Sample records for target recognition method

  1. Fast cat-eye effect target recognition based on saliency extraction

    NASA Astrophysics Data System (ADS)

    Li, Li; Ren, Jianlin; Wang, Xingbin

    2015-09-01

    Background complexity is a main reason that results in false detection in cat-eye target recognition. Human vision has selective attention property which can help search the salient target from complex unknown scenes quickly and precisely. In the paper, we propose a novel cat-eye effect target recognition method named Multi-channel Saliency Processing before Fusion (MSPF). This method combines traditional cat-eye target recognition with the selective characters of visual attention. Furthermore, parallel processing enables it to achieve fast recognition. Experimental results show that the proposed method performs better in accuracy, robustness and speed compared to other methods.

  2. Deep kernel learning method for SAR image target recognition

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  3. Ground target recognition using rectangle estimation.

    PubMed

    Grönwall, Christina; Gustafsson, Fredrik; Millnert, Mille

    2006-11-01

    We propose a ground target recognition method based on 3-D laser radar data. The method handles general 3-D scattered data. It is based on the fact that man-made objects of complex shape can be decomposed to a set of rectangles. The ground target recognition method consists of four steps; 3-D size and orientation estimation, target segmentation into parts of approximately rectangular shape, identification of segments that represent the target's functional/main parts, and target matching with CAD models. The core in this approach is rectangle estimation. The performance of the rectangle estimation method is evaluated statistically using Monte Carlo simulations. A case study on tank recognition is shown, where 3-D data from four fundamentally different types of laser radar systems are used. Although the approach is tested on rather few examples, we believe that the approach is promising.

  4. Research on application of LADAR in ground vehicle recognition

    NASA Astrophysics Data System (ADS)

    Lan, Jinhui; Shen, Zhuoxun

    2009-11-01

    For the requirement of many practical applications in the field of military, the research of 3D target recognition is active. The representation that captures the salient attributes of a 3D target independent of the viewing angle will be especially useful to the automatic 3D target recognition system. This paper presents a new approach of image generation based on Laser Detection and Ranging (LADAR) data. Range image of target is obtained by transformation of point cloud. In order to extract features of different ground vehicle targets and to recognize targets, zernike moment properties of typical ground vehicle targets are researched in this paper. A technique of support vector machine is applied to the classification and recognition of target. The new method of image generation and feature representation has been applied to the outdoor experiments. Through outdoor experiments, it can be proven that the method of image generation is stability, the moments are effective to be used as features for recognition, and the LADAR can be applied to the field of 3D target recognition.

  5. A robust recognition and accurate locating method for circular coded diagonal target

    NASA Astrophysics Data System (ADS)

    Bao, Yunna; Shang, Yang; Sun, Xiaoliang; Zhou, Jiexin

    2017-10-01

    As a category of special control points which can be automatically identified, artificial coded targets have been widely developed in the field of computer vision, photogrammetry, augmented reality, etc. In this paper, a new circular coded target designed by RockeTech technology Corp. Ltd is analyzed and studied, which is called circular coded diagonal target (CCDT). A novel detection and recognition method with good robustness is proposed in the paper, and implemented on Visual Studio. In this algorithm, firstly, the ellipse features of the center circle are used for rough positioning. Then, according to the characteristics of the center diagonal target, a circular frequency filter is designed to choose the correct center circle and eliminates non-target noise. The precise positioning of the coded target is done by the correlation coefficient fitting extreme value method. Finally, the coded target recognition is achieved by decoding the binary sequence in the outer ring of the extracted target. To test the proposed algorithm, this paper has carried out simulation experiments and real experiments. The results show that the CCDT recognition and accurate locating method proposed in this paper can robustly recognize and accurately locate the targets in complex and noisy background.

  6. Component-based target recognition inspired by human vision

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Agyepong, Kwabena

    2009-05-01

    In contrast with machine vision, human can recognize an object from complex background with great flexibility. For example, given the task of finding and circling all cars (no further information) in a picture, you may build a virtual image in mind from the task (or target) description before looking at the picture. Specifically, the virtual car image may be composed of the key components such as driver cabin and wheels. In this paper, we propose a component-based target recognition method by simulating the human recognition process. The component templates (equivalent to the virtual image in mind) of the target (car) are manually decomposed from the target feature image. Meanwhile, the edges of the testing image can be extracted by using a difference of Gaussian (DOG) model that simulates the spatiotemporal response in visual process. A phase correlation matching algorithm is then applied to match the templates with the testing edge image. If all key component templates are matched with the examining object, then this object is recognized as the target. Besides the recognition accuracy, we will also investigate if this method works with part targets (half cars). In our experiments, several natural pictures taken on streets were used to test the proposed method. The preliminary results show that the component-based recognition method is very promising.

  7. Domain Regeneration for Cross-Database Micro-Expression Recognition

    NASA Astrophysics Data System (ADS)

    Zong, Yuan; Zheng, Wenming; Huang, Xiaohua; Shi, Jingang; Cui, Zhen; Zhao, Guoying

    2018-05-01

    In this paper, we investigate the cross-database micro-expression recognition problem, where the training and testing samples are from two different micro-expression databases. Under this setting, the training and testing samples would have different feature distributions and hence the performance of most existing micro-expression recognition methods may decrease greatly. To solve this problem, we propose a simple yet effective method called Target Sample Re-Generator (TSRG) in this paper. By using TSRG, we are able to re-generate the samples from target micro-expression database and the re-generated target samples would share same or similar feature distributions with the original source samples. For this reason, we can then use the classifier learned based on the labeled source samples to accurately predict the micro-expression categories of the unlabeled target samples. To evaluate the performance of the proposed TSRG method, extensive cross-database micro-expression recognition experiments designed based on SMIC and CASME II databases are conducted. Compared with recent state-of-the-art cross-database emotion recognition methods, the proposed TSRG achieves more promising results.

  8. Cat-eye effect target recognition with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Jian, Weijian; Li, Li; Zhang, Xiaoyue

    2015-12-01

    A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.

  9. Target Recognition Using Neural Networks for Model Deformation Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hibler, David L.

    1999-01-01

    Optical measurements provide a non-invasive method for measuring deformation of wind tunnel models. Model deformation systems use targets mounted or painted on the surface of the model to identify known positions, and photogrammetric methods are used to calculate 3-D positions of the targets on the model from digital 2-D images. Under ideal conditions, the reflective targets are placed against a dark background and provide high-contrast images, aiding in target recognition. However, glints of light reflecting from the model surface, or reduced contrast caused by light source or model smoothness constraints, can compromise accurate target determination using current algorithmic methods. This paper describes a technique using a neural network and image processing technologies which increases the reliability of target recognition systems. Unlike algorithmic methods, the neural network can be trained to identify the characteristic patterns that distinguish targets from other objects of similar size and appearance and can adapt to changes in lighting and environmental conditions.

  10. Combining high-speed SVM learning with CNN feature encoding for real-time target recognition in high-definition video for ISR missions

    NASA Astrophysics Data System (ADS)

    Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus

    2017-05-01

    For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high-definition video exploitation.

  11. Compressive sensing method for recognizing cat-eye effect targets.

    PubMed

    Li, Li; Li, Hui; Dang, Ersheng; Liu, Bo

    2013-10-01

    This paper proposes a cat-eye effect target recognition method with compressive sensing (CS) and presents a recognition method (sample processing before reconstruction based on compressed sensing, or SPCS) for image processing. In this method, the linear projections of original image sequences are applied to remove dynamic background distractions and extract cat-eye effect targets. Furthermore, the corresponding imaging mechanism for acquiring active and passive image sequences is put forward. This method uses fewer images to recognize cat-eye effect targets, reduces data storage, and translates the traditional target identification, based on original image processing, into measurement vectors processing. The experimental results show that the SPCS method is feasible and superior to the shape-frequency dual criteria method.

  12. Target recognition and phase acquisition by using incoherent digital holographic imaging

    NASA Astrophysics Data System (ADS)

    Lee, Munseob; Lee, Byung-Tak

    2017-05-01

    In this study, we proposed the Incoherent Digital Holographic Imaging (IDHI) for recognition and phase information of dedicated target. Although recent development of a number of target recognition techniques such as LIDAR, there have limited success in target discrimination, in part due to low-resolution, low scanning speed, and computation power. In the paper, the proposed system consists of the incoherent light source, such as LED, Michelson interferometer, and digital CCD for acquisition of four phase shifting image. First of all, to compare with relative coherence, we used a source as laser and LED, respectively. Through numerical reconstruction by using the four phase shifting method and Fresnel diffraction method, we recovered the intensity and phase image of USAF resolution target apart from about 1.0m distance. In this experiment, we show 1.2 times improvement in resolution compared to conventional imaging. Finally, to confirm the recognition result of camouflaged targets with the same color from background, we carry out to test holographic imaging in incoherent light. In this result, we showed the possibility of a target detection and recognition that used three dimensional shape and size signatures, numerical distance from phase information of obtained holographic image.

  13. Target recognition based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian

    2017-11-01

    One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.

  14. Autonomous space target recognition and tracking approach using star sensors based on a Kalman filter.

    PubMed

    Ye, Tao; Zhou, Fuqiang

    2015-04-10

    When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.

  15. Personal glucose meters for detection and quantification of a broad range of analytes

    DOEpatents

    Lu, Yi; Xiang, Yu

    2015-02-03

    A general methodology for the development of highly sensitive and selective sensors that can achieve portable, low-cost and quantitative detection of a broad range of targets using only a personal glucose meter (PGM) is disclosed. The method uses recognition molecules that are specific for a target agent, enzymes that can convert an enzyme substrate into glucose, and PGM. Also provided are sensors, which can include a solid support to which is attached a recognition molecule that permits detection of a target agent, wherein the recognition molecule specifically binds to the target agent in the presence of the target agent but not significantly to other agents as well as an enzyme that can catalyze the conversion of a substance into glucose, wherein the enzyme is attached directly or indirectly to the recognition molecule, and wherein in the presence of the target agent the enzyme can convert the substance into glucose. The disclosed sensors can be part of a lateral flow device. Methods of using such sensors for detecting target agents are also provided.

  16. A fast recognition method of warhead target in boost phase using kinematic features

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Xu, Shiyou; Tian, Biao; Wu, Jianhua; Chen, Zengping

    2015-12-01

    The radar targets number increases from one to more when the ballistic missile is in the process of separating the lower stage rocket or casting covers or other components. It is vital to identify the warhead target quickly among these multiple targets for radar tracking. A fast recognition method of the warhead target is proposed to solve this problem by using kinematic features, utilizing fuzzy comprehensive method and information fusion method. In order to weaken the influence of radar measurement noise, an extended Kalman filter with constant jerk model (CJEKF) is applied to obtain more accurate target's motion information. The simulation shows the validity of the algorithm and the effects of the radar measurement precision upon the algorithm's performance.

  17. Identification and location of catenary insulator in complex background based on machine vision

    NASA Astrophysics Data System (ADS)

    Yao, Xiaotong; Pan, Yingli; Liu, Li; Cheng, Xiao

    2018-04-01

    It is an important premise to locate insulator precisely for fault detection. Current location algorithms for insulator under catenary checking images are not accurate, a target recognition and localization method based on binocular vision combined with SURF features is proposed. First of all, because of the location of the insulator in complex environment, using SURF features to achieve the coarse positioning of target recognition; then Using binocular vision principle to calculate the 3D coordinates of the object which has been coarsely located, realization of target object recognition and fine location; Finally, Finally, the key is to preserve the 3D coordinate of the object's center of mass, transfer to the inspection robot to control the detection position of the robot. Experimental results demonstrate that the proposed method has better recognition efficiency and accuracy, can successfully identify the target and has a define application value.

  18. The method of micro-motion cycle feature extraction based on confidence coefficient evaluation criteria

    NASA Astrophysics Data System (ADS)

    Tang, Chuanzi; Ren, Hongmei; Bo, Li; Jing, Huang

    2017-11-01

    In radar target recognition, the micro motion characteristics of target is one of the characteristics that researchers pay attention to at home and abroad, in which the characteristics of target precession cycle is one of the important characteristics of target movement characteristics. Periodic feature extraction methods have been studied for years, the complex shape of the target and the scattering center stack lead to random fluctuations of the RCS. These random fluctuations also exist certain periodicity, which has a great influence on the target recognition result. In order to solve the problem, this paper proposes a extraction method of micro-motion cycle feature based on confidence coefficient evaluation criteria.

  19. Computer Vision for Artificially Intelligent Robotic Systems

    NASA Astrophysics Data System (ADS)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  20. Improved Performance Characteristics For Indium Antimonide Photovoltaic Detector Arrays Using A FET-Switched Multiplexing Technique

    NASA Astrophysics Data System (ADS)

    Ma, Yung-Lung; Ma, Chialo

    1987-03-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  1. Clustered Multi-Task Learning for Automatic Radar Target Recognition

    PubMed Central

    Li, Cong; Bao, Weimin; Xu, Luping; Zhang, Hua

    2017-01-01

    Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms. PMID:28953267

  2. Application of automatic threshold in dynamic target recognition with low contrast

    NASA Astrophysics Data System (ADS)

    Miao, Hua; Guo, Xiaoming; Chen, Yu

    2014-11-01

    Hybrid photoelectric joint transform correlator can realize automatic real-time recognition with high precision through the combination of optical devices and electronic devices. When recognizing targets with low contrast using photoelectric joint transform correlator, because of the difference of attitude, brightness and grayscale between target and template, only four to five frames of dynamic targets can be recognized without any processing. CCD camera is used to capture the dynamic target images and the capturing speed of CCD is 25 frames per second. Automatic threshold has many advantages like fast processing speed, effectively shielding noise interference, enhancing diffraction energy of useful information and better reserving outline of target and template, so this method plays a very important role in target recognition with optical correlation method. However, the automatic obtained threshold by program can not achieve the best recognition results for dynamic targets. The reason is that outline information is broken to some extent. Optimal threshold is obtained by manual intervention in most cases. Aiming at the characteristics of dynamic targets, the processing program of improved automatic threshold is finished by multiplying OTSU threshold of target and template by scale coefficient of the processed image, and combining with mathematical morphology. The optimal threshold can be achieved automatically by improved automatic threshold processing for dynamic low contrast target images. The recognition rate of dynamic targets is improved through decreased background noise effect and increased correlation information. A series of dynamic tank images with the speed about 70 km/h are adapted as target images. The 1st frame of this series of tanks can correlate only with the 3rd frame without any processing. Through OTSU threshold, the 80th frame can be recognized. By automatic threshold processing of the joint images, this number can be increased to 89 frames. Experimental results show that the improved automatic threshold processing has special application value for the recognition of dynamic target with low contrast.

  3. Increase in Speech Recognition Due to Linguistic Mismatch between Target and Masker Speech: Monolingual and Simultaneous Bilingual Performance

    ERIC Educational Resources Information Center

    Calandruccio, Lauren; Zhou, Haibo

    2014-01-01

    Purpose: To examine whether improved speech recognition during linguistically mismatched target-masker experiments is due to linguistic unfamiliarity of the masker speech or linguistic dissimilarity between the target and masker speech. Method: Monolingual English speakers (n = 20) and English-Greek simultaneous bilinguals (n = 20) listened to…

  4. SAR target recognition and posture estimation using spatial pyramid pooling within CNN

    NASA Astrophysics Data System (ADS)

    Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-01-01

    Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.

  5. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  6. Information-based approach to performance estimation and requirements allocation in multisensor fusion for target recognition

    NASA Astrophysics Data System (ADS)

    Harney, Robert C.

    1997-03-01

    A novel methodology offering the potential for resolving two of the significant problems of implementing multisensor target recognition systems, i.e., the rational selection of a specific sensor suite and optimal allocation of requirements among sensors, is presented. Based on a sequence of conjectures (and their supporting arguments) concerning the relationship of extractable information content to recognition performance of a sensor system, a set of heuristics (essentially a reformulation of Johnson's criteria applicable to all sensor and data types) is developed. An approach to quantifying the information content of sensor data is described. Coupling this approach with the widely accepted Johnson's criteria for target recognition capabilities results in a quantitative method for comparing the target recognition ability of diverse sensors (imagers, nonimagers, active, passive, electromagnetic, acoustic, etc.). Extension to describing the performance of multiple sensors is straightforward. The application of the technique to sensor selection and requirements allocation is discussed.

  7. The research of multi-frame target recognition based on laser active imaging

    NASA Astrophysics Data System (ADS)

    Wang, Can-jin; Sun, Tao; Wang, Tin-feng; Chen, Juan

    2013-09-01

    Laser active imaging is fit to conditions such as no difference in temperature between target and background, pitch-black night, bad visibility. Also it can be used to detect a faint target in long range or small target in deep space, which has advantage of high definition and good contrast. In one word, it is immune to environment. However, due to the affect of long distance, limited laser energy and atmospheric backscatter, it is impossible to illuminate the whole scene at the same time. It means that the target in every single frame is unevenly or partly illuminated, which make the recognition more difficult. At the same time the speckle noise which is common in laser active imaging blurs the images . In this paper we do some research on laser active imaging and propose a new target recognition method based on multi-frame images . Firstly, multi pulses of laser is used to obtain sub-images for different parts of scene. A denoising method combined homomorphic filter with wavelet domain SURE is used to suppress speckle noise. And blind deconvolution is introduced to obtain low-noise and clear sub-images. Then these sub-images are registered and stitched to combine a completely and uniformly illuminated scene image. After that, a new target recognition method based on contour moments is proposed. Firstly, canny operator is used to obtain contours. For each contour, seven invariant Hu moments are calculated to generate the feature vectors. At last the feature vectors are input into double hidden layers BP neural network for classification . Experiments results indicate that the proposed algorithm could achieve a high recognition rate and satisfactory real-time performance for laser active imaging.

  8. Composite Wavelet Filters for Enhanced Automated Target Recognition

    NASA Technical Reports Server (NTRS)

    Chiang, Jeffrey N.; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low-resolution sonar and camera videos taken from unmanned vehicles. These sonar images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both sonar and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this paper.

  9. Using eye movements as an index of implicit face recognition in autism spectrum disorder.

    PubMed

    Hedley, Darren; Young, Robyn; Brewer, Neil

    2012-10-01

    Individuals with an autism spectrum disorder (ASD) typically show impairment on face recognition tasks. Performance has usually been assessed using overt, explicit recognition tasks. Here, a complementary method involving eye tracking was used to examine implicit face recognition in participants with ASD and in an intelligence quotient-matched non-ASD control group. Differences in eye movement indices between target and foil faces were used as an indicator of implicit face recognition. Explicit face recognition was assessed using old-new discrimination and reaction time measures. Stimuli were faces of studied (target) or unfamiliar (foil) persons. Target images at test were either identical to the images presented at study or altered by changing the lighting, pose, or by masking with visual noise. Participants with ASD performed worse than controls on the explicit recognition task. Eye movement-based measures, however, indicated that implicit recognition may not be affected to the same degree as explicit recognition. Autism Res 2012, 5: 363-379. © 2012 International Society for Autism Research, Wiley Periodicals, Inc. © 2012 International Society for Autism Research, Wiley Periodicals, Inc.

  10. Sparse representation based SAR vehicle recognition along with aspect angle.

    PubMed

    Xing, Xiangwei; Ji, Kefeng; Zou, Huanxin; Sun, Jixiang

    2014-01-01

    As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC) has attracted much attention in synthetic aperture radar (SAR) automatic target recognition (ATR) recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA), in which the correlation between the vehicle's aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA) feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle's aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.

  11. Convolutional neural networks based on augmented training samples for synthetic aperture radar target recognition

    NASA Astrophysics Data System (ADS)

    Yan, Yue

    2018-03-01

    A synthetic aperture radar (SAR) automatic target recognition (ATR) method based on the convolutional neural networks (CNN) trained by augmented training samples is proposed. To enhance the robustness of CNN to various extended operating conditions (EOCs), the original training images are used to generate the noisy samples at different signal-to-noise ratios (SNRs), multiresolution representations, and partially occluded images. Then, the generated images together with the original ones are used to train a designed CNN for target recognition. The augmented training samples can contrapuntally improve the robustness of the trained CNN to the covered EOCs, i.e., the noise corruption, resolution variance, and partial occlusion. Moreover, the significantly larger training set effectively enhances the representation capability for other conditions, e.g., the standard operating condition (SOC), as well as the stability of the network. Therefore, better performance can be achieved by the proposed method for SAR ATR. For experimental evaluation, extensive experiments are conducted on the Moving and Stationary Target Acquisition and Recognition dataset under SOC and several typical EOCs.

  12. The research of edge extraction and target recognition based on inherent feature of objects

    NASA Astrophysics Data System (ADS)

    Xie, Yu-chan; Lin, Yu-chi; Huang, Yin-guo

    2008-03-01

    Current research on computer vision often needs specific techniques for particular problems. Little use has been made of high-level aspects of computer vision, such as three-dimensional (3D) object recognition, that are appropriate for large classes of problems and situations. In particular, high-level vision often focuses mainly on the extraction of symbolic descriptions, and pays little attention to the speed of processing. In order to extract and recognize target intelligently and rapidly, in this paper we developed a new 3D target recognition method based on inherent feature of objects in which cuboid was taken as model. On the basis of analysis cuboid nature contour and greyhound distributing characteristics, overall fuzzy evaluating technique was utilized to recognize and segment the target. Then Hough transform was used to extract and match model's main edges, we reconstruct aim edges by stereo technology in the end. There are three major contributions in this paper. Firstly, the corresponding relations between the parameters of cuboid model's straight edges lines in an image field and in the transform field were summed up. By those, the aimless computations and searches in Hough transform processing can be reduced greatly and the efficiency is improved. Secondly, as the priori knowledge about cuboids contour's geometry character known already, the intersections of the component extracted edges are taken, and assess the geometry of candidate edges matches based on the intersections, rather than the extracted edges. Therefore the outlines are enhanced and the noise is depressed. Finally, a 3-D target recognition method is proposed. Compared with other recognition methods, this new method has a quick response time and can be achieved with high-level computer vision. The method present here can be used widely in vision-guide techniques to strengthen its intelligence and generalization, which can also play an important role in object tracking, port AGV, robots fields. The results of simulation experiments and theory analyzing demonstrate that the proposed method could suppress noise effectively, extracted target edges robustly, and achieve the real time need. Theory analysis and experiment shows the method is reasonable and efficient.

  13. Testing of a Composite Wavelet Filter to Enhance Automated Target Recognition in SONAR

    NASA Technical Reports Server (NTRS)

    Chiang, Jeffrey N.

    2011-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low resolution SONAR and camera videos taken from Unmanned Underwater Vehicles (UUVs). These SONAR images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both SONAR and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this report.

  14. A novel rotational invariants target recognition method for rotating motion blurred images

    NASA Astrophysics Data System (ADS)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  15. Infrared vehicle recognition using unsupervised feature learning based on K-feature

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Tan, Yihua; Xia, Haijiao; Tian, Jinwen

    2018-02-01

    Subject to the complex battlefield environment, it is difficult to establish a complete knowledge base in practical application of vehicle recognition algorithms. The infrared vehicle recognition is always difficult and challenging, which plays an important role in remote sensing. In this paper we propose a new unsupervised feature learning method based on K-feature to recognize vehicle in infrared images. First, we use the target detection algorithm which is based on the saliency to detect the initial image. Then, the unsupervised feature learning based on K-feature, which is generated by Kmeans clustering algorithm that extracted features by learning a visual dictionary from a large number of samples without label, is calculated to suppress the false alarm and improve the accuracy. Finally, the vehicle target recognition image is finished by some post-processing. Large numbers of experiments demonstrate that the proposed method has satisfy recognition effectiveness and robustness for vehicle recognition in infrared images under complex backgrounds, and it also improve the reliability of it.

  16. Summary of tracking and identification methods

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Yang, Chun; Kadar, Ivan

    2014-06-01

    Over the last two decades, many solutions have arisen to combine target tracking estimation with classification methods. Target tracking includes developments from linear to non-linear and Gaussian to non-Gaussian processing. Pattern recognition includes detection, classification, recognition, and identification methods. Integrating tracking and pattern recognition has resulted in numerous approaches and this paper seeks to organize the various approaches. We discuss the terminology so as to have a common framework for various standards such as the NATO STANAG 4162 - Identification Data Combining Process. In a use case, we provide a comparative example highlighting that location information (as an example) with additional mission objectives from geographical, human, social, cultural, and behavioral modeling is needed to determine identification as classification alone does not allow determining identification or intent.

  17. A Comparison of Two Flashcard Drill Methods Targeting Word Recognition

    ERIC Educational Resources Information Center

    Volpe, Robert J.; Mule, Christina M.; Briesch, Amy M.; Joseph, Laurice M.; Burns, Matthew K.

    2011-01-01

    Traditional drill and practice (TD) and incremental rehearsal (IR) are two flashcard drill instructional methods previously noted to improve word recognition. The current study sought to compare the effectiveness and efficiency of these two methods, as assessed by next day retention assessments, under 2 conditions (i.e., opportunities to respond…

  18. Morphological self-organizing feature map neural network with applications to automatic target recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Shijun; Jing, Zhongliang; Li, Jianxun

    2005-01-01

    The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.

  19. Learning target masks in infrared linescan imagery

    NASA Astrophysics Data System (ADS)

    Fechner, Thomas; Rockinger, Oliver; Vogler, Axel; Knappe, Peter

    1997-04-01

    In this paper we propose a neural network based method for the automatic detection of ground targets in airborne infrared linescan imagery. Instead of using a dedicated feature extraction stage followed by a classification procedure, we propose the following three step scheme: In the first step of the recognition process, the input image is decomposed into its pyramid representation, thus obtaining a multiresolution signal representation. At the lowest three levels of the Laplacian pyramid a neural network filter of moderate size is trained to indicate the target location. The last step consists of a fusion process of the several neural network filters to obtain the final result. To perform this fusion we use a belief network to combine the various filter outputs in a statistical meaningful way. In addition, the belief network allows the integration of further knowledge about the image domain. By applying this multiresolution recognition scheme, we obtain a nearly scale- and rotational invariant target recognition with a significantly decreased false alarm rate compared with a single resolution target recognition scheme.

  20. Deep Learning Methods for Underwater Target Feature Extraction and Recognition

    PubMed Central

    Peng, Yuan; Qiu, Mengran; Shi, Jianfei; Liu, Liangliang

    2018-01-01

    The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved. PMID:29780407

  1. Low, slow, small target recognition based on spatial vision network

    NASA Astrophysics Data System (ADS)

    Cheng, Zhao; Guo, Pei; Qi, Xin

    2018-03-01

    Traditional photoelectric monitoring is monitored using a large number of identical cameras. In order to ensure the full coverage of the monitoring area, this monitoring method uses more cameras, which leads to more monitoring and repetition areas, and higher costs, resulting in more waste. In order to reduce the monitoring cost and solve the difficult problem of finding, identifying and tracking a low altitude, slow speed and small target, this paper presents spatial vision network for low-slow-small targets recognition. Based on camera imaging principle and monitoring model, spatial vision network is modeled and optimized. Simulation experiment results demonstrate that the proposed method has good performance.

  2. Infrared target recognition based on improved joint local ternary pattern

    NASA Astrophysics Data System (ADS)

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  3. Evaluation of target acquisition difficulty using recognition distance to measure required retinal area

    NASA Astrophysics Data System (ADS)

    Nilsson, Thomy H.

    2001-09-01

    The psychophysical method of limits was used to measure the distance at which observers could distinguish military vehicles photographed in natural landscapes. Obtained from the TNO-TM Search_2 dataset, these pictures either were rear-projected 35-mm slides or were presented on a computer monitor. Based on the rationale that more difficult vehicle targets would require more visual pathways for recognition, difficult of acquisition was defined in terms of the relative retinal area required for recognition. Relative retinal area was derived from the inverse square of the recognition distance of a particular vehicle relative to the distance of the vehicle that could be seen furthest away. Results are compared with data on the time required to find the vehicles in these pictures. These comparison indicate recognition distance thresholds can be a suitable means of defining standards for the effectiveness of vital graphic information; and the two methods are complementary with respect to distinguishing different degrees of acquisition difficulty, and together may provide a means to measure the total information processing required for recognition.

  4. The study of infrared target recognition at sea background based on visual attention computational model

    NASA Astrophysics Data System (ADS)

    Wang, Deng-wei; Zhang, Tian-xu; Shi, Wen-jun; Wei, Long-sheng; Wang, Xiao-ping; Ao, Guo-qing

    2009-07-01

    Infrared images at sea background are notorious for the low signal-to-noise ratio, therefore, the target recognition of infrared image through traditional methods is very difficult. In this paper, we present a novel target recognition method based on the integration of visual attention computational model and conventional approach (selective filtering and segmentation). The two distinct techniques for image processing are combined in a manner to utilize the strengths of both. The visual attention algorithm searches the salient regions automatically, and represented them by a set of winner points, at the same time, demonstrated the salient regions in terms of circles centered at these winner points. This provides a priori knowledge for the filtering and segmentation process. Based on the winner point, we construct a rectangular region to facilitate the filtering and segmentation, then the labeling operation will be added selectively by requirement. Making use of the labeled information, from the final segmentation result we obtain the positional information of the interested region, label the centroid on the corresponding original image, and finish the localization for the target. The cost time does not depend on the size of the image but the salient regions, therefore the consumed time is greatly reduced. The method is used in the recognition of several kinds of real infrared images, and the experimental results reveal the effectiveness of the algorithm presented in this paper.

  5. Target recognitions in multiple-camera closed-circuit television using color constancy

    NASA Astrophysics Data System (ADS)

    Soori, Umair; Yuen, Peter; Han, Ji Wen; Ibrahim, Izzati; Chen, Wentao; Hong, Kan; Merfort, Christian; James, David; Richardson, Mark

    2013-04-01

    People tracking in crowded scenes from closed-circuit television (CCTV) footage has been a popular and challenging task in computer vision. Due to the limited spatial resolution in the CCTV footage, the color of people's dress may offer an alternative feature for their recognition and tracking. However, there are many factors, such as variable illumination conditions, viewing angles, and camera calibration, that may induce illusive modification of intrinsic color signatures of the target. Our objective is to recognize and track targets in multiple camera views using color as the detection feature, and to understand if a color constancy (CC) approach may help to reduce these color illusions due to illumination and camera artifacts and thereby improve target recognition performance. We have tested a number of CC algorithms using various color descriptors to assess the efficiency of target recognition from a real multicamera Imagery Library for Intelligent Detection Systems (i-LIDS) data set. Various classifiers have been used for target detection, and the figure of merit to assess the efficiency of target recognition is achieved through the area under the receiver operating characteristics (AUROC). We have proposed two modifications of luminance-based CC algorithms: one with a color transfer mechanism and the other using a pixel-wise sigmoid function for an adaptive dynamic range compression, a method termed enhanced luminance reflectance CC (ELRCC). We found that both algorithms improve the efficiency of target recognitions substantially better than that of the raw data without CC treatment, and in some cases the ELRCC improves target tracking by over 100% within the AUROC assessment metric. The performance of the ELRCC has been assessed over 10 selected targets from three different camera views of the i-LIDS footage, and the averaged target recognition efficiency over all these targets is found to be improved by about 54% in AUROC after the data are processed by the proposed ELRCC algorithm. This amount of improvement represents a reduction of probability of false alarm by about a factor of 5 at the probability of detection of 0.5. Our study concerns mainly the detection of colored targets; and issues for the recognition of white or gray targets will be addressed in a forthcoming study.

  6. Examination of soldier target recognition with direct view optics

    NASA Astrophysics Data System (ADS)

    Long, Frederick H.; Larkin, Gabriella; Bisordi, Danielle; Dorsey, Shauna; Marianucci, Damien; Goss, Lashawnta; Bastawros, Michael; Misiuda, Paul; Rodgers, Glenn; Mazz, John P.

    2017-10-01

    Target recognition and identification is a problem of great military and scientific importance. To examine the correlation between target recognition and optical magnification, ten U.S. Army soldiers were tasked with identifying letters on targets at 800 and 1300 meters away. Letters were used since they are a standard method for measuring visual acuity. The letters were approximately 90 cm high, which is the size of a well-known rifle. Four direct view optics with angular magnifications of 1.5x, 4x, 6x, and 9x were used. The goal of this approach was to measure actual probabilities for correct target identification. Previous scientific literature suggests that target recognition can be modeled as a linear response problem in angular frequency space using the established values for the contrast sensitivity function for a healthy human eye and the experimentally measured modulation transfer function of the optic. At the 9x magnification, the soldiers could identify the letters with almost no errors (i.e., 97% probability of correct identification). At lower magnification, errors in letter identification were more frequent. The identification errors were not random but occurred most frequently with a few pairs of letters (e.g., O and Q), which is consistent with the literature for letter recognition. In addition, in the small subject sample of ten soldiers, there was considerable variation in the observer recognition capability at 1.5x and a range of 800 meters. This can be directly attributed to the variation in the observer visual acuity.

  7. Object recognition of ladar with support vector machine

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Feng; Li, Qi; Wang, Qi

    2005-01-01

    Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.

  8. State Recognition of High Voltage Isolation Switch Based on Background Difference and Iterative Search

    NASA Astrophysics Data System (ADS)

    Xu, Jiayuan; Yu, Chengtao; Bo, Bin; Xue, Yu; Xu, Changfu; Chaminda, P. R. Dushantha; Hu, Chengbo; Peng, Kai

    2018-03-01

    The automatic recognition of the high voltage isolation switch by remote video monitoring is an effective means to ensure the safety of the personnel and the equipment. The existing methods mainly include two ways: improving monitoring accuracy and adopting target detection technology through equipment transformation. Such a method is often applied to specific scenarios, with limited application scope and high cost. To solve this problem, a high voltage isolation switch state recognition method based on background difference and iterative search is proposed in this paper. The initial position of the switch is detected in real time through the background difference method. When the switch starts to open and close, the target tracking algorithm is used to track the motion trajectory of the switch. The opening and closing state of the switch is determined according to the angle variation of the switch tracking point and the center line. The effectiveness of the method is verified by experiments on different switched video frames of switching states. Compared with the traditional methods, this method is more robust and effective.

  9. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution

    NASA Astrophysics Data System (ADS)

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-01

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.

  10. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution.

    PubMed

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-06

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.

  11. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution

    PubMed Central

    Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji

    2017-01-01

    A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining. PMID:28059147

  12. Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition

    PubMed Central

    Shen, Sheng; Yao, Xiaohui; Sheng, Meiping; Wang, Chen

    2018-01-01

    Underwater acoustic target recognition based on ship-radiated noise belongs to the small-sample-size recognition problems. A competitive deep-belief network is proposed to learn features with more discriminative information from labeled and unlabeled samples. The proposed model consists of four stages: (1) A standard restricted Boltzmann machine is pretrained using a large number of unlabeled data to initialize its parameters; (2) the hidden units are grouped according to categories, which provides an initial clustering model for competitive learning; (3) competitive training and back-propagation algorithms are used to update the parameters to accomplish the task of clustering; (4) by applying layer-wise training and supervised fine-tuning, a deep neural network is built to obtain features. Experimental results show that the proposed method can achieve classification accuracy of 90.89%, which is 8.95% higher than the accuracy obtained by the compared methods. In addition, the highest accuracy of our method is obtained with fewer features than other methods. PMID:29570642

  13. Recent progress in invariant pattern recognition

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar

    1996-12-01

    We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.

  14. Testing Saliency Parameters for Automatic Target Recognition

    NASA Technical Reports Server (NTRS)

    Pandya, Sagar

    2012-01-01

    A bottom-up visual attention model (the saliency model) is tested to enhance the performance of Automated Target Recognition (ATR). JPL has developed an ATR system that identifies regions of interest (ROI) using a trained OT-MACH filter, and then classifies potential targets as true- or false-positives using machine-learning techniques. In this project, saliency is used as a pre-processing step to reduce the space for performing OT-MACH filtering. Saliency parameters, such as output level and orientation weight, are tuned to detect known target features. Preliminary results are promising and future work entails a rigrous and parameter-based search to gain maximum insight about this method.

  15. Research on target tracking in coal mine based on optical flow method

    NASA Astrophysics Data System (ADS)

    Xue, Hongye; Xiao, Qingwei

    2015-03-01

    To recognize, track and count the bolting machine in coal mine video images, a real-time target tracking method based on the Lucas-Kanade sparse optical flow is proposed in this paper. In the method, we judge whether the moving target deviate from its trajectory, predicate and correct the position of the moving target. The method solves the problem of failure to track the target or lose the target because of the weak light, uneven illumination and blocking. Using the VC++ platform and Opencv lib we complete the recognition and tracking. The validity of the method is verified by the result of the experiment.

  16. Bi-Spectral Method for Radar Target Recognition

    DTIC Science & Technology

    2006-12-01

    θazimuth=60° and ϕelevation=30° with HV Polarization....................................53 Figure 50 Comparison of Radar Range Profile with Actual...radar systems. A comparison of the NCTR techniques and their relative advantages and disadvantages in target recognition performance is presented. 8...32 f fR i R R c c f fi R R i R R c c A e A e A e ψ ψ π ψ ψ π ψ ψ π ψ ψ

  17. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition.

    PubMed

    Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang

    2018-05-16

    The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  18. Research on Radar Micro-Doppler Feature Parameter Estimation of Propeller Aircraft

    NASA Astrophysics Data System (ADS)

    He, Zhihua; Tao, Feixiang; Duan, Jia; Luo, Jingsheng

    2018-01-01

    The micro-motion modulation effect of the rotated propellers to radar echo can be a steady feature for aircraft target recognition. Thus, micro-Doppler feature parameter estimation is a key to accurate target recognition. In this paper, the radar echo of rotated propellers is modelled and simulated. Based on which, the distribution characteristics of the micro-motion modulation energy in time, frequency and time-frequency domain are analyzed. The micro-motion modulation energy produced by the scattering points of rotating propellers is accumulated using the Inverse-Radon (I-Radon) transform, which can be used to accomplish the estimation of micro-modulation parameter. Finally, it is proved that the proposed parameter estimation method is effective with measured data. The micro-motion parameters of aircraft can be used as the features of radar target recognition.

  19. Target recognition and scene interpretation in image/video understanding systems based on network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-08-01

    Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.

  20. Recognition during recall failure: Semantic feature matching as a mechanism for recognition of semantic cues when recall fails.

    PubMed

    Cleary, Anne M; Ryals, Anthony J; Wagner, Samantha R

    2016-01-01

    Research suggests that a feature-matching process underlies cue familiarity-detection when cued recall with graphemic cues fails. When a test cue (e.g., potchbork) overlaps in graphemic features with multiple unrecalled studied items (e.g., patchwork, pitchfork, pocketbook, pullcork), higher cue familiarity ratings are given during recall failure of all of the targets than when the cue overlaps in graphemic features with only one studied target and that target fails to be recalled (e.g., patchwork). The present study used semantic feature production norms (McRae et al., Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005) to examine whether the same holds true when the cues are semantic in nature (e.g., jaguar is used to cue cheetah). Indeed, test cues (e.g., cedar) that overlapped in semantic features (e.g., a_tree, has_bark, etc.) with four unretrieved studied items (e.g., birch, oak, pine, willow) received higher cue familiarity ratings during recall failure than test cues that overlapped in semantic features with only two (also unretrieved) studied items (e.g., birch, oak), which in turn received higher familiarity ratings during recall failure than cues that did not overlap in semantic features with any studied items. These findings suggest that the feature-matching theory of recognition during recall failure can accommodate recognition of semantic cues during recall failure, providing a potential mechanism for conceptually-based forms of cue recognition during target retrieval failure. They also provide converging evidence for the existence of the semantic features envisaged in feature-based models of semantic knowledge representation and for those more concretely specified by the production norms of McRae et al. (Behavior Research Methods, Instruments, & Computers, 37, 547-559, 2005).

  1. Research and Development of Target Recognition and Location Crawling Platform based on Binocular Vision

    NASA Astrophysics Data System (ADS)

    Xu, Weidong; Lei, Zhu; Yuan, Zhang; Gao, Zhenqing

    2018-03-01

    The application of visual recognition technology in industrial robot crawling and placing operation is one of the key tasks in the field of robot research. In order to improve the efficiency and intelligence of the material sorting in the production line, especially to realize the sorting of the scattered items, the robot target recognition and positioning crawling platform based on binocular vision is researched and developed. The images were collected by binocular camera, and the images were pretreated. Harris operator was used to identify the corners of the images. The Canny operator was used to identify the images. Hough-chain code recognition was used to identify the images. The target image in the image, obtain the coordinates of each vertex of the image, calculate the spatial position and posture of the target item, and determine the information needed to capture the movement and transmit it to the robot control crawling operation. Finally, In this paper, we use this method to experiment the wrapping problem in the express sorting process The experimental results show that the platform can effectively solve the problem of sorting of loose parts, so as to achieve the purpose of efficient and intelligent sorting.

  2. Virtual reality method to analyze visual recognition in mice.

    PubMed

    Young, Brent Kevin; Brennan, Jayden Nicole; Wang, Ping; Tian, Ning

    2018-01-01

    Behavioral tests have been extensively used to measure the visual function of mice. To determine how precisely mice perceive certain visual cues, it is necessary to have a quantifiable measurement of their behavioral responses. Recently, virtual reality tests have been utilized for a variety of purposes, from analyzing hippocampal cell functionality to identifying visual acuity. Despite the widespread use of these tests, the training requirement for the recognition of a variety of different visual targets, and the performance of the behavioral tests has not been thoroughly characterized. We have developed a virtual reality behavior testing approach that can essay a variety of different aspects of visual perception, including color/luminance and motion detection. When tested for the ability to detect a color/luminance target or a moving target, mice were able to discern the designated target after 9 days of continuous training. However, the quality of their performance is significantly affected by the complexity of the visual target, and their ability to navigate on a spherical treadmill. Importantly, mice retained memory of their visual recognition for at least three weeks after the end of their behavioral training.

  3. 3D facial expression recognition using maximum relevance minimum redundancy geometrical features

    NASA Astrophysics Data System (ADS)

    Rabiu, Habibu; Saripan, M. Iqbal; Mashohor, Syamsiah; Marhaban, Mohd Hamiruce

    2012-12-01

    In recent years, facial expression recognition (FER) has become an attractive research area, which besides the fundamental challenges, it poses, finds application in areas, such as human-computer interaction, clinical psychology, lie detection, pain assessment, and neurology. Generally the approaches to FER consist of three main steps: face detection, feature extraction and expression recognition. The recognition accuracy of FER hinges immensely on the relevance of the selected features in representing the target expressions. In this article, we present a person and gender independent 3D facial expression recognition method, using maximum relevance minimum redundancy geometrical features. The aim is to detect a compact set of features that sufficiently represents the most discriminative features between the target classes. Multi-class one-against-one SVM classifier was employed to recognize the seven facial expressions; neutral, happy, sad, angry, fear, disgust, and surprise. The average recognition accuracy of 92.2% was recorded. Furthermore, inter database homogeneity was investigated between two independent databases the BU-3DFE and UPM-3DFE the results showed a strong homogeneity between the two databases.

  4. Image-algebraic design of multispectral target recognition algorithms

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.

    1994-06-01

    In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.

  5. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    NASA Astrophysics Data System (ADS)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  6. Lifting wavelet method of target detection

    NASA Astrophysics Data System (ADS)

    Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin

    2009-11-01

    Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.

  7. Geometric shapes inversion method of space targets by ISAR image segmentation

    NASA Astrophysics Data System (ADS)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  8. Position estimation and driving of an autonomous vehicle by monocular vision

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.

    2007-04-01

    Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.

  9. Transfer Learning with Convolutional Neural Networks for SAR Ship Recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Liu, Jia; Heng, Wang; Ren, Kaijun; Song, Junqiang

    2018-03-01

    Ship recognition is the backbone of marine surveillance systems. Recent deep learning methods, e.g. Convolutional Neural Networks (CNNs), have shown high performance for optical images. Learning CNNs, however, requires a number of annotated samples to estimate numerous model parameters, which prevents its application to Synthetic Aperture Radar (SAR) images due to the limited annotated training samples. Transfer learning has been a promising technique for applications with limited data. To this end, a novel SAR ship recognition method based on CNNs with transfer learning has been developed. In this work, we firstly start with a CNNs model that has been trained in advance on Moving and Stationary Target Acquisition and Recognition (MSTAR) database. Next, based on the knowledge gained from this image recognition task, we fine-tune the CNNs on a new task to recognize three types of ships in the OpenSARShip database. The experimental results show that our proposed approach can obviously increase the recognition rate comparing with the result of merely applying CNNs. In addition, compared to existing methods, the proposed method proves to be very competitive and can learn discriminative features directly from training data instead of requiring pre-specification or pre-selection manually.

  10. Deep feature extraction and combination for synthetic aperture radar target classification

    NASA Astrophysics Data System (ADS)

    Amrani, Moussa; Jiang, Feng

    2017-10-01

    Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.

  11. Recognition of voice commands using adaptation of foreign language speech recognizer via selection of phonetic transcriptions

    NASA Astrophysics Data System (ADS)

    Maskeliunas, Rytis; Rudzionis, Vytautas

    2011-06-01

    In recent years various commercial speech recognizers have become available. These recognizers provide the possibility to develop applications incorporating various speech recognition techniques easily and quickly. All of these commercial recognizers are typically targeted to widely spoken languages having large market potential; however, it may be possible to adapt available commercial recognizers for use in environments where less widely spoken languages are used. Since most commercial recognition engines are closed systems the single avenue for the adaptation is to try set ways for the selection of proper phonetic transcription methods between the two languages. This paper deals with the methods to find the phonetic transcriptions for Lithuanian voice commands to be recognized using English speech engines. The experimental evaluation showed that it is possible to find phonetic transcriptions that will enable the recognition of Lithuanian voice commands with recognition accuracy of over 90%.

  12. Automatic Target Recognition Based on Cross-Plot

    PubMed Central

    Wong, Kelvin Kian Loong; Abbott, Derek

    2011-01-01

    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508

  13. Feature Extraction and Selection Strategies for Automated Target Recognition

    NASA Technical Reports Server (NTRS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  14. Feature extraction and selection strategies for automated target recognition

    NASA Astrophysics Data System (ADS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-04-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  15. Molecular recognition of glyconanoparticles by RCA and E. coli K88 - designing transports for targeted therapy.

    PubMed

    Gallegos-Tabanico, Amed; Sarabia-Sainz, Jose A; Sarabia-Sainz, H Manuel; Carrillo Torres, Roberto; Guzman-Partida, Ana M; Monfort, Gabriela Ramos-Clamont; Silva-Campa, Erika; Burgara-Estrella, Alexel J; Angulo-Molina, Aracely; Acosta-Elias, Mónica; Pedroza-Montero, Martín; Vazquez-Moreno, Luz

    2017-01-01

    The targeted drug delivery has been studied as one of the main methods in medicine to ensure successful treatments of diseases. Pharmaceutical sciences are using micro or nano carriers to obtain a controlled delivery of drugs, able to selectively interact with pathogens, cells or tissues. In this work, we modified bovine serum albumin (BSA) with lactose, obtaining a neoglycan (BSA-Lac). Subsequently, we synthesized glyconanoparticles (NPBSA-Lac) with the premise that it would be recognized by microbial galactose specific lectins. NPBSA-Lac were tested for bio-recognition with adhesins of E. coli K88 and Ricinus communis agglutinin I (RCA). Glycation of BSA with lactose was analyzed by electrophoresis, infrared spectroscopy and fluorescence. Approximately 41 lactoses per BSA molecule were estimated. Nanoparticles were obtained using water in oil emulsion method and spheroid morphology with a range size of 300-500 nm was observed. Specific recognition of NPBSA-Lac by RCA and E. coli K88 was displayed by aggregation of nanoparticles analyzed by dynamic light scattering and atomic force microscopy. The results indicate that the lactosylated nanovectors could be targeted at the E. coli K88 adhesin and potentially could be used as a transporter for an antibacterial drug.

  16. Spoken Word Recognition in Toddlers Who Use Cochlear Implants

    PubMed Central

    Grieco-Calub, Tina M.; Saffran, Jenny R.; Litovsky, Ruth Y.

