, immunohistochemistry (IHC) is widely available and technically less challenging, can provide clinically meaningful results with a rapid turn-around-time and is more cost efficient than molecular platforms. In fact, several IHC assays for predictive biomarkers have already been implemented in routine pathology practice. In this review, we will discuss: (I) the details of anaplastic lymphoma kinase (ALK) and proto-oncogene tyrosine-protein kinase ROS (ROS1) IHC assays including the performance of multiple antibody clones, pros and cons of IHC platforms and various scoring systems to design an optimal algorithm for predictive biomarker testing; (II) issues associated with programmed death-ligand 1 (PD-L1) IHC assays; (III) appropriate pre-analytical tissue handling and selection of optimal tissue samples for predictive biomarker IHC. PMID:29114473
NASA Astrophysics Data System (ADS)
Wan, Weibing; Yuan, Lingfeng; Zhao, Qunfei; Fang, Tao
2018-01-01
Saliency detection has been applied to the target acquisition case. This paper proposes a two-dimensional hidden Markov model (2D-HMM) that exploits the hidden semantic information of an image to detect its salient regions. A spatial pyramid histogram of oriented gradient descriptors is used to extract features. After encoding the image by a learned dictionary, the 2D-Viterbi algorithm is applied to infer the saliency map. This model can predict fixation of the targets and further creates robust and effective depictions of the targets' change in posture and viewpoint. To validate the model with a human visual search mechanism, two eyetrack experiments are employed to train our model directly from eye movement data. The results show that our model achieves better performance than visual attention. Moreover, it indicates the plausibility of utilizing visual track data to identify targets.
Identify High-Quality Protein Structural Models by Enhanced K-Means.
Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang
2017-01-01
Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.
Identify High-Quality Protein Structural Models by Enhanced K-Means
Li, Haiou; Chen, Cheng; Lv, Qiang; Wu, Chuang
2017-01-01
Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K-means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K-means clustering (SK-means), whereas the other employs squared distance to optimize the initial centroids (K-means++). Our results showed that SK-means and K-means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K-means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK-means and K-means++ demonstrated substantial improvements relative to results from SPICKER and classical K-means. PMID:28421198
WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning
Sutphin, George L.; Mahoney, J. Matthew; Sheppard, Keith; Walton, David O.; Korstanje, Ron
2016-01-01
The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs) between 6 eukaryotic species—humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/. PMID:27812085
WORMHOLE: Novel Least Diverged Ortholog Prediction through Machine Learning.
Sutphin, George L; Mahoney, J Matthew; Sheppard, Keith; Walton, David O; Korstanje, Ron
2016-11-01
The rapid advancement of technology in genomics and targeted genetic manipulation has made comparative biology an increasingly prominent strategy to model human disease processes. Predicting orthology relationships between species is a vital component of comparative biology. Dozens of strategies for predicting orthologs have been developed using combinations of gene and protein sequence, phylogenetic history, and functional interaction with progressively increasing accuracy. A relatively new class of orthology prediction strategies combines aspects of multiple methods into meta-tools, resulting in improved prediction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool that applies machine learning to integrate 17 distinct ortholog prediction algorithms to identify novel least diverged orthologs (LDOs) between 6 eukaryotic species-humans, mice, zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE to intelligently incorporate predictions from a wide-spectrum of strategies in order to form aggregate predictions of LDOs with high confidence. In this study we demonstrate the performance of WORMHOLE across each combination of query and target species. We show that WORMHOLE is particularly adept at improving LDO prediction performance between distantly related species, expanding the pool of LDOs while maintaining low evolutionary distance and a high level of functional relatedness between genes in LDO pairs. We present extensive validation, including cross-validated prediction of PANTHER LDOs and evaluation of evolutionary divergence and functional similarity, and discuss future applications of machine learning in ortholog prediction. A WORMHOLE web tool has been developed and is available at http://wormhole.jax.org/.
Mwangi, Benson; Soares, Jair C; Hasan, Khader M
2014-10-30
Neuroimaging machine learning studies have largely utilized supervised algorithms - meaning they require both neuroimaging scan data and corresponding target variables (e.g. healthy vs. diseased) to be successfully 'trained' for a prediction task. Noticeably, this approach may not be optimal or possible when the global structure of the data is not well known and the researcher does not have an a priori model to fit the data. We set out to investigate the utility of an unsupervised machine learning technique; t-distributed stochastic neighbour embedding (t-SNE) in identifying 'unseen' sample population patterns that may exist in high-dimensional neuroimaging data. Multimodal neuroimaging scans from 92 healthy subjects were pre-processed using atlas-based methods, integrated and input into the t-SNE algorithm. Patterns and clusters discovered by the algorithm were visualized using a 2D scatter plot and further analyzed using the K-means clustering algorithm. t-SNE was evaluated against classical principal component analysis. Remarkably, based on unlabelled multimodal scan data, t-SNE separated study subjects into two very distinct clusters which corresponded to subjects' gender labels (cluster silhouette index value=0.79). The resulting clusters were used to develop an unsupervised minimum distance clustering model which identified 93.5% of subjects' gender. Notably, from a neuropsychiatric perspective this method may allow discovery of data-driven disease phenotypes or sub-types of treatment responders. Copyright © 2014 Elsevier B.V. All rights reserved.
Heterogeneous Vision Data Fusion for Independently Moving Cameras
2010-03-01
target detection , tracking , and identification over a large terrain. The goal of the project is to investigate and evaluate the existing image...fusion algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in moving target detection and tracking . The...moving target detection and classification. 15. SUBJECT TERMS Image Fusion, Target Detection , Moving Cameras, IR Camera, EO Camera 16. SECURITY
Manickam, Madhumathi; Ravanan, Palaniyandi; Singh, Pratibha; Talwar, Priti
2014-01-01
Gaucher's disease (GD) is an autosomal recessive disorder caused by the deficiency of glucocerebrosidase, a lysosomal enzyme that catalyses the hydrolysis of the glycolipid glucocerebroside to ceramide and glucose. Polymorphisms in GBA gene have been associated with the development of Gaucher disease. We hypothesize that prediction of SNPs using multiple state of the art software tools will help in increasing the confidence in identification of SNPs involved in GD. Enzyme replacement therapy is the only option for GD. Our goal is to use several state of art SNP algorithms to predict/address harmful SNPs using comparative studies. In this study seven different algorithms (SIFT, MutPred, nsSNP Analyzer, PANTHER, PMUT, PROVEAN, and SNPs&GO) were used to predict the harmful polymorphisms. Among the seven programs, SIFT found 47 nsSNPs as deleterious, MutPred found 46 nsSNPs as harmful. nsSNP Analyzer program found 43 out of 47 nsSNPs are disease causing SNPs whereas PANTHER found 32 out of 47 as highly deleterious, 22 out of 47 are classified as pathological mutations by PMUT, 44 out of 47 were predicted to be deleterious by PROVEAN server, all 47 shows the disease related mutations by SNPs&GO. Twenty two nsSNPs were commonly predicted by all the seven different algorithms. The common 22 targeted mutations are F251L, C342G, W312C, P415R, R463C, D127V, A309V, G46E, G202E, P391L, Y363C, Y205C, W378C, I402T, S366R, F397S, Y418C, P401L, G195E, W184R, R48W, and T43R.
Wang, ShaoPeng; Zhang, Yu-Hang; Huang, GuoHua; Chen, Lei; Cai, Yu-Dong
2017-01-01
Myristoylation is an important hydrophobic post-translational modification that is covalently bound to the amino group of Gly residues on the N-terminus of proteins. The many diverse functions of myristoylation on proteins, such as membrane targeting, signal pathway regulation and apoptosis, are largely due to the lipid modification, whereas abnormal or irregular myristoylation on proteins can lead to several pathological changes in the cell. To better understand the function of myristoylated sites and to correctly identify them in protein sequences, this study conducted a novel computational investigation on identifying myristoylation sites in protein sequences. A training dataset with 196 positive and 84 negative peptide segments were obtained. Four types of features derived from the peptide segments following the myristoylation sites were used to specify myristoylatedand non-myristoylated sites. Then, feature selection methods including maximum relevance and minimum redundancy (mRMR), incremental feature selection (IFS), and a machine learning algorithm (extreme learning machine method) were adopted to extract optimal features for the algorithm to identify myristoylation sites in protein sequences, thereby building an optimal prediction model. As a result, 41 key features were extracted and used to build an optimal prediction model. The effectiveness of the optimal prediction model was further validated by its performance on a test dataset. Furthermore, detailed analyses were also performed on the extracted 41 features to gain insight into the mechanism of myristoylation modification. This study provided a new computational method for identifying myristoylation sites in protein sequences. We believe that it can be a useful tool to predict myristoylation sites from protein sequences. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Sentiment analysis enhancement with target variable in Kumar’s Algorithm
NASA Astrophysics Data System (ADS)
Arman, A. A.; Kawi, A. B.; Hurriyati, R.
2016-04-01
Sentiment analysis (also known as opinion mining) refers to the use of text analysis and computational linguistics to identify and extract subjective information in source materials. Sentiment analysis is widely applied to reviews discussion that is being talked in social media for many purposes, ranging from marketing, customer service, or public opinion of public policy. One of the popular algorithm for Sentiment Analysis implementation is Kumar algorithm that developed by Kumar and Sebastian. Kumar algorithm can identify the sentiment score of the statement, sentence or tweet, but cannot determine the relationship of the object or target related to the sentiment being analysed. This research proposed solution for that challenge by adding additional component that represent object or target to the existing algorithm (Kumar algorithm). The result of this research is a modified algorithm that can give sentiment score based on a given object or target.
Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.
2012-01-01
Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329
GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda
2014-01-01
Background Non-coding sequences such as microRNAs have important roles in disease processes. Computational microRNA target identification (CMTI) is becoming increasingly important since traditional experimental methods for target identification pose many difficulties. These methods are time-consuming, costly, and often need guidance from computational methods to narrow down candidate genes anyway. However, most CMTI methods are computationally demanding, since they need to handle not only several million query microRNA and reference RNA pairs, but also several million nucleotide comparisons within each given pair. Thus, the need to perform microRNA identification at such large scale has increased the demand for parallel computing. Methods Although most CMTI programs (e.g., the miRanda algorithm) are based on a modified Smith-Waterman (SW) algorithm, the existing parallel SW implementations (e.g., CUDASW++ 2.0/3.0, SWIPE) are unable to meet this demand in CMTI tasks. We present CUDA-miRanda, a fast microRNA target identification algorithm that takes advantage of massively parallel computing on Graphics Processing Units (GPU) using NVIDIA's Compute Unified Device Architecture (CUDA). CUDA-miRanda specifically focuses on the local alignment of short (i.e., ≤ 32 nucleotides) sequences against longer reference sequences (e.g., 20K nucleotides). Moreover, the proposed algorithm is able to report multiple alignments (up to 191 top scores) and the corresponding traceback sequences for any given (query sequence, reference sequence) pair. Results Speeds over 5.36 Giga Cell Updates Per Second (GCUPs) are achieved on a server with 4 NVIDIA Tesla M2090 GPUs. Compared to the original miRanda algorithm, which is evaluated on an Intel Xeon E5620@2.4 GHz CPU, the experimental results show up to 166 times performance gains in terms of execution time. In addition, we have verified that the exact same targets were predicted in both CUDA-miRanda and the original miRanda implementations through multiple test datasets. Conclusions We offer a GPU-based alternative to high performance compute (HPC) that can be developed locally at a relatively small cost. The community of GPU developers in the biomedical research community, particularly for genome analysis, is still growing. With increasing shared resources, this community will be able to advance CMTI in a very significant manner. Our source code is available at https://sourceforge.net/projects/cudamiranda/. PMID:25077821
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.
Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia
2014-01-01
For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210
Process-time Optimization of Vacuum Degassing Using a Genetic Alloy Design Approach
Dilner, David; Lu, Qi; Mao, Huahai; Xu, Wei; van der Zwaag, Sybrand; Selleby, Malin
2014-01-01
This paper demonstrates the use of a new model consisting of a genetic algorithm in combination with thermodynamic calculations and analytical process models to minimize the processing time during a vacuum degassing treatment of liquid steel. The model sets multiple simultaneous targets for final S, N, O, Si and Al levels and uses the total slag mass, the slag composition, the steel composition and the start temperature as optimization variables. The predicted optimal conditions agree well with industrial practice. For those conditions leading to the shortest process time the target compositions for S, N and O are reached almost simultaneously. PMID:28788286
Bioinformatics in translational drug discovery.
Wooller, Sarah K; Benstead-Hume, Graeme; Chen, Xiangrong; Ali, Yusuf; Pearl, Frances M G
2017-08-31
Bioinformatics approaches are becoming ever more essential in translational drug discovery both in academia and within the pharmaceutical industry. Computational exploitation of the increasing volumes of data generated during all phases of drug discovery is enabling key challenges of the process to be addressed. Here, we highlight some of the areas in which bioinformatics resources and methods are being developed to support the drug discovery pipeline. These include the creation of large data warehouses, bioinformatics algorithms to analyse 'big data' that identify novel drug targets and/or biomarkers, programs to assess the tractability of targets, and prediction of repositioning opportunities that use licensed drugs to treat additional indications. © 2017 The Author(s).
Geometric saliency to characterize radar exploitation performance
NASA Astrophysics Data System (ADS)
Nolan, Adam; Keserich, Brad; Lingg, Andrew; Goley, Steve
2014-06-01
Based on the fundamental scattering mechanisms of facetized computer-aided design (CAD) models, we are able to define expected contributions (EC) to the radar signature. The net result of this analysis is the prediction of the salient aspects and contributing vehicle morphology based on the aspect. Although this approach does not provide the fidelity of an asymptotic electromagnetic (EM) simulation, it does provide very fast estimates of the unique scattering that can be consumed by a signature exploitation algorithm. The speed of this approach is particularly relevant when considering the high dimensionality of target configuration variability due to articulating parts which are computationally burdensome to predict. The key scattering phenomena considered in this work are the specular response from a single bounce interaction with surfaces and dihedral response formed between the ground plane and vehicle. Results of this analysis are demonstrated for a set of civilian target models.
Carré, Clément; Mas, André; Krouk, Gabriel
2017-01-01
Inferring transcriptional gene regulatory networks from transcriptomic datasets is a key challenge of systems biology, with potential impacts ranging from medicine to agronomy. There are several techniques used presently to experimentally assay transcription factors to target relationships, defining important information about real gene regulatory networks connections. These techniques include classical ChIP-seq, yeast one-hybrid, or more recently, DAP-seq or target technologies. These techniques are usually used to validate algorithm predictions. Here, we developed a reverse engineering approach based on mathematical and computer simulation to evaluate the impact that this prior knowledge on gene regulatory networks may have on training machine learning algorithms. First, we developed a gene regulatory networks-simulating engine called FRANK (Fast Randomizing Algorithm for Network Knowledge) that is able to simulate large gene regulatory networks (containing 10 4 genes) with characteristics of gene regulatory networks observed in vivo. FRANK also generates stable or oscillatory gene expression directly produced by the simulated gene regulatory networks. The development of FRANK leads to important general conclusions concerning the design of large and stable gene regulatory networks harboring scale free properties (built ex nihilo). In combination with supervised (accepting prior knowledge) support vector machine algorithm we (i) address biologically oriented questions concerning our capacity to accurately reconstruct gene regulatory networks and in particular we demonstrate that prior-knowledge structure is crucial for accurate learning, and (ii) draw conclusions to inform experimental design to performed learning able to solve gene regulatory networks in the future. By demonstrating that our predictions concerning the influence of the prior-knowledge structure on support vector machine learning capacity holds true on real data ( Escherichia coli K14 network reconstruction using network and transcriptomic data), we show that the formalism used to build FRANK can to some extent be a reasonable model for gene regulatory networks in real cells.
