Sample records for target recoil momentum

  1. Recoil-ion momentum distributions for transfer ionization in fast proton-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, H.T.; Reinhed, P.; Schuch, R.

    2005-07-15

    We present high-luminosity experimental investigations of the transfer ionization (TI:p+He{yields}H{sup 0}+He{sup 2+}+e{sup -}) process in collisions between fast protons and neutral helium atoms in the earlier inaccessibly high-energy range 1.4-5.8 MeV. The protons were stored in the heavy-ion storage and cooler ring CRYRING, where they intersected a narrow supersonic helium gas jet. We discuss the longitudinal recoil-ion momentum distribution, as measured by means of cold-target recoil-ion momentum spectroscopy and find that this distribution splits into two completely separated peaks at the high end of our energy range. These separate contributions are discussed in terms of the earlier proposed Thomas TImore » (TTI) and kinematic TI mechansims. The cross section of the TTI process is found to follow a {sigma}{proportional_to}v{sup -b} dependence with b=10.78{+-}0.27 in accordance with the expected v{sup -11} asymptotic behavior. Further, we discuss the probability for shake-off accompanying electron transfer and the relation of this TI mechanism to photodouble ionization. Finally the influence of the initial-state electron velocity distribution on the TTI process is discussed.« less

  2. Low momentum recoil detectors in CLAS12 at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Charles, Gabriel; CLAS Collaboration Collaboration

    2017-01-01

    Part of the experimental program in Hall B of the Jefferson Lab is dedicated to studying nucleon structure using DIS on nuclei and detecting low-momentum recoil particles in coincidence with the scattered electron. For this purpose, specially designed central detectors are required in place of the inner tracker of CLAS12 to detect particles with momenta below 100 MeV/c. We will present the status of the BONuS12 RTPC detector that will take data within the next 2 years. We will detail the main improvements made from the previous BONuS RTPC. In a second part, we will discuss another recoil experiment, called ALERT, that has been proposed to run in Hall B. The constraints being different, the recoil detector is based on a drift chamber and an array of scintillators. We will present the main differences between the two detectors and summarize the R&D performed to develop the ALERT detector.

  3. Gas powered fluid gun with recoil mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubelich, Mark C.; Yonas, Gerold

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided by a cavitating venturi that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated.

  4. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  5. Gas powered fluid gun with recoil mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubelich, Mark C.; Yonas, Gerold

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  6. Interpreting Recoil for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Elsayed, Tarek A.

    2012-04-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is closely related to Newton's third law. Since the actual microscopic causes of recoil differ from one problem to another, some students (and teachers) may not be satisfied with understanding recoil through the principles of conservation of linear momentum and Newton's third law. For these students, the origin of the recoil motion should be presented in more depth.

  7. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  8. Pulsed laser interactions with space debris: Target shape effects

    DOE PAGES

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; ...

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes.more » We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.« less

  9. Pulsed laser interactions with space debris: Target shape effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes.more » We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.« less

  10. Revealing compressed stops using high-momentum recoils

    DOE PAGES

    Macaluso, Sebastian; Park, Michael; Shih, David; ...

    2016-03-22

    In this study, searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ~ 1 and significances often well beyond 5σ.more » The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a E T, but also leads to a distinctive anti-correlation between the E T and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in E T measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb –1. By 300 fb –1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the “stealth” point at m t¯ = m t and potentially overlapping with limits from tt¯ cross section and spin correlation measurements.« less

  11. Recoil polarization and beam-recoil double polarization measurement of eta electroproduction on the proton in the region of the S11(1535) resonance.

    PubMed

    Merkel, H; Achenbach, P; Ayerbe Gayoso, C; Bernauer, J C; Böhm, R; Bosnar, D; Cheymol, B; Distler, M O; Doria, L; Fonvieille, H; Friedrich, J; Janssens, P; Makek, M; Müller, U; Nungesser, L; Pochodzalla, J; Potokar, M; Sánchez Majos, S; Schlimme, B S; Sirca, S; Tiator, L; Walcher, Th; Weinriefer, M

    2007-09-28

    The beam-recoil double polarization P(x')(h) and P(z')(h) and the recoil polarization P(y') were measured for the first time for the p(e,e'p)eta reaction at a four-momentum transfer of Q(2) = 0.1 GeV(2)/c(2) and a center of mass production angle of theta = 120 degrees at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeVtarget asymmetry.

  12. All-optical atom trap as a target for MOTRIMS-like collision experiments

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Acharya, B. P.; De Silva, A. H. N. C.; Parris, N. W.; Ramsey, B. J.; Romans, K. L.; Dorn, A.; de Jesus, V. L. B.; Fischer, D.

    2018-04-01

    Momentum-resolved scattering experiments with laser-cooled atomic targets have been performed since almost two decades with magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) setups. Compared to experiments with gas-jet targets, MOTRIMS features significantly lower target temperatures allowing for an excellent recoil ion momentum resolution. However, the coincident and momentum-resolved detection of electrons was long rendered impossible due to incompatible magnetic field requirements. Here we report on an experimental approach which is based on an all-optical 6Li atom trap that—in contrast to magneto-optical traps—does not require magnetic field gradients in the trapping region. Atom temperatures of about 2 mK and number densities up to 109 cm-3 make this trap ideally suited for momentum-resolved electron-ion coincidence experiments. The overall configuration of the trap is very similar to conventional magneto-optical traps. It mainly requires small modifications of laser beam geometries and polarization which makes it easily implementable in other existing MOTRIMS experiments.

  13. Recoil Polarization and Beam-Recoil Double Polarization Measurement of {eta} Electroproduction on the Proton in the Region of the S{sub 11}(1535) Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkel, H.; Achenbach, P.; Ayerbe Gayoso, C.

    2007-09-28

    The beam-recoil double polarization P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} and the recoil polarization P{sub y{sup '}} were measured for the first time for the p(e-vector,e{sup '}p-vector){eta} reaction at a four-momentum transfer of Q{sup 2}=0.1 GeV{sup 2}/c{sup 2} and a center of mass production angle of {theta}=120 deg. at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeVtarget asymmetry.« less

  14. Propulsion of a flat tin target with pulsed CO2 laser radiation: measurements using a ballistic pendulum

    NASA Astrophysics Data System (ADS)

    Lakatosh, B. V.; Abramenko, D. B.; Ivanov, V. V.; Medvedev, V. V.; Krivtsun, V. M.; Koshelev, K. N.; Yakunin, A. M.

    2018-01-01

    The recoil momentum transfer produced by irradiation of a flat tin (Sn) target with pulses of high-power CO2 laser with intensity ranging from 107 to 1010 W cm-2 has been studied. Momentum measurements were performed using a ballistic pendulum, capable of measuring momenta as small as 0.001 g · cm s-1 . It has been established that the recoil momentum monotonically increases with the laser energy and asymptotically reaches the power scaling law p ∼ Iα with α = 0.96 +/- 0.07 . Results are compared with previously published theoretical studies.

  15. Optimizing Higgs factories by modifying the recoil mass

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Li, Ying-Ying

    2018-02-01

    It is difficult to measure the WW-fusion Higgs production process ({{{e}}}+{{{e}}}-\\to {{ν }}\\bar{{{ν }}}{{h}}) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z ({{{e}}}+{{{e}}}-\\to {{hZ}},{{Z}}\\to {{ν }}\\bar{{{ν }}}). We construct a modified recoil mass variable, {m}{{recoil}}p, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can separate the WW-fusion and Higgsstrahlung events better than the original recoil mass variable m recoil. Consequently, the {m}{{recoil}}p variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the {m}{{recoil}}p variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies. JG is Supported by an International Postdoctoral Exchange Fellowship Program between the Office of the National Administrative Committee of Postdoctoral Researchers of China (ONACPR) and DESY. YYL is Supported by Hong Kong PhD Fellowship (HKPFS) and the Collaborative Research Fund (CRF) (HUKST4/CRF/13G)

  16. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    NASA Astrophysics Data System (ADS)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  17. On the Mössbauer Effect and the Rigid Recoil Question

    NASA Astrophysics Data System (ADS)

    Davidson, Mark

    2017-03-01

    The rigid recoil of a crystal is the accepted mechanism for the Mössbauer effect. It's at odds with the special theory of relativity which does not allow perfectly rigid bodies. The standard model of particle physics which includes QED should not allow any signals to be transmitted faster than the speed of light. If perturbation theory can be used, then the X-ray emitted in a Mössbauer decay must come from a single nuclear decay vertex at which the 4-momentum is exactly conserved in a Feynman diagram. Then the 4-momentum of the final state Mössbauer nucleus must be slightly off the mass shell. This off-shell behavior would be followed by subsequent diffusion of momentum throughout the crystal to bring the nucleus back onto the mass shell and the crystal to a final relaxed state in which it moves rigidly with the appropriate recoil velocity. This mechanism explains the Mössbauer effect at the microscopic level and reconciles it with relativity. Because off-mass-shell quantum mechanics is required, the on-mass-shell theories developed originally for the Mössbauer effect are inadequate. Another possibility is that that the recoil response involves a non-perturbative effect in the standard model which could allow for a non-local instantaneous momentum transfer between the crystal and the decay (or absorption), as proposed for example by Preparata and others in super-radiance theory. The recoil time of the crystal is probably not instantaneous, and if it could be measured, one could distinguish between various theories. An experiment is proposed in this paper to measure this time. The idea is to measure the total energy radiated due to bremsstrahlung from a charged Mössbauer crystal which has experienced a recoil. Using Larmor's formula, along with corrections to it, allows one to design an experiment. The favored idea is to use many small nano-spheres of Mössbauer-active metals, whose outer surfaces are charged. The energy radiated then varies as the charge

  18. Recoil polarization measurements

    NASA Astrophysics Data System (ADS)

    Brinkmann, Kai-Thomas

    2017-01-01

    Polarization observables in photon-induced meson production off nucleons have long been recognized to hold the promise of a detailed understanding of the excited states in the excitation spectrum of the nucleon. Photon beam and proton target polarization are routinely used at the ELSA facility in the Crystal Barrel/TAPS experiment and have yielded a wealth of data on contributing partial waves and nucleon resonances. A detector study on how to complement these ongoing studies by recoil polarization measurements that offer an orthogonal approach with otherwise unmeasurable observables in the field of non-strange meson photoproduction has been performed. Building on experience with silicon detectors operated in the photon beamline environment, first possible layouts of Si detector telescopes for recoil protons were developed. Various geometries, e.g. Archimedean spiral design of annular sensors, sector shapes and rectangular sensors were studied and have been used during test measurements. A prototype for the recoil polarimeter was built and subjected to performance tests in protonproton scattering at the COSY-accelerator in Jülich.

  19. Proton-deuteron double scattering

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1974-01-01

    A simple but accurate form for the proton-deuteron elastic double scattering amplitude, which includes both projectile and target recoil motion and is applicable at all momentum transfer, is derived by taking advantage of the restricted range of Fermi momentum allowed by the deuteron wave function. This amplitude can be directly compared to approximations which have neglected target recoil or are limited to small momentum transfer; the target recoil and large momentum transfer effects are evaluated explicitly within the context of a Gaussian model.

  20. Nuclear recoil measurements with the ARIS experiment

    NASA Astrophysics Data System (ADS)

    Fan, Alden; ARIS Collaboration

    2017-01-01

    As direct dark matter searches become increasingly sensitive, it is important to fully characterize the target of the search. The goal of the Argon Recoil Ionization and Scintillation (ARIS) experiment is to quantify information related to the scintillation and ionization energy scale, quenching factor, ion recombination probability, and scintillation time response of nuclear recoils, as expected from WIMPs, in liquid argon. A time projection chamber with an active mass of 0.5 kg of liquid argon and capable of full 3D position reconstruction was exposed to an inverse kinematic neutron beam at the Institut de Physique Nucleaire d'Orsay in France. A scan of nuclear recoil energies was performed through coincidence with a set of neutron detectors to quantify properties of nuclear recoils in liquid argon at various electric fields. The difference in ionization and scintillation response with differing recoil track angle to the electric field was also studied. The preliminary results of the experiment will be presented.

  1. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    NASA Astrophysics Data System (ADS)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  2. Hypervelocity impacts on asteroids and momentum transfer I. Numerical simulations using porous targets

    NASA Astrophysics Data System (ADS)

    Jutzi, Martin; Michel, Patrick

    2014-02-01

    In this paper, we investigate numerically the momentum transferred by impacts of small (artificial) projectiles on asteroids. The study of the momentum transfer efficiency as a function of impact conditions and of the internal structure of an asteroid is crucial for performance assessment of the kinetic impactor concept of deflecting an asteroid from its trajectory. The momentum transfer is characterized by the so-called momentum multiplication factor β, which has been introduced to define the momentum imparted to an asteroid in terms of the momentum of the impactor. Here we present results of code calculations of the β factor for porous targets, in which porosity takes the form of microporosity and/or macroporosity. The results of our study using a large range of impact conditions indicate that the momentum multiplication factor β is small for porous targets even for very high impact velocities (β<2 for vimp⩽15 km/s), which is consistent with published scaling laws and results of laboratory experiments (Holsapple, K.A., Housen, K.R. [2012]. Icarus 221, 875-887; Holsapple, K.A., Housen, K.R. [2013]. Proceedings of the IAA Planetary Defense Conference 2013, Flagstaff, USA). It is found that both porosity and strength can have a large effect on the amount of transferred momentum and on the scaling of β with impact velocity. On the other hand, the macroporous inhomogeneities considered here do not have a significant effect on β.

  3. Limits on Momentum-Dependent Asymmetric Dark Matter with CRESST-II.

    PubMed

    Angloher, G; Bento, A; Bucci, C; Canonica, L; Defay, X; Erb, A; Feilitzsch, F V; Ferreiro Iachellini, N; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J-C; Loebell, J; Münster, A; Pagliarone, C; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Schäffner, K; Schieck, J; Schönert, S; Seidel, W; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Trinh Thi, H H; Türkoğlu, C; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A

    2016-07-08

    The usual assumption in direct dark matter searches is to consider only the spin-dependent or spin-independent scattering of dark matter particles. However, especially in models with light dark matter particles O(GeV/c^{2}), operators which carry additional powers of the momentum transfer q^{2} can become dominant. One such model based on asymmetric dark matter has been invoked to overcome discrepancies in helioseismology and an indication was found for a particle with a preferred mass of 3  GeV/c^{2} and a cross section of 10^{-37}  cm^{2}. Recent data from the CRESST-II experiment, which uses cryogenic detectors based on CaWO_{4} to search for nuclear recoils induced by dark matter particles, are used to constrain these momentum-dependent models. The low energy threshold of 307 eV for nuclear recoils of the detector used, allows us to rule out the proposed best fit value above.

  4. Jet axes and universal transverse-momentum-dependent fragmentation

    NASA Astrophysics Data System (ADS)

    Neill, Duff; Scimemi, Ignazio; Waalewijn, Wouter J.

    2017-04-01

    We study the transverse momentum spectrum of hadrons in jets. By measuring the transverse momentum with respect to a judiciously chosen axis, we find that this observable is insensitive to (the recoil of) soft radiation. Furthermore, for small transverse momenta we show that the effects of the jet boundary factorize, leading to a new transverse-momentum-dependent (TMD) fragmentation function. In contrast to the usual TMD fragmentation functions, it does not involve rapidity divergences and is universal in the sense that it is independent of the type of process and number of jets. These results directly apply to sub-jets instead of hadrons. We discuss potential applications, which include studying nuclear modification effects in heavy-ion collisions and identifying boosted heavy resonances.

  5. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  6. Direct determination of exciton wavefunction amplitudes by the momentum-resolved photo-electron emission experiment

    NASA Astrophysics Data System (ADS)

    Ohnishi, Hiromasa; Tomita, Norikazu; Nasu, Keiichiro

    2018-03-01

    We study conceptional problems of a photo-electron emission (PEE) process from a free exciton in insulating crystals. In this PEE process, only the electron constituting the exciton is suddenly emitted out of the crystal, while the hole constituting the exciton is still left inside and forced to be recoiled back to its original valence band. This recoil on the hole is surely reflected in the spectrum of the PEE with a statistical distribution along the momentum-energy curve of the valence band. This distribution is nothing but the square of the exciton wavefunction amplitude, since it shows how the electron and the hole are originally bound together. Thus, the momentum-resolved PEE can directly determine the exciton wavefunction. These problems are clarified, taking the Γ and the saddle point excitons in GaAs, as typical examples. New PEE experiments are also suggested.

  7. Zapotec Simulations of Momentum Transfer for Impacts into Thin Aluminum Targets

    NASA Astrophysics Data System (ADS)

    Helminiak, Nathaniel; Sable, Peter; Gullerud, Arne; Hollenshead, Jeromy; Hertel, Gene

    2017-06-01

    The momentum transfers between small, 3.2 mm, aluminum spheres into thin aluminum targets was characterized utilizing the numerical solver, Zapotec, which couples the CTH hydrocode and a transient finite elements code, Sierra/SM. The results are compared to experimental work, conducted at the NASA Ames Research Center. Square 15 × 15cm2 aluminum targets ranged in thickness from 5 to 48.2 mm were impacted at a range of velocities from 1 to 9 km/s. From these tests, the components of spray and ejecta momentum, along the axis of impact, normal to the plate surface, were measured. Variations of hole diameter and target mass loss, with respect to initial projectile velocity, were also recorded. The data presented covers a range of phases corresponding to impact behavior ranging from inelastic collision, through spalling behavior, and ending with complete penetration. Sandia is a multiprogram laboratory, operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallows, Scott Mathew

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly allmore » remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.« less

  9. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  10. On possibility of time reversal symmetry violation in neutrino elastic scattering on polarized electron target

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2018-03-01

    In this paper we indicate a possibility of utilizing the elastic scattering of Dirac low-energy (˜ 1 MeV) electron neutrinos (ν _es) on a polarized electron target (PET) in testing the time reversal symmetry violation (TRSV). We consider a scenario in which the incoming ν _e beam is a superposition of left chiral (LC) and right chiral (RC) states. LC ν _e interact mainly by the standard V-A and small admixture of non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while RC ones are only detected by the exotic V + A and S_R, P_R, T_R interactions. As a result of the superposition of the two chiralities the transverse components of ν e spin polarization (T-even and T-odd) may appear. We compute the differential cross section as a function of the recoil electron azimuthal angle and scattered electron energy, and show how the interference terms between standard V-A and exotic S_R, P_R, T_R couplings depend on the various angular correlations among the transversal ν _e spin polarization, the polarization of the electron target, the incoming neutrino momentum and the outgoing electron momentum in the limit of relativistic ν _e. We illustrate how the maximal value of recoil electrons azimuthal asymmetry and the asymmetry axis location of outgoing electrons depend on the azimuthal angle of the transversal component of the ν _e spin polarization, both for the time reversal symmetry conservation (TRSC) and TRSV. Next, we display that the electron energy spectrum and polar angle distribution of the recoil electrons are also sensitive to the interference terms between V-A and S_R, P_R, T_R couplings, proportional to the T-even and T-odd angular correlations among the transversal ν _e polarization, the electron polarization of the target, and the incoming ν _e momentum, respectively. We also discuss the possibility of testing the TRSV by observing the azimuthal asymmetry of outgoing electrons, using the PET without the impact of the transversal

  11. Transverse momentum and its compensation in current and target jets in deep inelastic muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Beaufays, J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Callebaut, D.; Carr, J.; Chima, J. S.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dahlgren, S.; Davies, J. K.; Dengler, F.; Derado, I.; Dosselli, U.; Dreyer, T.; Drees, J.; Dumont, J. J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Gössling, C.; Grafström, P.; Grard, F.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Manz, A.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Paul, L.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Schlagböhmer, A.; Schmitz, N.; Schneegans, M.; Schröder, T.; Schultze, K.; Shiers, J.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wahlen, H.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Wolf, G.

    1984-12-01

    Results are presented on the transverse momentum distributions of charged hadrons in 280 GeV muon-proton deep inelastic interactions. The transverse momenta are defined relative to the accurately measured virtual photon direction and the experiment has almost complete angular acceptance for the final state hadrons. Significantly larger values of the average transverse momentum squared are found for the forward going hadrons than for the target remnants. This result, combined with a study of the rapidity region over which the transverse momentum is compensated, can be explained by a significant contribution from soft gluon radiation, but not by a large value of the primordial transverse momentum of the struck quark.

  12. Measurement of Tensor Analyzing Powers for Elastic Electron Scattering from a Polarized 2H Target Internal to a Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Ferro-Luzzi; M. Bouwhuis; E. Passchier

    1996-09-23

    We report an absolute measurement of the tensor analyzing powers T20 and T22 in elastic electron-deuteron scattering at a momentum transfer of 1.6 fm{sup -1}. The novel approach of this measurement is the use of a tensor polarized 2H target internal to an electron storage ring, with in situ measurement of the polarization of the target gas. Scattered electrons and recoil deuterons were detected in coincidence with two large acceptance nonmagnetic detectors. The techniques demonstrated have broad applicability to further measurements of spin-dependent electron scattering.

  13. Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer

    NASA Astrophysics Data System (ADS)

    Barrett, Brynle

    I have developed three types of time-domain echo atom interferometer (AIs) that use either two or three standing-wave pulses in different configurations. Experiments approaching the transit time limit are achieved using samples of laser-cooled rubidium atoms with temperatures < 5 μK contained within a glass vacuum chamber—an environment that is largely free of both magnetic fields and field gradients. The principles of the atom-interferometric measurement of Eq can be understood based on a description of the "two-pulse" AI. This interferometer uses two standing-wave pulses applied at times t = 0 and t = T 21 to create a superposition of atomic momentum states differing by multiples of the two-photon momentum, ħq = 2 ħk where k is the optical wave number, that interfere in the vicinity of t = 2T 21. This interference or "echo" manifests itself as a density grating in the atomic sample, and is probed by applying a near-resonant traveling-wave "read-out" pulse and measuring the intensity of the coherent light Bragg-scattered in the backward direction. The scattered light from the grating is associated with a λ/2-periodic modulation produced by the interference of momentum states differing by ħq. Interfering states that differ by more than ħq—which produce higher-frequency spatial modulation within the sample—cannot be detected due to the nature of the Bragg scattering detection technique employed in the experiment. The intensity of the scattered light varies in a periodic manner as a function of the standing-wave pulse separation, T21. The fundamental frequency of this modulation is the two-photon atomic recoil frequency, ω q = ħq2/2M, where q = 2k and M is the mass of the atom (a rubidium isotope in this case). The recoil frequency, ω q, is related to the recoil energy, Eq = ħωq, which is the kinetic energy associated with the recoil of the atom after a coherent two-photon scattering process. By performing the experiment on a suitably long time scale

  14. Ion-momentum imaging of dissociative attachment of electrons to molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaughter, D. S.; Belkacem, A.; McCurdy, C. W.

    Here, we present an overview of experiments and theory relevant to dissociative electron attachment studied by momentum imaging. We describe several key examples of characteristic transient anion dynamics in the form of small polyatomic electron-molecule systems. In each of these examples the so-called axial recoil approximation is found to break down due to correlation of the electronic and nuclear degrees of freedom of the transient anion. Guided by anion fragment momentum measurements and predictions of the electron scattering attachment probability in the molecular frame, we demonstrate that accurate predictions of the dissociation dynamics can be achieved without a detailed investigationmore » of the surface topology of the relevant electronic states or the fragment trajectories on those surfaces.« less

  15. Ion-momentum imaging of dissociative attachment of electrons to molecules

    DOE PAGES

    Slaughter, D. S.; Belkacem, A.; McCurdy, C. W.; ...

    2016-10-24

    Here, we present an overview of experiments and theory relevant to dissociative electron attachment studied by momentum imaging. We describe several key examples of characteristic transient anion dynamics in the form of small polyatomic electron-molecule systems. In each of these examples the so-called axial recoil approximation is found to break down due to correlation of the electronic and nuclear degrees of freedom of the transient anion. Guided by anion fragment momentum measurements and predictions of the electron scattering attachment probability in the molecular frame, we demonstrate that accurate predictions of the dissociation dynamics can be achieved without a detailed investigationmore » of the surface topology of the relevant electronic states or the fragment trajectories on those surfaces.« less

  16. Measurement of proton momentum distributions using a direct geometry instrument

    NASA Astrophysics Data System (ADS)

    Senesi, R.; Kolesnikov, A. I.; Andreani, C.

    2014-12-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy Ei= 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO.

  17. Momentum and Angular Momentum Transfer in Oblique Impacts: Implications for Asteroid Rotations

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Masahisa; Hasegawa, Sunao; Shirogane, Nobutoshi

    1996-09-01

    We conducted a series of high velocity oblique impact experiments (0.66-6.7 km/s) using polycarbonate (plastic) projectiles and targets made of mortar, aluminum alloy, and mild steel. We then calculated the efficiencies of momentum transfer for small cratering impacts. They are η = (M‧Vn‧)/(mvn) and ζ = (M‧Vt‧)/(mvt), wheremandvare the mass and velocity of a projectile, andM‧ andV‧ represent those of a postimpact target. Subscripts “n” and “t” denote the components normal and tangential to the target surface at the impact point, respectively. The main findings are: (1) η increases with increasing impact velocity; (2) η is larger for mortar than for ductile metallic targets; (3) ζ for mortar targets seems to increase with the impact velocity in the velocity range less than about 2 km/s and decrease with it in the higher velocity range; (4) ζ for the aluminum alloy targets correlates negatively with incident zenith angle of the projectile. In addition to these findings on the momentum transfer, we show theoretically that “ζL” can be expressed by η and ζ for small cratering impact. Here, ζLis the spin angular momentum that the target acquires at impact divided by the collisional angular momentum due to the projectile. This is an important parameter to study the collisional evolution of asteroid rotation. For a spherical target, ζLis shown to be well approximated by ζ.

  18. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    smaller than the recoil reported for commercial stents. These experimental results demonstrate the effectiveness of the device design for the targeted luminal support and stenting applications.

  19. Large momentum transfer atomic interferometric gyroscope

    NASA Astrophysics Data System (ADS)

    Compton, Robert; Dorr, Joshua; Nelson, Karl; Parker, Richard; Estey, Brian; Müller, Holger

    2017-04-01

    Atom interferometry holds out significant promise as the basis for compact, low cost, high performance inertial sensing. Some light pulse atom interferometers are based on an atomic beam-splitter in which the interferometer paths separate at the velocity imparted by a two-photon (Raman) recoil event, resulting in narrow path separation and a corresponding high aspect ratio between the length and width of the interferometer. In contrast, proposals for large momentum transfer (LMT) offer paths to larger separation between interferometer arms, and aspect ratios approaching 1. Here, we demonstrate an LMT gyroscope based on a combination of Bragg and Bloch atomic transitions adding up to a total of 8 photons of momentum transfer. We discuss prospects for scalability to larger photon numbers where angular random walk (ARW) can be better than navigation-grade. This research was developed with funding from DARPA. The views, opinions, and/or findings contained herein are those of the presenters and should not be interpreted as representing the official views or policies of the DoD or the US Government.

  20. Measurements of the differential cross sections for recoil tritons in 4He- 3T scattering at energies between 0.5 and 2.5 MeV

    NASA Astrophysics Data System (ADS)

    Sawicki, J. A.

    1988-03-01

    Differential cross-sections for recoil detection of tritons from elastic scattering of α-particles on tritium were measured at forward recoil angles from 10° and 40° and over incident 4He energies ranging from 0.5 to 2.5 MeV. Thin solid state targets consisted of about 10 16T {at.}/{cm 2} either absorbed in a thin film of titanium or implanted at low energy in the matrix of amorphous silicon. The recoil yields were normalized against the yields of the T(d, α)n reaction measured on the same targets. It is found that the cross sections obtained are considerably enhanced as compared to the Rutherford recoil cross section, what can be attributed to the combined effect of Coulomb and nuclear potentials and formation of compound 7Li nuclei. The applications of the elastic recoil detection as a means for depth profiling of tritium in materials are briefly considered. The measured dependence of the triton recoil cross section on the incident energy of 4He + ions allows profiling the concentration of tritium across a range ˜ l μm below the surface of solids.

  1. Spatial and Foveal Biases, Not Perceived Mass or Heaviness, Explain the Effect of Target Size on Representational Momentum and Representational Gravity

    ERIC Educational Resources Information Center

    De Sá Teixeira, Nuno; Oliveira, Armando Mónica

    2014-01-01

    The spatial memory for the last position occupied by a moving target is usually displaced forward in the direction of motion. Interpreted as a mental analogue of physical momentum, this phenomenon was coined "representational momentum" (RM). As momentum is given by the product of an object's velocity and mass, both these factors came to…

  2. Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Max Planck Institute for Gravitational Physics; Lousto, Carlos O.

    2008-07-15

    We evolve equal-mass, equal-spin black-hole binaries with specific spins of a/m{sub H}{approx}0.925, the highest spins simulated thus far and nearly the largest possible for Bowen-York black holes, in a set of configurations with the spins counteraligned and pointing in the orbital plane, which maximizes the recoil velocities of the merger remnant, as well as a configuration where the two spins point in the same direction as the orbital angular momentum, which maximizes the orbital hangup effect and remnant spin. The coordinate radii of the individual apparent horizons in these cases are very small and the simulations require very high centralmore » resolutions (h{approx}M/320). We find that these highly spinning holes reach a maximum recoil velocity of {approx}3300 km s{sup -1} (the largest simulated so far) and, for the hangup configuration, a remnant spin of a/m{sub H}{approx}0.922. These results are consistent with our previous predictions for the maximum recoil velocity of {approx}4000 km s{sup -1} and remnant spin; the latter reinforcing the prediction that cosmic censorship is not violated by merging highly spinning black-hole binaries. We also numerically solve the initial data for, and evolve, a single maximal-Bowen-York-spin black hole, and confirm that the 3-metric has an O(r{sup -2}) singularity at the puncture, rather than the usual O(r{sup -4}) singularity seen for nonmaximal spins.« less

  3. Experimental Retrieval of Target Structure Information from Laser-Induced Rescattered Photoelectron Momentum Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okunishi, M.; Pruemper, G.; Shimada, K.