    2010-01-01

    Purpose The purpose of this study was to assess the time course of spoken word recognition in 2-year-old children who use cochlear implants (CIs) in quiet and in the presence of speech competitors. Method Children who use CIs and age-matched peers with normal acoustic hearing listened to familiar auditory labels, in quiet or in the presence of speech competitors, while their eye movements to target objects were digitally recorded. Word recognition performance was quantified by measuring each child’s reaction time (i.e., the latency between the spoken auditory label and the first look at the target object) and accuracy (i.e., the amount of time that children looked at target objects within 367 ms to 2,000 ms after the label onset). Results Children with CIs were less accurate and took longer to fixate target objects than did age-matched children without hearing loss. Both groups of children showed reduced performance in the presence of the speech competitors, although many children continued to recognize labels at above-chance levels. Conclusion The results suggest that the unique auditory experience of young CI users slows the time course of spoken word recognition abilities. In addition, real-world listening environments may slow language processing in young language learners, regardless of their hearing status. PMID:19951921

  17. A Component-Based Vocabulary-Extensible Sign Language Gesture Recognition Framework.

    PubMed

    Wei, Shengjing; Chen, Xiang; Yang, Xidong; Cao, Shuai; Zhang, Xu

    2016-04-19

    Sign language recognition (SLR) can provide a helpful tool for the communication between the deaf and the external world. This paper proposed a component-based vocabulary extensible SLR framework using data from surface electromyographic (sEMG) sensors, accelerometers (ACC), and gyroscopes (GYRO). In this framework, a sign word was considered to be a combination of five common sign components, including hand shape, axis, orientation, rotation, and trajectory, and sign classification was implemented based on the recognition of five components. Especially, the proposed SLR framework consisted of two major parts. The first part was to obtain the component-based form of sign gestures and establish the code table of target sign gesture set using data from a reference subject. In the second part, which was designed for new users, component classifiers were trained using a training set suggested by the reference subject and the classification of unknown gestures was performed with a code matching method. Five subjects participated in this study and recognition experiments under different size of training sets were implemented on a target gesture set consisting of 110 frequently-used Chinese Sign Language (CSL) sign words. The experimental results demonstrated that the proposed framework can realize large-scale gesture set recognition with a small-scale training set. With the smallest training sets (containing about one-third gestures of the target gesture set) suggested by two reference subjects, (82.6 ± 13.2)% and (79.7 ± 13.4)% average recognition accuracy were obtained for 110 words respectively, and the average recognition accuracy climbed up to (88 ± 13.7)% and (86.3 ± 13.7)% when the training set included 50~60 gestures (about half of the target gesture set). The proposed framework can significantly reduce the user's training burden in large-scale gesture recognition, which will facilitate the implementation of a practical SLR system.

  18. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units

    PubMed Central

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-01-01

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684

  19. A Real-Time High Performance Computation Architecture for Multiple Moving Target Tracking Based on Wide-Area Motion Imagery via Cloud and Graphic Processing Units.

    PubMed

    Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik

    2017-02-12

    This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.

  20. Institute for Brain and Neural Systems

    DTIC Science & Technology

    2009-10-06

    to deal with computational complexity when analyzing large amounts of information in visual scenes. It seems natural that in addition to exploring...algorithms using methods from statistical pattern recognition and machine learning. Over the last fifteen years, significant advances had been made in...recognition, robustness to noise and ability to cope with significant variations in lighting conditions. Identifying an occluded target adds another layer of

  1. Electrochemical impedimetric sensor based on molecularly imprinted polymers/sol-gel chemistry for methidathion organophosphorous insecticide recognition.

    PubMed

    Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis

    2014-12-01

    We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Active learning for ontological event extraction incorporating named entity recognition and unknown word handling.

    PubMed

    Han, Xu; Kim, Jung-jae; Kwoh, Chee Keong

    2016-01-01

    Biomedical text mining may target various kinds of valuable information embedded in the literature, but a critical obstacle to the extension of the mining targets is the cost of manual construction of labeled data, which are required for state-of-the-art supervised learning systems. Active learning is to choose the most informative documents for the supervised learning in order to reduce the amount of required manual annotations. Previous works of active learning, however, focused on the tasks of entity recognition and protein-protein interactions, but not on event extraction tasks for multiple event types. They also did not consider the evidence of event participants, which might be a clue for the presence of events in unlabeled documents. Moreover, the confidence scores of events produced by event extraction systems are not reliable for ranking documents in terms of informativity for supervised learning. We here propose a novel committee-based active learning method that supports multi-event extraction tasks and employs a new statistical method for informativity estimation instead of using the confidence scores from event extraction systems. Our method is based on a committee of two systems as follows: We first employ an event extraction system to filter potential false negatives among unlabeled documents, from which the system does not extract any event. We then develop a statistical method to rank the potential false negatives of unlabeled documents 1) by using a language model that measures the probabilities of the expression of multiple events in documents and 2) by using a named entity recognition system that locates the named entities that can be event arguments (e.g. proteins). The proposed method further deals with unknown words in test data by using word similarity measures. We also apply our active learning method for the task of named entity recognition. We evaluate the proposed method against the BioNLP Shared Tasks datasets, and show that our method can achieve better performance than such previous methods as entropy and Gibbs error based methods and a conventional committee-based method. We also show that the incorporation of named entity recognition into the active learning for event extraction and the unknown word handling further improve the active learning method. In addition, the adaptation of the active learning method into named entity recognition tasks also improves the document selection for manual annotation of named entities.

  3. DNA sequence similarity recognition by hybridization to short oligomers

    DOEpatents

    Milosavljevic, Aleksandar

    1999-01-01

    Methods are disclosed for the comparison of nucleic acid sequences. Data is generated by hybridizing sets of oligomers with target nucleic acids. The data thus generated is manipulated simultaneously with respect to both (i) matching between oligomers and (ii) matching between oligomers and putative reference sequences available in databases. Using data compression methods to manipulate this mutual information, sequences for the target can be constructed.

  4. The rational development of molecularly imprinted polymer-based sensors for protein detection.

    PubMed

    Whitcombe, Michael J; Chianella, Iva; Larcombe, Lee; Piletsky, Sergey A; Noble, James; Porter, Robert; Horgan, Adrian

    2011-03-01

    The detection of specific proteins as biomarkers of disease, health status, environmental monitoring, food quality, control of fermenters and civil defence purposes means that biosensors for these targets will become increasingly more important. Among the technologies used for building specific recognition properties, molecularly imprinted polymers (MIPs) are attracting much attention. In this critical review we describe many methods used for imprinting recognition for protein targets in polymers and their incorporation with a number of transducer platforms with the aim of identifying the most promising approaches for the preparation of MIP-based protein sensors (277 references).

  5. Increase in Speech Recognition due to Linguistic Mismatch Between Target and Masker Speech: Monolingual and Simultaneous Bilingual Performance

    PubMed Central

    Calandruccio, Lauren; Zhou, Haibo

    2014-01-01

    Purpose To examine whether improved speech recognition during linguistically mismatched target–masker experiments is due to linguistic unfamiliarity of the masker speech or linguistic dissimilarity between the target and masker speech. Method Monolingual English speakers (n = 20) and English–Greek simultaneous bilinguals (n = 20) listened to English sentences in the presence of competing English and Greek speech. Data were analyzed using mixed-effects regression models to determine differences in English recogition performance between the 2 groups and 2 masker conditions. Results Results indicated that English sentence recognition for monolinguals and simultaneous English–Greek bilinguals improved when the masker speech changed from competing English to competing Greek speech. Conclusion The improvement in speech recognition that has been observed for linguistically mismatched target–masker experiments cannot be simply explained by the masker language being linguistically unknown or unfamiliar to the listeners. Listeners can improve their speech recognition in linguistically mismatched target–masker experiments even when the listener is able to obtain meaningful linguistic information from the masker speech. PMID:24167230

  6. Research on autonomous identification of airport targets based on Gabor filtering and Radon transform

    NASA Astrophysics Data System (ADS)

    Yi, Juan; Du, Qingyu; Zhang, Hong jiang; Zhang, Yao lei

    2017-11-01

    Target recognition is a leading key technology in intelligent image processing and application development at present, with the enhancement of computer processing ability, autonomous target recognition algorithm, gradually improve intelligence, and showed good adaptability. Taking the airport target as the research object, analysis the airport layout characteristics, construction of knowledge model, Gabor filter and Radon transform based on the target recognition algorithm of independent design, image processing and feature extraction of the airport, the algorithm was verified, and achieved better recognition results.

  7. A new FOD recognition algorithm based on multi-source information fusion and experiment analysis

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xiao, Gang

    2011-08-01

    Foreign Object Debris (FOD) is a kind of substance, debris or article alien to an aircraft or system, which would potentially cause huge damage when it appears on the airport runway. Due to the airport's complex circumstance, quick and precise detection of FOD target on the runway is one of the important protections for airplane's safety. A multi-sensor system including millimeter-wave radar and Infrared image sensors is introduced and a developed new FOD detection and recognition algorithm based on inherent feature of FOD is proposed in this paper. Firstly, the FOD's location and coordinate can be accurately obtained by millimeter-wave radar, and then according to the coordinate IR camera will take target images and background images. Secondly, in IR image the runway's edges which are straight lines can be extracted by using Hough transformation method. The potential target region, that is, runway region, can be segmented from the whole image. Thirdly, background subtraction is utilized to localize the FOD target in runway region. Finally, in the detailed small images of FOD target, a new characteristic is discussed and used in target classification. The experiment results show that this algorithm can effectively reduce the computational complexity, satisfy the real-time requirement and possess of high detection and recognition probability.

  8. Recognition of isotropic plane target from RCS diagram

    NASA Astrophysics Data System (ADS)

    Saillard, J.; Chassay, G.

    1981-06-01

    The use of electromagnetic waves for the recognition of a structure represented by point scatterers is seen as posing a fundamental problem. It is noted that much research has been done on this subject and that the study of aircraft observed in the yaw plane gives interesting results. To apply these methods, however, it is necessary to use many sophisticated acquisition systems. A method is proposed which can be applied to plane structures composed of isotropic scatterers. The method is considered to be of interest because it uses only power measurements and requires only a classical tracking radar.

  9. Whole-face procedures for recovering facial images from memory.

    PubMed

    Frowd, Charlie D; Skelton, Faye; Hepton, Gemma; Holden, Laura; Minahil, Simra; Pitchford, Melanie; McIntyre, Alex; Brown, Charity; Hancock, Peter J B

    2013-06-01

    Research has indicated that traditional methods for accessing facial memories usually yield unidentifiable images. Recent research, however, has made important improvements in this area to the witness interview, method used for constructing the face and recognition of finished composites. Here, we investigated whether three of these improvements would produce even-more recognisable images when used in conjunction with each other. The techniques are holistic in nature: they involve processes which operate on an entire face. Forty participants first inspected an unfamiliar target face. Nominally 24h later, they were interviewed using a standard type of cognitive interview (CI) to recall the appearance of the target, or an enhanced 'holistic' interview where the CI was followed by procedures for focussing on the target's character. Participants then constructed a composite using EvoFIT, a recognition-type system that requires repeatedly selecting items from face arrays, with 'breeding', to 'evolve' a composite. They either saw faces in these arrays with blurred external features, or an enhanced method where these faces were presented with masked external features. Then, further participants attempted to name the composites, first by looking at the face front-on, the normal method, and then for a second time by looking at the face side-on, which research demonstrates facilitates recognition. All techniques improved correct naming on their own, but together promoted highly-recognisable composites with mean naming at 74% correct. The implication is that these techniques, if used together by practitioners, should substantially increase the detection of suspects using this forensic method of person identification. Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Unravelling Glucan Recognition Systems by Glycome Microarrays Using the Designer Approach and Mass Spectrometry*

    PubMed Central

    Palma, Angelina S.; Liu, Yan; Zhang, Hongtao; Zhang, Yibing; McCleary, Barry V.; Yu, Guangli; Huang, Qilin; Guidolin, Leticia S.; Ciocchini, Andres E.; Torosantucci, Antonella; Wang, Denong; Carvalho, Ana Luísa; Fontes, Carlos M. G. A.; Mulloy, Barbara; Childs, Robert A.; Feizi, Ten; Chai, Wengang

    2015-01-01

    Glucans are polymers of d-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes, including immunomodulation, anticancer activities, pathogen virulence, and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure–function studies and their exploitation. We describe construction of a “glucome” microarray, the first sequence-defined glycome-scale microarray, using a “designer” approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear “homo” and “hetero” and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or β-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signaling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides. PMID:25670804

  11. Target detection method by airborne and spaceborne images fusion based on past images

    NASA Astrophysics Data System (ADS)

    Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng

    2017-11-01

    To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.

  12. Detection and recognition of targets by using signal polarization properties

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Peralta-Fabi, Ricardo; Popov, Anatoly V.; Babakov, Mikhail F.

    1999-08-01

    The quality of radar target recognition can be enhanced by exploiting its polarization signatures. A specialized X-band polarimetric radar was used for target recognition in experimental investigations. The following polarization characteristics connected to the object geometrical properties were investigated: the amplitudes of the polarization matrix elements; an anisotropy coefficient; depolarization coefficient; asymmetry coefficient; the energy of a backscattering signal; object shape factor. A large quantity of polarimetric radar data was measured and processed to form a database of different object and different weather conditions. The histograms of polarization signatures were approximated by a Nakagami distribution, then used for real- time target recognition. The Neyman-Pearson criterion was used for the target detection, and the criterion of the maximum of a posterior probability was used for recognition problem. Some results of experimental verification of pattern recognition and detection of objects with different electrophysical and geometrical characteristics urban in clutter are presented in this paper.

  13. Active Multimodal Sensor System for Target Recognition and Tracking

    PubMed Central

    Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen

    2017-01-01

    High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609

  14. Transfer Learning for Activity Recognition: A Survey

    PubMed Central

    Cook, Diane; Feuz, Kyle D.; Krishnan, Narayanan C.

    2013-01-01

    Many intelligent systems that focus on the needs of a human require information about the activities being performed by the human. At the core of this capability is activity recognition, which is a challenging and well-researched problem. Activity recognition algorithms require substantial amounts of labeled training data yet need to perform well under very diverse circumstances. As a result, researchers have been designing methods to identify and utilize subtle connections between activity recognition datasets, or to perform transfer-based activity recognition. In this paper we survey the literature to highlight recent advances in transfer learning for activity recognition. We characterize existing approaches to transfer-based activity recognition by sensor modality, by differences between source and target environments, by data availability, and by type of information that is transferred. Finally, we present some grand challenges for the community to consider as this field is further developed. PMID:24039326

  15. A Unitary Anesthetic Binding Site at High Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.

    2009-10-21

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less

  16. A Unitary Anesthetic Binding Site at High Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L Vedula; G Brannigan; N Economou

    2011-12-31

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less

  17. A Unitary Anesthetic-Binding Site at High Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedula, L.; Brannigan, G; Economou, N

    2009-01-01

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritinmore » also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less

  18. PHYSICAL MODEL FOR RECOGNITION TUNNELING

    PubMed Central

    Krstić, Predrag; Ashcroft, Brian; Lindsay, Stuart

    2015-01-01

    Recognition tunneling (RT) identifies target molecules trapped between tunneling electrodes functionalized with recognition molecules that serve as specific chemical linkages between the metal electrodes and the trapped target molecule. Possible applications include single molecule DNA and protein sequencing. This paper addresses several fundamental aspects of RT by multiscale theory, applying both all-atom and coarse-grained DNA models: (1) We show that the magnitude of the observed currents are consistent with the results of non-equilibrium Green's function calculations carried out on a solvated all-atom model. (2) Brownian fluctuations in hydrogen bond-lengths lead to current spikes that are similar to what is observed experimentally. (3) The frequency characteristics of these fluctuations can be used to identify the trapped molecules with a machine-learning algorithm, giving a theoretical underpinning to this new method of identifying single molecule signals. PMID:25650375

  19. Enzyme-triggered Gelation: Targeting Proteases with Internal Cleavage Sites

    PubMed Central

    Bremmer, Steven C.

    2014-01-01

    A generalizable method for detecting protease activity via gelation is described. A recognition sequence is used to target the protease of interest while a second protease is used to remove the residual residues from the gelator scaffold. Using this approach, selective assays for both MMP-9 and PSA are demonstrated. PMID:24394494

  20. Aging and Emotion Recognition: Not Just a Losing Matter

    PubMed Central

    Sze, Jocelyn A.; Goodkind, Madeleine S.; Gyurak, Anett; Levenson, Robert W.

    2013-01-01

    Past studies on emotion recognition and aging have found evidence of age-related decline when emotion recognition was assessed by having participants detect single emotions depicted in static images of full or partial (e.g., eye region) faces. These tests afford good experimental control but do not capture the dynamic nature of real-world emotion recognition, which is often characterized by continuous emotional judgments and dynamic multi-modal stimuli. Research suggests that older adults often perform better under conditions that better mimic real-world social contexts. We assessed emotion recognition in young, middle-aged, and older adults using two traditional methods (single emotion judgments of static images of faces and eyes) and an additional method in which participants made continuous emotion judgments of dynamic, multi-modal stimuli (videotaped interactions between young, middle-aged, and older couples). Results revealed an age by test interaction. Largely consistent with prior research, we found some evidence that older adults performed worse than young adults when judging single emotions from images of faces (for sad and disgust faces only) and eyes (for older eyes only), with middle-aged adults falling in between. In contrast, older adults did better than young adults on the test involving continuous emotion judgments of dyadic interactions, with middle-aged adults falling in between. In tests in which target stimuli differed in age, emotion recognition was not facilitated by an age match between participant and target. These findings are discussed in terms of theoretical and methodological implications for the study of aging and emotional processing. PMID:22823183

  1. Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine

    PubMed Central

    Liu, Yongxiang; Huo, Kai; Zhang, Zhongshuai

    2018-01-01

    A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted great interest from various fields for its fast learning speed and good generalization performance. However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. In addition, the existing ELM methods cannot utilize the class information of targets well. To solve this problem, a regularized ELM method based on the class information of the target is proposed. In this paper, SAE and the regularized ELM are combined to make full use of their advantages and make up for each of their shortcomings. The effectiveness of the proposed method is demonstrated by experiments with measured radar HRRP data. The experimental results show that the proposed method can achieve good performance in the two aspects of real-time and accuracy, especially when only a few training samples are available. PMID:29320453

  2. Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine.

    PubMed

    Zhao, Feixiang; Liu, Yongxiang; Huo, Kai; Zhang, Shuanghui; Zhang, Zhongshuai

    2018-01-10

    A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted great interest from various fields for its fast learning speed and good generalization performance. However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. In addition, the existing ELM methods cannot utilize the class information of targets well. To solve this problem, a regularized ELM method based on the class information of the target is proposed. In this paper, SAE and the regularized ELM are combined to make full use of their advantages and make up for each of their shortcomings. The effectiveness of the proposed method is demonstrated by experiments with measured radar HRRP data. The experimental results show that the proposed method can achieve good performance in the two aspects of real-time and accuracy, especially when only a few training samples are available.

  3. Ballistic missile precession frequency extraction based on the Viterbi & Kalman algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Longlong; Xie, Yongjie; Xu, Daping; Ren, Li

    2015-12-01

    Radar Micro-Doppler signatures are of great potential for target detection, classification and recognition. In the mid-course phase, warheads flying outside the atmosphere are usually accompanied by precession. Precession may induce additional frequency modulations on the returned radar signal, which can be regarded as a unique signature and provide additional information that is complementary to existing target recognition methods. The main purpose of this paper is to establish a more actual precession model of conical ballistic missile warhead and extract the precession parameters by utilizing Viterbi & Kalman algorithm, which improving the precession frequency estimation accuracy evidently , especially in low SNR.

  4. Target recognition for ladar range image using slice image

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Wang, Liang

    2015-12-01

    A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.

  5. Feature-based RNN target recognition

    NASA Astrophysics Data System (ADS)

    Bakircioglu, Hakan; Gelenbe, Erol

    1998-09-01

    Detection and recognition of target signatures in sensory data obtained by synthetic aperture radar (SAR), forward- looking infrared, or laser radar, have received considerable attention in the literature. In this paper, we propose a feature based target classification methodology to detect and classify targets in cluttered SAR images, that makes use of selective signature data from sensory data, together with a neural network technique which uses a set of trained networks based on the Random Neural Network (RNN) model (Gelenbe 89, 90, 91, 93) which is trained to act as a matched filter. We propose and investigate radial features of target shapes that are invariant to rotation, translation, and scale, to characterize target and clutter signatures. These features are then used to train a set of learning RNNs which can be used to detect targets within clutter with high accuracy, and to classify the targets or man-made objects from natural clutter. Experimental data from SAR imagery is used to illustrate and validate the proposed method, and to calculate Receiver Operating Characteristics which illustrate the performance of the proposed algorithm.

  6. The Automatic Recognition of the Abnormal Sky-subtraction Spectra Based on Hadoop

    NASA Astrophysics Data System (ADS)

    An, An; Pan, Jingchang

    2017-10-01

    The skylines, superimposing on the target spectrum as a main noise, If the spectrum still contains a large number of high strength skylight residuals after sky-subtraction processing, it will not be conducive to the follow-up analysis of the target spectrum. At the same time, the LAMOST can observe a quantity of spectroscopic data in every night. We need an efficient platform to proceed the recognition of the larger numbers of abnormal sky-subtraction spectra quickly. Hadoop, as a distributed parallel data computing platform, can deal with large amounts of data effectively. In this paper, we conduct the continuum normalization firstly and then a simple and effective method will be presented to automatic recognize the abnormal sky-subtraction spectra based on Hadoop platform. Obtain through the experiment, the Hadoop platform can implement the recognition with more speed and efficiency, and the simple method can recognize the abnormal sky-subtraction spectra and find the abnormal skyline positions of different residual strength effectively, can be applied to the automatic detection of abnormal sky-subtraction of large number of spectra.

  7. A Compact Methodology to Understand, Evaluate, and Predict the Performance of Automatic Target Recognition

    PubMed Central

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Chen, Yiping; Zhuang, Zhaowen; Cheng, Yongqiang; Deng, Bin; Wang, Liandong; Zeng, Yonghu; Gao, Lei

    2014-01-01

    This paper offers a compacted mechanism to carry out the performance evaluation work for an automatic target recognition (ATR) system: (a) a standard description of the ATR system's output is suggested, a quantity to indicate the operating condition is presented based on the principle of feature extraction in pattern recognition, and a series of indexes to assess the output in different aspects are developed with the application of statistics; (b) performance of the ATR system is interpreted by a quality factor based on knowledge of engineering mathematics; (c) through a novel utility called “context-probability” estimation proposed based on probability, performance prediction for an ATR system is realized. The simulation result shows that the performance of an ATR system can be accounted for and forecasted by the above-mentioned measures. Compared to existing technologies, the novel method can offer more objective performance conclusions for an ATR system. These conclusions may be helpful in knowing the practical capability of the tested ATR system. At the same time, the generalization performance of the proposed method is good. PMID:24967605

  8. Targeted and untargeted-metabolite profiling to track the compositional integrity of ginger during processing using digitally-enhanced HPTLC pattern recognition analysis.

    PubMed

    Ibrahim, Reham S; Fathy, Hoda

    2018-03-30

    Tracking the impact of commonly applied post-harvesting and industrial processing practices on the compositional integrity of ginger rhizome was implemented in this work. Untargeted metabolite profiling was performed using digitally-enhanced HPTLC method where the chromatographic fingerprints were extracted using ImageJ software then analysed with multivariate Principal Component Analysis (PCA) for pattern recognition. A targeted approach was applied using a new, validated, simple and fast HPTLC image analysis method for simultaneous quantification of the officially recognized markers 6-, 8-, 10-gingerol and 6-shogaol in conjunction with chemometric Hierarchical Clustering Analysis (HCA). The results of both targeted and untargeted metabolite profiling revealed that peeling, drying in addition to storage employed during processing have a great influence on ginger chemo-profile, the different forms of processed ginger shouldn't be used interchangeably. Moreover, it deemed necessary to consider the holistic metabolic profile for comprehensive evaluation of ginger during processing. Copyright © 2018. Published by Elsevier B.V.

  9. Triggered optical biosensor

    DOEpatents

    Song, Xuedong; Swanson, Basil I.

    2001-10-02

    An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.

  10. Study of environmental sound source identification based on hidden Markov model for robust speech recognition

    NASA Astrophysics Data System (ADS)

    Nishiura, Takanobu; Nakamura, Satoshi

    2003-10-01

    Humans communicate with each other through speech by focusing on the target speech among environmental sounds in real acoustic environments. We can easily identify the target sound from other environmental sounds. For hands-free speech recognition, the identification of the target speech from environmental sounds is imperative. This mechanism may also be important for a self-moving robot to sense the acoustic environments and communicate with humans. Therefore, this paper first proposes hidden Markov model (HMM)-based environmental sound source identification. Environmental sounds are modeled by three states of HMMs and evaluated using 92 kinds of environmental sounds. The identification accuracy was 95.4%. This paper also proposes a new HMM composition method that composes speech HMMs and an HMM of categorized environmental sounds for robust environmental sound-added speech recognition. As a result of the evaluation experiments, we confirmed that the proposed HMM composition outperforms the conventional HMM composition with speech HMMs and a noise (environmental sound) HMM trained using noise periods prior to the target speech in a captured signal. [Work supported by Ministry of Public Management, Home Affairs, Posts and Telecommunications of Japan.

  11. Application of virtual screening and molecular dynamics for the analysis of selectivity of inhibitors of HU proteins targeted to the DNA-recognition site

    NASA Astrophysics Data System (ADS)

    Talyzina, A. A.; Agapova, Yu. K.; Podshivalov, D. D.; Timofeev, V. I.; Sidorov-Biryukov, D. D.; Rakitina, T. V.

    2017-11-01

    DNA-Binding HU proteins are essential for the maintenance of genomic DNA supercoiling and compaction in prokaryotic cells and are promising pharmacological targets for the design of new antibacterial agents. The virtual screening for low-molecular-weight compounds capable of specifically interacting with the DNA-recognition loop of the HU protein from the mycoplasma Spiroplasma melliferum was performed. The ability of the initially selected ligands to form stable complexes with the protein target was assessed by molecular dynamics simulation. One compound, which forms an unstable complex, was eliminated by means of a combination of computational methods, resulting in a decrease in the number of compounds that will pass to the experimental test phase. This approach can be used to solve a wide range of problems related to the search for and validation of low-molecular-weight inhibitors specific for a particular protein target.

  12. Interactive object recognition assistance: an approach to recognition starting from target objects

    NASA Astrophysics Data System (ADS)

    Geisler, Juergen; Littfass, Michael

    1999-07-01

    Recognition of target objects in remotely sensed imagery required detailed knowledge about the target object domain as well as about mapping properties of the sensing system. The art of object recognition is to combine both worlds appropriately and to provide models of target appearance with respect to sensor characteristics. Common approaches to support interactive object recognition are either driven from the sensor point of view and address the problem of displaying images in a manner adequate to the sensing system. Or they focus on target objects and provide exhaustive encyclopedic information about this domain. Our paper discusses an approach to assist interactive object recognition based on knowledge about target objects and taking into account the significance of object features with respect to characteristics of the sensed imagery, e.g. spatial and spectral resolution. An `interactive recognition assistant' takes the image analyst through the interpretation process by indicating step-by-step the respectively most significant features of objects in an actual set of candidates. The significance of object features is expressed by pregenerated trees of significance, and by the dynamic computation of decision relevance for every feature at each step of the recognition process. In the context of this approach we discuss the question of modeling and storing the multisensorial/multispectral appearances of target objects and object classes as well as the problem of an adequate dynamic human-machine-interface that takes into account various mental models of human image interpretation.

  13. Using an Improved SIFT Algorithm and Fuzzy Closed-Loop Control Strategy for Object Recognition in Cluttered Scenes

    PubMed Central

    Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo

    2015-01-01

    Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094

  14. Binary optical filters for scale invariant pattern recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Downie, John D.; Hine, Butler P.

    1992-01-01

    Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.

  15. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    NASA Astrophysics Data System (ADS)

    Nikiforov, M. P.; Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.; Guo, S.; Kalinin, S. V.; Jesse, S.

    2009-10-01

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  16. Doppler-Only Synthetic Aperture Radar

    DTIC Science & Technology

    2006-12-01

    5 B. TARGET RECOGNITION TECHNIQUES .................................................6 1. Cooperative Targets...6 3. Techniques ............................................................................................6 C. TARGET RECOGNITION...3. Implementation of High Range Resolution Techniques .................12 F. TWO-DIMENSIONAL IMAGING

  17. ATR applications of minimax entropy models of texture and shape

    NASA Astrophysics Data System (ADS)

    Zhu, Song-Chun; Yuille, Alan L.; Lanterman, Aaron D.

    2001-10-01

    Concepts from information theory have recently found favor in both the mainstream computer vision community and the military automatic target recognition community. In the computer vision literature, the principles of minimax entropy learning theory have been used to generate rich probabilitistic models of texture and shape. In addition, the method of types and large deviation theory has permitted the difficulty of various texture and shape recognition tasks to be characterized by 'order parameters' that determine how fundamentally vexing a task is, independent of the particular algorithm used. These information-theoretic techniques have been demonstrated using traditional visual imagery in applications such as simulating cheetah skin textures and such as finding roads in aerial imagery. We discuss their application to problems in the specific application domain of automatic target recognition using infrared imagery. We also review recent theoretical and algorithmic developments which permit learning minimax entropy texture models for infrared textures in reasonable timeframes.

  18. Protein-targeted corona phase molecular recognition

    PubMed Central

    Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.

    2016-01-01

    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890

  19. One process is not enough! A speed-accuracy tradeoff study of recognition memory.

    PubMed

    Boldini, Angela; Russo, Riccardo; Avons, S E

    2004-04-01

    Speed-accuracy tradeoff (SAT) methods have been used to contrast single- and dual-process accounts of recognition memory. In these procedures, subjects are presented with individual test items and are required to make recognition decisions under various time constraints. In this experiment, we presented word lists under incidental learning conditions, varying the modality of presentation and level of processing. At test, we manipulated the interval between each visually presented test item and a response signal, thus controlling the amount of time available to retrieve target information. Study-test modality match had a beneficial effect on recognition accuracy at short response-signal delays (< or =300 msec). Conversely, recognition accuracy benefited more from deep than from shallow processing at study only at relatively long response-signal delays (> or =300 msec). The results are congruent with views suggesting that both fast familiarity and slower recollection processes contribute to recognition memory.

  20. Challenging ocular image recognition

    NASA Astrophysics Data System (ADS)

    Pauca, V. Paúl; Forkin, Michael; Xu, Xiao; Plemmons, Robert; Ross, Arun A.

    2011-06-01

    Ocular recognition is a new area of biometric investigation targeted at overcoming the limitations of iris recognition performance in the presence of non-ideal data. There are several advantages for increasing the area beyond the iris, yet there are also key issues that must be addressed such as size of the ocular region, factors affecting performance, and appropriate corpora to study these factors in isolation. In this paper, we explore and identify some of these issues with the goal of better defining parameters for ocular recognition. An empirical study is performed where iris recognition methods are contrasted with texture and point operators on existing iris and face datasets. The experimental results show a dramatic recognition performance gain when additional features are considered in the presence of poor quality iris data, offering strong evidence for extending interest beyond the iris. The experiments also highlight the need for the direct collection of additional ocular imagery.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J; Barstow, Del R; Karakaya, Mahmut

    Iris recognition has been proven to be an accurate and reliable biometric. However, the recognition of non-ideal iris images such as off angle images is still an unsolved problem. We propose a new biometric targeted eye model and a method to reconstruct the off-axis eye to its frontal view allowing for recognition using existing methods and algorithms. This allows for existing enterprise level algorithms and approaches to be largely unmodified by using our work as a pre-processor to improve performance. In addition, we describe the `Limbus effect' and its importance for an accurate segmentation of off-axis irides. Our method usesmore » an anatomically accurate human eye model and ray-tracing techniques to compute a transformation function, which reconstructs the iris to its frontal, non-refracted state. Then, the same eye model is used to render a frontal view of the reconstructed iris. The proposed method is fully described and results from synthetic data are shown to establish an upper limit on performance improvement and establish the importance of the proposed approach over traditional linear elliptical unwrapping methods. Our results with synthetic data demonstrate the ability to perform an accurate iris recognition with an image taken as much as 70 degrees off-axis.« less

  2. Object recognition for autonomous robot utilizing distributed knowledge database

    NASA Astrophysics Data System (ADS)

    Takatori, Jiro; Suzuki, Kenji; Hartono, Pitoyo; Hashimoto, Shuji

    2003-10-01

    In this paper we present a novel method of object recognition utilizing a remote knowledge database for an autonomous robot. The developed robot has three robot arms with different sensors; two CCD cameras and haptic sensors. It can see, touch and move the target object from different directions. Referring to remote knowledge database of geometry and material, the robot observes and handles the objects to understand them including their physical characteristics.

  3. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The infrastructure analysis mode pursues the goal to analyze the function of the infrastructure. The image analyst extracts visually certain target object signatures, assigns them to corresponding object features and is finally able to recognize the object type. The system offers him the possibility to assign the image signatures to features given by sample images. The underlying data set contains a wide range of objects features and object types for different domains like ships or land vehicles. Each domain has its own feature tree developed by aerial image analyst experts. By selecting the corresponding features, the possible solution set of objects is automatically reduced and matches only the objects that contain the selected features. Moreover, we give an outlook of current research in the field of ground target analysis in which we deal with partly automated methods to extract image signatures and assign them to the corresponding features. This research includes methods for automatically determining the orientation of an object and geometric features like width and length of the object. This step enables to reduce automatically the possible object types offered to the image analyst by the interactive recognition assistance system.

  4. Modeling guidance and recognition in categorical search: bridging human and computer object detection.

    PubMed

    Zelinsky, Gregory J; Peng, Yifan; Berg, Alexander C; Samaras, Dimitris

    2013-10-08

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery.

  5. Modeling guidance and recognition in categorical search: Bridging human and computer object detection

    PubMed Central

    Zelinsky, Gregory J.; Peng, Yifan; Berg, Alexander C.; Samaras, Dimitris

    2013-01-01

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery. PMID:24105460

  6. A new method for spray deposit assessment

    Treesearch

    Chester M. Himel; Leland Vaughn; Raymond P. Miskus; Arthur D. Moore

    1965-01-01

    Solid fluorescent particles suspended in a spray liquid are distributed in direct proportion to the size of the spray droplets. Use of solid fluorescent particles is the basis of a new method for visual recognition of the size and number of droplets impinging on target and nontarget portions of sprayed areas.

  7. A universal entropy-driven mechanism for thioredoxin–target recognition

    PubMed Central

    Palde, Prakash B.; Carroll, Kate S.

    2015-01-01

    Cysteine residues in cytosolic proteins are maintained in their reduced state, but can undergo oxidation owing to posttranslational modification during redox signaling or under conditions of oxidative stress. In large part, the reduction of oxidized protein cysteines is mediated by a small 12-kDa thiol oxidoreductase, thioredoxin (Trx). Trx provides reducing equivalents for central metabolic enzymes and is implicated in redox regulation of a wide number of target proteins, including transcription factors. Despite its importance in cellular redox homeostasis, the precise mechanism by which Trx recognizes target proteins, especially in the absence of any apparent signature binding sequence or motif, remains unknown. Knowledge of the forces associated with the molecular recognition that governs Trx–protein interactions is fundamental to our understanding of target specificity. To gain insight into Trx–target recognition, we have thermodynamically characterized the noncovalent interactions between Trx and target proteins before S-S reduction using isothermal titration calorimetry (ITC). Our findings indicate that Trx recognizes the oxidized form of its target proteins with exquisite selectivity, compared with their reduced counterparts. Furthermore, we show that recognition is dependent on the conformational restriction inherent to oxidized targets. Significantly, the thermodynamic signatures for multiple Trx targets reveal favorable entropic contributions as the major recognition force dictating these protein–protein interactions. Taken together, our data afford significant new insight into the molecular forces responsible for Trx–target recognition and should aid the design of new strategies for thiol oxidoreductase inhibition. PMID:26080424

  8. Model-based recognition of 3D articulated target using ladar range data.

    PubMed

    Lv, Dan; Sun, Jian-Feng; Li, Qi; Wang, Qi

    2015-06-10

    Ladar is suitable for 3D target recognition because ladar range images can provide rich 3D geometric surface information of targets. In this paper, we propose a part-based 3D model matching technique to recognize articulated ground military vehicles in ladar range images. The key of this approach is to solve the decomposition and pose estimation of articulated parts of targets. The articulated components were decomposed into isolate parts based on 3D geometric properties of targets, such as surface point normals, data histogram distribution, and data distance relationships. The corresponding poses of these separate parts were estimated through the linear characteristics of barrels. According to these pose parameters, all parts of the target were roughly aligned to 3D point cloud models in a library and fine matching was finally performed to accomplish 3D articulated target recognition. The recognition performance was evaluated with 1728 ladar range images of eight different articulated military vehicles with various part types and orientations. Experimental results demonstrated that the proposed approach achieved a high recognition rate.

  9. Methods and compositions for controlling gene expression by RNA processing

    DOEpatents

    Doudna, Jennifer A.; Qi, Lei S.; Haurwitz, Rachel E.; Arkin, Adam P.

    2017-08-29

    The present disclosure provides nucleic acids encoding an RNA recognition sequence positioned proximal to an insertion site for the insertion of a sequence of interest; and host cells genetically modified with the nucleic acids. The present disclosure also provides methods of modifying the activity of a target RNA, and kits and compositions for carrying out the methods.

  10. Space infrared telescope pointing control system. Automated star pattern recognition

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Vanbezooijen, R. W. H.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a free flying spacecraft carrying a 1 meter class cryogenically cooled infrared telescope nearly three oders of magnitude most sensitive than the current generation of infrared telescopes. Three automatic target acquisition methods will be presented that are based on the use of an imaging star tracker. The methods are distinguished by the number of guidestars that are required per target, the amount of computational capability necessary, and the time required for the complete acquisition process. Each method is described in detail.

  11. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration

    NASA Astrophysics Data System (ADS)

    Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2014-03-01

    This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.

  12. Prediction of TF target sites based on atomistic models of protein-DNA complexes

    PubMed Central

    Angarica, Vladimir Espinosa; Pérez, Abel González; Vasconcelos, Ana T; Collado-Vides, Julio; Contreras-Moreira, Bruno

    2008-01-01

    Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs) plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition. PMID:18922190

  13. Method for fabrication and verification of conjugated nanoparticle-antibody tuning elements for multiplexed electrochemical biosensors.

    PubMed

    La Belle, Jeffrey T; Fairchild, Aaron; Demirok, Ugur K; Verma, Aman

    2013-05-15

    There is a critical need for more accurate, highly sensitive and specific assay for disease diagnosis and management. A novel, multiplexed, single sensor using rapid and label free electrochemical impedance spectroscopy tuning method has been developed. The key challenges while monitoring multiple targets is frequency overlap. Here we describe the methods to circumvent the overlap, tune by use of nanoparticle (NP) and discuss the various fabrication and characterization methods to develop this technique. First sensors were fabricated using printed circuit board (PCB) technology and nickel and gold layers were electrodeposited onto the PCB sensors. An off-chip conjugation of gold NP's to molecular recognition elements (with verification technique) is described as well. A standard covalent immobilization of the molecular recognition elements is also discussed with quality control techniques. Finally use and verification of sensitivity and specificity is also presented. By use of gold NP's of various sizes, we have demonstrated the possibility and shown little loss of sensitivity and specificity in the molecular recognition of inflammatory markers as "model" targets for our tuning system. By selection of other sized NP's or NP's of various materials, the tuning effect can be further exploited. The novel platform technology developed could be utilized in critical care, clinical management and at home health and disease management. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Classifier dependent feature preprocessing methods

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M., II; Peterson, Gilbert L.

    2008-04-01

    In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.

  15. High-speed railway real-time localization auxiliary method based on deep neural network

    NASA Astrophysics Data System (ADS)

    Chen, Dongjie; Zhang, Wensheng; Yang, Yang

    2017-11-01

    High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.

  16. Cognitive Factors Affecting Free Recall, Cued Recall, and Recognition Tasks in Alzheimer's Disease

    PubMed Central

    Yamagishi, Takashi; Sato, Takuya; Sato, Atsushi; Imamura, Toru

    2012-01-01

    Background/Aims Our aim was to identify cognitive factors affecting free recall, cued recall, and recognition tasks in patients with Alzheimer's disease (AD). Subjects: We recruited 349 consecutive AD patients who attended a memory clinic. Methods Each patient was assessed using the Alzheimer's Disease Assessment Scale (ADAS) and the extended 3-word recall test. In this task, each patient was asked to freely recall 3 previously presented words. If patients could not recall 1 or more of the target words, the examiner cued their recall by providing the category of the target word and then provided a forced-choice recognition of the target word with 2 distracters. The patients were divided into groups according to the results of the free recall, cued recall, and recognition tasks. Multivariate logistic regression analysis for repeated measures was carried out to evaluate the net effects of cognitive factors on the free recall, cued recall, and recognition tasks after controlling for the effects of age and recent memory deficit. Results Performance on the ADAS Orientation task was found to be related to performance on the free and cued recall tasks, performance on the ADAS Following Commands task was found to be related to performance on the cued recall task, and performance on the ADAS Ideational Praxis task was found to be related to performance on the free recall, cued recall, and recognition tasks. Conclusion The extended 3-word recall test reflects deficits in a wider range of memory and other cognitive processes, including memory retention after interference, divided attention, and executive functions, compared with word-list recall tasks. The characteristics of the extended 3-word recall test may be advantageous for evaluating patients’ memory impairments in daily living. PMID:22962551

  17. Capacity limits in list item recognition: evidence from proactive interference.

    PubMed

    Cowan, Nelson; Johnson, Troy D; Saults, J Scott

    2005-01-01

    Capacity limits in short-term recall were investigated using proactive interference (PI) from previous lists in a speeded-recognition task. PI was taken to indicate that the target list length surpassed working memory capacity. Unlike previous studies, words were presented either concurrently or sequentially and a new method was introduced to increase the amount of PI. On average, participants retrieved about four items without PI. We suggest an activation-based account of capacity limits.

  18. Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition

    PubMed Central

    Cui, Zhiming; Zhao, Pengpeng

    2014-01-01

    A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045

  19. Shape and texture fused recognition of flying targets

    NASA Astrophysics Data System (ADS)

    Kovács, Levente; Utasi, Ákos; Kovács, Andrea; Szirányi, Tamás

    2011-06-01

    This paper presents visual detection and recognition of flying targets (e.g. planes, missiles) based on automatically extracted shape and object texture information, for application areas like alerting, recognition and tracking. Targets are extracted based on robust background modeling and a novel contour extraction approach, and object recognition is done by comparisons to shape and texture based query results on a previously gathered real life object dataset. Application areas involve passive defense scenarios, including automatic object detection and tracking with cheap commodity hardware components (CPU, camera and GPS).

  20. A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database.

    PubMed

    Huang, Zhiwu; Shan, Shiguang; Wang, Ruiping; Zhang, Haihong; Lao, Shihong; Kuerban, Alifu; Chen, Xilin

    2015-12-01

    Face recognition with still face images has been widely studied, while the research on video-based face recognition is inadequate relatively, especially in terms of benchmark datasets and comparisons. Real-world video-based face recognition applications require techniques for three distinct scenarios: 1) Videoto-Still (V2S); 2) Still-to-Video (S2V); and 3) Video-to-Video (V2V), respectively, taking video or still image as query or target. To the best of our knowledge, few datasets and evaluation protocols have benchmarked for all the three scenarios. In order to facilitate the study of this specific topic, this paper contributes a benchmarking and comparative study based on a newly collected still/video face database, named COX(1) Face DB. Specifically, we make three contributions. First, we collect and release a largescale still/video face database to simulate video surveillance with three different video-based face recognition scenarios (i.e., V2S, S2V, and V2V). Second, for benchmarking the three scenarios designed on our database, we review and experimentally compare a number of existing set-based methods. Third, we further propose a novel Point-to-Set Correlation Learning (PSCL) method, and experimentally show that it can be used as a promising baseline method for V2S/S2V face recognition on COX Face DB. Extensive experimental results clearly demonstrate that video-based face recognition needs more efforts, and our COX Face DB is a good benchmark database for evaluation.

  1. On-chip learning of hyper-spectral data for real time target recognition

    NASA Technical Reports Server (NTRS)

    Duong, T. A.; Daud, T.; Thakoor, A.

    2000-01-01

    As the focus of our present paper, we have used the cascade error projection (CEP) learning algorithm (shown to be hardware-implementable) with on-chip learning (OCL) scheme to obtain three orders of magnitude speed-up in target recognition compared to software-based learning schemes. Thus, it is shown, real time learning as well as data processing for target recognition can be achieved.

  2. From scores to face templates: a model-based approach.

    PubMed

    Mohanty, Pranab; Sarkar, Sudeep; Kasturi, Rangachar

    2007-12-01

    Regeneration of templates from match scores has security and privacy implications related to any biometric authentication system. We propose a novel paradigm to reconstruct face templates from match scores using a linear approach. It proceeds by first modeling the behavior of the given face recognition algorithm by an affine transformation. The goal of the modeling is to approximate the distances computed by a face recognition algorithm between two faces by distances between points, representing these faces, in an affine space. Given this space, templates from an independent image set (break-in) are matched only once with the enrolled template of the targeted subject and match scores are recorded. These scores are then used to embed the targeted subject in the approximating affine (non-orthogonal) space. Given the coordinates of the targeted subject in the affine space, the original template of the targeted subject is reconstructed using the inverse of the affine transformation. We demonstrate our ideas using three, fundamentally different, face recognition algorithms: Principal Component Analysis (PCA) with Mahalanobis cosine distance measure, Bayesian intra-extrapersonal classifier (BIC), and a feature-based commercial algorithm. To demonstrate the independence of the break-in set with the gallery set, we select face templates from two different databases: Face Recognition Grand Challenge (FRGC) and Facial Recognition Technology (FERET) Database (FERET). With an operational point set at 1 percent False Acceptance Rate (FAR) and 99 percent True Acceptance Rate (TAR) for 1,196 enrollments (FERET gallery), we show that at most 600 attempts (score computations) are required to achieve a 73 percent chance of breaking in as a randomly chosen target subject for the commercial face recognition system. With similar operational set up, we achieve a 72 percent and 100 percent chance of breaking in for the Bayesian and PCA based face recognition systems, respectively. With three different levels of score quantization, we achieve 69 percent, 68 percent and 49 percent probability of break-in, indicating the robustness of our proposed scheme to score quantization. We also show that the proposed reconstruction scheme has 47 percent more probability of breaking in as a randomly chosen target subject for the commercial system as compared to a hill climbing approach with the same number of attempts. Given that the proposed template reconstruction method uses distinct face templates to reconstruct faces, this work exposes a more severe form of vulnerability than a hill climbing kind of attack where incrementally different versions of the same face are used. Also, the ability of the proposed approach to reconstruct actual face templates of the users increases privacy concerns in biometric systems.

  3. Hyperspectral face recognition using improved inter-channel alignment based on qualitative prediction models.

    PubMed

    Cho, Woon; Jang, Jinbeum; Koschan, Andreas; Abidi, Mongi A; Paik, Joonki

    2016-11-28

    A fundamental limitation of hyperspectral imaging is the inter-band misalignment correlated with subject motion during data acquisition. One way of resolving this problem is to assess the alignment quality of hyperspectral image cubes derived from the state-of-the-art alignment methods. In this paper, we present an automatic selection framework for the optimal alignment method to improve the performance of face recognition. Specifically, we develop two qualitative prediction models based on: 1) a principal curvature map for evaluating the similarity index between sequential target bands and a reference band in the hyperspectral image cube as a full-reference metric; and 2) the cumulative probability of target colors in the HSV color space for evaluating the alignment index of a single sRGB image rendered using all of the bands of the hyperspectral image cube as a no-reference metric. We verify the efficacy of the proposed metrics on a new large-scale database, demonstrating a higher prediction accuracy in determining improved alignment compared to two full-reference and five no-reference image quality metrics. We also validate the ability of the proposed framework to improve hyperspectral face recognition.

  4. Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion

    PubMed Central

    Zhao, Yuanshen; Gong, Liang; Huang, Yixiang; Liu, Chengliang

    2016-01-01

    Automatic recognition of mature fruits in a complex agricultural environment is still a challenge for an autonomous harvesting robot due to various disturbances existing in the background of the image. The bottleneck to robust fruit recognition is reducing influence from two main disturbances: illumination and overlapping. In order to recognize the tomato in the tree canopy using a low-cost camera, a robust tomato recognition algorithm based on multiple feature images and image fusion was studied in this paper. Firstly, two novel feature images, the  a*-component image and the I-component image, were extracted from the L*a*b* color space and luminance, in-phase, quadrature-phase (YIQ) color space, respectively. Secondly, wavelet transformation was adopted to fuse the two feature images at the pixel level, which combined the feature information of the two source images. Thirdly, in order to segment the target tomato from the background, an adaptive threshold algorithm was used to get the optimal threshold. The final segmentation result was processed by morphology operation to reduce a small amount of noise. In the detection tests, 93% target tomatoes were recognized out of 200 overall samples. It indicates that the proposed tomato recognition method is available for robotic tomato harvesting in the uncontrolled environment with low cost. PMID:26840313

  5. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  6. Emotionally conditioning the target-speech voice enhances recognition of the target speech under "cocktail-party" listening conditions.