Robust human detection, tracking, and recognition in crowded urban areas
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2014-06-01
In this paper, we present algorithms we recently developed to support an automated security surveillance system for very crowded urban areas. In our approach for human detection, the color features are obtained by taking the difference of R, G, B spectrum and converting R, G, B to HSV (Hue, Saturation, Value) space. Morphological patch filtering and regional minimum and maximum segmentation on the extracted features are applied for target detection. The human tracking process approach includes: 1) Color and intensity feature matching track candidate selection; 2) Separate three parallel trackers for color, bright (above mean intensity), and dim (below mean intensity) detections, respectively; 3) Adaptive track gate size selection for reducing false tracking probability; and 4) Forward position prediction based on previous moving speed and direction for continuing tracking even when detections are missed from frame to frame. The Human target recognition is improved with a Super-Resolution Image Enhancement (SRIE) process. This process can improve target resolution by 3-5 times and can simultaneously process many targets that are tracked. Our approach can project tracks from one camera to another camera with a different perspective viewing angle to obtain additional biometric features from different perspective angles, and to continue tracking the same person from the 2nd camera even though the person moved out of the Field of View (FOV) of the 1st camera with `Tracking Relay'. Finally, the multiple cameras at different view poses have been geo-rectified to nadir view plane and geo-registered with Google- Earth (or other GIS) to obtain accurate positions (latitude, longitude, and altitude) of the tracked human for pin-point targeting and for a large area total human motion activity top-view. Preliminary tests of our algorithms indicate than high probability of detection can be achieved for both moving and stationary humans. Our algorithms can simultaneously track more than 100 human targets with averaged tracking period (time length) longer than the performance of the current state-of-the-art.
Visual Detection and Tracking System for a Spherical Amphibious Robot
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-01-01
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation. PMID:28420134
Visual Detection and Tracking System for a Spherical Amphibious Robot.
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-04-15
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.
Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer
Young, Jonathan H.; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D.; White, Michael A.; Marcotte, Edward M.
2016-01-01
Motivation: Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Results: Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. Availability and implementation: The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper. Contact: marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26755624
Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer.
Young, Jonathan H; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D; White, Michael A; Marcotte, Edward M
2016-05-01
Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Small target detection using bilateral filter and temporal cross product in infrared images
NASA Astrophysics Data System (ADS)
Bae, Tae-Wuk
2011-09-01
We introduce a spatial and temporal target detection method using spatial bilateral filter (BF) and temporal cross product (TCP) of temporal pixels in infrared (IR) image sequences. At first, the TCP is presented to extract the characteristics of temporal pixels by using temporal profile in respective spatial coordinates of pixels. The TCP represents the cross product values by the gray level distance vector of a current temporal pixel and the adjacent temporal pixel, as well as the horizontal distance vector of the current temporal pixel and a temporal pixel corresponding to potential target center. The summation of TCP values of temporal pixels in spatial coordinates makes the temporal target image (TTI), which represents the temporal target information of temporal pixels in spatial coordinates. And then the proposed BF filter is used to extract the spatial target information. In order to predict background without targets, the proposed BF filter uses standard deviations obtained by an exponential mapping of the TCP value corresponding to the coordinate of a pixel processed spatially. The spatial target image (STI) is made by subtracting the predicted image from the original image. Thus, the spatial and temporal target image (STTI) is achieved by multiplying the STI and the TTI, and then targets finally are detected in STTI. In experimental result, the receiver operating characteristics (ROC) curves were computed experimentally to compare the objective performance. From the results, the proposed algorithm shows better discrimination of target and clutters and lower false alarm rates than the existing target detection methods.
Infrared measurement and composite tracking algorithm for air-breathing hypersonic vehicles
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Gao, Changsheng; Jing, Wuxing
2018-03-01
Air-breathing hypersonic vehicles have capabilities of hypersonic speed and strong maneuvering, and thus pose a significant challenge to conventional tracking methodologies. To achieve desirable tracking performance for hypersonic targets, this paper investigates the problems related to measurement model design and tracking model mismatching. First, owing to the severe aerothermal effect of hypersonic motion, an infrared measurement model in near space is designed and analyzed based on target infrared radiation and an atmospheric model. Second, using information from infrared sensors, a composite tracking algorithm is proposed via a combination of the interactive multiple models (IMM) algorithm, fitting dynamics model, and strong tracking filter. During the procedure, the IMMs algorithm generates tracking data to establish a fitting dynamics model of the target. Then, the strong tracking unscented Kalman filter is employed to estimate the target states for suppressing the impact of target maneuvers. Simulations are performed to verify the feasibility of the presented composite tracking algorithm. The results demonstrate that the designed infrared measurement model effectively and continuously observes hypersonic vehicles, and the proposed composite tracking algorithm accurately and stably tracks these targets.
Foliage penetration by using 4-D point cloud data
NASA Astrophysics Data System (ADS)
Méndez Rodríguez, Javier; Sánchez-Reyes, Pedro J.; Cruz-Rivera, Sol M.
2012-06-01
Real-time awareness and rapid target detection are critical for the success of military missions. New technologies capable of detecting targets concealed in forest areas are needed in order to track and identify possible threats. Currently, LAser Detection And Ranging (LADAR) systems are capable of detecting obscured targets; however, tracking capabilities are severely limited. Now, a new LADAR-derived technology is under development to generate 4-D datasets (3-D video in a point cloud format). As such, there is a new need for algorithms that are able to process data in real time. We propose an algorithm capable of removing vegetation and other objects that may obfuscate concealed targets in a real 3-D environment. The algorithm is based on wavelets and can be used as a pre-processing step in a target recognition algorithm. Applications of the algorithm in a real-time 3-D system could help make pilots aware of high risk hidden targets such as tanks and weapons, among others. We will be using a 4-D simulated point cloud data to demonstrate the capabilities of our algorithm.
NASA Astrophysics Data System (ADS)
TayyebTaher, M.; Esmaeilzadeh, S. Majid
2017-07-01
This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.
Machine learning strategy for accelerated design of polymer dielectrics
Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; ...
2016-02-15
The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further,more » a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.« less
NASA Astrophysics Data System (ADS)
Wasserman, Richard Marc
The radiation therapy treatment planning (RTTP) process may be subdivided into three planning stages: gross tumor delineation, clinical target delineation, and modality dependent target definition. The research presented will focus on the first two planning tasks. A gross tumor target delineation methodology is proposed which focuses on the integration of MRI, CT, and PET imaging data towards the generation of a mathematically optimal tumor boundary. The solution to this problem is formulated within a framework integrating concepts from the fields of deformable modelling, region growing, fuzzy logic, and data fusion. The resulting fuzzy fusion algorithm can integrate both edge and region information from multiple medical modalities to delineate optimal regions of pathological tissue content. The subclinical boundaries of an infiltrating neoplasm cannot be determined explicitly via traditional imaging methods and are often defined to extend a fixed distance from the gross tumor boundary. In order to improve the clinical target definition process an estimation technique is proposed via which tumor growth may be modelled and subclinical growth predicted. An in vivo, macroscopic primary brain tumor growth model is presented, which may be fit to each patient undergoing treatment, allowing for the prediction of future growth and consequently the ability to estimate subclinical local invasion. Additionally, the patient specific in vivo tumor model will be of significant utility in multiple diagnostic clinical applications.
Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research
Tang, Haijing; Liang, Yu; Huang, Zhongnan; Wang, Taoyi; He, Lin; Du, Yicong; Ding, Gangyi
2016-01-01
The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction. PMID:27872637
2012-01-01
Background Multi-target therapeutics has been shown to be effective for treating complex diseases, and currently, it is a common practice to combine multiple drugs to treat such diseases to optimize the therapeutic outcomes. However, considering the huge number of possible ways to mix multiple drugs at different concentrations, it is practically difficult to identify the optimal drug combination through exhaustive testing. Results In this paper, we propose a novel stochastic search algorithm, called the adaptive reference update (ARU) algorithm, that can provide an efficient and systematic way for optimizing multi-drug cocktails. The ARU algorithm iteratively updates the drug combination to improve its response, where the update is made by comparing the response of the current combination with that of a reference combination, based on which the beneficial update direction is predicted. The reference combination is continuously updated based on the drug response values observed in the past, thereby adapting to the underlying drug response function. To demonstrate the effectiveness of the proposed algorithm, we evaluated its performance based on various multi-dimensional drug functions and compared it with existing algorithms. Conclusions Simulation results show that the ARU algorithm significantly outperforms existing stochastic search algorithms, including the Gur Game algorithm. In fact, the ARU algorithm can more effectively identify potent drug combinations and it typically spends fewer iterations for finding effective combinations. Furthermore, the ARU algorithm is robust to random fluctuations and noise in the measured drug response, which makes the algorithm well-suited for practical drug optimization applications. PMID:23134742
Soares, Jaqueline S.; Barman, Ishan; Dingari, Narahara Chari; Volynskaya, Zoya; Liu, Wendy; Klein, Nina; Plecha, Donna; Dasari, Ramachandra R.; Fitzmaurice, Maryann
2013-01-01
Microcalcifications geographically target the location of abnormalities within the breast and are of critical importance in breast cancer diagnosis. However, despite stereotactic guidance, core needle biopsy fails to retrieve microcalcifications in up to 15% of patients. Here, we introduce an approach based on diffuse reflectance spectroscopy for detection of microcalcifications that focuses on variations in optical absorption stemming from the calcified clusters and the associated cross-linking molecules. In this study, diffuse reflectance spectra are acquired ex vivo from 203 sites in fresh biopsy tissue cores from 23 patients undergoing stereotactic breast needle biopsies. By correlating the spectra with the corresponding radiographic and histologic assessment, we have developed a support vector machine-derived decision algorithm, which shows high diagnostic power (positive predictive value and negative predictive value of 97% and 88%, respectively) for diagnosis of lesions with microcalcifications. We further show that these results are robust and not due to any spurious correlations. We attribute our findings to the presence of proteins (such as elastin), and desmosine and isodesmosine cross-linkers in the microcalcifications. It is important to note that the performance of the diffuse reflectance decision algorithm is comparable to one derived from the corresponding Raman spectra, and the considerably higher intensity of the reflectance signal enables the detection of the targeted lesions in a fraction of the spectral acquisition time. Our findings create a unique landscape for spectroscopic validation of breast core needle biopsy for detection of microcalcifications that can substantially improve the likelihood of an adequate, diagnostic biopsy in the first attempt. PMID:23267090
A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.
Ni, Qianwu; Chen, Lei
2017-01-01
Correct prediction of protein structural class is beneficial to investigation on protein functions, regulations and interactions. In recent years, several computational methods have been proposed in this regard. However, based on various features, it is still a great challenge to select proper classification algorithm and extract essential features to participate in classification. In this study, a feature and algorithm selection method was presented for improving the accuracy of protein structural class prediction. The amino acid compositions and physiochemical features were adopted to represent features and thirty-eight machine learning algorithms collected in Weka were employed. All features were first analyzed by a feature selection method, minimum redundancy maximum relevance (mRMR), producing a feature list. Then, several feature sets were constructed by adding features in the list one by one. For each feature set, thirtyeight algorithms were executed on a dataset, in which proteins were represented by features in the set. The predicted classes yielded by these algorithms and true class of each protein were collected to construct a dataset, which were analyzed by mRMR method, yielding an algorithm list. From the algorithm list, the algorithm was taken one by one to build an ensemble prediction model. Finally, we selected the ensemble prediction model with the best performance as the optimal ensemble prediction model. Experimental results indicate that the constructed model is much superior to models using single algorithm and other models that only adopt feature selection procedure or algorithm selection procedure. The feature selection procedure or algorithm selection procedure are really helpful for building an ensemble prediction model that can yield a better performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Liu, Zhao; Zhu, Yunhong; Wu, Chenxue
2016-01-01
Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502
Economic evaluation of targeted cancer interventions: critical review and recommendations.
Elkin, Elena B; Marshall, Deborah A; Kulin, Nathalie A; Ferrusi, Ilia L; Hassett, Michael J; Ladabaum, Uri; Phillips, Kathryn A
2011-10-01
Scientific advances have improved our ability to target cancer interventions to individuals who will benefit most and spare the risks and costs to those who will derive little benefit or even be harmed. Several approaches are currently used for targeting interventions for cancer risk reduction, screening, and treatment, including risk prediction algorithms for identifying high-risk subgroups and diagnostic tests for tumor markers and germline genetic mutations. Economic evaluation can inform decisions about the use of targeted interventions, which may be more costly than traditional strategies. However, assessing the impact of a targeted intervention on costs and health outcomes requires explicit consideration of the method of targeting. In this study, we describe the importance of this principle by reviewing published cost-effectiveness analyses of targeted interventions in breast cancer. Few studies we identified explicitly evaluated the relationships among the method of targeting, the accuracy of the targeting test, and outcomes of the targeted intervention. Those that did found that characteristics of targeting tests had a substantial impact on outcomes. We posit that the method of targeting and the outcomes of a targeted intervention are inextricably linked and recommend that cost-effectiveness analyses of targeted interventions explicitly consider costs and outcomes of the method of targeting.
Two novel motion-based algorithms for surveillance video analysis on embedded platforms
NASA Astrophysics Data System (ADS)
Vijverberg, Julien A.; Loomans, Marijn J. H.; Koeleman, Cornelis J.; de With, Peter H. N.
2010-05-01
This paper proposes two novel motion-vector based techniques for target detection and target tracking in surveillance videos. The algorithms are designed to operate on a resource-constrained device, such as a surveillance camera, and to reuse the motion vectors generated by the video encoder. The first novel algorithm for target detection uses motion vectors to construct a consistent motion mask, which is combined with a simple background segmentation technique to obtain a segmentation mask. The second proposed algorithm aims at multi-target tracking and uses motion vectors to assign blocks to targets employing five features. The weights of these features are adapted based on the interaction between targets. These algorithms are combined in one complete analysis application. The performance of this application for target detection has been evaluated for the i-LIDS sterile zone dataset and achieves an F1-score of 0.40-0.69. The performance of the analysis algorithm for multi-target tracking has been evaluated using the CAVIAR dataset and achieves an MOTP of around 9.7 and MOTA of 0.17-0.25. On a selection of targets in videos from other datasets, the achieved MOTP and MOTA are 8.8-10.5 and 0.32-0.49 respectively. The execution time on a PC-based platform is 36 ms. This includes the 20 ms for generating motion vectors, which are also required by the video encoder.
Real time target allocation in cooperative unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kudleppanavar, Ganesh
The prolific development of Unmanned Aerial Vehicles (UAV's) in recent years has the potential to provide tremendous advantages in military, commercial and law enforcement applications. While safety and performance take precedence in the development lifecycle, autonomous operations and, in particular, cooperative missions have the ability to significantly enhance the usability of these vehicles. The success of cooperative missions relies on the optimal allocation of targets while taking into consideration the resource limitation of each vehicle. The task allocation process can be centralized or decentralized. This effort presents the development of a real time target allocation algorithm that considers available stored energy in each vehicle while minimizing the communication between each UAV. The algorithm utilizes a nearest neighbor search algorithm to locate new targets with respect to existing targets. Simulations show that this novel algorithm compares favorably to the mixed integer linear programming method, which is computationally more expensive. The implementation of this algorithm on Arduino and Xbee wireless modules shows the capability of the algorithm to execute efficiently on hardware with minimum computation complexity.
PsRobot: a web-based plant small RNA meta-analysis toolbox.
Wu, Hua-Jun; Ma, Ying-Ke; Chen, Tong; Wang, Meng; Wang, Xiu-Jie
2012-07-01
Small RNAs (smRNAs) in plants, mainly microRNAs and small interfering RNAs, play important roles in both transcriptional and post-transcriptional gene regulation. The broad application of high-throughput sequencing technology has made routinely generation of bulk smRNA sequences in laboratories possible, thus has significantly increased the need for batch analysis tools. PsRobot is a web-based easy-to-use tool dedicated to the identification of smRNAs with stem-loop shaped precursors (such as microRNAs and short hairpin RNAs) and their target genes/transcripts. It performs fast analysis to identify smRNAs with stem-loop shaped precursors among batch input data and predicts their targets using a modified Smith-Waterman algorithm. PsRobot integrates the expression data of smRNAs in major plant smRNA biogenesis gene mutants and smRNA-associated protein complexes to give clues to the smRNA generation and functional processes. Besides improved specificity, the reliability of smRNA target prediction results can also be evaluated by mRNA cleavage (degradome) data. The cross species conservation statuses and the multiplicity of smRNA target sites are also provided. PsRobot is freely accessible at http://omicslab.genetics.ac.cn/psRobot/.