    We have measured two-dimensional photoelectron momentum spectra of Ne, Ar, and Xe generated by 800-nm, 100-fs laser pulses and succeeded in identifying the spectral ridge region (back-rescattered ridges) which marks the location of the returning electrons that have been backscattered at their maximum kinetic energies. We demonstrate that the structural information, in particular the differential elastic scattering cross sections of the target ion by free electrons, can be accurately extracted from the intensity distributions of photoelectrons on the ridges, thus effecting a first step toward laser-induced self-imaging of the target, with unprecedented spatial and temporal resolutions.

  4. Inner-Shell Electron Recoil Discrimination in Xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trask, Makayla; Lippincott, Hugh; Baxter, Dan

    2017-01-01

    \\bulletmore » $$$$ Dark matter searches using time projection chambers (TPCs) rely on the ability to distinguish between nuclear and electron interactions $$$$ Xenon TPCs are specifically searching for a low energy nuclear recoil ( < 30 keV ) signal $$$$ To do this, these interactions must be discernable from the electron recoil background« less

  5. Design of SECAR a recoil mass separator for astrophysical capture reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Couder, M.; Moran, M. T.; Smith, K.; Wiescher, M.; Schatz, H.; Hager, U.; Wrede, C.; Montes, F.; Perdikakis, G.; Wu, X.; Zeller, A.; Smith, M. S.; Bardayan, D. W.; Chipps, K. A.; Pain, S. D.; Blackmon, J.; Greife, U.; Rehm, K. E.; Janssens, R. V. F.

    2018-01-01

    A recoil mass separator SECAR has been designed for the purpose of studying low-energy (p , γ) and (α , γ) reactions in inverse kinematics with radioactive beams for masses up to about A = 65. Their reaction rates are of importance for our understanding of the energy production and nucleosynthesis during explosive hydrogen and helium burning. The radiative capture reactions take place in a windowless hydrogen or He gas target at the entrance of the separator, which consists of four Sections. The first Section selects the charge state of the recoils. The second and third Sections contain Wien Filters providing high mass resolving power to separate efficiently the intense beam from the few reaction products. In the following fourth Section, the reaction products are guided into a detector system capable of position, angle and time-of-flight measurements. In order to accept the complete kinematic cone of recoil particles including multiple scattering in the target in the center of mass energy range of 0.2 MeV to 3.0 MeV, the system must have a large polar angle acceptance of ± 25 mrad. This requires a careful minimization of higher order aberrations. The present system will be installed at the NSCL ReA3 accelerator and will be used with the much higher beam intensities of the FRIB facility when it becomes available.

  6. Design of SECAR a recoil mass separator for astrophysical capture reactions with radioactive beams

    DOE PAGES

    Berg, G. P. A.; Couder, M.; Moran, M. T.; ...

    2017-09-25

    A recoil mass separator SECAR has been designed for the purpose of studying low-energy (p,γ) and (α,γ) reactions in inverse kinematics with radioactive beams for masses up to about A = 65. Their reaction rates are of importance for our understanding of the energy production and nucleosynthesis during explosive hydrogen and helium burning. The radiative capture reactions take place in a windowless hydrogen or He gas target at the entrance of the separator, which consists of four Sections. The first Section selects the charge state of the recoils. The second and third Sections contain Wien Filters providing high mass resolvingmore » power to separate efficiently the intense beam from the few reaction products. In the following fourth Section, the reaction products are guided into a detector system capable of position, angle and time-of-flight measurements. In order to accept the complete kinematic cone of recoil particles including multiple scattering in the target in the center of mass energy range of 0.2 MeV to 3.0 MeV, the system must have a large polar angle acceptance of ± 25 mrad. This requires a careful minimization of higher order aberrations. Furthermore, the present system will be installed at the NSCL ReA3 accelerator and will be used with the much higher beam intensities of the FRIB facility when it becomes available.« less

  7. Measurement of Tensor Analyzing Powers for Elastic Electron Scattering from a Polarized {sup 2}H Target Internal to a Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferro-Luzzi, M.; Bouwhuis, M.; Passchier, E.

    1996-09-01

    We report an absolute measurement of the tensor analyzing powers {ital T}{sub 20} and {ital T}{sub 22} in elastic electron-deuteron scattering at a momentum transfer of 1.6 fm{sup {minus}1}. The novel approach of this measurement is the use of a tensor polarized {sup 2}H target internal to an electron storage ring, with {ital in} {ital situ} measurement of the polarization of the target gas. Scattered electrons and recoil deuterons were detected in coincidence with two large acceptance nonmagnetic detectors. The techniques demonstrated have broad applicability to further measurements of spin-dependent electron scattering. {copyright} {ital 1996 The American Physical Society.}

  8. Nuclear-Recoil Energy Scale in CDMS II Silicon Dark-Matter Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnese, R.; et al.

    The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrummore » $$^{252}$$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $$4.8^{+0.7}_{-0.9}$$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $$\\sim$$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $$\\sim$$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.« less

  9. Spin-orbit force, recoil corrections, and possible BB¯* and DD¯* molecular states

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Ma, Li; Zhu, Shi-Lin

    2014-05-01

    In the framework of the one-boson exchange model, we have calculated the effective potentials between two heavy mesons BB¯* and DD¯* from the t- and u-channel π-, η-, ρ-, ω-, and σ-meson exchanges with four kinds of quantum number: I=0, JPC=1++; I =0, JPC=1+-; I =1, JPC=1++; I =1, JPC=1+-. We keep the recoil corrections to the BB¯* and DD¯* systems up to O(1/M2). The spin-orbit force appears at O(/1M), which turns out to be important for the very loosely bound molecular states. Our numerical results show that the momentum-related corrections are unfavorable to the formation of the molecular states in the I =0, JPC=1++ and I =1, JPC=1+- channels in the DD¯* system.

  10. Test measurement of 7Be(p,γ)8B with the recoil mass separator ERNA

    NASA Astrophysics Data System (ADS)

    Buompane, R.; De Cesare, N.; Di Leva, A.; D'Onofrio, A.; Gialanella, L.; Romano, M.; De Cesare, M.; Duarte, J. G.; Fülöp, Zs.; Morales-Gallegos, L.; Gyürky, Gy.; Gasques, L. R.; Marzaioli, F.; Palumbo, G.; Porzio, G.; Rapagnani, D.; Roca, V.; Rogalla, D.; Romoli, M.; Sabbarese, C.; Schürmann, D.; Terrasi, F.

    2018-06-01

    7Be(p,γ)8B has an important role in nuclear astrophysics, having a direct impact on both the high energy component of solar neutrinos and the 7Li abundance after the Big Bang Nucleosynthesis. All direct measurements providing useful information on this reaction so far used the same approach, i.e. a proton beam on a radioactive 7Be target. The overall precision and accuracy of the estimate of the astrophysical rate of this reaction are limited by the discrepancy between the results of existing measurements, possibly due to the complicated stoichiometry and beam induced deterioration of the radioactive targets. The ERNA (European Recoil separator for Nuclear Astrophysics) collaboration planned a new experiment in inverse kinematics exploiting the intense 7Be beam available at CIRCE (Center for Isotopic Research on Cultural and Environmental heritage), Caserta, Italy. The 8B recoils are produced in a windowless hydrogen gas target and detected after the efficient mass separation provided by ERNA. Here we present the commissioning of the experimental setup and a first cross section measurement at E_{cm}≈ 812 keV.

  11. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  12. The recoil implantation technique developed at the U-120 cyclotron in Bucharest

    NASA Astrophysics Data System (ADS)

    Muntele, C. I.; Simil, L. Popa; Racolta, P. M.; Voiculescu, D.

    1999-06-01

    At the U-120 cyclotron in Bucharest was developed 15 years ago the thin layer activation (TLA) technique for radioactive labeling of metallic components on depths ranging between 100 μm and 300 μm, for wear/corrosion studies. Aiming to extend these kinds of studies on non-metallic components and at sub-micrometric level we were led to the development of the recoil implantation technique for ultra thin layer activation (UTLA) applications. Due to the low energy of the recoils obtained in a sacrificial target from a nuclear reaction, the surface layer of material to be labeled must be as thick as a few hundred nanometers. Also, since the radiotracer is externally created, there are no restrictions for the kind of material to be labeled, except to be a solid. In this paper we present some results of our studies concerning the actual status of this application at our accelerator.

  13. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  14. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    PubMed Central

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  15. Transverse-momentum-dependent quark distribution functions of spin-one targets: Formalism and covariant calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninomiya, Yu; Bentz, Wolfgang; Cloet, Ian C.

    In this paper, we present a covariant formulation and model calculations of the leading-twist time-reversal even transverse-momentum-dependent quark distribution functions (TMDs) for a spin-one target. Emphasis is placed on a description of these three-dimensional distribution functions which is independent of any constraints on the spin quantization axis. We apply our covariant spin description to all nine leading-twist time-reversal even ρ meson TMDs in the framework provided by the Nambu–Jona-Lasinio model, incorporating important aspects of quark confinement via the infrared cutoff in the proper-time regularization scheme. In particular, the behaviors of the three-dimensional TMDs in a tensor polarized spin-one hadron aremore » illustrated. Sum rules and positivity constraints are discussed in detail. Our results do not exhibit the familiar Gaussian behavior in the transverse momentum, and other results of interest include the finding that the tensor polarized TMDs—associated with spin-one hadrons—are very sensitive to quark orbital angular momentum, and that the TMDs associated with the quark operator γ +γ Tγ 5 would vanish were it not for dynamical chiral symmetry breaking. In addition, we find that 44% of the ρ meson's spin is carried by the orbital angular momentum of the quarks, and that the magnitude of the tensor polarized quark distribution function is about 30% of the unpolarized quark distribution. Finally, a qualitative comparison between our results for the tensor structure of a quark-antiquark bound state is made to existing experimental and theoretical results for the two-nucleon (deuteron) bound state.« less

  16. Transverse-momentum-dependent quark distribution functions of spin-one targets: Formalism and covariant calculations

    DOE PAGES

    Ninomiya, Yu; Bentz, Wolfgang; Cloet, Ian C.

    2017-10-24

    In this paper, we present a covariant formulation and model calculations of the leading-twist time-reversal even transverse-momentum-dependent quark distribution functions (TMDs) for a spin-one target. Emphasis is placed on a description of these three-dimensional distribution functions which is independent of any constraints on the spin quantization axis. We apply our covariant spin description to all nine leading-twist time-reversal even ρ meson TMDs in the framework provided by the Nambu–Jona-Lasinio model, incorporating important aspects of quark confinement via the infrared cutoff in the proper-time regularization scheme. In particular, the behaviors of the three-dimensional TMDs in a tensor polarized spin-one hadron aremore » illustrated. Sum rules and positivity constraints are discussed in detail. Our results do not exhibit the familiar Gaussian behavior in the transverse momentum, and other results of interest include the finding that the tensor polarized TMDs—associated with spin-one hadrons—are very sensitive to quark orbital angular momentum, and that the TMDs associated with the quark operator γ +γ Tγ 5 would vanish were it not for dynamical chiral symmetry breaking. In addition, we find that 44% of the ρ meson's spin is carried by the orbital angular momentum of the quarks, and that the magnitude of the tensor polarized quark distribution function is about 30% of the unpolarized quark distribution. Finally, a qualitative comparison between our results for the tensor structure of a quark-antiquark bound state is made to existing experimental and theoretical results for the two-nucleon (deuteron) bound state.« less

  17. The recoil implantation technique developed at the U-120 cyclotron in Bucharest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muntele, C. I.; Simil, L. Popa; Racolta, P. M.

    1999-06-10

    At the U-120 cyclotron in Bucharest was developed 15 years ago the thin layer activation (TLA) technique for radioactive labeling of metallic components on depths ranging between 100 {mu}m and 300 {mu}m, for wear/corrosion studies. Aiming to extend these kinds of studies on non-metallic components and at sub-micrometric level we were led to the development of the recoil implantation technique for ultra thin layer activation (UTLA) applications. Due to the low energy of the recoils obtained in a sacrificial target from a nuclear reaction, the surface layer of material to be labeled must be as thick as a few hundredmore » nanometers. Also, since the radiotracer is externally created, there are no restrictions for the kind of material to be labeled, except to be a solid. In this paper we present some results of our studies concerning the actual status of this application at our accelerator.« less

  18. Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy.

    PubMed

    Lee, Ho; Ryan, Robert T; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Teichman, Joel M H; Welch, A J

    2004-08-01

    During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.

  19. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    PubMed

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Recoil hysteresis of Sm -Co/Fe exchange-spring bilayers

    NASA Astrophysics Data System (ADS)

    Kang, K.; Lewis, L. H.; Jiang, J. S.; Bader, S. D.

    2005-12-01

    The exchange-spring behavior found in Sm-Co (20nm)/Fe epitaxial bilayer films was investigated by analyzing major hysteresis and recoil curves as a function of anneal conditions. The hard layer consists of nanocrystalline intermetallic Sm-Co hexagonal phases (majority phase Sm2Co7 with SmCo3 and SmCo5). Recoil curves, obtained from the successive removal to remanence and reapplication of an increasingly negative field from the major demagnetization curve, reveal the reversible and irreversible components of the magnetization. The Sm-Co thickness was fixed at 20nm while the Fe thicknesses of 10 and 20nm were studied, with ex situ annealing carried out in evacuated, sealed silica tubes at different temperatures. The peak in the recoil curve area is associated with the coercivity of the hard phase. The development of the soft component magnetization is revealed by the departure of the recoil area from zero with application of a reverse field. These two features together confirm that annealing stabilizes the 10nm Fe bilayer sample against local magnetic reversal while it weakens the 20nm bilayer sample. Furthermore, in both its as-deposited and annealed states the Sm -Co/Fe bilayer of 10nm Fe thickness always displays a higher exchange field and smaller recoil loop areas than the bilayer of 20nm Fe thickness, consistent with a stronger exchange response and more reversible magnetization in the former.

  1. Spontaneous lateral atomic recoil force close to a photonic topological material

    NASA Astrophysics Data System (ADS)

    Hassani Gangaraj, S. Ali; Hanson, George W.; Antezza, Mauro; Silveirinha, Mário G.

    2018-05-01

    We investigate the quantum recoil force acting on an excited atom close to the surface of a nonreciprocal photonic topological insulator (PTI). The main atomic emission channel is the unidirectional surface plasmon propagating at the PTI-vacuum interface, and we show that it enables a spontaneous lateral recoil force that scales at short distances as 1 /d4 , where d is the atom-PTI separation. Remarkably, the sign of the recoil force is polarization and orientation independent, and it occurs in a translation-invariant homogeneous system in thermal equilibrium. Surprisingly, the recoil force persists for very small values of the gyration pseudovector, which, for a biased plasma, corresponds to very low cyclotron frequencies. The ultrastrong recoil force is rooted in the quasihyperbolic dispersion of the surface plasmons. We consider both an initially excited atom and a continuous pump scenario, the latter giving rise to a steady lateral force whose direction can be changed at will by simply varying the orientation of the biasing magnetic field. Our predictions may be tested in experiments with cold Rydberg atoms and superconducting qubits.

  2. First measurement of surface nuclear recoil background for argon dark matter searches

    DOE PAGES

    Xu, Jingke; Stanford, Chris; Westerdale, Shawn; ...

    2017-09-19

    Here, one major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. A dangerous surface background is the 206Pb nuclear recoils produced by 210Po decays. In this paper, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103 keV 206Pb recoil background will produce a signal equal to that of a ~5 keV (30 keV) electron recoil ( 40Ar recoil). In addition, we demonstrate that thismore » dangerous 210Po surface background can be suppressed, using pulse shape discrimination methods, by a factor of ~100 or higher, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. Lastly, we also discuss the impact on other low background experiments.« less

  3. Signal yields of keV electronic recoils and their discrimination from nuclear recoils in liquid xenon

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Mahlstedt, J.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2018-05-01

    We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V /cm , 154 V /cm and 366 V /cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V /cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.

  4. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  5. Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force.

    PubMed

    Hubbard, T L

    1995-09-01

    Memory for the final position of a moving target is often shifted or displaced from the true final position of that target. Early studies of this memory shift focused on parallels between the momentum of the target and the momentum of the representation of the target and called this displacementrepresentational momentum, but many factors other than momentum contribute to the memory shift. A consideration of the empirical literature on representational momentum and related types of displacement suggests there are at least four different types of factors influencing the direction and magnitude of such memory shifts: stimulus characteristics (e.g., target direction, target velocity), implied dynamics and environmental invariants (e.g., implied momentum, gravity, friction, centripetal force), memory averaging of target and nontarget context (e.g., biases toward previous target locations or nontarget context), and observers' expectations (both tacit and conscious) regarding future target motion and target/context interactions. Several theories purporting to account for representational momentum and related types of displacement are also considered.

  6. Measurement of the transverse momentum distribution of W bosons in p p collisions at s = 7 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2012-01-18

    This study describes a measurement of the W boson transverse momentum distribution using ATLAS pp collision data from the 2010 run of the LHC at √s = 7 TeV, corresponding to an integrated luminosity of about 31 pb –1. Events form both W→eν and W→μν are used, and the transverse momentum of the W candidates is measured through the energy deposition in the calorimeter from the recoil of the W. The resulting distributions are unfolded to obtain the normalized differential cross sections as a function of the W boson transverse momentum. We present results for p W T < 300more » GeV in the electron and muon channels as well as for their combination, and compare the combined results to the predictions of perturbative QCD and a selection of event generators.« less

  7. Recoil implantation of boron into silicon by high energy silicon ions

    NASA Astrophysics Data System (ADS)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  8. Nuclear recoil effect on the binding energies in highly charged He-like ions

    NASA Astrophysics Data System (ADS)

    Malyshev, A. V.; Popov, R. V.; Shabaev, V. M.; Zubova, N. A.

    2018-04-01

    The most precise to-date evaluation of the nuclear recoil effect on the n = 1 and n = 2 energy levels of He-like ions is presented in the range Z = 12–100. The one-electron recoil contribution is calculated within the framework of the rigorous quantum electrodynamics approach to first order in the electron-to-nucleus mass ratio m/M and to all orders in the parameter αZ. The two-electron m/M recoil term is calculated employing the 1/Z perturbation theory. The recoil contribution of the zeroth order in 1/Z is evaluated to all orders in αZ, while the 1/Z term is calculated using the Breit approximation. The recoil corrections of the second and higher orders in 1/Z are taken into account within the nonrelativistic approach. The obtained results are compared with the previous evaluation of this effect (Artemyev et al 2005 Phys. Rev. A 71 062104).

  9. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    NASA Astrophysics Data System (ADS)

    Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.

    2017-04-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  10. First measurement of beam-recoil observables Cx and Cz in hyperon photoproduction

    NASA Astrophysics Data System (ADS)

    Bradford, R. K.; Schumacher, R. A.; Adams, G.; Amaryan, M. J.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Masi, R. De; Sanctis, E. De; Vita, R. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Fassi, L. El; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lima, A. C. S.; Livingston, K.; Lu, H. Y.; Lukashin, K.; MacCormick, M.; Manak, J. J.; Marchand, C.; Markov, N.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Natasha, N.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Quinn, B. P.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Shvedunov, N. V.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Spraker, M.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Watts, D. P.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions γ→+p→K++Λ→ and γ→+p→K++Σ→0. The data were obtained using the CEBAF Large Acceptance Spectrometer (CLAS) detector at the Jefferson Lab for center-of-mass energies W between 1.6 and 2.53 GeV, and for -0.85momentum axis, Cz, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient Cx is smaller than Cz by a roughly constant difference of unity. Most significantly, the total Λ polarization vector, including the induced polarization P, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the Σ0 this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

  11. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the Darkside-50 Direct Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Ludert, Erin Edkins

    ENE and an AmBe calibration source. The combined acceptance as defined by ScENE and the in-situ AmBe calibration were used to establish the best WIMP exclusion limit on an argon target. Unfortunately, radioactive sources used for the calibration of DarkSide-50 are universally accompanied by gamma decays, which obscure the low energy region where most WIMP interactions are expected to occur and seem to make continuing dependence on an external measurement such as ScENE inevitable. However, this work presents a novel method of nuclear recoil calibration employing event selection, unique to the design of DarkSide-50, which produces a nearly pure sample of nuclear recoils. Further, it describes the execution of a neutron calibration campaign, from planning to analysis, which yielded a valuable data set for defining the acceptance region. Together with the event selection techniques, this allows for the definition of the acceptance region independent of ScENE values. Two analytical models of the f90 distribution are described and their results for nuclear recoils are compared. Finally, a detailed study of integrated noise in nuclear and electron recoil events is presented, which demonstrates a difference between these classes of events for the first time.

  12. Recoil tritium reactions with cyclohexene and methylcyclohexene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fee, Darrell Clark

    1973-06-01

    A study has been made of the reactions of recoil tritium atoms with cyclohexene with methyl cyclohexene. Principle attention was given to unimolecular decomposition processes following T-for-H substitution.

  13. Recoiling from a Kick in the Head-On Case

    NASA Technical Reports Server (NTRS)

    Choi, Dae-Il; Kelly, Bernard J.; Boggs, William D.; Baker, John G.; Centrella, Joan; Van Meter, James

    2007-01-01

    Recoil "kicks" induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin; adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian (PN) theory, even though the kick is generated in the nonlinear merger interaction, where PN theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin-kicks.

  14. Momentum sharing in imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  15. Direct Measurement of Recoil Effects on Ar-Ar Standards

    NASA Astrophysics Data System (ADS)

    Hall, C. M.

    2011-12-01

    Advances in the precision possible with the Ar-Ar method using new techniques and equipment have led to considerable effort to improve the accuracy of the calibration of interlaboratory standards. However, ultimately the accuracy of the method relies on the measurement of 40Ar*/39ArK ratios on primary standards that have been calibrated with the K-Ar method and, in turn, on secondary standards that are calibrated against primary standards. It is usually assumed that an Ar-Ar total gas age is equivalent to a K-Ar age, but this assumes that there is zero loss of Ar due to recoil. Instead, traditional Ar-Ar total gas ages are in fact Ar retention ages [1] and not, strictly speaking, comparable to K-Ar ages. There have been efforts to estimate the importance of this effect on standards along with prescriptions for minimizing recoil effects [2,3], but these studies have relied on indirect evidence for 39Ar recoil. We report direct measurements of 39Ar recoil for a set of primary and secondary standards using the vacuum encapsulation techniques of [1] and show that significant adjustments to ages assigned to some standards may be needed. The fraction f of 39Ar lost due to recoil for primary standards MMhb-1 hornblende and GA-1550 biotite are 0.00367 and 0.00314 respectively. It is possible to modify the assumed K-Ar ages of these standards so that when using their measured Ar retention 40Ar*/39ArK ratios, one obtains a correct K-Ar age for an unknown, assuming that the unknown sample has zero loss of 39Ar due to recoil. Assuming a primary K-Ar age for MMhb-1 of 520.4 Ma, the modified age would be 522.1 Ma and assuming a primary K-Ar age for GA-1550 of 98.79 Ma [4] yields a modified effective age of 99.09 Ma. Measured f values for secondary standards FCT-3 biotite, FCT-2 sanidine and TCR-2 sanidine are 0.00932, 0.00182 and 0.00039 respectively. Using an R value for FCT-3 biotite relative to MMhb-1 [5], the K-Ar age for this standard would be 27.83 Ma and using R values

  16. Moving towards first science with the St. George recoil separator

    NASA Astrophysics Data System (ADS)

    Meisel, Zachary; Berg, G. P. A.; Gilardy, G.; Moran, M.; Schmitt, J.; Seymour, C.; Stech, E.; Couder, M.

    2015-10-01

    The St. George recoil mass separator has recently been coupled to the 5MV St. Ana accelerator at the University of Notre Dame's Nuclear Science Lab. St. George is a unique tool designed to measure radiative alpha-capture reactions for nuclei up to A = 40 in inverse kinematics in order to directly obtain cross sections required for astrophysical models of stellar and explosive helium burning. Commissioning of St. George is presently taking place with primary beams of hydrogen, helium, and oxygen. In this presentation, results will be shown for the measured energy acceptance of St. George, which compare favorably to COSY results when employing the calculated optimal ion-optical settings. Additionally, future plans will be discussed, such as assessing the angular acceptance of St. George and the re-integration of HiPPO at the separator target position to provide a dense, windowless helium gas-jet target. The material presented in this work is partially supported by the National Science Foundation Grant No. 1419765.

  17. Momentum sharing in imbalanced Fermi systems

    DOE PAGES

    Hen, O.; Sargsian, M.; Weinstein, L. B.; ...

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  18. XENON100 Dark Matter Search: Scintillation Response of Liquid Xenon to Electronic Recoils

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun Elizabeth

    Dark matter is one of the missing pieces necessary to complete the puzzle of the universe. Numerous astrophysical observations at all scales suggest that 23 % of the universe is made of nonluminous, cold, collisionless, nonbaryonic, yet undiscovered dark matter. Weakly Interacting Massive Particles (WIMPs) are the most well-motivated dark matter candidates and significant efforts have been made to search for WIMPs. The XENON100 dark matter experiment is currently the most sensitive experiment in the global race for the first direct detection of WIMP dark matter. XENON100 is a dual-phase (liquid-gas) time projection chamber containing a total of 161 kg of liquid xenon (LXe) with a 62kg WIMP target mass. It has been built with radiopure materials to achieve an ultra-low electromagnetic background and operated at the Laboratori Nazionali del Gran Sasso in Italy. WIMPs are expected to scatter off xenon nuclei in the target volume. Simultaneous measurement of ionization and scintillation produced by nuclear recoils allows for the detection of WIMPs in XENON100. Data from the XENON100 experiment have resulted in the most stringent limits on the spin-independent elastic WIMP-nucleon scattering cross sections for most of the significant WIMP masses. As the experimental precision increases, a better understanding of the scintillation and ionization response of LXe to low energy (< 10 keV) particles is crucial for the interpretation of data from LXe based WIMP searches. A setup has been built and operated at Columbia University to measure the scintillation response of LXe to both electronic and nuclear recoils down to energies of a few keV, in particular for the XENON100 experiment. In this thesis, I present the research carried out in the context of the XENON100 dark matter search experiment. For the theoretical foundation of the XENON100 experiment, the first two chapters are dedicated to the motivation for and detection medium choice of the XENON100 experiment

  19. Nonlinear gravitational recoil from the mergers of precessing black-hole binaries

    NASA Astrophysics Data System (ADS)

    Lousto, Carlos O.; Zlochower, Yosef

    2013-04-01

    We present results from an extensive study of 88 precessing, equal-mass black-hole binaries with large spins (83 with intrinsic spins |S→i/mi2| of 0.8 and 5 with intrinsic spins of 0.9), and use these data to model new nonlinear contributions to the gravitational recoil imparted to the merged black hole. We find a new effect, the cross kick, that enhances the recoil for partially aligned binaries beyond the hangup kick effect. This has the consequence of increasing the probabilities of recoils larger than 2000kms-1 by nearly a factor of 2, and consequently, of black holes getting ejected from galaxies, as well as the observation of large differential redshifts/blueshifts in the cores of recently merged galaxies.

  20. Effects of Spatial Cueing on Representational Momentum

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.; Kumar, Anuradha Mohan; Carp, Charlotte L.

    2009-01-01

    Effects of a spatial cue on representational momentum were examined. If a cue was present during or after target motion and indicated the location at which the target would vanish or had vanished, forward displacement of that target decreased. The decrease in forward displacement was larger when cues were present after target motion than when cues…

  1. The parity-adapted basis set in the formulation of the photofragment angular momentum polarization problem: The role of the Coriolis interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shternin, Peter S.; Vasyutinskii, Oleg S.

    We present a theoretical framework for calculating the recoil-angle dependence of the photofragment angular momentum polarization taking into account both radial and Coriolis nonadiabatic interactions in the diatomic/linear photodissociating molecules. The parity-adapted representation of the total molecular wave function has been used throughout the paper. The obtained full quantum-mechanical expressions for the photofragment state multipoles have been simplified by using the semiclassical approximation in the high-J limit and then analyzed for the cases of direct photodissociation and slow predissociation in terms of the anisotropy parameters. In both cases, each anisotropy parameter can be presented as a linear combination of themore » generalized dynamical functions f{sub K}(q,q{sup '},q-tilde,q-tilde{sup '}) of the rank K representing contribution from different dissociation mechanisms including possible radial and Coriolis nonadiabatic transitions, coherent effects, and the rotation of the recoil axis. In the absence of the Coriolis interactions, the obtained results are equivalent to the earlier published ones. The angle-recoil dependence of the photofragment state multipoles for an arbitrary photolysis reaction is derived. As shown, the polarization of the photofragments in the photolysis of a diatomic or a polyatomic molecule can be described in terms of the anisotropy parameters irrespective of the photodissociation mechanism.« less

  2. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edkins, Erin Elisabeth

    nuclear recoils from ScENE and an AmBe calibration sour! ce. The combined acceptance as defined by ScENE and the \\textit{in-situ} AmBe calibration were used to establish the best WIMP exclusion limit on an argon target. Unfortunately, radioactive sources used for the calibration of DarkSide-50 are universally accompanied by gamma decays, which obscure the low energy region where most WIMP interactions are expected to occur and seem to make continuing dependence on an external measurement such as ScENE inevitable. However, this work presents a novel method of nuclear recoil calibration employing event selection, unique to the design of DarkSide-50, which produces a nearly pure sample of nuclear recoils. Further, it describes the execution of a neutron calibration campaign, from planning to analysis, which yielded a valuable data set for defining the acceptance region. Together with the event selection techniques, this allows for the definition of the acceptance region independent of ScENE values. Two analytical models of the $$f_{90 }$$ distribution are described and their results for nuclear recoils are compared. Finally, a detailed study of integrated noise in nuclear and electron recoil« less

  3. Measurement of Recoil Losses and Ranges for Spallation Products Produced in Proton Interactions with Al, Si, Mg at 200 and 500 MeV

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2005-01-01

    Cosmic rays interact with extraterrestrial materials to produce a variety of spallation products. If these cosmogenic nuclides are produced within an inclusion in such material, then an important consideration is the loss of the product nuclei, which recoil out of the inclusion. Of course, at the same time, some atoms of the product nuclei under study may be knocked into the inclusion from the surrounding material, which is likely to have a different composition to that of the inclusion [1]. For example, Ne-21 would be produced in presolar grains, such as SiC, when irradiated in interstellar space. However, to calculate a presolar age, one needs to know how much 21Ne is retained in the grain. For small grains, the recoil losses might be large [2, 3] To study this effect under laboratory conditions, recoil measurements were made using protons with energies from 66 - 1600 MeV on Si, Al and Ba targets [3, 4, 5].