    PubMed

    Lu, Lingxi; Bao, Xiaohan; Chen, Jing; Qu, Tianshu; Wu, Xihong; Li, Liang

    2018-05-01

    Under a noisy "cocktail-party" listening condition with multiple people talking, listeners can use various perceptual/cognitive unmasking cues to improve recognition of the target speech against informational speech-on-speech masking. One potential unmasking cue is the emotion expressed in a speech voice, by means of certain acoustical features. However, it was unclear whether emotionally conditioning a target-speech voice that has none of the typical acoustical features of emotions (i.e., an emotionally neutral voice) can be used by listeners for enhancing target-speech recognition under speech-on-speech masking conditions. In this study we examined the recognition of target speech against a two-talker speech masker both before and after the emotionally neutral target voice was paired with a loud female screaming sound that has a marked negative emotional valence. The results showed that recognition of the target speech (especially the first keyword in a target sentence) was significantly improved by emotionally conditioning the target speaker's voice. Moreover, the emotional unmasking effect was independent of the unmasking effect of the perceived spatial separation between the target speech and the masker. Also, (skin conductance) electrodermal responses became stronger after emotional learning when the target speech and masker were perceptually co-located, suggesting an increase of listening efforts when the target speech was informationally masked. These results indicate that emotionally conditioning the target speaker's voice does not change the acoustical parameters of the target-speech stimuli, but the emotionally conditioned vocal features can be used as cues for unmasking target speech.

  7. Compact hybrid optoelectrical unit for image processing and recognition

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Jin, Guofan; Wu, Minxian; Liu, Haisong; He, Qingsheng; Yuan, ShiFu

    1998-07-01

    In this paper a compact opto-electric unit (CHOEU) for digital image processing and recognition is proposed. The central part of CHOEU is an incoherent optical correlator, which is realized with a SHARP QA-1200 8.4 inch active matrix TFT liquid crystal display panel which is used as two real-time spatial light modulators for both the input image and reference template. CHOEU can do two main processing works. One is digital filtering; the other is object matching. Using CHOEU an edge-detection operator is realized to extract the edges from the input images. Then the reprocessed images are sent into the object recognition unit for identifying the important targets. A novel template- matching method is proposed for gray-tome image recognition. A positive and negative cycle-encoding method is introduced to realize the absolute difference measurement pixel- matching on a correlator structure simply. The system has god fault-tolerance ability for rotation distortion, Gaussian noise disturbance or information losing. The experiments are given at the end of this paper.

  8. Target recognition of ladar range images using even-order Zernike moments.

    PubMed

    Liu, Zheng-Jun; Li, Qi; Xia, Zhi-Wei; Wang, Qi

    2012-11-01

    Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.

  9. Method for the electro-addressable functionalization of electrode arrays

    DOEpatents

    Harper, Jason C.; Polsky, Ronen; Dirk, Shawn M.; Wheeler, David R.; Arango, Dulce C.; Brozik, Susan M.

    2015-12-15

    A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium molecules on an electrode array followed by post-assembly electro-addressable conversion of the unreactive group to a chemical or biological recognition group. Electro-addressable functionalization of electrode arrays enables the multi-target electrochemical sensing of biological and chemical analytes.

  10. Unsupervised learning in persistent sensing for target recognition by wireless ad hoc networks of ground-based sensors

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target recognition and tracking routines. Target tracking is based on simplified versions of Kalman filtration. Accuracy of recognition and tracking of implemented versions of the proposed suite of unsupervised algorithms is somewhat degraded from the ideal. Target recognition and tracking by supervised routines and by unsupervised SVM and CLNN routines in the ground-based WSN is evaluated in simulations using published system values and sensor data from vehicular targets in ground-surveillance scenarios. Results are compared with previously published performance for the system of the ground-based sensor network (GSN) and UAV swarm.

  11. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    PubMed

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-07

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.

  12. Gross feature recognition of Anatomical Images based on Atlas grid (GAIA): Incorporating the local discrepancy between an atlas and a target image to capture the features of anatomic brain MRI.

    PubMed

    Qin, Yuan-Yuan; Hsu, Johnny T; Yoshida, Shoko; Faria, Andreia V; Oishi, Kumiko; Unschuld, Paul G; Redgrave, Graham W; Ying, Sarah H; Ross, Christopher A; van Zijl, Peter C M; Hillis, Argye E; Albert, Marilyn S; Lyketsos, Constantine G; Miller, Michael I; Mori, Susumu; Oishi, Kenichi

    2013-01-01

    We aimed to develop a new method to convert T1-weighted brain MRIs to feature vectors, which could be used for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases and the inconsistency of imaging protocols, we introduced the Gross feature recognition of Anatomical Images based on Atlas grid (GAIA), in which the local intensity alteration, caused by pathological (e.g., ischemia) or physiological (development and aging) intensity changes, as well as by atlas-image misregistration, is used to capture the anatomical features of target images. As a proof-of-concept, the GAIA was applied for pattern recognition of the neuroanatomical features of multiple stages of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type 6, and four subtypes of primary progressive aphasia. For each of these diseases, feature vectors based on a training dataset were applied to a test dataset to evaluate the accuracy of pattern recognition. The feature vectors extracted from the training dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall, discriminant scores of the test images accurately categorized these test images to the correct disease categories. Images without typical disease-related anatomical features were misclassified. The proposed method is a promising method for image feature extraction based on disease-related anatomical features, which should enable users to submit a patient image and search past clinical cases with similar anatomical phenotypes.

  13. Gaussian mixture models-based ship target recognition algorithm in remote sensing infrared images

    NASA Astrophysics Data System (ADS)

    Yao, Shoukui; Qin, Xiaojuan

    2018-02-01

    Since the resolution of remote sensing infrared images is low, the features of ship targets become unstable. The issue of how to recognize ships with fuzzy features is an open problem. In this paper, we propose a novel ship target recognition algorithm based on Gaussian mixture models (GMMs). In the proposed algorithm, there are mainly two steps. At the first step, the Hu moments of these ship target images are calculated, and the GMMs are trained on the moment features of ships. At the second step, the moment feature of each ship image is assigned to the trained GMMs for recognition. Because of the scale, rotation, translation invariance property of Hu moments and the power feature-space description ability of GMMs, the GMMs-based ship target recognition algorithm can recognize ship reliably. Experimental results of a large simulating image set show that our approach is effective in distinguishing different ship types, and obtains a satisfactory ship recognition performance.

  14. Constraints in distortion-invariant target recognition system simulation

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Razzaque, Md A.

    2000-11-01

    Automatic target recognition (ATR) is a mature but active research area. In an earlier paper, we proposed a novel ATR approach for recognition of targets varying in fine details, rotation, and translation using a Learning Vector Quantization (LVQ) Neural Network (NN). The proposed approach performed segmentation of multiple objects and the identification of the objects using LVQNN. In this current paper, we extend the previous approach for recognition of targets varying in rotation, translation, scale, and combination of all three distortions. We obtain the analytical results of the system level design to show that the approach performs well with some constraints. The first constraint determines the size of the input images and input filters. The second constraint shows the limits on amount of rotation, translation, and scale of input objects. We present the simulation verification of the constraints using DARPA's Moving and Stationary Target Recognition (MSTAR) images with different depression and pose angles. The simulation results using MSTAR images verify the analytical constraints of the system level design.

  15. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb

    2011-10-28

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and themore » cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.« less

  16. Spaced-retrieval effects on name-face recognition in older adults with probable Alzheimer's disease.

    PubMed

    Hawley, Karri S; Cherry, Katie E

    2004-03-01

    Six older adults with probable Alzheimer's disease (AD) were trained to recall a name-face association using the spaced-retrieval method. We administered six training sessions over a 2-week period. On each trial, participants selected a target photograph and stated the target name, from eight other photographs, at increasingly longer retention intervals. Results yielded a positive effect of spaced-retrieval training for name-face recognition. All participants were able to select the target photograph and state the target's name for longer periods of time within and across training sessions. A live-person transfer task was administered to determine whether the name-face association, trained by spaced-retrieval, would transfer to a live person. Half of the participants were able to call the live person by the correct name. These data provide initial evidence that spaced-retrieval training can aid older adults with probable AD in recall of a name-face association and in transfer of that association to an actual person.

  17. Role of Molecular Dynamics and Related Methods in Drug Discovery.

    PubMed

    De Vivo, Marco; Masetti, Matteo; Bottegoni, Giovanni; Cavalli, Andrea

    2016-05-12

    Molecular dynamics (MD) and related methods are close to becoming routine computational tools for drug discovery. Their main advantage is in explicitly treating structural flexibility and entropic effects. This allows a more accurate estimate of the thermodynamics and kinetics associated with drug-target recognition and binding, as better algorithms and hardware architectures increase their use. Here, we review the theoretical background of MD and enhanced sampling methods, focusing on free-energy perturbation, metadynamics, steered MD, and other methods most consistently used to study drug-target binding. We discuss unbiased MD simulations that nowadays allow the observation of unsupervised ligand-target binding, assessing how these approaches help optimizing target affinity and drug residence time toward improved drug efficacy. Further issues discussed include allosteric modulation and the role of water molecules in ligand binding and optimization. We conclude by calling for more prospective studies to attest to these methods' utility in discovering novel drug candidates.

  18. Research on filter’s parameter selection based on PROMETHEE method

    NASA Astrophysics Data System (ADS)

    Zhu, Hui-min; Wang, Hang-yu; Sun, Shi-yan

    2018-03-01

    The selection of filter’s parameters in target recognition was studied in this paper. The PROMETHEE method was applied to the optimization problem of Gabor filter parameters decision, the correspondence model of the elemental relation between two methods was established. The author took the identification of military target as an example, problem about the filter’s parameter decision was simulated and calculated by PROMETHEE. The result showed that using PROMETHEE method for the selection of filter’s parameters was more scientific. The human disturbance caused by the experts method and empirical method could be avoided by this way. The method can provide reference for the parameter configuration scheme decision of the filter.

  19. Action Recognition in a Crowded Environment

    PubMed Central

    Nieuwenhuis, Judith; Bülthoff, Isabelle; Barraclough, Nick; de la Rosa, Stephan

    2017-01-01

    So far, action recognition has been mainly examined with small point-light human stimuli presented alone within a narrow central area of the observer’s visual field. Yet, we need to recognize the actions of life-size humans viewed alone or surrounded by bystanders, whether they are seen in central or peripheral vision. Here, we examined the mechanisms in central vision and far periphery (40° eccentricity) involved in the recognition of the actions of a life-size actor (target) and their sensitivity to the presence of a crowd surrounding the target. In Experiment 1, we used an action adaptation paradigm to probe whether static or idly moving crowds might interfere with the recognition of a target’s action (hug or clap). We found that this type of crowds whose movements were dissimilar to the target action hardly affected action recognition in central and peripheral vision. In Experiment 2, we examined whether crowd actions that were more similar to the target actions affected action recognition. Indeed, the presence of that crowd diminished adaptation aftereffects in central vision as wells as in the periphery. We replicated Experiment 2 using a recognition task instead of an adaptation paradigm. With this task, we found evidence of decreased action recognition accuracy, but this was significant in peripheral vision only. Our results suggest that the presence of a crowd carrying out actions similar to that of the target affects its recognition. We outline how these results can be understood in terms of high-level crowding effects that operate on action-sensitive perceptual channels. PMID:29308177

  20. Linear high-boost fusion of Stokes vector imagery for effective discrimination and recognition of real targets in the presence of multiple identical decoys

    NASA Astrophysics Data System (ADS)

    El-Saba, Aed; Sakla, Wesam A.

    2010-04-01

    Recently, the use of imaging polarimetry has received considerable attention for use in automatic target recognition (ATR) applications. In military remote sensing applications, there is a great demand for sensors that are capable of discriminating between real targets and decoys. Accurate discrimination of decoys from real targets is a challenging task and often requires the fusion of various sensor modalities that operate simultaneously. In this paper, we use a simple linear fusion technique known as the high-boost fusion method for effective discrimination of real targets in the presence of multiple decoys. The HBF assigns more weight to the polarization-based imagery in forming the final fused image that is used for detection. We have captured both intensity and polarization-based imagery from an experimental laboratory arrangement containing a mixture of sand/dirt, rocks, vegetation, and other objects for the purpose of simulating scenery that would be acquired in a remote sensing military application. A target object and three decoys that are identical in physical appearance (shape, surface structure and color) and different in material composition have also been placed in the scene. We use the wavelet-filter joint transform correlation (WFJTC) technique to perform detection between input scenery and the target object. Our results show that use of the HBF method increases the correlation performance metrics associated with the WFJTC-based detection process when compared to using either the traditional intensity or polarization-based images.

  1. Target recognition of log-polar ladar range images using moment invariants

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong

    2017-01-01

    The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.

  2. Adaptive optics to enhance target recognition

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2012-06-01

    Target recognition can be enhanced by reducing image degradation due to atmospheric turbulence. This is accomplished by an adaptive optic system. We discuss the forms of degradation when a target is viewed through the atmosphere1: scintillation from ground targets on a hot day in visible or infrared light; beam spreading and wavering around in time; atmospheric turbulence caused by motion of the target or by weather. In the case of targets we can use a beacon laser that reflects back from the target into a wavefront detector to measure the effects of turbulence on propagation to and from the target before imaging.1 A deformable mirror then corrects the wavefront shape of the transmitted, reflected or scattered data for enhanced imaging. Further, recognition of targets is enhanced by performing accurate distance measurements to localized parts of the target using lidar. Distance is obtained by sending a short pulse to the target and measuring the time for the pulse to return. There is inadequate time to scan the complete field of view so that the beam must be steered to regions of interest such as extremities of the image during image recognition. Distance is particularly valuable to recognize fine features in range along the target or when segmentation is required to separate a target from background or from other targets. We discuss the issues involved.

  3. Perceptual fluency and affect without recognition.

    PubMed

    Anand, P; Sternthal, B

    1991-05-01

    A dichotic listening task was used to investigate the affect-without-recognition phenomenon. Subjects performed a distractor task by responding to the information presented in one ear while ignoring the target information presented in the other ear. The subjects' recognition of and affect toward the target information as well as toward foils was measured. The results offer evidence for the affect-without-recognition phenomenon. Furthermore, the data suggest that the subjects' affect toward the stimuli depended primarily on the extent to which the stimuli were perceived as familiar (i.e., subjective familiarity), and this perception was influenced by the ear in which the distractor or the target information was presented. These data are interpreted in terms of current models of recognition memory and hemispheric lateralization.

  4. Passive Polarimetric Information Processing for Target Classification

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz; Sadjadi, Farzad

    Polarimetric sensing is an area of active research in a variety of applications. In particular, the use of polarization diversity has been shown to improve performance in automatic target detection and recognition. Within the diverse scope of polarimetric sensing, the field of passive polarimetric sensing is of particular interest. This chapter presents several new methods for gathering in formation using such passive techniques. One method extracts three-dimensional (3D) information and surface properties using one or more sensors. Another method extracts scene-specific algebraic expressions that remain unchanged under polariza tion transformations (such as along the transmission path to the sensor).

  5. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q. [Pullman, WA; Wang, Wei [Pullman, WA

    2007-07-03

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  6. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q. [Pullman, WA; Wang, Wei [Pullman, WA

    2009-07-07

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  7. Pattern recognition with parallel associative memory

    NASA Technical Reports Server (NTRS)

    Toth, Charles K.; Schenk, Toni

    1990-01-01

    An examination is conducted of the feasibility of searching targets in aerial photographs by means of a parallel associative memory (PAM) that is based on the nearest-neighbor algorithm; the Hamming distance is used as a measure of closeness, in order to discriminate patterns. Attention has been given to targets typically used for ground-control points. The method developed sorts out approximate target positions where precise localizations are needed, in the course of the data-acquisition process. The majority of control points in different images were correctly identified.

  8. A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.

    PubMed

    Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao

    2016-12-01

    Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.

  9. A method for the evaluation of image quality according to the recognition effectiveness of objects in the optical remote sensing image using machine learning algorithm.

    PubMed

    Yuan, Tao; Zheng, Xinqi; Hu, Xuan; Zhou, Wei; Wang, Wei

    2014-01-01

    Objective and effective image quality assessment (IQA) is directly related to the application of optical remote sensing images (ORSI). In this study, a new IQA method of standardizing the target object recognition rate (ORR) is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.

  10. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    PubMed

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  11. Oxytocin increases bias, but not accuracy, in face recognition line-ups.

    PubMed

    Bate, Sarah; Bennetts, Rachel; Parris, Benjamin A; Bindemann, Markus; Udale, Robert; Bussunt, Amanda

    2015-07-01

    Previous work indicates that intranasal inhalation of oxytocin improves face recognition skills, raising the possibility that it may be used in security settings. However, it is unclear whether oxytocin directly acts upon the core face-processing system itself or indirectly improves face recognition via affective or social salience mechanisms. In a double-blind procedure, 60 participants received either an oxytocin or placebo nasal spray before completing the One-in-Ten task-a standardized test of unfamiliar face recognition containing target-present and target-absent line-ups. Participants in the oxytocin condition outperformed those in the placebo condition on target-present trials, yet were more likely to make false-positive errors on target-absent trials. Signal detection analyses indicated that oxytocin induced a more liberal response bias, rather than increasing accuracy per se. These findings support a social salience account of the effects of oxytocin on face recognition and indicate that oxytocin may impede face recognition in certain scenarios. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Object and event recognition for stroke rehabilitation

    NASA Astrophysics Data System (ADS)

    Ghali, Ahmed; Cunningham, Andrew S.; Pridmore, Tony P.

    2003-06-01

    Stroke is a major cause of disability and health care expenditure around the world. Existing stroke rehabilitation methods can be effective but are costly and need to be improved. Even modest improvements in the effectiveness of rehabilitation techniques could produce large benefits in terms of quality of life. The work reported here is part of an ongoing effort to integrate virtual reality and machine vision technologies to produce innovative stroke rehabilitation methods. We describe a combined object recognition and event detection system that provides real time feedback to stroke patients performing everyday kitchen tasks necessary for independent living, e.g. making a cup of coffee. The image plane position of each object, including the patient"s hand, is monitored using histogram-based recognition methods. The relative positions of hand and objects are then reported to a task monitor that compares the patient"s actions against a model of the target task. A prototype system has been constructed and is currently undergoing technical and clinical evaluation.

  13. 3D range-gated super-resolution imaging based on stereo matching for moving platforms and targets

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Wang, Xinwei; Zhou, Yan

    2017-11-01

    3D range-gated superresolution imaging is a novel 3D reconstruction technique for target detection and recognition with good real-time performance. However, for moving targets or platforms such as airborne, shipborne, remote operated vehicle and autonomous vehicle, 3D reconstruction has a large error or failure. In order to overcome this drawback, we propose a method of stereo matching for 3D range-gated superresolution reconstruction algorithm. In experiment, the target is a doll of Mario with a height of 38cm at the location of 34m, and we obtain two successive frame images of the Mario. To confirm our method is effective, we transform the original images with translation, rotation, scale and perspective, respectively. The experimental result shows that our method has a good result of 3D reconstruction for moving targets or platforms.

  14. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction.

    PubMed

    Guo, Qiuping; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Wei; Tang, Hongxing; Li, Huimin

    2009-02-01

    Here we have developed a sensitive DNA amplified detection method based on isothermal strand-displacement polymerization reaction. This method takes advantage of both the hybridization property of DNA and the strand-displacement property of polymerase. Importantly, we demonstrate that our method produces a circular polymerization reaction activated by the target, which essentially allows it to self-detect. Functionally, this DNA system consists of a hairpin fluorescence probe, a short primer and polymerase. Upon recognition and hybridization with the target ssDNA, the stem of the hairpin probe is opened, after which the opened probe anneals with the primer and triggers the polymerization reaction. During this process of the polymerization reaction, a complementary DNA is synthesized and the hybridized target is displaced. Finally, the displaced target recognizes and hybridizes with another probe, triggering the next round of polymerization reaction, reaching a target detection limit of 6.4 x 10(-15) M.

  15. Multi-layer cube sampling for liver boundary detection in PET-CT images.

    PubMed

    Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.

  16. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor.

    PubMed

    Zheng, Wanli; Teng, Jun; Cheng, Lin; Ye, Yingwang; Pan, Daodong; Wu, Jingjing; Xue, Feng; Liu, Guodong; Chen, Wei

    2016-06-15

    An electrochemical aptasensor for trace detection of aflatoxin B1 (AFB1) was developed by using an aptamer as the recognition unit while adopting the telomerase and EXO III based two-round signal amplification strategy as the signal enhancement units. The telomerase amplification was used to elongate the ssDNA probes on the surface of gold nanoparticles, by which the signal response range of the signal-off model electrochemical aptasensor could be correspondingly enlarged. Then, the EXO III amplification was used to hydrolyze the 3'-end of the dsDNA after the recognition of target AFB1, which caused the release of bounded AFB1 into the sensing system, where it participated in the next recognition-sensing cycle. With this two-round signal amplified electrochemical aptasensor, target AFB1 was successfully measured at trace concentrations with excellent detection limit of 0.6*10(-4)ppt and satisfied specificity due to the excellent affinity of the aptamer against AFB1. Based on this designed two-round signal amplification strategy, both the sensing range and detection limit were greatly improved. This proposed ultrasensitive electrochemical aptasensor method was also validated by comparison with the classic instrumental methods. Importantly, this hetero-enzyme based two-round signal amplified electrochemical aptasensor offers a great promising protocol for ultrasensitive detection of AFB1 and other mycotoxins by replacing the core recognition sequence of the aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Wireless sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  18. Effective Prediction of Errors by Non-native Speakers Using Decision Tree for Speech Recognition-Based CALL System

    NASA Astrophysics Data System (ADS)

    Wang, Hongcui; Kawahara, Tatsuya

    CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning have received increasing interest recently. However, it still remains a challenge to achieve high speech recognition performance, including accurate detection of erroneous utterances by non-native speakers. Conventionally, possible error patterns, based on linguistic knowledge, are added to the lexicon and language model, or the ASR grammar network. However, this approach easily falls in the trade-off of coverage of errors and the increase of perplexity. To solve the problem, we propose a method based on a decision tree to learn effective prediction of errors made by non-native speakers. An experimental evaluation with a number of foreign students learning Japanese shows that the proposed method can effectively generate an ASR grammar network, given a target sentence, to achieve both better coverage of errors and smaller perplexity, resulting in significant improvement in ASR accuracy.

  19. [Recognition of visual objects under forward masking. Effects of cathegorial similarity of test and masking stimuli].

    PubMed

    Gerasimenko, N Iu; Slavutskaia, A V; Kalinin, S A; Kulikov, M A; Mikhaĭlova, E S

    2013-01-01

    In 38 healthy subjects accuracy and response time were examined during recognition of two categories of images--animals andnonliving objects--under forward masking. We revealed new data that masking effects depended of categorical similarity of target and masking stimuli. The recognition accuracy was the lowest and the response time was the most slow, when the target and masking stimuli belongs to the same category, that was combined with high dispersion of response times. The revealed effects were more clear in the task of animal recognition in comparison with the recognition of nonliving objects. We supposed that the revealed effects connected with interference between cortical representations of the target and masking stimuli and discussed our results in context of cortical interference and negative priming.

  20. An integrated miRNA functional screening and target validation method for organ morphogenesis.

    PubMed

    Rebustini, Ivan T; Vlahos, Maryann; Packer, Trevor; Kukuruzinska, Maria A; Maas, Richard L

    2016-03-16

    The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs.

  1. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    NASA Astrophysics Data System (ADS)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  2. Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans?

    PubMed

    Holdstock, J S; Mayes, A R; Roberts, N; Cezayirli, E; Isaac, C L; O'Reilly, R C; Norman, K A

    2002-01-01

    The claim that recognition memory is spared relative to recall after focal hippocampal damage has been disputed in the literature. We examined this claim by investigating object and object-location recall and recognition memory in a patient, YR, who has adult-onset selective hippocampal damage. Our aim was to identify the conditions under which recognition was spared relative to recall in this patient. She showed unimpaired forced-choice object recognition but clearly impaired recall, even when her control subjects found the object recognition task to be numerically harder than the object recall task. However, on two other recognition tests, YR's performance was not relatively spared. First, she was clearly impaired at an equivalently difficult yes/no object recognition task, but only when targets and foils were very similar. Second, YR was clearly impaired at forced-choice recognition of object-location associations. This impairment was also unrelated to difficulty because this task was no more difficult than the forced-choice object recognition task for control subjects. The clear impairment of yes/no, but not of forced-choice, object recognition after focal hippocampal damage, when targets and foils are very similar, is predicted by the neural network-based Complementary Learning Systems model of recognition. This model postulates that recognition is mediated by hippocampally dependent recollection and cortically dependent familiarity; thus hippocampal damage should not impair item familiarity. The model postulates that familiarity is ineffective when very similar targets and foils are shown one at a time and subjects have to identify which items are old (yes/no recognition). In contrast, familiarity is effective in discriminating which of similar targets and foils, seen together, is old (forced-choice recognition). Independent evidence from the remember/know procedure also indicates that YR's familiarity is normal. The Complementary Learning Systems model can also accommodate the clear impairment of forced-choice object-location recognition memory if it incorporates the view that the most complete convergence of spatial and object information, represented in different cortical regions, occurs in the hippocampus.

  3. Distinguishing highly confident accurate and inaccurate memory: insights about relevant and irrelevant influences on memory confidence

    PubMed Central

    Chua, Elizabeth F.; Hannula, Deborah E.; Ranganath, Charan

    2012-01-01

    It is generally believed that accuracy and confidence in one’s memory are related, but there are many instances when they diverge. Accordingly, it is important to disentangle the factors which contribute to memory accuracy and confidence, especially those factors that contribute to confidence, but not accuracy. We used eye movements to separately measure fluent cue processing, the target recognition experience, and relative evidence assessment on recognition confidence and accuracy. Eye movements were monitored during a face-scene associative recognition task, in which participants first saw a scene cue, followed by a forced-choice recognition test for the associated face, with confidence ratings. Eye movement indices of the target recognition experience were largely indicative of accuracy, and showed a relationship to confidence for accurate decisions. In contrast, eye movements during the scene cue raised the possibility that more fluent cue processing was related to higher confidence for both accurate and inaccurate recognition decisions. In a second experiment, we manipulated cue familiarity, and therefore cue fluency. Participants showed higher confidence for cue-target associations for when the cue was more familiar, especially for incorrect responses. These results suggest that over-reliance on cue familiarity and under-reliance on the target recognition experience may lead to erroneous confidence. PMID:22171810

  4. Distinguishing highly confident accurate and inaccurate memory: insights about relevant and irrelevant influences on memory confidence.

    PubMed

    Chua, Elizabeth F; Hannula, Deborah E; Ranganath, Charan

    2012-01-01

    It is generally believed that accuracy and confidence in one's memory are related, but there are many instances when they diverge. Accordingly it is important to disentangle the factors that contribute to memory accuracy and confidence, especially those factors that contribute to confidence, but not accuracy. We used eye movements to separately measure fluent cue processing, the target recognition experience, and relative evidence assessment on recognition confidence and accuracy. Eye movements were monitored during a face-scene associative recognition task, in which participants first saw a scene cue, followed by a forced-choice recognition test for the associated face, with confidence ratings. Eye movement indices of the target recognition experience were largely indicative of accuracy, and showed a relationship to confidence for accurate decisions. In contrast, eye movements during the scene cue raised the possibility that more fluent cue processing was related to higher confidence for both accurate and inaccurate recognition decisions. In a second experiment we manipulated cue familiarity, and therefore cue fluency. Participants showed higher confidence for cue-target associations for when the cue was more familiar, especially for incorrect responses. These results suggest that over-reliance on cue familiarity and under-reliance on the target recognition experience may lead to erroneous confidence.

  5. Author name recognition in degraded journal images

    NASA Astrophysics Data System (ADS)

    de Bodard de la Jacopière, Aliette; Likforman-Sulem, Laurence

    2006-01-01

    A method for extracting names in degraded documents is presented in this article. The documents targeted are images of photocopied scientific journals from various scientific domains. Due to the degradation, there is poor OCR recognition, and pieces of other articles appear on the sides of the image. The proposed approach relies on the combination of a low-level textual analysis and an image-based analysis. The textual analysis extracts robust typographic features, while the image analysis selects image regions of interest through anchor components. We report results on the University of Washington benchmark database.

  6. TCRmodel: high resolution modeling of T cell receptors from sequence.

    PubMed

    Gowthaman, Ragul; Pierce, Brian G

    2018-05-22

    T cell receptors (TCRs), along with antibodies, are responsible for specific antigen recognition in the adaptive immune response, and millions of unique TCRs are estimated to be present in each individual. Understanding the structural basis of TCR targeting has implications in vaccine design, autoimmunity, as well as T cell therapies for cancer. Given advances in deep sequencing leading to immune repertoire-level TCR sequence data, fast and accurate modeling methods are needed to elucidate shared and unique 3D structural features of these molecules which lead to their antigen targeting and cross-reactivity. We developed a new algorithm in the program Rosetta to model TCRs from sequence, and implemented this functionality in a web server, TCRmodel. This web server provides an easy to use interface, and models are generated quickly that users can investigate in the browser and download. Benchmarking of this method using a set of nonredundant recently released TCR crystal structures shows that models are accurate and compare favorably to models from another available modeling method. This server enables the community to obtain insights into TCRs of interest, and can be combined with methods to model and design TCR recognition of antigens. The TCRmodel server is available at: http://tcrmodel.ibbr.umd.edu/.

  7. Method of passive ranging from infrared image sequence based on equivalent area

    NASA Astrophysics Data System (ADS)

    Yang, Weiping; Shen, Zhenkang

    2007-11-01

    The information of range between missile and targets is important not only to missile controlling component, but also to automatic target recognition, so studying the technique of passive ranging from infrared images has important theoretic and practical meanings. Here we tried to get the range between guided missile and target and help to identify targets or dodge a hit. The issue of distance between missile and target is currently a hot and difficult research content. As all know, infrared imaging detector can not range so that it restricts the functions of the guided information processing system based on infrared images. In order to break through the technical puzzle, we investigated the principle of the infrared imaging, after analysing the imaging geometric relationship between the guided missile and the target, we brought forward the method of passive ranging based on equivalent area and provided mathematical analytic formulas. Validating Experiments demonstrate that the presented method has good effect, the lowest relative error can reach 10% in some circumstances.

  8. Single-Molecule View of Small RNA-Guided Target Search and Recognition.

    PubMed

    Globyte, Viktorija; Kim, Sung Hyun; Joo, Chirlmin

    2018-05-20

    Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid-interacting proteins use distinct target search mechanisms. Several proteins achieve that with the help of short RNA strands known as guides. This review focuses on single-molecule advances studying the target search and recognition mechanism of Argonaute and CRISPR (clustered regularly interspaced short palindromic repeats) systems. We discuss different steps involved in search and recognition, from the initial complex prearrangement into the target-search competent state to the final proofreading steps. We focus on target search mechanisms that range from weak interactions, to one- and three-dimensional diffusion, to conformational proofreading. We compare the mechanisms of Argonaute and CRISPR with a well-studied target search system, RecA.

  9. Differences in antigen presentation to MHC class I-and class II- restricted influenza virus-specific cytolytic T lymphocyte clones

    PubMed Central

    1986-01-01

    We have examined requirements for antigen presentation to a panel of MHC class I-and class II-restricted, influenza virus-specific CTL clones by controlling the form of virus presented on the target cell surface. Both H-2K/D- and I region-restricted CTL recognize target cells exposed to infectious virus, but only the I region-restricted clones efficiently lysed histocompatible target cells pulsed with inactivated virus preparations. The isolated influenza hemagglutinin (HA) polypeptide also could sensitize target cells for recognition by class II-restricted, HA-specific CTL, but not by class I-restricted, HA- specific CTL. Inhibition of nascent viral protein synthesis abrogated the ability of target cells to present viral antigen relevant for class I-restricted CTL recognition. Significantly, presentation for class II- restricted recognition was unaffected in target cells exposed to preparations of either inactivated or infectious virus. This differential sensitivity suggested that these H-2I region-restricted CTL recognized viral polypeptides derived from the exogenously introduced virions, rather than viral polypeptides newly synthesized in the infected cell. In support of this contention, treatment of the target cells with the lysosomotropic agent chloroquine abolished recognition of infected target cells by class II-restricted CTL without diminishing class I-restricted recognition of infected target cells. Furthermore, when the influenza HA gene was introduced into target cells without exogenous HA polypeptide, the target cells that expressed the newly synthesized protein product of the HA gene were recognized only by H-2K/D-restricted CTL. These observations suggest that important differences may exist in requirements for antigen presentation between H-2K/D and H-2I region-restricted CTL. These differences may reflect the nature of the antigenic epitopes recognized by these two CTL subsets. PMID:3485173

  10. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation.

    PubMed

    Zheng, Jing; Tan, Chunyan; Xue, Pengcheng; Cao, Jiakun; Liu, Feng; Tan, Ying; Jiang, Yuyang

    2016-02-19

    Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. An Exemplar-Based Multi-View Domain Generalization Framework for Visual Recognition.

    PubMed

    Niu, Li; Li, Wen; Xu, Dong; Cai, Jianfei

    2018-02-01

    In this paper, we propose a new exemplar-based multi-view domain generalization (EMVDG) framework for visual recognition by learning robust classifier that are able to generalize well to arbitrary target domain based on the training samples with multiple types of features (i.e., multi-view features). In this framework, we aim to address two issues simultaneously. First, the distribution of training samples (i.e., the source domain) is often considerably different from that of testing samples (i.e., the target domain), so the performance of the classifiers learnt on the source domain may drop significantly on the target domain. Moreover, the testing data are often unseen during the training procedure. Second, when the training data are associated with multi-view features, the recognition performance can be further improved by exploiting the relation among multiple types of features. To address the first issue, considering that it has been shown that fusing multiple SVM classifiers can enhance the domain generalization ability, we build our EMVDG framework upon exemplar SVMs (ESVMs), in which a set of ESVM classifiers are learnt with each one trained based on one positive training sample and all the negative training samples. When the source domain contains multiple latent domains, the learnt ESVM classifiers are expected to be grouped into multiple clusters. To address the second issue, we propose two approaches under the EMVDG framework based on the consensus principle and the complementary principle, respectively. Specifically, we propose an EMVDG_CO method by adding a co-regularizer to enforce the cluster structures of ESVM classifiers on different views to be consistent based on the consensus principle. Inspired by multiple kernel learning, we also propose another EMVDG_MK method by fusing the ESVM classifiers from different views based on the complementary principle. In addition, we further extend our EMVDG framework to exemplar-based multi-view domain adaptation (EMVDA) framework when the unlabeled target domain data are available during the training procedure. The effectiveness of our EMVDG and EMVDA frameworks for visual recognition is clearly demonstrated by comprehensive experiments on three benchmark data sets.

  12. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models.

    PubMed

    Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki

    2014-03-01

    Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.

  13. Experiments and Analysis of Close-Shot Identification of On-Branch Citrus Fruit with RealSense

    PubMed Central

    Liu, Jizhan; Yuan, Yan; Zhou, Yao; Zhu, Xinxin

    2018-01-01

    Fruit recognition based on depth information has been a hot topic due to its advantages. However, the present equipment and methods cannot meet the requirements of rapid and reliable recognition and location of fruits in close shot for robot harvesting. To solve this problem, we propose a recognition algorithm for citrus fruit based on RealSense. This method effectively utilizes depth-point cloud data in a close-shot range of 160 mm and different geometric features of the fruit and leaf to recognize fruits with a intersection curve cut by the depth-sphere. Experiments with close-shot recognition of six varieties of fruit under different conditions were carried out. The detection rates of little occlusion and adhesion were from 80–100%. However, severe occlusion and adhesion still have a great influence on the overall success rate of on-branch fruits recognition, the rate being 63.8%. The size of the fruit has a more noticeable impact on the success rate of detection. Moreover, due to close-shot near-infrared detection, there was no obvious difference in recognition between bright and dark conditions. The advantages of close-shot limited target detection with RealSense, fast foreground and background removal and the simplicity of the algorithm with high precision may contribute to high real-time vision-servo operations of harvesting robots. PMID:29751594

  14. Recognition Of Complex Three Dimensional Objects Using Three Dimensional Moment Invariants

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz A.

    1985-01-01

    A technique for the recognition of complex three dimensional objects is presented. The complex 3-D objects are represented in terms of their 3-D moment invariants, algebraic expressions that remain invariant independent of the 3-D objects' orientations and locations in the field of view. The technique of 3-D moment invariants has been used successfully for simple 3-D object recognition in the past. In this work we have extended this method for the representation of more complex objects. Two complex objects are represented digitally; their 3-D moment invariants have been calculated, and then the invariancy of these 3-D invariant moment expressions is verified by changing the orientation and the location of the objects in the field of view. The results of this study have significant impact on 3-D robotic vision, 3-D target recognition, scene analysis and artificial intelligence.

  15. Reversing the picture superiority effect: a speed-accuracy trade-off study of recognition memory.

    PubMed

    Boldini, Angela; Russo, Riccardo; Punia, Sahiba; Avons, S E

    2007-01-01

    Speed-accuracy trade-off methods have been used to contrast single- and dual-process accounts of recognition memory. With these procedures, subjects are presented with individual test items and required to make recognition decisions under various time constraints. In three experiments, we presented words and pictures to be intentionally learned; test stimuli were always visually presented words. At test, we manipulated the interval between the presentation of each test stimulus and that of a response signal, thus controlling the amount of time available to retrieve target information. The standard picture superiority effect was significant in long response deadline conditions (i.e., > or = 2,000 msec). Conversely, a significant reverse picture superiority effect emerged at short response-signal deadlines (< 200 msec). The results are congruent with views suggesting that both fast familiarity and slower recollection processes contribute to recognition memory. Alternative accounts are also discussed.

  16. An evolution based biosensor receptor DNA sequence generation algorithm.

    PubMed

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.

  17. The utility of multiple synthesized views in the recognition of unfamiliar faces.

    PubMed

    Jones, Scott P; Dwyer, Dominic M; Lewis, Michael B

    2017-05-01

    The ability to recognize an unfamiliar individual on the basis of prior exposure to a photograph is notoriously poor and prone to errors, but recognition accuracy is improved when multiple photographs are available. In applied situations, when only limited real images are available (e.g., from a mugshot or CCTV image), the generation of new images might provide a technological prosthesis for otherwise fallible human recognition. We report two experiments examining the effects of providing computer-generated additional views of a target face. In Experiment 1, provision of computer-generated views supported better target face recognition than exposure to the target image alone and equivalent performance to that for exposure of multiple photograph views. Experiment 2 replicated the advantage of providing generated views, but also indicated an advantage for multiple viewings of the single target photograph. These results strengthen the claim that identifying a target face can be improved by providing multiple synthesized views based on a single target image. In addition, our results suggest that the degree of advantage provided by synthesized views may be affected by the quality of synthesized material.

  18. Detection, recognition, identification, and tracking of military vehicles using biomimetic intelligence

    NASA Astrophysics Data System (ADS)

    Pace, Paul W.; Sutherland, John

    2001-10-01

    This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.

  19. The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise

    PubMed Central

    Souza, Pamela E.

    2017-01-01

    Purpose This study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for speech recognition in noise. Last, we explored the individual factors that predict the amount of dynamic-pitch benefit for speech recognition in noise. Method Younger listeners with normal hearing and older listeners with varying levels of hearing sensitivity participated in the study, in which speech reception thresholds were measured with sentences in nonspeech noise. Results The younger listeners benefited more from dynamic pitch for speech recognition in temporally modulated noise than unmodulated noise. Older listeners were able to benefit from the dynamic-pitch cues but received less benefit from noise modulation than the younger listeners. For those older listeners with hearing loss, the amount of hearing loss strongly predicted the dynamic-pitch benefit for speech recognition in noise. Conclusions Dynamic-pitch cues aid speech recognition in noise, particularly when noise has temporal modulation. Hearing loss negatively affects the dynamic-pitch benefit to older listeners with significant hearing loss. PMID:28800370

  20. Variability in the impairment of recognition memory in patients with frontal lobe lesions.

    PubMed

    Bastin, Christine; Van der Linden, Martial; Lekeu, Françoise; Andrés, Pilar; Salmon, Eric

    2006-10-01

    Fourteen patients with frontal lobe lesions and 14 normal subjects were tested on a recognition memory task that required discriminating between target words, new words that are synonyms of the targets and unrelated distractors. A deficit was found in 12 of the patients. Moreover, three different patterns of recognition impairment were identified: (I) poor memory for targets, (II) normal hits but increased false recognitions for both types of distractors, (III) normal hit rates, but increased false recognitions for synonyms only. Differences in terms of location of the damage and behavioral characteristics between these subgroups were examined. An encoding deficit was proposed to explain the performance of patients in subgroup I. The behavioral patterns of the patients in subgroups II and III could be interpreted as deficient post-retrieval verification processes and an inability to recollect item-specific information, respectively.

  1. The nonverbal expression of pride: evidence for cross-cultural recognition.

    PubMed

    Tracy, Jessica L; Robins, Richard W

    2008-03-01

    The present research tests whether recognition for the nonverbal expression of pride generalizes across cultures. Study 1 provided the first evidence for cross-cultural recognition of pride, demonstrating that the expression generalizes across Italy and the United States. Study 2 found that the pride expression generalizes beyond Western cultures; individuals from a preliterate, highly isolated tribe in Burkina Faso, West Africa, reliably recognized pride, regardless of whether it was displayed by African or American targets. These Burkinabe participants were unlikely to have learned the pride expression through cross-cultural transmission, so their recognition suggests that pride may be a human universal. Studies 3 and 4 used drawn figures to systematically manipulate the ethnicity and gender of targets showing the expression, and demonstrated that pride recognition generalizes across male and female targets of African, Asian, and Caucasian descent. Discussion focuses on the implications of the findings for the universality of the pride expression.

  2. Radar target classification method with high accuracy and decision speed performance using MUSIC spectrum vectors and PCA projection

    NASA Astrophysics Data System (ADS)

    Secmen, Mustafa

    2011-10-01

    This paper introduces the performance of an electromagnetic target recognition method in resonance scattering region, which includes pseudo spectrum Multiple Signal Classification (MUSIC) algorithm and principal component analysis (PCA) technique. The aim of this method is to classify an "unknown" target as one of the "known" targets in an aspect-independent manner. The suggested method initially collects the late-time portion of noise-free time-scattered signals obtained from different reference aspect angles of known targets. Afterward, these signals are used to obtain MUSIC spectrums in real frequency domain having super-resolution ability and noise resistant feature. In the final step, PCA technique is applied to these spectrums in order to reduce dimensionality and obtain only one feature vector per known target. In the decision stage, noise-free or noisy scattered signal of an unknown (test) target from an unknown aspect angle is initially obtained. Subsequently, MUSIC algorithm is processed for this test signal and resulting test vector is compared with feature vectors of known targets one by one. Finally, the highest correlation gives the type of test target. The method is applied to wire models of airplane targets, and it is shown that it can tolerate considerable noise levels although it has a few different reference aspect angles. Besides, the runtime of the method for a test target is sufficiently low, which makes the method suitable for real-time applications.

  3. Intact suppression of increased false recognition in schizophrenia.

    PubMed

    Weiss, Anthony P; Dodson, Chad S; Goff, Donald C; Schacter, Daniel L; Heckers, Stephan

    2002-09-01

    Recognition memory is impaired in patients with schizophrenia, as they rely largely on item familiarity, rather than conscious recollection, to make mnemonic decisions. False recognition of novel items (foils) is increased in schizophrenia and may relate to this deficit in conscious recollection. By studying pictures of the target word during encoding, healthy adults can suppress false recognition. This study examined the effect of pictorial encoding on subsequent recognition of repeated foils in patients with schizophrenia. The study included 40 patients with schizophrenia and 32 healthy comparison subjects. After incidental encoding of 60 words or pictures, subjects were tested for recognition of target items intermixed with 60 new foils. These new foils were subsequently repeated following either a two- or 24-word delay. Subjects were instructed to label these repeated foils as new and not to mistake them for old target words. Schizophrenic patients showed greater overall false recognition of repeated foils. The rate of false recognition of repeated foils was lower after picture encoding than after word encoding. Despite higher levels of false recognition of repeated new items, patients and comparison subjects demonstrated a similar degree of false recognition suppression after picture, as compared to word, encoding. Patients with schizophrenia displayed greater false recognition of repeated foils than comparison subjects, suggesting both a decrement of item- (or source-) specific recollection and a consequent reliance on familiarity in schizophrenia. Despite these deficits, presenting pictorial information at encoding allowed schizophrenic subjects to suppress false recognition to a similar degree as the comparison group, implying the intact use of a high-level cognitive strategy in this population.

  4. Learning Enterprise Malware Triage from Automatic Dynamic Analysis

    DTIC Science & Technology

    2013-03-01

    Kolter and Maloof n-gram method, Dube’s malware target recognition (MaTR) static method performs significantly more accurately at the 95% confidence...from the static method as in Kolter and Maloof. The MIST approach with behavior sequences 9 allows researchers to tailor the level of analysis to the...citations, none publish work that implements it. Only Kolter and Maloof use nearly as long gram structures, although that research uses static grams rather

  5. Non-Cooperative Target Recognition by Means of Singular Value Decomposition Applied to Radar High Resolution Range Profiles †

    PubMed Central

    López-Rodríguez, Patricia; Escot-Bocanegra, David; Fernández-Recio, Raúl; Bravo, Ignacio

    2015-01-01

    Radar high resolution range profiles are widely used among the target recognition community for the detection and identification of flying targets. In this paper, singular value decomposition is applied to extract the relevant information and to model each aircraft as a subspace. The identification algorithm is based on angle between subspaces and takes place in a transformed domain. In order to have a wide database of radar signatures and evaluate the performance, simulated range profiles are used as the recognition database while the test samples comprise data of actual range profiles collected in a measurement campaign. Thanks to the modeling of aircraft as subspaces only the valuable information of each target is used in the recognition process. Thus, one of the main advantages of using singular value decomposition, is that it helps to overcome the notable dissimilarities found in the shape and signal-to-noise ratio between actual and simulated profiles due to their difference in nature. Despite these differences, the recognition rates obtained with the algorithm are quite promising. PMID:25551484

  6. Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.

    PubMed

    Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M

    2018-05-31

    Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.

  7. Bilingual Listeners' Perception of Temporally Manipulated English Passages

    ERIC Educational Resources Information Center

    Shi, Lu-Feng; Farooq, Nadia

    2012-01-01

    Purpose: The current study measured, objectively and subjectively, how changes in speech rate affect recognition of English passages in bilingual listeners. Method: Ten native monolingual, 20 English-dominant bilingual, and 20 non-English-dominant bilingual listeners repeated target words in English passages at five speech rates (unprocessed, two…

  8. Bayesian Methods and Confidence Intervals for Automatic Target Recognition of SAR Canonical Shapes

    DTIC Science & Technology

    2014-03-27

    and DirectX [22]. The CUDA platform was developed by the NVIDIA Corporation to allow programmers access to the computational capabilities of the...were used for the intense repetitive computations. Developing CUDA software requires writing code for specialized compilers provided by NVIDIA and

  9. Object recognition of real targets using modelled SAR images

    NASA Astrophysics Data System (ADS)

    Zherdev, D. A.

    2017-12-01

    In this work the problem of recognition is studied using SAR images. The algorithm of recognition is based on the computation of conjugation indices with vectors of class. The support subspaces for each class are constructed by exception of the most and the less correlated vectors in a class. In the study we examine the ability of a significant feature vector size reduce that leads to recognition time decrease. The images of targets form the feature vectors that are transformed using pre-trained convolutional neural network (CNN).

  10. Effect of colour pop-out on the recognition of letters in crowding conditions.

    PubMed

    Põder, Endel

    2007-11-01

    The crowding effect of adjacent objects on the recognition of a target can be reduced when target and flankers differ in some feature, that is irrelevant to the recognition task. In this study, the mechanisms of this effect were explored using targets and flankers of the same and different colours. It was found that facilitation nearly equal to that of differently coloured targets and flankers can be observed with a differently coloured background blob in the location of the target. The different-colour effect does not require advance knowledge of the target and flanker colours, but the effect increases in the course of three trials with constant mapping of colours. The results are consistent with the notion of exogenous attention that facilitates the processing at the most salient locations in the visual field.

  11. Multi-source feature extraction and target recognition in wireless sensor networks based on adaptive distributed wavelet compression algorithms

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at participating nodes. Therefore, the feature-extraction method based on the Haar DWT is presented that employs a maximum-entropy measure to determine significant wavelet coefficients. Features are formed by calculating the energy of coefficients grouped around the competing clusters. A DWT-based feature extraction algorithm used for vehicle classification in WSNs can be enhanced by an added rule for selecting the optimal number of resolution levels to improve the correct classification rate and reduce energy consumption expended in local algorithm computations. Published field trial data for vehicular ground targets, measured with multiple sensor types, are used to evaluate the wavelet-assisted algorithms. Extracted features are used in established target recognition routines, e.g., the Bayesian minimum-error-rate classifier, to compare the effects on the classification performance of the wavelet compression. Simulations of feature sets and recognition routines at different resolution levels in target scenarios indicate the impact on classification rates, while formulas are provided to estimate reduction in resource use due to distributed compression.