Wang, Wensheng; Nie, Ting; Fu, Tianjiao; Ren, Jianyue; Jin, Longxu
2017-05-06
In target detection of optical remote sensing images, two main obstacles for aircraft target detection are how to extract the candidates in complex gray-scale-multi background and how to confirm the targets in case the target shapes are deformed, irregular or asymmetric, such as that caused by natural conditions (low signal-to-noise ratio, illumination condition or swaying photographing) and occlusion by surrounding objects (boarding bridge, equipment). To solve these issues, an improved active contours algorithm, namely region-scalable fitting energy based threshold (TRSF), and a corner-convex hull based segmentation algorithm (CCHS) are proposed in this paper. Firstly, the maximal variance between-cluster algorithm (Otsu's algorithm) and region-scalable fitting energy (RSF) algorithm are combined to solve the difficulty of targets extraction in complex and gray-scale-multi backgrounds. Secondly, based on inherent shapes and prominent corners, aircrafts are divided into five fragments by utilizing convex hulls and Harris corner points. Furthermore, a series of new structure features, which describe the proportion of targets part in the fragment to the whole fragment and the proportion of fragment to the whole hull, are identified to judge whether the targets are true or not. Experimental results show that TRSF algorithm could improve extraction accuracy in complex background, and that it is faster than some traditional active contours algorithms. The CCHS is effective to suppress the detection difficulties caused by the irregular shape.
Application of XGBoost algorithm in hourly PM2.5 concentration prediction
NASA Astrophysics Data System (ADS)
Pan, Bingyue
2018-02-01
In view of prediction techniques of hourly PM2.5 concentration in China, this paper applied the XGBoost(Extreme Gradient Boosting) algorithm to predict hourly PM2.5 concentration. The monitoring data of air quality in Tianjin city was analyzed by using XGBoost algorithm. The prediction performance of the XGBoost method is evaluated by comparing observed and predicted PM2.5 concentration using three measures of forecast accuracy. The XGBoost method is also compared with the random forest algorithm, multiple linear regression, decision tree regression and support vector machines for regression models using computational results. The results demonstrate that the XGBoost algorithm outperforms other data mining methods.
Experimental verification of an interpolation algorithm for improved estimates of animal position
NASA Astrophysics Data System (ADS)
Schell, Chad; Jaffe, Jules S.
2004-07-01
This article presents experimental verification of an interpolation algorithm that was previously proposed in Jaffe [J. Acoust. Soc. Am. 105, 3168-3175 (1999)]. The goal of the algorithm is to improve estimates of both target position and target strength by minimizing a least-squares residual between noise-corrupted target measurement data and the output of a model of the sonar's amplitude response to a target at a set of known locations. Although this positional estimator was shown to be a maximum likelihood estimator, in principle, experimental verification was desired because of interest in understanding its true performance. Here, the accuracy of the algorithm is investigated by analyzing the correspondence between a target's true position and the algorithm's estimate. True target position was measured by precise translation of a small test target (bead) or from the analysis of images of fish from a coregistered optical imaging system. Results with the stationary spherical test bead in a high signal-to-noise environment indicate that a large increase in resolution is possible, while results with commercial aquarium fish indicate a smaller increase is obtainable. However, in both experiments the algorithm provides improved estimates of target position over those obtained by simply accepting the angular positions of the sonar beam with maximum output as target position. In addition, increased accuracy in target strength estimation is possible by considering the effects of the sonar beam patterns relative to the interpolated position. A benefit of the algorithm is that it can be applied ``ex post facto'' to existing data sets from commercial multibeam sonar systems when only the beam intensities have been stored after suitable calibration.
Controlling infectious disease through the targeted manipulation of contact network structure
Gates, M. Carolyn; Woolhouse, Mark E.J.
2015-01-01
Individuals in human and animal populations are linked through dynamic contact networks with characteristic structural features that drive the epidemiology of directly transmissible infectious diseases. Using animal movement data from the British cattle industry as an example, this analysis explores whether disease dynamics can be altered by placing targeted restrictions on contact formation to reconfigure network topology. This was accomplished using a simple network generation algorithm that combined configuration wiring with stochastic block modelling techniques to preserve the weighted in- and out-degree of individual nodes (farms) as well as key demographic characteristics of the individual network connections (movement date, livestock market, and animal production type). We then tested a control strategy based on introducing additional constraints into the network generation algorithm to prevent farms with a high in-degree from selling cattle to farms with a high out-degree as these particular network connections are predicted to have a disproportionately strong role in spreading disease. Results from simple dynamic disease simulation models predicted significantly lower endemic disease prevalences on the trade restricted networks compared to the baseline generated networks. As expected, the relative magnitude of the predicted changes in endemic prevalence was greater for diseases with short infectious periods and low transmission probabilities. Overall, our study findings demonstrate that there is significant potential for controlling multiple infectious diseases simultaneously by manipulating networks to have more epidemiologically favourable topological configurations. Further research is needed to determine whether the economic and social benefits of controlling disease can justify the costs of restricting contact formation. PMID:26342238
Controlling infectious disease through the targeted manipulation of contact network structure.
Gates, M Carolyn; Woolhouse, Mark E J
2015-09-01
Individuals in human and animal populations are linked through dynamic contact networks with characteristic structural features that drive the epidemiology of directly transmissible infectious diseases. Using animal movement data from the British cattle industry as an example, this analysis explores whether disease dynamics can be altered by placing targeted restrictions on contact formation to reconfigure network topology. This was accomplished using a simple network generation algorithm that combined configuration wiring with stochastic block modelling techniques to preserve the weighted in- and out-degree of individual nodes (farms) as well as key demographic characteristics of the individual network connections (movement date, livestock market, and animal production type). We then tested a control strategy based on introducing additional constraints into the network generation algorithm to prevent farms with a high in-degree from selling cattle to farms with a high out-degree as these particular network connections are predicted to have a disproportionately strong role in spreading disease. Results from simple dynamic disease simulation models predicted significantly lower endemic disease prevalences on the trade restricted networks compared to the baseline generated networks. As expected, the relative magnitude of the predicted changes in endemic prevalence was greater for diseases with short infectious periods and low transmission probabilities. Overall, our study findings demonstrate that there is significant potential for controlling multiple infectious diseases simultaneously by manipulating networks to have more epidemiologically favourable topological configurations. Further research is needed to determine whether the economic and social benefits of controlling disease can justify the costs of restricting contact formation. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-01-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2-D models and computing single organ deformations. In this study, 3-D comprehensive patient-specific non-linear biomechanical models implemented using Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms are applied to predict a 3-D deformation field for whole-body image registration. Unlike a conventional approach which requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the Fuzzy C-Means (FCM) algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. PMID:26791945
Salience Assignment for Multiple-Instance Data and Its Application to Crop Yield Prediction
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran
2010-01-01
An algorithm was developed to generate crop yield predictions from orbital remote sensing observations, by analyzing thousands of pixels per county and the associated historical crop yield data for those counties. The algorithm determines which pixels contain which crop. Since each known yield value is associated with thousands of individual pixels, this is a multiple instance learning problem. Because individual crop growth is related to the resulting yield, this relationship has been leveraged to identify pixels that are individually related to corn, wheat, cotton, and soybean yield. Those that have the strongest relationship to a given crop s yield values are most likely to contain fields with that crop. Remote sensing time series data (a new observation every 8 days) was examined for each pixel, which contains information for that pixel s growth curve, peak greenness, and other relevant features. An alternating-projection (AP) technique was used to first estimate the "salience" of each pixel, with respect to the given target (crop yield), and then those estimates were used to build a regression model that relates input data (remote sensing observations) to the target. This is achieved by constructing an exemplar for each crop in each county that is a weighted average of all the pixels within the county; the pixels are weighted according to the salience values. The new regression model estimate then informs the next estimate of the salience values. By iterating between these two steps, the algorithm converges to a stable estimate of both the salience of each pixel and the regression model. The salience values indicate which pixels are most relevant to each crop under consideration.
AAA gunnermodel based on observer theory. [predicting a gunner's tracking response
NASA Technical Reports Server (NTRS)
Kou, R. S.; Glass, B. C.; Day, C. N.; Vikmanis, M. M.
1978-01-01
The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories.
NASA Astrophysics Data System (ADS)
Yadav, Deepti; Arora, M. K.; Tiwari, K. C.; Ghosh, J. K.
2016-04-01
Hyperspectral imaging is a powerful tool in the field of remote sensing and has been used for many applications like mineral detection, detection of landmines, target detection etc. Major issues in target detection using HSI are spectral variability, noise, small size of the target, huge data dimensions, high computation cost, complex backgrounds etc. Many of the popular detection algorithms do not work for difficult targets like small, camouflaged etc. and may result in high false alarms. Thus, target/background discrimination is a key issue and therefore analyzing target's behaviour in realistic environments is crucial for the accurate interpretation of hyperspectral imagery. Use of standard libraries for studying target's spectral behaviour has limitation that targets are measured in different environmental conditions than application. This study uses the spectral data of the same target which is used during collection of the HSI image. This paper analyze spectrums of targets in a way that each target can be spectrally distinguished from a mixture of spectral data. Artificial neural network (ANN) has been used to identify the spectral range for reducing data and further its efficacy for improving target detection is verified. The results of ANN proposes discriminating band range for targets; these ranges were further used to perform target detection using four popular spectral matching target detection algorithm. Further, the results of algorithms were analyzed using ROC curves to evaluate the effectiveness of the ranges suggested by ANN over full spectrum for detection of desired targets. In addition, comparative assessment of algorithms is also performed using ROC.
On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks.
Yu, Jiguo; Chen, Ying; Ma, Liran; Huang, Baogui; Cheng, Xiuzhen
2016-01-15
Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTC k) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTC k) and a distributed connected target k-coverage algorithm (DCTC k) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs.
Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty
NASA Technical Reports Server (NTRS)
Li, Wu; Padula, Sharon
2004-01-01
This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.
Application of Micro-segmentation Algorithms to the Healthcare Market:A Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R; Aline, Frank
We draw inspiration from the recent success of loyalty programs and targeted personalized market campaigns of retail companies such as Kroger, Netflix, etc. to understand beneficiary behaviors in the healthcare system. Our posit is that we can emulate the financial success the companies have achieved by better understanding and predicting customer behaviors and translating such success to healthcare operations. Towards that goal, we survey current practices in market micro-segmentation research and analyze health insurance claims data using those algorithms. We present results and insights from micro-segmentation of the beneficiaries using different techniques and discuss how the interpretation can assist withmore » matching the cost-effective insurance payment models to the beneficiary micro-segments.« less
How Open Data Shapes In Silico Transporter Modeling.
Montanari, Floriane; Zdrazil, Barbara
2017-03-07
Chemical compound bioactivity and related data are nowadays easily available from open data sources and the open medicinal chemistry literature for many transmembrane proteins. Computational ligand-based modeling of transporters has therefore experienced a shift from local (quantitative) models to more global, qualitative, predictive models. As the size and heterogeneity of the data set rises, careful data curation becomes even more important. This includes, for example, not only a tailored cutoff setting for the generation of binary classes, but also the proper assessment of the applicability domain. Powerful machine learning algorithms (such as multi-label classification) now allow the simultaneous prediction of multiple related targets. However, the more complex, the less interpretable these models will get. We emphasize that transmembrane transporters are very peculiar, some of which act as off-targets rather than as real drug targets. Thus, careful selection of the right modeling technique is important, as well as cautious interpretation of results. We hope that, as more and more data will become available, we will be able to ameliorate and specify our models, coming closer towards function elucidation and the development of safer medicine.
Study of moving object detecting and tracking algorithm for video surveillance system
NASA Astrophysics Data System (ADS)
Wang, Tao; Zhang, Rongfu
2010-10-01
This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.
Early photosensitizer uptake kinetics predict optimum drug-light interval for photodynamic therapy
NASA Astrophysics Data System (ADS)
Sinha, Lagnojita; Elliott, Jonathan T.; Hasan, Tayyaba; Pogue, Brian W.; Samkoe, Kimberley S.; Tichauer, Kenneth M.
2015-03-01
Photodynamic therapy (PDT) has shown promising results in targeted treatment of cancerous cells by developing localized toxicity with the help of light induced generation of reactive molecular species. The efficiency of this therapy depends on the product of the intensity of light dose and the concentration of photosensitizer (PS) in the region of interest (ROI). On account of this, the dynamic and variable nature of PS delivery and retention depends on many physiological factors that are known to be heterogeneous within and amongst tumors (e.g., blood flow, blood volume, vascular permeability, and lymph drainage rate). This presents a major challenge with respect to how the optimal time and interval of light delivery is chosen, which ideally would be when the concentration of PS molecule is at its maximum in the ROI. In this paper, a predictive algorithm is developed that takes into consideration the variability and dynamic nature of PS distribution in the body on a region-by-region basis and provides an estimate of the optimum time when the PS concentration will be maximum in the ROI. The advantage of the algorithm lies in the fact that it predicts the time in advance as it takes only a sample of initial data points (~12 min) as input. The optimum time calculated using the algorithm estimated a maximum dose that was only 0.58 +/- 1.92% under the true maximum dose compared to a mean dose error of 39.85 +/- 6.45% if a 1 h optimal light deliver time was assumed for patients with different efflux rate constants of the PS, assuming they have the same plasma function. Therefore, if the uptake values of PS for the blood and the ROI is known for only first 12 minutes, the entire curve along with the optimum time of light radiation can be predicted with the help of this algorithm.
A High Performance Cloud-Based Protein-Ligand Docking Prediction Algorithm
Chen, Jui-Le; Yang, Chu-Sing
2013-01-01
The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA), is presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance operators: (1) the novel migration (information exchange) operator is designed specially for cloud-based environments to reduce the computation time; (2) the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation time and the quality of the end result. PMID:23762864
Application-Specific Graph Sampling for Frequent Subgraph Mining and Community Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Sumit; Choudhury, Sutanay; Holder, Lawrence B.
Graph mining is an important data analysis methodology, but struggles as the input graph size increases. The scalability and usability challenges posed by such large graphs make it imperative to sample the input graph and reduce its size. The critical challenge in sampling is to identify the appropriate algorithm to insure the resulting analysis does not suffer heavily from the data reduction. Predicting the expected performance degradation for a given graph and sampling algorithm is also useful. In this paper, we present different sampling approaches for graph mining applications such as Frequent Subgrpah Mining (FSM), and Community Detection (CD). Wemore » explore graph metrics such as PageRank, Triangles, and Diversity to sample a graph and conclude that for heterogeneous graphs Triangles and Diversity perform better than degree based metrics. We also present two new sampling variations for targeted graph mining applications. We present empirical results to show that knowledge of the target application, along with input graph properties can be used to select the best sampling algorithm. We also conclude that performance degradation is an abrupt, rather than gradual phenomena, as the sample size decreases. We present the empirical results to show that the performance degradation follows a logistic function.« less
NASA Astrophysics Data System (ADS)
Irsch, Kristina; Lee, Soohyun; Bose, Sanjukta N.; Kang, Jin U.
2018-02-01
We present an optical coherence tomography (OCT) imaging system that effectively compensates unwanted axial motion with micron-scale accuracy. The OCT system is based on a swept-source (SS) engine (1060-nm center wavelength, 100-nm full-width sweeping bandwidth, and 100-kHz repetition rate), with axial and lateral resolutions of about 4.5 and 8.5 microns respectively. The SS-OCT system incorporates a distance sensing method utilizing an envelope-based surface detection algorithm. The algorithm locates the target surface from the B-scans, taking into account not just the first or highest peak but the entire signature of sequential A-scans. Subsequently, a Kalman filter is applied as predictor to make up for system latencies, before sending the calculated position information to control a linear motor, adjusting and maintaining a fixed system-target distance. To test system performance, the motioncorrection algorithm was compared to earlier, more basic peak-based surface detection methods and to performing no motion compensation. Results demonstrate increased robustness and reproducibility, particularly noticeable in multilayered tissues, while utilizing the novel technique. Implementing such motion compensation into clinical OCT systems may thus improve the reliability of objective and quantitative information that can be extracted from OCT measurements.