  4. Remote recoil: a new wave mean interaction effect

    NASA Astrophysics Data System (ADS)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the

  5. An investigation of the normal momentum transfer for gases on tungsten

    NASA Technical Reports Server (NTRS)

    Moskal, E. J.

    1971-01-01

    The near monoenergetic beam of neutral helium and argon atoms impinged on a single crystal tungsten target, with the (100) face exposed to the beam. The target was mounted on a torsion balance. The rotation of this torsion balance was monitored by an optical lever, and this reading was converted to a measurement of the momentum exchange between the beam and the target. The tungsten target was flashed to a temperature in excess of 2000 C before every clean run, and the vacuum levels in the final chamber were typically between 0.5 and 1 ntorr. The momentum exchange for the helium-tungsten surface and the argon-tungsten surface combination was obtained over approximately a decade of incoming energy (for the argon gas) at angles of incidence of 0, 30, and 41 deg on both clean and dirty (gas covered) surfaces. The results exhibited a significant variation in momentum transfer between the data obtained for the clean and dirty surfaces. The values of normal momentum accommodation coefficient for the clean surface were found to be lower than the values previously reported.

  6. Low energy nuclear recoils study in noble liquids for low-mass WIMPs

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming

    2014-03-01

    Detector response to low-energy nuclear recoils is critical to the detection of low-mass dark matter particles-WIMPs (Weakly interacting massive particles). Although the detector response to the processes of low-energy nuclear recoils is subtle and direct experimental calibration is rather difficult, many studies have been performed for noble liquids, NEST is a good example. However, the response of low-energy nuclear recoils, as a critical issue, needs more experimental data, in particular, with presence of electric field. We present a new design using time of flight to calibrate the large-volume xenon detector, such as LUX-Zeplin (LZ) and Xenon1T, energy scale for low-energy nuclear recoils. The calculation and physics models will be discussed based on the available data to predict the performance of the calibration device and set up criteria for the design of the device. A small test bench is built to verify the concepts at The University of South Dakota. This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.

  7. Momentum peak shift and width of longitudinal momentum distribution of projectilelike fragments produced at E =290 MeV /nucleon

    NASA Astrophysics Data System (ADS)

    Momota, S.; Kanazawa, M.; Kitagawa, A.; Sato, S.

    2018-04-01

    Longitudinal momentum (PL) distributions of projectilelike fragments produced at E =290 MeV /nucleon are investigated. PL distributions of fragments produced by Ar and Kr beams with a wide variety of targets (C, Al, Nb, Tb, and Au) were measured using the fragment separator at HIMAC. PL distributions observed for fragments with a wide range of mass losses Δ A (1-30 for Ar beam and 1-64 for Kr beam), show a slightly, but definitely asymmetric nature. The peak shift and width were obtained from the observed PL distributions. No significant target dependence was found in either the peak shift or width. For the practical application, the variation in momentum peak shift with fragment mass (AF) was represented by a parabolic function. The width on the high-PL side (σHigh) is well reproduced by the Goldhaber formula, which is obtained from the contribution of the Fermi momentum. The behavior of the reduced width, σ0, obtained from σHigh via the Goldhaber formulation, is consistent with the mass-dependent Fermi momentum of a nucleon. The width on the low-PL side (σLow) is markedly larger than σHigh and exhibits a clear AF dependence.

  8. The recoil transfer chamber—An interface to connect the physical preseparator TASCA with chemistry and counting setups

    NASA Astrophysics Data System (ADS)

    Even, J.; Ballof, J.; Brüchle, W.; Buda, R. A.; Düllmann, Ch. E.; Eberhardt, K.; Gorshkov, A.; Gromm, E.; Hild, D.; Jäger, E.; Khuyagbaatar, J.; Kratz, J. V.; Krier, J.; Liebe, D.; Mendel, M.; Nayak, D.; Opel, K.; Omtvedt, J. P.; Reichert, P.; Runke, J.; Sabelnikov, A.; Samadani, F.; Schädel, M.; Schausten, B.; Scheid, N.; Schimpf, E.; Semchenkov, A.; Thörle-Pospiech, P.; Toyoshima, A.; Türler, A.; Vicente Vilas, V.; Wiehl, N.; Wunderlich, T.; Yakushev, A.

    2011-05-01

    Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one -atom -at -a -time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes ( t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA—an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ˜1 mbar atmosphere in TASCA from the RTC kept at ˜1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA—an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.

  9. Inelastic frontier: Discovering dark matter at high recoil energy

    DOE PAGES

    Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; ...

    2016-12-27

    There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelasticmore » dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ≲160 keV), iodine at PICO (when 160≲δ≲300 keV), and tungsten at CRESST (when δ≳300 keV). Amusingly, once δ≳200 keV, weak scale (and larger) dark matter–nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20–500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45–100 keV that, if interpreted as dark matter scattering, is compatible with δ~200 keV and an

  10. Passive mechanism of pitch recoil in flapping insect wings.

    PubMed

    Ishihara, D; Horie, T

    2016-12-20

    The high torsional flexibility of insect wings allows for elastic recoil after the rotation of the wing during stroke reversal. However, the underlying mechanism of this recoil remains unclear because of the dynamic process of transitioning from the wing rotation during stroke reversal to the maintenance of a high angle of attack during the middle of each half-stroke, when the inertial, elastic, and aerodynamic effects all have a significant impact. Therefore, the interaction between the flapping wing and the surrounding air was directly simulated by simultaneously solving the incompressible Navier-Stokes equations, the equation of motion for an elastic body, and the fluid-structure interface conditions using the three-dimensional finite element method. This direct numerical simulation controlling the aerodynamic effect revealed that the recoil is the residual of the free pitch vibration induced by the flapping acceleration during stroke reversal in the transient response very close to critical damping due to the dynamic pressure resistance of the surrounding air. This understanding will enable the control of the leading-edge vortex and lift generation, the reduction of the work performed by flapping wings, and the interpretation of the underlying necessity for the kinematic characteristics of the flapping motion.

  11. The Differential Cross Section and Λ Recoil Polarization from γδ -> Κ0(ρ)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compton, Nicholas; Thomas Jefferson National Accelerator Facility

    2017-04-30

    Presented is the analysis of the differential cross section and Λ recoil polarization from the reaction γδ -> Κ0(ρ). This work measured these observables over beam energies from 0.90 GeV to 3.0 GeV. These measurements are the first in this channel to cover such a wide range of energies. The data were taken using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory (JLAB) along with a tagged photon beam. This analysis was completed by identifying events of interest that decayed into the final state topology of π-π+,π-&rho'(ρ). Through conservation of energy and momentum, the Κ0, Λ and missing massmore » of the spectator proton were reconstructed. Utilizing the same analysis techniques, the observables were measured on two different experiments with good agreement. Photoproduction of strange mesons from the neutron are difficult to measure, consequently there are only a few measurements of this kind. Despite that, these reactions supply essential complementary data to those on the proton. The differential cross sections and the recoil polarization extracted, span the region where new nucleon resonances have been found from studies of the reaction γρ -> Κ+Λ. Comparisons between the Κ+Λ and Κ0Λ cross section demonstrate that possible interference terms near 1900 MeV are less pronounced in the latter. This unexpected result inspired a partial wave analyses (PWA) to be fitted to the data. The fit solution shows that this measurement fostered an improvement on the knowledge of observed resonance parameters, necessary to understanding these excited states. The study of nucleon resonances is a key motivating factor since the resonance masses can be calculated from the theory of the strong nuclear force, called quantum chromodynamics, or QCD.« less

  12. A study of intrinsic statistical variation for low-energy nuclear recoils in liquid xenon detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wei, Wenzhao; Mei, Dongming; Cubed Collaboration

    2015-10-01

    Noble liquid xenon experiments, such as XENON100, LUX, XENON 1-Ton, and LZ are large dark matter experiments directly searches for weakly interacting massive particles (WIMPs). One of the most important features is to discriminate nuclear recoils from electronic recoils. Detector response is generally calibrated with different radioactive sources including 83mKr, tritiated methane, 241AmBe, 252Cf, and DD-neutrons. The electronic recoil and nuclear recoil bands have been determined by these calibrations. However, the width of nuclear recoil band needs to be fully understood. We derive a theoretical model to understand the correlation of the width of nuclear recoil band and intrinsic statistical variation. In addition, we conduct experiments to validate the theoretical model. In this paper, we present the study of intrinsic statistical variation contributing to the width of nuclear recoil band. DE-FG02-10ER46709 and the state of South Dakota.

  13. Black Hole Mergers and Recoils in Low-Mass Galaxies

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Kelley, Luke; Koss, Michael; Satyapal, Shobita

    2018-01-01

    Mergers between massive black holes (BHs) in the intermediate-mass range are one of the most promising sources of gravitational waves (GWs) detectable with LISA. These highly energetic GW events could be observed out to very high redshift, in the epoch where massive BH seeds are thought to form. Despite recent progress, however, much is still not known about the low-mass BH population even in the local Universe. The rates of BH binary formation, inspiral, and merger are also highly uncertain across the BH mass scale. To address these pressing issues in advance of LISA, cosmological hydrodynamics simulations and semi-analytic modeling are being used to model the formation and evolution of BH binaries, and the GW signals they produce. Efforts are also underway to understand the electromagnetic (EM) signatures of the BH binary population. These have proven largely elusive thus far, but an increasing population of BH pairs has been found, and advances in the coming years will provide important comparisons for models of GW sources. Moreover, asymmetry in the GW emission from BH mergers imparts a recoil kick to the merged BH, which in extreme cases can eject the BH from its host galaxy. This creates additional uncertainty in the BH merger rate, but the remnant recoiling BH could be observed as an offset quasar. Identifications of such objects would provide another EM signature of BH mergers that would help pave the way for LISA. We will review model predictions of the BH inspiral and merger rate across the mass scale. We will also describe how the EM signatures of active, merging BHs can be used to constrain theoretical merger rates. Finally, we will discuss the predicted observability of recoiling BHs and ongoing efforts to identify and confirm candidate recoils.

  14. Polarization effects in recoil-induced resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazebnyi, D. B., E-mail: becks.ddf@gmail.com; Brazhnikov, D. V.; Taichenachev, A. V.

    2017-01-15

    The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.

  15. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  16. Final state interactions in single- and multiparticle inclusive cross sections for hadronic collisions

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George

    2012-12-01

    We study the role of low momentum transfer (soft) interactions between high transverse momentum heavy particles and beam remnants (spectators) in hadronic collisions. Such final state interactions are power suppressed for single-particle inclusive cross sections whenever that particle is accompanied by a recoiling high-pT partner whose momentum is not fixed. An example is the single-top inclusive cross section in top-pair production. Final state soft interactions in multiparticle inclusive cross sections, including transverse momentum distributions, however, produce leading-power corrections in the absence of hard recoiling radiation. Nonperturbative corrections due to scattering from spectators are generically suppressed by powers of Λ/pT', where Λ is a hadronic scale and pT' is the largest transverse momentum of radiation recoiling against the particles whose momenta are observed.

  17. Ion energy/momentum effects during ion assisted growth of niobium nitride films

    NASA Astrophysics Data System (ADS)

    Klingenberg, Melissa L.

    The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and

  18. Large discrepancies observed in theoretical studies of ion-impact ionization of the atomic targets at large momentum transfer

    NASA Astrophysics Data System (ADS)

    Ghorbani, Omid; Ghanbari-Adivi, Ebrahim

    2017-12-01

    A full quantum mechanical version of the three-body distorted wave-eikonal initial state (3DW-EIS) theory is developed to study of the single ionization of the atomic targets by ion impact at different momentum transfers. The calculations are performed both with and without including the internuclear interaction in the transition amplitude. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s2 ) and 24 \\text{Mev} \\text{O}8+\\text{-Li}~(2s ) collisions, the emission of the active electron into the scattering plane is considered and the fully differential cross-sections (FDCSs) are calculated for a fixed value of the ejected electron energy and a variety of momentum transfers. For both the specified collision systems, the obtained results are compared with the experimental data and with the cross-sections obtained using the semi-classical continuum distorted wave-eikonal initial state (CDW-EIS) approach. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s^2) , we also compared the results with those of a four-body three-Coulomb-wave (3CW) model. In general, we find some large discrepancies between the results obtained by different theories. These discrepancies are much more significant at larger momentum transfers. Also, for some ranges of the electron emission angles the results are much more sensitive to the internuclear interaction to be either turned on or off.

  19. Representational momentum, centripetal force, and curvilinear impetus.

    PubMed

    Hubbard, T L

    1996-07-01

    In 3 experiments, observers witnessed a target moving along a circular orbit and indicated the location at which the target vanished. The judged vanishing point was displaced forward in the direction of implied momentum and inward in the direction of implied centripetal force. In general, increases in either the angular velocity of the target or the radius length of the orbit increased the magnitude of forward displacement. If both angular velocity and radius length were varied, then increases in either angular velocity or radius length also increased the magnitude of inward displacement. The displacement patterns were consistent with hypotheses that analogues of momentum and centripetal force were incorporated into the representational system. A framework is proposed that accounts for (a) the forward and inward displacements and (b) naive-physics data on the spiral tube problem previously interpreted as suggesting a belief in a naive curvilinear-impetus principle.

  20. Recoil distance lifetime measurements in 122,124Xe

    NASA Astrophysics Data System (ADS)

    Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.

    1998-02-01

    Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.

  1. Upgrade to the Cryogenic Hydrogen Gas Target Monitoring System

    NASA Astrophysics Data System (ADS)

    Slater, Michael; Tribble, Robert

    2013-10-01

    The cryogenic hydrogen gas target at Texas A&M is a vital component for creating a secondary radioactive beam that is then used in experiments in the Momentum Achromat Recoil Spectrometer (MARS). A stable beam from the K500 superconducting cyclotron enters the gas cell and some incident particles are transmuted by a nuclear reaction into a radioactive beam, which are separated from the primary beam and used in MARS experiments. The pressure in the target chamber is monitored so that a predictable isotope production rate can be assured. A ``black box'' received the analog pressure data and sent RS232 serial data through an outdated serial connection to an outdated Visual Basic 6 (VB6) program, which plotted the chamber pressure continuously. The black box has been upgraded to an Arduino UNO microcontroller [Atmel Inc.], which can receive the pressure data and output via USB to a computer. It has been programmed to also accept temperature data for future upgrade. A new computer program, with updated capabilities, has been written in Python. The software can send email alerts, create audible alarms through the Arduino, and plot pressure and temperature. The program has been designed to better fit the needs of the users. Funded by DOE and NSF-REU Program.

  2. Measurement of light and charge yield of low-energy electronic recoils in liquid xenon

    NASA Astrophysics Data System (ADS)

    Goetzke, L. W.; Aprile, E.; Anthony, M.; Plante, G.; Weber, M.

    2017-11-01

    The dependence of the light and charge yield of liquid xenon on the applied electric field and recoil energy is important for dark matter detectors using liquid xenon time projections chambers. Few measurements have been made of this field dependence at recoil energies less than 10 keV. In this paper, we present results of such measurements using a specialized detector. Recoil energies are determined via the Compton coincidence technique at four drift fields relevant for liquid xenon dark matter detectors: 0.19, 0.48, 1.02, and 2.32 kV /cm . Mean recoil energies down to 1 keV were measured with unprecedented precision. We find that the charge and light yield are anticorrelated above ˜3 keV and that the field dependence becomes negligible below ˜6 keV . However, below 3 keV, we find a charge yield significantly higher than expectation and a reconstructed energy deviating from linearity.

  3. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    DOE PAGES

    Foxe, M.; Hagmann, C.; Jovanovic, I.; ...

    2015-03-27

    Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recentlymore » reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.« less

  4. Energy, momentum, and angular momentum of sound pulses.

    PubMed

    Lekner, John

    2017-12-01

    Pulse solutions of the wave equation can be expressed as superpositions of scalar monochromatic beam wavefunctions (solutions of the Helmholtz equation). This formulation leads to causal (unidirectional) propagation, in contrast to all currently known closed-form solutions of the wave equation. Application is made to the evaluation of the energy, momentum, and angular momentum of acoustic pulses, as integrals over the beam and pulse weight functions. Equivalence is established between integration over space of the energy, momentum, and angular momentum densities, and integration over the wavevector weight function. The inequality linking the total energy and the total momentum is made explicit in terms of the weight function formulation. It is shown that a general pulse can be viewed as a superposition of phonons, each with energy ℏck, z component of momentum ℏq, and z component of angular momentum ℏm. A closed-form solution of the wave equation is found, which is localized and causal, and its energy and momentum are evaluated explicitly.

  5. Recoil distance method lifetime measurements at TRIUMF-ISAC using the TIGRESS Integrated Plunger

    NASA Astrophysics Data System (ADS)

    Chester, A.; Ball, G. C.; Bernier, N.; Cross, D. S.; Domingo, T.; Drake, T. E.; Evitts, L. J.; Garcia, F. H.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Henderson, J.; Henderson, R.; Krücken, R.; MacConnachie, E.; Moukaddam, M.; Padilla-Rodal, E.; Paetkau, O.; Pore, J. L.; Rizwan, U.; Ruotsalainen, P.; Shoults, J.; Smallcombe, J.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Van Wieren, K.; Williams, J.; Williams, M.

    2018-02-01

    The TIGRESS Integrated Plunger device (TIP) has been developed for recoil distance method (RDM) lifetime measurements using the TIGRESS array of HPGe γ-ray detectors at TRIUMF's ISAC-II facility. A commissioning experiment was conducted utilizing a 250 MeV 84Kr beam at ≈ 2 × 108 particles per second. The 84Kr beam was Coulomb excited to the 21+ state on a movable 27Al target. A thin Cu foil fixed downstream from the target was used as a degrader. Excited nuclei emerged from the target and decayed by γ-ray emission at a distance determined by their velocity and the lifetime of the 21+ state. The ratio of decays which occur between the target and degrader to those occurring after traversing the degrader changes as a function of the target-degrader separation distance. Gamma-ray spectra at 13 target-degrader separation distances were measured and compared to simulated lineshapes to extract the lifetime. The result of τ = 5 . 541 ± 0 . 013(stat.) ± 0 . 063(sys.) ps is shorter than the literature value of 5 . 84 ± 0 . 18 ps with a reduction in uncertainty by a factor of approximately two. The TIP plunger device, experimental technique, analysis tools, and result are discussed.

  6. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  7. A study of nuclear recoil backgrounds in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Westerdale, Shawn S.

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the 1-1000 GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering off of nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating (alpha, n) yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  8. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, Shawn S.

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on themore » $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($$\\alpha$$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  9. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strikman, Mark; Weiss, Christian

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less

  10. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    DOE PAGES

    Strikman, Mark; Weiss, Christian

    2018-03-27

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less

  11. Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x

    NASA Astrophysics Data System (ADS)

    Strikman, M.; Weiss, C.

    2018-03-01

    We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future electron-ion collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation to the tagged DIS cross section contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSIs) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSIs, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with an EIC. We discuss possible extensions of the FSI model to other kinematic regions (large/small x ). In tagged DIS at x ≪0.1 FSIs resulting from diffractive scattering on the nucleons become important and require separate treatment.

  12. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    PubMed

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  13. Alpha Recoil Flux of Radon in Groundwater and its Experimental Measurement

    NASA Astrophysics Data System (ADS)

    Mehta, N.; Harvey, C. F.; Kocar, B. D.

    2016-12-01

    Groundwater Radon (Rn222) activity is primarily controlled by alpha recoil process (radioactive decay), however, evaluating the rate and extent of this process, and its impact on porewater radioactivity, remains uncertain. Numerous factors contribute to this uncertainty, including the spatial distribution of parent radionuclides (e.g. U238, Th232 , Ra226 and Ra228) within native materials, differences in nuclide recoil length in host matrix and the physical structure of the rock strata (pore size distribution and porosity). Here, we experimentally measure Radon activities within porewater contributed through alpha recoil, and analyze its variations as a function of pore structure and parent nuclide distribution within host matrices, including Marcellus shale rock and Serrie-Copper Pegmatite. The shale cores originate from the Marcellus formation in Mckean, Pennsylvania collected at depths ranging from 1000-7000 feet, and the U-Th-rich Pegmatite is obtained from South Platte District, Colorado. Columns are packed with granulated rock of varying surface area (30,000-60,000 cm2/g) and subjected to low salinity sodium chloride solution in a close loop configuration. The activity of Radon (Rn222) and radium (Ra226) in the saline fluid is measured over time to determine recoil supply rates. Mineralogical and trace element data for rock specimens are characterized using XRD and XRF, and detailed geochemical profiles are constructed through total dissolution and analysis using ICP-MS and ICP-OES. Naturally occurring Radium nuclides and its daughters are quantified using a low-energy Germanium detector. The parent nuclide (U238 and Th232) distribution in the host rock is studied using X-Ray Absorption Spectroscopy (XAS). Our study elucidates the contribution of alpha recoil on the appearance and distribution of Radon (Rn222) within porewater of representative rock matrices. Further, we illustrate the effects of chemical and physical heterogeneity on the rate of this process

  14. Measurement of plasma momentum exerted on target by a small helicon plasma thruster and comparison with direct thrust measurement.

    PubMed

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2015-02-01

    Momentum, i.e., force, exerted from a small helicon plasma thruster to a target plate is measured simultaneously with a direct thrust measurement using a thrust balance. The calibration coefficient relating a target displacement to a steady-state force is obtained by supplying a dc to a calibration coil mounted on the target, where a force acting to a small permanent magnet located near the coil is directly measured by using a load cell. As the force exerted by the plasma flow to the target plate is in good agreement with the directly measured thrust, the validity of the target technique is demonstrated under the present operating conditions, where the thruster is operated in steady-state. Furthermore, a calibration coefficient relating a swing amplitude of the target to an impulse bit is also obtained by pulsing the calibration coil current. The force exerted by the pulsed plasma, which is estimated from the measured impulse bit and the pulse width, is also in good agreement with that obtained for the steady-state operation; hence, the thrust assessment of the helicon plasma thruster by the target is validated for both the steady-state and pulsed operations.

  15. Fragmentation mechanisms for methane induced by 55 eV, 75 eV, and 100 eV electron impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, B.; Zhang, Y.; Wang, X., E-mail: xinchengwang@fudan.edu.cn

    2014-03-28

    The fragmentation of CH{sub 4}{sup 2+} dications following 55 eV, 75 eV, and 100 eV electron impact double ionization of methane was studied using a cold target recoil-ion momentum spectroscopy. From the measured momentum of each recoil ion, the momentum of the neutral particles has been deduced and the kinetic energy release distribution for the different fragmentation channels has been obtained. The doubly charged molecular ions break up into three or more fragments in one or two-step processes, resulting in different signatures in the data. We observed the fragmentation of CH{sub 4}{sup 2+} dications through different mechanisms according to themore » momentum of the neutral particles. For example, our result shows that there are three reaction channels to form CH{sub 2}{sup +}, H{sup +}, and H, one synchronous concerted reaction channel and two two-step reaction channels. For even more complicated fragmentation processes of CH{sub 4}{sup 2+} dications, the fragmentation mechanism can still be identified in the present measurements. The slopes of the peak in the ion-ion coincidence spectra were also estimated here, as they are also related to the fragmentation mechanism.« less

  16. Fragmentation mechanisms for methane induced by 55 eV, 75 eV, and 100 eV electron impact.

    PubMed

    Wei, B; Zhang, Y; Wang, X; Lu, D; Lu, G C; Zhang, B H; Tang, Y J; Hutton, R; Zou, Y

    2014-03-28

    The fragmentation of CH4 (2+) dications following 55 eV, 75 eV, and 100 eV electron impact double ionization of methane was studied using a cold target recoil-ion momentum spectroscopy. From the measured momentum of each recoil ion, the momentum of the neutral particles has been deduced and the kinetic energy release distribution for the different fragmentation channels has been obtained. The doubly charged molecular ions break up into three or more fragments in one or two-step processes, resulting in different signatures in the data. We observed the fragmentation of CH4 (2+) dications through different mechanisms according to the momentum of the neutral particles. For example, our result shows that there are three reaction channels to form CH2 (+), H(+), and H, one synchronous concerted reaction channel and two two-step reaction channels. For even more complicated fragmentation processes of CH4 (2+) dications, the fragmentation mechanism can still be identified in the present measurements. The slopes of the peak in the ion-ion coincidence spectra were also estimated here, as they are also related to the fragmentation mechanism.

  17. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  18. Synthesis of superheavy elements at the Dubna gas-filled recoil separator

    NASA Astrophysics Data System (ADS)

    Voinov, A. A.

    2016-12-01

    A survey of experiments at the Dubna gas-filled recoil separator (Laboratory of Nuclear Reactions, JINR, Dubna) aimed at the detection and study of the "island of stability" of superheavy nuclei produced in complete fusion reactions of 48Ca ions and 238U-249Cf target nuclei is given. The problems of synthesis of superheavy nuclei, methods for their identification, and investigation of their decay properties, including the results of recent experiments at other separators (SHIP, BGS, TASCA) and chemical setups, are discussed. The studied properties of the new nuclei, the isotopes of elements 112-118, as well as the properties of their decay products, indicate substantial growth of stability of the heaviest nuclei with increasing number of neutrons in the nucleus as the magic number of neutrons N = 184 is approached.

  19. Automation of experiments at Dubna Gas-Filled Recoil Separator

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  20. Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium

    NASA Astrophysics Data System (ADS)

    Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.

    2013-05-01

    In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.

  1. Triply differential measurements of single ionization of argon by 1-keV positron and electron impact

    NASA Astrophysics Data System (ADS)

    Gavin, J.; de Lucio, O. G.; DuBois, R. D.

    2017-06-01

    By establishing coincidences between target ions and scattered projectiles, and coincidences between target ions, scattered projectiles, and ejected electrons, triply differential cross-section (TDCS) information was generated in terms of projectile energy loss and scattering angles for interactions between 1-keV positrons and electrons and Ar atoms. The conversion of the raw experimental information to the TDCS is discussed. The single-ionization TDCS exhibits two distinguishable regions (lobes) where binary and recoil interactions can be described by two peaks. A comparison of the positron and electron impact data shows that the relative intensity of both binary and recoil interactions decreases exponentially as a function of the momentum transfer and is larger when ionization is induced by positron impact, when compared with electron impact.

  2. Recoil Considerations for Shoulder-Fired Weapons

    DTIC Science & Technology

    2012-05-01

    Fired Weapons 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Bruce P. Burns 5d. PROJECT NUMBER 62616AH80...the textbook. This research was supported in part by an appointment to the Knowledge Preservation Program at ARL administered by the Oak Ridge...endurance to operate. Doubtless one had to learn how to master the recoil loads posed by the weapon, and virtually every successful German

  3. Lifetime measurements using the recoil distance method—achievements and perspectives

    NASA Astrophysics Data System (ADS)

    Krücken, R.

    2001-07-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of "magnetic rotation" are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed.

  4. Oblique impact: Projectile richochet, concomitant ejecta and momentum transfer

    NASA Technical Reports Server (NTRS)

    Gault, Donald E.; Schultz, Peter H.

    1987-01-01

    Experimental studies of oblique impact indicate that projectile richochet occurs for trajectory angles less than 30 deg and that the richocheted projectile, accompanied by some target material, are ejected at velocities that are a large fraction of the impact velocity. Because the probability of occurrence of oblique impact less than 30 deg on a planetary body is about one out of every four impact events, oblique impacts would seem to be a potential mechanism to provide a source of meteorites from even the largest atmosphere-free planetary bodies. Because the amount of richocheted target material cannot be determined from previous results, additional experiments in the Ames Vertical Gun laboratory were undertaken toward that purpose using pendulums; one to measure momentum of the richocheted projectile and concomitant target ejecta, and a second to measure the momentum transferred from projectile to target. These experiments are briefly discussed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harak, B. A. de; Bartschat, K.; Martin, N. L. S.

    Angular distribution and spectral (e,2e) measurements are reported for the helium autoionizing levels (2s{sup 2}){sup 1}S, (2p{sup 2}){sup 1}D, and (2s2p){sup 1}P. A special out-of-plane geometry is used where the ejected electrons are emitted in a plane perpendicular to the scattered electron direction. The kinematics are chosen so that this plane contains the momentum-transfer direction. While the recoil peak almost vanishes in the angular distribution for direct ionization, it remains significant for the autoionizing levels and exhibits a characteristic shape for each orbital angular momentum L=0,1,2. A second-order model in the projectile-target interaction correctly reproduces the observed magnitudes of themore » recoil peaks, but is a factor of 2 too large in the central out-of-plane region. Observed (e,2e) energy spectra for the three resonances over the full angular range are well reproduced by the second-order calculation. Calculations using a first-order model fail to reproduce both the magnitudes of the recoil peaks and the spectral line profiles.« less

  6. Widths of transverse momentum distributions in intermediate-energy heavy-ion collisions.

    PubMed

    Khan, F; Townsend, L W

    1993-08-01

    The need to include dynamical collision momentum transfer contributions, arising from interacting nuclear and Coulomb fields, to estimates of fragment momentum distributions is discussed. Methods based upon an optical potential model are presented. Comparisons with recent experimental data of the Siegen group for variances of transverse momentum distributions for gold nuclei at 980 A MeV fragmenting on silver foil and plastic nuclear track detector targets are made. The agreement between theory and experiment is good.