  12. Local structure preserving sparse coding for infrared target recognition

    PubMed Central

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824

  13. FRankenstein becomes a cyborg: the automatic recombination and realignment of fold recognition models in CASP6.

    PubMed

    Kosinski, Jan; Gajda, Michal J; Cymerman, Iwona A; Kurowski, Michal A; Pawlowski, Marcin; Boniecki, Michal; Obarska, Agnieszka; Papaj, Grzegorz; Sroczynska-Obuchowicz, Paulina; Tkaczuk, Karolina L; Sniezynska, Paulina; Sasin, Joanna M; Augustyn, Anna; Bujnicki, Janusz M; Feder, Marcin

    2005-01-01

    In the course of CASP6, we generated models for all targets using a new version of the "FRankenstein's monster approach." Previously (in CASP5) we were able to build many very accurate full-atom models by selection and recombination of well-folded fragments obtained from crude fold recognition (FR) results, followed by optimization of the sequence-structure fit and assessment of alternative alignments on the structural level. This procedure was however very arduous, as most of the steps required extensive visual and manual input from the human modeler. Now, we have automated the most tedious steps, such as superposition of alternative models, extraction of best-scoring fragments, and construction of a hybrid "monster" structure, as well as generation of alternative alignments in the regions that remain poorly scored in the refined hybrid model. We have also included the ROSETTA method to construct those parts of the target for which no reasonable structures were generated by FR methods (such as long insertions and terminal extensions). The analysis of successes and failures of the current version of the FRankenstein approach in modeling of CASP6 targets reveals that the considerably streamlined and automated method performs almost as well as the initial, mostly manual version, which suggests that it may be a useful tool for accurate protein structure prediction even in the hands of nonexperts. 2005 Wiley-Liss, Inc.

  14. Pose estimation of industrial objects towards robot operation

    NASA Astrophysics Data System (ADS)

    Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu

    2017-10-01

    With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.

  15. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition

    PubMed Central

    Murphy, Jillian M.; Ridley, Nicole J.; Vercammen, Ans

    2015-01-01

    The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602

  16. Individual differences in forced-choice recognition memory: partitioning contributions of recollection and familiarity.

    PubMed

    Migo, Ellen M; Quamme, Joel R; Holmes, Selina; Bendell, Andrew; Norman, Kenneth A; Mayes, Andrew R; Montaldi, Daniela

    2014-01-01

    In forced-choice recognition memory, two different testing formats are possible under conditions of high target-foil similarity: Each target can be presented alongside foils similar to itself (forced-choice corresponding; FCC), or alongside foils similar to other targets (forced-choice noncorresponding; FCNC). Recent behavioural and neuropsychological studies suggest that FCC performance can be supported by familiarity whereas FCNC performance is supported primarily by recollection. In this paper, we corroborate this finding from an individual differences perspective. A group of older adults were given a test of FCC and FCNC recognition for object pictures, as well as standardized tests of recall, recognition, and IQ. Recall measures were found to predict FCNC, but not FCC performance, consistent with a critical role for recollection in FCNC only. After the common influence of recall was removed, standardized tests of recognition predicted FCC, but not FCNC performance. This is consistent with a contribution of only familiarity in FCC. Simulations show that a two-process model, where familiarity and recollection make separate contributions to recognition, is 10 times more likely to give these results than a single-process model. This evidence highlights the importance of recognition memory test design when examining the involvement of recollection and familiarity.

  17. Recognition of visual stimuli and memory for spatial context in schizophrenic patients and healthy volunteers.

    PubMed

    Brébion, Gildas; David, Anthony S; Pilowsky, Lyn S; Jones, Hugh

    2004-11-01

    Verbal and visual recognition tasks were administered to 40 patients with schizophrenia and 40 healthy comparison subjects. The verbal recognition task consisted of discriminating between 16 target words and 16 new words. The visual recognition task consisted of discriminating between 16 target pictures (8 black-and-white and 8 color) and 16 new pictures (8 black-and-white and 8 color). Visual recognition was followed by a spatial context discrimination task in which subjects were required to remember the spatial location of the target pictures at encoding. Results showed that recognition deficit in patients was similar for verbal and visual material. In both schizophrenic and healthy groups, men, but not women, obtained better recognition scores for the colored than for the black-and-white pictures. However, men and women similarly benefited from color to reduce spatial context discrimination errors. Patients showed a significant deficit in remembering the spatial location of the pictures, independently of accuracy in remembering the pictures themselves. These data suggest that patients are impaired in the amount of visual information that they can encode. With regards to the perceptual attributes of the stimuli, memory for spatial information appears to be affected, but not processing of color information.

  18. Optimization of OT-MACH Filter Generation for Target Recognition

    NASA Technical Reports Server (NTRS)

    Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.

  19. Research on infrared dim-point target detection and tracking under sea-sky-line complex background

    NASA Astrophysics Data System (ADS)

    Dong, Yu-xing; Li, Yan; Zhang, Hai-bo

    2011-08-01

    Target detection and tracking technology in infrared image is an important part of modern military defense system. Infrared dim-point targets detection and recognition under complex background is a difficulty and important strategic value and challenging research topic. The main objects that carrier-borne infrared vigilance system detected are sea-skimming aircrafts and missiles. Due to the characteristics of wide field of view of vigilance system, the target is usually under the sea clutter. Detection and recognition of the target will be taken great difficulties .There are some traditional point target detection algorithms, such as adaptive background prediction detecting method. When background has dispersion-decreasing structure, the traditional target detection algorithms would be more useful. But when the background has large gray gradient, such as sea-sky-line, sea waves etc .The bigger false-alarm rate will be taken in these local area .It could not obtain satisfactory results. Because dim-point target itself does not have obvious geometry or texture feature ,in our opinion , from the perspective of mathematics, the detection of dim-point targets in image is about singular function analysis .And from the perspective image processing analysis , the judgment of isolated singularity in the image is key problem. The foregoing points for dim-point targets detection, its essence is a separation of target and background of different singularity characteristics .The image from infrared sensor usually accompanied by different kinds of noise. These external noises could be caused by the complicated background or from the sensor itself. The noise might affect target detection and tracking. Therefore, the purpose of the image preprocessing is to reduce the effects from noise, also to raise the SNR of image, and to increase the contrast of target and background. According to the low sea-skimming infrared flying small target characteristics , the median filter is used to eliminate noise, improve signal-to-noise ratio, then the multi-point multi-storey vertical Sobel algorithm will be used to detect the sea-sky-line ,so that we can segment sea and sky in the image. Finally using centroid tracking method to capture and trace target. This method has been successfully used to trace target under the sea-sky complex background.

  20. Unsupervised and self-mapping category formation and semantic object recognition for mobile robot vision used in an actual environment

    NASA Astrophysics Data System (ADS)

    Madokoro, H.; Tsukada, M.; Sato, K.

    2013-07-01

    This paper presents an unsupervised learning-based object category formation and recognition method for mobile robot vision. Our method has the following features: detection of feature points and description of features using a scale-invariant feature transform (SIFT), selection of target feature points using one class support vector machines (OC-SVMs), generation of visual words using self-organizing maps (SOMs), formation of labels using adaptive resonance theory 2 (ART-2), and creation and classification of categories on a category map of counter propagation networks (CPNs) for visualizing spatial relations between categories. Classification results of dynamic images using time-series images obtained using two different-size robots and according to movements respectively demonstrate that our method can visualize spatial relations of categories while maintaining time-series characteristics. Moreover, we emphasize the effectiveness of our method for category formation of appearance changes of objects.

  1. Advanced miniature processing handware for ATR applications

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Daud, Taher (Inventor); Thakoor, Anikumar (Inventor)

    2003-01-01

    A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR).

  2. Automated target recognition and tracking using an optical pattern recognition neural network

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  3. Facial expression recognition under partial occlusion based on fusion of global and local features

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Xia, Chen; Hu, Min; Ren, Fuji

    2018-04-01

    Facial expression recognition under partial occlusion is a challenging research. This paper proposes a novel framework for facial expression recognition under occlusion by fusing the global and local features. In global aspect, first, information entropy are employed to locate the occluded region. Second, principal Component Analysis (PCA) method is adopted to reconstruct the occlusion region of image. After that, a replace strategy is applied to reconstruct image by replacing the occluded region with the corresponding region of the best matched image in training set, Pyramid Weber Local Descriptor (PWLD) feature is then extracted. At last, the outputs of SVM are fitted to the probabilities of the target class by using sigmoid function. For the local aspect, an overlapping block-based method is adopted to extract WLD features, and each block is weighted adaptively by information entropy, Chi-square distance and similar block summation methods are then applied to obtain the probabilities which emotion belongs to. Finally, fusion at the decision level is employed for the data fusion of the global and local features based on Dempster-Shafer theory of evidence. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the effectiveness and fault tolerance of this method.

  4. Salient man-made structure detection in infrared images

    NASA Astrophysics Data System (ADS)

    Li, Dong-jie; Zhou, Fu-gen; Jin, Ting

    2013-09-01

    Target detection, segmentation and recognition is a hot research topic in the field of image processing and pattern recognition nowadays, among which salient area or object detection is one of core technologies of precision guided weapon. Many theories have been raised in this paper; we detect salient objects in a series of input infrared images by using the classical feature integration theory and Itti's visual attention system. In order to find the salient object in an image accurately, we present a new method to solve the edge blur problem by calculating and using the edge mask. We also greatly improve the computing speed by improving the center-surround differences method. Unlike the traditional algorithm, we calculate the center-surround differences through rows and columns separately. Experimental results show that our method is effective in detecting salient object accurately and rapidly.

  5. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-04-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  6. A new method for incoherent combining of far-field laser beams based on multiple faculae recognition

    NASA Astrophysics Data System (ADS)

    Ye, Demao; Li, Sichao; Yan, Zhihui; Zhang, Zenan; Liu, Yuan

    2018-03-01

    Compared to coherent beam combining, incoherent beam combining can complete the output of high power laser beam with high efficiency, simple structure, low cost and high thermal damage resistance, and it is easy to realize in engineering. Higher target power is achieved by incoherent beam combination which using technology of multi-channel optical path correction. However, each channel forms a spot in the far field respectively, which cannot form higher laser power density with low overlap ratio of faculae. In order to improve the combat effectiveness of the system, it is necessary to overlap different faculae that improve the target energy density. Hence, a novel method for incoherent combining of far-field laser beams is present. The method compromises piezoelectric ceramic technology and evaluation algorithm of faculae coincidence degree which based on high precision multi-channel optical path correction. The results show that the faculae recognition algorithm is low-latency(less than 10ms), which can meet the needs of practical engineering. Furthermore, the real time focusing ability of far field faculae is improved which was beneficial to the engineering of high-energy laser weapon or other laser jamming systems.

  7. Neural Dynamics Underlying Target Detection in the Human Brain

    PubMed Central

    Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.

    2014-01-01

    Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944

  8. Repetition priming across distinct contexts: effects of lexical status, word frequency, and retrieval test.

    PubMed

    Coane, Jennifer H; Balota, David A

    2010-12-01

    Repetition priming, the facilitation observed when a target is preceded by an identity prime, is a robust phenomenon that occurs across a variety of conditions. Oliphant (1983), however, failed to observe repetition priming for targets embedded in the instructions to an experiment in a subsequent lexical decision task. In the present experiments, we examined the roles of priming context (list or instructions), target lexicality, and target frequency in both lexical decision and episodic recognition performance. Initial encoding context did not modulate priming in lexical decision or recognition memory for low-frequency targets or nonwords, whereas context strongly modulated episodic recognition for high-frequency targets. The results indicate that priming across contexts is sensitive to the distinctiveness of the trace and the reliance on episodic retrieval mechanisms. These results also shed light on the influence of event boundaries, such that priming occurs across different events for relatively distinct (low-frequency) items.

  9. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  10. Structural basis for microRNA targeting

    DOE PAGES

    Schirle, Nicole T.; Sheu-Gruttadauria, Jessica; MacRae, Ian J.

    2014-10-31

    MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. In this paper, we determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions withmore » the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. Finally, these results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.« less

  11. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  12. A novel probabilistic framework for event-based speech recognition

    NASA Astrophysics Data System (ADS)

    Juneja, Amit; Espy-Wilson, Carol

    2003-10-01

    One of the reasons for unsatisfactory performance of the state-of-the-art automatic speech recognition (ASR) systems is the inferior acoustic modeling of low-level acoustic-phonetic information in the speech signal. An acoustic-phonetic approach to ASR, on the other hand, explicitly targets linguistic information in the speech signal, but such a system for continuous speech recognition (CSR) is not known to exist. A probabilistic and statistical framework for CSR based on the idea of the representation of speech sounds by bundles of binary valued articulatory phonetic features is proposed. Multiple probabilistic sequences of linguistically motivated landmarks are obtained using binary classifiers of manner phonetic features-syllabic, sonorant and continuant-and the knowledge-based acoustic parameters (APs) that are acoustic correlates of those features. The landmarks are then used for the extraction of knowledge-based APs for source and place phonetic features and their binary classification. Probabilistic landmark sequences are constrained using manner class language models for isolated or connected word recognition. The proposed method could overcome the disadvantages encountered by the early acoustic-phonetic knowledge-based systems that led the ASR community to switch to systems highly dependent on statistical pattern analysis methods and probabilistic language or grammar models.

  13. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  14. Human target acquisition performance

    NASA Astrophysics Data System (ADS)

    Teaney, Brian P.; Du Bosq, Todd W.; Reynolds, Joseph P.; Thompson, Roger; Aghera, Sameer; Moyer, Steven K.; Flug, Eric; Espinola, Richard; Hixson, Jonathan

    2012-06-01

    The battlefield has shifted from armored vehicles to armed insurgents. Target acquisition (identification, recognition, and detection) range performance involving humans as targets is vital for modern warfare. The acquisition and neutralization of armed insurgents while at the same time minimizing fratricide and civilian casualties is a mounting concern. U.S. Army RDECOM CERDEC NVESD has conducted many experiments involving human targets for infrared and reflective band sensors. The target sets include human activities, hand-held objects, uniforms & armament, and other tactically relevant targets. This paper will define a set of standard task difficulty values for identification and recognition associated with human target acquisition performance.

  15. Lead discovery and chemical biology approaches targeting the ubiquitin proteasome system.

    PubMed

    Akinjiyan, Favour A; Carbonneau, Seth; Ross, Nathan T

    2017-10-15

    Protein degradation is critical for proteostasis, and the addition of polyubiquitin chains to a substrate is necessary for its recognition by the 26S proteasome. Therapeutic intervention in the ubiquitin proteasome system has implications ranging from cancer to neurodegeneration. Novel screening methods and chemical biology tools for targeting E1-activating, E2-conjugating and deubiquitinating enzymes will be discussed in this review. Approaches for targeting E3 ligase-substrate interactions as well as the proteasome will also be covered, with a focus on recently described approaches. Copyright © 2017. Published by Elsevier Ltd.

  16. Protein model quality assessment prediction by combining fragment comparisons and a consensus Cα contact potential

    PubMed Central

    Zhou, Hongyi; Skolnick, Jeffrey

    2009-01-01

    In this work, we develop a fully automated method for the quality assessment prediction of protein structural models generated by structure prediction approaches such as fold recognition servers, or ab initio methods. The approach is based on fragment comparisons and a consensus Cα contact potential derived from the set of models to be assessed and was tested on CASP7 server models. The average Pearson linear correlation coefficient between predicted quality and model GDT-score per target is 0.83 for the 98 targets which is better than those of other quality assessment methods that participated in CASP7. Our method also outperforms the other methods by about 3% as assessed by the total GDT-score of the selected top models. PMID:18004783

  17. Applications of independent component analysis in SAR images

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Cai, Xinhua; Hui, Weihua; Xu, Ping

    2009-07-01

    The detection of faint, small and hidden targets in synthetic aperture radar (SAR) image is still an issue for automatic target recognition (ATR) system. How to effectively separate these targets from the complex background is the aim of this paper. Independent component analysis (ICA) theory can enhance SAR image targets and improve signal clutter ratio (SCR), which benefits to detect and recognize faint targets. Therefore, this paper proposes a new SAR image target detection algorithm based on ICA. In experimental process, the fast ICA (FICA) algorithm is utilized. Finally, some real SAR image data is used to test the method. The experimental results verify that the algorithm is feasible, and it can improve the SCR of SAR image and increase the detection rate for the faint small targets.

  18. Extended target recognition in cognitive radar networks.

    PubMed

    Wei, Yimin; Meng, Huadong; Liu, Yimin; Wang, Xiqin

    2010-01-01

    We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR) based sequential hypothesis testing (SHT) framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS). Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  19. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  20. Bioinspired Pollen-Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells.

    PubMed

    Wang, Wenshuo; Yang, Gao; Cui, Haijun; Meng, Jingxin; Wang, Shutao; Jiang, Lei

    2017-08-01

    The efficient recognition and isolation of rare cancer cells holds great promise for cancer diagnosis and prognosis. In nature, pollens exploit spiky structures to realize recognition and adhesion to stigma. Herein, a bioinspired pollen-like hierarchical surface is developed by replicating the assembly of pollen grains, and efficient and specific recognition to target cancer cells is achieved. The pollen-like surface is fabricated by combining filtering-assisted assembly and soft lithography-based replication of pollen grains of wild chrysanthemum. After modification with a capture agent specific to cancer cells, the pollen-like surface enables the capture of target cancer cells with high efficiency and specificity. In addition, the pollen-like surface not only assures high viability of captured cells but also performs well in cell mixture system and at low cell density. This study represents a good example of constructing cell recognition biointerfaces inspired by pollen-stigma adhesion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Eyes on crowding: crowding is preserved when responding by eye and similarly affects identity and position accuracy.

    PubMed

    Yildirim, Funda; Meyer, Vincent; Cornelissen, Frans W

    2015-02-16

    Peripheral vision guides recognition and selection of targets for eye movements. Crowding—a decline in recognition performance that occurs when a potential target is surrounded by other, similar, objects—influences peripheral object recognition. A recent model study suggests that crowding may be due to increased uncertainty about both the identity and the location of peripheral target objects, but very few studies have assessed these properties in tandem. Eye tracking can integrally provide information on both the perceived identity and the position of a target and therefore could become an important approach in crowding studies. However, recent reports suggest that around the moment of saccade preparation crowding may be significantly modified. If these effects were to generalize to regular crowding tasks, it would complicate the interpretation of results obtained with eye tracking and the comparison to results obtained using manual responses. For this reason, we first assessed whether the manner by which participants responded—manually or by eye—affected their performance. We found that neither recognition performance nor response time was affected by the response type. Hence, we conclude that crowding magnitude was preserved when observers responded by eye. In our main experiment, observers made eye movements to the location of a tilted Gabor target while we varied flanker tilt to manipulate target-flanker similarity. The results indicate that this similarly affected the accuracy of peripheral recognition and saccadic target localization. Our results inform about the importance of both location and identity uncertainty in crowding. © 2015 ARVO.

  2. A hierarchical, automated target recognition algorithm for a parallel analog processor

    NASA Technical Reports Server (NTRS)

    Woodward, Gail; Padgett, Curtis

    1997-01-01

    A hierarchical approach is described for an automated target recognition (ATR) system, VIGILANTE, that uses a massively parallel, analog processor (3DANN). The 3DANN processor is capable of performing 64 concurrent inner products of size 1x4096 every 250 nanoseconds.

  3. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute

    PubMed Central

    Miyoshi, Tomohiro; Ito, Kosuke; Murakami, Ryo; Uchiumi, Toshio

    2016-01-01

    Argonaute proteins are key players in the gene silencing mechanisms mediated by small nucleic acids in all domains of life from bacteria to eukaryotes. However, little is known about the Argonaute protein that recognizes guide RNA/target DNA. Here, we determine the 2 Å crystal structure of Rhodobacter sphaeroides Argonaute (RsAgo) in a complex with 18-nucleotide guide RNA and its complementary target DNA. The heteroduplex maintains Watson–Crick base-pairing even in the 3′-region of the guide RNA between the N-terminal and PIWI domains, suggesting a recognition mode by RsAgo for stable interaction with the target strand. In addition, the MID/PIWI interface of RsAgo has a system that specifically recognizes the 5′ base-U of the guide RNA, and the duplex-recognition loop of the PAZ domain is important for the DNA silencing activity. Furthermore, we show that Argonaute discriminates the nucleic acid type (RNA/DNA) by recognition of the duplex structure of the seed region. PMID:27325485

  4. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute.

    PubMed

    Miyoshi, Tomohiro; Ito, Kosuke; Murakami, Ryo; Uchiumi, Toshio

    2016-06-21

    Argonaute proteins are key players in the gene silencing mechanisms mediated by small nucleic acids in all domains of life from bacteria to eukaryotes. However, little is known about the Argonaute protein that recognizes guide RNA/target DNA. Here, we determine the 2 Å crystal structure of Rhodobacter sphaeroides Argonaute (RsAgo) in a complex with 18-nucleotide guide RNA and its complementary target DNA. The heteroduplex maintains Watson-Crick base-pairing even in the 3'-region of the guide RNA between the N-terminal and PIWI domains, suggesting a recognition mode by RsAgo for stable interaction with the target strand. In addition, the MID/PIWI interface of RsAgo has a system that specifically recognizes the 5' base-U of the guide RNA, and the duplex-recognition loop of the PAZ domain is important for the DNA silencing activity. Furthermore, we show that Argonaute discriminates the nucleic acid type (RNA/DNA) by recognition of the duplex structure of the seed region.

  5. Crowding by a single bar: probing pattern recognition mechanisms in the visual periphery.

    PubMed

    Põder, Endel

    2014-11-06

    Whereas visual crowding does not greatly affect the detection of the presence of simple visual features, it heavily inhibits combining them into recognizable objects. Still, crowding effects have rarely been directly related to general pattern recognition mechanisms. In this study, pattern recognition mechanisms in visual periphery were probed using a single crowding feature. Observers had to identify the orientation of a rotated T presented briefly in a peripheral location. Adjacent to the target, a single bar was presented. The bar was either horizontal or vertical and located in a random direction from the target. It appears that such a crowding bar has very strong and regular effects on the identification of the target orientation. The observer's responses are determined by approximate relative positions of basic visual features; exact image-based similarity to the target is not important. A version of the "standard model" of object recognition with second-order features explains the main regularities of the data. © 2014 ARVO.

  6. EzyAmp signal amplification cascade enables isothermal detection of nucleic acid and protein targets.

    PubMed

    Linardy, Evelyn M; Erskine, Simon M; Lima, Nicole E; Lonergan, Tina; Mokany, Elisa; Todd, Alison V

    2016-01-15

    Advancements in molecular biology have improved the ability to characterize disease-related nucleic acids and proteins. Recently, there has been an increasing desire for tests that can be performed outside of centralised laboratories. This study describes a novel isothermal signal amplification cascade called EzyAmp (enzymatic signal amplification) that is being developed for detection of targets at the point of care. EzyAmp exploits the ability of some restriction endonucleases to cleave substrates containing nicks within their recognition sites. EzyAmp uses two oligonucleotide duplexes (partial complexes 1 and 2) which are initially cleavage-resistant as they lack a complete recognition site. The recognition site of partial complex 1 can be completed by hybridization of a triggering oligonucleotide (Driver Fragment 1) that is generated by a target-specific initiation event. Binding of Driver Fragment 1 generates a completed complex 1, which upon cleavage, releases Driver Fragment 2. In turn, binding of Driver Fragment 2 to partial complex 2 creates completed complex 2 which when cleaved releases additional Driver Fragment 1. Each cleavage event separates fluorophore quencher pairs resulting in an increase in fluorescence. At this stage a cascade of signal production becomes independent of further target-specific initiation events. This study demonstrated that the EzyAmp cascade can facilitate detection and quantification of nucleic acid targets with sensitivity down to aM concentration. Further, the same cascade detected VEGF protein with a sensitivity of 20nM showing that this universal method for amplifying signal may be linked to the detection of different types of analytes in an isothermal format. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Speech Recognition in Adults With Cochlear Implants: The Effects of Working Memory, Phonological Sensitivity, and Aging

    PubMed Central

    Harris, Michael S.; Boyce, Lauren; Nittrouer, Susan

    2017-01-01

    Purpose Models of speech recognition suggest that “top-down” linguistic and cognitive functions, such as use of phonotactic constraints and working memory, facilitate recognition under conditions of degradation, such as in noise. The question addressed in this study was what happens to these functions when a listener who has experienced years of hearing loss obtains a cochlear implant. Method Thirty adults with cochlear implants and 30 age-matched controls with age-normal hearing underwent testing of verbal working memory using digit span and serial recall of words. Phonological capacities were assessed using a lexical decision task and nonword repetition. Recognition of words in sentences in speech-shaped noise was measured. Results Implant users had only slightly poorer working memory accuracy than did controls and only on serial recall of words; however, phonological sensitivity was highly impaired. Working memory did not facilitate speech recognition in noise for either group. Phonological sensitivity predicted sentence recognition for implant users but not for listeners with normal hearing. Conclusion Clinical speech recognition outcomes for adult implant users relate to the ability of these users to process phonological information. Results suggest that phonological capacities may serve as potential clinical targets through rehabilitative training. Such novel interventions may be particularly helpful for older adult implant users. PMID:28384805

  8. Application of unsupervised pattern recognition approaches for exploration of rare earth elements in Se-Chahun iron ore, central Iran

    NASA Astrophysics Data System (ADS)

    Sarparandeh, Mohammadali; Hezarkhani, Ardeshir

    2017-12-01

    The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed methods and geological studies leads to finding some hidden information, and this approach has the best results compared to using only one of them.

  9. Human recognition based on head-shoulder contour extraction and BP neural network

    NASA Astrophysics Data System (ADS)

    Kong, Xiao-fang; Wang, Xiu-qin; Gu, Guohua; Chen, Qian; Qian, Wei-xian

    2014-11-01

    In practical application scenarios like video surveillance and human-computer interaction, human body movements are uncertain because the human body is a non-rigid object. Based on the fact that the head-shoulder part of human body can be less affected by the movement, and will seldom be obscured by other objects, in human detection and recognition, a head-shoulder model with its stable characteristics can be applied as a detection feature to describe the human body. In order to extract the head-shoulder contour accurately, a head-shoulder model establish method with combination of edge detection and the mean-shift algorithm in image clustering has been proposed in this paper. First, an adaptive method of mixture Gaussian background update has been used to extract targets from the video sequence. Second, edge detection has been used to extract the contour of moving objects, and the mean-shift algorithm has been combined to cluster parts of target's contour. Third, the head-shoulder model can be established, according to the width and height ratio of human head-shoulder combined with the projection histogram of the binary image, and the eigenvectors of the head-shoulder contour can be acquired. Finally, the relationship between head-shoulder contour eigenvectors and the moving objects will be formed by the training of back-propagation (BP) neural network classifier, and the human head-shoulder model can be clustered for human detection and recognition. Experiments have shown that the method combined with edge detection and mean-shift algorithm proposed in this paper can extract the complete head-shoulder contour, with low calculating complexity and high efficiency.

  10. Target-responsive DNA-capped nanocontainer used for fabricating universal detector and performing logic operations

    PubMed Central

    Wu, Li; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    Nucleic acids have become a powerful tool in nanotechnology because of their controllable diverse conformational transitions and adaptable higher-order nanostructure. Using single-stranded DNA probes as the pore-caps for various target recognition, here we present an ultrasensitive universal electrochemical detection system based on graphene and mesoporous silica, and achieve sensitivity with all of the major classes of analytes and simultaneously realize DNA logic gate operations. The concept is based on the locking of the pores and preventing the signal-reporter molecules from escape by target-induced the conformational change of the tailored DNA caps. The coupling of ‘waking up’ gatekeeper with highly specific biochemical recognition is an innovative strategy for the detection of various targets, able to compete with classical methods which need expensive instrumentation and sophisticated experimental operations. The present study has introduced a new electrochemical signal amplification concept and also adds a new dimension to the function of graphene-mesoporous materials hybrids as multifunctional nanoscale logic devices. More importantly, the development of this approach would spur further advances in important areas, such as point-of-care diagnostics or detection of specific biological contaminations, and hold promise for use in field analysis. PMID:25249622

  11. Glucose enhancement of a facial recognition task in young adults.

    PubMed

    Metzger, M M

    2000-02-01

    Numerous studies have reported that glucose administration enhances memory processes in both elderly and young adult subjects. Although these studies have utilized a variety of procedures and paradigms, investigations of both young and elderly subjects have typically used verbal tasks (word list recall, paragraph recall, etc.). In the present study, the effect of glucose consumption on a nonverbal, facial recognition task in young adults was examined. Lemonade sweetened with either glucose (50 g) or saccharin (23.7 mg) was consumed by college students (mean age of 21.1 years) 15 min prior to a facial recognition task. The task consisted of a familiarization phase in which subjects were presented with "target" faces, followed immediately by a recognition phase in which subjects had to identify the targets among a random array of familiar target and novel "distractor" faces. Statistical analysis indicated that there were no differences on hit rate (target identification) for subjects who consumed either saccharin or glucose prior to the test. However, further analyses revealed that subjects who consumed glucose committed significantly fewer false alarms and had (marginally) higher d-prime scores (a signal detection measure) compared to subjects who consumed saccharin prior to the test. These results parallel a previous report demonstrating glucose enhancement of a facial recognition task in probable Alzheimer's patients; however, this is believed to be the first demonstration of glucose enhancement for a facial recognition task in healthy, young adults.

  12. A fusion approach for coarse-to-fine target recognition

    NASA Astrophysics Data System (ADS)

    Folkesson, Martin; Grönwall, Christina; Jungert, Erland

    2006-04-01

    A fusion approach in a query based information system is presented. The system is designed for querying multimedia data bases, and here applied to target recognition using heterogeneous data sources. The recognition process is coarse-to-fine, with an initial attribute estimation step and a following matching step. Several sensor types and algorithms are involved in each of these two steps. An independence of the matching results, on the origin of the estimation results, is observed. It allows for distribution of data between algorithms in an intermediate fusion step, without risk of data incest. This increases the overall chance of recognising the target. An implementation of the system is described.

  13. Individual differences in forced-choice recognition memory: Partitioning contributions of recollection and familiarity

    PubMed Central

    Migo, Ellen M.; Quamme, Joel R.; Holmes, Selina; Bendell, Andrew; Norman, Kenneth A.; Mayes, Andrew R.; Montaldi, Daniela

    2014-01-01

    In forced-choice recognition memory, two different testing formats are possible under conditions of high target-foil similarity: each target can be presented alongside foils similar to itself (forced-choice corresponding; FCC), or alongside foils similar to other targets (forced-choice non-corresponding; FCNC).Recent behavioural and neuropsychological studies suggest that FCC performance can be supported by familiarity whereas FCNC performance is supported primarily by recollection. In this paper, we corroborate this finding from an individual differences perspective. A group of older adults were given a test of FCC and FCNC recognition for object pictures, as well as standardised tests of recall, recognition and IQ. Recall measures were found to predict FCNC, but not FCC performance, consistent with a critical role for recollection in FCNC only. After the common influence of recall was removed, standardised tests of recognition predicted FCC, but not FCNC performance. This is consistent with a contribution of only familiarity in FCC. Simulations show that a two process model, where familiarity and recollection make separate contributions to recognition, is ten times more likely to give these results than a single-process model. This evidence highlights the importance of recognition memory test design when examining the involvement of recollection and familiarity. PMID:24796268

  14. Hierarchical Context Modeling for Video Event Recognition.

    PubMed

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  15. Multivariate fMRI and Eye Tracking Reveal Differential Effects of Visual Interference on Recognition Memory Judgments for Objects and Scenes.

    PubMed

    O'Neil, Edward B; Watson, Hilary C; Dhillon, Sonya; Lobaugh, Nancy J; Lee, Andy C H

    2015-09-01

    Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference.

  16. Research on multi-source image fusion technology in haze environment

    NASA Astrophysics Data System (ADS)

    Ma, GuoDong; Piao, Yan; Li, Bing

    2017-11-01

    In the haze environment, the visible image collected by a single sensor can express the details of the shape, color and texture of the target very well, but because of the haze, the sharpness is low and some of the target subjects are lost; Because of the expression of thermal radiation and strong penetration ability, infrared image collected by a single sensor can clearly express the target subject, but it will lose detail information. Therefore, the multi-source image fusion method is proposed to exploit their respective advantages. Firstly, the improved Dark Channel Prior algorithm is used to preprocess the visible haze image. Secondly, the improved SURF algorithm is used to register the infrared image and the haze-free visible image. Finally, the weighted fusion algorithm based on information complementary is used to fuse the image. Experiments show that the proposed method can improve the clarity of the visible target and highlight the occluded infrared target for target recognition.

  17. Target-context unitization effect on the familiarity-related FN400: a face recognition exclusion task.

    PubMed

    Guillaume, Fabrice; Etienne, Yann

    2015-03-01

    Using two exclusion tasks, the present study examined how the ERP correlates of face recognition are affected by the nature of the information to be retrieved. Intrinsic (facial expression) and extrinsic (background scene) visual information were paired with face identity and constituted the exclusion criterion at test time. Although perceptual information had to be taken into account in both situations, the FN400 old-new effect was observed only for old target faces on the expression-exclusion task, whereas it was found for both old target and old non-target faces in the background-exclusion situation. These results reveal that the FN400, which is generally interpreted as a correlate of familiarity, was modulated by the retrieval of intra-item and intrinsic face information, but not by the retrieval of extrinsic information. The observed effects on the FN400 depended on the nature of the information to be retrieved and its relationship (unitization) to the recognition target. On the other hand, the parietal old-new effect (generally described as an ERP correlate of recollection) reflected the retrieval of both types of contextual features equivalently. The current findings are discussed in relation to recent controversies about the nature of the recognition processes reflected by the ERP correlates of face recognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition

    PubMed Central

    Chai, Xin; Wang, Qisong; Zhao, Yongping; Li, Yongqiang; Liu, Dan; Liu, Xin; Bai, Ou

    2017-01-01

    Electroencephalography (EEG)-based emotion recognition is an important element in psychiatric health diagnosis for patients. However, the underlying EEG sensor signals are always non-stationary if they are sampled from different experimental sessions or subjects. This results in the deterioration of the classification performance. Domain adaptation methods offer an effective way to reduce the discrepancy of marginal distribution. However, for EEG sensor signals, both marginal and conditional distributions may be mismatched. In addition, the existing domain adaptation strategies always require a high level of additional computation. To address this problem, a novel strategy named adaptive subspace feature matching (ASFM) is proposed in this paper in order to integrate both the marginal and conditional distributions within a unified framework (without any labeled samples from target subjects). Specifically, we develop a linear transformation function which matches the marginal distributions of the source and target subspaces without a regularization term. This significantly decreases the time complexity of our domain adaptation procedure. As a result, both marginal and conditional distribution discrepancies between the source domain and unlabeled target domain can be reduced, and logistic regression (LR) can be applied to the new source domain in order to train a classifier for use in the target domain, since the aligned source domain follows a distribution which is similar to that of the target domain. We compare our ASFM method with six typical approaches using a public EEG dataset with three affective states: positive, neutral, and negative. Both offline and online evaluations were performed. The subject-to-subject offline experimental results demonstrate that our component achieves a mean accuracy and standard deviation of 80.46% and 6.84%, respectively, as compared with a state-of-the-art method, the subspace alignment auto-encoder (SAAE), which achieves values of 77.88% and 7.33% on average, respectively. For the online analysis, the average classification accuracy and standard deviation of ASFM in the subject-to-subject evaluation for all the 15 subjects in a dataset was 75.11% and 7.65%, respectively, gaining a significant performance improvement compared to the best baseline LR which achieves 56.38% and 7.48%, respectively. The experimental results confirm the effectiveness of the proposed method relative to state-of-the-art methods. Moreover, computational efficiency of the proposed ASFM method is much better than standard domain adaptation; if the numbers of training samples and test samples are controlled within certain range, it is suitable for real-time classification. It can be concluded that ASFM is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the field of EEG-based emotion recognition. PMID:28467371

  19. A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition.

    PubMed

    Chai, Xin; Wang, Qisong; Zhao, Yongping; Li, Yongqiang; Liu, Dan; Liu, Xin; Bai, Ou

    2017-05-03

    Electroencephalography (EEG)-based emotion recognition is an important element in psychiatric health diagnosis for patients. However, the underlying EEG sensor signals are always non-stationary if they are sampled from different experimental sessions or subjects. This results in the deterioration of the classification performance. Domain adaptation methods offer an effective way to reduce the discrepancy of marginal distribution. However, for EEG sensor signals, both marginal and conditional distributions may be mismatched. In addition, the existing domain adaptation strategies always require a high level of additional computation. To address this problem, a novel strategy named adaptive subspace feature matching (ASFM) is proposed in this paper in order to integrate both the marginal and conditional distributions within a unified framework (without any labeled samples from target subjects). Specifically, we develop a linear transformation function which matches the marginal distributions of the source and target subspaces without a regularization term. This significantly decreases the time complexity of our domain adaptation procedure. As a result, both marginal and conditional distribution discrepancies between the source domain and unlabeled target domain can be reduced, and logistic regression (LR) can be applied to the new source domain in order to train a classifier for use in the target domain, since the aligned source domain follows a distribution which is similar to that of the target domain. We compare our ASFM method with six typical approaches using a public EEG dataset with three affective states: positive, neutral, and negative. Both offline and online evaluations were performed. The subject-to-subject offline experimental results demonstrate that our component achieves a mean accuracy and standard deviation of 80.46% and 6.84%, respectively, as compared with a state-of-the-art method, the subspace alignment auto-encoder (SAAE), which achieves values of 77.88% and 7.33% on average, respectively. For the online analysis, the average classification accuracy and standard deviation of ASFM in the subject-to-subject evaluation for all the 15 subjects in a dataset was 75.11% and 7.65%, respectively, gaining a significant performance improvement compared to the best baseline LR which achieves 56.38% and 7.48%, respectively. The experimental results confirm the effectiveness of the proposed method relative to state-of-the-art methods. Moreover, computational efficiency of the proposed ASFM method is much better than standard domain adaptation; if the numbers of training samples and test samples are controlled within certain range, it is suitable for real-time classification. It can be concluded that ASFM is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the field of EEG-based emotion recognition.

  20. Tracking and recognition of multiple human targets moving in a wireless pyroelectric infrared sensor network.

    PubMed

    Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na

    2014-04-22

    With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  1. Phage-mediated Delivery of Targeted sRNA Constructs to Knock Down Gene Expression in E. coli.

    PubMed

    Bernheim, Aude G; Libis, Vincent K; Lindner, Ariel B; Wintermute, Edwin H

    2016-03-20

    RNA-mediated knockdowns are widely used to control gene expression. This versatile family of techniques makes use of short RNA (sRNA) that can be synthesized with any sequence and designed to complement any gene targeted for silencing. Because sRNA constructs can be introduced to many cell types directly or using a variety of vectors, gene expression can be repressed in living cells without laborious genetic modification. The most common RNA knockdown technology, RNA interference (RNAi), makes use of the endogenous RNA-induced silencing complex (RISC) to mediate sequence recognition and cleavage of the target mRNA. Applications of this technique are therefore limited to RISC-expressing organisms, primarily eukaryotes. Recently, a new generation of RNA biotechnologists have developed alternative mechanisms for controlling gene expression through RNA, and so made possible RNA-mediated gene knockdowns in bacteria. Here we describe a method for silencing gene expression in E. coli that functionally resembles RNAi. In this system a synthetic phagemid is designed to express sRNA, which may designed to target any sequence. The expression construct is delivered to a population of E. coli cells with non-lytic M13 phage, after which it is able to stably replicate as a plasmid. Antisense recognition and silencing of the target mRNA is mediated by the Hfq protein, endogenous to E. coli. This protocol includes methods for designing the antisense sRNA, constructing the phagemid vector, packaging the phagemid into M13 bacteriophage, preparing a live cell population for infection, and performing the infection itself. The fluorescent protein mKate2 and the antibiotic resistance gene chloramphenicol acetyltransferase (CAT) are targeted to generate representative data and to quantify knockdown effectiveness.

  2. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches.

    PubMed

    Jiang, Hanlun; Zhu, Lizhe; Héliou, Amélie; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2017-01-01

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  3. Modeling side-chains using molecular dynamics improve recognition of binding region in CAPRI targets.

    PubMed

    Camacho, Carlos J

    2005-08-01

    The CAPRI-II experiment added an extra level of complexity to the problem of predicting protein-protein interactions by including 5 targets for which participants had to build or complete the 3-dimensional (3D) structure of either the receptor or ligand based on the structure of a close homolog. In this article, we describe how modeling key side-chains using molecular dynamics (MD) in explicit solvent improved the recognition of the binding region of a free energy- based computational docking method. In particular, we show that MD is able to predict with relatively high accuracy the rotamer conformation of the anchor side-chains important for molecular recognition as suggested by Rajamani et al. (Proc Natl Acad Sci USA 2004;101:11287-11292). As expected, the conformations are some of the most common rotamers for the given residue, while latch side-chains that undergo induced fit upon binding are forced into less common conformations. Using these models as starting conformations in conjunction with the rigid-body docking server ClusPro and the flexible docking algorithm SmoothDock, we produced valuable predictions for 6 of the 9 targets in CAPRI-II, missing only the 3 targets that underwent significant structural rearrangements upon binding. We also show that our free energy- based scoring function, consisting of the sum of van der Waals, Coulombic electrostatic with a distance-dependent dielectric, and desolvation free energy successfully discriminates the nativelike conformation of our submitted predictions. The latter emphasizes the critical role that thermodynamics plays on our methodology, and validates the generality of the algorithm to predict protein interactions.

  4. Enzyme-Encapsulated Liposome-Linked Immunosorbent Assay Enabling Sensitive Personal Glucose Meter Readout for Portable Detection of Disease Biomarkers.

    PubMed

    Lin, Bingqian; Liu, Dan; Yan, Jinmao; Qiao, Zhi; Zhong, Yunxin; Yan, Jiawei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong James

    2016-03-23

    There is considerable demand for sensitive, selective, and portable detection of disease-associated proteins, particularly in clinical practice and diagnostic applications. Portable devices are highly desired for detection of disease biomarkers in daily life due to the advantages of being simple, rapid, user-friendly, and low-cost. Herein we report an enzyme-encapsulated liposome-linked immunosorbent assay for sensitive detection of proteins using personal glucose meters (PGM) for portable quantitative readout. Liposomes encapsulating a large amount of amyloglucosidase or invertase are surface-coated with recognition elements such as aptamers or antibodies for target recognition. By translating molecular recognition signal into a large amount of glucose with the encapsulated enzyme, disease biomarkers such as thrombin or C-reactive protein (CRP) can be quantitatively detected by a PGM with a high detection limit of 1.8 or 0.30 nM, respectively. With the advantages of portability, ease of use, and low-cost, the method reported here has potential for portable and quantitative detection of various targets for different POC testing scenarios, such as rapid diagnosis in clinic offices, health monitoring at the bedside, and chemical/biochemical safety control in the field.

  5. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems.

    PubMed

    Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Badshah, Shaikh Atik; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2015-10-09

    Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  6. Toward a General Approach for RNA-Templated Hierarchical Assembly of Split-Proteins

    PubMed Central

    Furman, Jennifer L.; Badran, Ahmed H.; Ajulo, Oluyomi; Porter, Jason R.; Stains, Cliff I.; Segal, David J.; Ghosh, Indraneel

    2010-01-01

    The ability to conditionally turn on a signal or induce a function in the presence of a user-defined RNA target has potential applications in medicine and synthetic biology. Although sequence-specific pumilio repeat proteins can target a limited set of ssRNA sequences, there are no general methods for targeting ssRNA with designed proteins. As a first step toward RNA recognition, we utilized the RNA binding domain of argonaute, implicated in RNA interference, for specifically targeting generic 2-nucleotide, 3' overhangs of any dsRNA. We tested the reassembly of a split-luciferase enzyme guided by argonaute-mediated recognition of newly generated nucleotide overhangs when ssRNA is targeted by a designed complementary guide sequence. This approach was successful when argonaute was utilized in conjunction with a pumilio repeat and expanded the scope of potential ssRNA targets. However, targeting any desired ssRNA remained elusive as two argonaute domains provided minimal reassembled split-luciferase. We next designed and tested a second hierarchical assembly, wherein ssDNA guides are appended to DNA hairpins that serve as a scaffold for high affinity zinc fingers attached to split-luciferase. In the presence of a ssRNA target containing adjacent sequences complementary to the guides, the hairpins are brought into proximity, allowing for zinc finger binding and concomitant reassembly of the fragmented luciferase. The scope of this new approach was validated by specifically targeting RNA encoding VEGF, hDM2, and HER2. These approaches provide potentially general design paradigms for the conditional reassembly of fragmented proteins in the presence of any desired ssRNA target. PMID:20681585

  7. Sparse and redundant representations for inverse problems and recognition

    NASA Astrophysics Data System (ADS)

    Patel, Vishal M.

    Sparse and redundant representation of data enables the description of signals as linear combinations of a few atoms from a dictionary. In this dissertation, we study applications of sparse and redundant representations in inverse problems and object recognition. Furthermore, we propose two novel imaging modalities based on the recently introduced theory of Compressed Sensing (CS). This dissertation consists of four major parts. In the first part of the dissertation, we study a new type of deconvolution algorithm that is based on estimating the image from a shearlet decomposition. Shearlets provide a multi-directional and multi-scale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. We develop a deconvolution algorithm that allows for the approximation inversion operator to be controlled on a multi-scale and multi-directional basis. Furthermore, we develop a method for the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation method. In the second part of the dissertation, we study a reconstruction method that recovers highly undersampled images assumed to have a sparse representation in a gradient domain by using partial measurement samples that are collected in the Fourier domain. Our method makes use of a robust generalized Poisson solver that greatly aids in achieving a significantly improved performance over similar proposed methods. We will demonstrate by experiments that this new technique is more flexible to work with either random or restricted sampling scenarios better than its competitors. In the third part of the dissertation, we introduce a novel Synthetic Aperture Radar (SAR) imaging modality which can provide a high resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and/or received electromagnetic waveforms. We demonstrate that this new imaging scheme, requires no new hardware components and allows the aperture to be compressed. Also, it presents many new applications and advantages which include strong resistance to countermesasures and interception, imaging much wider swaths and reduced on-board storage requirements. The last part of the dissertation deals with object recognition based on learning dictionaries for simultaneous sparse signal approximations and feature extraction. A dictionary is learned for each object class based on given training examples which minimize the representation error with a sparseness constraint. A novel test image is then projected onto the span of the atoms in each learned dictionary. The residual vectors along with the coefficients are then used for recognition. Applications to illumination robust face recognition and automatic target recognition are presented.

  8. Lexical Competition in Non-Native Spoken-Word Recognition

    ERIC Educational Resources Information Center

    Weber, Andrea; Cutler, Anne

    2004-01-01

    Four eye-tracking experiments examined lexical competition in non-native spoken-word recognition. Dutch listeners hearing English fixated longer on distractor pictures with names containing vowels that Dutch listeners are likely to confuse with vowels in a target picture name ("pencil," given target "panda") than on less confusable distractors…

  9. Assessing the performance of a covert automatic target recognition algorithm

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.; Lanterman, Aaron D.

    2005-05-01

    Passive radar systems exploit illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. Doing so allows them to operate covertly and inexpensively. Our research seeks to enhance passive radar systems by adding automatic target recognition (ATR) capabilities. In previous papers we proposed conducting ATR by comparing the radar cross section (RCS) of aircraft detected by a passive radar system to the precomputed RCS of aircraft in the target class. To effectively model the low-frequency setting, the comparison is made via a Rician likelihood model. Monte Carlo simulations indicate that the approach is viable. This paper builds on that work by developing a method for quickly assessing the potential performance of the ATR algorithm without using exhaustive Monte Carlo trials. This method exploits the relation between the probability of error in a binary hypothesis test under the Bayesian framework to the Chernoff information. Since the data are well-modeled as Rician, we begin by deriving a closed-form approximation for the Chernoff information between two Rician densities. This leads to an approximation for the probability of error in the classification algorithm that is a function of the number of available measurements. We conclude with an application that would be particularly cumbersome to accomplish via Monte Carlo trials, but that can be quickly addressed using the Chernoff information approach. This application evaluates the length of time that an aircraft must be tracked before the probability of error in the ATR algorithm drops below a desired threshold.