Interactive searching of facial image databases
NASA Astrophysics Data System (ADS)
Nicholls, Robert A.; Shepherd, John W.; Shepherd, Jean
1995-09-01
A set of psychological facial descriptors has been devised to enable computerized searching of criminal photograph albums. The descriptors have been used to encode image databased of up to twelve thousand images. Using a system called FACES, the databases are searched by translating a witness' verbal description into corresponding facial descriptors. Trials of FACES have shown that this coding scheme is more productive and efficient than searching traditional photograph albums. An alternative method of searching the encoded database using a genetic algorithm is currenly being tested. The genetic search method does not require the witness to verbalize a description of the target but merely to indicate a degree of similarity between the target and a limited selection of images from the database. The major drawback of FACES is that is requires a manual encoding of images. Research is being undertaken to automate the process, however, it will require an algorithm which can predict human descriptive values. Alternatives to human derived coding schemes exist using statistical classifications of images. Since databases encoded using statistical classifiers do not have an obvious direct mapping to human derived descriptors, a search method which does not require the entry of human descriptors is required. A genetic search algorithm is being tested for such a purpose.
Decision-level fusion of SAR and IR sensor information for automatic target detection
NASA Astrophysics Data System (ADS)
Cho, Young-Rae; Yim, Sung-Hyuk; Cho, Hyun-Woong; Won, Jin-Ju; Song, Woo-Jin; Kim, So-Hyeon
2017-05-01
We propose a decision-level architecture that combines synthetic aperture radar (SAR) and an infrared (IR) sensor for automatic target detection. We present a new size-based feature, called target-silhouette to reduce the number of false alarms produced by the conventional target-detection algorithm. Boolean Map Visual Theory is used to combine a pair of SAR and IR images to generate the target-enhanced map. Then basic belief assignment is used to transform this map into a belief map. The detection results of sensors are combined to build the target-silhouette map. We integrate the fusion mass and the target-silhouette map on the decision level to exclude false alarms. The proposed algorithm is evaluated using a SAR and IR synthetic database generated by SE-WORKBENCH simulator, and compared with conventional algorithms. The proposed fusion scheme achieves higher detection rate and lower false alarm rate than the conventional algorithms.
Penalty dynamic programming algorithm for dim targets detection in sensor systems.
Huang, Dayu; Xue, Anke; Guo, Yunfei
2012-01-01
In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations.
Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill
2018-01-01
Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708
A test to evaluate the earthquake prediction algorithm, M8
Healy, John H.; Kossobokov, Vladimir G.; Dewey, James W.
1992-01-01
A test of the algorithm M8 is described. The test is constructed to meet four rules, which we propose to be applicable to the test of any method for earthquake prediction: 1. An earthquake prediction technique should be presented as a well documented, logical algorithm that can be used by investigators without restrictions. 2. The algorithm should be coded in a common programming language and implementable on widely available computer systems. 3. A test of the earthquake prediction technique should involve future predictions with a black box version of the algorithm in which potentially adjustable parameters are fixed in advance. The source of the input data must be defined and ambiguities in these data must be resolved automatically by the algorithm. 4. At least one reasonable null hypothesis should be stated in advance of testing the earthquake prediction method, and it should be stated how this null hypothesis will be used to estimate the statistical significance of the earthquake predictions. The M8 algorithm has successfully predicted several destructive earthquakes, in the sense that the earthquakes occurred inside regions with linear dimensions from 384 to 854 km that the algorithm had identified as being in times of increased probability for strong earthquakes. In addition, M8 has successfully "post predicted" high percentages of strong earthquakes in regions to which it has been applied in retroactive studies. The statistical significance of previous predictions has not been established, however, and post-prediction studies in general are notoriously subject to success-enhancement through hindsight. Nor has it been determined how much more precise an M8 prediction might be than forecasts and probability-of-occurrence estimates made by other techniques. We view our test of M8 both as a means to better determine the effectiveness of M8 and as an experimental structure within which to make observations that might lead to improvements in the algorithm or conceivably lead to a radically different approach to earthquake prediction.
NASA Astrophysics Data System (ADS)
Yi, Juan; Du, Qingyu; Zhang, Hong jiang; Zhang, Yao lei
2017-11-01
Target recognition is a leading key technology in intelligent image processing and application development at present, with the enhancement of computer processing ability, autonomous target recognition algorithm, gradually improve intelligence, and showed good adaptability. Taking the airport target as the research object, analysis the airport layout characteristics, construction of knowledge model, Gabor filter and Radon transform based on the target recognition algorithm of independent design, image processing and feature extraction of the airport, the algorithm was verified, and achieved better recognition results.
A traveling salesman approach for predicting protein functions.
Johnson, Olin; Liu, Jing
2006-10-12
Protein-protein interaction information can be used to predict unknown protein functions and to help study biological pathways. Here we present a new approach utilizing the classic Traveling Salesman Problem to study the protein-protein interactions and to predict protein functions in budding yeast Saccharomyces cerevisiae. We apply the global optimization tool from combinatorial optimization algorithms to cluster the yeast proteins based on the global protein interaction information. We then use this clustering information to help us predict protein functions. We use our algorithm together with the direct neighbor algorithm 1 on characterized proteins and compare the prediction accuracy of the two methods. We show our algorithm can produce better predictions than the direct neighbor algorithm, which only considers the immediate neighbors of the query protein. Our method is a promising one to be used as a general tool to predict functions of uncharacterized proteins and a successful sample of using computer science knowledge and algorithms to study biological problems.
A traveling salesman approach for predicting protein functions
Johnson, Olin; Liu, Jing
2006-01-01
Background Protein-protein interaction information can be used to predict unknown protein functions and to help study biological pathways. Results Here we present a new approach utilizing the classic Traveling Salesman Problem to study the protein-protein interactions and to predict protein functions in budding yeast Saccharomyces cerevisiae. We apply the global optimization tool from combinatorial optimization algorithms to cluster the yeast proteins based on the global protein interaction information. We then use this clustering information to help us predict protein functions. We use our algorithm together with the direct neighbor algorithm [1] on characterized proteins and compare the prediction accuracy of the two methods. We show our algorithm can produce better predictions than the direct neighbor algorithm, which only considers the immediate neighbors of the query protein. Conclusion Our method is a promising one to be used as a general tool to predict functions of uncharacterized proteins and a successful sample of using computer science knowledge and algorithms to study biological problems. PMID:17147783
General Quantum Meet-in-the-Middle Search Algorithm Based on Target Solution of Fixed Weight
NASA Astrophysics Data System (ADS)
Fu, Xiang-Qun; Bao, Wan-Su; Wang, Xiang; Shi, Jian-Hong
2016-10-01
Similar to the classical meet-in-the-middle algorithm, the storage and computation complexity are the key factors that decide the efficiency of the quantum meet-in-the-middle algorithm. Aiming at the target vector of fixed weight, based on the quantum meet-in-the-middle algorithm, the algorithm for searching all n-product vectors with the same weight is presented, whose complexity is better than the exhaustive search algorithm. And the algorithm can reduce the storage complexity of the quantum meet-in-the-middle search algorithm. Then based on the algorithm and the knapsack vector of the Chor-Rivest public-key crypto of fixed weight d, we present a general quantum meet-in-the-middle search algorithm based on the target solution of fixed weight, whose computational complexity is \\sumj = 0d {(O(\\sqrt {Cn - k + 1d - j }) + O(C_kj log C_k^j))} with Σd i =0 Ck i memory cost. And the optimal value of k is given. Compared to the quantum meet-in-the-middle search algorithm for knapsack problem and the quantum algorithm for searching a target solution of fixed weight, the computational complexity of the algorithm is lower. And its storage complexity is smaller than the quantum meet-in-the-middle-algorithm. Supported by the National Basic Research Program of China under Grant No. 2013CB338002 and the National Natural Science Foundation of China under Grant No. 61502526
Research on infrared small-target tracking technology under complex background
NASA Astrophysics Data System (ADS)
Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao
2012-10-01
In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.
Payne, Rupert A
2012-01-01
Cardiovascular disease is a major, growing, worldwide problem. It is important that individuals at risk of developing cardiovascular disease can be effectively identified and appropriately stratified according to risk. This review examines what we understand by the term risk, traditional and novel risk factors, clinical scoring systems, and the use of risk for informing prescribing decisions. Many different cardiovascular risk factors have been identified. Established, traditional factors such as ageing are powerful predictors of adverse outcome, and in the case of hypertension and dyslipidaemia are the major targets for therapeutic intervention. Numerous novel biomarkers have also been described, such as inflammatory and genetic markers. These have yet to be shown to be of value in improving risk prediction, but may represent potential therapeutic targets and facilitate more targeted use of existing therapies. Risk factors have been incorporated into several cardiovascular disease prediction algorithms, such as the Framingham equation, SCORE and QRISK. These have relatively poor predictive power, and uncertainties remain with regards to aspects such as choice of equation, different risk thresholds and the roles of relative risk, lifetime risk and reversible factors in identifying and treating at-risk individuals. Nonetheless, such scores provide objective and transparent means of quantifying risk and their integration into therapeutic guidelines enables equitable and cost-effective distribution of health service resources and improves the consistency and quality of clinical decision making. PMID:22348281
Zhang, Yang
2014-01-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. PMID:23760925
Zhang, Yang
2014-02-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. Copyright © 2013 Wiley Periodicals, Inc.
2014-01-01
Background We recently developed a freely available mobile app (TB Mobile) for both iOS and Android platforms that displays Mycobacterium tuberculosis (Mtb) active molecule structures and their targets with links to associated data. The app was developed to make target information available to as large an audience as possible. Results We now report a major update of the iOS version of the app. This includes enhancements that use an implementation of ECFP_6 fingerprints that we have made open source. Using these fingerprints, the user can propose compounds with possible anti-TB activity, and view the compounds within a cluster landscape. Proposed compounds can also be compared to existing target data, using a näive Bayesian scoring system to rank probable targets. We have curated an additional 60 new compounds and their targets for Mtb and added these to the original set of 745 compounds. We have also curated 20 further compounds (many without targets in TB Mobile) to evaluate this version of the app with 805 compounds and associated targets. Conclusions TB Mobile can now manage a small collection of compounds that can be imported from external sources, or exported by various means such as email or app-to-app inter-process communication. This means that TB Mobile can be used as a node within a growing ecosystem of mobile apps for cheminformatics. It can also cluster compounds and use internal algorithms to help identify potential targets based on molecular similarity. TB Mobile represents a valuable dataset, data-visualization aid and target prediction tool. PMID:25302078
Clark, Alex M; Sarker, Malabika; Ekins, Sean
2014-01-01
We recently developed a freely available mobile app (TB Mobile) for both iOS and Android platforms that displays Mycobacterium tuberculosis (Mtb) active molecule structures and their targets with links to associated data. The app was developed to make target information available to as large an audience as possible. We now report a major update of the iOS version of the app. This includes enhancements that use an implementation of ECFP_6 fingerprints that we have made open source. Using these fingerprints, the user can propose compounds with possible anti-TB activity, and view the compounds within a cluster landscape. Proposed compounds can also be compared to existing target data, using a näive Bayesian scoring system to rank probable targets. We have curated an additional 60 new compounds and their targets for Mtb and added these to the original set of 745 compounds. We have also curated 20 further compounds (many without targets in TB Mobile) to evaluate this version of the app with 805 compounds and associated targets. TB Mobile can now manage a small collection of compounds that can be imported from external sources, or exported by various means such as email or app-to-app inter-process communication. This means that TB Mobile can be used as a node within a growing ecosystem of mobile apps for cheminformatics. It can also cluster compounds and use internal algorithms to help identify potential targets based on molecular similarity. TB Mobile represents a valuable dataset, data-visualization aid and target prediction tool.
Nigatu, Yeshambel T; Liu, Yan; Wang, JianLi
2016-07-22
Multivariable risk prediction algorithms are useful for making clinical decisions and for health planning. While prediction algorithms for new onset of major depression in the primary care attendees in Europe and elsewhere have been developed, the performance of these algorithms in different populations is not known. The objective of this study was to validate the PredictD algorithm for new onset of major depressive episode (MDE) in the US general population. Longitudinal study design was conducted with approximate 3-year follow-up data from a nationally representative sample of the US general population. A total of 29,621 individuals who participated in Wave 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and who did not have an MDE in the past year at Wave 1 were included. The PredictD algorithm was directly applied to the selected participants. MDE was assessed by the Alcohol Use Disorder and Associated Disabilities Interview Schedule, based on the DSM-IV criteria. Among the participants, 8 % developed an MDE over three years. The PredictD algorithm had acceptable discriminative power (C-statistics = 0.708, 95 % CI: 0.696, 0.720), but poor calibration (p < 0.001) with the NESARC data. In the European primary care attendees, the algorithm had a C-statistics of 0.790 (95 % CI: 0.767, 0.813) with a perfect calibration. The PredictD algorithm has acceptable discrimination, but the calibration capacity was poor in the US general population despite of re-calibration. Therefore, based on the results, at current stage, the use of PredictD in the US general population for predicting individual risk of MDE is not encouraged. More independent validation research is needed.
Analysis of the Performance of a Laser Scanner for Predictive Automotive Applications
NASA Astrophysics Data System (ADS)
Zeisler, J.; Maas, H.-G.
2015-08-01
In this paper we evaluate the use of a laser scanner for future advanced driver assistance systems. We focus on the important task of predicting the target vehicle for longitudinal ego vehicle control. Our motivation is to decrease the reaction time of existing systems during cut-in maneuvers of other traffic participants. A state-of-the-art laser scanner, the Ibeo Scala B2 R , is presented, providing its sensing characteristics and the subsequent high level object data output. We evaluate the performance of the scanner towards object tracking with the help of a GPS real time kinematics system on a test track. Two designed scenarios show phases with constant distance and velocity as well as dynamic motion of the vehicles. We provide the results for the error in position and velocity of the scanner and furthermore, review our algorithm for target vehicle prediction. Finally we show the potential of the laser scanner with the estimated error, that leads to a decrease of up to 40% in reaction time with best conditions.
Glint-induced false alarm reduction in signature adaptive target detection
NASA Astrophysics Data System (ADS)
Crosby, Frank J.
2002-07-01
The signal adaptive target detection algorithm developed by Crosby and Riley uses target geometry to discern anomalies in local backgrounds. Detection is not restricted based on specific target signatures. The robustness of the algorithm is limited by an increased false alarm potential. The base algorithm is extended to eliminate one common source of false alarms in a littoral environment. This common source is glint reflected on the surface of water. The spectral and spatial transience of glint prevent straightforward characterization and complicate exclusion. However, the statistical basis of the detection algorithm and its inherent computations allow for glint discernment and the removal of its influence.
Target-type probability combining algorithms for multisensor tracking
NASA Astrophysics Data System (ADS)
Wigren, Torbjorn
2001-08-01
Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.
NASA Astrophysics Data System (ADS)
Weber, Bruce A.
2005-07-01
We have performed an experiment that compares the performance of human observers with that of a robust algorithm for the detection of targets in difficult, nonurban forward-looking infrared imagery. Our purpose was to benchmark the comparison and document performance differences for future algorithm improvement. The scale-insensitive detection algorithm, used as a benchmark by the Night Vision Electronic Sensors Directorate for algorithm evaluation, employed a combination of contrastlike features to locate targets. Detection receiver operating characteristic curves and observer-confidence analyses were used to compare human and algorithmic responses and to gain insight into differences. The test database contained ground targets, in natural clutter, whose detectability, as judged by human observers, ranged from easy to very difficult. In general, as compared with human observers, the algorithm detected most of the same targets, but correlated confidence with correct detections poorly and produced many more false alarms at any useful level of performance. Though characterizing human performance was not the intent of this study, results suggest that previous observational experience was not a strong predictor of human performance, and that combining individual human observations by majority vote significantly reduced false-alarm rates.
Research on wind field algorithm of wind lidar based on BP neural network and grey prediction
NASA Astrophysics Data System (ADS)
Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei
2018-01-01
This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.
POSE Algorithms for Automated Docking
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.; Howard, Richard T.