  7. Transverse momentum of hadrons produced in ν and overlineν interactions on an isoscalar target in BEBC

    NASA Astrophysics Data System (ADS)

    Deden, H.; Fritze, P.; Grässler, H.; Hasert, F. J.; Morfin, J.; Schulte, R.; Böckmann, K.; Geich-Gimbel, C.; Kokott, T. P.; Nellen, B.; Pech, R.; Saarikko, H.; Bosetti, P. C.; Cundy, D. C.; Grant, A. L.; Hulth, P. O.; Pape, L.; Scott, W. G.; Skjeggestad, O.; Mermikides, M.; Simopoulou, E.; Vayaki, A.; Barnham, K. W. J.; Butterworth, I.; Chima, J. S.; Clayton, E. F.; Miller, D. B.; Mobayyen, M.; Penfold, C.; Powell, K. J.; Batley, J. R.; Giles, R.; Grossmann, P.; Lloyd, J. L.; Myatt, G.; Perkins, D. H.; Radojicic, D.; Renton, P.; Saitta, B.; Bloch, M.; Bolognese, T.; Tallini, B.; Velasco, J.; Vignaud, D.; Aachen-Bonn-CERN-Demokritos Athens-I. C. London-Oxford-Saclay Collaboration

    1981-04-01

    The average transverse momentum squared, < p⊥2>, of hadrons is studied as a function of W2 and of Q2 for ν and overlineν interactions on an isoscalar target. An increase of < p⊥2> with W2 is observed for the hadrons emitted forward in the hadronic c.m.s. The p⊥ dependence of the fragmentation function is found to factorise from the structure function at fixed W, but does not factorise at fixed Q2. Unlike the case of forward-going particles, the < p⊥2> of hadrons going backward in the c.m.s. shows no strong dependence on W2.

  8. Recoil ions from the β decay of 134Sb confined in a Paul trap

    NASA Astrophysics Data System (ADS)

    Siegl, K.; Scielzo, N. D.; Czeszumska, A.; Clark, J. A.; Savard, G.; Aprahamian, A.; Caldwell, S. A.; Alan, B. S.; Burkey, M. T.; Chiara, C. J.; Greene, J. P.; Harker, J.; Marley, S. T.; Morgan, G. E.; Munson, J. M.; Norman, E. B.; Orford, R.; Padgett, S.; Galván, A. Perez; Sharma, K. S.; Strauss, S. Y.

    2018-03-01

    The low-energy recoiling ions from the β decay of 134Sb were studied by using the Beta-decay Paul Trap. Using this apparatus, singly charged ions were suspended in vacuum at the center of a detector array used to detect emitted β particles, γ rays, and recoil ions in coincidence. The recoil ions emerge from the trap with negligible scattering, allowing β -decay properties and the charge-state distribution of the daughter ions to be determined from the β -ion coincidences. First-forbidden β -decay theory predicts a β -ν correlation coefficient of nearly unity for the 0- to 0+ transition from the ground state of 134Sb to the ground state of 134Te. Although this transition was expected to have a nearly 100% branching ratio, an additional 17.2(52)% of the β -decay strength must populate high-lying excited states to obtain an angular correlation consistent with unity. The extracted charge-state distribution of the recoiling ions was compared with existing β -decay results and the average charge state was found to be consistent with the results from lighter nuclei.

  9. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    NASA Astrophysics Data System (ADS)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  10. Comparison of acute elastic recoil between the SAPIEN-XT and SAPIEN valves in transfemoral-transcatheter aortic valve replacement.

    PubMed

    Garg, Aatish; Parashar, Akhil; Agarwal, Shikhar; Aksoy, Olcay; Hammadah, Muhammad; Poddar, Kanhaiya Lal; Puri, Rishi; Svensson, Lars G; Krishnaswamy, Amar; Tuzcu, E Murat; Kapadia, Samir R

    2015-02-15

    The SAPIEN-XT is a newer generation balloon-expandable valve created of cobalt chromium frame, as opposed to the stainless steel frame used in the older generation SAPIEN valve. We sought to determine if there was difference in acute recoil between the two valves. All patients who underwent transfemoral-transcatheter aortic valve replacement using the SAPIEN-XT valve at the Cleveland Clinic were included. Recoil was measured using biplane cine-angiographic image analysis of valve deployment. Acute recoil was defined as [(valve diameter at maximal balloon inflation) - (valve diameter after deflation)]/valve diameter at maximal balloon inflation (reported as percentage). Patients undergoing SAPIEN valve implantation were used as the comparison group. Among the 23 mm valves, the mean (standard deviation-SD) acute recoil was 2.77% (1.14) for the SAPIEN valve as compared to 3.75% (1.52) for the SAPIEN XT valve (P = 0.04). Among the 26 mm valves, the mean (SD) acute recoil was 2.85% (1.4) for the SAPIEN valve as compared to 4.32% (1.63) for the SAPIEN XT valve (P = 0.01). Multivariable linear regression analysis demonstrated significantly greater adjusted recoil in the SAPIEN XT valves as compared to the SAPIEN valves by 1.43% [(95% CI: 0.69-2.17), P < 0.001]. However, the residual peak gradient was less for SAPIEN XT compared to SAPIEN valves [18.86 mm Hg versus 23.53 mm Hg (P = 0.01)]. Additionally, no difference in paravalvular leak was noted between the two valve types (P = 0.78). The SAPIEN XT valves had significantly greater acute recoil after deployment compared to the SAPIEN valves. Implications of this difference in acute recoil on valve performance need to be investigated in future studies. © 2014 Wiley Periodicals, Inc.

  11. Synthesis of superheavy elements at the Dubna gas-filled recoil separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voinov, A. A., E-mail: voinov@jinr.ru; Collaboration: JINR

    2016-12-15

    A survey of experiments at the Dubna gas-filled recoil separator (Laboratory of Nuclear Reactions, JINR, Dubna) aimed at the detection and study of the “island of stability” of superheavy nuclei produced in complete fusion reactions of {sup 48}Ca ions and {sup 238}U–{sup 249}Cf target nuclei is given. The problems of synthesis of superheavy nuclei, methods for their identification, and investigation of their decay properties, including the results of recent experiments at other separators (SHIP, BGS, TASCA) and chemical setups, are discussed. The studied properties of the new nuclei, the isotopes of elements 112–118, as well as the properties of theirmore » decay products, indicate substantial growth of stability of the heaviest nuclei with increasing number of neutrons in the nucleus as the magic number of neutrons N = 184 is approached.« less

  12. Four pi-recoil proportional counter used as neutron spectrometer

    NASA Technical Reports Server (NTRS)

    Bennett, E. F.

    1968-01-01

    Study considers problems encountered in using 4 pi-recoil counters for neutron spectra measurement. Emphasis is placed on calibration, shape discrimination, variation of W, the average energy loss per ion pair, and the effects of differentiation on the intrinsic counter resolution.

  13. Collisional entanglement fidelities in quantum plasmas including strong quantum recoil and oscillation effects

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-10-01

    The quantum recoil and oscillation effects on the entanglement fidelity and the electron-exchange function for the electron-ion collision are investigated in a semiconductor plasma by using the partial wave analysis and effective interaction potential in strong quantum recoil regime. The magnitude of the electron-exchange function is found to increase as the collision energy increases, but it decreases with an increase in the exchange parameter. It is also found that the collisional entanglement fidelity in strong quantum recoil plasmas is enhanced by the quantum-mechanical and shielding effects. The collisional entanglement fidelity in a semiconductor plasma is also enhanced by the collective plasmon oscillation and electron-exchange effect. However, the electron-exchange effect on the fidelity ratio function is reduced as the plasmon energy increases. Moreover, the electron-exchange influence on the fidelity ratio function is found to increase as the Fermi energy in the semiconductor plasma increases.

  14. Surface and adsorbate structural analysis from time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Rabalais, J. W.; Bu, H.; Roux, C.

    1992-02-01

    The methods of obtaining surface structural information from low energy ion scattering spectrometry are described. These methods include measurements of backscattering, forwardscattering, and recoiling intensities vs beam incident α, beam exit β, crystal azimuthal δ, and scattering Θ angles. References are provided which give examples of each different kind of measurement. The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS), which collects both scattered.and recoiled neutrals and ions simultaneously, is described. TOF-SARS data for the three surface phases, clean Ni{110}-(1 × 1), Ni{110}-(1 × 2)-H missing row, and Ni{110}-(2 × 1)-O missing row, are used to illustrate some of the structural measurements.

  15. The XENON100 Dark Matter Experiment: Design, Construction, Calibration and 2010 Search Results with Improved Measurement of the Scintillation Response of Liquid Xenon to Low-Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Plante, Guillaume

    An impressive array of astrophysical observations suggest that 83% of the matter in the universe is in a form of non-luminous, cold, collisionless, non-baryonic dark matter. Several extensions of the Standard Model of particle physics aimed at solving the hierarchy problem predict stable weakly interacting massive particles (WIMPs) that could naturally have the right cosmological relic abundance today to compose most of the dark matter if their interactions with normal matter are on the order of a weak scale cross section. These candidates also have the added benefit that their properties and interaction rates can be computed in a well defined particle physics model. A considerable experimental effort is currently under way to uncover the nature of dark matter. One method of detecting WIMP dark matter is to look for its interactions in terrestrial detectors where it is expected to scatter off nuclei. In 2007, the XENON10 experiment took the lead over the most sensitive direct detection dark matter search in operation, the CDMS II experiment, by probing spin-independent WIMP-nucleon interaction cross sections down to sigmachi N ˜ 5 x 10-44 cm 2 at 30 GeV/c2. Liquefied noble gas detectors are now among the technologies at the forefront of direct detection experiments. Liquid xenon (LXe), in particular, is a well suited target for WIMP direct detection. It is easily scalable to larger target masses, allows discrimination between nuclear recoils and electronic recoils, and has an excellent stopping power to shield against external backgrounds. A particle losing energy in LXe creates both ionization electrons and scintillation light. In a dual-phase LXe time projection chamber (TPC) the ionization electrons are drifted and extracted into the gas phase where they are accelerated to amplify the charge signal into a proportional scintillation signal. These two signals allow the three-dimensional localization of events with millimeter precision and the ability to

  16. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    NASA Astrophysics Data System (ADS)

    Bhalla, R. K.; Poletti, A. R.

    1984-05-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM), γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22Ne, 1.275 MeV level (2 + → 0 +), 5.16±0.13 ps; 26Mg, 3.588 MeV level (0 + → 2 +), 9.29±0.23 ps; 30Si, 3.788 MeV level (0 +→ 2 +), 12.00±0.70 ps; 38Ar, 3.377 MeV level (0 + → 2 +), 34.5±1.5 ps. The present measurements are compared to those of previous investigators. For the 22Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations.

  17. Anatomy of the binary black hole recoil: A multipolar analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnittman, Jeremy D.; Buonanno, Alessandra; Meter, James R. van

    2008-02-15

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and nonzero, nonprecessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within {approx_equal}2%) and that only a few dominant modes contribute significantly to it (within {approx_equal}5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical resultsmore » can be reproduced by an 'effective Newtonian' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulas with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasinormal modes. Analytic formulas, obtained by expressing the multipole moments in terms of the fundamental quasinormal modes of a Kerr black hole, are able to explain the onset and amount of 'antikick' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and nonplanar kicks for equal-mass spinning black holes.« less

  18. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  19. Estimating energy-momentum and angular momentum near null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helfer, Adam D.

    2010-04-15

    The energy-momentum and angular momentum contained in a spacelike two-surface of spherical topology are estimated by joining the two-surface to null infinity via an approximate no-incoming-radiation condition. The result is a set of gauge-invariant formulas for energy-momentum and angular momentum which should be applicable to much numerical work; it also gives estimates of the finite-size effects.

  20. There's Little Return for Attentional Momentum

    ERIC Educational Resources Information Center

    Snyder, Janice J.; Schmidt, William C.; Kingstone, Alan

    2009-01-01

    Inhibition of return (IOR) refers to a delay in response time (RT) to targets appearing at a previously cued location. The prevailing view is that IOR reflects visual-motor inhibition. The "attentional momentum" account rejects this idea, and instead proposes that IOR reflects an automatic shift of attention away from the cued location…

  1. Momentum Enhancement from Hypervelocity Crater Ejecta: Implications for the AIDA Target

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.; Durda, D. D.; Patmore, E. B.; Jack, S. J.; Molesky, M. J.; Strait, M. M.; Macke, R. M.

    2017-09-01

    We performed hypervelocity impact cratering of porous meteorites and terrestrial pumice and found higher values of the momentum enhancement factor due to ejecta than found in hydrocode modeling. This has important implications for kinetic impact deflection of small, hazardous asteroids and on the Asteroid Impact and Deflection Assessment mossion.

  2. A supersonic jet target for the cross section measurement of the 12C(α, γ)16O reaction with the recoil mass separator ERNA

    NASA Astrophysics Data System (ADS)

    Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.

    2017-09-01

    12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.

  3. Sub-Nanosecond Lifetime Measurement Using the Recoil-Distance Method

    PubMed Central

    Wu, Ching-Yen

    2000-01-01

    The electromagnetic properties of low-lying nuclear states are a sensitive probe of both collective and single-particle degrees of freedom in nuclear structure. The recoil-distance technique provides a very reliable, direct and precise method for measuring lifetimes of nuclear states with lifetimes ranging from less than one to several hundred picoseconds. This method complements the powerful, but complicated, heavy-ion induced Coulomb excitation technique for measuring electromagnetic properties. The recoil distance technique has been combined with heavy-ion induced Coulomb excitation to study a variety of problems. Examples discussed are: study of the two-phonon triplet in 110Pd, coupling of the β and γ degrees of freedom in 182,184W, highly deformed γ bands in 165Ho, octupole collectivity in 96Zr, and opposite parity states in 153Eu. Consistency between the Coulomb excitation results and the lifetime measurements confirms the reliability of the complex analysis often encountered in heavy-ion induced Coulomb excitation work. PMID:27551588

  4. Low energy recoil detection with a spherical proportional counter

    NASA Astrophysics Data System (ADS)

    Savvidis, I.; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2018-01-01

    We present results for the detection of low energy nuclear recoils in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am-9Be fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keV energy region was measured by observing the 5.9 keV line of a 55Fe X-ray source, with energy resolution of 10% (σ). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am-9Be source, while SRIM was used to calculate the Ionization Quenching Factor (IQF), the simulation results are compared with the measurements. The potential of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).

  5. Angular momentum transfer in low velocity oblique impacts - Implications for asteroids

    NASA Technical Reports Server (NTRS)

    Yanagisawa, Masahisa; Eluszkiewicz, Janusz; Ahrens, Thomas J.

    1991-01-01

    An experimental study has been conducted for the low-velocity oblique impact efficiency of angular momentum transfer, which is defined as that fraction of incident angular momentum that is transferred to the rotation of a target. The results obtained suggest that more energetic impacts are able to transfer angular momentum more efficiently. In the cases of ricochetted projectiles, the fraction of angular momentum carried off by the ejecta was noted to be less than 30 percent. It is suggested that, if asteroid spin rates are due to mutual noncatastrophic collisions and the taxonomic classes are indicative of bulk properties, the differences between corresponding spin rates will be smaller than expected from a consideration of relative strength and density alone.

  6. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    NASA Technical Reports Server (NTRS)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  7. Musett: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS

    NASA Astrophysics Data System (ADS)

    Theisen, Ch.; Jeanneau, F.; Sulignano, B.; Druillole, F.; Ljungvall, J.; Paul, B.; Virique, E.; Baron, P.; Bervas, H.; Clément, E.; Delagnes, E.; Dijon, A.; Dossat, E.; Drouart, A.; Farget, F.; Flouzat, Ch.; De France, G.; Görgen, A.; Houarner, Ch.; Jacquot, B.; Korten, W.; Lebertre, G.; Lecornu, B.; Legeard, L.; Lermitage, A.; Lhenoret, S.; Marry, C.; Maugeais, C.; Menager, L.; Meunier, O.; Navin, A.; Nizery, F.; Obertelli, A.; Rauly, E.; Raine, B.; Rejmund, M.; Ropert, J.; Saillant, F.; Savajols, H.; Schmitt, Ch.; Tripon, M.; Wanlin, E.; Wittwer, G.

    2014-05-01

    A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a γ-ray array at the target position. This paper describes the device, which consists of four 10×10 cm2 Si detectors and its associated front-end electronics based on highly integrated ASICs electronics. The triggerless readout electronics, the data acquisition and the analysis tools developed for its characterization are presented. This device was commissioned at GANIL with the EXOGAM γ-ray spectrometer using the fusion-evaporation reaction 197Au(22Ne,5n)214Ac. Additionally, the performance of the VAMOS Wien filter used during the in-beam commissioning is also reported.

  8. Normal and Tangential Momentum Accommodation for Earth Satellite Conditions

    NASA Technical Reports Server (NTRS)

    Knechtel, Earl D.; Pitts, William C.

    1973-01-01

    Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.

  9. Momentum distributions of isotopes produced by fragmentation of relativistic C-12 and O-16 projectiles

    NASA Technical Reports Server (NTRS)

    Greiner, D. E.; Lindstrom, P. J.; Heckman, H. H.; Cork, B.; Bieser, F. S.

    1975-01-01

    The fragment momentum distributions in the projectile rest frame are, typically, Gaussian shaped, narrow, consistent with isotropy, depend on fragment and projectile, and have no significant correlation with target mass or beam energy. The nuclear temperature is inferred from the momentum distributions of the fragments and is approximately equal to the projectile nuclear binding energy, indicative of small energy transfer between target and fragment.

  10. Positive recoil leader in rocket-triggered and tower-initiated lightning flashes as observed by high speed video camera

    NASA Astrophysics Data System (ADS)

    Qie, X.; Pu, Y.; Jiang, R.; Liu, M.; Sun, Z.

    2017-12-01

    Positive recoil leader was observed in both rocket-triggered and tower lightning flashes. The similar processes are observed in all the cases: an initial weakening dart leader propagated downward from the cloud with weak luminosity and terminated finally before reaching the ground. Then the bidirectional leaders started and propagated in the preexisting and decaying channel below the terminated downward dart leader, and the luminosity of the bileader ends was asymmetrical, but both with its tip being the weakest. The upward positive leader end started earlier and fast than the downward negative leader end. The bidirectional leader developed with the positive leader moving upward, along the decayed downward negative leader channel, and the negative leader downward, along the remnants of the channel created by the previous stroke or ICC, and, hence, could be viewed as a kind of recoil leader. However, the polarity of this recoil leader is contrary to the traditional recoil leader with negative leader end retrogressing along an existing positive leader channel. The bidirectional leaders observed herein are new as they are excited by a decayed negative leader with in the preexisting discharge channel, unlike other bidirectional leaders, e.g., the electric breakdown in virgin air or traditional recoil processes formed in a decayed positive leader channel.

  11. NNLO QCD corrections to Higgs boson production at large transverse momentum

    NASA Astrophysics Data System (ADS)

    Chen, X.; Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Jaquier, M.

    2016-10-01

    We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for quark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to-leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.

  12. Stability branching induced by collective atomic recoil in an optomechanical ring cavity

    NASA Astrophysics Data System (ADS)

    Ian, Hou

    2017-02-01

    In a ring cavity filled with an atomic condensate, self-bunching of atoms due to the cavity pump mode produce an inversion that re-emits into the cavity probe mode with an exponential gain, forming atomic recoil lasing. An optomechanical ring cavity is formed when one of the reflective mirrors is mounted on a mechanical vibrating beam. In this paper, we extend studies on the stability of linear optomechanical cavities to such ring cavities with two counter-propagating cavity modes, especially when the forward propagating pump mode is taken to its weak coupling limit. We find that when the atomic recoil is in action, stable states of the mechanical mode of the mirror converge into branch cuts, where the gain produced by the recoiling strikes balance with the multiple decay sources, such as cavity leakage in the optomechanical system. This balance is obtained when the propagation delay in the dispersive atomic medium matches in a periodic pattern to the frequencies and linewidths of the cavity mode and the collective bosonic mode of the atoms. We show an input-output hysteresis cycle between the atomic mode and the cavity mode to verify the multi-valuation of the stable states after branching at the weak coupling limit.

  13. Sub-GeV dark matter detection with electron recoils in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cavoto, G.; Luchetta, F.; Polosa, A. D.

    2018-01-01

    Directional detection of Dark Matter particles (DM) in the MeV mass range could be accomplished by studying electron recoils in large arrays of parallel carbon nanotubes. In a scattering process with a lattice electron, a DM particle might transfer sufficient energy to eject it from the nanotube surface. An external electric field is added to drive the electron from the open ends of the array to the detection region. The anisotropic response of this detection scheme, as a function of the orientation of the target with respect to the DM wind, is calculated, and it is concluded that no direct measurement of the electron ejection angle is needed to explore significant regions of the light DM exclusion plot. A compact sensor, in which the cathode element is substituted with a dense array of parallel carbon nanotubes, could serve as the basic detection unit.

  14. Exclusive Reactions at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Radyushkin, Anatoly; Stoler, Paul

    2008-03-01

    effects from initial and final state interactions / S. J. Brodsky -- Parton distributions and spin-orbital correlations / F. Yuan -- Transverse momentum dependences of distribution and fragmentation functions / D. S. Hwang and D. S. Kim -- Flavor dependence of the Boer-Mulders function and its influence on Azimuthal and single-spin asymmetries in semi-inclusive DIS / L. P. Gamberg, G. R. Goldstein and M. Schlegel -- Symmetric spin-dependent structure function in deep inelastic processes / D. S. Hwang, J. H. Kim and S. Kim -- HERMES recoil detector / R. Perez-Benito -- Inner calorimeter in CLAS/DVCS experiment / R. Niyazov -- Frozen-spin HD as a possible target for electro-production experiments / A. M. Sandorfi et al.

  15. Immediate stent recoil in an anastomotic vein graft lesion treated by cutting balloon angioplasty.

    PubMed

    Akkus, Nuri Ilker; Budeepalli, Jagan; Cilingiroglu, Mehmet

    2013-11-01

    Saphenous vein graft (SVG) anastomotic lesions can have significant fibromuscular hyperplasia and may be resistant to balloon angioplasty alone. Stents have been used successfully to treat these lesions. There are no reports of immediate stent recoil following such treatment in the literature. We describe immediate and persistent stent recoil in an anastomotic SVG lesion even after initial and post-deployment complete balloon dilatation of the stent and its successful treatment by cutting balloon angioplasty. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  16. Physical approach to price momentum and its application to momentum strategy

    NASA Astrophysics Data System (ADS)

    Choi, Jaehyung

    2014-12-01

    We introduce various quantitative and mathematical definitions for price momentum of financial instruments. The price momentum is quantified with velocity and mass concepts originated from the momentum in physics. By using the physical momentum of price as a selection criterion, the weekly contrarian strategies are implemented in South Korea KOSPI 200 and US S&P 500 universes. The alternative strategies constructed by the physical momentum achieve the better expected returns and reward-risk measures than those of the traditional contrarian strategy in weekly scale. The portfolio performance is not understood by the Fama-French three-factor model.

  17. Pre-compound emission in low-energy heavy-ion interactions

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj Kumar; Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Singh, Devendra P.; Unnati; Singh, B. P.; Prasad, R.

    2017-11-01

    Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  18. Coupling of the recoil mass spectrometer CAMEL to the γ-ray spectrometer GASP

    NASA Astrophysics Data System (ADS)

    Spolaore, P.; Ackermann, D.; Bednarczyk, P.; De Angelis, G.; Napoli, D.; Rossi Alvarez, C.; Bazzacco, D.; Burch, R.; Müller, L.; Segato, G. F.; Scarlassara, F.

    1995-02-01

    A project has been realized to link the CAMEL recoil mass spectrometer to the GASP γ-spectrometer in order to perform high resolution and efficiency γ-recoil coincidence measurements. To preserve high flexibility and autonomy in the operation of the two complex apparatus a rough factor two of reduction in the overall heavy ion transmission was accepted in designing the optics of the particle transport from the GASP center to the CAMEL focal plane. The coupled configuration has been tested with the fusion reaction 58Ni (E = 212 MeV) + 64Ni, obtaining a mass resolution of {1}/{300} and efficiency between ˜ 11% and ˜ 15% for different evaporation products.

  19. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  20. Optical Probes for Laser Induced Shocks

    DTIC Science & Technology

    1992-03-01

    target by the strong water. As the shock passes the material interface, it is pressure transients. only partially transmitted. The shock pressure is...T. Swimm , J. Appl. Phys. 61, evaporated, t1137(1987). vapor flow substantially. The coupling coefficient thus de- 3 v. A. Batanov and V. B. Fedorov...Waist-Surface Distance [mm] isurface on the drilling mechanismC Positive ( negative ) To roughly estimate the total recoil momentum positions

  1. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  2. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  3. Reprint of: A supersonic jet target for the cross section measurement of the 12C(α, γ)16O reaction with the recoil mass separator ERNA

    NASA Astrophysics Data System (ADS)

    Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.

    2018-01-01

    12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.

  4. Acute stent recoil and optimal balloon inflation strategy: an experimental study using real-time optical coherence tomography.

    PubMed

    Kitahara, Hideki; Waseda, Katsuhisa; Yamada, Ryotaro; Otagiri, Kyuhachi; Tanaka, Shigemitsu; Kobayashi, Yuhei; Okada, Kozo; Kume, Teruyoshi; Nakagawa, Kaori; Teramoto, Tomohiko; Ikeno, Fumiaki; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro

    2016-06-12

    Our aim was to evaluate stent expansion and acute recoil at deployment and post-dilatation, and the impact of post-dilatation strategies on final stent dimensions. Optical coherence tomography (OCT) was performed on eight bare metal platforms of drug-eluting stents (3.0 mm diameter, n=6 for each) during and after balloon inflation in a silicone mock vessel. After nominal-pressure deployment, a single long (30 sec) vs. multiple short (10 sec x3) post-dilatations were performed using a non-compliant balloon (3.25 mm, 20 atm). Stent areas during deployment with original delivery systems were smaller in stainless steel stents than in cobalt-chromium and platinum-chromium stents (p<0.001), whereas subsequent acute recoil was comparable among the three materials. At post-dilatation, acute recoil was greater in cobalt-chromium and platinum-chromium stents than in stainless steel stents (p<0.001), resulting in smaller final stent areas in cobalt-chromium and platinum-chromium stents than in stainless steel stents (p<0.001). In comparison between conventional and latest-generation cobalt-chromium stents, stent areas were not significantly different after both deployment and post-dilatation. With multiple short post-dilatations, acute recoil was significantly improved from first to third short inflation (p<0.001), achieving larger final area than a single long inflation, despite stent materials/designs (p<0.001). Real-time OCT revealed significant acute recoil in all stent types. Both stent materials/designs and post-dilatation strategies showed a significant impact on final stent expansion.

  5. Nuclear recoil effect on g-factor of heavy ions: prospects for tests of quantum electrodynamics in a new region

    NASA Astrophysics Data System (ADS)

    Malyshev, A. V.; Shabaev, V. M.; Glazov, D. A.; Tupitsyn, I. I.

    2017-12-01

    The nuclear recoil effect on the g-factor of H- and Li-like heavy ions is evaluated to all orders in αZ. The calculations include an approximate treatment of the nuclear size and the electron-electron interaction corrections to the recoil effect. As the result, the second largest contribution to the theoretical uncertainty of the g-factor values of 208Pb79+ and 238U89+ is strongly reduced. Special attention is paid to tests of the QED recoil effect on the g-factor in experiments with heavy ions. It is found that, while the QED recoil effect on the g-factor value is masked by the uncertainties of the nuclear size and nuclear polarization contributions, it can be probed on a few-percent level in the specific difference of the g-factors of H- and Li-like heavy ions. This provides a unique opportunity to test QED in a new region-strong-coupling regime beyond the Furry picture.

  6. Momentum Flux Measuring Instrument for Neutral and Charged Particle Flows

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Schafer, Charles F. (Technical Monitor)

    2002-01-01

    An instrument to measure the momentum flux (total pressure) of plasma and neutral particle jets onto a surface has been developed. While this instrument was developed for magnetized plasmas, the concept works for non-magnetized plasmas as well. We have measured forces as small as 10(exp -4) Newtons on a surface immersed in the plasma where small forces are due to ionic and neutral particles with kinetic energies on the order of a few eV impacting the surface. This instrument, a force sensor, uses a target plate (surface) that is immersed in the plasma and connected to one end of an alumina rod while the opposite end of the alumina rod is mechanically connected to a titanium beam on which four strain gauges are mounted. The force on the target generates torque causing strain in the beam. The resulting strain measurements can be correlated to a force on the target plate. The alumina rod electrically and thermally isolates the target plate from the strain gauge beam and allows the strain gauges to be located out of the plasma flow while also serving as a moment arm of several inches to increase the strain in the beam at the strain gauge location. These force measurements correspond directly to momentum flux and may be used with known plasma conditions to place boundaries on the kinetic energies of the plasma and neutral particles. The force measurements may also be used to infer thrust produced by a plasma propulsive device. Stainless steel, titanium, molybdenum, and aluminum flat target plates have been used. Momentum flux measurements of H2, D2, He, and Ar plasmas produced in a magnetized plasma device have been performed.

  7. Black hole as a point radiator and recoil effect on the brane world.

    PubMed

    Frolov, Valeri; Stojković, Dejan

    2002-10-07

    A small black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We construct a field theory model in which such a black hole is described as a massive scalar particle with internal degrees of freedom. In this model, the probability of transition between the different internal levels is identical to the probability of thermal emission calculated for the Schwarzschild black hole. The discussed recoil effect implies that the thermal emission of the black holes, which might be created by interaction of high energy particles in colliders, could be terminated and the energy nonconservation can be observed in the brane experiments.

  8. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  9. Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider.