  10. An Evaluation and Comparison of Several Measures of Image Quality for Television Displays

    DTIC Science & Technology

    1979-01-01

    vehicles, buildings, or faces , or they may be artificial much as trn-bar patterns, rectangles, or sine waves. The typical objective image quality assessment...Snyder (1974b) wac able to obtain very good correlations with reaction time and correct responses for a face recognition task. Display quality was varied...recognition versus log JUDA for the target recognition study of Chapter 4, 5) graph of angle oubtended by target at recognitio , versus log JNDA for the

  11. Parietal lobe critically supports successful paired immediate and single-item delayed memory for targets.

    PubMed

    Krumm, Sabine; Kivisaari, Sasa L; Monsch, Andreas U; Reinhardt, Julia; Ulmer, Stephan; Stippich, Christoph; Kressig, Reto W; Taylor, Kirsten I

    2017-05-01

    The parietal lobe is important for successful recognition memory, but its role is not yet fully understood. We investigated the parietal lobes' contribution to immediate paired-associate memory and delayed item-recognition memory separately for hits (targets) and correct rejections (distractors). We compared the behavioral performance of 56 patients with known parietal and medial temporal lobe dysfunction (i.e. early Alzheimer's Disease) to 56 healthy control participants in an immediate paired and delayed single item object memory task. Additionally, we performed voxel-based morphometry analyses to investigate the functional-neuroanatomic relationships between performance and voxel-based estimates of atrophy in whole-brain analyses. Behaviorally, all participants performed better identifying targets than rejecting distractors. The voxel-based morphometry analyses associated atrophy in the right ventral parietal cortex with fewer correct responses to familiar items (i.e. hits) in the immediate and delayed conditions. Additionally, medial temporal lobe integrity correlated with better performance in rejecting distractors, but not in identifying targets, in the immediate paired-associate task. Our findings suggest that the parietal lobe critically supports successful immediate and delayed target recognition memory, and that the ventral aspect of the parietal cortex and the medial temporal lobe may have complementary preferences for identifying targets and rejecting distractors, respectively, during recognition memory. Copyright © 2017. Published by Elsevier Inc.

  12. Exploring the sequence-structure protein landscape in the glycosyltransferase family

    PubMed Central

    Zhang, Ziding; Kochhar, Sunil; Grigorov, Martin

    2003-01-01

    To understand the molecular basis of glycosyltransferases’ (GTFs) catalytic mechanism, extensive structural information is required. Here, fold recognition methods were employed to assign 3D protein shapes (folds) to the currently known GTF sequences, available in public databases such as GenBank and Swissprot. First, GTF sequences were retrieved and classified into clusters, based on sequence similarity only. Intracluster sequence similarity was chosen sufficiently high to ensure that the same fold is found within a given cluster. Then, a representative sequence from each cluster was selected to compose a subset of GTF sequences. The members of this reduced set were processed by three different fold recognition methods: 3D-PSSM, FUGUE, and GeneFold. Finally, the results from different fold recognition methods were analyzed and compared to sequence-similarity search methods (i.e., BLAST and PSI-BLAST). It was established that the folds of about 70% of all currently known GTF sequences can be confidently assigned by fold recognition methods, a value which is higher than the fold identification rate based on sequence comparison alone (48% for BLAST and 64% for PSI-BLAST). The identified folds were submitted to 3D clustering, and we found that most of the GTF sequences adopt the typical GTF A or GTF B folds. Our results indicate a lack of evidence that new GTF folds (i.e., folds other than GTF A and B) exist. Based on cases where fold identification was not possible, we suggest several sequences as the most promising targets for a structural genomics initiative focused on the GTF protein family. PMID:14500887

  13. Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement

    PubMed Central

    Guo, Shuxiang; Pang, Muye; Gao, Baofeng; Hirata, Hideyuki; Ishihara, Hidenori

    2015-01-01

    The surface electromyography (sEMG) technique is proposed for muscle activation detection and intuitive control of prostheses or robot arms. Motion recognition is widely used to map sEMG signals to the target motions. One of the main factors preventing the implementation of this kind of method for real-time applications is the unsatisfactory motion recognition rate and time consumption. The purpose of this paper is to compare eight combinations of four feature extraction methods (Root Mean Square (RMS), Detrended Fluctuation Analysis (DFA), Weight Peaks (WP), and Muscular Model (MM)) and two classifiers (Neural Networks (NN) and Support Vector Machine (SVM)), for the task of mapping sEMG signals to eight upper-limb motions, to find out the relation between these methods and propose a proper combination to solve this issue. Seven subjects participated in the experiment and six muscles of the upper-limb were selected to record sEMG signals. The experimental results showed that NN classifier obtained the highest recognition accuracy rate (88.7%) during the training process while SVM performed better in real-time experiments (85.9%). For time consumption, SVM took less time than NN during the training process but needed more time for real-time computation. Among the four feature extraction methods, WP had the highest recognition rate for the training process (97.7%) while MM performed the best during real-time tests (94.3%). The combination of MM and NN is recommended for strict real-time applications while a combination of MM and SVM will be more suitable when time consumption is not a key requirement. PMID:25894941

  14. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference

    PubMed Central

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-01-01

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation. PMID:28468257

  15. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.

    PubMed

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-04-29

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.

  16. Unification of automatic target tracking and automatic target recognition

    NASA Astrophysics Data System (ADS)

    Schachter, Bruce J.

    2014-06-01

    The subject being addressed is how an automatic target tracker (ATT) and an automatic target recognizer (ATR) can be fused together so tightly and so well that their distinctiveness becomes lost in the merger. This has historically not been the case outside of biology and a few academic papers. The biological model of ATT∪ATR arises from dynamic patterns of activity distributed across many neural circuits and structures (including retina). The information that the brain receives from the eyes is "old news" at the time that it receives it. The eyes and brain forecast a tracked object's future position, rather than relying on received retinal position. Anticipation of the next moment - building up a consistent perception - is accomplished under difficult conditions: motion (eyes, head, body, scene background, target) and processing limitations (neural noise, delays, eye jitter, distractions). Not only does the human vision system surmount these problems, but it has innate mechanisms to exploit motion in support of target detection and classification. Biological vision doesn't normally operate on snapshots. Feature extraction, detection and recognition are spatiotemporal. When vision is viewed as a spatiotemporal process, target detection, recognition, tracking, event detection and activity recognition, do not seem as distinct as they are in current ATT and ATR designs. They appear as similar mechanism taking place at varying time scales. A framework is provided for unifying ATT and ATR.

  17. Non-Enzymatic Detection of Bacterial Genomic DNA Using the Bio-Barcode Assay

    PubMed Central

    Hill, Haley D.; Vega, Rafael A.; Mirkin, Chad A.

    2011-01-01

    The detection of bacterial genomic DNA through a non-enzymatic nanomaterials based amplification method, the bio-barcode assay, is reported. The assay utilizes oligonucleotide functionalized magnetic microparticles to capture the target of interest from the sample. A critical step in the new assay involves the use of blocking oligonucleotides during heat denaturation of the double stranded DNA. These blockers bind to specific regions of the target DNA upon cooling, and prevent the duplex DNA from re-hybridizing, which allows the particle probes to bind. Following target isolation using the magnetic particles, oligonucleotide functionalized gold nanoparticles act as target recognition agents. The oligonucleotides on the nanoparticle (barcodes) act as amplification surrogates. The barcodes are then detected using the Scanometric method. The limit of detection for this assay was determined to be 2.5 femtomolar, and this is the first demonstration of a barcode type assay for the detection of double stranded, genomic DNA. PMID:17927207

  18. Integrating visual learning within a model-based ATR system

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark; Nebrich, Mark

    2017-05-01

    Automatic target recognition (ATR) systems, like human photo-interpreters, rely on a variety of visual information for detecting, classifying, and identifying manmade objects in aerial imagery. We describe the integration of a visual learning component into the Image Data Conditioner (IDC) for target/clutter and other visual classification tasks. The component is based on an implementation of a model of the visual cortex developed by Serre, Wolf, and Poggio. Visual learning in an ATR context requires the ability to recognize objects independent of location, scale, and rotation. Our method uses IDC to extract, rotate, and scale image chips at candidate target locations. A bootstrap learning method effectively extends the operation of the classifier beyond the training set and provides a measure of confidence. We show how the classifier can be used to learn other features that are difficult to compute from imagery such as target direction, and to assess the performance of the visual learning process itself.

  19. The role of semantically related distractors during encoding and retrieval of words in long-term memory.

    PubMed

    Meade, Melissa E; Fernandes, Myra A

    2016-07-01

    We examined the influence of divided attention (DA) on recognition of words when the concurrent task was semantically related or unrelated to the to-be-recognised target words. Participants were asked to either study or retrieve a target list of semantically related words while simultaneously making semantic decisions (i.e., size judgements) to another set of related or unrelated words heard concurrently. We manipulated semantic relatedness of distractor to target words, and whether DA occurred during the encoding or retrieval phase of memory. Recognition accuracy was significantly diminished relative to full attention, following DA conditions at encoding, regardless of relatedness of distractors to study words. However, response times (RTs) were slower with related compared to unrelated distractors. Similarly, under DA at retrieval, recognition RTs were slower when distractors were semantically related than unrelated to target words. Unlike the effect from DA at encoding, recognition accuracy was worse under DA at retrieval when the distractors were related compared to unrelated to the target words. Results suggest that availability of general attentional resources is critical for successful encoding, whereas successful retrieval is particularly reliant on access to a semantic code, making it sensitive to related distractors under DA conditions.

  20. The Last Meter: Blind Visual Guidance to a Target.

    PubMed

    Manduchi, Roberto; Coughlan, James M

    2014-01-01

    Smartphone apps can use object recognition software to provide information to blind or low vision users about objects in the visual environment. A crucial challenge for these users is aiming the camera properly to take a well-framed picture of the desired target object. We investigate the effects of two fundamental constraints of object recognition - frame rate and camera field of view - on a blind person's ability to use an object recognition smartphone app. The app was used by 18 blind participants to find visual targets beyond arm's reach and approach them to within 30 cm. While we expected that a faster frame rate or wider camera field of view should always improve search performance, our experimental results show that in many cases increasing the field of view does not help, and may even hurt, performance. These results have important implications for the design of object recognition systems for blind users.

  1. Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot

    PubMed Central

    Taniguchi, Tadahiro; Yoshino, Ryo; Takano, Toshiaki

    2018-01-01

    In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an active perception for MHDP method that uses the information gain (IG) maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback–Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive a Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The numerical experiment using the synthetic data shows that the proposed method can work appropriately even when the number of actions is large and a set of target objects involves objects categorized into multiple classes. The results support our theoretical outcomes. PMID:29872389

  2. Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot.

    PubMed

    Taniguchi, Tadahiro; Yoshino, Ryo; Takano, Toshiaki

    2018-01-01

    In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an active perception for MHDP method that uses the information gain (IG) maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback-Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive a Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The numerical experiment using the synthetic data shows that the proposed method can work appropriately even when the number of actions is large and a set of target objects involves objects categorized into multiple classes. The results support our theoretical outcomes.

  3. Improving Negative Emotion Recognition in Young Offenders Reduces Subsequent Crime

    PubMed Central

    Hubble, Kelly; Bowen, Katharine L.; Moore, Simon C.; van Goozen, Stephanie H. M.

    2015-01-01

    Background Children with antisocial behaviour show deficits in the perception of emotional expressions in others that may contribute to the development and persistence of antisocial and aggressive behaviour. Current treatments for antisocial youngsters are limited in effectiveness. It has been argued that more attention should be devoted to interventions that target neuropsychological correlates of antisocial behaviour. This study examined the effect of emotion recognition training on criminal behaviour. Methods Emotion recognition and crime levels were studied in 50 juvenile offenders. Whilst all young offenders received their statutory interventions as the study was conducted, a subgroup of twenty-four offenders also took part in a facial affect training aimed at improving emotion recognition. Offenders in the training and control groups were matched for age, SES, IQ and lifetime crime level. All offenders were tested twice for emotion recognition performance, and recent crime data were collected after the testing had been completed. Results Before the training there were no differences between the groups in emotion recognition, with both groups displaying poor fear, sadness and anger recognition. After the training fear, sadness and anger recognition improved significantly in juvenile offenders in the training group. Although crime rates dropped in all offenders in the 6 months following emotion testing, only the group of offenders who had received the emotion training showed a significant reduction in the severity of the crimes they committed. Conclusions The study indicates that emotion recognition can be relatively easily improved in youths who engage in serious antisocial and criminal behavior. The results suggest that improved emotion recognition has the potential to reduce the severity of reoffending. PMID:26121148

  4. Establishment of A431 cell membrane chromatography-RPLC method for screening target components from Radix Caulophylli.

    PubMed

    Hou, Xiaofang; Wang, Sicen; Hou, Jingjing; He, Langchong

    2011-03-01

    We describe here an analytical method of A431 cell membrane chromatography (A431/CMC) (CMC, cell membrane chromatography) combined with RPLC for recognition, separation, and identification of target components from traditional Chinese medicines (TCMs) Radix Caulophylli. The A431 cells with high expressed epidermal growth factor receptor (EGFR) were used to prepare the stationary phase in the CMC model. Retention fractions on the A431-CMC model were collected using an automated fraction collection and injection module (FC/I). Each fraction was analyzed by RPLC under the optimized conditions. Gefitinib and erlotinib were used as standard compounds to investigate the suitability and reliability of the A431 cell membrane chromatography-RPLC method prior to screening target component from Radix Caulophylli total alkaloids. The results indicated that caulophine and taspine were the target component acting on the epidermal growth factor receptor. This method could be an efficient way in drug discovery using natural medicinal herbs as a source of novel compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Infrared target simulation environment for pattern recognition applications

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas E.; George, Nicholas

    1994-07-01

    The generation of complete databases of IR data is extremely useful for training human observers and testing automatic pattern recognition algorithms. Field data may be used for realism, but require expensive and time-consuming procedures. IR scene simulation methods have emerged as a more economical and efficient alternative for the generation of IR databases. A novel approach to IR target simulation is presented in this paper. Model vehicles at 1:24 scale are used for the simulation of real targets. The temperature profile of the model vehicles is controlled using resistive circuits which are embedded inside the models. The IR target is recorded using an Inframetrics dual channel IR camera system. Using computer processing we place the recorded IR target in a prerecorded background. The advantages of this approach are: (1) the range and 3D target aspect can be controlled by the relative position between the camera and model vehicle; (2) the temperature profile can be controlled by adjusting the power delivered to the resistive circuit; (3) the IR sensor effects are directly incorporated in the recording process, because the real sensor is used; (4) the recorded target can embedded in various types of backgrounds recorded under different weather conditions, times of day etc. The effectiveness of this approach is demonstrated by generating an IR database of three vehicles which is used to train a back propagation neural network. The neural network is capable of classifying vehicle type, vehicle aspect, and relative temperature with a high degree of accuracy.

  6. Molecular Imprinting of Macromolecules for Sensor Applications

    PubMed Central

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-01-01

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting. PMID:28422082

  7. Molecular Imprinting of Macromolecules for Sensor Applications.

    PubMed

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-04-19

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.

  8. Young people's comparative recognition and recall of an Australian Government Sexual Health Campaign.

    PubMed

    Lim, Megan S C; Gold, Judy; Bowring, Anna L; Pedrana, Alisa E; Hellard, Margaret E

    2015-05-01

    In 2009, the Australian Government's National Sexually Transmitted Infection Prevention Program launched a multi-million dollar sexual health campaign targeting young people. We assessed campaign recognition among a community sample of young people. Individuals aged 16-29 years self-completed a questionnaire at a music festival. Participants were asked whether they recognised the campaign image and attempted to match the correct campaign message. Recognition of two concurrent campaigns, GlaxoSmithKline's The Facts genital herpes campaign (targeting young women) and the Drama Downunder campaign (targeting gay men) were assessed simultaneously. Among 471 participants, just 29% recognised the National Sexually Transmitted Infection Prevention Program campaign. This compared to 52% recognising The Facts and 27% recognising Drama Downunder. Of 134 who recognised the National Sexually Transmitted Infection Prevention Program campaign, 27% correctly recalled the campaign messages compared to 61% of those recognising the Facts campaign, and 25% of those recognising the Drama Downunder campaign. There was no difference in National Sexually Transmitted Infection Prevention Program campaign recognition by gender or age. Campaign recognition and message recall of the National Sexually Transmitted Infection Prevention Program campaign was comparatively low. Future mass media sexual health campaigns targeting young people can aim for higher recognition and recall rates than that achieved by the National Sexually Transmitted Infection Prevention Program campaign. Alternative distribution channels and message styles should be considered to increase these rates. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Social appraisal influences recognition of emotions.

    PubMed

    Mumenthaler, Christian; Sander, David

    2012-06-01

    The notion of social appraisal emphasizes the importance of a social dimension in appraisal theories of emotion by proposing that the way an individual appraises an event is influenced by the way other individuals appraise and feel about the same event. This study directly tested this proposal by asking participants to recognize dynamic facial expressions of emotion (fear, happiness, or anger in Experiment 1; fear, happiness, anger, or neutral in Experiment 2) in a target face presented at the center of a screen while a contextual face, which appeared simultaneously in the periphery of the screen, expressed an emotion (fear, happiness, anger) or not (neutral) and either looked at the target face or not. We manipulated gaze direction to be able to distinguish between a mere contextual effect (gaze away from both the target face and the participant) and a specific social appraisal effect (gaze toward the target face). Results of both experiments provided evidence for a social appraisal effect in emotion recognition, which differed from the mere effect of contextual information: Whereas facial expressions were identical in both conditions, the direction of the gaze of the contextual face influenced emotion recognition. Social appraisal facilitated the recognition of anger, happiness, and fear when the contextual face expressed the same emotion. This facilitation was stronger than the mere contextual effect. Social appraisal also allowed better recognition of fear when the contextual face expressed anger and better recognition of anger when the contextual face expressed fear. 2012 APA, all rights reserved

  10. A benefit of context reinstatement to recognition memory in aging: the role of familiarity processes.

    PubMed

    Ward, Emma V; Maylor, Elizabeth A; Poirier, Marie; Korko, Malgorzata; Ruud, Jens C M

    2017-11-01

    Reinstatement of encoding context facilitates memory for targets in young and older individuals (e.g., a word studied on a particular background scene is more likely to be remembered later if it is presented on the same rather than a different scene or no scene), yet older adults are typically inferior at recalling and recognizing target-context pairings. This study examined the mechanisms of the context effect in normal aging. Age differences in word recognition by context condition (original, switched, none, new), and the ability to explicitly remember target-context pairings were investigated using word-scene pairs (Experiment 1) and word-word pairs (Experiment 2). Both age groups benefited from context reinstatement in item recognition, although older adults were significantly worse than young adults at identifying original pairings and at discriminating between original and switched pairings. In Experiment 3, participants were given a three-alternative forced-choice recognition task that allowed older individuals to draw upon intact familiarity processes in selecting original pairings. Performance was age equivalent. Findings suggest that heightened familiarity associated with context reinstatement is useful for boosting recognition memory in aging.

  11. Diagnosing criterion-level effects on memory: what aspects of memory are enhanced by repeated retrieval?

    PubMed

    Vaughn, Kalif E; Rawson, Katherine A

    2011-09-01

    Previous research has shown that increasing the criterion level (i.e., the number of times an item must be correctly retrieved during practice) improves subsequent memory, but which specific components of memory does increased criterion level enhance? In two experiments, we examined the extent to which the criterion level affects associative memory, target memory, and cue memory. Participants studied Lithuanian-English word pairs via cued recall with restudy until items were correctly recalled one to five times. In Experiment 1, participants took one of four recall tests and one of three recognition tests after a 2-day delay. In Experiment 2, participants took only recognition tests after a 1-week delay. In both experiments, increasing the criterion level enhanced associative memory, as indicated by enhanced performance on forward and backward cued-recall tests and on tests of associative recognition. An increased criterion level also improved target memory, as indicated by enhanced free recall and recognition of targets, and improved cue memory, as indicated by enhanced free recall and recognition of cues.

  12. Effective evaluation of privacy protection techniques in visible and thermal imagery

    NASA Astrophysics Data System (ADS)

    Nawaz, Tahir; Berg, Amanda; Ferryman, James; Ahlberg, Jörgen; Felsberg, Michael

    2017-09-01

    Privacy protection may be defined as replacing the original content in an image region with a (less intrusive) content having modified target appearance information to make it less recognizable by applying a privacy protection technique. Indeed, the development of privacy protection techniques also needs to be complemented with an established objective evaluation method to facilitate their assessment and comparison. Generally, existing evaluation methods rely on the use of subjective judgments or assume a specific target type in image data and use target detection and recognition accuracies to assess privacy protection. An annotation-free evaluation method that is neither subjective nor assumes a specific target type is proposed. It assesses two key aspects of privacy protection: "protection" and "utility." Protection is quantified as an appearance similarity, and utility is measured as a structural similarity between original and privacy-protected image regions. We performed an extensive experimentation using six challenging datasets (having 12 video sequences), including a new dataset (having six sequences) that contains visible and thermal imagery. The new dataset is made available online for the community. We demonstrate effectiveness of the proposed method by evaluating six image-based privacy protection techniques and also show comparisons of the proposed method over existing methods.

  13. The Temporal Dynamics of Spoken Word Recognition in Adverse Listening Conditions

    ERIC Educational Resources Information Center

    Brouwer, Susanne; Bradlow, Ann R.

    2016-01-01

    This study examined the temporal dynamics of spoken word recognition in noise and background speech. In two visual-world experiments, English participants listened to target words while looking at four pictures on the screen: a target (e.g. "candle"), an onset competitor (e.g. "candy"), a rhyme competitor (e.g.…

  14. Morpho-Semantic Processing in Word Recognition: Evidence from Balanced and Biased Ambiguous Morphemes

    ERIC Educational Resources Information Center

    Tsang, Yiu-Kei; Chen, Hsuan-Chih

    2013-01-01

    The role of morphemic meaning in Chinese word recognition was examined with the masked and unmasked priming paradigms. Target words contained ambiguous morphemes biased toward the dominant or the subordinate meanings. Prime words either contained the same ambiguous morphemes in the subordinate interpretations or were unrelated to the targets. In…

  15. Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors

    PubMed Central

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena

    2013-01-01

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804

  16. Computational burden resulting from image recognition of high resolution radar sensors.

    PubMed

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena

    2013-04-22

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.

  17. Vander Lugt correlation of DNA sequence data

    NASA Astrophysics Data System (ADS)

    Christens-Barry, William A.; Hawk, James F.; Martin, James C.

    1990-12-01

    DNA, the molecule containing the genetic code of an organism, is a linear chain of subunits. It is the sequence of subunits, of which there are four kinds, that constitutes the unique blueprint of an individual. This sequence is the focus of a large number of analyses performed by an army of geneticists, biologists, and computer scientists. Most of these analyses entail searches for specific subsequences within the larger set of sequence data. Thus, most analyses are essentially pattern recognition or correlation tasks. Yet, there are special features to such analysis that influence the strategy and methods of an optical pattern recognition approach. While the serial processing employed in digital electronic computers remains the main engine of sequence analyses, there is no fundamental reason that more efficient parallel methods cannot be used. We describe an approach using optical pattern recognition (OPR) techniques based on matched spatial filtering. This allows parallel comparison of large blocks of sequence data. In this study we have simulated a Vander Lugt1 architecture implementing our approach. Searches for specific target sequence strings within a block of DNA sequence from the Co/El plasmid2 are performed.

  18. Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent.

    PubMed

    Fu, Najing; Li, Liteng; Liu, Xiao; Fu, Nian; Zhang, Chenchen; Hu, Liandong; Li, Donghao; Tang, Baokun; Zhu, Tao

    2017-12-29

    Typically, a target compound is selected as a template for a molecularly imprinted polymer (MIP); however, some target compounds are not suitable as templates because of their poor solubility. Using the tailoring properties of a deep eutectic solvent (DES), the insoluble target compound caffeic acid was transformed into a ternary choline chloride-caffeic acid-ethylene glycol (ChCl-CA-EG) DES, which was then employed as a template to prepare MIPs. The ternary DES-based MIPs were characterized by Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy, and atomic force microscopy. The effects of time, temperature, ionic strength, and pH on the recognition processes for four polyphenols (caffeic acid, protocatechuic acid, catechin, and epicatechin) by 13 ChCl-CA-EG ternary DES-based MIPs was investigated using high-performance liquid chromatography. The recognition specificity of the MIPs for CA was significantly better than that for the other polyphenols, and the MIPs exhibited obvious characteristics of chromatographic packing materials. In addition, the recognition processes mainly followed a second-order kinetics model and the Freundlich isotherm model, which together indicated that the MIPs mainly recognized the polyphenols by chemical interactions including ion exchange, electron exchange, and new bond formation. Furthermore, the specific recognition ability of the MIPs for polyphenols, which was better than those of C 18 , C 8 , or non-molecularly imprinted polymer adsorbents, was successfully applied to the recognition of polyphenols in a Radix asteris sample. The transformation of an insoluble target compound in a polymeric DES for MIP preparation and recognition is a novel and feasible strategy suitable for use in further MIP research developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Scene Analysis: Non-Linear Spatial Filtering for Automatic Target Detection.

    DTIC Science & Technology

    1982-12-01

    In this thesis, a method for two-dimensional pattern recognition was developed and tested. The method included a global search scheme for candidate...test global switch TYPEO Creating negative video file only.W 11=0 12=256 13=512 14=768 GO 70 2 1 TYPE" Creating negative and horizontally flipped video...purpose was to develop a base of image processing software for the AFIT Digital Signal Processing Laboratory NOVA- ECLIPSE minicomputer system, for

  20. Large-Scale Chemical Similarity Networks for Target Profiling of Compounds Identified in Cell-Based Chemical Screens

    PubMed Central

    Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z.

    2015-01-01

    Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/). PMID:25826798

  1. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    PubMed Central

    Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na

    2014-01-01

    With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%. PMID:24759117

  2. Laser range profiling for small target recognition

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Tulldahl, Michael

    2016-05-01

    The detection and classification of small surface and airborne targets at long ranges is a growing need for naval security. Long range ID or ID at closer range of small targets has its limitations in imaging due to the demand on very high transverse sensor resolution. It is therefore motivated to look for 1D laser techniques for target ID. These include vibrometry, and laser range profiling. Vibrometry can give good results but is also sensitive to certain vibrating parts on the target being in the field of view. Laser range profiling is attractive because the maximum range can be substantial, especially for a small laser beam width. A range profiler can also be used in a scanning mode to detect targets within a certain sector. The same laser can also be used for active imaging when the target comes closer and is angular resolved. The present paper will show both experimental and simulated results for laser range profiling of small boats out to 6-7 km range and a UAV mockup at close range (1.3 km). We obtained good results with the profiling system both for target detection and recognition. Comparison of experimental and simulated range waveforms based on CAD models of the target support the idea of having a profiling system as a first recognition sensor and thus narrowing the search space for the automatic target recognition based on imaging at close ranges. The naval experiments took place in the Baltic Sea with many other active and passive EO sensors beside the profiling system. Discussion of data fusion between laser profiling and imaging systems will be given. The UAV experiments were made from the rooftop laboratory at FOI.

  3. Object-oriented recognition of high-resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan

    2016-01-01

    With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .

  4. Benchmark data sets for structure-based computational target prediction.

    PubMed

    Schomburg, Karen T; Rarey, Matthias

    2014-08-25

    Structure-based computational target prediction methods identify potential targets for a bioactive compound. Methods based on protein-ligand docking so far face many challenges, where the greatest probably is the ranking of true targets in a large data set of protein structures. Currently, no standard data sets for evaluation exist, rendering comparison and demonstration of improvements of methods cumbersome. Therefore, we propose two data sets and evaluation strategies for a meaningful evaluation of new target prediction methods, i.e., a small data set consisting of three target classes for detailed proof-of-concept and selectivity studies and a large data set consisting of 7992 protein structures and 72 drug-like ligands allowing statistical evaluation with performance metrics on a drug-like chemical space. Both data sets are built from openly available resources, and any information needed to perform the described experiments is reported. We describe the composition of the data sets, the setup of screening experiments, and the evaluation strategy. Performance metrics capable to measure the early recognition of enrichments like AUC, BEDROC, and NSLR are proposed. We apply a sequence-based target prediction method to the large data set to analyze its content of nontrivial evaluation cases. The proposed data sets are used for method evaluation of our new inverse screening method iRAISE. The small data set reveals the method's capability and limitations to selectively distinguish between rather similar protein structures. The large data set simulates real target identification scenarios. iRAISE achieves in 55% excellent or good enrichment a median AUC of 0.67 and RMSDs below 2.0 Å for 74% and was able to predict the first true target in 59 out of 72 cases in the top 2% of the protein data set of about 8000 structures.

  5. Recognition of upper airway and surrounding structures at MRI in pediatric PCOS and OSAS

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, J. K.; Odhner, D.; Sin, Sanghun; Arens, Raanan

    2013-03-01

    Obstructive Sleep Apnea Syndrome (OSAS) is common in obese children with risk being 4.5 fold compared to normal control subjects. Polycystic Ovary Syndrome (PCOS) has recently been shown to be associated with OSAS that may further lead to significant cardiovascular and neuro-cognitive deficits. We are investigating image-based biomarkers to understand the architectural and dynamic changes in the upper airway and the surrounding hard and soft tissue structures via MRI in obese teenage children to study OSAS. At the previous SPIE conferences, we presented methods underlying Fuzzy Object Models (FOMs) for Automatic Anatomy Recognition (AAR) based on CT images of the thorax and the abdomen. The purpose of this paper is to demonstrate that the AAR approach is applicable to a different body region and image modality combination, namely in the study of upper airway structures via MRI. FOMs were built hierarchically, the smaller sub-objects forming the offspring of larger parent objects. FOMs encode the uncertainty and variability present in the form and relationships among the objects over a study population. Totally 11 basic objects (17 including composite) were modeled. Automatic recognition for the best pose of FOMs in a given image was implemented by using four methods - a one-shot method that does not require search, another three searching methods that include Fisher Linear Discriminate (FLD), a b-scale energy optimization strategy, and optimum threshold recognition method. In all, 30 multi-fold cross validation experiments based on 15 patient MRI data sets were carried out to assess the accuracy of recognition. The results indicate that the objects can be recognized with an average location error of less than 5 mm or 2-3 voxels. Then the iterative relative fuzzy connectedness (IRFC) algorithm was adopted for delineation of the target organs based on the recognized results. The delineation results showed an overall FP and TP volume fraction of 0.02 and 0.93.

  6. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method

    PubMed Central

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-01-01

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets. PMID:27801795

  7. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method.

    PubMed

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-10-27

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  8. Prediction of the thermal imaging minimum resolvable (circle) temperature difference with neural network application.

    PubMed

    Fang, Yi-Chin; Wu, Bo-Wen

    2008-12-01

    Thermal imaging is an important technology in both national defense and the private sector. An advantage of thermal imaging is its ability to be deployed while fully engaged in duties, not limited by weather or the brightness of indoor or outdoor conditions. However, in an outdoor environment, many factors, including atmospheric decay, target shape, great distance, fog, temperature out of range and diffraction limits can lead to bad image formation, which directly affects the accuracy of object recognition. The visual characteristics of the human eye mean that it has a much better capacity for picture recognition under normal conditions than artificial intelligence does. However, conditions of interference significantly reduce this capacity for picture recognition for instance, fatigue impairs human eyesight. Hence, psychological and physiological factors can affect the result when the human eye is adopted to measure MRTD (minimum resolvable temperature difference) and MRCTD (minimum resolvable circle temperature difference). This study explores thermal imaging recognition, and presents a method for effectively choosing the characteristic values and processing the images fully. Neural network technology is successfully applied to recognize thermal imaging and predict MRTD and MRCTD (Appendix A), exceeding thermal imaging recognition under fatigue and the limits of the human eye.

  9. Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices

    PubMed Central

    Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.

    2016-01-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975

  10. Synthesis of mouse centromere-targeted polyamides and physico-chemical studies of their interaction with the target double-stranded DNA.

    PubMed

    Nozeret, Karine; Bonan, Marc; Yarmoluk, Serguiy M; Novopashina, Darya S; Boutorine, Alexandre S

    2015-09-01

    Synthetic minor groove-binding pyrrole-imidazole polyamides labeled by fluorophores are promising candidates for fluorescence imaging of double-stranded DNA in isolated chromosomes or fixed and living cells. We synthesized nine hairpin and two head-to-head tandem polyamides targeting repeated sequences from mouse major satellites. Their interaction with synthetic target dsDNA has been studied by physico-chemical methods in vitro before and after coupling to various fluorophores. Great variability in affinities and fluorescence properties reveals a conclusion that these properties do not only rely on recognition rules, but also on other known and unknown structural factors. Individual testing of each probe is needed before cellular applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    PubMed Central

    Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Atik Badshah, Shaikh; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2015-01-01

    Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems. PMID:26473828

  12. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE PAGES

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; ...

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  13. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  14. Fractal analysis of seafloor textures for target detection in synthetic aperture sonar imagery

    NASA Astrophysics Data System (ADS)

    Nabelek, T.; Keller, J.; Galusha, A.; Zare, A.

    2018-04-01

    Fractal analysis of an image is a mathematical approach to generate surface related features from an image or image tile that can be applied to image segmentation and to object recognition. In undersea target countermeasures, the targets of interest can appear as anomalies in a variety of contexts, visually different textures on the seafloor. In this paper, we evaluate the use of fractal dimension as a primary feature and related characteristics as secondary features to be extracted from synthetic aperture sonar (SAS) imagery for the purpose of target detection. We develop three separate methods for computing fractal dimension. Tiles with targets are compared to others from the same background textures without targets. The different fractal dimension feature methods are tested with respect to how well they can be used to detect targets vs. false alarms within the same contexts. These features are evaluated for utility using a set of image tiles extracted from a SAS data set generated by the U.S. Navy in conjunction with the Office of Naval Research. We find that all three methods perform well in the classification task, with a fractional Brownian motion model performing the best among the individual methods. We also find that the secondary features are just as useful, if not more so, in classifying false alarms vs. targets. The best classification accuracy overall, in our experimentation, is found when the features from all three methods are combined into a single feature vector.

  15. Word Recognition is Affected by the Meaning of Orthographic Neighbours: Evidence from Semantic Decision Tasks

    ERIC Educational Resources Information Center

    Boot, Inge; Pecher, Diane

    2008-01-01

    Many models of word recognition predict that neighbours of target words will be activated during word processing. Cascaded models can make the additional prediction that semantic features of those neighbours get activated before the target has been uniquely identified. In two semantic decision tasks neighbours that were congruent (i.e., from the…

  16. Research on infrared ship detection method in sea-sky background

    NASA Astrophysics Data System (ADS)

    Tang, Da; Sun, Gang; Wang, Ding-he; Niu, Zhao-dong; Chen, Zeng-ping

    2013-09-01

    An approach to infrared ship detection based on sea-sky-line(SSL) detection, ROI extraction and feature recognition is proposed in this paper. Firstly, considering that far ships are expected to be adjacent to the SSL, SSL is detected to find potential target areas. Radon transform is performed on gradient image to choose candidate SSLs, and detection result is given by fuzzy synthetic evaluation values. Secondly, in view of recognizable condition that there should be enough differences between target and background in infrared image, two gradient masks have been created and improved as practical guidelines in eliminating false alarm. Thirdly, extract ROI near the SSL by using multi-grade segmentation and fusion method after image sharpening, and unsuitable candidates are screened out according to the gradient masks and ROI shape. Finally, we segment the rest of ROIs by two-stage modified OTSU, and calculate target confidence as a standard measuring the facticity of target. Compared with other ship detection methods, proposed method is suitable for bipolar targets, which offers a good practicability and accuracy, and achieves a satisfying detection speed. Detection experiments with 200 thousand frames show that the proposed method is widely applicable, powerful in resistance to interferences and noises with a detection rate of above 95%, which satisfies the engineering needs commendably.

  17. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    PubMed

    Ren, Weitong; Ji, Dongqing; Xu, Xiulian

    2018-01-01

    The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  18. Enzyme-free homogeneous electrochemical biosensor for DNA assay using toehold-triggered strand displacement reaction coupled with host-guest recognition of Fe3O4@SiO2@β-CD nanocomposites.

    PubMed

    Jiang, Jingjing; Lin, Xinyi; Ding, Dong; Diao, Guowang

    2018-04-17

    Taking advantages of the toehold-triggered strand displacement reaction (TSDR) and host-guest interaction of β-cyclodextrin (β-CD), a facile enzyme-free and homogeneous electrochemical sensing strategy was designed for the sensitive assay of target DNA using Fe 3 O 4 @SiO 2 @β-CD nanocomposites and ferrocene-labeled hairpin DNA (H-1) as the capture and electrochemical probes, respectively. Upon addition of target molecule, the initiated TSDR process induced the conformational change of H-1, and subsequently stimulated the dynamic assembly of assist probes (A-1 and A-2) to generate H-1:A-1:A-2 duplex along with the release of target sequence. The released target could drive the next TSDR recycling and finally result in the formation of numerous DNA duplex. After the molecular recognition of Fe 3 O 4 @SiO 2 @β-CD nanocomposites, a large number of duplex were easily separated from the supernatant solution under an external magnetic field, which led to a decreased H-1 concentration in residual solution, concomitant with a remarkable reduction of peak current. Under the optimized conditions, wide linear range (1-5000 pM), low detection limit (0.3 pM), desirable reproducibility, good selectivity, and satisfactory practical analysis were obtained by the combination of the superior recognition capability of β-CD, TSDR-induced signal amplification, and homogeneous electroanalytical method. The proposed detection strategy could offer a universal approach for the monitoring of various biological analytes via the rational design of probe sequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Selective Electrocatalytic Degradation of Odorous Mercaptans Derived from S-Au Bond Recongnition on a Dendritic Gold/Boron-Doped Diamond Composite Electrode.

    PubMed

    Chai, Shouning; Wang, Yujing; Zhang, Ya-Nan; Liu, Meichuan; Wang, Yanbin; Zhao, Guohua

    2017-07-18

    To improve selectivity of electrocatalytic degradation of toxic, odorous mercaptans, the fractal-structured dendritic Au/BDD (boron-doped diamond) anode with molecular recognition is fabricated through a facile replacement method. SEM and TEM characterizations show that the gold dendrites are single crystals and have high population of the Au (111) facet. The distinctive structure endows the electrode with advantages of low resistivity, high active surface area, and prominent electrocatalytic activity. To evaluate selectivity, the dendritic Au/BDD is applied in degrading two groups of synthetic wastewater containing thiophenol/2-mercaptobenzimidazole (targets) and phenol/2-hydroxybenzimidazole (interferences), respectively. Results show that targets removals reach 91%/94%, while interferences removals are only 58%/48% in a short time. The corresponding degradation kinetic constants of targets are 3.25 times and 4.1 times that of interferences in the same group, demonstrating modification of dendritic gold on BDD could effectively enhance electrocatalytic target-selectivity. XPS and EXAFS further reveal that the selective electrocatalytic degradation derives from preferential recognition and fast adsorption to thiophenol depending on strong Au-S bond. The efficient, selective degradation is attributed to the synergetic effects between accumulative behavior and outstanding electrochemical performances. This work provides a new strategy for selective electrochemical degradation of contaminants for actual wastewater treatment.

  20. An Unsolved Mystery: The Target-Recognizing RNA Species of MicroRNA Genes

    PubMed Central

    Chen, Chang-Zheng

    2013-01-01

    MicroRNAs (miRNAs) are an abundant class of endogenous ~ 21-nucleotide (nt) RNAs. These small RNAs are produced from long primary miRNA transcripts — pri-miRNAs — through sequential endonucleolytic maturation steps that yield precursor miRNA (pre-miRNA) intermediates and then the mature miRNAs. The mature miRNAs are loaded into the RNA-induced silencing complexes (RISC), and guide RISC to target mRNAs for cleavage and/or translational repression. This paradigm, which represents one of major discoveries of modern molecular biology, is built on the assumption that mature miRNAs are the only species produced from miRNA genes that recognize targets. This assumption has guided the miRNA field for more than a decade and has led to our current understanding of the mechanisms of target recognition and repression by miRNAs. Although progress has been made, fundamental questions remain unanswered with regard to the principles of target recognition and mechanisms of repression. Here I raise questions about the assumption that mature miRNAs are the only target-recognizing species produced from miRNA genes and discuss the consequences of working under an incomplete or incorrect assumption. Moreover, I present evolution-based and experimental evidence that support the roles of pri-/pre-miRNAs in target recognition and repression. Finally, I propose a conceptual framework that integrates the functions of pri-/pre-miRNAs and mature miRNAs in target recognition and repression. The integrated framework opens experimental enquiry and permits interpretation of fundamental problems that have so far been precluded. PMID:23685275

  1. Fine tuning cellular recognition: The function of the leucine rich repeat (LRR) trans-membrane protein, LRT, in muscle targeting to tendon cells.

    PubMed

    Gilsohn, Eli; Volk, Talila

    2010-01-01

    The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, we describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.

  2. Age differences in accuracy and choosing in eyewitness identification and face recognition.

    PubMed

    Searcy, J H; Bartlett, J C; Memon, A

    1999-05-01

    Studies of aging and face recognition show age-related increases in false recognitions of new faces. To explore implications of this false alarm effect, we had young and senior adults perform (1) three eye-witness identification tasks, using both target present and target absent lineups, and (2) and old/new recognition task in which a study list of faces was followed by a test including old and new faces, along with conjunctions of old faces. Compared with the young, seniors had lower accuracy and higher choosing rates on the lineups, and they also falsely recognized more new faces on the recognition test. However, after screening for perceptual processing deficits, there was no age difference in false recognition of conjunctions, or in discriminating old faces from conjunctions. We conclude that the false alarm effect generalizes to lineup identification, but does not extend to conjunction faces. The findings are consistent with age-related deficits in recollection of context and relative age invariance in perceptual integrative processes underlying the experience of familiarity.

  3. Forecasting Occurrences of Activities.

    PubMed

    Minor, Bryan; Cook, Diane J

    2017-07-01

    While activity recognition has been shown to be valuable for pervasive computing applications, less work has focused on techniques for forecasting the future occurrence of activities. We present an activity forecasting method to predict the time that will elapse until a target activity occurs. This method generates an activity forecast using a regression tree classifier and offers an advantage over sequence prediction methods in that it can predict expected time until an activity occurs. We evaluate this algorithm on real-world smart home datasets and provide evidence that our proposed approach is most effective at predicting activity timings.

  4. Research on Coordinate Transformation Method of Gb-Sar Image Supported by 3d Laser Scanning Technology

    NASA Astrophysics Data System (ADS)

    Wang, P.; Xing, C.

    2018-04-01

    In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  5. Coordination of Word Recognition and Oculomotor Control During Reading: The Role of Implicit Lexical Decisions

    PubMed Central

    Choi, Wonil; Gordon, Peter C.

    2013-01-01

    The coordination of word-recognition and oculomotor processes during reading was evaluated in two eye-tracking experiments that examined how word skipping, where a word is not fixated during first-pass reading, is affected by the lexical status of a letter string in the parafovea and ease of recognizing that string. Ease of lexical recognition was manipulated through target-word frequency (Experiment 1) and through repetition priming between prime-target pairs embedded in a sentence (Experiment 2). Using the gaze-contingent boundary technique the target word appeared in the parafovea either with full preview or with transposed-letter (TL) preview. The TL preview strings were nonwords in Experiment 1 (e.g., bilnk created from the target blink), but were words in Experiment 2 (e.g., sacred created from the target scared). Experiment 1 showed greater skipping for high-frequency than low-frequency target words in the full preview condition but not in the TL preview (nonword) condition. Experiment 2 showed greater skipping for target words that repeated an earlier prime word than for those that did not, with this repetition priming occurring both with preview of the full target and with preview of the target’s TL neighbor word. However, time to progress from the word after the target was greater following skips of the TL preview word, whose meaning was anomalous in the sentence context, than following skips of the full preview word whose meaning fit sensibly into the sentence context. Together, the results support the idea that coordination between word-recognition and oculomotor processes occurs at the level of implicit lexical decisions. PMID:23106372

  6. Cognitive Predictors of Spoken Word Recognition in Children With and Without Developmental Language Disorders.

    PubMed

    Evans, Julia L; Gillam, Ronald B; Montgomery, James W

    2018-05-10

    This study examined the influence of cognitive factors on spoken word recognition in children with developmental language disorder (DLD) and typically developing (TD) children. Participants included 234 children (aged 7;0-11;11 years;months), 117 with DLD and 117 TD children, propensity matched for age, gender, socioeconomic status, and maternal education. Children completed a series of standardized assessment measures, a forward gating task, a rapid automatic naming task, and a series of tasks designed to examine cognitive factors hypothesized to influence spoken word recognition including phonological working memory, updating, attention shifting, and interference inhibition. Spoken word recognition for both initial and final accept gate points did not differ for children with DLD and TD controls after controlling target word knowledge in both groups. The 2 groups also did not differ on measures of updating, attention switching, and interference inhibition. Despite the lack of difference on these measures, for children with DLD, attention shifting and interference inhibition were significant predictors of spoken word recognition, whereas updating and receptive vocabulary were significant predictors of speed of spoken word recognition for the children in the TD group. Contrary to expectations, after controlling for target word knowledge, spoken word recognition did not differ for children with DLD and TD controls; however, the cognitive processing factors that influenced children's ability to recognize the target word in a stream of speech differed qualitatively for children with and without DLDs.

  7. The cross-category effect: mere social categorization is sufficient to elicit an own-group bias in face recognition.

    PubMed

    Bernstein, Michael J; Young, Steven G; Hugenberg, Kurt

    2007-08-01

    Although the cross-race effect (CRE) is a well-established phenomenon, both perceptual-expertise and social-categorization models have been proposed to explain the effect. The two studies reported here investigated the extent to which categorizing other people as in-group versus out-group members is sufficient to elicit a pattern of face recognition analogous to that of the CRE, even when perceptual expertise with the stimuli is held constant. In Study 1, targets were categorized as members of real-life in-groups and out-groups (based on university affiliation), whereas in Study 2, targets were categorized into experimentally created minimal groups. In both studies, recognition performance was better for targets categorized as in-group members, despite the fact that perceptual expertise was equivalent for in-group and out-group faces. These results suggest that social-cognitive mechanisms of in-group and out-group categorization are sufficient to elicit performance differences for in-group and out-group face recognition.

  8. Aided target recognition processing of MUDSS sonar data

    NASA Astrophysics Data System (ADS)

    Lau, Brian; Chao, Tien-Hsin

    1998-09-01

    The Mobile Underwater Debris Survey System (MUDSS) is a collaborative effort by the Navy and the Jet Propulsion Lab to demonstrate multi-sensor, real-time, survey of underwater sites for ordnance and explosive waste (OEW). We describe the sonar processing algorithm, a novel target recognition algorithm incorporating wavelets, morphological image processing, expansion by Hermite polynomials, and neural networks. This algorithm has found all planted targets in MUDSS tests and has achieved spectacular success upon another Coastal Systems Station (CSS) sonar image database.

  9. Recognition Imaging of Acetylated Chromatin Using a DNA Aptamer

    PubMed Central

    Lin, Liyun; Fu, Qiang; Williams, Berea A.R.; Azzaz, Abdelhamid M.; Shogren-Knaak, Michael A.; Chaput, John C.; Lindsay, Stuart

    2009-01-01

    Histone acetylation plays an important role in the regulation of gene expression. A DNA aptamer generated by in vitro selection to be highly specific for histone H4 protein acetylated at lysine 16 was used as a recognition element for atomic force microscopy-based recognition imaging of synthetic nucleosomal arrays with precisely controlled acetylation. The aptamer proved to be reasonably specific at recognizing acetylated histones, with recognition efficiencies of 60% on-target and 12% off-target. Though this selectivity is much poorer than the >2000:1 equilibrium specificity of the aptamer, it is a large improvement on the performance of a ChIP-quality antibody, which is not selective at all in this application, and it should permit high-fidelity recognition with repeated imaging. The ability to image the precise location of posttranslational modifications may permit nanometer-scale investigation of their effect on chromatin structure. PMID:19751687

  10. English Listeners Use Suprasegmental Cues to Lexical Stress Early During Spoken-Word Recognition

    PubMed Central

    Poellmann, Katja; Kong, Ying-Yee

    2017-01-01

    Purpose We used an eye-tracking technique to investigate whether English listeners use suprasegmental information about lexical stress to speed up the recognition of spoken words in English. Method In a visual world paradigm, 24 young English listeners followed spoken instructions to choose 1 of 4 printed referents on a computer screen (e.g., “Click on the word admiral”). Displays contained a critical pair of words (e.g., ˈadmiral–ˌadmiˈration) that were segmentally identical for their first 2 syllables but differed suprasegmentally in their 1st syllable: One word began with primary lexical stress, and the other began with secondary lexical stress. All words had phrase-level prominence. Listeners' relative proportion of eye fixations on these words indicated their ability to differentiate them over time. Results Before critical word pairs became segmentally distinguishable in their 3rd syllables, participants fixated target words more than their stress competitors, but only if targets had initial primary lexical stress. The degree to which stress competitors were fixated was independent of their stress pattern. Conclusions Suprasegmental information about lexical stress modulates the time course of spoken-word recognition. Specifically, suprasegmental information on the primary-stressed syllable of words with phrase-level prominence helps in distinguishing the word from phonological competitors with secondary lexical stress. PMID:28056135

  11. Automatic Surveying For Hazard Prevention On Glacier De GiÉtro, Switzerland

    NASA Astrophysics Data System (ADS)

    Bauder, A.; Funk, M.; Bösch, H.