2011-01-01
POSE (relative position and attitude) can be computed in many different ways. Given a sensor that measures bearing to a finite number of spots corresponding to known features (such as a target) of a spacecraft, a number of different algorithms can be used to compute the POSE. NASA has sponsored the development of a flash LIDAR proximity sensor called the Vision Navigation Sensor (VNS) for use by the Orion capsule in future docking missions. This sensor generates data that can be used by a variety of algorithms to compute POSE solutions inside of 15 meters, including at the critical docking range of approximately 1-2 meters. Previously NASA participated in a DARPA program called Orbital Express that achieved the first automated docking for the American space program. During this mission a large set of high quality mated sensor data was obtained at what is essentially the docking distance. This data set is perhaps the most accurate truth data in existence for docking proximity sensors in orbit. In this paper, the flight data from Orbital Express is used to test POSE algorithms at 1.22 meters range. Two different POSE algorithms are tested for two different Fields-of-View (FOVs) and two different pixel noise levels. The results of the analysis are used to predict future performance of the POSE algorithms with VNS data.
Solving the stability-accuracy-diversity dilemma of recommender systems
NASA Astrophysics Data System (ADS)
Hou, Lei; Liu, Kecheng; Liu, Jianguo; Zhang, Runtong
2017-02-01
Recommender systems are of great significance in predicting the potential interesting items based on the target user's historical selections. However, the recommendation list for a specific user has been found changing vastly when the system changes, due to the unstable quantification of item similarities, which is defined as the recommendation stability problem. To improve the similarity stability and recommendation stability is crucial for the user experience enhancement and the better understanding of user interests. While the stability as well as accuracy of recommendation could be guaranteed by recommending only popular items, studies have been addressing the necessity of diversity which requires the system to recommend unpopular items. By ranking the similarities in terms of stability and considering only the most stable ones, we present a top- n-stability method based on the Heat Conduction algorithm (denoted as TNS-HC henceforth) for solving the stability-accuracy-diversity dilemma. Experiments on four benchmark data sets indicate that the TNS-HC algorithm could significantly improve the recommendation stability and accuracy simultaneously and still retain the high-diversity nature of the Heat Conduction algorithm. Furthermore, we compare the performance of the TNS-HC algorithm with a number of benchmark recommendation algorithms. The result suggests that the TNS-HC algorithm is more efficient in solving the stability-accuracy-diversity triple dilemma of recommender systems.
Wang, Wensheng; Nie, Ting; Fu, Tianjiao; Ren, Jianyue; Jin, Longxu
2017-01-01
In target detection of optical remote sensing images, two main obstacles for aircraft target detection are how to extract the candidates in complex gray-scale-multi background and how to confirm the targets in case the target shapes are deformed, irregular or asymmetric, such as that caused by natural conditions (low signal-to-noise ratio, illumination condition or swaying photographing) and occlusion by surrounding objects (boarding bridge, equipment). To solve these issues, an improved active contours algorithm, namely region-scalable fitting energy based threshold (TRSF), and a corner-convex hull based segmentation algorithm (CCHS) are proposed in this paper. Firstly, the maximal variance between-cluster algorithm (Otsu’s algorithm) and region-scalable fitting energy (RSF) algorithm are combined to solve the difficulty of targets extraction in complex and gray-scale-multi backgrounds. Secondly, based on inherent shapes and prominent corners, aircrafts are divided into five fragments by utilizing convex hulls and Harris corner points. Furthermore, a series of new structure features, which describe the proportion of targets part in the fragment to the whole fragment and the proportion of fragment to the whole hull, are identified to judge whether the targets are true or not. Experimental results show that TRSF algorithm could improve extraction accuracy in complex background, and that it is faster than some traditional active contours algorithms. The CCHS is effective to suppress the detection difficulties caused by the irregular shape. PMID:28481260
Fast Demand Forecast of Electric Vehicle Charging Stations for Cell Phone Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majidpour, Mostafa; Qiu, Charlie; Chung, Ching-Yen
This paper describes the core cellphone application algorithm which has been implemented for the prediction of energy consumption at Electric Vehicle (EV) Charging Stations at UCLA. For this interactive user application, the total time of accessing database, processing the data and making the prediction, needs to be within a few seconds. We analyze four relatively fast Machine Learning based time series prediction algorithms for our prediction engine: Historical Average, kNearest Neighbor, Weighted k-Nearest Neighbor, and Lazy Learning. The Nearest Neighbor algorithm (k Nearest Neighbor with k=1) shows better performance and is selected to be the prediction algorithm implemented for themore » cellphone application. Two applications have been designed on top of the prediction algorithm: one predicts the expected available energy at the station and the other one predicts the expected charging finishing time. The total time, including accessing the database, data processing, and prediction is about one second for both applications.« less
Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.
2017-09-01
It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.
Ab Initio Protein Structure Prediction Using Chunk-TASSER
Zhou, Hongyi; Skolnick, Jeffrey
2007-01-01
We have developed an ab initio protein structure prediction method called chunk-TASSER that uses ab initio folded supersecondary structure chunks of a given target as well as threading templates for obtaining contact potentials and distance restraints. The predicted chunks, selected on the basis of a new fragment comparison method, are folded by a fragment insertion method. Full-length models are built and refined by the TASSER methodology, which searches conformational space via parallel hyperbolic Monte Carlo. We employ an optimized reduced force field that includes knowledge-based statistical potentials and restraints derived from the chunks as well as threading templates. The method is tested on a dataset of 425 hard target proteins ≤250 amino acids in length. The average TM-scores of the best of top five models per target are 0.266, 0.336, and 0.362 by the threading algorithm SP3, original TASSER and chunk-TASSER, respectively. For a subset of 80 proteins with predicted α-helix content ≥50%, these averages are 0.284, 0.356, and 0.403, respectively. The percentages of proteins with the best of top five models having TM-score ≥0.4 (a statistically significant threshold for structural similarity) are 3.76, 20.94, and 28.94% by SP3, TASSER, and chunk-TASSER, respectively, overall, while for the subset of 80 predominantly helical proteins, these percentages are 2.50, 23.75, and 41.25%. Thus, chunk-TASSER shows a significant improvement over TASSER for modeling hard targets where no good template can be identified. We also tested chunk-TASSER on 21 medium/hard targets <200 amino-acids-long from CASP7. Chunk-TASSER is ∼11% (10%) better than TASSER for the total TM-score of the first (best of top five) models. Chunk-TASSER is fully automated and can be used in proteome scale protein structure prediction. PMID:17496016
Accelerated Dimension-Independent Adaptive Metropolis
Chen, Yuxin; Keyes, David E.; Law, Kody J.; ...
2016-10-27
This work describes improvements from algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [33] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension d 1000) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justimore » ed a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.« less
Accelerated Dimension-Independent Adaptive Metropolis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuxin; Keyes, David E.; Law, Kody J.
This work describes improvements from algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [33] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension d 1000) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justimore » ed a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.« less
Dodani, Sunjay S; Lu, Charles W; Aldridge, J Wayne; Chou, Kelvin L; Patil, Parag G
2018-06-01
Accurate electrode placement is critical to the success of deep brain stimulation (DBS) surgery. Suboptimal targeting may arise from poor initial target localization, frame-based targeting error, or intraoperative brain shift. These uncertainties can make DBS surgery challenging. To develop a computerized system to guide subthalamic nucleus (STN) DBS electrode localization and to estimate the trajectory of intraoperative microelectrode recording (MER) on magnetic resonance (MR) images algorithmically during DBS surgery. Our method is based upon the relationship between the high-frequency band (HFB; 500-2000 Hz) signal from MER and voxel intensity on MR images. The HFB profile along an MER trajectory recorded during surgery is compared to voxel intensity profiles along many potential trajectories in the region of the surgically planned trajectory. From these comparisons of HFB recordings and potential trajectories, an estimate of the MER trajectory is calculated. This calculated trajectory is then compared to actual trajectory, as estimated by postoperative high-resolution computed tomography. We compared 20 planned, calculated, and actual trajectories in 13 patients who underwent STN DBS surgery. Targeting errors for our calculated trajectories (2.33 mm ± 0.2 mm) were significantly less than errors for surgically planned trajectories (2.83 mm ± 0.2 mm; P = .01), improving targeting prediction in 70% of individual cases (14/20). Moreover, in 4 of 4 initial MER trajectories that missed the STN, our method correctly indicated the required direction of targeting adjustment for the DBS lead to intersect the STN. A computer-based algorithm simultaneously utilizing MER and MR information potentially eases electrode localization during STN DBS surgery.
Return to Work After Lumbar Microdiscectomy - Personalizing Approach Through Predictive Modeling.
Papić, Monika; Brdar, Sanja; Papić, Vladimir; Lončar-Turukalo, Tatjana
2016-01-01
Lumbar disc herniation (LDH) is the most common disease among working population requiring surgical intervention. This study aims to predict the return to work after operative treatment of LDH based on the observational study including 153 patients. The classification problem was approached using decision trees (DT), support vector machines (SVM) and multilayer perception (MLP) combined with RELIEF algorithm for feature selection. MLP provided best recall of 0.86 for the class of patients not returning to work, which combined with the selected features enables early identification and personalized targeted interventions towards subjects at risk of prolonged disability. The predictive modeling indicated at the most decisive risk factors in prolongation of work absence: psychosocial factors, mobility of the spine and structural changes of facet joints and professional factors including standing, sitting and microclimate.
Multi-Stage Target Tracking with Drift Correction and Position Prediction
NASA Astrophysics Data System (ADS)
Chen, Xin; Ren, Keyan; Hou, Yibin
2018-04-01
Most existing tracking methods are hard to combine accuracy and performance, and do not consider the shift between clarity and blur that often occurs. In this paper, we propound a multi-stage tracking framework with two particular modules: position prediction and corrective measure. We conduct tracking based on correlation filter with a corrective measure module to increase both performance and accuracy. Specifically, a convolutional network is used for solving the blur problem in realistic scene, training methodology that training dataset with blur images generated by the three blur algorithms. Then, we propose a position prediction module to reduce the computation cost and make tracker more capable of fast motion. Experimental result shows that our tracking method is more robust compared to others and more accurate on the benchmark sequences.
A review of predictive coding algorithms.
Spratling, M W
2017-03-01
Predictive coding is a leading theory of how the brain performs probabilistic inference. However, there are a number of distinct algorithms which are described by the term "predictive coding". This article provides a concise review of these different predictive coding algorithms, highlighting their similarities and differences. Five algorithms are covered: linear predictive coding which has a long and influential history in the signal processing literature; the first neuroscience-related application of predictive coding to explaining the function of the retina; and three versions of predictive coding that have been proposed to model cortical function. While all these algorithms aim to fit a generative model to sensory data, they differ in the type of generative model they employ, in the process used to optimise the fit between the model and sensory data, and in the way that they are related to neurobiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Detecting uber-operons in prokaryotic genomes.
Che, Dongsheng; Li, Guojun; Mao, Fenglou; Wu, Hongwei; Xu, Ying
2006-01-01
We present a study on computational identification of uber-operons in a prokaryotic genome, each of which represents a group of operons that are evolutionarily or functionally associated through operons in other (reference) genomes. Uber-operons represent a rich set of footprints of operon evolution, whose full utilization could lead to new and more powerful tools for elucidation of biological pathways and networks than what operons have provided, and a better understanding of prokaryotic genome structures and evolution. Our prediction algorithm predicts uber-operons through identifying groups of functionally or transcriptionally related operons, whose gene sets are conserved across the target and multiple reference genomes. Using this algorithm, we have predicted uber-operons for each of a group of 91 genomes, using the other 90 genomes as references. In particular, we predicted 158 uber-operons in Escherichia coli K12 covering 1830 genes, and found that many of the uber-operons correspond to parts of known regulons or biological pathways or are involved in highly related biological processes based on their Gene Ontology (GO) assignments. For some of the predicted uber-operons that are not parts of known regulons or pathways, our analyses indicate that their genes are highly likely to work together in the same biological processes, suggesting the possibility of new regulons and pathways. We believe that our uber-operon prediction provides a highly useful capability and a rich information source for elucidation of complex biological processes, such as pathways in microbes. All the prediction results are available at our Uber-Operon Database: http://csbl.bmb.uga.edu/uber, the first of its kind.
Detecting uber-operons in prokaryotic genomes
Che, Dongsheng; Li, Guojun; Mao, Fenglou; Wu, Hongwei; Xu, Ying
2006-01-01
We present a study on computational identification of uber-operons in a prokaryotic genome, each of which represents a group of operons that are evolutionarily or functionally associated through operons in other (reference) genomes. Uber-operons represent a rich set of footprints of operon evolution, whose full utilization could lead to new and more powerful tools for elucidation of biological pathways and networks than what operons have provided, and a better understanding of prokaryotic genome structures and evolution. Our prediction algorithm predicts uber-operons through identifying groups of functionally or transcriptionally related operons, whose gene sets are conserved across the target and multiple reference genomes. Using this algorithm, we have predicted uber-operons for each of a group of 91 genomes, using the other 90 genomes as references. In particular, we predicted 158 uber-operons in Escherichia coli K12 covering 1830 genes, and found that many of the uber-operons correspond to parts of known regulons or biological pathways or are involved in highly related biological processes based on their Gene Ontology (GO) assignments. For some of the predicted uber-operons that are not parts of known regulons or pathways, our analyses indicate that their genes are highly likely to work together in the same biological processes, suggesting the possibility of new regulons and pathways. We believe that our uber-operon prediction provides a highly useful capability and a rich information source for elucidation of complex biological processes, such as pathways in microbes. All the prediction results are available at our Uber-Operon Database: , the first of its kind. PMID:16682449
Automatic target detection using binary template matching
NASA Astrophysics Data System (ADS)
Jun, Dong-San; Sun, Sun-Gu; Park, HyunWook
2005-03-01
This paper presents a new automatic target detection (ATD) algorithm to detect targets such as battle tanks and armored personal carriers in ground-to-ground scenarios. Whereas most ATD algorithms were developed for forward-looking infrared (FLIR) images, we have developed an ATD algorithm for charge-coupled device (CCD) images, which have superior quality to FLIR images in daylight. The proposed algorithm uses fast binary template matching with an adaptive binarization, which is robust to various light conditions in CCD images and saves computation time. Experimental results show that the proposed method has good detection performance.
Liu, Mei; Wu, Yonghui; Chen, Yukun; Sun, Jingchun; Zhao, Zhongming; Chen, Xue-wen; Matheny, Michael Edwin; Xu, Hua
2012-06-01
Adverse drug reaction (ADR) is one of the major causes of failure in drug development. Severe ADRs that go undetected until the post-marketing phase of a drug often lead to patient morbidity. Accurate prediction of potential ADRs is required in the entire life cycle of a drug, including early stages of drug design, different phases of clinical trials, and post-marketing surveillance. Many studies have utilized either chemical structures or molecular pathways of the drugs to predict ADRs. Here, the authors propose a machine-learning-based approach for ADR prediction by integrating the phenotypic characteristics of a drug, including indications and other known ADRs, with the drug's chemical structures and biological properties, including protein targets and pathway information. A large-scale study was conducted to predict 1385 known ADRs of 832 approved drugs, and five machine-learning algorithms for this task were compared. This evaluation, based on a fivefold cross-validation, showed that the support vector machine algorithm outperformed the others. Of the three types of information, phenotypic data were the most informative for ADR prediction. When biological and phenotypic features were added to the baseline chemical information, the ADR prediction model achieved significant improvements in area under the curve (from 0.9054 to 0.9524), precision (from 43.37% to 66.17%), and recall (from 49.25% to 63.06%). Most importantly, the proposed model successfully predicted the ADRs associated with withdrawal of rofecoxib and cerivastatin. The results suggest that phenotypic information on drugs is valuable for ADR prediction. Moreover, they demonstrate that different models that combine chemical, biological, or phenotypic information can be built from approved drugs, and they have the potential to detect clinically important ADRs in both preclinical and post-marketing phases.