    PubMed

    Ji, Xiangdong; Yuan, Feng; Zhao, Yong

    2017-05-12

    Applying the connection between the parton Wigner distribution and orbital angular momentum (OAM), we investigate the probe of the gluon OAM in hard scattering processes at the planned electron-ion collider. We show that the single longitudinal target-spin asymmetry in the hard diffractive dijet production is very sensitive to the gluon OAM distribution. The associated spin asymmetry leads to a characteristic azimuthal angular correlation of sin(ϕ_{q}-ϕ_{Δ}), where ϕ_{Δ} and ϕ_{q} are the azimuthal angles of the proton momentum transfer and the relative transverse momentum between the quark-antiquark pair. This study may motivate a first measurement of the gluon OAM in the proton spin sum rule.

  10. First β-ν correlation measurement from the recoil-energy spectrum of Penning trapped Ar35 ions

    NASA Astrophysics Data System (ADS)

    Van Gorp, S.; Breitenfeldt, M.; Tandecki, M.; Beck, M.; Finlay, P.; Friedag, P.; Glück, F.; Herlert, A.; Kozlov, V.; Porobic, T.; Soti, G.; Traykov, E.; Wauters, F.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2014-08-01

    We demonstrate a novel method to search for physics beyond the standard model by determining the β-ν angular correlation from the recoil-ion energy distribution after β decay of ions stored in a Penning trap. This recoil-ion energy distribution is measured with a retardation spectrometer. The unique combination of the spectrometer with a Penning trap provides a number of advantages, e.g., a high recoil-ion count rate and low sensitivity to the initial position and velocity distribution of the ions and completely different sources of systematic errors compared to other state-of-the-art experiments. Results of a first measurement with the isotope Ar35 are presented. Although currently at limited precision, we show that a statistical precision of about 0.5% is achievable with this unique method, thereby opening up the possibility of contributing to state-of-the-art searches for exotic currents in weak interactions.

  11. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jingke; Shields, Emily; Calaprice, Frank

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies butmore » fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.« less

  12. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    DOE PAGES

    Chavarria, A. E.; Collar, J. I.; Peña, J. R.; ...

    2016-10-15

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons (<24 keV) from a 124Sb– 9Be photoneutron source, and their ionization signal is measured down to 60 eV electron equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency is found to deviate from the extrapolation to low energies of the Lindhard model. Furthermore, this measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, amore » dark matter direct detection experiment located in the SNOLAB underground laboratory.« less

  13. The Dependency of Penetration on the Momentum Per Unit Area of the Impacting Projectile and the Resistance of Materials to Penetration

    NASA Technical Reports Server (NTRS)

    Collins, Rufus D., Jr.; Kinard, William H.

    1960-01-01

    The results of this investigation indicate that the penetration of projectiles into quasi-infinite targets can be correlated as a function of the maximum momentum per unit area possessed by the projectiles. The penetration of projectiles into aluminum, copper, and steel targets was found to be a linear function while the penetration into lead targets was a nonlinear function of the momentum per unit area of the impacting projectiles. Penetration varied inversely as the projectile density and the elastic modulus of the target material for a given projectile momentum per unit area. Crater volumes were found to be a linear function of the kinetic energy of the projectile, the greater volumes being obtained in the target materials which had the lowest yield strength and the lowest speed of sound.

  14. Nuclear Recoil Effect on the g-Factor of Heavy Ions: Prospects for Tests of Quantum Electrodynamics in a New Region

    NASA Astrophysics Data System (ADS)

    Malyshev, A. V.; Shabaev, V. M.; Glazov, D. A.; Tupitsyn, I. I.

    2017-12-01

    The nuclear recoil effect on the g-factor of H- and Li-like heavy ions is evaluated to all orders in αZ. The calculations include an approximate treatment of the nuclear size and the electron-electron interaction corrections to the recoil effect. As the result, the second largest contribution to the theoretical uncertainty of the g-factor values of 208Pb79+ and 238U89+ is strongly reduced. Special attention is paid to tests of the QED recoil effect on the g-factor in experiments with heavy ions. It is found that, while the QED recoil effect on the gfactor value is masked by the uncertainties of the nuclear size and nuclear polarization contributions, it can be probed on a few-percent level in the specific difference of the g-factors of H- and Li-like heavy ions. This provides a unique opportunity to test QED in a new region of the strong-coupling regime beyond the Furry picture.

  15. Transverse momentum at work in high-energy scattering experiments

    NASA Astrophysics Data System (ADS)

    Signori, Andrea

    2017-01-01

    I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).

  16. On the Form of the Collective Bremsstrahlung Recoil Force in a Nonequilibrium Relativistic Beam-Plasma System.

    DTIC Science & Technology

    1984-01-01

    RD-RI39 895 ON THE FORM OF THE COLLECTIVE BREMSSTRRHLUNG RECOIL i / i FORCE IN A NONEQUILIBRIUM RELATIVISTIC BEAM-PLASMA SYSTEM(U) HARRY DIAMOND LABS...A A O- I I .. . .:. .~ . ." . .- . . . AD Al 39895 H DL-TR-2026 .- 2 ,January 1984 ’ On the Form of the Collective Bremsstrahlung Recoil:O Kodf...Nonequillbrium Relativistic Beam-Plasma System; by Howard It. Brandt A and -t 4 C.. 4 :;x.. 4 4~ . Approw for *4444 𔃿 . U.S.~ Arm Lad Dee ,7 , .1 I . A L

  17. Analysis of angular momentum properties of photons emitted in fundamental atomic processes

    NASA Astrophysics Data System (ADS)

    Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.

    2018-04-01

    Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.

  18. Combined Effects of Mass and Velocity on Forward Displacement and Phenomenological Ratings: A Functional Measurement Approach to the Momentum Metaphor

    ERIC Educational Resources Information Center

    De Sa Teixeira, Nuno; Oliveira, Armando Monica; Amorim, Michel-Ange

    2010-01-01

    Representational Momentum (RepMo) refers to the phenomenon that the vanishing position of a moving target is perceived as displaced ahead in the direction of movement. Originally taken to reflect a strict internalization of physical momentum, the finding that the target implied mass did not have an effect led to its subsequent reinterpretation as…

  19. Momentum fractionation on superstrata

    DOE PAGES

    Bena, Iosif; Martinec, Emil; Turton, David; ...

    2016-05-11

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in highdegree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifoldmore » singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Lastly, our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.« less

  20. Sensitivity of jet substructure to jet-induced medium response

    NASA Astrophysics Data System (ADS)

    Milhano, Guilherme; Wiedemann, Urs Achim; Zapp, Korinna Christine

    2018-04-01

    Jet quenching in heavy ion collisions is expected to be accompanied by recoil effects, but unambiguous signals for the induced medium response have been difficult to identify so far. Here, we argue that modern jet substructure measurements can improve this situation qualitatively since they are sensitive to the momentum distribution inside the jet. We show that the groomed subjet shared momentum fraction zg, and the girth of leading and subleading subjets signal recoil effects with dependencies that are absent in a recoilless baseline. We find that recoil effects can explain most of the medium modifications to the zg distribution observed in data. Furthermore, for jets passing the Soft Drop Condition, recoil effects induce in the differential distribution of subjet separation ΔR12 a characteristic increase with ΔR12, and they introduce a characteristic enhancement of the girth of the subleading subjet with decreasing zg. We explain why these qualitatively novel features, that we establish in JEWEL+PYTHIA simulations, reflect generic physical properties of recoil effects that should therefore be searched for as telltale signatures of jet-induced medium response.

  1. Universal Binding and Recoil Corrections to Bound State g Factors in Hydrogenlike Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eides, Michael I.; Martin, Timothy J. S.

    2010-09-03

    The leading relativistic and recoil corrections to bound state g factors of particles with arbitrary spin are calculated. It is shown that these corrections are universal for any spin and depend only on the free particle gyromagnetic ratios. To prove this universality we develop nonrelativistic quantum electrodynamics (NRQED) for charged particles with an arbitrary spin. The coefficients in the NRQED Hamiltonian for higher spin particles are determined only by the requirements of Lorentz invariance and local charge conservation in the respective relativistic theory. For spin one charged particles, the NRQED Hamiltonian follows from the renormalizable QED of the charged vectormore » bosons. We show that universality of the leading relativistic and recoil corrections can be explained with the help of the Bargmann-Michael-Telegdi equation.« less

  2. Relativistic properties of a molecule: energy, linear momentum, angular momentum and boost momentum to order 1/c 2

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Cotter, J. P.

    2018-05-01

    We give an explicit and general description of the energy, linear momentum, angular momentum and boost momentum of a molecule to order 1/c 2, where it necessary to take account of kinetic contributions made by the electrons and nuclei as well as electromagnetic contributions made by the intramolecular field. A wealth of interesting subtleties are encountered that are not seen at order 1/c 0, including relativistic Hall shifts, anomalous velocities and hidden momenta. Some of these have well known analogues in solid state physics.

  3. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    NASA Astrophysics Data System (ADS)

    Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boudjemline, K.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Cranshaw, D.; Dering, K.; Duncan, F.; Fatemighomi, N.; Ford, R.; Gagnon, R.; Giampa, P.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Grace, E.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Hearns, C.; Hofgartner, J.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; La Zia, F.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D. N.; Mehdiyev, R.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, A. J.; O'Dwyer, E.; Olsen, K.; Ouellet, C.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Ronquest, M.; Seeburn, N.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.

    2016-12-01

    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. In the surface dataset using a triple-coincidence tag we found the fraction of β events that are misidentified as nuclear recoils to be < 1.4 ×10-7 (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement to be done with only a double-coincidence tag. The combined data set contains 1.23 × 108 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the level of electronic recoil contamination is < 2.7 ×10-8 (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe pulse-shape-discrimination parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approximately 10-10 for an electron-equivalent energy threshold of 15 keVee for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10-46 cm2, assuming negligible contribution from nuclear recoil backgrounds.

  4. Molecular modeling of the effects of 40Ar recoil in illite particles on their K-Ar isotope dating

    NASA Astrophysics Data System (ADS)

    Szczerba, Marek; Derkowski, Arkadiusz; Kalinichev, Andrey G.; Środoń, Jan

    2015-06-01

    The radioactive decay of 40K to 40Ar is the basis of isotope age determination of micaceous clay minerals formed during diagenesis. The difference in K-Ar ages between fine and coarse grained illite particles has been interpreted using detrital-authigenic components system, its crystallization history or post-crystallization diffusion. Yet another mechanism should also be considered: natural 40Ar recoil. Whether this recoil mechanism can result in a significant enough loss of 40Ar to provide observable decrease of K-Ar age of the finest illite crystallites at diagenetic temperatures - is the primary objective of this study which is based on molecular dynamics (MD) computer simulations. All the simulations were performed for the same kinetic energy (initial velocity) of the 40Ar atom, but for varying recoil angles that cover the entire range of their possible values. The results show that 40Ar recoil can lead to various deformations of the illite structure, often accompanied by the displacement of OH groups or breaking of the Si-O bonds. Depending on the recoil angle, there are four possible final positions of the 40Ar atom with respect to the 2:1 layer at the end of the simulation: it can remain in the interlayer space or end up in the closest tetrahedral, octahedral or the opposite tetrahedral sheet. No simulation angles were found for which the 40Ar atom after recoil passes completely through the 2:1 layer. The energy barrier for 40Ar passing through the hexagonal cavity from the tetrahedral sheet into the interlayer was calculated to be 17 kcal/mol. This reaction is strongly exothermic, therefore there is almost no possibility for 40Ar to remain in the tetrahedral sheet of the 2:1 layer over geological time periods. It will either leave the crystal, if close enough to the edge, or return to the interlayer space. On the other hand, if 40Ar ends up in the octahedral sheet after recoil, a substantially higher energy barrier of 55 kcal/mol prevents it from leaving

  5. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  6. Large Deformation Diffeomorphism and Momentum Based Hippocampal Shape Discrimination in Dementia of the Alzheimer type

    PubMed Central

    Wang, Lei; Beg, Faisal; Ratnanather, Tilak; Ceritoglu, Can; Younes, Laurent; Morris, John C.; Csernansky, John G.; Miller, Michael I.

    2010-01-01

    In large-deformation diffeomorphic metric mapping (LDDMM), the diffeomorphic matching of images are modeled as evolution in time, or a flow, of an associated smooth velocity vector field v controlling the evolution. The initial momentum parameterizes the whole geodesic and encodes the shape and form of the target image. Thus, methods such as principal component analysis (PCA) of the initial momentum leads to analysis of anatomical shape and form in target images without being restricted to small-deformation assumption in the analysis of linear displacements. We apply this approach to a study of dementia of the Alzheimer type (DAT). The left hippocampus in the DAT group shows significant shape abnormality while the right hippocampus shows similar pattern of abnormality. Further, PCA of the initial momentum leads to correct classification of 12 out of 18 DAT subjects and 22 out of 26 control subjects. PMID:17427733

  7. Optical angular momentum and atoms

    PubMed Central

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  8. Force-time profile differences in the delivery of simulated toggle-recoil spinal manipulation by students, instructors, and field doctors of chiropractic.

    PubMed

    DeVocht, James W; Owens, Edward F; Gudavalli, Maruti Ram; Strazewski, John; Bhogal, Ramneek; Xia, Ting

    2013-01-01

    The objectives of this study were to examine the force-time profiles of toggle recoil using an instrumented simulator to objectively measure and evaluate students' skill to determine if they become quicker and use less force during the course of their training and to compare them to course instructors and to field doctors of chiropractic (DCs) who use this specific technique in their practices. A load cell was placed within a toggle recoil training device. The preload, speed, and magnitude of the toggle recoil thrusts were measured from 60 students, 2 instructors, and 77 DCs (ie, who use the toggle recoil technique in their regular practice). Student data were collected 3 times during their toggle course (after first exposure, at midterm, and at course end.) Thrusts showed a dual-peak force-time profile not previously described in other forms of spinal manipulation. There was a wide range of values for each quantity measured within and between all 3 subject groups. The median peak load for students decreased over the course of their class, but they became slower. Field doctors were faster than students or instructors and delivered higher peak loads. Toggle recoil thrusts into a dropping mechanism varied based upon subject and amount of time practicing the task. As students progressed through the class, speed reduced as they increased control to lower peak loads. In the group studies, field DCs applied higher forces and were faster than both students and instructors. There appears to be a unique 2-peak feature of the force-time plot that is unique to toggle recoil manipulation with a drop mechanism. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  9. Precision Lifetime Measurements Using the Recoil Distance Method

    PubMed Central

    Krücken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed. PMID:27551587

  10. Bridging the Gap: Possible Roles and Contributions of Representational Momentum

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2006-01-01

    Memory for the position of a moving target is often displaced in the direction of anticipated motion, and this has been referred to as "representational momentum". Such displacement might aid spatial localization by bridging the gap between perception and action, and might reflect a second-order isomorphism between subjective consequences of…

  11. Perturbative momentum transport in MAST L-mode plasmas

    DOE PAGES

    Guttenfelder, W.; Field, A. R.; Lupelli, I.; ...

    2017-03-28

    Non-axisymmetric magnetic fields are used to perturbatively probe momentum transport physics in MAST L-mode plasmas. The low beta L-mode target was chosen to complement previous experiments conducted in high beta NSTX H-mode plasmas (beta N = 3.5-4.6) where an inward momentum pinch was measured. In those cases quasi-linear gyrokinetic simulations of unstable ballooning micro-instabilities predict weak or outward momentum convection, in contrast to the measurements. The weak pinch was predicted to be due to both electromagnetic effects at high beta and low aspect ratio minimizing the symmetry-breaking of the instabilities responsible for momentum transport. In an attempt to lessen thesemore » electromagnetic effects at low aspect ratio, perturbative experiments were run in MAST L-mode discharges at lower beta (beta N = 2). The perturbative transport analysis used the time-dependent response following the termination of applied 3D fields that briefly brake the plasma rotation ( similar to the NSTX H-mode experiments). Assuming time-invariant diffusive (chi(phi))and convective (V-phi) transport coefficients, an inward pinch is inferred with magnitudes, (RV phi/chi(phi)) = (-1)-(-9), similar to those found in NSTX H-modes and in conventional tokamaks. However, if experimental uncertainties due to non-stationary conditions during and after the applied 3D field are considered, a weak pinch or even outward convection is inferred, ( RV phi/chi(phi)) = (-1)-(+5). Linear gyrokinetic simulations indicate that for these lower beta L-modes, the predicted momentum pinch is predicted to be relatively small, ( RV phi/chi(phi))(sim) approximate to -1. While this falls within the experimentally inferred range, the uncertainties are practically too large to quantitatively validate the predictions. Challenges and implications for this particular experimental technique are discussed, as well as additional possible physical mechanisms that may be important in understanding momentum

  12. Perturbative momentum transport in MAST L-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttenfelder, W.; Field, A. R.; Lupelli, I.

    Non-axisymmetric magnetic fields are used to perturbatively probe momentum transport physics in MAST L-mode plasmas. The low beta L-mode target was chosen to complement previous experiments conducted in high beta NSTX H-mode plasmas (beta N = 3.5-4.6) where an inward momentum pinch was measured. In those cases quasi-linear gyrokinetic simulations of unstable ballooning micro-instabilities predict weak or outward momentum convection, in contrast to the measurements. The weak pinch was predicted to be due to both electromagnetic effects at high beta and low aspect ratio minimizing the symmetry-breaking of the instabilities responsible for momentum transport. In an attempt to lessen thesemore » electromagnetic effects at low aspect ratio, perturbative experiments were run in MAST L-mode discharges at lower beta (beta N = 2). The perturbative transport analysis used the time-dependent response following the termination of applied 3D fields that briefly brake the plasma rotation ( similar to the NSTX H-mode experiments). Assuming time-invariant diffusive (chi(phi))and convective (V-phi) transport coefficients, an inward pinch is inferred with magnitudes, (RV phi/chi(phi)) = (-1)-(-9), similar to those found in NSTX H-modes and in conventional tokamaks. However, if experimental uncertainties due to non-stationary conditions during and after the applied 3D field are considered, a weak pinch or even outward convection is inferred, ( RV phi/chi(phi)) = (-1)-(+5). Linear gyrokinetic simulations indicate that for these lower beta L-modes, the predicted momentum pinch is predicted to be relatively small, ( RV phi/chi(phi))(sim) approximate to -1. While this falls within the experimentally inferred range, the uncertainties are practically too large to quantitatively validate the predictions. Challenges and implications for this particular experimental technique are discussed, as well as additional possible physical mechanisms that may be important in understanding momentum

  13. Effect of in-medium nucleon-nucleon cross section on proton-proton momentum correlation in intermediate-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Wang, Ting-Ting; Ma, Yu-Gang; Zhang, Chun-Jian; Zhang, Zheng-Qiao

    2018-03-01

    The proton-proton momentum correlation function from different rapidity regions is systematically investigated for the Au + Au collisions at different impact parameters and different energies from 400 A MeV to 1500 A MeV in the framework of the isospin-dependent quantum molecular dynamics model complemented by the Lednický-Lyuboshitz analytical method. In particular, the in-medium nucleon-nucleon cross-section dependence of the correlation function is brought into focus, while the impact parameter and energy dependence of the momentum correlation function are also explored. The sizes of the emission source are extracted by fitting the momentum correlation functions using the Gaussian source method. We find that the in-medium nucleon-nucleon cross section obviously influences the proton-proton momentum correlation function, which is from the whole-rapidity or projectile or target rapidity region at smaller impact parameters, but there is no effect on the mid-rapidity proton-proton momentum correlation function, which indicates that the emission mechanism differs between projectile or target rapidity and mid-rapidity protons.

  14. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE PAGES

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; ...

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore » ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  15. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  16. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  17. EMMA, a Recoil Mass Spectrometer for TRIUMF's ISAC-II Facility

    NASA Astrophysics Data System (ADS)

    Davids, Barry; EMMA Collaboration

    2016-09-01

    EMMA is a recoil mass spectrometer for TRIUMF's ISAC-II facility in the final stages of installation and commissioning. In this talk I will briefly review the spectrometer's design capabilities, describe recent progress in its installation and commissioning, and discuss plans for its initial experimental program. This work was supported by the Natural Sciences and Engineering Council of Canada. TRIUMF receives federal funds through a contribution agreement with the National Research Council of Canada.

  18. Measurement of 1323 and 1487 keV resonances in 15N(α ,γ )19F with the recoil separator ERNA

    NASA Astrophysics Data System (ADS)

    Di Leva, A.; Imbriani, G.; Buompane, R.; Gialanella, L.; Best, A.; Cristallo, S.; De Cesare, M.; D'Onofrio, A.; Duarte, J. G.; Gasques, L. R.; Morales-Gallegos, L.; Pezzella, A.; Porzio, G.; Rapagnani, D.; Roca, V.; Romoli, M.; Schürmann, D.; Straniero, O.; Terrasi, F.; ERNA Collaboration

    2017-04-01

    Background: The origin of fluorine is a widely debated issue. Nevertheless, the 15N(α ,γ )19F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the direct capture and the tails of the two broad resonances at Ec .m .=1323 and 1487 keV. Purpose: The broad resonances widths, Γγ and Γα, have to be measured with adequate precision in order to better determine their contribution to the 15N(α ,γ )19F stellar reaction rate. Methods: Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec .m .=1323 and 1487 keV is used to determine their widths in the α and γ channels. Results: We show that a direct measurement of the cross section of the 15N(α ,γ )19F reaction can be successfully obtained with the recoil separator ERNA, and the widths Γγ and Γα of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance Γα. Conclusions: The revision of the widths of the two more relevant broad resonances in the 15N(α ,γ )19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the 19F stellar nucleosynthesis is dominated by the uncertainties affecting the direct capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.

  19. First limits on WIMP nuclear recoil signals in ZEPLIN-II: A two-phase xenon detector for dark matter detection

    NASA Astrophysics Data System (ADS)

    Alner, G. J.; Araújo, H. M.; Bewick, A.; Bungau, C.; Camanzi, B.; Carson, M. J.; Cashmore, R. J.; Chagani, H.; Chepel, V.; Cline, D.; Davidge, D.; Davies, J. C.; Daw, E.; Dawson, J.; Durkin, T.; Edwards, B.; Gamble, T.; Gao, J.; Ghag, C.; Howard, A. S.; Jones, W. G.; Joshi, M.; Korolkova, E. V.; Kudryavtsev, V. A.; Lawson, T.; Lebedenko, V. N.; Lewin, J. D.; Lightfoot, P.; Lindote, A.; Liubarsky, I.; Lopes, M. I.; Lüscher, R.; Majewski, P.; Mavrokoridis, K.; McMillan, J. E.; Morgan, B.; Muna, D.; Murphy, A. St. J.; Neves, F.; Nicklin, G. G.; Ooi, W.; Paling, S. M.; Pinto da Cunha, J.; Plank, S. J. S.; Preece, R. M.; Quenby, J. J.; Robinson, M.; Salinas, G.; Sergiampietri, F.; Silva, C.; Solovov, V. N.; Smith, N. J. T.; Smith, P. F.; Spooner, N. J. C.; Sumner, T. J.; Thorne, C.; Tovey, D. R.; Tziaferi, E.; Walker, R. J.; Wang, H.; White, J. T.; Wolfs, F. L. H.

    2007-11-01

    Results are presented from the first underground data run of ZEPLIN-II, a 31 kg two-phase xenon detector developed to observe nuclear recoils from hypothetical weakly interacting massive dark matter particles. Discrimination between nuclear recoils and background electron recoils is afforded by recording both the scintillation and ionisation signals generated within the liquid xenon, with the ratio of these signals being different for the two classes of event. This ratio is calibrated for different incident species using an AmBe neutron source and 60Co γ-ray sources. From our first 31 live days of running ZEPLIN-II, the total exposure following the application of fiducial and stability cuts was 225 kg × days. A background population of radon progeny events was observed in this run, arising from radon emission in the gas purification getters, due to radon daughter ion decays on the surfaces of the walls of the chamber. An acceptance window, defined by the neutron calibration data, of 50% nuclear recoil acceptance between 5 keV ee and 20 keV ee, had an observed count of 29 events, with a summed expectation of 28.6 ± 4.3 γ-ray and radon progeny induced background events. These figures provide a 90% c.l. upper limit to the number of nuclear recoils of 10.4 events in this acceptance window, which converts to a WIMP-nucleon spin-independent cross-section with a minimum of 6.6 × 10 -7 pb following the inclusion of an energy-dependent, calibrated, efficiency. A second run is currently underway in which the radon progeny will be eliminated, thereby removing the background population, with a projected sensitivity of 2 × 10 -7 pb for similar exposures as the first run.

  20. TDRSS momentum unload planning

    NASA Technical Reports Server (NTRS)

    Cross, George R.; Potter, Mitchell A.; Whitehead, J. Douglass; Smith, James T.

    1991-01-01

    A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems.

  1. Controlling matter waves in momentum space

    NASA Astrophysics Data System (ADS)

    Lin, De-Hone

    2014-07-01

    The transformation design method of momentum for matter waves in a harmonic trap is proposed. As applications, we design (1) a momentum invisibility cloak to control the distribution of a wave function in momentum space, (2) a quantum localization cloak that localizes a matter wave around zero momentum, and (3) the unusual quantum states of momentum space. Comprehension of these momentum cloaks in position space through the Fourier transformation is presented. In contrast to the construct of quantum cloaks in position space, the momentum cloaks presented here can only be reached by controlling the spring parameter of the trap and offering a potential there, without needing to control the effective mass of quantum particles themselves. The presented discussions also provide a possible inspiration to help localize and maintain a quantum state in momentum space by way of controlling the shape of a trap and a supplied potential.

  2. Role of input angular momentum and target deformation on the incomplete-fusion dynamics in the 16O+154Sm system at ELab=6.1 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Ansari, M. Afzal; Sathik, N. P. M.; Ali, Rahbar; Kumar, R.; Muralithar, S.; Singh, R. P.

    2018-06-01

    Spin distributions of nine evaporation residues 164Yb(x n ) , 163Tm(p x n ) , Er,167168(2 p x n ) , Ho-161163(α p x n ) , 164Dy(α 2 p x n ) , and 160Dy(2 α x n ) produced through complete- and incomplete-fusion reactions have been measured in the system 16O+154Sm at projectile energy =6.1 MeV /nucleon using the in-beam charged-particle (Z =1 ,2 )-γ-ray coincidence technique. The results indicate the occurrence of incomplete fusion involving the breakup of 16O into 4He+12C and/or 8Be+8Be followed by fusion of one of the fragments with target nucleus 154Sm. The pattern of measured spin distributions of the evaporation residues produced through complete and incomplete fusion are found to be entirely different from each other. It has been observed from these present results that the mean input angular momentum for the evaporation residues produced through complete fusion is relatively lower than that of evaporation residues produced through incomplete-fusion reactions. The pattern of feeding intensity of evaporation residues populated through complete- and incomplete-fusion reactions has also been studied. The evaporation residues populated through complete-fusion channels are strongly fed over a broad spin range and widely populated, while evaporation residues populated through incomplete-fusion reactions are found to have narrow range feeding only for high spin states. Comparison of present results with earlier data suggests that the value of mean input angular momentum is relatively higher for a deformed target and more mass asymmetric system than that of a spherical target and less mass asymmetric system by using the same projectile and the same energy. Thus, present results indicate that the incomplete-fusion reactions not only depend on the mass asymmetry of the system, but also depend on the deformation of the target.

  3. M$^3$: A New Muon Missing Momentum Experiment to Probe $$(g-2)_{\\mu}$$ and Dark Matter at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, Yonatan; Krnjaic, Gordan; Tran, Nhan

    New light, weakly-coupled particles are commonly invoked to address the persistentmore » $$\\sim 4\\sigma$$ anomaly in $$(g-2)_\\mu$$ and serve as mediators between dark and visible matter. If such particles couple predominantly to heavier generations and decay invisibly, much of their best-motivated parameter space is inaccessible with existing experimental techniques. In this paper, we present a new fixed-target, missing-momentum search strategy to probe invisibly decaying particles that couple preferentially to muons. In our setup, a relativistic muon beam impinges on a thick active target. The signal consists of events in which a muon loses a large fraction of its incident momentum inside the target without initiating any detectable electromagnetic or hadronic activity in downstream veto systems. We propose a two-phase experiment, M$^3$ (Muon Missing Momentum), based at Fermilab. Phase 1 with $$\\sim 10^{10}$$ muons on target can test the remaining parameter space for which light invisibly-decaying particles can resolve the $$(g-2)_\\mu$$ anomaly, while Phase 2 with $$\\sim 10^{13}$$ muons on target can test much of the predictive parameter space over which sub-GeV dark matter achieves freeze-out via muon-philic forces, including gauged $$U(1)_{L_\\mu - L_\\tau}$$.« less

  4. A predictive theory for elastic scattering and recoil of protons from 4He

    DOE PAGES

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles ofmore » either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.« less

  5. Incorporation of a Variable Discharge Coefficient for the Primary Orifice into the Benet Labs Recoil Analysis Model via Results from Quasi-Steady State Simulations Using Computational Fluid Dynamics

    DTIC Science & Technology

    2008-03-01

    Appendix 82 MatLab© Cd Calculator Routine FORTRAN© Subroutine of the Variable Cd Model ii ABBREVIATIONS & ACRONYMS Cd...Figure 29. Overview Flowchart of Benét Labs Recoil Analysis Code Figure 30. Overview Flowchart of Recoil Brake Subroutine Figure 31...Detail Flowchart of Recoil Pressure/Force Calculations Figure 32. Detail Flowchart of Variable Cd Subroutine Figure 33. Simulated Brake

  6. Angular momentum of dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  7. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  8. Electromagnetic momentum and the energy–momentum tensor in a linear medium with magnetic and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crenshaw, Michael E., E-mail: michael.e.crenshaw4.civ@mail.mil

    2014-04-15

    In a continuum setting, the energy–momentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energy–momentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derivemore » electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energy–momentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the Abraham–Minkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energy–momentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.« less

  9. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    NASA Astrophysics Data System (ADS)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  10. Nucleon Momentum and Spin Decompositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Y. M.