    Breaking off of large ice masses from the steep tongue of Glacier de Giétro may endanger a nearby reservoir. Such a falling ice mass could cause an oversplash over the dam at timeof a nearly filled lake. For this reason the glacier has been monitored intensively since the 1960's. An automatic theodolite was installed three years ago. It allows continuous displacement measurements of several targets on the glacier in order to detect short-term acceleration events. The installation includes a telemetric data transmission, which provides for immediate recognition of hazardous situations and early alarming. The obtained data were analysed in terms of precision and performance of the applied method. A high temporal resolution was gained. The comparison with traditional ob- servations shows clearly the potential of modern instruments to improve monitoring schems. We summarize the main results of this study and discuss the applicability of a modern motorized theodolite with target tracking and recognition ability for moni- toring purposes.

  12. The effects of timbre on melody recognition are mediated by familiarity

    NASA Astrophysics Data System (ADS)

    McAuley, J. Devin; Ayala, Chris

    2002-11-01

    Two experiments examined the role of timbre in music recognition. In both experiments, participants rated the familiarity of a set of novel and well-known musical excerpts during a study phase and then were given a surprise old/new recognition test after a retention interval. The recognition test was comprised of the target melodies and an equal number of distractors; participants were instructed to respond yes to the targets and no to the distractors. In experiment 1, the timbre of the melodies was held constant throughout the study and then either stayed the same or switched to a different instrument sound during the test. In experiment 2, timbre varied randomly from trial to trial between the same two instruments used in experiment 1, yielding target melodies that were either mismatched or matched in their timbre. Switching timbre between study and test in experiment 1 was found to hurt the recognition of the novel melodies, but not the familiar melodies. The mediating effect of familiarity was eliminated in experiment 2 when timbre varied randomly from trial to trial rather than remaining constant. Possible reasons for the difference between studies will be discussed.

  13. Domain repertoires as a tool to derive protein recognition rules.

    PubMed

    Zucconi, A; Panni, S; Paoluzi, S; Castagnoli, L; Dente, L; Cesareni, G

    2000-08-25

    Several approaches, some of which are described in this issue, have been proposed to assemble a complete protein interaction map. These are often based on high throughput methods that explore the ability of each gene product to bind any other element of the proteome of the organism. Here we propose that a large number of interactions can be inferred by revealing the rules underlying recognition specificity of a small number (a few hundreds) of families of protein recognition modules. This can be achieved through the construction and characterization of domain repertoires. A domain repertoire is assembled in a combinatorial fashion by allowing each amino acid position in the binding site of a given protein recognition domain to vary to include all the residues allowed at that position in the domain family. The repertoire is then searched by phage display techniques with any target of interest and from the primary structure of the binding site of the selected domains one derives rules that are used to infer the formation of complexes between natural proteins in the cell.

  14. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  15. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  16. Tree-structured sensor fusion architecture for distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Iyengar, S. Sitharama; Kashyap, Rangasami L.; Madan, Rabinder N.; Thomas, Daryl D.

    1990-10-01

    An assessment of numerous activities in the field of multisensor target recognition reveals several trends and conditions which are cause for concern. .These concerns are analyzed in terms of their potential impact on the ultimate employment of automatic target recognition in military systems. Suggestions for additional investigation and guidance for current activities are presented with respect to some of the identified concerns.

  17. Automatic integration of social information in emotion recognition.

    PubMed

    Mumenthaler, Christian; Sander, David

    2015-04-01

    This study investigated the automaticity of the influence of social inference on emotion recognition. Participants were asked to recognize dynamic facial expressions of emotion (fear or anger in Experiment 1 and blends of fear and surprise or of anger and disgust in Experiment 2) in a target face presented at the center of a screen while a subliminal contextual face appearing in the periphery expressed an emotion (fear or anger) or not (neutral) and either looked at the target face or not. Results of Experiment 1 revealed that recognition of the target emotion of fear was improved when a subliminal angry contextual face gazed toward-rather than away from-the fearful face. We replicated this effect in Experiment 2, in which facial expression blends of fear and surprise were more often and more rapidly categorized as expressing fear when the subliminal contextual face expressed anger and gazed toward-rather than away from-the target face. With the contextual face appearing for 30 ms in total, including only 10 ms of emotion expression, and being immediately masked, our data provide the first evidence that social influence on emotion recognition can occur automatically. (c) 2015 APA, all rights reserved).

  18. [Representation of letter position in visual word recognition process].

    PubMed

    Makioka, S

    1994-08-01

    Two experiments investigated the representation of letter position in visual word recognition process. In Experiment 1, subjects (12 undergraduates and graduates) were asked to detect a target word in a briefly-presented probe. Probes consisted of two kanji words. The latters which formed targets (critical letters) were always contained in probes. (e.g. target: [symbol: see text] probe: [symbol: see text]) High false alarm rate was observed when critical letters occupied the same within-word relative position (left or right within the word) in the probe words as in the target word. In Experiment 2 (subject were ten undergraduates and graduates), spaces adjacent to probe words were replaced by randomly chosen hiragana letters (e.g. [symbol: see text]), because spaces are not used to separate words in regular Japanese sentences. In addition to the effect of within-word relative position as in Experiment 1, the effect of between-word relative position (left or right across the probe words) was observed. These results suggest that information about within-word relative position of a letter is used in word recognition process. The effect of within-word relative position was explained by a connectionist model of word recognition.

  19. Adapting Word Embeddings from Multiple Domains to Symptom Recognition from Psychiatric Notes

    PubMed Central

    Zhang, Yaoyun; Li, Hee-Jin; Wang, Jingqi; Cohen, Trevor; Roberts, Kirk; Xu, Hua

    2018-01-01

    Mental health is increasingly recognized an important topic in healthcare. Information concerning psychiatric symptoms is critical for the timely diagnosis of mental disorders, as well as for the personalization of interventions. However, the diversity and sparsity of psychiatric symptoms make it challenging for conventional natural language processing techniques to automatically extract such information from clinical text. To address this problem, this study takes the initiative to use and adapt word embeddings from four source domains – intensive care, biomedical literature, Wikipedia and Psychiatric Forum – to recognize symptoms in the target domain of psychiatry. We investigated four different approaches including 1) only using word embeddings of the source domain, 2) directly combining data of the source and target to generate word embeddings, 3) assigning different weights to word embeddings, and 4) retraining the word embedding model of the source domain using a corpus of the target domain. To the best of our knowledge, this is the first work of adapting multiple word embeddings of external domains to improve psychiatric symptom recognition in clinical text. Experimental results showed that the last two approaches outperformed the baseline methods, indicating the effectiveness of our new strategies to leverage embeddings from other domains. PMID:29888086

  20. Rapid extraction of gist from visual text and its influence on word recognition.

    PubMed

    Asano, Michiko; Yokosawa, Kazuhiko

    2011-01-01

    Two experiments explored rapid extraction of gist from a visual text and its influence on word recognition. In both, a short text (sentence) containing a target word was presented for 200 ms and was followed by a target recognition task. Results showed that participants recognized contextually anomalous word targets less frequently than contextually consistent counterparts (Experiment 1). This context effect was obtained when sentences contained the same semantic content but with disrupted syntactic structure (Experiment 2). Results demonstrate that words in a briefly presented visual sentence are processed in parallel and that rapid extraction of sentence gist relies on a primitive representation of sentence context (termed protocontext) that is semantically activated by the simultaneous presentation of multiple words (i.e., a sentence) before syntactic processing.

  1. Antibody-Unfolding and Metastable-State Binding in Force Spectroscopy and Recognition Imaging

    PubMed Central

    Kaur, Parminder; Qiang-Fu; Fuhrmann, Alexander; Ros, Robert; Kutner, Linda Obenauer; Schneeweis, Lumelle A.; Navoa, Ryman; Steger, Kirby; Xie, Lei; Yonan, Christopher; Abraham, Ralph; Grace, Michael J.; Lindsay, Stuart

    2011-01-01

    Force spectroscopy and recognition imaging are important techniques for characterizing and mapping molecular interactions. In both cases, an antibody is pulled away from its target in times that are much less than the normal residence time of the antibody on its target. The distribution of pulling lengths in force spectroscopy shows the development of additional peaks at high loading rates, indicating that part of the antibody frequently unfolds. This propensity to unfold is reversible, indicating that exposure to high loading rates induces a structural transition to a metastable state. Weakened interactions of the antibody in this metastable state could account for reduced specificity in recognition imaging where the loading rates are always high. The much weaker interaction between the partially unfolded antibody and target, while still specific (as shown by control experiments), results in unbinding on millisecond timescales, giving rise to rapid switching noise in the recognition images. At the lower loading rates used in force spectroscopy, we still find discrepancies between the binding kinetics determined by force spectroscopy and those determined by surface plasmon resonance—possibly a consequence of the short tethers used in recognition imaging. Recognition imaging is nonetheless a powerful tool for interpreting complex atomic force microscopy images, so long as specificity is calibrated in situ, and not inferred from equilibrium binding kinetics. PMID:21190677

  2. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases.

    PubMed

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-10-16

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9.

  3. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates. Electronic supplementary information (ESI) available: Additional circular dichroism data and nanoparticle tracking analysis trace. See DOI: 10.1039/c6nr02009g

  4. Boundary methods for mode estimation

    NASA Astrophysics Data System (ADS)

    Pierson, William E., Jr.; Ulug, Batuhan; Ahalt, Stanley C.

    1999-08-01

    This paper investigates the use of Boundary Methods (BMs), a collection of tools used for distribution analysis, as a method for estimating the number of modes associated with a given data set. Model order information of this type is required by several pattern recognition applications. The BM technique provides a novel approach to this parameter estimation problem and is comparable in terms of both accuracy and computations to other popular mode estimation techniques currently found in the literature and automatic target recognition applications. This paper explains the methodology used in the BM approach to mode estimation. Also, this paper quickly reviews other common mode estimation techniques and describes the empirical investigation used to explore the relationship of the BM technique to other mode estimation techniques. Specifically, the accuracy and computational efficiency of the BM technique are compared quantitatively to the a mixture of Gaussian (MOG) approach and a k-means approach to model order estimation. The stopping criteria of the MOG and k-means techniques is the Akaike Information Criteria (AIC).

  5. Information theoretic partitioning and confidence based weight assignment for multi-classifier decision level fusion in hyperspectral target recognition applications

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Bruce, L. M.

    2007-04-01

    There is a growing interest in using multiple sources for automatic target recognition (ATR) applications. One approach is to take multiple, independent observations of a phenomenon and perform a feature level or a decision level fusion for ATR. This paper proposes a method to utilize these types of multi-source fusion techniques to exploit hyperspectral data when only a small number of training pixels are available. Conventional hyperspectral image based ATR techniques project the high dimensional reflectance signature onto a lower dimensional subspace using techniques such as Principal Components Analysis (PCA), Fisher's linear discriminant analysis (LDA), subspace LDA and stepwise LDA. While some of these techniques attempt to solve the curse of dimensionality, or small sample size problem, these are not necessarily optimal projections. In this paper, we present a divide and conquer approach to address the small sample size problem. The hyperspectral space is partitioned into contiguous subspaces such that the discriminative information within each subspace is maximized, and the statistical dependence between subspaces is minimized. We then treat each subspace as a separate source in a multi-source multi-classifier setup and test various decision fusion schemes to determine their efficacy. Unlike previous approaches which use correlation between variables for band grouping, we study the efficacy of higher order statistical information (using average mutual information) for a bottom up band grouping. We also propose a confidence measure based decision fusion technique, where the weights associated with various classifiers are based on their confidence in recognizing the training data. To this end, training accuracies of all classifiers are used for weight assignment in the fusion process of test pixels. The proposed methods are tested using hyperspectral data with known ground truth, such that the efficacy can be quantitatively measured in terms of target recognition accuracies.

  6. Deep sequencing methods for protein engineering and design.

    PubMed

    Wrenbeck, Emily E; Faber, Matthew S; Whitehead, Timothy A

    2017-08-01

    The advent of next-generation sequencing (NGS) has revolutionized protein science, and the development of complementary methods enabling NGS-driven protein engineering have followed. In general, these experiments address the functional consequences of thousands of protein variants in a massively parallel manner using genotype-phenotype linked high-throughput functional screens followed by DNA counting via deep sequencing. We highlight the use of information rich datasets to engineer protein molecular recognition. Examples include the creation of multiple dual-affinity Fabs targeting structurally dissimilar epitopes and engineering of a broad germline-targeted anti-HIV-1 immunogen. Additionally, we highlight the generation of enzyme fitness landscapes for conducting fundamental studies of protein behavior and evolution. We conclude with discussion of technological advances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Multi-Target Recognition of Internal and External Defects of Potato by Semi-Transmission Hyperspectral Imaging and Manifold Learning Algorithm].

    PubMed

    Huang, Tao; Li, Xiao-yu; Jin, Rui; Ku, Jing; Xu, Sen-miao; Xu, Meng-ling; Wu, Zhen-zhong; Kong, De-guo

    2015-04-01

    The present paper put forward a non-destructive detection method which combines semi-transmission hyperspectral imaging technology with manifold learning dimension reduction algorithm and least squares support vector machine (LSSVM) to recognize internal and external defects in potatoes simultaneously. Three hundred fifteen potatoes were bought in farmers market as research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images of normal external defects (bud and green rind) and internal defect (hollow heart) potatoes. In order to conform to the actual production, defect part is randomly put right, side and back to the acquisition probe when the hyperspectral images of external defects potatoes are acquired. The average spectrums (390-1,040 nm) were extracted from the region of interests for spectral preprocessing. Then three kinds of manifold learning algorithm were respectively utilized to reduce the dimension of spectrum data, including supervised locally linear embedding (SLLE), locally linear embedding (LLE) and isometric mapping (ISOMAP), the low-dimensional data gotten by manifold learning algorithms is used as model input, Error Correcting Output Code (ECOC) and LSSVM were combined to develop the multi-target classification model. By comparing and analyzing results of the three models, we concluded that SLLE is the optimal manifold learning dimension reduction algorithm, and the SLLE-LSSVM model is determined to get the best recognition rate for recognizing internal and external defects potatoes. For test set data, the single recognition rate of normal, bud, green rind and hollow heart potato reached 96.83%, 86.96%, 86.96% and 95% respectively, and he hybrid recognition rate was 93.02%. The results indicate that combining the semi-transmission hyperspectral imaging technology with SLLE-LSSVM is a feasible qualitative analytical method which can simultaneously recognize the internal and external defects potatoes and also provide technical reference for rapid on-line non-destructive detecting of the internal and external defects potatoes.

  8. Characterization of target camouflage structures by means of different microwave imaging procedures

    NASA Astrophysics Data System (ADS)

    Inaebnit, Christian; John, Marc-Andre; Aulenbacher, Uwe; Akyol, Zeynrep; Hueppi, Rudolf; Wellig, Peter

    2009-05-01

    This paper presents two different test methods for camouflage layers (CL) like nets or foam based structures. The effectiveness of CL in preventing radar detection and recognition of targets depends on the interaction of CL properties as absorption and diffuse scattering with target specific scattering properties. This fact is taken into account by representing target backscattering as interference of different types of GTD contributions and evaluating the impact of CL onto these individual contributions separately. The first method investigates how a CL under test alters these individual scattering contributions and which "new" contributions are produced by "self-scattering" at the CL. This information is gained by applying ISAR imaging technique to a test structure with different types of scattering contributions. The second test method aims for separating the effects of absorption and "diffuse scattering" in case of a planar metallic plate covered by CL. For this, the equivalent source distribution in the plane of the CL is reconstructed from bistatic scattering data. Both test methods were verified by experimental results obtained from X-band measurements at different CL and proved to be well suited for an application specific evaluation of camouflage structures from different manufacturers.

  9. Evaluation of Waveform Structure Features on Time Domain Target Recognition under Cross Polarization

    NASA Astrophysics Data System (ADS)

    Selver, M. A.; Seçmen, M.; Zoral, E. Y.

    2016-08-01

    Classification of aircraft targets from scattered electromagnetic waves is a challenging application, which suffers from aspect angle dependency. In order to eliminate the adverse effects of aspect angle, various strategies were developed including the techniques that rely on extraction of several features and design of suitable classification systems to process them. Recently, a hierarchical method, which uses features that take advantage of waveform structure of the scattered signals, is introduced and shown to have effective results. However, this approach has been applied to the special cases that consider only a single planar component of electric field that cause no-cross polarization at the observation point. In this study, two small scale aircraft models, Boeing-747 and DC-10, are selected as the targets and various polarizations are used to analyse the cross-polarization effects on system performance of the aforementioned method. The results reveal the advantages and the shortcomings of using waveform structures in time-domain target identification.

  10. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network.

    PubMed

    Islam, Kh Tohidul; Raj, Ram Gopal

    2017-04-13

    Road sign recognition is a driver support function that can be used to notify and warn the driver by showing the restrictions that may be effective on the current stretch of road. Examples for such regulations are 'traffic light ahead' or 'pedestrian crossing' indications. The present investigation targets the recognition of Malaysian road and traffic signs in real-time. Real-time video is taken by a digital camera from a moving vehicle and real world road signs are then extracted using vision-only information. The system is based on two stages, one performs the detection and another one is for recognition. In the first stage, a hybrid color segmentation algorithm has been developed and tested. In the second stage, an introduced robust custom feature extraction method is used for the first time in a road sign recognition approach. Finally, a multilayer artificial neural network (ANN) has been created to recognize and interpret various road signs. It is robust because it has been tested on both standard and non-standard road signs with significant recognition accuracy. This proposed system achieved an average of 99.90% accuracy with 99.90% of sensitivity, 99.90% of specificity, 99.90% of f-measure, and 0.001 of false positive rate (FPR) with 0.3 s computational time. This low FPR can increase the system stability and dependability in real-time applications.

  11. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network

    PubMed Central

    Islam, Kh Tohidul; Raj, Ram Gopal

    2017-01-01

    Road sign recognition is a driver support function that can be used to notify and warn the driver by showing the restrictions that may be effective on the current stretch of road. Examples for such regulations are ‘traffic light ahead’ or ‘pedestrian crossing’ indications. The present investigation targets the recognition of Malaysian road and traffic signs in real-time. Real-time video is taken by a digital camera from a moving vehicle and real world road signs are then extracted using vision-only information. The system is based on two stages, one performs the detection and another one is for recognition. In the first stage, a hybrid color segmentation algorithm has been developed and tested. In the second stage, an introduced robust custom feature extraction method is used for the first time in a road sign recognition approach. Finally, a multilayer artificial neural network (ANN) has been created to recognize and interpret various road signs. It is robust because it has been tested on both standard and non-standard road signs with significant recognition accuracy. This proposed system achieved an average of 99.90% accuracy with 99.90% of sensitivity, 99.90% of specificity, 99.90% of f-measure, and 0.001 of false positive rate (FPR) with 0.3 s computational time. This low FPR can increase the system stability and dependability in real-time applications. PMID:28406471

  12. Terrain feature recognition for synthetic aperture radar (SAR) imagery employing spatial attributes of targets

    NASA Astrophysics Data System (ADS)

    Iisaka, Joji; Sakurai-Amano, Takako

    1994-08-01

    This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.

  13. A method for real-time implementation of HOG feature extraction

    NASA Astrophysics Data System (ADS)

    Luo, Hai-bo; Yu, Xin-rong; Liu, Hong-mei; Ding, Qing-hai

    2011-08-01

    Histogram of oriented gradient (HOG) is an efficient feature extraction scheme, and HOG descriptors are feature descriptors which is widely used in computer vision and image processing for the purpose of biometrics, target tracking, automatic target detection(ATD) and automatic target recognition(ATR) etc. However, computation of HOG feature extraction is unsuitable for hardware implementation since it includes complicated operations. In this paper, the optimal design method and theory frame for real-time HOG feature extraction based on FPGA were proposed. The main principle is as follows: firstly, the parallel gradient computing unit circuit based on parallel pipeline structure was designed. Secondly, the calculation of arctangent and square root operation was simplified. Finally, a histogram generator based on parallel pipeline structure was designed to calculate the histogram of each sub-region. Experimental results showed that the HOG extraction can be implemented in a pixel period by these computing units.

  14. Using X-ray Crystallography, Biophysics, and Functional Assays to Determine the Mechanisms Governing T-cell Receptor Recognition of Cancer Antigens.

    PubMed

    MacLachlan, Bruce J; Greenshields-Watson, Alexander; Mason, Georgina H; Schauenburg, Andrea J; Bianchi, Valentina; Rizkallah, Pierre J; Sewell, Andrew K; Fuller, Anna; Cole, David K

    2017-02-06

    Human CD8+ cytotoxic T lymphocytes (CTLs) are known to play an important role in tumor control. In order to carry out this function, the cell surface-expressed T-cell receptor (TCR) must functionally recognize human leukocyte antigen (HLA)-restricted tumor-derived peptides (pHLA). However, we and others have shown that most TCRs bind sub-optimally to tumor antigens. Uncovering the molecular mechanisms that define this poor recognition could aid in the development of new targeted therapies that circumnavigate these shortcomings. Indeed, present therapies that lack this molecular understanding have not been universally effective. Here, we describe methods that we commonly employ in the laboratory to determine how the nature of the interaction between TCRs and pHLA governs T-cell functionality. These methods include the generation of soluble TCRs and pHLA and the use of these reagents for X-ray crystallography, biophysical analysis, and antigen-specific T-cell staining with pHLA multimers. Using these approaches and guided by structural analysis, it is possible to modify the interaction between TCRs and pHLA and to then test how these modifications impact T-cell antigen recognition. These findings have already helped to clarify the mechanism of T-cell recognition of a number of cancer antigens and could direct the development of altered peptides and modified TCRs for new cancer therapies.

  15. Mapping monomeric threading to protein-protein structure prediction.

    PubMed

    Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang

    2013-03-25

    The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD <2.5 Å by SPRING is 134% and 167% higher than these competing methods. SPRING is controlled with ZDOCK on 77 docking benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.

  16. Gaussian mass optimization for kernel PCA parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Wang, Zulin

    2011-10-01

    This paper proposes a novel kernel parameter optimization method based on Gaussian mass, which aims to overcome the current brute force parameter optimization method in a heuristic way. Generally speaking, the choice of kernel parameter should be tightly related to the target objects while the variance between the samples, the most commonly used kernel parameter, doesn't possess much features of the target, which gives birth to Gaussian mass. Gaussian mass defined in this paper has the property of the invariance of rotation and translation and is capable of depicting the edge, topology and shape information. Simulation results show that Gaussian mass leads a promising heuristic optimization boost up for kernel method. In MNIST handwriting database, the recognition rate improves by 1.6% compared with common kernel method without Gaussian mass optimization. Several promising other directions which Gaussian mass might help are also proposed at the end of the paper.

  17. Automated Target Acquisition, Recognition and Tracking (ATTRACT). Phase 1

    NASA Technical Reports Server (NTRS)

    Abdallah, Mahmoud A.

    1995-01-01

    The primary objective of phase 1 of this research project is to conduct multidisciplinary research that will contribute to fundamental scientific knowledge in several of the USAF critical technology areas. Specifically, neural networks, signal processing techniques, and electro-optic capabilities are utilized to solve problems associated with automated target acquisition, recognition, and tracking. To accomplish the stated objective, several tasks have been identified and were executed.

  18. Target recognition of ladar range images using slice image: comparison of four improved algorithms

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Cao, Jingya; Wang, Liang; Zhai, Yu; Cheng, Yang

    2017-07-01

    Compared with traditional 3-D shape data, ladar range images possess properties of strong noise, shape degeneracy, and sparsity, which make feature extraction and representation difficult. The slice image is an effective feature descriptor to resolve this problem. We propose four improved algorithms on target recognition of ladar range images using slice image. In order to improve resolution invariance of the slice image, mean value detection instead of maximum value detection is applied in these four improved algorithms. In order to improve rotation invariance of the slice image, three new improved feature descriptors-which are feature slice image, slice-Zernike moments, and slice-Fourier moments-are applied to the last three improved algorithms, respectively. Backpropagation neural networks are used as feature classifiers in the last two improved algorithms. The performance of these four improved recognition systems is analyzed comprehensively in the aspects of the three invariances, recognition rate, and execution time. The final experiment results show that the improvements for these four algorithms reach the desired effect, the three invariances of feature descriptors are not directly related to the final recognition performance of recognition systems, and these four improved recognition systems have different performances under different conditions.

  19. LiveBench-1: continuous benchmarking of protein structure prediction servers.

    PubMed

    Bujnicki, J M; Elofsson, A; Fischer, D; Rychlewski, L

    2001-02-01

    We present a novel, continuous approach aimed at the large-scale assessment of the performance of available fold-recognition servers. Six popular servers were investigated: PDB-Blast, FFAS, T98-lib, GenTHREADER, 3D-PSSM, and INBGU. The assessment was conducted using as prediction targets a large number of selected protein structures released from October 1999 to April 2000. A target was selected if its sequence showed no significant similarity to any of the proteins previously available in the structural database. Overall, the servers were able to produce structurally similar models for one-half of the targets, but significantly accurate sequence-structure alignments were produced for only one-third of the targets. We further classified the targets into two sets: easy and hard. We found that all servers were able to find the correct answer for the vast majority of the easy targets if a structurally similar fold was present in the server's fold libraries. However, among the hard targets--where standard methods such as PSI-BLAST fail--the most sensitive fold-recognition servers were able to produce similar models for only 40% of the cases, half of which had a significantly accurate sequence-structure alignment. Among the hard targets, the presence of updated libraries appeared to be less critical for the ranking. An "ideally combined consensus" prediction, where the results of all servers are considered, would increase the percentage of correct assignments by 50%. Each server had a number of cases with a correct assignment, where the assignments of all the other servers were wrong. This emphasizes the benefits of considering more than one server in difficult prediction tasks. The LiveBench program (http://BioInfo.PL/LiveBench) is being continued, and all interested developers are cordially invited to join.

  20. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  1. "Multiple partial recognitions in dynamic equilibrium" in the binding sites of proteins form the molecular basis of promiscuous recognition of structurally diverse ligands.

    PubMed

    Kohda, Daisuke

    2018-04-01

    Promiscuous recognition of ligands by proteins is as important as strict recognition in numerous biological processes. In living cells, many short, linear amino acid motifs function as targeting signals in proteins to specify the final destination of the protein transport. In general, the target signal is defined by a consensus sequence containing wild-characters, and hence represented by diverse amino acid sequences. The classical lock-and-key or induced-fit/conformational selection mechanism may not cover all aspects of the promiscuous recognition. On the basis of our crystallographic and NMR studies on the mitochondrial Tom20 protein-presequence interaction, we proposed a new hypothetical mechanism based on "a rapid equilibrium of multiple states with partial recognitions". This dynamic, multiple recognition mode enables the Tom20 receptor to recognize diverse mitochondrial presequences with nearly equal affinities. The plant Tom20 is evolutionally unrelated to the animal Tom20 in our study, but is a functional homolog of the animal/fungal Tom20. NMR studies by another research group revealed that the presequence binding by the plant Tom20 was not fully explained by simple interaction modes, suggesting the presence of a similar dynamic, multiple recognition mode. Circumstantial evidence also suggested that similar dynamic mechanisms may be applicable to other promiscuous recognitions of signal peptides by the SRP54/Ffh and SecA proteins.

  2. Voice gender and the segregation of competing talkers: Perceptual learning in cochlear implant simulations

    PubMed Central

    Sullivan, Jessica R.; Assmann, Peter F.; Hossain, Shaikat; Schafer, Erin C.

    2017-01-01

    Two experiments explored the role of differences in voice gender in the recognition of speech masked by a competing talker in cochlear implant simulations. Experiment 1 confirmed that listeners with normal hearing receive little benefit from differences in voice gender between a target and masker sentence in four- and eight-channel simulations, consistent with previous findings that cochlear implants deliver an impoverished representation of the cues for voice gender. However, gender differences led to small but significant improvements in word recognition with 16 and 32 channels. Experiment 2 assessed the benefits of perceptual training on the use of voice gender cues in an eight-channel simulation. Listeners were assigned to one of four groups: (1) word recognition training with target and masker differing in gender; (2) word recognition training with same-gender target and masker; (3) gender recognition training; or (4) control with no training. Significant improvements in word recognition were observed from pre- to post-test sessions for all three training groups compared to the control group. These improvements were maintained at the late session (one week following the last training session) for all three groups. There was an overall improvement in masked word recognition performance provided by gender mismatch following training, but the amount of benefit did not differ as a function of the type of training. The training effects observed here are consistent with a form of rapid perceptual learning that contributes to the segregation of competing voices but does not specifically enhance the benefits provided by voice gender cues. PMID:28372046

  3. Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.

    PubMed

    Rousseau, Beth A; Hou, Zhonggang; Gramelspacher, Max J; Zhang, Yan

    2018-03-01

    The microbial CRISPR systems enable adaptive defense against mobile elements and also provide formidable tools for genome engineering. The Cas9 proteins are type II CRISPR-associated, RNA-guided DNA endonucleases that identify double-stranded DNA targets by sequence complementarity and protospacer adjacent motif (PAM) recognition. Here we report that the type II-C CRISPR-Cas9 from Neisseria meningitidis (Nme) is capable of programmable, RNA-guided, site-specific cleavage and recognition of single-stranded RNA targets and that this ribonuclease activity is independent of the PAM sequence. We define the mechanistic feature and specificity constraint for RNA cleavage by NmeCas9 and also show that nuclease null dNmeCas9 binds to RNA target complementary to CRISPR RNA. Finally, we demonstrate that NmeCas9-catalyzed RNA cleavage can be blocked by three families of type II-C anti-CRISPR proteins. These results fundamentally expand the targeting capacities of CRISPR-Cas9 and highlight the potential utility of NmeCas9 as a single platform to target both RNA and DNA. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    PubMed

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  5. Metal chelation dual-template epitope imprinting polymer via distillation-precipitation polymerization for recognition of porcine serum albumin.

    PubMed

    Qin, Ya-Ping; Wang, Hai-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2018-08-01

    A novel dual-template epitope imprinting polymer coated on magnetic carbon nanotubes (MCNTs@D-EMIP) was successfully prepared for specific recognition of porcine serum albumin (PSA) via dual-template epitope imprinting, metal chelation imprinting and distillation-precipitation polymerization (DPP). C-terminal peptides and N-terminal peptides of PSA were selected as templates simultaneously, and zinc acrylate and ethylene glycol dimethacrylate (EGDMA) were used as functional monomer and cross-linker, respectively. The epitope templates were immobilized by metal chelation and six-membered ring formed with zinc acrylate. Finally, MCNTs@D-EMIP was synthesized by DPP in only 30 min, which was much shorter than those of other polymerization methods. The prepared MCNTs@D-EMIP displayed specific recognition ability toward PSA and its adsorption amount and imprinting factor were 45.05 mg g -1 and 4.50, which were much higher than those of single template epitope imprinting polymers. Besides, high-performance liquid chromatography (HPLC) analysis of PSA in porcine blood serum real sample indicated that the specificity was not affected by other competitive proteins, which forcefully stated that the MCNTs@D-EMIP had potential to be applied in bio-separation area. In addition, the results of cross-reactivity experiment proved that this strategy had generality to prepare dual-template epitope imprinting polymer for recognition of target protein. In summary, this study provided an efficient protocol to recognize target protein in complex sample via dual-template epitope imprinting approach, metal chelation imprinting and distillation-precipitation polymerization. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Recognition without Awareness: Encoding and Retrieval Factors

    ERIC Educational Resources Information Center

    Craik, Fergus I. M.; Rose, Nathan S.; Gopie, Nigel

    2015-01-01

    The article reports 4 experiments that explore the notion of recognition without awareness using words as the material. Previous work by Voss and associates has shown that complex visual patterns were correctly selected as targets in a 2-alternative forced-choice (2-AFC) recognition test although participants reported that they were guessing. The…

  7. Influence of Emotional Facial Expressions on 3-5-Year-Olds' Face Recognition

    ERIC Educational Resources Information Center

    Freitag, Claudia; Schwarzer, Gudrun

    2011-01-01

    Three experiments examined 3- and 5-year-olds' recognition of faces in constant and varied emotional expressions. Children were asked to identify repeatedly presented target faces, distinguishing them from distractor faces, during an immediate recognition test and during delayed assessments after 10 min and one week. Emotional facial expression…

  8. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization.

    PubMed

    Kavanagh, Paul; Leech, Dónal

    2006-04-15

    The detection of nucleic acids based upon recognition surfaces formed by co-immobilization of a redox polymer mediator and DNA probe sequences on gold electrodes is described. The recognition surface consists of a redox polymer, [Os(2,2'-bipyridine)2(polyvinylimidazole)(10)Cl](+/2+), and a model single DNA strand cross-linked and tethered to a gold electrode via an anchoring self-assembled monolayer (SAM) of cysteamine. Hybridization between the immobilized probe DNA of the recognition surface and a biotin-conjugated target DNA sequence (designed from the ssrA gene of Listeria monocytogenes), followed by addition of an enzyme (glucose oxidase)-avidin conjugate, results in electrical contact between the enzyme and the mediating redox polymer. In the presence of glucose, the current generated due to the catalytic oxidation of glucose to gluconolactone is measured, and a response is obtained that is binding-dependent. The tethering of the probe DNA and redox polymer to the SAM improves the stability of the surface to assay conditions of rigorous washing and high salt concentration (1 M). These conditions eliminate nonspecific interaction of both the target DNA and the enzyme-avidin conjugate with the recognition surfaces. The sensor response increases linearly with increasing concentration of target DNA in the range of 1 x 10(-9) to 2 x 10(-6) M. The detection limit is approximately 1.4 fmol, (corresponding to 0.2 nM of target DNA). Regeneration of the recognition surface is possible by treatment with 0.25 M NaOH solution. After rehybridization of the regenerated surface with the target DNA sequence, >95% of the current is recovered, indicating that the redox polymer and probe DNA are strongly bound to the surface. These results demonstrate the utility of the proposed approach.

  9. Key features for ATA / ATR database design in missile systems

    NASA Astrophysics Data System (ADS)

    Özertem, Kemal Arda

    2017-05-01

    Automatic target acquisition (ATA) and automatic target recognition (ATR) are two vital tasks for missile systems, and having a robust detection and recognition algorithm is crucial for overall system performance. In order to have a robust target detection and recognition algorithm, an extensive image database is required. Automatic target recognition algorithms use the database of images in training and testing steps of algorithm. This directly affects the recognition performance, since the training accuracy is driven by the quality of the image database. In addition, the performance of an automatic target detection algorithm can be measured effectively by using an image database. There are two main ways for designing an ATA / ATR database. The first and easy way is by using a scene generator. A scene generator can model the objects by considering its material information, the atmospheric conditions, detector type and the territory. Designing image database by using a scene generator is inexpensive and it allows creating many different scenarios quickly and easily. However the major drawback of using a scene generator is its low fidelity, since the images are created virtually. The second and difficult way is designing it using real-world images. Designing image database with real-world images is a lot more costly and time consuming; however it offers high fidelity, which is critical for missile algorithms. In this paper, critical concepts in ATA / ATR database design with real-world images are discussed. Each concept is discussed in the perspective of ATA and ATR separately. For the implementation stage, some possible solutions and trade-offs for creating the database are proposed, and all proposed approaches are compared to each other with regards to their pros and cons.

  10. Model-based vision using geometric hashing

    NASA Astrophysics Data System (ADS)

    Akerman, Alexander, III; Patton, Ronald

    1991-04-01

    The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.

  11. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    DOEpatents

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  12. Autonomous target recognition using remotely sensed surface vibration measurements

    NASA Astrophysics Data System (ADS)

    Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.

    1993-09-01

    The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.

  13. Exploring the Role of Receptor Flexibility in Structure-Based Drug Discovery

    PubMed Central

    Feixas, Ferran; Lindert, Steffen; Sinko, William; McCammon, J. Andrew

    2015-01-01

    The proper understanding of biomolecular recognition mechanisms that take place in a drug target is of paramount importance to improve the efficiency of drug discovery and development. The intrinsic dynamic character of proteins has a strong influence on biomolecular recognition mechanisms and models such as conformational selection have been widely used to account for this dynamic association process. However, conformational changes occurring in the receptor prior and upon association with other molecules are diverse and not obvious to predict when only a few structures of the receptor are available. In view of the prominent role of protein flexibility in ligand binding and its implications for drug discovery, it is of great interest to identify receptor conformations that play a major role in biomolecular recognition before starting rational drug design efforts. In this review, we discuss a number of recent advances in computer-aided drug discovery techniques that have been proposed to incorporate receptor flexibility into structure-based drug design. The allowance for receptor flexibility provided by computational techniques such as molecular dynamics simulations or enhanced sampling techniques helps to improve the accuracy of methods used to estimate binding affinities and, thus, such methods can contribute to the discovery of novel drug leads. PMID:24332165

  14. Electrooculography-based continuous eye-writing recognition system for efficient assistive communication systems

    PubMed Central

    Shinozaki, Takahiro

    2018-01-01

    Human-computer interface systems whose input is based on eye movements can serve as a means of communication for patients with locked-in syndrome. Eye-writing is one such system; users can input characters by moving their eyes to follow the lines of the strokes corresponding to characters. Although this input method makes it easy for patients to get started because of their familiarity with handwriting, existing eye-writing systems suffer from slow input rates because they require a pause between input characters to simplify the automatic recognition process. In this paper, we propose a continuous eye-writing recognition system that achieves a rapid input rate because it accepts characters eye-written continuously, with no pauses. For recognition purposes, the proposed system first detects eye movements using electrooculography (EOG), and then a hidden Markov model (HMM) is applied to model the EOG signals and recognize the eye-written characters. Additionally, this paper investigates an EOG adaptation that uses a deep neural network (DNN)-based HMM. Experiments with six participants showed an average input speed of 27.9 character/min using Japanese Katakana as the input target characters. A Katakana character-recognition error rate of only 5.0% was achieved using 13.8 minutes of adaptation data. PMID:29425248

  15. Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements

    NASA Astrophysics Data System (ADS)

    Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo

    1999-05-01

    Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  16. Integrated approach for automatic target recognition using a network of collaborative sensors.

    PubMed

    Mahalanobis, Abhijit; Van Nevel, Alan

    2006-10-01

    We introduce what is believed to be a novel concept by which several sensors with automatic target recognition (ATR) capability collaborate to recognize objects. Such an approach would be suitable for netted systems in which the sensors and platforms can coordinate to optimize end-to-end performance. We use correlation filtering techniques to facilitate the development of the concept, although other ATR algorithms may be easily substituted. Essentially, a self-configuring geometry of netted platforms is proposed that positions the sensors optimally with respect to each other, and takes into account the interactions among the sensor, the recognition algorithms, and the classes of the objects to be recognized. We show how such a paradigm optimizes overall performance, and illustrate the collaborative ATR scheme for recognizing targets in synthetic aperture radar imagery by using viewing position as a sensor parameter.

  17. Cultural differences in gaze and emotion recognition: Americans contrast more than Chinese.

    PubMed

    Stanley, Jennifer Tehan; Zhang, Xin; Fung, Helene H; Isaacowitz, Derek M

    2013-02-01

    We investigated the influence of contextual expressions on emotion recognition accuracy and gaze patterns among American and Chinese participants. We expected Chinese participants would be more influenced by, and attend more to, contextual information than Americans. Consistent with our hypothesis, Americans were more accurate than Chinese participants at recognizing emotions embedded in the context of other emotional expressions. Eye-tracking data suggest that, for some emotions, Americans attended more to the target faces, and they made more gaze transitions to the target face than Chinese. For all emotions except anger and disgust, Americans appeared to use more of a contrasting strategy where each face was individually contrasted with the target face, compared with Chinese who used less of a contrasting strategy. Both cultures were influenced by contextual information, although the benefit of contextual information depended upon the perceptual dissimilarity of the contextual emotions to the target emotion and the gaze pattern employed during the recognition task. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  18. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.

    PubMed

    Cui, Wei; Li, Junbai; Decher, Gero

    2016-02-10

    Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cultural Differences in Gaze and Emotion Recognition: Americans Contrast More than Chinese

    PubMed Central

    Tehan Stanley, Jennifer; Zhang, Xin; Fung, Helene H.; Isaacowitz, Derek M.

    2014-01-01

    We investigated the influence of contextual expressions on emotion recognition accuracy and gaze patterns among American and Chinese participants. We expected Chinese participants would be more influenced by, and attend more to, contextual information than Americans. Consistent with our hypothesis, Americans were more accurate than Chinese participants at recognizing emotions embedded in the context of other emotional expressions. Eye tracking data suggest that, for some emotions, Americans attended more to the target faces and made more gaze transitions to the target face than Chinese. For all emotions except anger and disgust, Americans appeared to use more of a contrasting strategy where each face was individually contrasted with the target face, compared with Chinese who used less of a contrasting strategy. Both cultures were influenced by contextual information, although the benefit of contextual information depended upon the perceptual dissimilarity of the contextual emotions to the target emotion and the gaze pattern employed during the recognition task. PMID:22889414

  20. An algorithm for automatic target recognition using passive radar and an EKF for estimating aircraft orientation

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.

    2005-07-01

    Rather than emitting pulses, passive radar systems rely on "illuminators of opportunity," such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, further scaling the RCS. A Rician likelihood model compares the scaled RCS of the illuminated aircraft with those of the potential targets. To improve the robustness of the result, the algorithm jointly optimizes over feasible orientation profiles and target types via dynamic programming.

  1. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Huang, S; Zhao, XF

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs tomore » target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.« less

  2. Signature analysis of ballistic missile warhead with micro-nutation in terahertz band

    NASA Astrophysics Data System (ADS)

    Li, Ming; Jiang, Yue-song

    2013-08-01

    In recent years, the micro-Doppler effect has been proposed as a new technique for signature analysis and extraction of radar targets. The ballistic missile is known as a typical radar target and has been paid many attentions for the complexities of its motions in current researches. The trajectory of a ballistic missile can be generally divided into three stages: boost phase, midcourse phase and terminal phase. The midcourse phase is the most important phase for radar target recognition and interception. In this stage, the warhead forms a typical micro-motion called micro-nutation which consists of three basic micro-motions: spinning, coning and wiggle. This paper addresses the issue of signature analysis of ballistic missile warhead in terahertz band via discussing the micro-Doppler effect. We establish a simplified model (cone-shaped) for the missile warhead followed by the micro-motion models including of spinning, coning and wiggle. Based on the basic formulas of these typical micro-motions, we first derive the theoretical formula of micro-nutation which is the main micro-motion of the missile warhead. Then, we calculate the micro-Doppler frequency in both X band and terahertz band via these micro-Doppler formulas. The simulations are given to show the superiority of our proposed method for the recognition and detection of radar micro targets in terahertz band.

  3. TALE-PvuII fusion proteins--novel tools for gene targeting.

    PubMed

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.

  4. Correlations between psychometric schizotypy, scan path length, fixations on the eyes and face recognition.

    PubMed

    Hills, Peter J; Eaton, Elizabeth; Pake, J Michael

    2016-01-01

    Psychometric schizotypy in the general population correlates negatively with face recognition accuracy, potentially due to deficits in inhibition, social withdrawal, or eye-movement abnormalities. We report an eye-tracking face recognition study in which participants were required to match one of two faces (target and distractor) to a cue face presented immediately before. All faces could be presented with or without paraphernalia (e.g., hats, glasses, facial hair). Results showed that paraphernalia distracted participants, and that the most distracting condition was when the cue and the distractor face had paraphernalia but the target face did not, while there was no correlation between distractibility and participants' scores on the Schizotypal Personality Questionnaire (SPQ). Schizotypy was negatively correlated with proportion of time fixating on the eyes and positively correlated with not fixating on a feature. It was negatively correlated with scan path length and this variable correlated with face recognition accuracy. These results are interpreted as schizotypal traits being associated with a restricted scan path leading to face recognition deficits.

  5. Shape recognition of microbial cells by colloidal cell imprints

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2013-08-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.

  6. Must analysis of meaning follow analysis of form? A time course analysis

    PubMed Central

    Feldman, Laurie B.; Milin, Petar; Cho, Kit W.; Moscoso del Prado Martín, Fermín; O’Connor, Patrick A.

    2015-01-01

    Many models of word recognition assume that processing proceeds sequentially from analysis of form to analysis of meaning. In the context of morphological processing, this implies that morphemes are processed as units of form prior to any influence of their meanings. Some interpret the apparent absence of differences in recognition latencies to targets (SNEAK) in form and semantically similar (sneaky-SNEAK) and in form similar and semantically dissimilar (sneaker-SNEAK) prime contexts at a stimulus onset asynchrony (SOA) of 48 ms as consistent with this claim. To determine the time course over which degree of semantic similarity between morphologically structured primes and their targets influences recognition in the forward masked priming variant of the lexical decision paradigm, we compared facilitation for the same targets after semantically similar and dissimilar primes across a range of SOAs (34–100 ms). The effect of shared semantics on recognition latency increased linearly with SOA when long SOAs were intermixed (Experiments 1A and 1B) and latencies were significantly faster after semantically similar than dissimilar primes at homogeneous SOAs of 48 ms (Experiment 2) and 34 ms (Experiment 3). Results limit the scope of form-then-semantics models of recognition and demonstrate that semantics influences even the very early stages of recognition. Finally, once general performance across trials has been accounted for, we fail to provide evidence for individual differences in morphological processing that can be linked to measures of reading proficiency. PMID:25852512

  7. Must analysis of meaning follow analysis of form? A time course analysis.

    PubMed

    Feldman, Laurie B; Milin, Petar; Cho, Kit W; Moscoso Del Prado Martín, Fermín; O'Connor, Patrick A

    2015-01-01

    Many models of word recognition assume that processing proceeds sequentially from analysis of form to analysis of meaning. In the context of morphological processing, this implies that morphemes are processed as units of form prior to any influence of their meanings. Some interpret the apparent absence of differences in recognition latencies to targets (SNEAK) in form and semantically similar (sneaky-SNEAK) and in form similar and semantically dissimilar (sneaker-SNEAK) prime contexts at a stimulus onset asynchrony (SOA) of 48 ms as consistent with this claim. To determine the time course over which degree of semantic similarity between morphologically structured primes and their targets influences recognition in the forward masked priming variant of the lexical decision paradigm, we compared facilitation for the same targets after semantically similar and dissimilar primes across a range of SOAs (34-100 ms). The effect of shared semantics on recognition latency increased linearly with SOA when long SOAs were intermixed (Experiments 1A and 1B) and latencies were significantly faster after semantically similar than dissimilar primes at homogeneous SOAs of 48 ms (Experiment 2) and 34 ms (Experiment 3). Results limit the scope of form-then-semantics models of recognition and demonstrate that semantics influences even the very early stages of recognition. Finally, once general performance across trials has been accounted for, we fail to provide evidence for individual differences in morphological processing that can be linked to measures of reading proficiency.

  8. On Algorithms for Generating Computationally Simple Piecewise Linear Classifiers

    DTIC Science & Technology

    1989-05-01

    suffers. - Waveform classification, e.g. speech recognition, seismic analysis (i.e. discrimination between earthquakes and nuclear explosions), target...assuming Gaussian distributions (B-G) d) Bayes classifier with probability densities estimated with the k-N-N method (B- kNN ) e) The -arest neighbour...range of classifiers are chosen including a fast, easy computable and often used classifier (B-G), reliable and complex classifiers (B- kNN and NNR

  9. Half-quadratic variational regularization methods for speckle-suppression and edge-enhancement in SAR complex image

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Wang, Guang-xin

    2008-12-01

    Synthetic aperture radar (SAR) is an active remote sensing sensor. It is a coherent imaging system, the speckle is its inherent default, which affects badly the interpretation and recognition of the SAR targets. Conventional methods of removing the speckle is studied usually in real SAR image, which reduce the edges of the images at the same time as depressing the speckle. Morever, Conventional methods lost the information about images phase. Removing the speckle and enhancing the target and edge simultaneously are still a puzzle. To suppress the spckle and enhance the targets and the edges simultaneously, a half-quadratic variational regularization method in complex SAR image is presented, which is based on the prior knowledge of the targets and the edge. Due to the non-quadratic and non- convex quality and the complexity of the cost function, a half-quadratic variational regularization variation is used to construct a new cost function,which is solved by alternate optimization. In the proposed scheme, the construction of the model, the solution of the model and the selection of the model peremeters are studied carefully. In the end, we validate the method using the real SAR data.Theoretic analysis and the experimental results illustrate the the feasibility of the proposed method. Further more, the proposed method can preserve the information about images phase.