Generation of referring expressions: assessing the Incremental Algorithm.
van Deemter, Kees; Gatt, Albert; van der Sluis, Ielka; Power, Richard
2012-07-01
A substantial amount of recent work in natural language generation has focused on the generation of ''one-shot'' referring expressions whose only aim is to identify a target referent. Dale and Reiter's Incremental Algorithm (IA) is often thought to be the best algorithm for maximizing the similarity to referring expressions produced by people. We test this hypothesis by eliciting referring expressions from human subjects and computing the similarity between the expressions elicited and the ones generated by algorithms. It turns out that the success of the IA depends substantially on the ''preference order'' (PO) employed by the IA, particularly in complex domains. While some POs cause the IA to produce referring expressions that are very similar to expressions produced by human subjects, others cause the IA to perform worse than its main competitors; moreover, it turns out to be difficult to predict the success of a PO on the basis of existing psycholinguistic findings or frequencies in corpora. We also examine the computational complexity of the algorithms in question and argue that there are no compelling reasons for preferring the IA over some of its main competitors on these grounds. We conclude that future research on the generation of referring expressions should explore alternatives to the IA, focusing on algorithms, inspired by the Greedy Algorithm, which do not work with a fixed PO. Copyright © 2011 Cognitive Science Society, Inc.
Pronk, Sander; Pouya, Iman; Lundborg, Magnus; Rotskoff, Grant; Wesén, Björn; Kasson, Peter M; Lindahl, Erik
2015-06-09
Computational chemistry and other simulation fields are critically dependent on computing resources, but few problems scale efficiently to the hundreds of thousands of processors available in current supercomputers-particularly for molecular dynamics. This has turned into a bottleneck as new hardware generations primarily provide more processing units rather than making individual units much faster, which simulation applications are addressing by increasingly focusing on sampling with algorithms such as free-energy perturbation, Markov state modeling, metadynamics, or milestoning. All these rely on combining results from multiple simulations into a single observation. They are potentially powerful approaches that aim to predict experimental observables directly, but this comes at the expense of added complexity in selecting sampling strategies and keeping track of dozens to thousands of simulations and their dependencies. Here, we describe how the distributed execution framework Copernicus allows the expression of such algorithms in generic workflows: dataflow programs. Because dataflow algorithms explicitly state dependencies of each constituent part, algorithms only need to be described on conceptual level, after which the execution is maximally parallel. The fully automated execution facilitates the optimization of these algorithms with adaptive sampling, where undersampled regions are automatically detected and targeted without user intervention. We show how several such algorithms can be formulated for computational chemistry problems, and how they are executed efficiently with many loosely coupled simulations using either distributed or parallel resources with Copernicus.
A Robustly Stabilizing Model Predictive Control Algorithm
NASA Technical Reports Server (NTRS)
Ackmece, A. Behcet; Carson, John M., III
2007-01-01
A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.
Autonomous Guidance Strategy for Spacecraft Formations and Reconfiguration Maneuvers
NASA Astrophysics Data System (ADS)
Wahl, Theodore P.
A guidance strategy for autonomous spacecraft formation reconfiguration maneuvers is presented. The guidance strategy is presented as an algorithm that solves the linked assignment and delivery problems. The assignment problem is the task of assigning the member spacecraft of the formation to their new positions in the desired formation geometry. The guidance algorithm uses an auction process (also called an "auction algorithm''), presented in the dissertation, to solve the assignment problem. The auction uses the estimated maneuver and time of flight costs between the spacecraft and targets to create assignments which minimize a specific "expense'' function for the formation. The delivery problem is the task of delivering the spacecraft to their assigned positions, and it is addressed through one of two guidance schemes described in this work. The first is a delivery scheme based on artificial potential function (APF) guidance. APF guidance uses the relative distances between the spacecraft, targets, and any obstacles to design maneuvers based on gradients of potential fields. The second delivery scheme is based on model predictive control (MPC); this method uses a model of the system dynamics to plan a series of maneuvers designed to minimize a unique cost function. The guidance algorithm uses an analytic linearized approximation of the relative orbital dynamics, the Yamanaka-Ankersen state transition matrix, in the auction process and in both delivery methods. The proposed guidance strategy is successful, in simulations, in autonomously assigning the members of the formation to new positions and in delivering the spacecraft to these new positions safely using both delivery methods. This guidance algorithm can serve as the basis for future autonomous guidance strategies for spacecraft formation missions.
DNA-based watermarks using the DNA-Crypt algorithm.
Heider, Dominik; Barnekow, Angelika
2007-05-29
The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.
DNA-based watermarks using the DNA-Crypt algorithm
Heider, Dominik; Barnekow, Angelika
2007-01-01
Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434
NASA Astrophysics Data System (ADS)
Khuwaileh, Bassam
High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).
Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.
2016-07-01
Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.
An Improved Aerial Target Localization Method with a Single Vector Sensor
Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin
2017-01-01
This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956
Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight
Guo, Siqiu; Zhang, Tao; Song, Yulong
2018-01-01
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610
Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng
2018-04-23
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Park, Kyunghyun; Kim, Docyong; Ha, Suhyun; Lee, Doheon
2015-01-01
As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI) networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw.
Deadbeat Predictive Controllers
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1997-01-01
Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.
Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles
NASA Technical Reports Server (NTRS)
Wolf, Michael; Kuwata, Yoshiaki; Zarzhitsky, Dimitri V.
2013-01-01
This software implements a motion-planning module for a maritime autonomous surface vehicle (ASV). The module trails a given target while also avoiding static and dynamic surface hazards. When surface hazards are other moving boats, the motion planner must apply International Regulations for Avoiding Collisions at Sea (COLREGS). A key subset of these rules has been implemented in the software. In case contact with the target is lost, the software can receive and follow a "reacquisition route," provided by a complementary system, until the target is reacquired. The programmatic intention is that the trailed target is a submarine, although any mobile naval platform could serve as the target. The algorithmic approach to combining motion with a (possibly moving) goal location, while avoiding local hazards, may be applicable to robotic rovers, automated landing systems, and autonomous airships. The software operates in JPL s CARACaS (Control Architecture for Robotic Agent Command and Sensing) software architecture and relies on other modules for environmental perception data and information on the predicted detectability of the target, as well as the low-level interface to the boat controls.
NASA Astrophysics Data System (ADS)
Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan
2018-03-01
False alarm rate and detection rate are still two contradictory metrics for infrared small target detection in an infrared search and track system (IRST), despite the development of new detection algorithms. In certain circumstances, not detecting true targets is more tolerable than detecting false items as true targets. Hence, considering background clutter and detector noise as the sources of the false alarm in an IRST system, in this paper, a false alarm aware methodology is presented to reduce false alarm rate while the detection rate remains undegraded. To this end, advantages and disadvantages of each detection algorithm are investigated and the sources of the false alarms are determined. Two target detection algorithms having independent false alarm sources are chosen in a way that the disadvantages of the one algorithm can be compensated by the advantages of the other one. In this work, multi-scale average absolute gray difference (AAGD) and Laplacian of point spread function (LoPSF) are utilized as the cornerstones of the desired algorithm of the proposed methodology. After presenting a conceptual model for the desired algorithm, it is implemented through the most straightforward mechanism. The desired algorithm effectively suppresses background clutter and eliminates detector noise. Also, since the input images are processed through just four different scales, the desired algorithm has good capability for real-time implementation. Simulation results in term of signal to clutter ratio and background suppression factor on real and simulated images prove the effectiveness and the performance of the proposed methodology. Since the desired algorithm was developed based on independent false alarm sources, our proposed methodology is expandable to any pair of detection algorithms which have different false alarm sources.
Can human experts predict solubility better than computers?
Boobier, Samuel; Osbourn, Anne; Mitchell, John B O
2017-12-13
In this study, we design and carry out a survey, asking human experts to predict the aqueous solubility of druglike organic compounds. We investigate whether these experts, drawn largely from the pharmaceutical industry and academia, can match or exceed the predictive power of algorithms. Alongside this, we implement 10 typical machine learning algorithms on the same dataset. The best algorithm, a variety of neural network known as a multi-layer perceptron, gave an RMSE of 0.985 log S units and an R 2 of 0.706. We would not have predicted the relative success of this particular algorithm in advance. We found that the best individual human predictor generated an almost identical prediction quality with an RMSE of 0.942 log S units and an R 2 of 0.723. The collection of algorithms contained a higher proportion of reasonably good predictors, nine out of ten compared with around half of the humans. We found that, for either humans or algorithms, combining individual predictions into a consensus predictor by taking their median generated excellent predictivity. While our consensus human predictor achieved very slightly better headline figures on various statistical measures, the difference between it and the consensus machine learning predictor was both small and statistically insignificant. We conclude that human experts can predict the aqueous solubility of druglike molecules essentially equally well as machine learning algorithms. We find that, for either humans or algorithms, combining individual predictions into a consensus predictor by taking their median is a powerful way of benefitting from the wisdom of crowds.
Sarmady, Mahdi; Dampier, William; Tozeren, Aydin
2011-01-01
Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk. PMID:21738584
Modularity of Protein Folds as a Tool for Template-Free Modeling of Structures.
Vallat, Brinda; Madrid-Aliste, Carlos; Fiser, Andras
2015-08-01
Predicting the three-dimensional structure of proteins from their amino acid sequences remains a challenging problem in molecular biology. While the current structural coverage of proteins is almost exclusively provided by template-based techniques, the modeling of the rest of the protein sequences increasingly require template-free methods. However, template-free modeling methods are much less reliable and are usually applicable for smaller proteins, leaving much space for improvement. We present here a novel computational method that uses a library of supersecondary structure fragments, known as Smotifs, to model protein structures. The library of Smotifs has saturated over time, providing a theoretical foundation for efficient modeling. The method relies on weak sequence signals from remotely related protein structures to create a library of Smotif fragments specific to the target protein sequence. This Smotif library is exploited in a fragment assembly protocol to sample decoys, which are assessed by a composite scoring function. Since the Smotif fragments are larger in size compared to the ones used in other fragment-based methods, the proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy assembly. SmotifTF successfully predicts the overall fold of the target proteins in about 50% of the test cases and performs competitively when compared to other state of the art prediction methods, especially when sequence signal to remote homologs is diminishing. Smotif-based modeling is complementary to current prediction methods and provides a promising direction in addressing the structure prediction problem, especially when targeting larger proteins for modeling.
Penalty Dynamic Programming Algorithm for Dim Targets Detection in Sensor Systems
Huang, Dayu; Xue, Anke; Guo, Yunfei
2012-01-01
In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations. PMID:22666074
Discrete sequence prediction and its applications
NASA Technical Reports Server (NTRS)
Laird, Philip
1992-01-01
Learning from experience to predict sequences of discrete symbols is a fundamental problem in machine learning with many applications. We apply sequence prediction using a simple and practical sequence-prediction algorithm, called TDAG. The TDAG algorithm is first tested by comparing its performance with some common data compression algorithms. Then it is adapted to the detailed requirements of dynamic program optimization, with excellent results.
TU-AB-202-03: Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Phillips, J
2016-06-15
Purpose: Deformable image registration (DIR) is a powerful tool, but DIR errors can adversely affect its clinical applications. To estimate voxel-specific DIR uncertainty, a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), has been developed and validated. This work tests the ability of this software to predict uncertainty for the transfer of standard uptake values (SUV) from positron-emission tomography (PET) with DIR. Methods: Virtual phantoms are used for this study. Each phantom has a planning computed tomography (CT) image and a diagnostic PET-CT image set. A deformation was digitally applied to the diagnostic CT to create the planningmore » CT image and establish a known deformation between the images. One lung and three rectum patient datasets were employed to create the virtual phantoms. Both of these sites have difficult deformation scenarios associated with them, which can affect DIR accuracy (lung tissue sliding and changes in rectal filling). The virtual phantoms were created to simulate these scenarios by introducing discontinuities in the deformation field at the lung rectum border. The DIR algorithm from Plastimatch software was applied to these phantoms. The SUV mapping errors from the DIR were then compared to that predicted by AUTODIRECT. Results: The SUV error distributions closely followed the AUTODIRECT predicted error distribution for the 4 test cases. The minimum and maximum PET SUVs were produced from AUTODIRECT at 95% confidence interval before applying gradient-based SUV segmentation for each of these volumes. Notably, 93.5% of the target volume warped by the true deformation was included within the AUTODIRECT-predicted maximum SUV volume after the segmentation, while 78.9% of the target volume was within the target volume warped by Plastimatch. Conclusion: The AUTODIRECT framework is able to predict PET transfer uncertainty caused by DIR, which enables an understanding of the associated target volume uncertainty.« less
ATR architecture for multisensor fusion
NASA Astrophysics Data System (ADS)
Hamilton, Mark K.; Kipp, Teresa A.
1996-06-01
The work of the U.S. Army Research Laboratory (ARL) in the area of algorithms for the identification of static military targets in single-frame electro-optical (EO) imagery has demonstrated great potential in platform-based automatic target identification (ATI). In this case, the term identification is used to mean being able to tell the difference between two military vehicles -- e.g., the M60 from the T72. ARL's work includes not only single-sensor forward-looking infrared (FLIR) ATI algorithms, but also multi-sensor ATI algorithms. We briefly discuss ARL's hybrid model-based/data-learning strategy for ATI, which represents a significant step forward in ATI algorithm design. For example, in the case of single sensor FLIR it allows the human algorithm designer to build directly into the algorithm knowledge that can be adequately modeled at this time, such as the target geometry which directly translates into the target silhouette in the FLIR realm. In addition, it allows structure that is not currently well understood (i.e., adequately modeled) to be incorporated through automated data-learning algorithms, which in a FLIR directly translates into an internal thermal target structure signature. This paper shows the direct applicability of this strategy to both the single-sensor FLIR as well as the multi-sensor FLIR and laser radar.
Cui, Zaixu; Gong, Gaolang
2018-06-02
Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, JianLi; Sareen, Jitender; Patten, Scott; Bolton, James; Schmitz, Norbert; Birney, Arden
2014-05-01
Prediction algorithms are useful for making clinical decisions and for population health planning. However, such prediction algorithms for first onset of major depression do not exist. The objective of this study was to develop and validate a prediction algorithm for first onset of major depression in the general population. Longitudinal study design with approximate 3-year follow-up. The study was based on data from a nationally representative sample of the US general population. A total of 28 059 individuals who participated in Waves 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions and who had not had major depression at Wave 1 were included. The prediction algorithm was developed using logistic regression modelling in 21 813 participants from three census regions. The algorithm was validated in participants from the 4th census region (n=6246). Major depression occurred since Wave 1 of the National Epidemiologic Survey on Alcohol and Related Conditions, assessed by the Alcohol Use Disorder and Associated Disabilities Interview Schedule-diagnostic and statistical manual for mental disorders IV. A prediction algorithm containing 17 unique risk factors was developed. The algorithm had good discriminative power (C statistics=0.7538, 95% CI 0.7378 to 0.7699) and excellent calibration (F-adjusted test=1.00, p=0.448) with the weighted data. In the validation sample, the algorithm had a C statistic of 0.7259 and excellent calibration (Hosmer-Lemeshow χ(2)=3.41, p=0.906). The developed prediction algorithm has good discrimination and calibration capacity. It can be used by clinicians, mental health policy-makers and service planners and the general public to predict future risk of having major depression. The application of the algorithm may lead to increased personalisation of treatment, better clinical decisions and more optimal mental health service planning.
Lee, Seung Yup; Skolnick, Jeffrey
2007-07-01
To improve the accuracy of TASSER models especially in the limit where threading provided template alignments are of poor quality, we have developed the TASSER(iter) algorithm which uses the templates and contact restraints from TASSER generated models for iterative structure refinement. We apply TASSER(iter) to a large benchmark set of 2,773 nonhomologous single domain proteins that are < or = 200 in length and that cover the PDB at the level of 35% pairwise sequence identity. Overall, TASSER(iter) models have a smaller global average RMSD of 5.48 A compared to 5.81 A RMSD of the original TASSER models. Classifying the targets by the level of prediction difficulty (where Easy targets have a good template with a corresponding good threading alignment, Medium targets have a good template but a poor alignment, and Hard targets have an incorrectly identified template), TASSER(iter) (TASSER) models have an average RMSD of 4.15 A (4.35 A) for the Easy set and 9.05 A (9.52 A) for the Hard set. The largest reduction of average RMSD is for the Medium set where the TASSER(iter) models have an average global RMSD of 5.67 A compared to 6.72 A of the TASSER models. Seventy percent of the Medium set TASSER(iter) models have a smaller RMSD than the TASSER models, while 63% of the Easy and 60% of the Hard TASSER models are improved by TASSER(iter). For the foldable cases, where the targets have a RMSD to the native <6.5 A, TASSER(iter) shows obvious improvement over TASSER models: For the Medium set, it improves the success rate from 57.0 to 67.2%, followed by the Hard targets where the success rate improves from 32.0 to 34.8%, with the smallest improvement in the Easy targets from 82.6 to 84.0%. These results suggest that TASSER(iter) can provide more reliable predictions for targets of Medium difficulty, a range that had resisted improvement in the quality of protein structure predictions. 2007 Wiley-Liss, Inc.