    We construct a gauge invariant canonical momentum operator which satisfies the canonical commutation relation to resolve the old controversy on the canonical versus kinematic momentum of a charged particle in gauge theories. With this we show how to obtain the gauge independent momentum and spin decompositions of composite particles to those of the constituents in QED and QCD, which has been thought to be impossible. Moerover, we show that there are two logically acceptable nucleom momentum and spin decompositions, depending on which gluons we identify as the constituent of nucleons.

  11. Muscle Contributions to Frontal Plane Angular Momentum during Walking

    PubMed Central

    Neptune, Richard R.; McGowan, Craig P.

    2016-01-01

    The regulation of whole-body angular momentum is important for maintaining dynamic balance during human walking, which is particularly challenging in the frontal plane. Whole-body angular momentum is actively regulated by individual muscle forces. Thus, understanding which muscles contribute to frontal plane angular momentum will further our understanding of mediolateral balance control and has the potential to help diagnose and treat balance disorders. The purpose of this study was to identify how individual muscles and gravity contribute to whole-body angular momentum in the frontal plane using a muscle-actuated forward dynamics simulation analysis. A three-dimensional simulation was developed that emulated the average walking mechanics of a group of young healthy adults (n=10). The results showed that a finite set of muscles are the primary contributors to frontal plane balance and that these contributions vary throughout the gait cycle. In early stance, the vasti, adductor magnus and gravity acted to rotate the body towards the contralateral leg while the gluteus medius acted to rotate the body towards the ipsilateral leg. In late stance, the gluteus medius continued to rotate the body towards the ipsilateral leg while the soleus and gastrocnemius acted to rotate the body towards the contralateral leg. These results highlight those muscles that are critical to maintaining dynamic balance in the frontal plane during walking and may provide targets for locomotor therapies aimed at treating balance disorders. PMID:27522538

  12. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Lee, J. H.; Lee, M. H.; Leonard, D. S.; Li, J.; Oh, S. Y.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, K. S.; Shim, J. H.; So, J. H.

    2015-08-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  13. Automatic detection of recoil-proton tracks and background rejection criteria in liquid scintillator-micro-capillary-array fast neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Mor, Ilan; Vartsky, David; Dangendorf, Volker; Tittelmeier, Kai.; Weierganz, Mathias; Goldberg, Mark Benjamin; Bar, Doron; Brandis, Michal

    2018-06-01

    We describe an analysis procedure for automatic unambiguous detection of fast-neutron-induced recoil proton tracks in a micro-capillary array filled with organic liquid scintillator. The detector is viewed by an intensified CCD camera. This imaging neutron detector possesses the capability to perform high position-resolution (few tens of μm), energy-dispersive transmission-imaging using ns-pulsed beams. However, when operated with CW or DC beams, it also features medium-quality spectroscopic capabilities for incident neutrons in the energy range 2-20 MeV. In addition to the recoil proton events which display a continuous extended track structure, the raw images exhibit complex ion-tracks from nuclear interactions of fast-neutrons in the scintillator, capillaries quartz-matrix and CCD. Moreover, as expected, one also observes a multitude of isolated scintillation spots of varying intensity (henceforth denoted "blobs") that originate from several different sources, such as: fragmented proton tracks, gamma-rays, heavy-ion reactions as well as events and noise that occur in the image-intensifier and CCD. In order to identify the continuous-track recoil proton events and distinguish them from all these background events, a rapid, computerized and automatic track-recognition-procedure was developed. Based on an appropriately weighted analysis of track parameters such as: length, width, area and overall light intensity, the method is capable of distinguishing a single continuous-track recoil proton from typically surrounding several thousands of background events that are found in each CCD frame.

  14. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    PubMed

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method.

  15. Electron emission and recoil effects following the beta decay of He6

    NASA Astrophysics Data System (ADS)

    Schulhoff, Eva E.; Drake, G. W. F.

    2015-11-01

    Probabilities for atomic electron excitation (shake-up) and ionization (shake-off) are studied following the beta-decay process →Li+6He6+e-+ν¯e , and in particular, recoil-induced contributions to the shake-off probability are calculated within the nonrelativistic sudden approximation. A pseudostate expansion method together with Stieltjes imaging is used to represent the complete two-electron spectrum of final Li+6 ,Li26+, and Li36+ states. Results for the recoil correction show a 7 σ disagreement with the experiment of Carlson et al. [Phys. Rev. 129, 2220 (1963), 10.1103/PhysRev.129.2220]. A variety of sum rules, including a newly derived Thomas-Reich-Kuhn oscillator strength sum rule for dipole recoil terms, provides tight constraints on the accuracy of the results. Calculations are performed for the helium 1 s 2 s 3S metastable state, as well as for the 1 s21S ground state. Our results would reduce the recoil-induced correction to the measured electroneutrino coupling constant ae μ from the apparent 0.6% used in the experiments to 0.09%.

  16. Momentum Flux Determination Using the Multi-beam Poker Flat Incoherent Scatter Radar

    NASA Technical Reports Server (NTRS)

    Nicolls, M. J.; Fritts, D. C.; Janches, Diego; Heinselman, C. J.

    2012-01-01

    In this paper, we develop an estimator for the vertical flux of horizontal momentum with arbitrary beam pointing, applicable to the case of arbitrary but fixed beam pointing with systems such as the Poker Flat Incoherent Scatter Radar (PFISR). This method uses information from all available beams to resolve the variances of the wind field in addition to the vertical flux of both meridional and zonal momentum, targeted for high-frequency wave motions. The estimator utilises the full covariance of the distributed measurements, which provides a significant reduction in errors over the direct extension of previously developed techniques and allows for the calculation of an error covariance matrix of the estimated quantities. We find that for the PFISR experiment, we can construct an unbiased and robust estimator of the momentum flux if sufficient and proper beam orientations are chosen, which can in the future be optimized for the expected frequency distribution of momentum-containing scales. However, there is a potential trade-off between biases and standard errors introduced with the new approach, which must be taken into account when assessing the momentum fluxes. We apply the estimator to PFISR measurements on 23 April 2008 and 21 December 2007, from 60-85 km altitude, and show expected results as compared to mean winds and in relation to the measured vertical velocity variances.

  17. Coulomb wave functions in momentum space

    DOE PAGES

    Eremenko, V.; Upadhyay, N. J.; Thompson, I. J.; ...

    2015-10-15

    We present an algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space. The arguments are the Sommerfeld parameter η, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p → q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical barmore » in the range of 10 -1 to 10, and thus is particularly suited for momentum space calculations of nuclear reactions.« less

  18. RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.

    PubMed

    Zhang, Chao; Chen, Dong; Jiang, Xuefeng

    2017-11-13

    An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.

  19. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    NASA Astrophysics Data System (ADS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Zhang, Y.

    2017-04-01

    Low-energy recoil events in MgO are studied using ab intio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, Ed, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for Ed are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. There is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  20. DEVELOPMENT OF A HIGH-EFFICIENCY PROTON RECOIL TELESCOPE FOR D-T NEUTRON FLUENCE MEASUREMENT.

    PubMed

    Tanimura, Y; Yoshizawa, M

    2017-12-22

    A high-efficiency proton recoil telescope was developed to determine neutron fluences in neutron fields using the 3H(d,n)4He reaction. A 2-mm thick plastic scintillation detector was employed as a radiator to increase the detection efficiency and compensate for the energy loss of the recoil proton within. Two silicon detectors were employed as the ΔE and E detectors. The distance between the radiator and the E detector was varied between 50 and 150 mm. The telescope had detection efficiencies of 3.5 × 10-3 and 7.1 × 10-4 cm2 for distances of 50 and 100 mm, respectively, which were high enough to determine the neutron fluence in 14.8-MeV neutron fields, with a few thousand cm-2 s-1 fluence rate, within a few hours. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Shoulder-Fired Weapons with High Recoil Energy: Quantifying Injury and Shooting Performance

    DTIC Science & Technology

    2004-05-01

    USARIEM TECHNICAL REPORT T04-05 SHOULDER-FIRED WEAPONS WITH HIGH RECOIL ENERGY: QUANTIFYING INJURY AND SHOOTING PERFORMANCE...ACKNOWLEDGMENTS The authors would like to thank the following individuals for their assistance in preparing this technical report: Robert Mello... myofascial and other musculoskeletal pain is considered abnormal if the anatomical site is 2 kg/cm2 lower relative to a normal control point, such as

  2. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    NASA Astrophysics Data System (ADS)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  3. The Darkside-50 Experiment: Electron Recoil Calibrations and a Global Energy Variable

    NASA Astrophysics Data System (ADS)

    Hackett, Brianne R.

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds is done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introducing radioactive sources into or near the detector in a joint effort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in multiple calibration campaigns with both neutron and gamma sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of gamma calibration sources by constructing a global energy variable which takes into account the anti-correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted beta decay spectrum of 39Ar against 39Ar beta decay data collected in the early days of DarkSide-50 while it was filled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can

  4. A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Civano, F.; Elvis, M.; Lanzuisi, G.

    2010-07-01

    We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0.''495 {+-} 0.''005 that, at the redshift of the source, corresponds to a projected separation of 2.46 {+-} 0.02 kpc. A large ({approx}1200 km s{sup -1}) velocity offset between the narrow and broad components of H{beta} has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also themore » only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by {Delta}E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs.« less

  5. On Angular Momentum

    DOE R&D Accomplishments Database

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  6. Recoil distance lifetime measurements in82Kr

    NASA Astrophysics Data System (ADS)

    Brüssermann, S.; Keinonen, J.; Hellmeister, H. P.; Lieb, K. P.

    1982-12-01

    The lifetimes τ=124±12, 6{-2/+4} and 380±100 ps of the E x ( I π )=3.46(8+), 2.92(6+) and 3.04(6-) MeV states, respectively, populated by the reaction76Ge(12C, α2 n) were measured with the recoil distance method. In addition upper lifetime limits were obtained for nine states. The measured lifetimes and energies indicate a band crossing at about I π =8+, probably arising from the alignment of two g 9/2 neutrons. For the 3.04 MeV 6- state as a second member of a band built on the 2.65 MeV 4- state the measured lifetime points to a two-quasiparticle configuration. The positive-parity states have been discussed in the frame of the interacting boson approximation, nuclear field theory and the cranked shell model.

  7. Recoil-free Fraction in Amorphous and Nanocrystalline Aluminium Based Alloys

    NASA Astrophysics Data System (ADS)

    Sitek, Jozef

    2008-10-01

    Aluminium based rapidly quenched alloys of nominal composition Al90Fe7Nb3 and Al94Fe2V4 were studied by Mössbauer spectroscopy. We have measured the recoil-free fraction and thermal shift at room and liquid nitrogen temperature. The frequency modes of atomic vibrations were determined and consequently the characteristic Debye temperature was derived. Characteristic temperature calculated from f-factor was lower than those fitted from second order Doppler shift. This indicates the presence of different frequency modes for amorphous and nanocrystalline states.

  8. Charge form factor of the neutron at low momentum transfer from the 2H-->(e-->,e'n)1H reaction.

    PubMed

    Geis, E; Kohl, M; Ziskin, V; Akdogan, T; Arenhövel, H; Alarcon, R; Bertozzi, W; Booth, E; Botto, T; Calarco, J; Clasie, B; Crawford, C B; DeGrush, A; Donnelly, T W; Dow, K; Farkhondeh, M; Fatemi, R; Filoti, O; Franklin, W; Gao, H; Gilad, S; Hasell, D; Karpius, P; Kolster, H; Lee, T; Maschinot, A; Matthews, J; McIlhany, K; Meitanis, N; Milner, R G; Rapaport, J; Redwine, R P; Seely, J; Shinozaki, A; Sirca, S; Sindile, A; Six, E; Smith, T; Steadman, M; Tonguc, B; Tschalaer, C; Tsentalovich, E; Turchinetz, W; Xiao, Y; Xu, W; Zhang, C; Zhou, Z; Zwart, T

    2008-07-25

    We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio GEn/GMn was extracted from the beam-target vector asymmetry AedV at four-momentum transfers Q2=0.14, 0.20, 0.29, and 0.42 (GeV/c)2.

  9. surrkick: Black-hole kicks from numerical-relativity surrogate models

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Hébert, François; Stein, Leo C.

    2018-04-01

    surrkick quickly and reliably extract recoils imparted to generic, precessing, black hole binaries. It uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters, and from this waveform directly integrates the gravitational-wave linear momentum flux. This entirely bypasses the need of fitting formulae which are typically used to model black-hole recoils in astrophysical contexts.

  10. Recoil Polarization for Δ Excitation in Pion Electroproduction

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.; Roché, R. E.; Chai, Z.; Jones, M. K.; Gayou, O.; Sarty, A. J.; Frullani, S.; Aniol, K.; Beise, E. J.; Benmokhtar, F.; Bertozzi, W.; Boeglin, W. U.; Botto, T.; Brash, E. J.; Breuer, H.; Brown, E.; Burtin, E.; Calarco, J. R.; Cavata, C.; Chang, C. C.; Chant, N. S.; Chen, J.-P.; Coman, M.; Crovelli, D.; de Leo, R.; Dieterich, S.; Escoffier, S.; Fissum, K. G.; Garde, V.; Garibaldi, F.; Georgakopoulus, S.; Gilad, S.; Gilman, R.; Glashausser, C.; Hansen, J.-O.; Higinbotham, D. W.; Hotta, A.; Huber, G. M.; Ibrahim, H.; Iodice, M.; de Jager, C. W.; Jiang, X.; Klimenko, A.; Kozlov, A.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissière, G.; Lerose, J. J.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; McAleer, S.; Meekins, D.; Michaels, R.; Milbrath, B. D.; Mitchell, J.; Nappa, J.; Neyret, D.; Perdrisat, C. F.; Potokar, M.; Punjabi, V. A.; Pussieux, T.; Ransome, R. D.; Roos, P. G.; Rvachev, M.; Saha, A.; Širca, S.; Suleiman, R.; Strauch, S.; Templon, J. A.; Todor, L.; Ulmer, P. E.; Urciuoli, G. M.; Weinstein, L. B.; Wijesooriya, K.; Wojtsekhowski, B.; Zheng, X.; Zhu, L.

    2005-08-01

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q2=1.0 (GeV/c)2, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re (S1+/M1+)=-(6.84±0.15)% and Re (E1+/M1+)=-(2.91±0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and ℓπ≤1 truncation.

  11. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yosuke; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for 72Ge, 75As, 89Y, and 109Ag in the ENDF/B-VII.1 library, and for 90Zr and 55Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  12. Electron scattering from high-momentum neutrons in deuterium

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Kuhn, S. E.; Butuceanu, C.; Egiyan, K. S.; Griffioen, K. A.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Cummings, J. P.; Dashyan, N. B.; Devita, R.; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Fersch, R. G.; Feuerbach, R. J.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.

    2006-03-01

    We report results from an experiment measuring the semiinclusive reaction H2(e,e'ps) in which the proton ps is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p→s, and momentum transfer Q2. The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a “bound neutron structure function” F2neff was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For ps>0.4GeV/c, where the neutron is far off-shell, the model overestimates the value of F2neff in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's “off-shell-ness” is one possible effect that can cause the observed deviation.

  13. Rindler fluid with weak momentum relaxation

    NASA Astrophysics Data System (ADS)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong; Zhang, Yun-Long

    2018-01-01

    We realize the weak momentum relaxation in Rindler fluid, which lives on the time-like cutoff surface in an accelerating frame of flat spacetime. The translational invariance is broken by massless scalar fields with weak strength. Both of the Ward identity and the momentum relaxation rate of Rindler fluid are obtained, with higher order correction in terms of the strength of momentum relaxation. The Rindler fluid with momentum relaxation could also be approached through the near horizon limit of cutoff AdS fluid with momentum relaxation, which lives on a finite time-like cutoff surface in Anti-de Sitter(AdS) spacetime, and further could be connected with the holographic conformal fluid living on AdS boundary at infinity. Thus, in the holographic Wilson renormalization group flow of the fluid/gravity correspondence with momentum relaxation, the Rindler fluid can be considered as the Infrared Radiation(IR) fixed point, and the holographic conformal fluid plays the role of the ultraviolet(UV) fixed point.

  14. Electromagnetic energy momentum in dispersive media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philbin, T. G.

    2011-01-15

    The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields aremore » monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.« less

  15. Introducing Conservation of Momentum

    ERIC Educational Resources Information Center

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  16. Detecting neutrons by forward recoil protons at the Energy & Transmutation facility: Detector development and calibration with 14.1-MeV neutrons

    NASA Astrophysics Data System (ADS)

    Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.

    2017-05-01

    As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.

  17. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    DOE PAGES

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; ...

    2016-08-02

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording.more » Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.« less

  18. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording.more » Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.« less

  19. Analysis techniques for momentum transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S.D.

    1991-08-01

    This report discusses the following topics on momentum analysis in tokamaks and stellarators: the momentum balance equation; deposition of torque by neutral beams; effects of toroidal rotation; and experimental observations. (LSP)

  20. Theory of ionizing neutrino-atom collisions: The role of atomic recoil

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-04-01

    We consider theoretically ionization of an atom by neutrino impact taking into account electromagnetic interactions predicted for massive neutrinos by theories beyond the Standard Model. The effects of atomic recoil in this process are estimated using the one-electron and semiclassical approximations and are found to be unimportant unless the energy transfer is very close to the ionization threshold. We show that the energy scale where these effects become important is insignificant for current experiments searching for magnetic moments of reactor antineutrinos.

  1. Unveiling Angular Momentum

    NASA Astrophysics Data System (ADS)

    Robinson, Stephen

    2015-03-01

    Angular momentum is a notoriously difficult concept to grasp. Visualization often requires three-dimensional pictures of vectors pointing in seemingly arbitrary directions. A simple student-run laboratory experiment coupled with intuitive explanations by an instructor can clear up some of the inherent ambiguity of rotational motion. Specifically, the precessional period of a suspended spinning bicycle wheel can be related to the spinning frequency through a simple algebraic expression. An explanation of this precession apart from the concept of angular momentum will be given.

  2. Neutron transfer in the C 13 + Au 197 reaction from gold isotope residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daub, B. H.; Bleuel, D. L.; Wiedeking, M.

    Residual gold nuclei were produced in this paper via neutron transfer at multiple energies using a 130-MeV 13C beam incident on a stacked-foil target consisting of alternating layers of 197Au and 27Al. Production cross sections, over an energy range of 56 to 129 MeV, for seven gold isotopes and two gold isomers were determined through activation analysis. By using the Wilczynski binary transfer model with a modified version of the recoil formula and a standard evaporation model, we were able to reproduce the isotopic production cross sections at high beam energy, with some disagreement at lower beam energies. Finally, thismore » limiting angular momentum model does not predict the transfer of sufficient angular momentum to reproduce the observed isomeric populations.« less

  3. Neutron transfer in the C 13 + Au 197 reaction from gold isotope residuals

    DOE PAGES

    Daub, B. H.; Bleuel, D. L.; Wiedeking, M.; ...

    2017-08-01

    Residual gold nuclei were produced in this paper via neutron transfer at multiple energies using a 130-MeV 13C beam incident on a stacked-foil target consisting of alternating layers of 197Au and 27Al. Production cross sections, over an energy range of 56 to 129 MeV, for seven gold isotopes and two gold isomers were determined through activation analysis. By using the Wilczynski binary transfer model with a modified version of the recoil formula and a standard evaporation model, we were able to reproduce the isotopic production cross sections at high beam energy, with some disagreement at lower beam energies. Finally, thismore » limiting angular momentum model does not predict the transfer of sufficient angular momentum to reproduce the observed isomeric populations.« less

  4. The importance of momentum transfer in collision-induced breakups in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Lillie, Brian J.

    1991-01-01

    Although there is adequate information on larger objects in low Earth orbit, specifically those objects larger than about 10 cm in diameter, there is little direct information on objects from this size down to 1 mm. Yet, this is the sized regime where objects acting as projectiles represent the ability to seriously damage or destroy a functioning spacecraft if they collide with it. The observed consequences of known collisional breakups in orbit indicates no significant momentum transfer in the resulting debris cloud. The position taken in this paper is that this is an observational selection effect: what is seen in these events is an explosion-like breakup of the target structure arising from shock waves introduced into the structure by the collision, but one that occurs significantly after the collision processes are completed; the collision cloud, in which there is momentum transfer, consists of small, unobserved fragments. Preliminary computations of the contribution of one known collisional breakup, Solwind at 500 km in 1985, and Cosmos 1275 in 1981, assume no momentum transfer on breakup and indicate that these two events are the dominant contributors to the current millimeter and centimeter population. A different story would emerge if momentum transfer was taken into account. The topics covered include: (1) observation of on-orbit collisional breakups; (2) a model for momentum transfer; and (3) velocity space representation of breakup clouds.

  5. Physical angular momentum separation for QED

    NASA Astrophysics Data System (ADS)

    Sun, Weimin

    2017-04-01

    We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various gauge-invariant extensions (GIEs). Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.

  6. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  7. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    DOE PAGES

    Petersen, B. A.; Liu, B.; Weber, W. J.; ...

    2017-01-11

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, E d, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for E d are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eVmore » for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.« less

  8. A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Morgan, R. G.

    2016-11-01

    This paper describes a new device to decouple free-piston driver recoil and its associated mechanical vibration from the acceleration tube and test section of The University of Queensland's X3 expansion tube. A sliding joint is introduced to the acceleration tube which axially decouples the facility at this station. When the facility is fired, the upstream section of the facility, which includes the free-piston driver, can recoil upstream freely. The downstream acceleration tube remains stationary. This arrangement provides two important benefits. Firstly, it eliminates nozzle movement relative to the test section before and during the experiment. This has benefits in terms of experimental setup and alignment. Secondly, it prevents transmission of mechanical disturbances from the free-piston driver to the acceleration tube, thereby eliminating mechanically-induced transducer noise in the sensitive pressure transducers installed in this low-pressure tube. This paper details the new design, and presents experimental confirmation of its performance.

  9. Temperature Dependence and Recoil-free Fraction Effects in Olivines Across the Mg-Fe Solid Solution

    NASA Technical Reports Server (NTRS)

    Sklute, E. C.; Rothstein, Y.; Dyar, M. D.; Schaefer, M. W.; Menzies, O. N.; Bland, P. A.; Berry, F. J.

    2005-01-01

    Olivine and pyroxene are the major ferromagnesian minerals in most meteorite types and in mafic igneous rocks that are dominant at the surface of the Earth. It is probable that they are the major mineralogical components at the surface of any planetary body that has undergone differentiation processes. In situ mineralogical studies of the rocks and soils on Mars suggest that olivine is a widespread mineral on that planet s surface (particularly at the Gusev site) and that it has been relatively unaffected by alteration. Thus an understanding of the characteristics of Mossbauer spectra of olivine is of great importance in interpreting MER results. However, variable temperature Mossbauer spectra of olivine, which are needed to quantify recoil-free fraction effects and to understand the temperature dependence of olivine spectra, are lacking in the literature. Thus, we present here a study of the temperature dependence and recoil-free fraction of a series of synthetic olivines.

  10. A recoil-proton spectrometer based on a p-i-n diode implementing pulse-shape discrimination.

    PubMed

    Agosteo, S; D'Angelo, G; Fazzi, A; Foglio Para, A; Pola, A; Ventura, L; Zotto, P

    2004-01-01

    A recoil-proton spectrometer was created by coupling a p-i-n diode with a polyethylene converter. The maximum detectable energy, imposed by the thickness of the totally depleted layer, is approximately 6 MeV. The minimum detectable energy is limited by the contribution of secondary electrons generated by photons in the detector assembly. This limit is approximately 1.5 MeV at full-depletion voltage and was decreased using pulse-shape discrimination. The diode was set up in the 'reverse-injection' configuration (i.e. with the N+ layer adjacent to the converter). This configuration provides longer collection times for the electron-hole pairs generated by the recoil-protons. The pulse-shape discrimination was based on the zero-crossing time of bipolar signals from a (CR)2-(RC)2 filter. The detector was characterised using monoenergetic neutrons generated in the Van De Graaff CN accelerator at the INFN-Laboratori Nazionali di Legnaro. The energy limit for discrimination proved to be approximately 900 keV.

  11. Development and evaluation of a collection apparatus for recoil products for study of the deexcitation process of (235m)U.

    PubMed

    Shigekawa, Y; Kasamatsu, Y; Shinohara, A

    2016-05-01

    The nucleus (235m)U is an isomer with extremely low excitation energy (76.8 eV) and decays dominantly through the internal conversion (IC) process. Because outer-shell electrons are involved in the IC process, the decay constant of (235m)U depends on its chemical environment. We plan to study the deexcitation process of (235m)U by measuring the energy spectra of IC electrons in addition to the decay constants for various chemical forms. In this paper, the preparation method of (235m)U samples from (239)Pu by using alpha-recoil energy is reported. A Collection Apparatus for Recoil Products was fabricated, and then collection efficiencies under various conditions were determined by collecting (224)Ra recoiling out of (228)Th electrodeposited and precipitated sources. The pressure in the apparatus (vacuum or 1 atm of N2 gas) affected the variations of the collection efficiencies depending on the negative voltage applied to the collector. The maximum values of the collection efficiencies were mainly affected by the thickness of the (228)Th sources. From these results, the suitable conditions of the (239)Pu sources for preparation of (235m)U were determined. In addition, dissolution efficiencies were determined by washing collected (224)Ra with solutions. When (224)Ra was collected in 1 atm of N2 gas and dissolved with polar solutions such as water, the dissolution efficiencies were nearly 100%. The method of rapid dissolution of recoil products would be applicable to rapid preparation of short-lived (235m)U samples for various chemical forms.

  12. Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Xenon Collaboration

    2017-03-01

    We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 43 1-14+16 day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9 σ ; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8 σ , from a previous analysis of a subset of this data, to 1.8 σ with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7 σ .

  13. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    DOE PAGES

    Amaudruz, P. -A.; Batygov, M.; Beltran, B.; ...

    2016-09-17

    The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keV ee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are misidentified as nuclear recoils to be less than 6 x 10 -8 between 43-86 keV ee and that the discrimination parametermore » agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta misidentification fraction of 10 -10 for an electron-equivalent energy threshold of 20 keV ee. This reduction allows for a sensitive search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10 -46 cm 2.« less

  14. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaudruz, P. -A.; Batygov, M.; Beltran, B.

    The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keV ee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are misidentified as nuclear recoils to be less than 6 x 10 -8 between 43-86 keV ee and that the discrimination parametermore » agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta misidentification fraction of 10 -10 for an electron-equivalent energy threshold of 20 keV ee. This reduction allows for a sensitive search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10 -46 cm 2.« less

  15. Momentum harvesting techniques for solar system travel

    NASA Technical Reports Server (NTRS)

    Willoughby, Alan J.

    1991-01-01

    Astronomers are lately estimating there are 400,000 earth visiting asteroids larger than 100 meters in diameter. These asteroids are uniquely accessible sources of building materials, propellants, oxygen, water, and minerals. They also constitute a huge momentum reserve, potentially usable for travel throughout the solar system. To use this momentum, these stealthy objects must be tracked and the ability to extract the desired momentum obtained. Momentum harvesting by momentum transfer from asteroid to spacecraft, and by using the momentum of the extraterrestrial material to help deliver itself to its destination is discussed. The purpose is neither to quantify nor justify the momentum exchange processes, but to stimulate collective imaginations with some intriguing possibilities which emerge when momentum as well as material is considered. A net and tether concept is the suggested means of asteroid capture, the basic momentum exchange process. The energy damping characteristics of the tether determines the velocity mismatch that can be tolerated, and hence the amount of momentum that can be harvested per capture. As the tether plays out of its reel, drag on the tether steadily accelerates the spacecraft and dilutes, in time, the would-be collision. A variety of concepts for riding and using asteroids after capture are introduced. The hitchhiker uses momentum transfer only. The beachcomber, the caveman, the swinger, the prospector, and the rock wrecker also take advantage of raw asteroid materials. The chemist and the hijacker go further, they process the asteroid into propellants. Or, an asteroid railway system could be constructed with each hijacked asteroid becoming a scheduled train. Travelers could board this space railway system assured that water, oxygen propellants, and shielding await them. Austere space travel could give way to comforts, with a speed and economy impossible without nature's gift of earth visiting asteroids.

  16. The DarkSide-50 Experiment: Electron Recoil Calibrations and A Global Energy Variable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, Brianne Rae

    2017-01-01

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds ismore » done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introduc- ing radioactive sources into or near the detector in a joint eort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in mul- tiple calibration campaigns with both neutron and sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of calibration sources by constructing a global energy variable which takes into account the anti- correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted decay spectrum of 39Ar against 39Ar decay data collected in the early days of DarkSide-50 while it was lled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict energy

  17. Development of phonon-mediated cryogenic particle detectors with electron and nuclear recoil discrimination

    NASA Astrophysics Data System (ADS)

    Nam, Sae Woo

    1999-10-01

    Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and

  18. Behavioral Momentum Theory Fails to Account for the Effects of Reinforcement Rate on Resurgence

    PubMed Central

    Craig, Andrew R.; Shahan, Timothy A.

    2017-01-01

    The behavioral-momentum model of resurgence predicts reinforcer rates within a resurgence preparation should have three effects on target behavior. First, higher reinforcer rates in baseline (Phase 1) produce more persistent target behavior during extinction plus alternative reinforcement. Second, higher rate alternative reinforcement during Phase 2 generates greater disruption of target responding during extinction. Finally, higher rates of either reinforcement source should produce greater responding when alternative reinforcement is suspended in Phase 3. Recent empirical reports have produced mixed results in terms of these predictions. Thus, the present experiment further examined reinforcer-rate effects on persistence and resurgence. Rats pressed target levers for high-rate or low-rate variable-interval food during Phase 1. In Phase 2, target-lever pressing was extinguished, an alternative nose-poke became available, and nose-poking produced either high-rate variable-interval, low-rate variable-interval, or no (an extinction control) alternative reinforcement. Alternative reinforcement was suspended in Phase 3. For groups that received no alternative reinforcement, target-lever pressing was less persistent following high-rate than low-rate Phase-1 reinforcement. Target behavior was more persistent with low-rate alternative reinforcement than with high-rate alternative reinforcement or extinction alone. Finally, no differences in Phase-3 responding were observed for groups that received either high-rate or low-rate alternative reinforcement, and resurgence occurred only following high-rate alternative reinforcement. These findings are inconsistent with the momentum-based model of resurgence. We conclude this model mischaracterizes the effects of rein-forcer rates on persistence and resurgence of operant behavior. PMID:27193242

  19. Universal spin-momentum locked optical forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalhor, Farid; Thundat, Thomas; Jacob, Zubin, E-mail: zjacob@purdue.edu

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reportedmore » phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.« less

  20. First identification of excited states in Ba 117 using the recoil- β -delayed proton tagging technique

    DOE PAGES

    Ding, B.; Liu, Z.; Seweryniak, D.; ...