  10. Automatic three-dimensional measurement of large-scale structure based on vision metrology.

    PubMed

    Zhu, Zhaokun; Guan, Banglei; Zhang, Xiaohu; Li, Daokui; Yu, Qifeng

    2014-01-01

    All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods.

  11. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases

    PubMed Central

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  12. Collaboration in Associative Recognition Memory: Using Recalled Information to Defend "New" Judgments

    ERIC Educational Resources Information Center

    Clark, Steven E.; Abbe, Allison; Larson, Rakel P.

    2006-01-01

    S. E. Clark, A. Hori, A. Putnam, and T. J. Martin (2000) showed that collaboration on a recognition memory task produced facilitation in recognition of targets but had inconsistent and sometimes negative effects regarding distractors. They accounted for these results within the framework of a dual-process, recall-plus-familiarity model but…

  13. Declines in Representational Quality and Strategic Retrieval Processes Contribute to Age-Related Increases in False Recognition

    ERIC Educational Resources Information Center

    Trelle, Alexandra N.; Henson, Richard N.; Green, Deborah A. E.; Simons, Jon S.

    2017-01-01

    In a Yes/No object recognition memory test with similar lures, older adults typically exhibit elevated rates of false recognition. However, the contributions of impaired retrieval, relative to reduced availability of target details, are difficult to disentangle using such a test. The present investigation sought to decouple these factors by…

  14. The Slow Developmental Time Course of Real-Time Spoken Word Recognition

    ERIC Educational Resources Information Center

    Rigler, Hannah; Farris-Trimble, Ashley; Greiner, Lea; Walker, Jessica; Tomblin, J. Bruce; McMurray, Bob

    2015-01-01

    This study investigated the developmental time course of spoken word recognition in older children using eye tracking to assess how the real-time processing dynamics of word recognition change over development. We found that 9-year-olds were slower to activate the target words and showed more early competition from competitor words than…

  15. Amplitude (vu and rms) and Temporal (msec) Measures of Two Northwestern University Auditory Test No. 6 Recordings.

    PubMed

    Wilson, Richard H

    2015-04-01

    In 1940, a cooperative effort by the radio networks and Bell Telephone produced the volume unit (vu) meter that has been the mainstay instrument for monitoring the level of speech signals in commercial broadcasting and research laboratories. With the use of computers, today the amplitude of signals can be quantified easily using the root mean square (rms) algorithm. Researchers had previously reported that amplitude estimates of sentences and running speech were 4.8 dB higher when measured with a vu meter than when calculated with rms. This study addresses the vu-rms relation as applied to the carrier phrase and target word paradigm used to assess word-recognition abilities, the premise being that by definition the word-recognition paradigm is a special and different case from that described previously. The purpose was to evaluate the vu and rms amplitude relations for the carrier phrases and target words commonly used to assess word-recognition abilities. In addition, the relations with the target words between rms level and recognition performance were examined. Descriptive and correlational. Two recoded versions of the Northwestern University Auditory Test No. 6 were evaluated, the Auditec of St. Louis (Auditec) male speaker and the Department of Veterans Affairs (VA) female speaker. Using both visual and auditory cues from a waveform editor, the temporal onsets and offsets were defined for each carrier phrase and each target word. The rms amplitudes for those segments then were computed and expressed in decibels with reference to the maximum digitization range. The data were maintained for each of the four Northwestern University Auditory Test No. 6 word lists. Descriptive analyses were used with linear regressions used to evaluate the reliability of the measurement technique and the relation between the rms levels of the target words and recognition performances. Although there was a 1.3 dB difference between the calibration tones, the mean levels of the carrier phrases for the two recordings were -14.8 dB (Auditec) and -14.1 dB (VA) with standard deviations <1 dB. For the target words, the mean amplitudes were -19.9 dB (Auditec) and -18.3 dB (VA) with standard deviations ranging from 1.3 to 2.4 dB. The mean durations for the carrier phrases of both recordings were 593-594 msec, with the mean durations of the target words a little different, 509 msec (Auditec) and 528 msec (VA). Random relations were observed between the recognition performances and rms levels of the target words. Amplitude and temporal data for the individual words are provided. The rms levels of the carrier phrases closely approximated (±1 dB) the rms levels of the calibration tones, both of which were set to 0 vu (dB). The rms levels of the target words were 5-6 dB below the levels of the carrier phrases and were substantially more variable than the levels of the carrier phrases. The relation between the rms levels of the target words and recognition performances on the words was random. American Academy of Audiology.

  16. Task-Dependent Masked Priming Effects in Visual Word Recognition

    PubMed Central

    Kinoshita, Sachiko; Norris, Dennis

    2012-01-01

    A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal: For example, only word targets show priming in the lexical decision task, but both words and non-words do in the same-different task; semantic priming effects are generally weak in the lexical decision task but are robust in the semantic categorization task. We explain how such task dependence arises within the Bayesian Reader account of masked priming (Norris and Kinoshita, 2008), and how the task dissociations can be used to understand the early processes in lexical access. PMID:22675316

  17. Ease of identifying words degraded by visual noise.

    PubMed

    Barber, P; de la Mahotière, C

    1982-08-01

    A technique is described for investigating word recognition involving the superimposition of 'noise' on the visual target word. For this task a word is printed in the form of letters made up of separate elements; noise consists of additional elements which serve to reduce the ease whereby the words may be recognized, and a threshold-like measure can be obtained in terms of the amount of noise. A word frequency effect was obtained for the noise task, and for words presented tachistoscopically but in conventional typography. For the tachistoscope task, however, the frequency effect depended on the method of presentation. A second study showed no effect of inspection interval on performance on the noise task. A word-frequency effect was also found in a third experiment with tachistoscopic exposure of the noise task stimuli in undegraded form. The question of whether common processes are drawn on by tasks entailing different ways of varying ease of recognition is addressed, and the suitability of different tasks for word recognition research is discussed.

  18. One-Shot Learning of Human Activity With an MAP Adapted GMM and Simplex-HMM.

    PubMed

    Rodriguez, Mario; Orrite, Carlos; Medrano, Carlos; Makris, Dimitrios

    2016-05-10

    This paper presents a novel activity class representation using a single sequence for training. The contribution of this representation lays on the ability to train an one-shot learning recognition system, useful in new scenarios where capturing and labeling sequences is expensive or impractical. The method uses a universal background model of local descriptors obtained from source databases available on-line and adapts it to a new sequence in the target scenario through a maximum a posteriori adaptation. Each activity sample is encoded in a sequence of normalized bag of features and modeled by a new hidden Markov model formulation, where the expectation-maximization algorithm for training is modified to deal with observations consisting in vectors in a unit simplex. Extensive experiments in recognition have been performed using one-shot learning over the public datasets Weizmann, KTH, and IXMAS. These experiments demonstrate the discriminative properties of the representation and the validity of application in recognition systems, achieving state-of-the-art results.

  19. Target-triggering multiple-cycle signal amplification strategy for ultrasensitive detection of DNA based on QCM and SPR.

    PubMed

    Song, Weiling; Yin, Wenshuo; Sun, Wenbo; Guo, Xiaoyan; He, Peng; Yang, Xiaoyan; Zhang, Xiaoru

    2018-04-24

    Detection of ultralow concentrations of nucleic acid sequences is a central challenge in the early diagnosis of genetic diseases. Herein, we developed a target-triggering cascade multiple cycle amplification for ultrasensitive DNA detection using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). It was based on the exonuclease Ⅲ (Exo Ⅲ)-assisted signal amplification and the hybridization chain reaction (HCR). The streptavidin-coated Au-NPs (Au-NPs-SA) were assembled on the HCR products as recognition element. Upon sensing of target DNA, the duplex DNA probe triggered the Exo Ⅲ cleavage process, accompanied by generating a new secondary target DNA and releasing target DNA. The released target DNA and the secondary target DNA were recycled. Simultaneously, numerous single strands were liberated and acted as the trigger of HCR to generate further signal amplification, resulting in the immobilization of abundant Au-NPs-SA on the gold substrate. The QCM sensor results were found to be comparable to that achieved using a SPR sensor platform. This method exhibited a high sensitivity toward target DNA with a detection limit of 0.70 fM. The high sensitivity and specificity make this method a great potential for detecting DNA with trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Convolutional neural network using generated data for SAR ATR with limited samples

    NASA Astrophysics Data System (ADS)

    Cong, Longjian; Gao, Lei; Zhang, Hui; Sun, Peng

    2018-03-01

    Being able to adapt all weather at all times, it has been a hot research topic that using Synthetic Aperture Radar(SAR) for remote sensing. Despite all the well-known advantages of SAR, it is hard to extract features because of its unique imaging methodology, and this challenge attracts the research interest of traditional Automatic Target Recognition(ATR) methods. With the development of deep learning technologies, convolutional neural networks(CNNs) give us another way out to detect and recognize targets, when a huge number of samples are available, but this premise is often not hold, when it comes to monitoring a specific type of ships. In this paper, we propose a method to enhance the performance of Faster R-CNN with limited samples to detect and recognize ships in SAR images.

  1. Effect of Dopamine Therapy on Nonverbal Affect Burst Recognition in Parkinson's Disease

    PubMed Central

    Péron, Julie; Grandjean, Didier; Drapier, Sophie; Vérin, Marc

    2014-01-01

    Background Parkinson's disease (PD) provides a model for investigating the involvement of the basal ganglia and mesolimbic dopaminergic system in the recognition of emotions from voices (i.e., emotional prosody). Although previous studies of emotional prosody recognition in PD have reported evidence of impairment, none of them compared PD patients at different stages of the disease, or ON and OFF dopamine replacement therapy, making it difficult to determine whether their impairment was due to general cognitive deterioration or to a more specific dopaminergic deficit. Methods We explored the involvement of the dopaminergic pathways in the recognition of nonverbal affect bursts (onomatopoeias) in 15 newly diagnosed PD patients in the early stages of the disease, 15 PD patients in the advanced stages of the disease and 15 healthy controls. The early PD group was studied in two conditions: ON and OFF dopaminergic therapy. Results Results showed that the early PD patients performed more poorly in the ON condition than in the OFF one, for overall emotion recognition, as well as for the recognition of anger, disgust and fear. Additionally, for anger, the early PD ON patients performed more poorly than controls. For overall emotion recognition, both advanced PD patients and early PD ON patients performed more poorly than controls. Analysis of continuous ratings on target and nontarget visual analog scales confirmed these patterns of results, showing a systematic emotional bias in both the advanced PD and early PD ON (but not OFF) patients compared with controls. Conclusions These results i) confirm the involvement of the dopaminergic pathways and basal ganglia in emotional prosody recognition, and ii) suggest a possibly deleterious effect of dopatherapy on affective abilities in the early stages of PD. PMID:24651759

  2. Background characterization techniques for target detection using scene metrics and pattern recognition

    NASA Astrophysics Data System (ADS)

    Noah, Paul V.; Noah, Meg A.; Schroeder, John W.; Chernick, Julian A.

    1990-09-01

    The U.S. Army has a requirement to develop systems for the detection and identification of ground targets in a clutter environment. Autonomous Homing Munitions (AHM) using infrared, visible, millimeter wave and other sensors are being investigated for this application. Advanced signal processing and computational approaches using pattern recognition and artificial intelligence techniques combined with multisensor data fusion have the potential to meet the Army's requirements for next generation ARM.

  3. Association of enhanced limbic response to threat with decreased cortical facial recognition memory response in schizophrenia

    PubMed Central

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Loughead, James; Ruparel, Kosha; Valdez, Jeffrey N.; Siegel, Steven J.; Kohler, Christian G.; Gur, Raquel E.; Gur, Ruben C.

    2014-01-01

    Objective Recognition memory of faces is impaired in patients with schizophrenia, as is the neural processing of threat-related signals, but how these deficits interact to produce symptoms is unclear. Here we used an affective face recognition paradigm to examine possible interactions between cognitive and affective neural systems in schizophrenia. Methods fMRI (3T) BOLD response was examined in 21 controls and 16 patients during a two-choice recognition task using images of human faces. Each target face had previously been displayed with a threatening or non-threatening affect, but here were displayed with neutral affect. Responses to successful recognition and for the effect of previously threatening vs. non-threatening affect were evaluated, and correlations with total BPRS examined. Functional connectivity analyses examined the relationship between activation in the amygdala and cortical regions involved in recognition memory. Results Patients performed the task more slowly than controls. Controls recruited the expected cortical regions to a greater degree than patients, and patients with more severe symptoms demonstrated proportionally less recruitment. Increased symptoms were also correlated with augmented amygdala and orbitofrontal cortex response to threatening faces. Controls exhibited a negative correlation between activity in the amygdala and cortical regions involved in cognition, while patients showed a weakening of that relationship. Conclusions Increased symptoms were related to an enhanced threat response in limbic regions and a diminished recognition memory response in cortical regions, supporting a link between two brain systems often examined in isolation. This finding suggests that abnormal processing of threat-related signals in the environment may exacerbate cognitive impairment in schizophrenia. PMID:20194482

  4. Control of working memory: effects of attention training on target recognition and distractor salience in an auditory selection task.

    PubMed

    Melara, Robert D; Tong, Yunxia; Rao, Aparna

    2012-01-09

    Behavioral and electrophysiological measures of target and distractor processing were examined in an auditory selective attention task before and after three weeks of distractor suppression training. Behaviorally, training improved target recognition and led to less conservative and more rapid responding. Training also effectively shortened the temporal distance between distractors and targets needed to achieve a fixed level of target sensitivity. The effects of training on event-related potentials were restricted to the distracting stimulus: earlier N1 latency, enhanced P2 amplitude, and weakened P3 amplitude. Nevertheless, as distractor P2 amplitude increased, so too did target P3 amplitude, connecting experience-dependent changes in distractor processing with greater distinctiveness of targets in working memory. We consider the effects of attention training on the processing priorities, representational noise, and inhibitory processes operating in working memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-07

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.

  6. Real-time road detection in infrared imagery

    NASA Astrophysics Data System (ADS)

    Andre, Haritini E.; McCoy, Keith

    1990-09-01

    Automatic road detection is an important part in many scene recognition applications. The extraction of roads provides a means of navigation and position update for remotely piloted vehicles or autonomous vehicles. Roads supply strong contextual information which can be used to improve the performance of automatic target recognition (ATh) systems by directing the search for targets and adjusting target classification confidences. This paper will describe algorithmic techniques for labeling roads in high-resolution infrared imagery. In addition, realtime implementation of this structural approach using a processor array based on the Martin Marietta Geometric Arithmetic Parallel Processor (GAPPTh) chip will be addressed. The algorithm described is based on the hypothesis that a road consists of pairs of line segments separated by a distance "d" with opposite gradient directions (antiparallel). The general nature of the algorithm, in addition to its parallel implementation in a single instruction, multiple data (SIMD) machine, are improvements to existing work. The algorithm seeks to identify line segments meeting the road hypothesis in a manner that performs well, even when the side of the road is fragmented due to occlusion or intersections. The use of geometrical relationships between line segments is a powerful yet flexible method of road classification which is independent of orientation. In addition, this approach can be used to nominate other types of objects with minor parametric changes.

  7. Excimer-based peptide beacons: a convenient experimental approach for monitoring polypeptide-protein and polypeptide-oligonucleotide interactions.

    PubMed

    Oh, Kenneth J; Cash, Kevin J; Plaxco, Kevin W

    2006-11-01

    While protein-polypeptide and nucleic acid-polypeptide interactions are of significant experimental interest, quantitative methods for the characterization of such interactions are often cumbersome. Here we described a relatively simple means of optically monitoring such interactions using excimer-based peptide beacons (PBs). The design of PBs is based on the observation that, whereas short peptides are almost invariably unfolded and highly dynamic, they become rigid when complexed with macromolecular targets. Using this binding-induced folding to segregate two pyrene moieties and therefore inhibit excimer formation, we have produced PBs directed against both anti-HIV antibodies and the retroviral transactive response (TAR) RNA hairpin. For both polypeptides, target recognition is accompanied by a roughly 2-fold decrease in excimer emission, thus allowing the detection of their respective targets at concentrations of a few nanomolar. Because excimer emission requires the formation of a tight, precisely oriented pyrene dimer, even relatively trivial binding-induced segregation reduces fluorescence significantly. This suggests that the PB approach will be suitable for monitoring a wide range of peptide-macromolecule recognition events. Moreover, the synthesis of excimer-based PBs utilizes commercially available modified pyrenes in a simple and well-established protocol, making the approach well suited for routine laboratory applications.

  8. Automatic target recognition apparatus and method

    DOEpatents

    Baumgart, Chris W.; Ciarcia, Christopher A.

    2000-01-01

    An automatic target recognition apparatus (10) is provided, having a video camera/digitizer (12) for producing a digitized image signal (20) representing an image containing therein objects which objects are to be recognized if they meet predefined criteria. The digitized image signal (20) is processed within a video analysis subroutine (22) residing in a computer (14) in a plurality of parallel analysis chains such that the objects are presumed to be lighter in shading than the background in the image in three of the chains and further such that the objects are presumed to be darker than the background in the other three chains. In two of the chains the objects are defined by surface texture analysis using texture filter operations. In another two of the chains the objects are defined by background subtraction operations. In yet another two of the chains the objects are defined by edge enhancement processes. In each of the analysis chains a calculation operation independently determines an error factor relating to the probability that the objects are of the type which should be recognized, and a probability calculation operation combines the results of the analysis chains.

  9. Optimization of Support Vector Machine (SVM) for Object Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.

  10. ERP Correlates of Target-Distracter Differentiation in Repeated Runs of a Continuous Recognition Task with Emotional and Neutral Faces

    ERIC Educational Resources Information Center

    Treese, Anne-Cecile; Johansson, Mikael; Lindgren, Magnus

    2010-01-01

    The emotional salience of faces has previously been shown to induce memory distortions in recognition memory tasks. This event-related potential (ERP) study used repeated runs of a continuous recognition task with emotional and neutral faces to investigate emotion-induced memory distortions. In the second and third runs, participants made more…

  11. A Pilot Study of a Test for Visual Recognition Memory in Adults with Moderate to Severe Intellectual Disability

    ERIC Educational Resources Information Center

    Pyo, Geunyeong; Ala, Tom; Kyrouac, Gregory A.; Verhulst, Steven J.

    2010-01-01

    Objective assessment of memory functioning is an important part of evaluation for Dementia of Alzheimer Type (DAT). The revised Picture Recognition Memory Test (r-PRMT) is a test for visual recognition memory to assess memory functioning of persons with intellectual disabilities (ID), specifically targeting moderate to severe ID. A pilot study was…

  12. Linguistic contributions to speech-on-speech masking for native and non-native listeners: language familiarity and semantic content.

    PubMed

    Brouwer, Susanne; Van Engen, Kristin J; Calandruccio, Lauren; Bradlow, Ann R

    2012-02-01

    This study examined whether speech-on-speech masking is sensitive to variation in the degree of similarity between the target and the masker speech. Three experiments investigated whether speech-in-speech recognition varies across different background speech languages (English vs Dutch) for both English and Dutch targets, as well as across variation in the semantic content of the background speech (meaningful vs semantically anomalous sentences), and across variation in listener status vis-à-vis the target and masker languages (native, non-native, or unfamiliar). The results showed that the more similar the target speech is to the masker speech (e.g., same vs different language, same vs different levels of semantic content), the greater the interference on speech recognition accuracy. Moreover, the listener's knowledge of the target and the background language modulate the size of the release from masking. These factors had an especially strong effect on masking effectiveness in highly unfavorable listening conditions. Overall this research provided evidence that that the degree of target-masker similarity plays a significant role in speech-in-speech recognition. The results also give insight into how listeners assign their resources differently depending on whether they are listening to their first or second language. © 2012 Acoustical Society of America

  13. Linguistic contributions to speech-on-speech masking for native and non-native listeners: Language familiarity and semantic content

    PubMed Central

    Brouwer, Susanne; Van Engen, Kristin J.; Calandruccio, Lauren; Bradlow, Ann R.

    2012-01-01

    This study examined whether speech-on-speech masking is sensitive to variation in the degree of similarity between the target and the masker speech. Three experiments investigated whether speech-in-speech recognition varies across different background speech languages (English vs Dutch) for both English and Dutch targets, as well as across variation in the semantic content of the background speech (meaningful vs semantically anomalous sentences), and across variation in listener status vis-à-vis the target and masker languages (native, non-native, or unfamiliar). The results showed that the more similar the target speech is to the masker speech (e.g., same vs different language, same vs different levels of semantic content), the greater the interference on speech recognition accuracy. Moreover, the listener’s knowledge of the target and the background language modulate the size of the release from masking. These factors had an especially strong effect on masking effectiveness in highly unfavorable listening conditions. Overall this research provided evidence that that the degree of target-masker similarity plays a significant role in speech-in-speech recognition. The results also give insight into how listeners assign their resources differently depending on whether they are listening to their first or second language. PMID:22352516

  14. Simultaneous Versus Sequential Presentation in Testing Recognition Memory for Faces.

    PubMed

    Finley, Jason R; Roediger, Henry L; Hughes, Andrea D; Wahlheim, Christopher N; Jacoby, Larry L

    2015-01-01

    Three experiments examined the issue of whether faces could be better recognized in a simul- taneous test format (2-alternative forced choice [2AFC]) or a sequential test format (yes-no). All experiments showed that when target faces were present in the test, the simultaneous procedure led to superior performance (area under the ROC curve), whether lures were high or low in similarity to the targets. However, when a target-absent condition was used in which no lures resembled the targets but the lures were similar to each other, the simultaneous procedure yielded higher false alarm rates (Experiments 2 and 3) and worse overall performance (Experi- ment 3). This pattern persisted even when we excluded responses that participants opted to withhold rather than volunteer. We conclude that for the basic recognition procedures used in these experiments, simultaneous presentation of alternatives (2AFC) generally leads to better discriminability than does sequential presentation (yes-no) when a target is among the alterna- tives. However, our results also show that the opposite can occur when there is no target among the alternatives. An important future step is to see whether these patterns extend to more realistic eyewitness lineup procedures. The pictures used in the experiment are available online at http://www.press.uillinois.edu/journals/ajp/media/testing_recognition/.

  15. Sleep and eyewitness memory: Fewer false identifications after sleep when the target is absent from the lineup.

    PubMed

    Stepan, Michelle E; Dehnke, Taylor M; Fenn, Kimberly M

    2017-01-01

    Inaccurate eyewitness identifications are the leading cause of known false convictions in the United States. Moreover, improving eyewitness memory is difficult and often unsuccessful. Sleep consistently strengthens and protects memory from interference, particularly when a recall test is used. However, the effect of sleep on recognition memory is more equivocal. Eyewitness identification tests are often recognition based, thus leaving open the question of how sleep affects recognition performance in an eyewitness context. In the current study, we investigated the effect of sleep on eyewitness memory. Participants watched a video of a mock-crime and attempted to identify the perpetrator from a simultaneous lineup after a 12-hour retention interval that either spanned a waking day or night of sleep. In Experiment 1, we used a target-present lineup and, in Experiment 2, we used a target-absent lineup in order to investigate correct and false identifications, respectively. Sleep reduced false identifications in the target-absent lineup (Experiment 2) but had no effect on correct identifications in the target-present lineup (Experiment 1). These results are discussed with respect to memory strength and decision making strategies.

  16. Sleep and eyewitness memory: Fewer false identifications after sleep when the target is absent from the lineup

    PubMed Central

    Dehnke, Taylor M.; Fenn, Kimberly M.

    2017-01-01

    Inaccurate eyewitness identifications are the leading cause of known false convictions in the United States. Moreover, improving eyewitness memory is difficult and often unsuccessful. Sleep consistently strengthens and protects memory from interference, particularly when a recall test is used. However, the effect of sleep on recognition memory is more equivocal. Eyewitness identification tests are often recognition based, thus leaving open the question of how sleep affects recognition performance in an eyewitness context. In the current study, we investigated the effect of sleep on eyewitness memory. Participants watched a video of a mock-crime and attempted to identify the perpetrator from a simultaneous lineup after a 12-hour retention interval that either spanned a waking day or night of sleep. In Experiment 1, we used a target-present lineup and, in Experiment 2, we used a target-absent lineup in order to investigate correct and false identifications, respectively. Sleep reduced false identifications in the target-absent lineup (Experiment 2) but had no effect on correct identifications in the target-present lineup (Experiment 1). These results are discussed with respect to memory strength and decision making strategies. PMID:28877169

  17. A Novel Locally Linear KNN Method With Applications to Visual Recognition.

    PubMed

    Liu, Qingfeng; Liu, Chengjun

    2017-09-01

    A locally linear K Nearest Neighbor (LLK) method is presented in this paper with applications to robust visual recognition. Specifically, the concept of an ideal representation is first presented, which improves upon the traditional sparse representation in many ways. The objective function based on a host of criteria for sparsity, locality, and reconstruction is then optimized to derive a novel representation, which is an approximation to the ideal representation. The novel representation is further processed by two classifiers, namely, an LLK-based classifier and a locally linear nearest mean-based classifier, for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Additional new theoretical analysis is presented, such as the nonnegative constraint, the group regularization, and the computational efficiency of the proposed LLK method. New methods such as a shifted power transformation for improving reliability, a coefficients' truncating method for enhancing generalization, and an improved marginal Fisher analysis method for feature extraction are proposed to further improve visual recognition performance. Extensive experiments are implemented to evaluate the proposed LLK method for robust visual recognition. In particular, eight representative data sets are applied for assessing the performance of the LLK method for various visual recognition applications, such as action recognition, scene recognition, object recognition, and face recognition.

  18. Object recognition with hierarchical discriminant saliency networks.

    PubMed

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and computer vision literatures. This demonstrates benefits for all the functional enhancements of the HDSN, the class tuning inherent to discriminant saliency, and saliency layers based on templates of increasing target selectivity and invariance. Altogether, these experiments suggest that there are non-trivial benefits in integrating attention and recognition.

  19. Targeting RNA in mammalian systems with small molecules.

    PubMed

    Donlic, Anita; Hargrove, Amanda E

    2018-05-03

    The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease. © 2018 Wiley Periodicals, Inc.

  20. ROBIN: a platform for evaluating automatic target recognition algorithms: II. Protocols used for evaluating algorithms and results obtained on the SAGEM DS database

    NASA Astrophysics Data System (ADS)

    Duclos, D.; Lonnoy, J.; Guillerm, Q.; Jurie, F.; Herbin, S.; D'Angelo, E.

    2008-04-01

    Over the five past years, the computer vision community has explored many different avenues of research for Automatic Target Recognition. Noticeable advances have been made and we are now in the situation where large-scale evaluations of ATR technologies have to be carried out, to determine what the limitations of the recently proposed methods are and to determine the best directions for future works. ROBIN, which is a project funded by the French Ministry of Defence and by the French Ministry of Research, has the ambition of being a new reference for benchmarking ATR algorithms in operational contexts. This project, headed by major companies and research centers involved in Computer Vision R&D in the field of Defense (Bertin Technologies, CNES, ECA, DGA, EADS, INRIA, ONERA, MBDA, SAGEM, THALES) recently released a large dataset of several thousands of hand-annotated infrared and RGB images of different targets in different situations. Setting up an evaluation campaign requires us to define, accurately and carefully, sets of data (both for training ATR algorithms and for their evaluation), tasks to be evaluated, and finally protocols and metrics for the evaluation. ROBIN offers interesting contributions to each one of these three points. This paper first describes, justifies and defines the set of functions used in the ROBIN competitions and relevant for evaluating ATR algorithms (Detection, Localization, Recognition and Identification). It also defines the metrics and the protocol used for evaluating these functions. In the second part of the paper, the results obtained by several state-of-the-art algorithms on the SAGEM DS database (a subpart of ROBIN) are presented and discussed

  1. Salient Feature Identification and Analysis using Kernel-Based Classification Techniques for Synthetic Aperture Radar Automatic Target Recognition

    DTIC Science & Technology

    2014-03-27

    and machine learning for a range of research including such topics as medical imaging [10] and handwriting recognition [11]. The type of feature...1989. [11] C. Bahlmann, B. Haasdonk, and H. Burkhardt, “Online handwriting recognition with support vector machines-a kernel approach,” in Eighth...International Workshop on Frontiers in Handwriting Recognition, pp. 49–54, IEEE, 2002. [12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine

  2. Colocalization recognition-activated cascade signal amplification strategy for ultrasensitive detection of transcription factors.

    PubMed

    Zhu, Desong; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2017-03-15

    Transcription factors (TFs) bind to specific double-stranded DNA (dsDNA) sequences in the regulatory regions of genes to regulate the process of gene transcription. Their expression levels sensitively reflect cell developmental situation and disease state. TFs have become potential diagnostic markers and therapeutic targets of cancers and some other diseases. Hence, high sensitive detection of TFs is of vital importance for early diagnosis of diseases and drugs development. The traditional exonucleases-assisted signal amplification methods suffered from the false positives caused by incomplete digestion of excess recognition probes. Herein, based on a new recognition way-colocalization recognition (CR)-activated dual signal amplification, an ultrasensitive fluorescent detection strategy for TFs was developed. TFs-induced the colocalization of three split recognition components resulted in noticeable increases of local effective concentrations and hybridization of three split components, which activated the subsequent cascade signal amplification including strand displacement amplification (SDA) and exponential rolling circle amplification (ERCA). This strategy eliminated the false positive influence and achieved ultra-high sensitivity towards the purified NF-κB p50 with detection limit of 2.0×10 -13 M. Moreover, NF-κB p50 can be detected in as low as 0.21ngμL -1 HeLa cell nuclear extracts. In addition, this proposed strategy could be used for the screening of NF-κB p50 activity inhibitors and potential anti-NF-κB p50 drugs. Finally, our proposed strategy offered a potential method for reliable detection of TFs in medical diagnosis and treatment research of cancers and other related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A Hybrid Neural Network and Feature Extraction Technique for Target Recognition.

    DTIC Science & Technology

    target features are extracted, the extracted data being evaluated in an artificial neural network to identify a target at a location within the image scene from which the different viewing angles extend.

  4. Effects of emotion recognition training on mood among individuals with high levels of depressive symptoms: study protocol for a randomised controlled trial

    PubMed Central

    2013-01-01

    Background We have developed a new paradigm that targets the recognition of facial expression of emotions. Here we report the protocol of a randomised controlled trial of the effects of emotion recognition training on mood in a sample of individuals with depressive symptoms over a 6-week follow-up period. Methods/Design We will recruit 190 adults from the general population who report high levels of depressive symptoms (defined as a score ≥ 14 on the Beck Depression Inventory-II). Participants will attend a screening session and will be randomised to intervention or control procedures, repeated five times over consecutive days (Monday to Friday). A follow-up session will take place at end-of -treatment, 2-weeks and 6-weeks after training. Our primary study outcome will be depressive symptoms, Beck Depression Inventory- II (rated over the past two weeks). Our secondary outcomes are: depressive symptoms, Hamilton Rating Scale for Depression; anxiety symptoms, Beck Anxiety Inventory (rated over the past month); positive affect, Positive and Negative Affect Schedule (rated as ‘how you feel right now’); negative affect, Positive and Negative Affect Schedule (rated as ‘how you feel right now’); emotion sensitivity, Emotion Recognition Task (test phase); approach motivation and persistence, the Fishing Game; and depressive interpretation bias, Scrambled Sentences Test. Discussion This study is of a novel cognitive bias modification technique that targets biases in emotional processing characteristic of depression, and can be delivered automatically via computer, Internet or Smartphone. It therefore has potential to be a valuable cost-effective adjunctive treatment for depression which may be used together with more traditional psychotherapy, cognitive-behavioural therapy and pharmacotherapy. Trial registration Current Controlled Trials: ISRCTN17767674 PMID:23725208

  5. Chapter 17. Extension of endogenous primers as a tool to detect micro-RNA targets.

    PubMed

    Vatolin, Sergei; Weil, Robert J

    2008-01-01

    Mammalian cells express a large number of small, noncoding RNAs, including micro-RNAs (miRNAs), that can regulate both the level of a target mRNA and the protein produced by the target mRNA. Recognition of miRNA targets is a complicated process, as a single target mRNA may be regulated by several miRNAs. The potential for combinatorial miRNA-mediated regulation of miRNA targets complicates diagnostic and therapeutic applications of miRNAs. Despite significant progress in understanding the biology of miRNAs and advances in computational predictions of miRNA targets, methods that permit direct physical identification of miRNA-mRNA complexes in eukaryotic cells are still required. Several groups have utilized coimmunoprecipitation of RNA associated with a protein(s) that is part of the RNA silencing macromolecular complex. This chapter describes a detailed but straightforward strategy that identifies miRNA targets based on the assumption that small RNAs base paired with a complementary target mRNA can be used as a primer to synthesize cDNA that may be used for cloning, identification, and functional analysis.

  6. HomoTarget: a new algorithm for prediction of microRNA targets in Homo sapiens.

    PubMed

    Ahmadi, Hamed; Ahmadi, Ali; Azimzadeh-Jamalkandi, Sadegh; Shoorehdeli, Mahdi Aliyari; Salehzadeh-Yazdi, Ali; Bidkhori, Gholamreza; Masoudi-Nejad, Ali

    2013-02-01

    MiRNAs play an essential role in the networks of gene regulation by inhibiting the translation of target mRNAs. Several computational approaches have been proposed for the prediction of miRNA target-genes. Reports reveal a large fraction of under-predicted or falsely predicted target genes. Thus, there is an imperative need to develop a computational method by which the target mRNAs of existing miRNAs can be correctly identified. In this study, combined pattern recognition neural network (PRNN) and principle component analysis (PCA) architecture has been proposed in order to model the complicated relationship between miRNAs and their target mRNAs in humans. The results of several types of intelligent classifiers and our proposed model were compared, showing that our algorithm outperformed them with higher sensitivity and specificity. Using the recent release of the mirBase database to find potential targets of miRNAs, this model incorporated twelve structural, thermodynamic and positional features of miRNA:mRNA binding sites to select target candidates. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Application of Sequence Comparison Methods to Multisensor Data Fusion and Target Recognition

    DTIC Science & Technology

    1993-06-18

    lin- ear comparison). A particularly attractive aspect of the proposed fusion scheme is that it has the potential to work for any object with (1...radar sensing is a historical custom - however, the reader should keep in mind that the fundamental issue in this research is to explore and exploit...reduce the computationally expensive need to compute partial derivatives. In usual practice, the computationally more attractive filter design is

  8. Image preprocessing study on KPCA-based face recognition

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Li, Dehua

    2015-12-01

    Face recognition as an important biometric identification method, with its friendly, natural, convenient advantages, has obtained more and more attention. This paper intends to research a face recognition system including face detection, feature extraction and face recognition, mainly through researching on related theory and the key technology of various preprocessing methods in face detection process, using KPCA method, focuses on the different recognition results in different preprocessing methods. In this paper, we choose YCbCr color space for skin segmentation and choose integral projection for face location. We use erosion and dilation of the opening and closing operation and illumination compensation method to preprocess face images, and then use the face recognition method based on kernel principal component analysis method for analysis and research, and the experiments were carried out using the typical face database. The algorithms experiment on MATLAB platform. Experimental results show that integration of the kernel method based on PCA algorithm under certain conditions make the extracted features represent the original image information better for using nonlinear feature extraction method, which can obtain higher recognition rate. In the image preprocessing stage, we found that images under various operations may appear different results, so as to obtain different recognition rate in recognition stage. At the same time, in the process of the kernel principal component analysis, the value of the power of the polynomial function can affect the recognition result.

  9. TALE-PvuII Fusion Proteins – Novel Tools for Gene Targeting

    PubMed Central

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity. PMID:24349308

  10. A Method of Three-Dimensional Recording of Mandibular Movement Based on Two-Dimensional Image Feature Extraction

    PubMed Central

    Li, Zhongke; Yang, Huifang; Lü, Peijun; Wang, Yong; Sun, Yuchun

    2015-01-01

    Background and Objective To develop a real-time recording system based on computer binocular vision and two-dimensional image feature extraction to accurately record mandibular movement in three dimensions. Methods A computer-based binocular vision device with two digital cameras was used in conjunction with a fixed head retention bracket to track occlusal movement. Software was developed for extracting target spatial coordinates in real time based on two-dimensional image feature recognition. A plaster model of a subject’s upper and lower dentition were made using conventional methods. A mandibular occlusal splint was made on the plaster model, and then the occlusal surface was removed. Temporal denture base resin was used to make a 3-cm handle extending outside the mouth connecting the anterior labial surface of the occlusal splint with a detection target with intersecting lines designed for spatial coordinate extraction. The subject's head was firmly fixed in place, and the occlusal splint was fully seated on the mandibular dentition. The subject was then asked to make various mouth movements while the mandibular movement target locus point set was recorded. Comparisons between the coordinate values and the actual values of the 30 intersections on the detection target were then analyzed using paired t-tests. Results The three-dimensional trajectory curve shapes of the mandibular movements were consistent with the respective subject movements. Mean XYZ coordinate values and paired t-test results were as follows: X axis: -0.0037 ± 0.02953, P = 0.502; Y axis: 0.0037 ± 0.05242, P = 0.704; and Z axis: 0.0007 ± 0.06040, P = 0.952. The t-test result showed that the coordinate values of the 30 cross points were considered statistically no significant. (P<0.05) Conclusions Use of a real-time recording system of three-dimensional mandibular movement based on computer binocular vision and two-dimensional image feature recognition technology produced a recording accuracy of approximately ± 0.1 mm, and is therefore suitable for clinical application. Certainly, further research is necessary to confirm the clinical applications of the method. PMID:26375800

  11. Software for Partly Automated Recognition of Targets

    NASA Technical Reports Server (NTRS)

    Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark; Selinsky, T.

    2002-01-01

    The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user's tendencies while the user is selecting targets and to increase the user's productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.

  12. The striking similarities between standard, distractor-free, and target-free recognition

    PubMed Central

    Dobbins, Ian G.

    2012-01-01

    It is often assumed that observers seek to maximize correct responding during recognition testing by actively adjusting a decision criterion. However, early research by Wallace (Journal of Experimental Psychology: Human Learning and Memory 4:441–452, 1978) suggested that recognition rates for studied items remained similar, regardless of whether or not the tests contained distractor items. We extended these findings across three experiments, addressing whether detection rates or observer confidence changed when participants were presented standard tests (targets and distractors) versus “pure-list” tests (lists composed entirely of targets or distractors). Even when observers were made aware of the composition of the pure-list test, the endorsement rates and confidence patterns remained largely similar to those observed during standard testing, suggesting that observers are typically not striving to maximize the likelihood of success across the test. We discuss the implications for decision models that assume a likelihood ratio versus a strength decision axis, as well as the implications for prior findings demonstrating large criterion shifts using target probability manipulations. PMID:21476108

  13. A guide for digitising manuscript climate data

    NASA Astrophysics Data System (ADS)

    Brönnimann, S.; Annis, J.; Dann, W.; Ewen, T.; Grant, A. N.; Griesser, T.; Krähenmann, S.; Mohr, C.; Scherer, M.; Vogler, C.

    2006-05-01

    Hand-written or printed manuscript data are an important source for paleo-climatological studies, but bringing them into a suitable format can be a time consuming adventure with uncertain success. Before starting the digitising work, it is worthwhile spending a few thoughts on the characteristics of the data, the scientific requirements with respect to quality and coverage, and on the different digitising techniques. Here we briefly discuss the most important considerations and report our own experience. We describe different methods for digitising numeric or text data, i.e., optical character recognition (OCR), speech recognition, and key entry. Each technique has its advantages and disadvantages that may become important for certain applications. It is therefore crucial to thoroughly investigate beforehand the characteristics of the manuscript data, define the quality targets and develop validation strategies.

  14. A study of payload specialist station monitor size constraints. [space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.

    1975-01-01

    Constraints on the CRT display size for the shuttle orbiter cabin are studied. The viewing requirements placed on these monitors were assumed to involve display of imaged scenes providing visual feedback during payload operations and display of alphanumeric characters. Data on target recognition/resolution, target recognition, and range rate detection by human observers were utilized to determine viewing requirements for imaged scenes. Field-of-view and acuity requirements for a variety of payload operations were obtained along with the necessary detection capability in terms of range-to-target size ratios. The monitor size necessary to meet the acuity requirements was established. An empirical test was conducted to determine required recognition sizes for displayed alphanumeric characters. The results of the test were used to determine the number of characters which could be simultaneously displayed based on the recognition size requirements using the proposed monitor size. A CRT display of 20 x 20 cm is recommended. A portion of the display area is used for displaying imaged scenes and the remaining display area is used for alphanumeric characters pertaining to the displayed scene. The entire display is used for the character alone mode.

  15. An automatic target recognition system based on SAR image

    NASA Astrophysics Data System (ADS)

    Li, Qinfu; Wang, Jinquan; Zhao, Bo; Luo, Furen; Xu, Xiaojian

    2009-10-01

    In this paper, an automatic target recognition (ATR) system based on synthetic aperture radar (SAR) is proposed. This ATR system can play an important role in the simulation of up-to-data battlefield environment and be used in ATR research. To establish an integral and available system, the processing of SAR image was divided into four main stages which are de-noise, detection, cluster-discrimination and segment-recognition, respectively. The first three stages are used for searching region of interest (ROI). Once the ROIs are extracted, the recognition stage will be taken to compute the similarity between the ROIs and the templates in the electromagnetic simulation software National Electromagnetic Scattering Code (NESC). Due to the lack of the SAR raw data, the electromagnetic simulated images are added to the measured SAR background to simulate the battlefield environment8. The purpose of the system is to find the ROIs which can be the artificial military targets such as tanks, armored cars and so on and to categorize the ROIs into the right classes according to the existing templates. From the results we can see that the proposed system achieves a satisfactory result.

  16. Promoting and inhibiting factors for the use of validated dietary assessment questionnaires in health check-up counseling: from occupational health nurses and dietitians' perspective.

    PubMed

    Katagiri, Ryoko; Muto, Go; Sasaki, Satoshi

    2018-06-01

    A validated questionnaire is not typically used for dietary assessment in health check-up counseling provided by occupational health nurses in Japan. We conducted a qualitative study to investigate the barriers and promoting factors affecting the use of validated questionnaires. Ten occupational health nurses and three registered dietitians, working at a health insurance society, were recruited for this study using an open-ended, free description questionnaire. Inhibiting factors, such as "Feeling of satisfaction with the current method," "Recognition of importance," and "Sense of burden from the questionnaire", and as promoting factors, "Feeling the current method is insufficient", "Recognition of importance," "Reduction in the feeling of burden after the answer," "Expectation of and reaction to the result," and "Expectation for the effect of the counseling" were noted. Since a standardized dietary assessment method in health counseling might be desirable for the harmonization of work with diseases prevention in an occupational field, findings in this study could propose appropriate targets to reduce confusion in health professionals' concerning the use of validated questionnaires.

  17. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging.

    PubMed

    Fozooni, Tahereh; Ravan, Hadi; Sasan, Hosseinali

    2017-12-01

    Due to their unique properties, such as programmability, ligand-binding capability, and flexibility, nucleic acids can serve as analytes and/or recognition elements for biosensing. To improve the sensitivity of nucleic acid-based biosensing and hence the detection of a few copies of target molecule, different modern amplification methodologies, namely target-and-signal-based amplification strategies, have already been developed. These recent signal amplification technologies, which are capable of amplifying the signal intensity without changing the targets' copy number, have resulted in fast, reliable, and sensitive methods for nucleic acid detection. Working in cell-free settings, researchers have been able to optimize a variety of complex and quantitative methods suitable for deploying in live-cell conditions. In this study, a comprehensive review of the signal amplification technologies for the detection of nucleic acids is provided. We classify the signal amplification methodologies into enzymatic and non-enzymatic strategies with a primary focus on the methods that enable us to shift away from in vitro detecting to in vivo imaging. Finally, the future challenges and limitations of detection for cellular conditions are discussed.

  18. Continued effects of context reinstatement in recognition.

    PubMed

    Hanczakowski, Maciej; Zawadzka, Katarzyna; Macken, Bill

    2015-07-01

    The context reinstatement effect refers to the enhanced memory performance found when the context information paired with a target item at study is re-presented at test. Here we investigated the consequences of the way that context information is processed in such a setting that gives rise to its beneficial effect on item recognition memory. Specifically, we assessed whether reinstating context in a recognition test facilitates subsequent memory for this context, beyond the facilitation conferred by presentation of the same context with a different study item. Reinstating the study context at test led to better accuracy in two-alternative forced choice recognition for target faces than did re-pairing those faces with another context encountered during the study phase. The advantage for reinstated over re-paired conditions occurred for both within-subjects (Exp. 1) and between-subjects (Exp. 2) manipulations. Critically, in a subsequent recognition test for the contexts themselves, contexts that had previously served in the reinstated condition were recognized better than contexts that had previously served in the re-paired context condition. This constitutes the first demonstration of continuous effects of context reinstatement on memory for context.

  19. A robust algorithm for automated target recognition using precomputed radar cross sections

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.; Lanterman, Aaron D.

    2004-09-01

    Passive radar is an emerging technology that offers a number of unique benefits, including covert operation. Many such systems are already capable of detecting and tracking aircraft. The goal of this work is to develop a robust algorithm for adding automated target recognition (ATR) capabilities to existing passive radar systems. In previous papers, we proposed conducting ATR by comparing the precomputed RCS of known targets to that of detected targets. To make the precomputed RCS as accurate as possible, a coordinated flight model is used to estimate aircraft orientation. Once the aircraft's position and orientation are known, it is possible to determine the incident and observed angles on the aircraft, relative to the transmitter and receiver. This makes it possible to extract the appropriate radar cross section (RCS) from our simulated database. This RCS is then scaled to account for propagation losses and the receiver's antenna gain. A Rician likelihood model compares these expected signals from different targets to the received target profile. We have previously employed Monte Carlo runs to gauge the probability of error in the ATR algorithm; however, generation of a statistically significant set of Monte Carlo runs is computationally intensive. As an alternative to Monte Carlo runs, we derive the relative entropy (also known as Kullback-Liebler distance) between two Rician distributions. Since the probability of Type II error in our hypothesis testing problem can be expressed as a function of the relative entropy via Stein's Lemma, this provides us with a computationally efficient method for determining an upper bound on our algorithm's performance. It also provides great insight into the types of classification errors we can expect from our algorithm. This paper compares the numerically approximated probability of Type II error with the results obtained from a set of Monte Carlo runs.

  20. Emotional System for Military Target Identification

    DTIC Science & Technology

    2009-10-01

    algorithm [23], and used it to solve a facial recognition problem. In other works [24,25], we explored the potential of using emotional neural...other application areas, such as security ( facial recognition ) and medical (blood cell identification), can be also efficiently used in military...Application of an emotional neural network to facial recognition . Neural Computing and Applications, 18(4), 309-320. [25] Khashman, A. (2009). Blood cell

  1. Ultra wide band 3-D cross section (RCS) holography

    NASA Astrophysics Data System (ADS)

    Collins, H. D.; Hall, T. E.

    1992-07-01

    Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.

  2. Enzyme Functionalized AuNPs and Glucometer-based Protein Detection

    NASA Astrophysics Data System (ADS)

    Dai, Tao; Fang, Jie; Yu, Wen; Xie, Guoming

    2017-12-01

    We here developed a novel method for protein detection by using protein aptamer-functionalized magnetic beads for protein recognition and invertase-functionalized AuNPs catalyze sucrose generate glucose that can be detected by a glucometer. First, the invertase and DNA probe P2 are immobilized onto the gold nanoparticles (I.P2@AuNPs). Next protein aptamer P1 are immobilized onto the streptavidin-coated Magnetic beads (P1@MB). P1 and P2 can complementary to form double-stranded DNA. When target protein presence, P1 combine with target and release I/P2@AuNPs. Then magnetic separation, take supernatant fluid and add sucrose after a period of reaction, detection of glucose concentration by glucometer, thus achieve the sensitive and selective detection of the target protein.