Quick fuzzy backpropagation algorithm.
Nikov, A; Stoeva, S
2001-03-01
A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.
Durán, Claudio; Daminelli, Simone; Thomas, Josephine M; Haupt, V Joachim; Schroeder, Michael; Cannistraci, Carlo Vittorio
2017-04-26
The bipartite network representation of the drug-target interactions (DTIs) in a biosystem enhances understanding of the drugs' multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared-using standard and innovative validation frameworks-with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory-initially detected in brain-network topological self-organization and afterwards generalized to any complex network-is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug-target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering. © The Author 2017. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xingyuan; He, Zhili; Zhou, Jizhong
2005-10-30
The oligonucleotide specificity for microarray hybridizationcan be predicted by its sequence identity to non-targets, continuousstretch to non-targets, and/or binding free energy to non-targets. Mostcurrently available programs only use one or two of these criteria, whichmay choose 'false' specific oligonucleotides or miss 'true' optimalprobes in a considerable proportion. We have developed a software tool,called CommOligo using new algorithms and all three criteria forselection of optimal oligonucleotide probes. A series of filters,including sequence identity, free energy, continuous stretch, GC content,self-annealing, distance to the 3'-untranslated region (3'-UTR) andmelting temperature (Tm), are used to check each possibleoligonucleotide. A sequence identity is calculated based onmore » gapped globalalignments. A traversal algorithm is used to generate alignments for freeenergy calculation. The optimal Tm interval is determined based on probecandidates that have passed all other filters. Final probes are pickedusing a combination of user-configurable piece-wise linear functions andan iterative process. The thresholds for identity, stretch and freeenergy filters are automatically determined from experimental data by anaccessory software tool, CommOligo_PE (CommOligo Parameter Estimator).The program was used to design probes for both whole-genome and highlyhomologous sequence data. CommOligo and CommOligo_PE are freely availableto academic users upon request.« less
Reconstruction of color images via Haar wavelet based on digital micromirror device
NASA Astrophysics Data System (ADS)
Liu, Xingjiong; He, Weiji; Gu, Guohua
2015-10-01
A digital micro mirror device( DMD) is introduced to form Haar wavelet basis , projecting on the color target image by making use of structured illumination, including red, green and blue light. The light intensity signals reflected from the target image are received synchronously by the bucket detector which has no spatial resolution, converted into voltage signals and then transferred into PC[1] .To reach the aim of synchronization, several synchronization processes are added during data acquisition. In the data collection process, according to the wavelet tree structure, the locations of significant coefficients at the finer scale are predicted by comparing the coefficients sampled at the coarsest scale with the threshold. The monochrome grayscale images are obtained under red , green and blue structured illumination by using Haar wavelet inverse transform algorithm, respectively. The color fusion algorithm is carried on the three monochrome grayscale images to obtain the final color image. According to the imaging principle, the experimental demonstration device is assembled. The letter "K" and the X-rite Color Checker Passport are projected and reconstructed as target images, and the final reconstructed color images have good qualities. This article makes use of the method of Haar wavelet reconstruction, reducing the sampling rate considerably. It provides color information without compromising the resolution of the final image.
Prediction of pork quality parameters by applying fractals and data mining on MRI.
Caballero, Daniel; Pérez-Palacios, Trinidad; Caro, Andrés; Amigo, José Manuel; Dahl, Anders B; ErsbØll, Bjarne K; Antequera, Teresa
2017-09-01
This work firstly investigates the use of MRI, fractal algorithms and data mining techniques to determine pork quality parameters non-destructively. The main objective was to evaluate the capability of fractal algorithms (Classical Fractal algorithm, CFA; Fractal Texture Algorithm, FTA and One Point Fractal Texture Algorithm, OPFTA) to analyse MRI in order to predict quality parameters of loin. In addition, the effect of the sequence acquisition of MRI (Gradient echo, GE; Spin echo, SE and Turbo 3D, T3D) and the predictive technique of data mining (Isotonic regression, IR and Multiple linear regression, MLR) were analysed. Both fractal algorithm, FTA and OPFTA are appropriate to analyse MRI of loins. The sequence acquisition, the fractal algorithm and the data mining technique seems to influence on the prediction results. For most physico-chemical parameters, prediction equations with moderate to excellent correlation coefficients were achieved by using the following combinations of acquisition sequences of MRI, fractal algorithms and data mining techniques: SE-FTA-MLR, SE-OPFTA-IR, GE-OPFTA-MLR, SE-OPFTA-MLR, with the last one offering the best prediction results. Thus, SE-OPFTA-MLR could be proposed as an alternative technique to determine physico-chemical traits of fresh and dry-cured loins in a non-destructive way with high accuracy. Copyright © 2017. Published by Elsevier Ltd.
Bandyopadhyay, Sanghamitra; Mitra, Ramkrishna
2009-10-15
Prediction of microRNA (miRNA) target mRNAs using machine learning approaches is an important area of research. However, most of the methods suffer from either high false positive or false negative rates. One reason for this is the marked deficiency of negative examples or miRNA non-target pairs. Systematic identification of non-target mRNAs is still not addressed properly, and therefore, current machine learning approaches are compelled to rely on artificially generated negative examples for training. In this article, we have identified approximately 300 tissue-specific negative examples using a novel approach that involves expression profiling of both miRNAs and mRNAs, miRNA-mRNA structural interactions and seed-site conservation. The newly generated negative examples are validated with pSILAC dataset, which elucidate the fact that the identified non-targets are indeed non-targets.These high-throughput tissue-specific negative examples and a set of experimentally verified positive examples are then used to build a system called TargetMiner, a support vector machine (SVM)-based classifier. In addition to assessing the prediction accuracy on cross-validation experiments, TargetMiner has been validated with a completely independent experimental test dataset. Our method outperforms 10 existing target prediction algorithms and provides a good balance between sensitivity and specificity that is not reflected in the existing methods. We achieve a significantly higher sensitivity and specificity of 69% and 67.8% based on a pool of 90 feature set and 76.5% and 66.1% using a set of 30 selected feature set on the completely independent test dataset. In order to establish the effectiveness of the systematically generated negative examples, the SVM is trained using a different set of negative data generated using the method in Yousef et al. A significantly higher false positive rate (70.6%) is observed when tested on the independent set, while all other factors are kept the same. Again, when an existing method (NBmiRTar) is executed with the our proposed negative data, we observe an improvement in its performance. These clearly establish the effectiveness of the proposed approach of selecting the negative examples systematically. TargetMiner is now available as an online tool at www.isical.ac.in/ approximately bioinfo_miu
Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network
NASA Astrophysics Data System (ADS)
Wang, Zhen-yu; Zhang, Li-jie
2017-10-01
Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s
NASA Technical Reports Server (NTRS)
Tonkay, Gregory
1990-01-01
The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.
Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors
Las Fargeas, Jonathan; Kabamba, Pierre; Girard, Anouck
2015-01-01
This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles' paths nominally. The algorithm uses detections from the sensors to predict intruders' locations and selects the vehicles' paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm's completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios. PMID:25591168
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-12-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time-consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2D models and computing single organ deformations. In this study, 3D comprehensive patient-specific nonlinear biomechanical models implemented using meshless Total Lagrangian explicit dynamics algorithms are applied to predict a 3D deformation field for whole-body image registration. Unlike a conventional approach that requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the fuzzy c-means algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
RNAstructure: software for RNA secondary structure prediction and analysis.
Reuter, Jessica S; Mathews, David H
2010-03-15
To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence. RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained. The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Ahmad, S; Alsbou, N
Purpose: A motion algorithm was developed to extract actual length, CT-numbers and motion amplitude of a mobile target imaged with cone-beam-CT (CBCT) retrospective to image-reconstruction. Methods: The motion model considered a mobile target moving with a sinusoidal motion and employed three measurable parameters: apparent length, CT number level and gradient of a mobile target obtained from CBCT images to extract information about the actual length and CT number value of the stationary target and motion amplitude. The algorithm was verified experimentally with a mobile phantom setup that has three targets with different sizes manufactured from homogenous tissue-equivalent gel material embeddedmore » into a thorax phantom. The phantom moved sinusoidal in one-direction using eight amplitudes (0–20mm) and a frequency of 15-cycles-per-minute. The model required imaging parameters such as slice thickness, imaging time. Results: This motion algorithm extracted three unknown parameters: length of the target, CT-number-level, motion amplitude for a mobile target retrospective to CBCT image reconstruction. The algorithm relates three unknown parameters to measurable apparent length, CT-number-level and gradient for well-defined mobile targets obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on actual length of the target and motion amplitude. The cumulative CT-number for a mobile target was dependent on CT-number-level of the stationary target and motion amplitude. The gradient of the CT-distribution of mobile target is dependent on the stationary CT-number-level, actual target length along the direction of motion, and motion amplitude. Motion frequency and phase did not affect the elongation and CT-number distributions of mobile targets when imaging time included several motion cycles. Conclusion: The motion algorithm developed in this study has potential applications in diagnostic CT imaging and radiotherapy to extract actual length, size and CT-numbers distorted by motion in CBCT imaging. The model provides further information about motion of the target.« less
MIRNA-DISTILLER: A Stand-Alone Application to Compile microRNA Data from Databases.
Rieger, Jessica K; Bodan, Denis A; Zanger, Ulrich M
2011-01-01
MicroRNAs (miRNA) are small non-coding RNA molecules of ∼22 nucleotides which regulate large numbers of genes by binding to seed sequences at the 3'-untranslated region of target gene transcripts. The target mRNA is then usually degraded or translation is inhibited, although thus resulting in posttranscriptional down regulation of gene expression at the mRNA and/or protein level. Due to the bioinformatic difficulties in predicting functional miRNA binding sites, several publically available databases have been developed that predict miRNA binding sites based on different algorithms. The parallel use of different databases is currently indispensable, but highly uncomfortable and time consuming, especially when working with numerous genes of interest. We have therefore developed a new stand-alone program, termed MIRNA-DISTILLER, which allows to compile miRNA data for given target genes from public databases. Currently implemented are TargetScan, microCosm, and miRDB, which may be queried independently, pairwise, or together to calculate the respective intersections. Data are stored locally for application of further analysis tools including freely definable biological parameter filters, customized output-lists for both miRNAs and target genes, and various graphical facilities. The software, a data example file and a tutorial are freely available at http://www.ikp-stuttgart.de/content/language1/html/10415.asp.
MIRNA-DISTILLER: A Stand-Alone Application to Compile microRNA Data from Databases
Rieger, Jessica K.; Bodan, Denis A.; Zanger, Ulrich M.
2011-01-01
MicroRNAs (miRNA) are small non-coding RNA molecules of ∼22 nucleotides which regulate large numbers of genes by binding to seed sequences at the 3′-untranslated region of target gene transcripts. The target mRNA is then usually degraded or translation is inhibited, although thus resulting in posttranscriptional down regulation of gene expression at the mRNA and/or protein level. Due to the bioinformatic difficulties in predicting functional miRNA binding sites, several publically available databases have been developed that predict miRNA binding sites based on different algorithms. The parallel use of different databases is currently indispensable, but highly uncomfortable and time consuming, especially when working with numerous genes of interest. We have therefore developed a new stand-alone program, termed MIRNA-DISTILLER, which allows to compile miRNA data for given target genes from public databases. Currently implemented are TargetScan, microCosm, and miRDB, which may be queried independently, pairwise, or together to calculate the respective intersections. Data are stored locally for application of further analysis tools including freely definable biological parameter filters, customized output-lists for both miRNAs and target genes, and various graphical facilities. The software, a data example file and a tutorial are freely available at http://www.ikp-stuttgart.de/content/language1/html/10415.asp PMID:22303335
Probabilistic neural networks modeling of the 48-h LC50 acute toxicity endpoint to Daphnia magna.
Niculescu, S P; Lewis, M A; Tigner, J
2008-01-01
Two modeling experiments based on the maximum likelihood estimation paradigm and targeting prediction of the Daphnia magna 48-h LC50 acute toxicity endpoint for both organic and inorganic compounds are reported. The resulting models computational algorithms are implemented as basic probabilistic neural networks with Gaussian kernel (statistical corrections included). The first experiment uses strictly D. magna information for 971 structures as training/learning data and the resulting model targets practical applications. The second experiment uses the same training/learning information plus additional data on another 29 compounds whose endpoint information is originating from D. pulex and Ceriodaphnia dubia. It only targets investigation of the effect of mixing strictly D. magna 48-h LC50 modeling information with small amounts of similar information estimated from related species, and this is done as part of the validation process. A complementary 81 compounds dataset (involving only strictly D. magna information) is used to perform external testing. On this external test set, the Gaussian character of the distribution of the residuals is confirmed for both models. This allows the use of traditional statistical methodology to implement computation of confidence intervals for the unknown measured values based on the models predictions. Examples are provided for the model targeting practical applications. For the same model, a comparison with other existing models targeting the same endpoint is performed.
Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo
2018-01-01
In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar. PMID:29518957
Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo
2018-03-07
In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.
miREE: miRNA recognition elements ensemble
2011-01-01
Background Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties. Then, a Support Vector Machine (SVM) learning module evaluates the impact of microRNA recognition elements on the target gene. As a result the prediction takes into account information regarding both miRNA-target structural stability and accessibility. Results The proposed method significantly improves the state-of-the-art prediction tools in terms of accuracy with a better balance between specificity and sensitivity, as demonstrated by the experiments conducted on several large datasets across different species. miREE achieves this result by tackling two of the main challenges of current prediction tools: (1) The reduced number of false positives for the Ab-Initio part thanks to the integration of a machine learning module (2) the specificity of the machine learning part, obtained through an innovative technique for rich and representative negative records generation. The validation was conducted on experimental datasets where the miRNA:mRNA interactions had been obtained through (1) direct validation where even the binding site is provided, or through (2) indirect validation, based on gene expression variations obtained from high-throughput experiments where the specific interaction is not validated in detail and consequently the specific binding site is not provided. Conclusions The coupling of two parts: a sensitive Ab-Initio module and a selective machine learning part capable of recognizing the false positives, leads to an improved balance between sensitivity and specificity. miREE obtains a reasonable trade-off between filtering false positives and identifying targets. miREE tool is available online at http://didattica-online.polito.it/eda/miREE/ PMID:22115078
Quantum mechanical design of enzyme active sites.
Zhang, Xiyun; DeChancie, Jason; Gunaydin, Hakan; Chowdry, Arnab B; Clemente, Fernando R; Smith, Adam J T; Handel, T M; Houk, K N
2008-02-01
The design of active sites has been carried out using quantum mechanical calculations to predict the rate-determining transition state of a desired reaction in presence of the optimal arrangement of catalytic functional groups (theozyme). Eleven versatile reaction targets were chosen, including hydrolysis, dehydration, isomerization, aldol, and Diels-Alder reactions. For each of the targets, the predicted mechanism and the rate-determining transition state (TS) of the uncatalyzed reaction in water is presented. For the rate-determining TS, a catalytic site was designed using naturalistic catalytic units followed by an estimation of the rate acceleration provided by a reoptimization of the catalytic site. Finally, the geometries of the sites were compared to the X-ray structures of related natural enzymes. Recent advances in computational algorithms and power, coupled with successes in computational protein design, have provided a powerful context for undertaking such an endeavor. We propose that theozymes are excellent candidates to serve as the active site models for design processes.
Ruffner, Judith Alison
1999-01-01
A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.