    2017-02-01

    Excited states have been observed for the first time in the neutron-deficient nucleus 117Ba using the recoil-decay tagging technique following the heavy-ion fusion-evaporation reaction 64Zn( 58Ni, 2p3n) 117Ba. Prompt γ rays have been assigned to 117Ba through correlations with β-delayed protons following the decay of A = 117 recoils. Through the analysis of the γ–γ coincidence relationships, a high-spin level scheme consisting of two bands has been established in 117Ba. Based on the systematics of the level spacings in the neighboring barium isotopes, the two bands are proposed to have νh 11/2[532]5/2 – and νd 5/2[413]5/2 + configurations, respectively. Lastly,more » the observed band-crossing properties are interpreted in the framework of cranked shell model.« less

  1. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  2. What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.

    2016-01-01

    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility.

  3. Population momentum across vertebrate life histories

    USGS Publications Warehouse

    Koons, D.N.; Grand, J.B.; Arnold, J.M.

    2006-01-01

    Population abundance is critically important in conservation, management, and demographic theory. Thus, to better understand how perturbations to the life history affect long-term population size, we examined population momentum for four vertebrate classes with different life history strategies. In a series of demographic experiments we show that population momentum generally has a larger effect on long-term population size for organisms with long generation times than for organisms with short generation times. However, patterns between population momentum and generation time varied across taxonomic groups and according to the life history parameter that was changed. Our findings indicate that momentum may be an especially important aspect of population dynamics for long-lived vertebrates, and deserves greater attention in life history studies. Further, we discuss the importance of population momentum in natural resource management, pest control, and conservation arenas. ?? 2006 Elsevier B.V. All rights reserved.

  4. Momentum harvesting techniques for solar system travel

    NASA Technical Reports Server (NTRS)

    Willoughby, Alan J.

    1990-01-01

    Astronomers are lately estimating there are 400,000 Earth visiting asteroids larger than 100 meters in diameter. These asteroids are accessible sources of building materials, propellants, oxygen, water, and minerals which also constitute a huge momentum reserve, potentially usable for travel throughout the solar system. To use this momentum, these stealthy objects must be tracked and the extraction of the momentum wanted must be learned. Momentum harvesting by momentum transfer from asteroid to spacecraft, and by using the momentum of the extraterrestrial material to help deliver itself to the destination are discussed. A net and tether concept is the suggested means of asteroid capture, the basic momentum exchange process. The energy damping characteristics of the tether will determine the velocity mismatch that can be tolerated, and hence the amount of momentum that can be harvested per capture. As it plays out of its reel, drag on the tether steadily accelerates the spacecraft. A variety of concepts for riding and using the asteroid after capture are discussed. The hitchhiker uses momentum transfer only. The beachcomber, the caveman, the swinger, the prospector, and the rock wrecker also take advantage of raw asteroidal materials. The chemist and the hijacker go further, they process the asteroid into propellant. Or, an 'asteroid railway system' could evolve with each hijacked asteroid becoming a scheduled train. Travelers could board the space railway system assured that water, oxygen, and propellants await them.

  5. Electron-deuteron DIS with spectator tagging at EIC: Development of theoretical framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosyn, Wim B.; Guzey, Vadim A.; Sargsian, Misak M.

    2016-03-01

    An Electron-Ion Collider (EIC) would enable next-generation measurements of deep-inelastic scattering (DIS) on the deuteron with detection of a forward-moving nucleon (p, n) and measurement of its recoil momentum ("spectator tagging''). Such experiments offer full control of the nuclear configuration during the high-energy process and can be used for precision studies of the neutron's partonic structure and its spin dependence, nuclear modifications of partonic structure, and nuclear shadowing at small x. We review the theoretical description of spectator tagging at EIC energies (light-front nuclear structure, on-shell extrapolation in the recoil nucleon momentum, final-state interactions, diffractive effects at small x) andmore » report about on-going developments.« less

  6. Experimental evidence of the vapor recoil mechanism in the boiling crisis.

    PubMed

    Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D

    2006-11-03

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  7. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation

    DOE PAGES

    Remo, J. L.; Lawrence, R. J.; Jacobsen, S. B.; ...

    2016-09-27

    Here, we applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate X-ray momentum coupling coefficients C M=(Pa s)/(J/m 2) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (C M) max of 50×10 –5 s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth bymore » a sufficient amount (~1 cm/s) to avert collision ~a year in advance. Comet model calculations indicate for C M = 5 × 10 –4 s/m the deflection of a 2 km comet with a density 600 kg/m 3 by 1 cm/s requires an applied energy on the target surface of 5 × 10 13 J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher.« less

  8. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energymore » measurement.« less

  9. Hidden momentum of electrons, nuclei, atoms, and molecules

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Cotter, J. P.

    2018-04-01

    We consider the positions and velocities of electrons and spinning nuclei and demonstrate that these particles harbour hidden momentum when located in an electromagnetic field. This hidden momentum is present in all atoms and molecules, however it is ultimately canceled by the momentum of the electromagnetic field. We point out that an electron vortex in an electric field might harbour a comparatively large hidden momentum and recognize the phenomenon of hidden hidden momentum.

  10. Four-dimensional positron age-momentum correlation

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther

    2016-11-01

    We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.

  11. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  12. Model-Dependent Constraint on Quark Total Angular Momentum Based on the Transverse Target-spin Asymmetry Measured in Deeply Virtual Compton Scattering at HERMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, Wolf-Dieter

    Results are reported on the transverse target-spin asymmetry (TTSA) associated with deeply virtual Compton scattering on the proton. The data have been accumulated in the years 2002-2004 by the HERMES experiment at DESY, in which the HERA 27.6 GeV e+ beam scattered on a transversely polarized hydrogen target. Two azimuthal amplitudes of the TTSA appearing to LO in 1/Q and {alpha}s, A{sub UT}{sup sin({phi}-{phi}{sub S})cos{phi}} and A{sub UT}{sup cos({phi} -{phi}{sub S})sin{phi}}, are given as a function of -t,xB,Q2 in the kinematic range |t| < 0.7 GeV2, 0.03 < xB < 0.35 and 1 < Q2 < 10 GeV2. The firstmore » amplitude is found to be sensitive to the generalized parton distribution (GPD) E of the proton, which can be parameterized in a GPD model through quark total angular momentum Jq(q = u, d). Within the context of this model, a constraint in the (Ju,Jd) plane is obtained from HERMES TTSA data.« less

  13. Particle induced nuclear reaction calculations of Boron target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Poyraz, Meltem

    2017-09-01

    Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT) is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5-50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α) reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.

  14. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2010-03-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z > 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts. This research is supported in part by NASA grant 06-BEFS06-19 to Goddard Space Flight Center.

  15. The light-front gauge-invariant energy-momentum tensor

    DOE PAGES

    Lorce, Cedric

    2015-08-11

    In this study, we provide for the first time a complete parametrization for the matrix elements of the generic asymmetric, non-local and gauge-invariant canonical energy-momentum tensor, generalizing therefore former works on the symmetric, local and gauge-invariant kinetic energy-momentum tensor also known as the Belinfante-Rosenfeld energy-momentum tensor. We discuss in detail the various constraints imposed by non-locality, linear and angular momentum conservation. We also derive the relations with two-parton generalized and transverse-momentum dependent distributions, clarifying what can be learned from the latter. In particular, we show explicitly that two-parton transverse-momentum dependent distributions cannot provide any model-independent information about the parton orbitalmore » angular momentum. On the way, we recover the Burkardt sum rule and obtain similar new sum rules for higher-twist distributions.« less

  16. Conception of a New Recoil Proton Telescope for Real-Time Neutron Spectrometry in Proton-Therapy

    NASA Astrophysics Data System (ADS)

    Combe, Rodolphe; Arbor, Nicolas; el Bitar, Ziad; Higueret, Stéphane; Husson, Daniel

    2018-01-01

    Neutrons are the main type of secondary particles emitted in proton-therapy. Because of the risk of secondary cancer and other late occurring effects, the neutron dose should be included in the out-of-field dose calculations. A neutron spectrometer has to be used to take into account the energy dependence of the neutron radiological weighting factor. Due to its high dependence on various parameters of the irradiation (beam, accelerator, patient), the neutron spectrum should be measured independently for each treatment. The current reference method for the measurement of the neutron energy, the Bonner Sphere System, consists of several homogeneous polyethylene spheres with increasing diameters equipped with a proportional counter. It provides a highresolution reconstruction of the neutron spectrum but requires a time-consuming work of signal deconvolution. New neutron spectrometers are being developed, but the main experimental limitation remains the high neutron flux in proton therapy treatment rooms. A new model of a real-time neutron spectrometer, based on a Recoil Proton Telescope technology, has been developed at the IPHC. It enables a real-time high-rate reconstruction of the neutron spectrum from the measurement of the recoil proton trajectory and energy. A new fast-readout microelectronic integrated sensor, called FastPixN, has been developed for this specific purpose. A first prototype, able to detect neutrons between 5 and 20 MeV, has already been validated for metrology with the AMANDE facility at Cadarache. The geometry of the new Recoil Proton Telescope has been optimized via extensive Geant4 Monte Carlo simulations. Uncertainty sources have been carefully studied in order to improve simultaneously efficiency and energy resolution, and solutions have been found to suppress the various expected backgrounds. We are currently upgrading the prototype for secondary neutron detection in proton therapy applications.

  17. Photon-momentum transfer in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Chelkowski, Szczepan; Bandrauk, André D.

    2018-05-01

    In most models and theoretical calculations describing multiphoton ionization by infrared light, the dipole approximation is used. This is equivalent to setting the very small photon momentum to zero. Using numerical solutions of the (nondipole) three-dimensional time-dependent Schrödinger equation for one electron in a H2+ molecular ion we investigate the effect the photon-momentum transfer to the photoelectron in an H2+ ion in various regimes. We find that the photon-momentum transfer in a molecule is very different from the transfer in atoms due to two-center interference effects. The photon-momentum transfer is very sensitive to the symmetry of the initial electronic state and is strongly dependent on the internuclear distance and on the ellipticity of the laser.

  18. Production of soft X-ray emitting slow multiply charged ions - Recoil ion spectroscopy

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.; Elston, S. B.; Forester, J. P.; Griffin, P. M.; Pegg, D. J.; Peterson, R. S.; Thoe, R. S.; Vane, C. R.; Wright, J. J.; Groeneveld, K.-O.

    1977-01-01

    S ions with a mean charge state of about 14+ and Cl ions with a mean charge state of 12+ were used to study Ne L-shell vacancy production. The ions caused copious production of NeII-NeVIII excited states with approximately 10 to the minus 18 sq cm cross sections. The induced recoil velocities might have application to a significantly higher resolution spectroscopy than is possible with beam-foil methods.

  19. Minkowski momentum resulting from a vacuum-medium mapping procedure, and a brief review of Minkowski momentum experiments

    NASA Astrophysics Data System (ADS)

    Brevik, Iver

    2017-02-01

    A discussion is given on the interpretation and physical importance of the Minkowski momentum in macroscopic electrodynamics (essential for the Abraham-Minkowski problem). We focus on the following two facets: (1) Adopting a simple dielectric model where the refractive index n is constant, we demonstrate by means of a mapping procedure how the electromagnetic field in a medium can be mapped into a corresponding field in vacuum. This mapping was presented many years ago (Brevik and Lautrup, 1970), but is apparently not well known. A characteristic property of this procedure is that it shows how naturally the Minkowski energy-momentum tensor fits into the canonical formalism. Especially the spacelike character of the electromagnetic total four-momentum for a radiation field (implying negative electromagnetic energy in some inertial frames), so strikingly demonstrated in the Cherenkov effect, is worth attention. (2) Our second objective is to give a critical analysis of some recent experiments on electromagnetic momentum. Care must here be taken in the interpretations: it is easy to be misled and conclude that an experiment is important for the energy-momentum problem, while what is demonstrated experimentally is merely the action of the Abraham-Minkowski force acting in surface layers or inhomogeneous regions. The Abraham-Minkowski force is common for the two energy-momentum tensors and carries no information about field momentum. As a final item, we propose an experiment that might show the existence of the Abraham force at high frequencies. This would eventually be a welcome optical analogue to the classic low-frequency 1975 Lahoz-Walker experiment.

  20. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy.

    PubMed

    McLaughlin, Mark F; Woodward, Jonathan; Boll, Rose A; Wall, Jonathan S; Rondinone, Adam J; Kennel, Stephen J; Mirzadeh, Saed; Robertson, J David

    2013-01-01

    Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo α-generator targeted radiotherapies can deliver multiple α particles to a receptor site dramatically amplifying the radiation dose delivered to the target. The major challenge with α-generator radiotherapies is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-target tissue. The recoil energy of the (225)Ac daughters following α decay will sever any metal-ligand bond used to form the bioconjugate. This work demonstrates that an engineered multilayered nanoparticle-antibody conjugate can deliver multiple α radiations and contain the decay daughters of (225)Ac while targeting biologically relevant receptors in a female BALB/c mouse model. These multi-shell nanoparticles combine the radiation resistance of lanthanide phosphate to contain (225)Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established gold chemistry for attachment of targeting moieties.

  1. Light output response of EJ-309 liquid organic scintillator to 2.86-3.95 MeV carbon recoil ions due to neutron elastic and inelastic scatter

    NASA Astrophysics Data System (ADS)

    Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.

    2018-03-01

    We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.

  2. Enhancement of collective atomic recoil lasing due to pump phase modulation

    NASA Astrophysics Data System (ADS)

    Robb, G. R. M.; Burgess, R. T. L.; Firth, W. J.

    2008-10-01

    We investigate the effect of a phase-modulated pump beam on collective backscattering [also termed collective atomic recoil lasing (CARL)] by a cold, collisionless atomic gas. We show using a numerical analysis that different regimes can be identified in which the atomic dynamics evolves in a qualitatively different manner during the light-atom interaction, depending on the magnitude of the pump modulation frequency. Our results also demonstrate that phase-modulating the pump field can substantially enhance the backscattered field intensity relative to the case of a monochromatic pump which has been used in CARL experiments to date.

  3. Variations in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Rosen, R. D.; Salstein, D. A.

    1981-01-01

    Twice-daily values of the atmosphere's angular momentum about the polar axis during the five years from 1976 through 1980 are presented in graphs and a table. The compilation is based on a global data set, incorporating 90 percent of the mass of the atmosphere. The relationship between changes in the angular momentum of the atmosphere and changes in the length of day is described, as are the main sources of error in the data. The variability in angular momentum is revealed in a preliminary fashion by means of a spectral decomposition. The data presented should stimulate comparisons with other measures of the length of day and so provide a basis for greater understanding of Earth-atmosphere interactions.

  4. Momentum Management Tool for Low-Thrust Missions

    NASA Technical Reports Server (NTRS)

    Swenka, Edward R.; Smith, Brett A.; Vanelli, Charles A.

    2010-01-01

    A momentum management tool was designed for the Dawn low-thrust interplanetary spacecraft en route to the asteroids Vesta and Ceres, in an effort to better understand the early creation of the solar system. Momentum must be managed to ensure the spacecraft has enough control authority to perform necessary turns and hold a fixed inertial attitude against external torques. Along with torques from solar pressure and gravity-gradients, ion-propulsion engines produce a torque about the thrust axis that must be countered by the four reaction wheel assemblies (RWA). MomProf is a ground operations tool built to address these concerns. The momentum management tool was developed during initial checkout and early cruise, and has been refined to accommodate a wide range of momentum-management issues. With every activity or sequence, wheel speeds and momentum state must be checked to avoid undesirable conditions and use of consumables. MomProf was developed to operate in the MATLAB environment. All data are loaded into MATLAB as a structure to provide consistent access to all inputs by individual functions within the tool. Used in its most basic application, the Dawn momentum tool uses the basic principle of angular momentum conservation, computing momentum in the body frame, and RWA wheel speeds, for all given orientations in the input file. MomProf was designed specifically to be able to handle the changing external torques and frequent de - saturations. Incorporating significant external torques adds complexity since there are various external torques that act under different operational modes.

  5. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGES

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; ...

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  6. Mahan polaritons and their lifetime due to hole recoil

    NASA Astrophysics Data System (ADS)

    Baeten, Maarten; Wouters, Michiel

    2015-11-01

    We present a theoretical study on polaritons in doped semiconductor microcavities, focussing on a cavity mode that is resonant with the Fermi edge. In agreement with experimental results, the strong light-matter coupling is maintained under very high doping within our ladder diagram approximation. In particular, we find that the polaritons result from the strong admixing of the cavity mode with the Mahan exciton. The upper Mahan polariton, lying in the electron-hole continuum, always remains visible and has a linewidth due to free interband electron-hole creation. The lower Mahan polariton acquires a finite lifetime due to relaxation of the valence band hole if the electron density exceeds a certain critical value. However, if the Rabi splitting exceeds the inverse hole recoil time, the lower polariton lifetime is only limited by the cavity properties.

  7. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    PubMed

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  8. Recoil Directionality Studies in Two-Phase Liquid Argon TPC Detectors

    NASA Astrophysics Data System (ADS)

    Cadeddu, Matteo; Batignani, Giovanni; Marcello Bonivento, Walter; Bottino, Bianca; Campajola, Luigi; Caravati, Mauro; Catalanotti, Sergio; Cicalò, Corrado; Cocco, Alfredo; Covone, Giovanni; De Rosa, Gianfranca; Devoto, Alberto; Dionisi, Carlo; Fiorillo, Giuliana; Giagu, Stefano; Gulino, Marisa; Kuss, Michael; Lissia, Marcello; Lista, Luca; Longo, Giuseppe; Pallavicini, Marco; Pandola, Luciano; Razeti, Marco; Rescigno, Marco; Rossi, Biagio; Rossi, Nicola; Testera, Gemma; Trinchese, Pasquale; Walker, Susan; Zullo, Maurizio

    2017-12-01

    Projects attempting the direct detection of WIMP dark matter share the common problem of eliminating sources of background or using techniques to distinguish background events from true signals. Although experiments such as DarkSide have achieved essentially background free exposures through careful choice of materials and application of efficient veto techniques, there will still be a high burden of proof to convince the greater scientific community when a discovery is claimed. A directional signature in the data would provide extremely strong evidence to distinguish a true WIMP signal from that of an isotropic background. Two-phase argon time projection chambers (TPCs) provide an experimental apparatus which can both be scaled to the ton-scale size required to accommodate the low cross-section expected for WIMP interactions and have an anisotropy that could be exploited to evaluate the polar angles of the resulting nuclear recoils from WIMP collisions with target nuclei. Our studies show that even a modest resolution in the polar angle reconstruction would offer a powerful tool to detect a directional signature. In this contribution, the status of the ReD experiment, which is under construction at Naples University, will be also shown. The aim of the project is to assess and enhance the directionality of two-phase argon TPCs. ReD will use a small TPC exposed to a beam of mono-energetic neutrons to study the so called "columnar recombination" in liquid argon. This development could have high impact on the future experiments in the field, opening up the potential to find conclusive evidence for dark matter or disprove the WIMP hypothesis at and above the mass range explored by planned accelerator experiments.

  9. Autonomous momentum management for space station

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1984-01-01

    Momentum management for the CDG planar space platform is discussed. It is assumed that the external torques on the space station are gravity gradient and aerodynamic, both have bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Techniques to counteract the bias torques and center the cyclic momentum and gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques are investigated.

  10. Black-hole kicks from numerical-relativity surrogate models

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Hébert, François; Stein, Leo C.

    2018-05-01

    Binary black holes radiate linear momentum in gravitational waves as they merge. Recoils imparted to the black-hole remnant can reach thousands of km /s , thus ejecting black holes from their host galaxies. We exploit recent advances in gravitational waveform modeling to quickly and reliably extract recoils imparted to generic, precessing, black-hole binaries. Our procedure uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters; then, from this waveform we directly integrate the gravitational-wave linear momentum flux. This entirely bypasses the need for fitting formulas which are typically used to model black-hole recoils in astrophysical contexts. We provide a thorough exploration of the black-hole kick phenomenology in the parameter space, summarizing and extending previous numerical results on the topic. Our extraction procedure is made publicly available as a module for the Python programming language named surrkick. Kick evaluations take ˜0.1 s on a standard off-the-shelf machine, thus making our code ideal to be ported to large-scale astrophysical studies.

  11. Light-front spin-dependent spectral function and nucleon momentum distributions for a three-body system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Dotto, Alessio; Pace, Emanuele; Salme, Giovanni

    Poincare covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian–Thomas construction of the Poincaré generators, which allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, sincemore » remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. As a result, also shown is a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.« less

  12. Light-front spin-dependent spectral function and nucleon momentum distributions for a three-body system

    DOE PAGES

    Del Dotto, Alessio; Pace, Emanuele; Salme, Giovanni; ...

    2017-01-10

    Poincare covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian–Thomas construction of the Poincaré generators, which allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, sincemore » remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. As a result, also shown is a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.« less

  13. Transverse angular momentum in topological photonic crystals

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  14. Momentum kill procedure can quickly control blowouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, W.D.; Moore, P.

    1993-08-30

    The momentum kill method can help in quickly regaining control of a blowing well, providing the blowing well rate and fluid properties can be estimated reasonably. The momentum of the kill fluid counteracts and overcomes the flowing momentum of formation fluids. In other words, sufficient mud density pumped at a sufficient rate is directed into the flow stream to force the escaping fluid column back into the well bore. Sufficient kill fluid hydrostatic pressure must be stacked'' in the hole so that the well remains dead after the operation. The momentum kill is not a panacea for all blowouts. Anmore » assessment must be made of the potential problems unique to this method, and certain requirements must be met if the technique is to be successful. The paper discusses some of the considerations for evaluating the use of the momentum kill method.« less

  15. Gas Accretion and Angular Momentum

    NASA Astrophysics Data System (ADS)

    Stewart, Kyle R.

    In this chapter, we review the role of gas accretion to the acquisition of angular momentum, both in galaxies and in their gaseous halos. We begin by discussing angular momentum in dark matter halos, with a brief review of tidal torque theory and the importance of mergers, followed by a discussion of the canonical picture of galaxy formation within this framework, where halo gas is presumed to shock-eat to the virial temperature of the halo, following the same spin distribution as the dark matter halo before cooling to the center of the halo to form a galaxy there. In the context of recent observational evidence demonstrating the presence of high angular momentum gas in galaxy halos, we review recent cosmological hydrodynamic simulations that have begun to emphasize the role of "cold flow" accretion—anisotropic gas accretion along cosmic filaments that does not shock-heat before sinking to the central galaxy. We discuss the implications of these simulations, reviewing a number of recent developments in the literature, and suggest a revision to the canonical model as it relates to the expected angular momentum content of gaseous halos around galaxies.

  16. Momentum dependence of the topological susceptibility and its derivative at zero momentum with overlap fermions

    NASA Astrophysics Data System (ADS)

    Koma, Y.

    The derivative of the topological susceptibility at zero momentum is responsible for the validity of the Witten-Veneziano formula for the η mass, and also for the resolution of the EMC pro- ton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using lattice QCD simulations with overlap fermions within quenched approximation. We expose the role of the low-lying Dirac eigenmodes for the topolog- ical charge density, and find the negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule in pure Yang-Mills theory, the absolute value becomes larger if only the contribution from the zero modes and the low-lying eigenmodes is taken into account.

  17. Momentum transport at the Mars magnetopause

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-de-Tejada, H.

    1991-07-01

    The conditions leading to the transport of momentum of the shocked solarwind to the Mars magnetosphere are examined. It is argued that planetary pickup ions born in the magnetosheath and scattered across the magnetopause by local turbulent waves carry that momentum and deliver it to the magnetospheric plasma. It is further suggested that as the pickup ions experience momentum scattering interactions with the wave field in the velocity shear adjacent to the magnetosphere they are subject to a gradual internment within that region of space. The end effect of this phenomenon is that the pickup ions deliver a larger amountmore » of momentum to the local flow than what they can subtract from it. Calculations of the efficiency of the process lead to values of the effective mean free path of the pickup ions of the order of a few hundred kilometers.« less

  18. Parallel momentum input by tangential neutral beam injections in stellarator and heliotron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, S., E-mail: nishimura.shin@lhd.nifs.ac.jp; Nakamura, Y.; Nishioka, K.

    The configuration dependence of parallel momentum inputs to target plasma particle species by tangentially injected neutral beams is investigated in non-axisymmetric stellarator/heliotron model magnetic fields by assuming the existence of magnetic flux-surfaces. In parallel friction integrals of the full Rosenbluth-MacDonald-Judd collision operator in thermal particles' kinetic equations, numerically obtained eigenfunctions are used for excluding trapped fast ions that cannot contribute to the friction integrals. It is found that the momentum inputs to thermal ions strongly depend on magnetic field strength modulations on the flux-surfaces, while the input to electrons is insensitive to the modulation. In future plasma flow studies requiringmore » flow calculations of all particle species in more general non-symmetric toroidal configurations, the eigenfunction method investigated here will be useful.« less

  19. Enhanced momentum feedback from clustered supernovae

    NASA Astrophysics Data System (ADS)

    Gentry, Eric S.; Krumholz, Mark R.; Dekel, Avishai; Madau, Piero

    2017-02-01

    Young stars typically form in star clusters, so the supernovae (SNe) they produce are clustered in space and time. This clustering of SNe may alter the momentum per SN deposited in the interstellar medium (ISM) by affecting the local ISM density, which in turn affects the cooling rate. We study the effect of multiple SNe using idealized 1D hydrodynamic simulations which explore a large parameter space of the number of SNe, and the background gas density and metallicity. The results are provided as a table and an analytic fitting formula. We find that for clusters with up to ˜100 SNe, the asymptotic momentum scales superlinearly with the number of SNe, resulting in a momentum per SN which can be an order of magnitude larger than for a single SN, with a maximum efficiency for clusters with 10-100 SNe. We argue that additional physical processes not included in our simulations - self-gravity, breakout from a galactic disc, and galactic shear - can slightly reduce the momentum enhancement from clustering, but the average momentum per SN still remains a factor of 4 larger than the isolated SN value when averaged over a realistic cluster mass function for a star-forming galaxy. We conclude with a discussion of the possible role of mixing between hot and cold gas, induced by multidimensional instabilities or pre-existing density variations, as a limiting factor in the build-up of momentum by clustered SNe, and suggest future numerical experiments to explore these effects.

  20. Momentum Maps and Stochastic Clebsch Action Principles

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  1. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    DOE PAGES

    Liu, Bin; Yuan, Fenglin; Jin, Ke; ...

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less

  2. Target mass effects in parton quasi-distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, A. V.

    We study the impact of non-zero (and apparently large) value of the nucleon mass M on the shape of parton quasi-distributions Q(y,p 3), in particular on its change with the change of the nucleon momentum p 3. We observe that the usual target-mass corrections induced by the M-dependence of the twist-2 operators are rather small. Moreover, we show that within the framework based on parametrizations by transverse momentum dependent distribution functions (TMDs) these corrections are canceled by higher-twist contributions. Lastly, we identify a novel source of kinematic target-mass dependence of TMDs and build models corrected for such dependence. We findmore » that resulting changes may be safely neglected for p 3≳2M.« less

  3. Target mass effects in parton quasi-distributions

    DOE PAGES

    Radyushkin, A. V.

    2017-05-11

    We study the impact of non-zero (and apparently large) value of the nucleon mass M on the shape of parton quasi-distributions Q(y,p 3), in particular on its change with the change of the nucleon momentum p 3. We observe that the usual target-mass corrections induced by the M-dependence of the twist-2 operators are rather small. Moreover, we show that within the framework based on parametrizations by transverse momentum dependent distribution functions (TMDs) these corrections are canceled by higher-twist contributions. Lastly, we identify a novel source of kinematic target-mass dependence of TMDs and build models corrected for such dependence. We findmore » that resulting changes may be safely neglected for p 3≳2M.« less

  4. A compact magnetic bearing for gimballed momentum wheel

    NASA Technical Reports Server (NTRS)

    Yabu-Uchi, K.; Inoue, M.; Akishita, S.; Murakami, C.; Okamoto, O.

    1983-01-01

    A three axis controlled magnetic bearing and its application to a momentum wheel are described. The four divided stators provide a momentum wheel with high reliability, low weight, large angular momentum storage capacity, and gimbal control. Those characteristics are desirable for spacecraft attitude control.

  5. Momentum management strategy during Space Station buildup

    NASA Technical Reports Server (NTRS)

    Bishop, Lynda; Malchow, Harvey; Hattis, Philip

    1988-01-01

    The use of momentum storage devices to control effectors for Space Station attitude control throughout the buildup sequence is discussed. Particular attention is given to the problem of providing satisfactory management of momentum storage effectors throughout buildup while experiencing variable torque loading. Continuous and discrete control strategies are compared and the effects of alternative control moment gyro strategies on peak momentum storage requirements and on commanded maneuver characteristics are described.