  3. 219. Changes in Functional Networks Underlying Social Cognition Following Cognitive Training in Individuals at Risk for Psychosis

    PubMed Central

    Haut, Kristen; Saxena, Abhishek; Yin, Hong; Carol, Emily; Dodell-Feder, David; Lincoln, Sarah Hope; Tully, Laura; Keshavan, Matcheri; Seidman, Larry J.; Nahum, Mor; Hooker, Christine

    2017-01-01

    Abstract Background: Deficits in social cognition are prominent features of schizophrenia that play a large role in functional impairments and disability. Performance deficits in these domains are associated with altered activity in functional networks, including those that support social cognitive abilities such as emotion recognition. These social cognitive deficits and alterations in neural networks are present prior to the onset of frank psychotic symptoms and thus present a potential target for intervention in early phases of the illness, including in individuals at clinical high risk (CHR) for psychosis. This study assessed changes in social cognitive functional networks following targeted cognitive training (TCT) in CHR individuals. Methods: 14 CHR subjects (7 male, mean age = 21.9) showing attenuated psychotic symptoms as assessed by the SIPS were included in the study. Subjects underwent a clinical evaluation and a functional MRI session prior to and subsequent to completing 40 hours (8 weeks) of targeted cognitive and social cognitive training using Lumosity and SocialVille. 14 matched healthy control (HC) subjects also underwent a single fMRI session as a comparison group for functional activity. Resting state fMRI was acquired as well as fMRI during performance of an emotion recognition task. Group level differences in BOLD activity between HC and CHR group before TCT, and CHR group before and after TCT were computed. Changes in social cognitive network functional connectivity at rest and during task performance was evaluated using seed-based connectivity analyses and psychophysiological interaction (PPI). Results: Prior to training, CHR individuals demonstrated hyperactivity in the amygdala, posterior cingulate, and superior temporal sulcus (STS) during emotion recognition, suggesting inefficient processing. This hyperactivity normalized somewhat after training, with CHR individuals showing less hyperactivity in the amygdala in response to emotional faces. In addition, training was associated with increased connectivity in emotion processing networks, including greater STS-medial prefrontal connectivity and normalization of amygdala connectivity patterns. Conclusion: These results suggest that targeted cognitive training produced improvements in emotion recognition and may be effective in altering functional network connectivity in networks associated with psychosis risk. TCT may be a useful tool for early intervention in individuals at risk for psychotic disorders to address behaviors that impact functional outcome.

  4. Research on Palmprint Identification Method Based on Quantum Algorithms

    PubMed Central

    Zhang, Zhanzhan

    2014-01-01

    Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT) is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%. PMID:25105165

  5. Translation compensation and micro-Doppler extraction for precession ballistic targets with a wideband terahertz radar

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Deng, Bin; Wang, Hongqiang; Zhang, Ye; Qin, Yuliang

    2018-01-01

    Imaging, classification, and recognition techniques of ballistic targets in midcourse have always been the focus of research in the radar field for military applications. However, the high velocity translation of ballistic targets will subject range profile and Doppler to translation, slope, and fold, which are especially severe in the terahertz region. Therefore, a two-step translation compensation method based on envelope alignment is presented. The rough compensation is based on the traditional envelope alignment algorithm in inverse synthetic aperture radar imaging, and the fine compensation is supported by distance fitting. Then, a wideband imaging radar system with a carrier frequency of 0.32 THz is introduced, and an experiment on a precession missile model is carried out. After translation compensation with the method proposed in this paper, the range profile and the micro-Doppler distributions unaffected by translation are obtained, providing an important foundation for the high-resolution imaging and micro-Doppler extraction of the terahertz radar.

  6. [Screening specific recognition motif of RNA-binding proteins by SELEX in combination with next-generation sequencing technique].

    PubMed

    Zhang, Lu; Xu, Jinhao; Ma, Jinbiao

    2016-07-25

    RNA-binding protein exerts important biological function by specifically recognizing RNA motif. SELEX (Systematic evolution of ligands by exponential enrichment), an in vitro selection method, can obtain consensus motif with high-affinity and specificity for many target molecules from DNA or RNA libraries. Here, we combined SELEX with next-generation sequencing to study the protein-RNA interaction in vitro. A pool of RNAs with 20 bp random sequences were transcribed by T7 promoter, and target protein was inserted into plasmid containing SBP-tag, which can be captured by streptavidin beads. Through only one cycle, the specific RNA motif can be obtained, which dramatically improved the selection efficiency. Using this method, we found that human hnRNP A1 RRMs domain (UP1 domain) bound RNA motifs containing AGG and AG sequences. The EMSA experiment indicated that hnRNP A1 RRMs could bind the obtained RNA motif. Taken together, this method provides a rapid and effective method to study the RNA binding specificity of proteins.

  7. [A new mechanism of ubiquitin-dependent proteolytic pathway--polyubiquitin chain recognition and proteasomal targeting].

    PubMed

    Kawahara, Hiroyuki; Yokosawa, Hideyoshi

    2008-01-01

    The RPN10 subunit of 26S proteasome and several UBA domain proteins can bind to the polyubiquitin chain and play a role as ubiquitin receptors of the 26S proteasome. Although it was thought that substrate recognition is an essential step in the proteasome-mediated protein degradation, deletion of rpn10 genes in yeast does not influence the viability of cells but instead causes only a mild phenotype, suggesting that the above ubiquitin receptors are redundantly involved in substrate delivery to the proteasome. However, their functional difference is still enigmatic. In this review, we summarize recent advances in polyubiquitin chain recognition/delivery system and provide potential applications to modulate this system as a probable target for drug development.

  8. Vigilante: Ultrafast Smart Sensor for Target Recognition and Precision Tracking in a Simulated CMD Scenario

    NASA Technical Reports Server (NTRS)

    Uldomkesmalee, Suraphol; Suddarth, Steven C.

    1997-01-01

    VIGILANTE is an ultrafast smart sensor testbed for generic Automatic Target Recognition (ATR) applications with a series of capability demonstration focussed on cruise missile defense (CMD). VIGILANTE's sensor/processor architecture is based on next-generation UV/visible/IR sensors and a tera-operations per second sugar-cube processor, as well as supporting airborne vehicle. Excellent results of efficient ATR methodologies that use an eigenvectors/neural network combination and feature-based precision tracking have been demonstrated in the laboratory environment.

  9. Design method of ARM based embedded iris recognition system

    NASA Astrophysics Data System (ADS)

    Wang, Yuanbo; He, Yuqing; Hou, Yushi; Liu, Ting

    2008-03-01

    With the advantages of non-invasiveness, uniqueness, stability and low false recognition rate, iris recognition has been successfully applied in many fields. Up to now, most of the iris recognition systems are based on PC. However, a PC is not portable and it needs more power. In this paper, we proposed an embedded iris recognition system based on ARM. Considering the requirements of iris image acquisition and recognition algorithm, we analyzed the design method of the iris image acquisition module, designed the ARM processing module and its peripherals, studied the Linux platform and the recognition algorithm based on this platform, finally actualized the design method of ARM-based iris imaging and recognition system. Experimental results show that the ARM platform we used is fast enough to run the iris recognition algorithm, and the data stream can flow smoothly between the camera and the ARM chip based on the embedded Linux system. It's an effective method of using ARM to actualize portable embedded iris recognition system.

  10. GeneSilico protein structure prediction meta-server.

    PubMed

    Kurowski, Michal A; Bujnicki, Janusz M

    2003-07-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.

  11. GeneSilico protein structure prediction meta-server

    PubMed Central

    Kurowski, Michal A.; Bujnicki, Janusz M.

    2003-01-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313

  12. Biomarker-specific conjugated nanopolyplexes for the active coloring of stem-like cancer cells

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Lee, Eugene; Choi, Jihye; Haam, Seungjoo; Suh, Jin-Suck; Yang, Jaemoon

    2016-06-01

    Stem-like cancer cells possess intrinsic features and their CD44 regulate redox balance in cancer cells to survive under stress conditions. Thus, we have fabricated biomarker-specific conjugated polyplexes using CD44-targetable hyaluronic acid and redox-sensible polyaniline based on a nanoemulsion method. For the most sensitive recognition of the cellular redox at a single nanoparticle scale, a nano-scattering spectrum imaging analyzer system was introduced. The conjugated polyplexes showed a specific targeting ability toward CD44-expressing cancer cells as well as a dramatic change in its color, which depended on the redox potential in the light-scattered images. Therefore, these polyaniline-based conjugated polyplexes as well as analytical processes that include light-scattering imaging and measurements of scattering spectra, clearly establish a systematic method for the detection and monitoring of cancer microenvironments.

  13. Evaluation and control of miRNA-like off-target repression for RNA interference.

    PubMed

    Seok, Heeyoung; Lee, Haejeong; Jang, Eun-Sook; Chi, Sung Wook

    2018-03-01

    RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago-miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.

  14. Individual differences in online spoken word recognition: Implications for SLI

    PubMed Central

    McMurray, Bob; Samelson, Vicki M.; Lee, Sung Hee; Tomblin, J. Bruce

    2012-01-01

    Thirty years of research has uncovered the broad principles that characterize spoken word processing across listeners. However, there have been few systematic investigations of individual differences. Such an investigation could help refine models of word recognition by indicating which processing parameters are likely to vary, and could also have important implications for work on language impairment. The present study begins to fill this gap by relating individual differences in overall language ability to variation in online word recognition processes. Using the visual world paradigm, we evaluated online spoken word recognition in adolescents who varied in both basic language abilities and non-verbal cognitive abilities. Eye movements to target, cohort and rhyme objects were monitored during spoken word recognition, as an index of lexical activation. Adolescents with poor language skills showed fewer looks to the target and more fixations to the cohort and rhyme competitors. These results were compared to a number of variants of the TRACE model (McClelland & Elman, 1986) that were constructed to test a range of theoretical approaches to language impairment: impairments at sensory and phonological levels; vocabulary size, and generalized slowing. None were strongly supported, and variation in lexical decay offered the best fit. Thus, basic word recognition processes like lexical decay may offer a new way to characterize processing differences in language impairment. PMID:19836014

  15. Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition

    PubMed Central

    Gan, Hin Hark; Gunsalus, Kristin C.

    2015-01-01

    Experimental studies have uncovered a variety of microRNA (miRNA)–target duplex structures that include perfect, imperfect and seedless duplexes. However, non-canonical binding modes from imperfect/seedless duplexes are not well predicted by computational approaches, which rely primarily on sequence and secondary structural features, nor have their tertiary structures been characterized because solved structures to date are limited to near perfect, straight duplexes in Argonautes (Agos). Here, we use structural modeling to examine the role of Ago dynamics in assembling viable eukaryotic miRNA-induced silencing complexes (miRISCs). We show that combinations of low-frequency, global modes of motion of Ago domains are required to accommodate RNA duplexes in model human and C. elegans Ago structures. Models of viable miRISCs imply that Ago adopts variable conformations at distinct target sites that generate distorted, imperfect miRNA-target duplexes. Ago's ability to accommodate a duplex is dependent on the region where structural distortions occur: distortions in solvent-exposed seed and 3′-end regions are less likely to produce steric clashes than those in the central duplex region. Energetic analyses of assembled miRISCs indicate that target recognition is also driven by favorable Ago-duplex interactions. Such structural insights into Ago loading and target recognition mechanisms may provide a more accurate assessment of miRNA function. PMID:26432829

  16. SAR image dataset of military ground targets with multiple poses for ATR

    NASA Astrophysics Data System (ADS)

    Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc

    2017-10-01

    Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.

  17. Facelock: familiarity-based graphical authentication.

    PubMed

    Jenkins, Rob; McLachlan, Jane L; Renaud, Karen

    2014-01-01

    Authentication codes such as passwords and PIN numbers are widely used to control access to resources. One major drawback of these codes is that they are difficult to remember. Account holders are often faced with a choice between forgetting a code, which can be inconvenient, or writing it down, which compromises security. In two studies, we test a new knowledge-based authentication method that does not impose memory load on the user. Psychological research on face recognition has revealed an important distinction between familiar and unfamiliar face perception: When a face is familiar to the observer, it can be identified across a wide range of images. However, when the face is unfamiliar, generalisation across images is poor. This contrast can be used as the basis for a personalised 'facelock', in which authentication succeeds or fails based on image-invariant recognition of faces that are familiar to the account holder. In Study 1, account holders authenticated easily by detecting familiar targets among other faces (97.5% success rate), even after a one-year delay (86.1% success rate). Zero-acquaintance attackers were reduced to guessing (<1% success rate). Even personal attackers who knew the account holder well were rarely able to authenticate (6.6% success rate). In Study 2, we found that shoulder-surfing attacks by strangers could be defeated by presenting different photos of the same target faces in observed and attacked grids (1.9% success rate). Our findings suggest that the contrast between familiar and unfamiliar face recognition may be useful for developers of graphical authentication systems.

  18. [Effects of mere subliminal exposure on trait judgments and the role of stereotyped knowledge].

    PubMed

    Yamada, Ayumi

    2004-06-01

    This study investigated the effects of repeated exposures to male and female targets on trait impressions and the role of stereotyped knowledge for the target's social category in impression formation process. The participants were repeatedly exposed to slides of male and female faces for subliminal durations. For each of 12 pairs containing both previously presented slide and newly presented slide, the participants made forced-choice liking judgments (Experiment 1), trait judgments (Experiment 2) and recognition judgments (Experiments 1 and 2). It was found that participants' attitude toward the targets became more positive, even though target recognition was not significantly greater than the chance level. Yet, when the dimension of judgment was stereotypically associated with the target's social category, exposure effects were obtained for the targets whose social category and its dimension were inferentially matched, but not obtained for the targets whose social category and its dimension were not inferentially matched. Some theoretical implications of the role of social category information in the mere exposure phenomenon are discussed.

  19. Proactive and coactive interference in age-related performance in a recognition-based operation span task.

    PubMed

    Zeintl, Melanie; Kliegel, Matthias

    2010-01-01

    Generally, older adults perform worse than younger adults in complex working memory span tasks. So far, it is unclear which processes mainly contribute to age-related differences in working memory span. The aim of the present study was to investigate age effects and the roles of proactive and coactive interference in a recognition-based version of the operation span task. Younger and older adults performed standard versions and distracter versions of the operation span task. At retrieval, participants had to recognize target words in word lists containing targets as well as proactive and/or coactive interference-related lures. Results show that, overall, younger adults outperformed older adults in the recognition of target words. Furthermore, analyses of error types indicate that, while younger adults were only affected by simultaneously presented distracter words, older adults had difficulties with both proactive and coactive interference. Results suggest that age effects in complex span tasks may not be mainly due to retrieval deficits in old age. Copyright 2009 S. Karger AG, Basel.

  20. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets

    PubMed Central

    Farazi, Thalia A.; Leonhardt, Carl S.; Mukherjee, Neelanjan; Mihailovic, Aleksandra; Li, Song; Max, Klaas E.A.; Meyer, Cindy; Yamaji, Masashi; Cekan, Pavol; Jacobs, Nicholas C.; Gerstberger, Stefanie; Bognanni, Claudia; Larsson, Erik; Ohler, Uwe; Tuschl, Thomas

    2014-01-01

    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed. PMID:24860013

  1. Slp-76 is a critical determinant of NK-cell mediated recognition of missing-self targets.

    PubMed

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-07-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying "missing-self" recognition, including the involvement of activating receptors, remain poorly understood. Using ethyl-N-nitrosourea mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell mediated recognition and elimination of "missing-self" targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation (Thr428Ile) in the SH2 domain of Slp-76-a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele-while no major defects were observed in conventional T-cell development/function, a marked defect in NK cell mediated elimination of β2-microglobulin (β2M) deficient target cells was observed. Further studies revealed Slp-76 to control NK-cell receptor expression and maturation; however, activation of Slp-76(ace/ace) NK cells through ITAM-containing NK-cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M(-/-) target cell synapse revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76(ace/ace) NK cells. Overall these studies establish Slp-76 as a critical determinant of NK-cell development and NK cell mediated elimination of missing-self target cells in mice. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    PubMed Central

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation [Thr428Ile] in the SH2 domain of Slp-76—a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele—while no major defects were observed in conventional T cell development/function, a marked defect in NK cell-mediated elimination of β2-Microglobulin (β2M)-deficient target cells was observed. Further studies revealed Slp-76 to control NK cell receptor expression and maturation, however, activation of Slp-76ace/ace NK cells through ITAM-containing NK cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M−/− target cell synapse, revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76ace/ace NK cells. Overall these studies establish Slp-76 as a critical determinant of NK cell development and NK cell-mediated elimination of missing-self target cells. PMID:25929249

  3. Cognitive factors affecting free recall, cued recall, and recognition tasks in Alzheimer's disease.

    PubMed

    Yamagishi, Takashi; Sato, Takuya; Sato, Atsushi; Imamura, Toru

    2012-01-01

    Our aim was to identify cognitive factors affecting free recall, cued recall, and recognition tasks in patients with Alzheimer's disease (AD). We recruited 349 consecutive AD patients who attended a memory clinic. Each patient was assessed using the Alzheimer's Disease Assessment Scale (ADAS) and the extended 3-word recall test. In this task, each patient was asked to freely recall 3 previously presented words. If patients could not recall 1 or more of the target words, the examiner cued their recall by providing the category of the target word and then provided a forced-choice recognition of the target word with 2 distracters. The patients were divided into groups according to the results of the free recall, cued recall, and recognition tasks. Multivariate logistic regression analysis for repeated measures was carried out to evaluate the net effects of cognitive factors on the free recall, cued recall, and recognition tasks after controlling for the effects of age and recent memory deficit. Performance on the ADAS Orientation task was found to be related to performance on the free and cued recall tasks, performance on the ADAS Following Commands task was found to be related to performance on the cued recall task, and performance on the ADAS Ideational Praxis task was found to be related to performance on the free recall, cued recall, and recognition tasks. The extended 3-word recall test reflects deficits in a wider range of memory and other cognitive processes, including memory retention after interference, divided attention, and executive functions, compared with word-list recall tasks. The characteristics of the extended 3-word recall test may be advantageous for evaluating patients' memory impairments in daily living.

  4. The Cambridge Face Memory Test: results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants.

    PubMed

    Duchaine, Brad; Nakayama, Ken

    2006-01-01

    The two standardized tests of face recognition that are widely used suffer from serious shortcomings [Duchaine, B. & Weidenfeld, A. (2003). An evaluation of two commonly used tests of unfamiliar face recognition. Neuropsychologia, 41, 713-720; Duchaine, B. & Nakayama, K. (2004). Developmental prosopagnosia and the Benton Facial Recognition Test. Neurology, 62, 1219-1220]. Images in the Warrington Recognition Memory for Faces test include substantial non-facial information, and the simultaneous presentation of faces in the Benton Facial Recognition Test allows feature matching. Here, we present results from a new test, the Cambridge Face Memory Test, which builds on the strengths of the previous tests. In the test, participants are introduced to six target faces, and then they are tested with forced choice items consisting of three faces, one of which is a target. For each target face, three test items contain views identical to those studied in the introduction, five present novel views, and four present novel views with noise. There are a total of 72 items, and 50 controls averaged 58. To determine whether the test requires the special mechanisms used to recognize upright faces, we conducted two experiments. We predicted that controls would perform much more poorly when the face images are inverted, and as predicted, inverted performance was much worse with a mean of 42. Next we assessed whether eight prosopagnosics would perform poorly on the upright version. The prosopagnosic mean was 37, and six prosopagnosics scored outside the normal range. In contrast, the Warrington test and the Benton test failed to classify a majority of the prosopagnosics as impaired. These results indicate that the new test effectively assesses face recognition across a wide range of abilities.

  5. The effects of age and divided attention on spontaneous recognition.

    PubMed

    Anderson, Benjamin A; Jacoby, Larry L; Thomas, Ruthann C; Balota, David A

    2011-05-01

    Studies of recognition typically involve tests in which the participant's memory for a stimulus is directly questioned. There are occasions however, in which memory occurs more spontaneously (e.g., an acquaintance seeming familiar out of context). Spontaneous recognition was investigated in a novel paradigm involving study of pictures and words followed by recognition judgments on stimuli with an old or new word superimposed over an old or new picture. Participants were instructed to make their recognition decision on either the picture or word and to ignore the distracting stimulus. Spontaneous recognition was measured as the influence of old vs. new distracters on target recognition. Across two experiments, older adults and younger adults placed under divided-attention showed a greater tendency to spontaneously recognize old distracters as compared to full-attention younger adults. The occurrence of spontaneous recognition is discussed in relation to ability to constrain retrieval to goal-relevant information.

  6. A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts’ law style assessment procedure

    PubMed Central

    2014-01-01

    Background Pattern recognition (PR) based strategies for the control of myoelectric upper limb prostheses are generally evaluated through offline classification accuracy, which is an admittedly useful metric, but insufficient to discuss functional performance in real time. Existing functional tests are extensive to set up and most fail to provide a challenging, objective framework to assess the strategy performance in real time. Methods Nine able-bodied and two amputee subjects gave informed consent and participated in the local Institutional Review Board approved study. We designed a two-dimensional target acquisition task, based on the principles of Fitts’ law for human motor control. Subjects were prompted to steer a cursor from the screen center of into a series of subsequently appearing targets of different difficulties. Three cursor control systems were tested, corresponding to three electromyography-based prosthetic control strategies: 1) amplitude-based direct control (the clinical standard of care), 2) sequential PR control, and 3) simultaneous PR control, allowing for a concurrent activation of two degrees of freedom (DOF). We computed throughput (bits/second), path efficiency (%), reaction time (second), and overshoot (%)) and used general linear models to assess significant differences between the strategies for each metric. Results We validated the proposed methodology by achieving very high coefficients of determination for Fitts’ law. Both PR strategies significantly outperformed direct control in two-DOF targets and were more intuitive to operate. In one-DOF targets, the simultaneous approach was the least precise. The direct control was efficient in one-DOF targets but cumbersome to operate in two-DOF targets through a switch-depended sequential cursor control. Conclusions We designed a test, capable of comprehensively describing prosthetic control strategies in real time. When implemented on control subjects, the test was able to capture statistically significant differences (p < 0.05) in control strategies when considering throughputs, path efficiencies and reaction times. Of particular note, we found statistically significant (p < 0.01) improvements in throughputs and path efficiencies with simultaneous PR when compared to direct control or sequential PR. Amputees could readily achieve the task; however a limited number of subjects was tested and a statistical analysis was not performed with that population. PMID:24886664

  7. Testing of the Support Vector Machine for Binary-Class Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew

    2011-01-01

    The Support Vector Machine is a powerful algorithm, useful in classifying data in to species. The Support Vector Machines implemented in this research were used as classifiers for the final stage in a Multistage Autonomous Target Recognition system. A single kernel SVM known as SVMlight, and a modified version known as a Support Vector Machine with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SMV as a method for classification. From trial to trial, SVM produces consistent results

  8. Learning in shifts of transient attention improves recognition of parts of ambiguous figure-ground displays.

    PubMed

    Kristjánsson, Arni

    2009-04-24

    Previously demonstrated learning effects in shifts of transient attention have only been shown to result in beneficial effects upon secondary discrimination tasks and affect landing points of express saccades. Can such learning result in more direct effects upon perception than previously demonstrated? Observers performed a cued Vernier acuity discrimination task where the cue was one of a set of ambiguous figure-ground displays (with a black and white part). The critical measure was whether, if a target appeared consistently within a part of a cue of a certain brightness, this would result in learning effects and whether such learning would then affect recognition of the cue parts. Critically the target always appeared within the same part of each individual cue. Some cues were used in early parts of streaks of repetition of cue-part brightness, and others in latter parts of such streaks. All the observers showed learning in shifts of transient attention, with improved performance the more often the target appeared within the part of the cue of the same brightness. Subsequently the observers judged whether cue-parts had been parts of the cues used on the preceding discrimination task. Recognition of the figure parts, where the target had consistently appeared, improved strongly with increased length of streaks of repetition of cue-part brightness. Learning in shifts of transient attention leads not only to faster attention shifts but to direct effects upon perception, in this case recognition of parts of figure-ground ambiguous cues.

  9. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs.

    PubMed

    Ryan, Daniel E; Taussig, David; Steinfeld, Israel; Phadnis, Smruti M; Lunstad, Benjamin D; Singh, Madhurima; Vuong, Xuan; Okochi, Kenji D; McCaffrey, Ryan; Olesiak, Magdalena; Roy, Subhadeep; Yung, Chong Wing; Curry, Bo; Sampson, Jeffrey R; Bruhn, Laurakay; Dellinger, Douglas J

    2018-01-25

    CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence ('guide sequence') and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2'-O-methyl-3'-phosphonoacetate, or 'MP') incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs

    PubMed Central

    Ryan, Daniel E; Taussig, David; Steinfeld, Israel; Phadnis, Smruti M; Lunstad, Benjamin D; Singh, Madhurima; Vuong, Xuan; Okochi, Kenji D; McCaffrey, Ryan; Olesiak, Magdalena; Roy, Subhadeep; Yung, Chong Wing; Curry, Bo; Sampson, Jeffrey R; Dellinger, Douglas J

    2018-01-01

    Abstract CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence (‘guide sequence’) and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2′-O-methyl-3′-phosphonoacetate, or ‘MP’) incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications. PMID:29216382

  11. A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.

    PubMed

    Einhäuser, Wolfgang; Mundhenk, T Nathan; Baldi, Pierre; Koch, Christof; Itti, Laurent

    2007-07-20

    Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences.

  12. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  13. Evaluating structural pattern recognition for handwritten math via primitive label graphs

    NASA Astrophysics Data System (ADS)

    Zanibbi, Richard; Mouchère, Harold; Viard-Gaudin, Christian

    2013-01-01

    Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.

  14. On the limited recognition of inorganic surfaces by short peptides compared with antibodies.

    PubMed

    Artzy-Schnirman, Arbel; Abu-Shah, Enas; Dishon, Matan; Soifer, Hadas; Sivan, Yotam; Reiter, Yoram; Benhar, Itai; Sivan, Uri

    2014-06-01

    The vast potential applications of biomolecules that bind inorganic surfaces led mostly to the isolation of short peptides that target selectively specific materials. The demonstrated differential affinity toward certain surfaces created the impression that the recognition capacity of short peptides may match that of rigid biomolecules. In the following, we challenge this view by comparing the capacity of antibody molecules to discriminate between the (100) and (111A) facets of a gallium arsenide semiconductor crystal with the capacity of short peptides to do the same. Applying selection from several peptide and single chain phage display libraries, we find a number of antibody molecules that bind preferentially a given crystal facet but fail to isolate, in dozens of attempts, a single peptide capable of such recognition. The experiments underscore the importance of rigidity to the recognition of inorganic flat targets and therefore set limitations on potential applications of short peptides in biomimetics. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  15. Computational Design of Metal Ion Sequestering Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Benjamin P.; Rapko, Brian M.

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach formore » discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.« less

  16. The contribution of familiarity to recognition memory is a function of test format when using similar foils

    PubMed Central

    Migo, Ellen; Montaldi, Daniela; Norman, Kenneth A.; Quamme, Joel; Mayes, Andrew

    2010-01-01

    Patient Y.R., who suffered hippocampal damage that disrupted recollection but not familiarity, was impaired on a yes/no (YN) object recognition memory test with similar foils. However, she was not impaired on a forced-choice corresponding (FCC) version of the test that paired targets with corresponding similar foils (Holdstock et al. 2002). This dissociation is explained by the Complementary Learning Systems (CLS) neural-network model (Norman & O'Reilly 2003) if recollection is impaired but familiarity is preserved. The CLS model also predicts that participants relying exclusively on familiarity should be impaired on forced-choice non-corresponding (FCNC) tests, where targets are presented with foils similar to other targets. The present study tests these predictions for all three test formats (YN, FCC, FCNC) in normal participants using two variants of the remember/know procedure. As predicted, performance using familiarity alone was significantly worse than standard recognition on the YN and FCNC tests, but not on the FCC test. Recollection in the form of recall-to-reject was the major process driving YN recognition. This adds support to the interpretation of patient data according to which, hippocampal damage causes a recollection deficit that leads to poor performance on the YN test relative to FCC. PMID:19096990

  17. Divided attention enhances the recognition of emotional stimuli: evidence from the attentional boost effect.

    PubMed

    Rossi-Arnaud, Clelia; Spataro, Pietro; Costanzi, Marco; Saraulli, Daniele; Cestari, Vincenzo

    2018-01-01

    The present study examined predictions of the early-phase-elevated-attention hypothesis of the attentional boost effect (ABE), which suggests that transient increases in attention at encoding, as instantiated in the ABE paradigm, should enhance the recognition of neutral and positive items (whose encoding is mostly based on controlled processes), while having small or null effects on the recognition of negative items (whose encoding is primarily based on automatic processes). Participants were presented a sequence of negative, neutral and positive stimuli (pictures in Experiment 1, words in Experiment 2) associated to target (red) squares, distractor (green) squares or no squares (baseline condition). They were told to attend to the pictures/words and simultaneously press the spacebar of the computer when a red square appeared. In a later recognition task, stimuli associated to target squares were recognised better than stimuli associated to distractor squares, replicating the standard ABE. More importantly, we also found that: (a) the memory enhancement following target detection occurred with all types of stimuli (neutral, negative and positive) and (b) the advantage of negative stimuli over neutral stimuli was intact in the DA condition. These findings suggest that the encoding of negative stimuli depends on both controlled (attention-dependent) and automatic (attention-independent) processes.

  18. Immediate effects of anticipatory coarticulation in spoken-word recognition

    PubMed Central

    Salverda, Anne Pier; Kleinschmidt, Dave; Tanenhaus, Michael K.

    2014-01-01

    Two visual-world experiments examined listeners’ use of pre word-onset anticipatory coarticulation in spoken-word recognition. Experiment 1 established the shortest lag with which information in the speech signal influences eye-movement control, using stimuli such as “The … ladder is the target”. With a neutral token of the definite article preceding the target word, saccades to the referent were not more likely than saccades to an unrelated distractor until 200–240 ms after the onset of the target word. In Experiment 2, utterances contained definite articles which contained natural anticipatory coarticulation pertaining to the onset of the target word (“ The ladder … is the target”). A simple Gaussian classifier was able to predict the initial sound of the upcoming target word from formant information from the first few pitch periods of the article’s vowel. With these stimuli, effects of speech on eye-movement control began about 70 ms earlier than in Experiment 1, suggesting rapid use of anticipatory coarticulation. The results are interpreted as support for “data explanation” approaches to spoken-word recognition. Methodological implications for visual-world studies are also discussed. PMID:24511179

  19. Visual attention shift to printed words during spoken word recognition in Chinese: The role of phonological information.

    PubMed

    Shen, Wei; Qu, Qingqing; Tong, Xiuhong

    2018-05-01

    The aim of this study was to investigate the extent to which phonological information mediates the visual attention shift to printed Chinese words in spoken word recognition by using an eye-movement technique with a printed-word paradigm. In this paradigm, participants are visually presented with four printed words on a computer screen, which include a target word, a phonological competitor, and two distractors. Participants are then required to select the target word using a computer mouse, and the eye movements are recorded. In Experiment 1, phonological information was manipulated at the full-phonological overlap; in Experiment 2, phonological information at the partial-phonological overlap was manipulated; and in Experiment 3, the phonological competitors were manipulated to share either fulloverlap or partial-overlap with targets directly. Results of the three experiments showed that the phonological competitor effects were observed at both the full-phonological overlap and partial-phonological overlap conditions. That is, phonological competitors attracted more fixations than distractors, which suggested that phonological information mediates the visual attention shift during spoken word recognition. More importantly, we found that the mediating role of phonological information varies as a function of the phonological similarity between target words and phonological competitors.

  20. Neural network for intelligent query of an FBI forensic database

    NASA Astrophysics Data System (ADS)

    Uvanni, Lee A.; Rainey, Timothy G.; Balasubramanian, Uma; Brettle, Dean W.; Weingard, Fred; Sibert, Robert W.; Birnbaum, Eric

    1997-02-01

    Examiner is an automated fired cartridge case identification system utilizing a dual-use neural network pattern recognition technology, called the statistical-multiple object detection and location system (S-MODALS) developed by Booz(DOT)Allen & Hamilton, Inc. in conjunction with Rome Laboratory. S-MODALS was originally designed for automatic target recognition (ATR) of tactical and strategic military targets using multisensor fusion [electro-optical (EO), infrared (IR), and synthetic aperture radar (SAR)] sensors. Since S-MODALS is a learning system readily adaptable to problem domains other than automatic target recognition, the pattern matching problem of microscopic marks for firearms evidence was analyzed using S-MODALS. The physics; phenomenology; discrimination and search strategies; robustness requirements; error level and confidence level propagation that apply to the pattern matching problem of military targets were found to be applicable to the ballistic domain as well. The Examiner system uses S-MODALS to rank a set of queried cartridge case images from the most similar to the least similar image in reference to an investigative fired cartridge case image. The paper presents three independent tests and evaluation studies of the Examiner system utilizing the S-MODALS technology for the Federal Bureau of Investigation.

  1. Software for Partly Automated Recognition of Targets

    NASA Technical Reports Server (NTRS)

    Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark

    2003-01-01

    The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user s tendencies while the user is selecting targets and to increase the user s productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.

  2. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ma, Fang-Kui; Dang, Qi-Feng; Liang, Xing-Guo; Chen, Xi-Guang

    2014-12-01

    A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (- 15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-loaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.

  3. Linguistic Context Versus Semantic Competition in Word Recognition by Younger and Older Adults With Cochlear Implants.

    PubMed

    Amichetti, Nicole M; Atagi, Eriko; Kong, Ying-Yee; Wingfield, Arthur

    The increasing numbers of older adults now receiving cochlear implants raises the question of how the novel signal produced by cochlear implants may interact with cognitive aging in the recognition of words heard spoken within a linguistic context. The objective of this study was to pit the facilitative effects of a constraining linguistic context against a potential age-sensitive negative effect of response competition on effectiveness of word recognition. Younger (n = 8; mean age = 22.5 years) and older (n = 8; mean age = 67.5 years) adult implant recipients heard 20 target words as the final words in sentences that manipulated the target word's probability of occurrence within the sentence context. Data from published norms were also used to measure response entropy, calculated as the total number of different responses and the probability distribution of the responses suggested by the sentence context. Sentence-final words were presented to participants using a word-onset gating paradigm, in which a target word was presented with increasing amounts of its onset duration in 50 msec increments until the word was correctly identified. Results showed that for both younger and older adult implant users, the amount of word-onset information needed for correct recognition of sentence-final words was inversely proportional to their likelihood of occurrence within the sentence context, with older adults gaining differential advantage from the contextual constraints offered by a sentence context. On the negative side, older adults' word recognition was differentially hampered by high response entropy, with this effect being driven primarily by the number of competing responses that might also fit the sentence context. Consistent with previous research with normal-hearing younger and older adults, the present results showed older adult implant users' recognition of spoken words to be highly sensitive to linguistic context. This sensitivity, however, also resulted in a greater degree of interference from other words that might also be activated by the context, with negative effects on ease of word recognition. These results are consistent with an age-related inhibition deficit extending to the domain of semantic constraints on word recognition.

  4. Microcinematographic and electron microscopic analysis of target cell lysis induced by cytotoxic T lymphocytes.

    PubMed Central

    Matter, A

    1979-01-01

    A study was carried out to determine the sequence of events of T-cell mediated target cell lysis in microcinematography and electron microscopy. Highly efficient cytotoxic T lymphocytes (CTL) were generated in vivo and in vitro using preimmunized spleen cells and purification procedures. Such CTL were highly specific. This specificity correlated well with the number of adhesions formed between CTL and targets and this criterion was used to study killer-target cell interaction. Microcinematography showed that target cell lysis at the single cell level, despite time variations, could be clearly separated into three phases: (a) a recognition phase, visible by random crawling of CTL over the target cell surface until firm contact was established; (b) a post-recognition phase, during which firm contact between CTL and target was maintained without gross modification of either cell; (c) a phase of target cell disintegration, mainly characterized by vigorous blebbing of the cell membrane resulting in a motionless carcass of the target cell but not in its total dissolution. Only later this carcass decayed and formed a necrotic ghost. Electron microscopic observations were put into sequence according to microcinematography. Post-recognition phase was characterized by a tight apposition of the membranes of CTL and target cell. No gap junctions could be observed. During target cell disintegration, profound cytoplasmic and nuclear changes occurred simultaneous with surface blebbing. Most noticeable were extensive internal vacuolization, mitochondrial swelling, nuclear pycnosis and dissolution of the nucleolus. These observations suggested that target cell lysis does not start with a surface phenomenon similar to complement lysis, but a process involving practically the whole cell simultaneously. It is conceivable, therefore, that the signal from the CTL is transmitted across the target cell, and that the switch to sudden cell death is manipulated deep inside the cell. Images Figure 3 Figures 4-7 Figures 8-11 Figure 12 Figures 13-14 Figure 15 PMID:312256

  5. Design and Implementation of Sound Searching Robots in Wireless Sensor Networks

    PubMed Central

    Han, Lianfu; Shen, Zhengguang; Fu, Changfeng; Liu, Chao

    2016-01-01

    A sound target-searching robot system which includes a 4-channel microphone array for sound collection, magneto-resistive sensor for declination measurement, and a wireless sensor networks (WSN) for exchanging information is described. It has an embedded sound signal enhancement, recognition and location method, and a sound searching strategy based on a digital signal processor (DSP). As the wireless network nodes, three robots comprise the WSN a personal computer (PC) in order to search the three different sound targets in task-oriented collaboration. The improved spectral subtraction method is used for noise reduction. As the feature of audio signal, Mel-frequency cepstral coefficient (MFCC) is extracted. Based on the K-nearest neighbor classification method, we match the trained feature template to recognize sound signal type. This paper utilizes the improved generalized cross correlation method to estimate time delay of arrival (TDOA), and then employs spherical-interpolation for sound location according to the TDOA and the geometrical position of the microphone array. A new mapping has been proposed to direct the motor to search sound targets flexibly. As the sink node, the PC receives and displays the result processed in the WSN, and it also has the ultimate power to make decision on the received results in order to improve their accuracy. The experiment results show that the designed three-robot system implements sound target searching function without collisions and performs well. PMID:27657088

  6. Design and Implementation of Sound Searching Robots in Wireless Sensor Networks.

    PubMed

    Han, Lianfu; Shen, Zhengguang; Fu, Changfeng; Liu, Chao

    2016-09-21

    A sound target-searching robot system which includes a 4-channel microphone array for sound collection, magneto-resistive sensor for declination measurement, and a wireless sensor networks (WSN) for exchanging information is described. It has an embedded sound signal enhancement, recognition and location method, and a sound searching strategy based on a digital signal processor (DSP). As the wireless network nodes, three robots comprise the WSN a personal computer (PC) in order to search the three different sound targets in task-oriented collaboration. The improved spectral subtraction method is used for noise reduction. As the feature of audio signal, Mel-frequency cepstral coefficient (MFCC) is extracted. Based on the K-nearest neighbor classification method, we match the trained feature template to recognize sound signal type. This paper utilizes the improved generalized cross correlation method to estimate time delay of arrival (TDOA), and then employs spherical-interpolation for sound location according to the TDOA and the geometrical position of the microphone array. A new mapping has been proposed to direct the motor to search sound targets flexibly. As the sink node, the PC receives and displays the result processed in the WSN, and it also has the ultimate power to make decision on the received results in order to improve their accuracy. The experiment results show that the designed three-robot system implements sound target searching function without collisions and performs well.

  7. Modeling Human Visual Perception for Target Detection in Military Simulations

    DTIC Science & Technology

    2009-06-01

    incorrectly, is a subject for future research. Possibly, one could exploit the Recognition-by-Components theory of Biederman (1987) and decompose the...Psychophysiscs, 55, 485-496. Biederman , I. (1987). Recognition-by-components: A theory of human image understand- ing. Psychological Review, 94, 115-147

  8. Spoof Detection for Finger-Vein Recognition System Using NIR Camera.

    PubMed

    Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung

    2017-10-01

    Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods.

  9. Spoof Detection for Finger-Vein Recognition System Using NIR Camera

    PubMed Central

    Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung

    2017-01-01

    Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods. PMID:28974031

  10. Three-dimensional fingerprint recognition by using convolution neural network

    NASA Astrophysics Data System (ADS)

    Tian, Qianyu; Gao, Nan; Zhang, Zonghua

    2018-01-01

    With the development of science and technology and the improvement of social information, fingerprint recognition technology has become a hot research direction and been widely applied in many actual fields because of its feasibility and reliability. The traditional two-dimensional (2D) fingerprint recognition method relies on matching feature points. This method is not only time-consuming, but also lost three-dimensional (3D) information of fingerprint, with the fingerprint rotation, scaling, damage and other issues, a serious decline in robustness. To solve these problems, 3D fingerprint has been used to recognize human being. Because it is a new research field, there are still lots of challenging problems in 3D fingerprint recognition. This paper presents a new 3D fingerprint recognition method by using a convolution neural network (CNN). By combining 2D fingerprint and fingerprint depth map into CNN, and then through another CNN feature fusion, the characteristics of the fusion complete 3D fingerprint recognition after classification. This method not only can preserve 3D information of fingerprints, but also solves the problem of CNN input. Moreover, the recognition process is simpler than traditional feature point matching algorithm. 3D fingerprint recognition rate by using CNN is compared with other fingerprint recognition algorithms. The experimental results show that the proposed 3D fingerprint recognition method has good recognition rate and robustness.

  11. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  12. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis.

    PubMed

    Kilby, N J; Davies, G J; Snaith, M R

    1995-11-01

    FLP site-specific recombinase was expressed in stably transformed tobacco and Arabidopsis. FLP-expressing tobacco lines were crossed with other transformed tobacco lines that contained a stably integrated FLP recognition target construct(s). The target construct consisted of two directly-oriented FLP recognition targets (FRTs), flanking a hygromycin resistance cassette located between a GUS coding region and an upstream 35S CaMV promoter. Excision of the hygromycin resistance cassette by FLP-mediated recombination between FRTs brings the GUS coding region under the transcriptional control of the CaMV 35S promoter. In the absence of FLP-mediated recombination, the GUS gene is transcriptionally silent. GUS activity was observed in the progeny of all crosses made between FLP recombinase-expressing and target-containing tobacco lines, but not in the selfs of parents. The predicted recombination product remaining after excision was confirmed by PCR and Southern analysis. In Arabidopsis, inducible expression of FLP recombinase was achieved from the soybean Gmhsp 17.6L heat-shock promoter. Heat-shock induction of FLP expression in plants containing the target construct led to activation of constitutive GUS expression in a subset of cells, whose progeny, therefore, were GUS-positive. A variety of clonal sectors were produced in plants derived from seed that was heat-shocked during germination. The ability to control the timing of GUS activation was demonstrated by heat-shock of unopened flower heads which produced large sectors. It was concluded that heat-shock-induced expression of FLP recombinase provides a readily controllable method for generating marked clonal sectors in Arabidopsis, the size and distribution of which reflects the timing of applied heat-shock.

  13. Carbohydrate recognition by the antiviral lectin cyanovirin-N

    PubMed Central

    Fujimoto, Yukiji K.; Green, David F.

    2012-01-01

    Cyanovirin-N is a cyanobacterial lectin with potent antiviral activity, and has been the focus of extensive pre-clinical investigation as a potential prophylactic for the prevention of the sexual transmission of the human immunodeficiency virus (HIV). Here we present a detailed analysis of carbohydrate recognition by this important protein, using a combination of computational methods, including extensive molecular dynamics simulations and Molecular-Mechanics/ Poisson–Boltzmann/Surface-Area (MM/PBSA) energetic analysis. The simulation results strongly suggest that the observed tendency of wildtype CVN to form domain-swapped dimers is the result of a previously unidentified cis-peptide bond present in the monomeric state. The energetic analysis additionally indicates that the highest-affinity ligand for CVN characterized to date (α-Man-(1,2)-α-Man-(1,2)-α-Man) is recognized asymmetrically by the two binding sites. Finally, we are able to provide a detailed map of the role of all binding site functional groups (both backbone and side chain) to various aspects of molecular recognition: general affinity for cognate ligands, specificity for distinct oligosaccharide targets and the asymmetric recognition of α-Man-(1,2)-α-Man-(1,2)-α-Man. Taken as a whole, these results complement past experimental characterization (both structural and thermodynamic) to provide the most complete understanding of carbohydrate recognition by CVN to date. The results also provide strong support for the application of similar approaches to the understanding of other protein–carbohydrate complexes. PMID:23057413

  14. PNA containing isocytidine nucleobase: synthesis and recognition of double helical RNA

    PubMed Central

    Zengeya, Thomas; Li, Ming; Rozners, Eriks

    2011-01-01

    Peptide nucleic acid (PNA1) containing a 5-methylisocytidine (iC) nucleobase has been synthesized. Triple helix formation between PNA1 and RNA hairpins having variable base pairs interacting with iC was studied using isothermal titration calorimetry. The iC nucleobase recognized the proposed target, C-G inversion in polypurine tract of RNA, with slightly higher affinity than the natural nucleobases, though the sequence selectivity of recognition was low. Compared to non-modified PNA, PNA1 had lower affinity for its RNA target. PMID:21333533

  15. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    NASA Astrophysics Data System (ADS)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  16. Handheld laser scanner automatic registration based on random coding

    NASA Astrophysics Data System (ADS)

    He, Lei; Yu, Chun-ping; Wang, Li

    2011-06-01

    Current research on Laser Scanner often focuses mainly on the static measurement. Little use has been made of dynamic measurement, that are appropriate for more problems and situations. In particular, traditional Laser Scanner must Keep stable to scan and measure coordinate transformation parameters between different station. In order to make the scanning measurement intelligently and rapidly, in this paper ,we developed a new registration algorithm for handleheld laser scanner based on the positon of target, which realize the dynamic measurement of handheld laser scanner without any more complex work. the double camera on laser scanner can take photograph of the artificial target points to get the three-dimensional coordinates, this points is designed by random coding. And then, a set of matched points is found from control points to realize the orientation of scanner by the least-square common points transformation. After that the double camera can directly measure the laser point cloud in the surface of object and get the point cloud data in an unified coordinate system. There are three major contributions in the paper. Firstly, a laser scanner based on binocular vision is designed with double camera and one laser head. By those, the real-time orientation of laser scanner is realized and the efficiency is improved. Secondly, the coding marker is introduced to solve the data matching, a random coding method is proposed. Compared with other coding methods,the marker with this method is simple to match and can avoid the shading for the object. Finally, a recognition method of coding maker is proposed, with the use of the distance recognition, it is more efficient. The method present here can be used widely in any measurement from small to huge obiect, such as vehicle, airplane which strengthen its intelligence and efficiency. The results of experiments and theory analzing demonstrate that proposed method could realize the dynamic measurement of handheld laser scanner. Theory analysis and experiment shows the method is reasonable and efficient.

  17. The use of cue familiarity during retrieval failure is affected by past versus future orientation.

    PubMed

    Cleary, Anne M

    2015-01-01

    Cue familiarity that is brought on by cue resemblance to memory representations is useful for judging the likelihood of a past occurrence with an item that fails to actually be retrieved from memory. The present study examined the extent to which this type of resemblance-based cue familiarity is used in future-oriented judgments made during retrieval failure. Cue familiarity was manipulated using a previously-established method of creating differing degrees of feature overlap between the cue and studied items in memory, and the primary interest was in how these varying degrees of cue familiarity would influence future-oriented feeling-of-knowing (FOK) judgments given in instances of cued recall failure. The present results suggest that participants do use increases in resemblance-based cue familiarity to infer an increased likelihood of future recognition of an unretrieved target, but not to the extent that they use it to infer an increased likelihood of past experience with an unretrieved target. During retrieval failure, the increase in future-oriented FOK judgments with increasing cue familiarity was significantly less than the increase in past-oriented recognition judgments with increasing cue familiarity.

  18. The selective recognition of antibody IgY for digestive system cancers.

    PubMed

    Yang, J; Jin, Z; Yu, Q; Yang, T; Wang, H; Liu, L

    1997-01-01

    Biological methods for cancer therapies are very important. A small and efficient target carrier is the key component for anti-cancer drugs. In our laboratory, the antibody IgY was extracted from egg yolk of a SPF hen. The SPF hen was immunized with an antigene of P110 protein which was purified from human stomach cancer MGC-803 cells. Results indicated that the antibody IgY can specifically recognize gastrointestinal system cancers. It may become an important carrier for antitumorigenic drugs.

  19. Chinese License Plates Recognition Method Based on A Robust and Efficient Feature Extraction and BPNN Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue

    2018-04-01

    The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.

  20. Effects of pre-experimental knowledge on recognition memory.

    PubMed

    Bird, Chris M; Davies, Rachel A; Ward, Jamie; Burgess, Neil

    2011-01-01

    The influence of pre-experimental autobiographical knowledge on recognition memory was investigated using as memoranda faces that were either personally known or unknown to the participant. Under a dual process theory, such knowledge boosted both recollection- and familiarity-based recognition judgements. Under an unequal variance signal detection model, pre-experimental knowledge increased both the variance and the separation of the target and foil memory strength distributions, boosting hits and correct rejections. Thus, pre-experimental knowledge has profound effects on the multiple, interacting processes that subserve recognition memory, and likely in the neural systems that underpin them.

Top