Hu, Yipeng; Morgan, Dominic; Ahmed, Hashim Uddin; Pendsé, Doug; Sahu, Mahua; Allen, Clare; Emberton, Mark; Hawkes, David; Barratt, Dean
2008-01-01
A method is described for generating a patient-specific, statistical motion model (SMM) of the prostate gland. Finite element analysis (FEA) is used to simulate the motion of the gland using an ultrasound-based 3D FE model over a range of plausible boundary conditions and soft-tissue properties. By applying principal component analysis to the displacements of the FE mesh node points inside the gland, the simulated deformations are then used as training data to construct the SMM. The SMM is used to both predict the displacement field over the whole gland and constrain a deformable surface registration algorithm, given only a small number of target points on the surface of the deformed gland. Using 3D transrectal ultrasound images of the prostates of five patients, acquired before and after imposing a physical deformation, to evaluate the accuracy of predicted landmark displacements, the mean target registration error was found to be less than 1.9 mm.
A continuous function model for path prediction of entities
NASA Astrophysics Data System (ADS)
Nanda, S.; Pray, R.
2007-04-01
As militaries across the world continue to evolve, the roles of humans in various theatres of operation are being increasingly targeted by military planners for substitution with automation. Forward observation and direction of supporting arms to neutralize threats from dynamic adversaries is one such example. However, contemporary tracking and targeting systems are incapable of serving autonomously for they do not embody the sophisticated algorithms necessary to predict the future positions of adversaries with the accuracy offered by the cognitive and analytical abilities of human operators. The need for these systems to incorporate methods characterizing such intelligence is therefore compelling. In this paper, we present a novel technique to achieve this goal by modeling the path of an entity as a continuous polynomial function of multiple variables expressed as a Taylor series with a finite number of terms. We demonstrate the method for evaluating the coefficient of each term to define this function unambiguously for any given entity, and illustrate its use to determine the entity's position at any point in time in the future.
The new approach for infrared target tracking based on the particle filter algorithm
NASA Astrophysics Data System (ADS)
Sun, Hang; Han, Hong-xia
2011-08-01
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring, precision, and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection, the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure, but in order to capture the change of the state space, it need a certain amount of particles to ensure samples is enough, and this number will increase in accompany with dimension and increase exponentially, this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining", we expand the classic Mean Shift tracking framework .Based on the previous perspective, we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis, Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism, used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation, and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value .Last because of the gray and fusion target motion information, this approach also inhibit interference from the background, ultimately improve the stability and the real-time of the target track.
Digital accumulators in phase and frequency tracking loops
NASA Technical Reports Server (NTRS)
Hinedi, Sami; Statman, Joseph I.
1990-01-01
Results on the effects of digital accumulators in phase and frequency tracking loops are presented. Digital accumulators or summers are used extensively in digital signal processing to perform averaging or to reduce processing rates to acceptable levels. For tracking the Doppler of high-dynamic targets at low carrier-to-noise ratios, it is shown through simulation and experiment that digital accumulators can contribute an additional loss in operating threshold. This loss was not considered in any previous study and needs to be accounted for in performance prediction analysis. Simulation and measurement results are used to characterize the loss due to the digital summers for three different tracking loops: a digital phase-locked loop, a cross-product automatic frequency tracking loop, and an extended Kalman filter. The tracking algorithms are compared with respect to their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. It is shown that failure to account for the effect of accumulators can result in an inaccurate performance prediction, the extent of which depends highly on the algorithm used.
Huang, Xiaoqiang; Han, Kehang; Zhu, Yushan
2013-01-01
A systematic optimization model for binding sequence selection in computational enzyme design was developed based on the transition state theory of enzyme catalysis and graph-theoretical modeling. The saddle point on the free energy surface of the reaction system was represented by catalytic geometrical constraints, and the binding energy between the active site and transition state was minimized to reduce the activation energy barrier. The resulting hyperscale combinatorial optimization problem was tackled using a novel heuristic global optimization algorithm, which was inspired and tested by the protein core sequence selection problem. The sequence recapitulation tests on native active sites for two enzyme catalyzed hydrolytic reactions were applied to evaluate the predictive power of the design methodology. The results of the calculation show that most of the native binding sites can be successfully identified if the catalytic geometrical constraints and the structural motifs of the substrate are taken into account. Reliably predicting active site sequences may have significant implications for the creation of novel enzymes that are capable of catalyzing targeted chemical reactions. PMID:23649589
Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Kroenlein, Kenneth; Frenkel, Michael
2011-01-24
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration. A second new feature described here is the application of the software capabilities for aid in the design of chemical products through identification of chemical systems possessing desired values of thermophysical properties within defined ranges of tolerance. The algorithms and their software implementation to achieve this are described. Finally, implementation of a new data validation and weighting system is described for vapor-liquid equilibrium (VLE) data, and directions for future enhancements are outlined.
Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi
2017-10-09
Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.
NASA Astrophysics Data System (ADS)
Deyati, Avisek; Bagewadi, Shweta; Senger, Philipp; Hofmann-Apitius, Martin; Novac, Natalia
2015-01-01
miRNA plays an important role in tumourgenesis by regulating expression of oncogenes and tumour suppressors. Thus affects cell proliferation and differentiation, apoptosis, invasion and angiogenesis. miRNAs are potential biomarkers for diagnosis, prognosis and therapies of different forms of cancer. However, relationship between response of cancer patients towards targeted therapy and the resulting modifications of the miRNA transcriptome in the context of pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have produced an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. Efficient translation of -omics data and accumulated knowledge to clinical decision-making are of paramount scientific and public health interest. Well-structured translational algorithms are needed to bridge the gap from databases to decisions. Herein, we present a novel SMARTmiR algorithm to prospectively predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer.
The siRNA Non-seed Region and Its Target Sequences Are Auxiliary Determinants of Off-Target Effects.
Kamola, Piotr J; Nakano, Yuko; Takahashi, Tomoko; Wilson, Paul A; Ui-Tei, Kumiko
2015-12-01
RNA interference (RNAi) is a powerful tool for post-transcriptional gene silencing. However, the siRNA guide strand may bind unintended off-target transcripts via partial sequence complementarity by a mechanism closely mirroring micro RNA (miRNA) silencing. To better understand these off-target effects, we investigated the correlation between sequence features within various subsections of siRNA guide strands, and its corresponding target sequences, with off-target activities. Our results confirm previous reports that strength of base-pairing in the siRNA seed region is the primary factor determining the efficiency of off-target silencing. However, the degree of downregulation of off-target transcripts with shared seed sequence is not necessarily similar, suggesting that there are additional auxiliary factors that influence the silencing potential. Here, we demonstrate that both the melting temperature (Tm) in a subsection of siRNA non-seed region, and the GC contents of its corresponding target sequences, are negatively correlated with the efficiency of off-target effect. Analysis of experimentally validated miRNA targets demonstrated a similar trend, indicating a putative conserved mechanistic feature of seed region-dependent targeting mechanism. These observations may prove useful as parameters for off-target prediction algorithms and improve siRNA 'specificity' design rules.
Mukherjee, Kaushik; Gupta, Sanjay
2017-03-01
Several mechanobiology algorithms have been employed to simulate bone ingrowth around porous coated implants. However, there is a scarcity of quantitative comparison between the efficacies of commonly used mechanoregulatory algorithms. The objectives of this study are: (1) to predict peri-acetabular bone ingrowth using cell-phenotype specific algorithm and to compare these predictions with those obtained using phenomenological algorithm and (2) to investigate the influences of cellular parameters on bone ingrowth. The variation in host bone material property and interfacial micromotion of the implanted pelvis were mapped onto the microscale model of implant-bone interface. An overall variation of 17-88 % in peri-acetabular bone ingrowth was observed. Despite differences in predicted tissue differentiation patterns during the initial period, both the algorithms predicted similar spatial distribution of neo-tissue layer, after attainment of equilibrium. Results indicated that phenomenological algorithm, being computationally faster than the cell-phenotype specific algorithm, might be used to predict peri-prosthetic bone ingrowth. The cell-phenotype specific algorithm, however, was found to be useful in numerically investigating the influence of alterations in cellular activities on bone ingrowth, owing to biologically related factors. Amongst the host of cellular activities, matrix production rate of bone tissue was found to have predominant influence on peri-acetabular bone ingrowth.
A review on quantum search algorithms
NASA Astrophysics Data System (ADS)
Giri, Pulak Ranjan; Korepin, Vladimir E.
2017-12-01
The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover's quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.
Optimising predictor domains for spatially coherent precipitation downscaling
NASA Astrophysics Data System (ADS)
Radanovics, S.; Vidal, J.-P.; Sauquet, E.; Ben Daoud, A.; Bontron, G.
2013-10-01
Statistical downscaling is widely used to overcome the scale gap between predictors from numerical weather prediction models or global circulation models and predictands like local precipitation, required for example for medium-term operational forecasts or climate change impact studies. The predictors are considered over a given spatial domain which is rarely optimised with respect to the target predictand location. In this study, an extended version of the growing rectangular domain algorithm is proposed to provide an ensemble of near-optimum predictor domains for a statistical downscaling method. This algorithm is applied to find five-member ensembles of near-optimum geopotential predictor domains for an analogue downscaling method for 608 individual target zones covering France. Results first show that very similar downscaling performances based on the continuous ranked probability score (CRPS) can be achieved by different predictor domains for any specific target zone, demonstrating the need for considering alternative domains in this context of high equifinality. A second result is the large diversity of optimised predictor domains over the country that questions the commonly made hypothesis of a common predictor domain for large areas. The domain centres are mainly distributed following the geographical location of the target location, but there are apparent differences between the windward and the lee side of mountain ridges. Moreover, domains for target zones located in southeastern France are centred more east and south than the ones for target locations on the same longitude. The size of the optimised domains tends to be larger in the southeastern part of the country, while domains with a very small meridional extent can be found in an east-west band around 47° N. Sensitivity experiments finally show that results are rather insensitive to the starting point of the optimisation algorithm except for zones located in the transition area north of this east-west band. Results also appear generally robust with respect to the archive length considered for the analogue method, except for zones with high interannual variability like in the Cévennes area. This study paves the way for defining regions with homogeneous geopotential predictor domains for precipitation downscaling over France, and therefore de facto ensuring the spatial coherence required for hydrological applications.
Applications of independent component analysis in SAR images
NASA Astrophysics Data System (ADS)
Huang, Shiqi; Cai, Xinhua; Hui, Weihua; Xu, Ping
2009-07-01
The detection of faint, small and hidden targets in synthetic aperture radar (SAR) image is still an issue for automatic target recognition (ATR) system. How to effectively separate these targets from the complex background is the aim of this paper. Independent component analysis (ICA) theory can enhance SAR image targets and improve signal clutter ratio (SCR), which benefits to detect and recognize faint targets. Therefore, this paper proposes a new SAR image target detection algorithm based on ICA. In experimental process, the fast ICA (FICA) algorithm is utilized. Finally, some real SAR image data is used to test the method. The experimental results verify that the algorithm is feasible, and it can improve the SCR of SAR image and increase the detection rate for the faint small targets.
Using In Silico Fragmentation to Improve Routine Residue Screening in Complex Matrices.
Kaufmann, Anton; Butcher, Patrick; Maden, Kathryn; Walker, Stephan; Widmer, Mirjam
2017-12-01
Targeted residue screening requires the use of reference substances in order to identify potential residues. This becomes a difficult issue when using multi-residue methods capable of analyzing several hundreds of analytes. Therefore, the capability of in silico fragmentation based on a structure database ("suspect screening") instead of physical reference substances for routine targeted residue screening was investigated. The detection of fragment ions that can be predicted or explained by in silico software was utilized to reduce the number of false positives. These "proof of principle" experiments were done with a tool that is integrated into a commercial MS vendor instrument operating software (UNIFI) as well as with a platform-independent MS tool (Mass Frontier). A total of 97 analytes belonging to different chemical families were separated by reversed phase liquid chromatography and detected in a data-independent acquisition (DIA) mode using ion mobility hyphenated with quadrupole time of flight mass spectrometry. The instrument was operated in the MS E mode with alternating low and high energy traces. The fragments observed from product ion spectra were investigated using a "chopping" bond disconnection algorithm and a rule-based algorithm. The bond disconnection algorithm clearly explained more analyte product ions and a greater percentage of the spectral abundance than the rule-based software (92 out of the 97 compounds produced ≥1 explainable fragment ions). On the other hand, tests with a complex blank matrix (bovine liver extract) indicated that the chopping algorithm reports significantly more false positive fragments than the rule based software. Graphical Abstract.
Using In Silico Fragmentation to Improve Routine Residue Screening in Complex Matrices
NASA Astrophysics Data System (ADS)
Kaufmann, Anton; Butcher, Patrick; Maden, Kathryn; Walker, Stephan; Widmer, Mirjam
2017-12-01
Targeted residue screening requires the use of reference substances in order to identify potential residues. This becomes a difficult issue when using multi-residue methods capable of analyzing several hundreds of analytes. Therefore, the capability of in silico fragmentation based on a structure database ("suspect screening") instead of physical reference substances for routine targeted residue screening was investigated. The detection of fragment ions that can be predicted or explained by in silico software was utilized to reduce the number of false positives. These "proof of principle" experiments were done with a tool that is integrated into a commercial MS vendor instrument operating software (UNIFI) as well as with a platform-independent MS tool (Mass Frontier). A total of 97 analytes belonging to different chemical families were separated by reversed phase liquid chromatography and detected in a data-independent acquisition (DIA) mode using ion mobility hyphenated with quadrupole time of flight mass spectrometry. The instrument was operated in the MSE mode with alternating low and high energy traces. The fragments observed from product ion spectra were investigated using a "chopping" bond disconnection algorithm and a rule-based algorithm. The bond disconnection algorithm clearly explained more analyte product ions and a greater percentage of the spectral abundance than the rule-based software (92 out of the 97 compounds produced ≥1 explainable fragment ions). On the other hand, tests with a complex blank matrix (bovine liver extract) indicated that the chopping algorithm reports significantly more false positive fragments than the rule based software. [Figure not available: see fulltext.
Implementation and performance evaluation of acoustic denoising algorithms for UAV
NASA Astrophysics Data System (ADS)
Chowdhury, Ahmed Sony Kamal
Unmanned Aerial Vehicles (UAVs) have become popular alternative for wildlife monitoring and border surveillance applications. Elimination of the UAV's background noise and classifying the target audio signal effectively are still a major challenge. The main goal of this thesis is to remove UAV's background noise by means of acoustic denoising techniques. Existing denoising algorithms, such as Adaptive Least Mean Square (LMS), Wavelet Denoising, Time-Frequency Block Thresholding, and Wiener Filter, were implemented and their performance evaluated. The denoising algorithms were evaluated for average Signal to Noise Ratio (SNR), Segmental SNR (SSNR), Log Likelihood Ratio (LLR), and Log Spectral Distance (LSD) metrics. To evaluate the effectiveness of the denoising algorithms on classification of target audio, we implemented Support Vector Machine (SVM) and Naive Bayes classification algorithms. Simulation results demonstrate that LMS and Discrete Wavelet Transform (DWT) denoising algorithm offered superior performance than other algorithms. Finally, we implemented the LMS and DWT algorithms on a DSP board for hardware evaluation. Experimental results showed that LMS algorithm's performance is robust compared to DWT for various noise types to classify target audio signals.
Real Time Intelligent Target Detection and Analysis with Machine Vision
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Padgett, Curtis; Brown, Kenneth
2000-01-01
We present an algorithm for detecting a specified set of targets for an Automatic Target Recognition (ATR) application. ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. We address the problem of discriminating between targets and nontarget objects in a scene by evaluating 40x40 image blocks belonging to an image. Each image block is first projected onto a set of templates specifically designed to separate images of targets embedded in a typical background scene from those background images without targets. These filters are found using directed principal component analysis which maximally separates the two groups. The projected images are then clustered into one of n classes based on a minimum distance to a set of n cluster prototypes. These cluster prototypes have previously been identified using a modified clustering algorithm based on prior sensed data. Each projected image pattern is then fed into the associated cluster's trained neural network for classification. A detailed description of our algorithm will be given in this paper. We outline our methodology for designing the templates, describe our modified clustering algorithm, and provide details on the neural network classifiers. Evaluation of the overall algorithm demonstrates that our detection rates approach 96% with a false positive rate of less than 0.03%.