  6. Whole-body angular momentum during stair ascent and descent.

    PubMed

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Momentum signatures of the Anderson transition

    NASA Astrophysics Data System (ADS)

    Sanjib, Ghosh

    This thesis explores for possible signatures of Anderson localization and the Anderson metal-insulator transition (MIT) in momentum space. We find that an initial plane-wave propagating in a disordered medium exhibits a diffusive background and two interference peaks, the coherent backscattering (CBS) and the coherent forward scattering (CFS) peaks in the momentum distribution. We show, the signatures of Anderson localization and the Anderson transition are encoded in the dynamical properties of the two interference peaks, CBS and CFS. We develop finite-time scaling theory for the angular width of the CBS peak and in the height of the CFS peak. We demonstrate how to extract properties like critical exponent, the mobility edge and signatures of multifractality from this finite-time analysis. These momentum space signatures of the Anderson transition are novel and they promise to be experimental observables for wide range of systems, from cold atoms to classical waves or any wave systems where the momentum distribution is accessible.

  8. Predicting the effect of angular momentum on the dissociation dynamics of highly rotationally excited radical intermediates.

    PubMed

    Brynteson, Matthew D; Butler, Laurie J

    2015-02-07

    We present a model which accurately predicts the net speed distributions of products resulting from the unimolecular decomposition of rotationally excited radicals. The radicals are produced photolytically from a halogenated precursor under collision-free conditions so they are not in a thermal distribution of rotational states. The accuracy relies on the radical dissociating with negligible energetic barrier beyond the endoergicity. We test the model predictions using previous velocity map imaging and crossed laser-molecular beam scattering experiments that photolytically generated rotationally excited CD2CD2OH and C3H6OH radicals from brominated precursors; some of those radicals then undergo further dissociation to CD2CD2 + OH and C3H6 + OH, respectively. We model the rotational trajectories of these radicals, with high vibrational and rotational energy, first near their equilibrium geometry, and then by projecting each point during the rotation to the transition state (continuing the rotational dynamics at that geometry). This allows us to accurately predict the recoil velocity imparted in the subsequent dissociation of the radical by calculating the tangential velocities of the CD2CD2/C3H6 and OH fragments at the transition state. The model also gives a prediction for the distribution of angles between the dissociation fragments' velocity vectors and the initial radical's velocity vector. These results are used to generate fits to the previously measured time-of-flight distributions of the dissociation fragments; the fits are excellent. The results demonstrate the importance of considering the precession of the angular velocity vector for a rotating radical. We also show that if the initial angular momentum of the rotating radical lies nearly parallel to a principal axis, the very narrow range of tangential velocities predicted by this model must be convoluted with a J = 0 recoil velocity distribution to achieve a good result. The model relies on measuring the

  9. Time-of-flight scattering and recoiling spectrometer (TOF-SARS) for surface analysis

    NASA Astrophysics Data System (ADS)

    Grizzi, O.; Shi, M.; Bu, H.; Rabalais, J. W.

    1990-02-01

    A UHV spectrometer system has been designed and constructed for time-of-flight scattering and recoiling spectrometry (TOF-SARS). The technique uses a pulsed primary ion beam and TOF methods for analysis of both scattered and recoiled neutrals (N) and ions (I) simultaneously with continuous scattering angle variation over a flight path of ≊1 m. The pulsed ion beam line uses an electron impact ionization source with acceleration up to 5 keV; pulse widths down to 20 ns with average current densities of 0.05-5.0 nA/mm2 have been obtained. Typical current densities used herein are ≊0.1 nA/mm2 and TOF spectra can be collected with a total ion dose of <10-3 ions/surface atom. A channel electron multiplier detector, which is sensitive to both ions and fast neutrals, is mounted on a long tube connected to a precision rotary motion feedthru, allowing continuous rotation over a scattering angular range 0°<θ<165°. The sample is mounted on a precision manipulator, allowing azimuthal δ and incident α angle rotation, as well as translation along three orthogonal axes. The system also accommodates standard surface analysis instrumentation for LEED, AES, XPS, and UPS. The capabilities of the system are demonstrated by the following examples: (A) TOF spectra versus scattering angle θ; (B) comparison to LEED and AES; (C) surface and adsorbate structure determinations; (D) monitoring surface roughness; (E) surface semichanneling measurements; (F) measurements of scattered ion fractions; and (G) ion induced Auger electron emission.

  10. Apparatus for Investigating Momentum and Energy Conservation With MBL and Video Analysis

    NASA Astrophysics Data System (ADS)

    George, Elizabeth; Vazquez-Abad, Jesus

    1998-04-01

    We describe the development and use of a laboratory setup that is appropriate for computer-aided student investigation of the principles of conservation of momentum and mechanical energy in collisions. The setup consists of two colliding carts on a low-friction track, with one of the carts (the target) attached to a spring, whose extension or compression takes the place of the pendulum's rise in the traditional ballistic pendulum apparatus. Position vs. time data for each cart are acquired either by using two motion sensors or by digitizing images obtained with a video camera. This setup allows students to examine the time history of momentum and mechanical energy during the entire collision process, rather than simply focusing on the before and after regions. We believe that this setup is suitable for helping students gain understanding as the processes involved are simple to follow visually, to manipulate, and to analyze.

  11. Force, torque, linear momentum, and angular momentum in classical electr odynamics

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-10-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic (EM) field, force, energy, and momentum, which are intimately tied together by Poynting's theorem and by the Lorentz force law. Whereas Maxwell's equations relate the fields to their material sources, Poynting's theorem governs the flow of EM energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. An alternative force law, first proposed by Einstein and Laub, exists that is consistent with Maxwell's equations and complies with the conservation laws as well as with the requirements of special relativity. While the Lorentz law requires the introduction of hidden energy and hidden momentum in situations where an electric field acts on a magnetized medium, the Einstein-Laub (E-L) formulation of EM force and torque does not invoke hidden entities under such circumstances. Moreover, total force/torque exerted by EM fields on any given object turns out to be independent of whether the density of force/torque is evaluated using the law of Lorentz or that of Einstein and Laub. Hidden entities aside, the two formulations differ only in their predicted force and torque distributions inside matter. Such differences in distribution are occasionally measurable, and could serve as a guide in deciding which formulation, if either, corresponds to physical reality.

  12. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  13. The G_E/G_M-ratio of the proton by recoil polarization measurement in e+parrow e'+p

    NASA Astrophysics Data System (ADS)

    Punjabi, Vina; Jones, Mark; Perdrisat, Charles F.; Quemener, Gilles

    1998-10-01

    The recently commissioned Hall A high resolution spectrometers (HRS) and the focal plane polarimeter (FPP) were used to obtain the ratio of the electric and magnetic form factors of the proton, G_E/G_M. This form factor ratio is proportional to the measured ratio of the transverse, P_t, to longitudinal, P_l, components of the recoiling proton polarization. The method takes advantage of the precession of the proton magnetic moment in the hadron HRS, which rotates the longitudinal polarization component into the plane of the FPP analyzer; this allows simultaneous measurement of both components of the polarization. The ratio P_t/P_l is independent of both the electron beam polarization and the polarimeter analyzing power. Most of the data were obtained with polarized beams of 100 μ A with polarization of ~ 0.39 incident on the 15 cm cell of the high power LH2 target. We will report the results for G_E/GM at several values of Q^2 between 0.5 and 3.5 GeV^2.

  14. Monsters on the move: A search for supermassive black holes undergoing gravitational wave recoil

    NASA Astrophysics Data System (ADS)

    Jadhav, Yashashree; Robinson, Andrew; Lena, Davide

    2018-01-01

    There is compelling evidence that supermassive black holes (SMBH) reside at the centers of all large galaxies and are the gravitational ‘engines’ of Active Galactic Nuclei (AGN). Furthermore, galaxy mergers are thought to have played a fundamental role in the growth and evolution of the largest galaxies in the nearby universe. A galaxy merger is expected to lead to the formation of an SMBH binary, which itself eventually coalesces through the emission of gravitational waves. Such events fall outside the frequency range accessible to the LIGO/VIRGO gravitational wave detectors, but they can be detected via electromagnetic signatures. Numerical relativity simulations show that, depending on the initial spin-orbit configuration of the binary, the merged SMBH receives a gravitational recoil kick that may reach several 1000km/s. This recoil in turn causes the merged SMBH to oscillate for up to ~1 Gyr in the gravitational potential well of the galaxy. During this time, the recoiling SMBH may be observed as a ‘displaced’ AGN. Such events provide a strong test of gravitational physics and the formation and merger frequencies of binary SMBH. As a result of residual oscillations, displacements ~10 – 100pc may be expected even in nearby elliptical galaxies and can be measured as spatial offsets in high resolution optical or infrared images. We present the results of a preliminary study, in which isophotal analysis was conducted for a sample of 96 galaxies to obtain the photocenter of the galaxies using Hubble Space Telescope (HST) archival optical or infrared WFC2/PC, ACS or NICMOS images. The position of the nuclear point source (AGN) was also measured to obtain a displacement vector. This initial sample reveals 18 candidates that show a significant displacement. Of these, 14 are hosted by core ellipticals, while the rest have a cuspy light profile. As galactic and nuclear dust structures may interfere with the isophotal analysis, we are currently obtaining new WFC

  15. Momentum considerations on the New MEXICO experiment

    NASA Astrophysics Data System (ADS)

    Parra, E. A.; Boorsma, K.; Schepers, J. G.; Snel, H.

    2016-09-01

    The present paper regards axial and angular momentum considerations combining detailed loads from pressure sensors and the flow field mapped with particle image velocimetry (PIV) techniques. For this end, the study implements important results leaning on experimental data from wind tunnel measurements of the New MEXICO project. The measurements, taken on a fully instrumented rotor, were carried out in the German Dutch Wind tunnel Organisation (DNW) testing the MEXICO rotor in the open section. The work revisits the so-called momentum theory, showing that the integral thrust and torque measured on the rotor correspond with an extent of 0.7 and 2.4% respectively to the momentum balance of the global flow field using the general momentum equations. Likewise, the sectional forces combined with the local induced velocities are found to plausibly obey the annular streamtube theory, albeit some limitations in the axial momentum become more apparent at high inductions after a=0.3. Finally, azimuth induced velocities are measured and compared to predictions from models of Glauert and Burton et al., showing close-matching forecasts for blade spans above 25%.

  16. A conservation law, entropy principle and quantization of fractal dimensions in hadron interactions

    NASA Astrophysics Data System (ADS)

    Zborovský, I.

    2018-04-01

    Fractal self-similarity of hadron interactions demonstrated by the z-scaling of inclusive spectra is studied. The scaling regularity reflects fractal structure of the colliding hadrons (or nuclei) and takes into account general features of fragmentation processes expressed by fractal dimensions. The self-similarity variable z is a function of the momentum fractions x1 and x2 of the colliding objects carried by the interacting hadron constituents and depends on the momentum fractions ya and yb of the scattered and recoil constituents carried by the inclusive particle and its recoil counterpart, respectively. Based on entropy principle, new properties of the z-scaling concept are found. They are conservation of fractal cumulativity in hadron interactions and quantization of fractal dimensions characterizing hadron structure and fragmentation processes at a constituent level.

  17. Energy and Momentum Transport in String Waves

    ERIC Educational Resources Information Center

    Juenker, D. W.

    1976-01-01

    Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)

  18. RECOIL LABELING OF ORGANIC COMPOUNDS (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oae, S.; Hamada, M.; Otsuji, Y.

    1963-01-01

    The results of C/sup 14/-labeling under neutron irradiation of two groups of compounds are reported: (1) naphthalene, phenanthrene, and anthracene in an attempt to determine whether or not high energy C/sup 14/ fragments formed by nuclear recoil would favor or discriminate against any particular position in product formations; (2) pseudoephedrine, 2-amino-pyrimidine, and 3,6- dihydroxypyridazine as complex nitrogen-containing compounds. These samples were irradiated with thermal neutrons obtained from a pile. To determine the radiochemical yields and the relative ratios of the C/sup 14/ distributions in the respective compounds, the samples were purified radlochemically and were degraded chemically. The results deduced frommore » the experimental data are the following: (1) higher distribution of C/sup 14/ was found in the positions where the localizations of electrons are known to be higher; (2) the re-entry of C/sup 14/ into angular positions was very small; (3) the difference of phase affected the yield but not the distribution of C/sup 14/ in the products; (4) the relatively complex compounds could be labeled directly by this method. (A.G.W.)« less

  19. Centripetal force draws the eyes, not memory of the target, toward the center.

    PubMed

    Kerzel, Dirk

    2003-05-01

    Many observers believe that a target will continue on a curved trajectory after exiting a spiral tube. Similarly, when observers were asked to localize the final position of a target moving on a circular orbit, displacement of the judged position in the direction of forward motion ("representational momentum") and toward the center of the orbit was observed (cf. T. L. Hubbard, 1996). The present study shows that memory displacement of targets on a circular orbit is affected by eye movements. Forward displacement was larger with ocular pursuit of the target, whereas inward displacement was larger with motionless eyes. The results challenge an account attributing forward and inward displacement to mental analogues of momentum and centripetal force, respectively.

  20. Analysis of a Compressible Fluid Soft Recoil (CFSR) Concept Applied to a 155 MM Howitzer

    DTIC Science & Technology

    1979-03-01

    Nitrile or Buna-N ( NBR ) rubber with ’ backup rings of nylotron. HITRILE NVLOTRON Piston seals An unresolved problem is that the coefficient of...fluid at atmospheric pressure Poisson’s ratio for Nitrile rubber dynamic coefficient of friction for rubber mass of recoiling parts weight of...Greene, tweed 5 Co. Palmetto catalog.) 43 [i^ - 0.50 = coefficient of friction (An approximate figure for rubber supplied by RIA Rubber

  1. Solar neutrinos as a signal and background in direct-detection experiments searching for sub-GeV dark matter with electron recoils

    NASA Astrophysics Data System (ADS)

    Essig, Rouven; Sholapurkar, Mukul; Yu, Tien-Tien

    2018-05-01

    Direct-detection experiments sensitive to low-energy electron recoils from sub-GeV dark matter interactions will also be sensitive to solar neutrinos via coherent neutrino-nucleus scattering (CNS), since the recoiling nucleus can produce a small ionization signal. Solar neutrinos constitute both an interesting signal in their own right and a potential background to a dark matter search that cannot be controlled or reduced by improved shielding, material purification and handling, or improved detector design. We explore these two possibilities in detail for semiconductor (silicon and germanium) and xenon targets, considering several possibilities for the unmeasured ionization efficiency at low energies. For dark-matter-electron-scattering searches, neutrinos start being an important background for exposures larger than ˜1 - 10 kg -years in silicon and germanium, and for exposures larger than ˜0.1 - 1 kg -year in xenon. For the absorption of bosonic dark matter (dark photons and axion-like particles) by electrons, neutrinos are most relevant for masses below ˜1 keV and again slightly more important in xenon. Treating the neutrinos as a signal, we find that the CNS of 8B neutrinos can be observed with ˜2 σ significance with exposures of ˜2 , 7, and 20 kg-years in xenon, germanium, and silicon, respectively, assuming there are no other backgrounds. We give an example for how this would constrain nonstandard neutrino interactions. Neutrino components at lower energy can only be detected if the ionization efficiency is sufficiently large. In this case, observing pep neutrinos via CNS requires exposures ≳10 - 100 kg -years in silicon or germanium (˜1000 kg -years in xenon), and observing CNO neutrinos would require an order of magnitude more exposure. Only silicon could potentially detect 7Be neutrinos. These measurements would allow for a direct measurement of the electron-neutrino survival probability over a wide energy range.

  2. Evidence for age-dependent air-space enlargement contributing to loss of lung tissue elastic recoil pressure and increased shear modulus in older age.

    PubMed

    Subramaniam, K; Kumar, H; Tawhai, M H

    2017-07-01

    As a normal part of mature aging, lung tissue undergoes microstructural changes such as alveolar air-space enlargement and redistribution of collagen and elastin away from the alveolar duct. The older lung also experiences an associated decrease in elastic recoil pressure and an increase in specific tissue elastic moduli, but how this relates mechanistically to microstructural remodeling is not well-understood. In this study, we use a structure-based mechanics analysis to elucidate the contributions of age-related air-space enlargement and redistribution of elastin and collagen to loss of lung elastic recoil pressure and increase in tissue elastic moduli. Our results show that age-related geometric changes can result in reduction of elastic recoil pressure and increase in shear and bulk moduli, which is consistent with published experimental data. All elastic moduli were sensitive to the distribution of stiffness (representing elastic fiber density) in the alveolar wall, with homogenous stiffness near the duct and through the septae resulting in a more compliant tissue. The preferential distribution of elastic proteins around the alveolar duct in the healthy young adult lung therefore provides for a more elastic tissue. NEW & NOTEWORTHY We use a structure-based mechanics analysis to correlate air-space enlargement and redistribution of elastin and collagen to age-related changes in the mechanical behavior of lung parenchyma. Our study highlights that both the cause (redistribution of elastin and collagen) and the structural effect (alveolar air-space enlargement) contribute to decline in lung tissue elastic recoil with age; these results are consistent with published data and provide a new avenue for understanding the mechanics of the older lung. Copyright © 2017 the American Physiological Society.

  3. Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil.

    PubMed

    Melrose, D B; Mushtaq, A

    2010-11-01

    The longitudinal response function for a thermal electron gas is calculated including two quantum effects exactly, degeneracy, and the quantum recoil. The Fermi-Dirac distribution is expanded in powers of a parameter that is small in the nondegenerate limit and the response function is evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum is performed in terms of polylogarithms in the long-wavelength and quasistatic limits, giving results that apply for arbitrary degeneracy. The results are applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the nondegenerate and completely degenerate limits, and generalizing them to arbitrary degeneracy.

  4. Stern-Gerlach-like approach to electron orbital angular momentum measurement

    DOE PAGES

    Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.

    2017-02-28

    Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less

  5. Stern-Gerlach-like approach to electron orbital angular momentum measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.

    Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less

  6. Proposed measurement of tagged deep inelastic scattering in Hall A of Jefferson lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Rachel; Annand, John; Dutta, Dipangkar

    2017-03-01

    A tagged deep inelastic scattering (TDIS) experiment is planned for Hall A of Jefferson Lab, which will probe the mesonic content of the nucleon directly. Low momentum recoiling (and spectator) protons will be measured in coincidence with electrons scattered in a deep inelastic regime from hydrogen (and deuterium) targets, covering kinematics of 8 < W2 < 18 GeV2, 1 < Q2 < 3 (GeV/c)2 and 0:05 < x < 0:2. The tagging technique will help identify scattering from partons in the meson cloud and provide access to the pion structure function via the Sullivan process. The experiment will yield themore » first TDIS results in the valence regime, for both proton and neutron targets. We present here an overview of the experiment.« less

  7. Behavioral momentum theory: equations and applications.

    PubMed

    Nevin, John A; Shahan, Timothy A

    2011-01-01

    Behavioral momentum theory provides a quantitative account of how reinforcers experienced within a discriminative stimulus context govern the persistence of behavior that occurs in that context. The theory suggests that all reinforcers obtained in the presence of a discriminative stimulus increase resistance to change, regardless of whether those reinforcers are contingent on the target behavior, are noncontingent, or are even contingent on an alternative behavior. In this paper, we describe the equations that constitute the theory and address their application to issues of particular importance in applied settings. The theory provides a framework within which to consider the effects of interventions such as extinction, noncontingent reinforcement, differential reinforcement of alternative behavior, and other phenomena (e.g., resurgence). Finally, the theory predicts some counterintuitive and potentially counterproductive effects of alternative reinforcement, and can serve as an integrative guide for intervention when its terms are identified with the relevant conditions of applied settings.

  8. First-Principles Momentum Dependent Local Ansatz Approach to the Momentum Distribution Function in Iron-Group Transition Metals

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2017-03-01

    The momentum distribution function (MDF) bands of iron-group transition metals from Sc to Cu have been investigated on the basis of the first-principles momentum dependent local ansatz wavefunction method. It is found that the MDF for d electrons show a strong momentum dependence and a large deviation from the Fermi-Dirac distribution function along high-symmetry lines of the first Brillouin zone, while the sp electrons behave as independent electrons. In particular, the deviation in bcc Fe (fcc Ni) is shown to be enhanced by the narrow eg (t2g) bands with flat dispersion in the vicinity of the Fermi level. Mass enhancement factors (MEF) calculated from the jump on the Fermi surface are also shown to be momentum dependent. Large mass enhancements of Mn and Fe are found to be caused by spin fluctuations due to d electrons, while that for Ni is mainly caused by charge fluctuations. Calculated MEF are consistent with electronic specific heat data as well as recent angle resolved photoemission spectroscopy data.

  9. Extended maximum likelihood halo-independent analysis of dark matter direct detection data

    DOE PAGES

    Gelmini, Graciela B.; Georgescu, Andreea; Gondolo, Paolo; ...

    2015-11-24

    We extend and correct a recently proposed maximum-likelihood halo-independent method to analyze unbinned direct dark matter detection data. Instead of the recoil energy as independent variable we use the minimum speed a dark matter particle must have to impart a given recoil energy to a nucleus. This has the advantage of allowing us to apply the method to any type of target composition and interaction, e.g. with general momentum and velocity dependence, and with elastic or inelastic scattering. We prove the method and provide a rigorous statistical interpretation of the results. As first applications, we find that for dark mattermore » particles with elastic spin-independent interactions and neutron to proton coupling ratio f n/f p=-0.7, the WIMP interpretation of the signal observed by CDMS-II-Si is compatible with the constraints imposed by all other experiments with null results. We also find a similar compatibility for exothermic inelastic spin-independent interactions with f n/f p=-0.8.« less

  10. Direct detection signatures of self-interacting dark matter with a light mediator

    DOE PAGES

    Nobile, Eugenio Del; Kaplinghat, Manoj; Yu, Hai-Bo

    2015-10-27

    Self-interacting dark matter (SIDM) is a simple and well-motivated scenario that could explain long-standing puzzles in structure formation on small scales. If the required self-interaction arises through a light mediator (with mass ~ 10 MeV) in the dark sector, this new particle must be unstable to avoid overclosing the universe. The decay of the light mediator could happen due to a weak coupling of the hidden and visible sectors, providing new signatures for direct detection experiments. The SIDM nuclear recoil spectrum is more peaked towards low energies compared to the usual case of contact interactions, because the mediator mass ismore » comparable to the momentum transfer of nuclear recoils. We show that the SIDM signal could be distinguished from that of DM particles with contact interactions by considering the time-average energy spectrum in experiments employing different target materials, or the average and modulated spectra in a single experiment. Using current limits from LUX and SuperCDMS, we also derive strong bounds on the mixing parameter between hidden and visible sector.« less

  11. Electro-optic analyzer of angular momentum hyperentanglement

    PubMed Central

    Wu, Ziwen; Chen, Lixiang

    2016-01-01

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement. PMID:26911530

  12. The Effect of Arrow Mass and Shape on Penetration into a Target

    NASA Astrophysics Data System (ADS)

    Shyam, S.; Gurram, A.; Madireddy, S.

    2016-12-01

    We conducted an archery experiment in order to quantify how aerodynamic design impacted the depth of arrow impact. Research shows that the smaller the surface area of an object, the more easily it travels through the air and the deeper it penetrates a target (Benson 2014). Momentum also affects how far and fast the arrow will go and therefore, how deep it will penetrate into the target. Therefore, a combination of an arrow with greater momentum and better aerodynamics will help the arrow fly faster and penetrate the target deeper. Mass, velocity, momentum, acceleration, force, and drag are the factors that acted on our experiment and produced its results. We hypothesized that the arrow with a thin shaft and pointed arrowhead would penetrate deepest, as opposed to both arrows with no arrowheads or arrows with thick shafts and blunt arrowheads. We tested our hypothesis by having a well-trained archer shoot different types of arrows into a target. We used arrows with shaft lengths of 7 cm and 5.3 cm, coupled with either pointed, blunt, or no arrowhead. We measured the time to target and arrow penetration (in cm) to see which style reached the target the fastest and penetrated the deepest. The results demonstrated that arrows with thin shafts and pointed arrowheads penetrated our target the deepest, followed by arrows with thick shafts and blunt arrowheads. Arrows with thin shafts and blunt arrowheads came after, and arrows with thick shafts and pointed arrowheads came last in depth of penetration. The arrows with no arrowheads either barely penetrated the target, or bounced back. We were able to conclude that the thinner the shaft and the more pointed the arrowhead, the better the arrow cuts the air. This is because, according to the principles of aerodynamics, it creates less drag since the surface area is smaller. However, mass also plays an important role in force through momentum, which also significantly affected our results.

  13. 2MASS J00423991+3017515: An Interacting Oddball or a Recoiling AGN?

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Blecha, Laura; Reynolds, Christopher S.

    2017-06-01

    We present deep, multiband Hubble imaging and two epochs of optical spectroscopic monitoring of a peculiar nearby (z=0.14) AGN, 2MASS J00423991+3017515. The host galaxy containing the AGN is morphologically disturbed and interacting with an unmerged companion galaxy, suggesting it has had a rich merger history. The AGN itself is spatially displaced from the apparent center of its host galaxy and the symmetric broad Hα and Hβ lines are consistently blueshifted from the narrow line emission and host galaxy absorption by Δv = 1530 km/s. The investigation is ongoing, but we put forward two hypotheses to explain the odd features of this system. First, the abnormalities could be due to separate, independent causes. Projection effects from the interaction of the two galaxies could give the appearance of a spatial offset, while complex wind dynamics from the AGN accretion disk could give rise to the kinematic shift in the broad line emission. Second, this could be a recoiling AGN. This system fits the template of an accreting supermassive black hole (SMBH) that has recently received a “kick” from the asymmetric emission of gravitational waves (GWs) following the merger of two progenitor SMBHs. SMBH mergers are a likely end-product of hierarchical structure formation and are the supermassive cousins of the stellar-mass BH mergers observed with LIGO in the GW150914 and GW151226 events. However, a SMBH merger has yet to be unambigously detected. If confirmed as a recoiling AGN, 2MASS J00423991+3017515 will provide the first evidence of this growth pathway acting in the SMBH regime.

  14. calculation of B → D*lv form factor at zero recoil using the Oktay-Kronfeld action

    NASA Astrophysics Data System (ADS)

    Bailey, Jon A.; Bhattacharya, Tanmoy; Gupta, Rajan; Jang, Yong-Chull; Lee, Weonjong; Leem, Jaehoon; Park, Sungwoo; Yoon, Boram

    2018-03-01

    We present the first preliminary results for the semileptonic form factor hA1 (w = 1)/ρAj at zero recoil for the B → D*lv decay using lattice QCD with four flavors of sea quarks. We use the HISQ staggered action for the light valence and sea quarks (the MILC HISQ configurations), and the Oktay-Kronfeld (OK) action for the heavy valence quarks.

  15. Energy-momentum tensor of perturbed tachyon matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokela, Niko; Department of Mathematics and Physics, University of Haifa at Oranim, Tivon 36006; Jaervinen, Matti

    2009-05-15

    We add an initial nonhomogeneous perturbation to an otherwise homogeneous condensing tachyon background and compute its spacetime energy-momentum tensor from world-sheet string theory. We show that in the far future the energy-momentum tensor corresponds to nonhomogeneous pressureless tachyon matter.

  16. Josephson oscillation and self-trapping in momentum space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Feng, Shiping; Yang, Shi-Jie

    2018-04-01

    The Creutz ladder model is studied in the presence of unconventional flux induced by complex tunneling rates along and between the two legs. In the vortex phase, the double-minima band structure is regarded as a double well. By introducing a tunable coupling between the two momentum minima, we demonstrate a phenomenon of Josephson oscillations in momentum space. The condensate density locked in one of the momentum valleys is referred to as macroscopic quantum self-trapping. The on-site interaction of the lattice provides an effective analogy to the double-well model within the two-mode approximation which allows for a quantitative understanding of the Josephson effect and the self-trapping in momentum space.

  17. Chaos-assisted broadband momentum transformation in optical microresonators

    NASA Astrophysics Data System (ADS)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-01

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.

  18. Charge-exchange x-ray spectra: Evidence for significant contributions from radiative decays of doubly excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, R.; Beiersdorfer, P.; Harris, C. L.

    2016-01-21

    Charge-exchange collisions of slow Ne 10+ ions with He, Ne, and Ar targets were studied with simultaneous x-ray and cold-target recoil-ion-momentum spectroscopy proving the contribution of several mechanisms to the radiative stabilization of apparent (4,4) doubly excited states for He and Ne targets and of (5,6) states for Ar. In particular, the stabilization efficiency of the mechanism of dynamic auto-transfer to Rydberg states is confirmed. Moreover, we present evidence for direct radiative decays of (4,4) states populated in collisions with He, which is an experimental indication of the population of so-called unnatural-parity states in such collisions. Lastly, these mechanisms leadmore » to the emission of x-rays that have considerably higher energies than those predicted by current spectral models and may explain recent observations of anomalously large x-ray emission from Rydberg levels.« less

  19. Some dipole shower studies

    NASA Astrophysics Data System (ADS)

    Cabouat, Baptiste; Sjöstrand, Torbjörn

    2018-03-01

    Parton showers have become a standard component in the description of high-energy collisions. Nowadays most final-state ones are of the dipole character, wherein a pair of partons branches into three, with energy and momentum preserved inside this subsystem. For initial-state showers a dipole picture is also possible and commonly used, but the older global-recoil strategy remains a valid alternative, wherein larger groups of partons share the energy-momentum preservation task. In this article we introduce and implement a dipole picture also for initial-state radiation in Pythia, and compare with the existing global-recoil one, and with data. For the case of Deeply Inelastic Scattering we can directly compare with matrix element expressions and show that the dipole picture gives a very good description over the whole phase space, at least for the first branching.

  20. Laser cooling of 85Rb atoms to the recoil-temperature limit

    NASA Astrophysics Data System (ADS)

    Huang, Chang; Kuan, Pei-Chen; Lan, Shau-Yu

    2018-02-01

    We demonstrate the laser cooling of 85Rb atoms in a two-dimensional optical lattice. We follow the two-step degenerate Raman sideband cooling scheme [Kerman et al., Phys. Rev. Lett. 84, 439 (2000), 10.1103/PhysRevLett.84.439], where a fast cooling of atoms to an auxiliary state is followed by a slow cooling to a dark state. This method has the advantage of independent control of the heating rate and cooling rate from the optical pumping beam. We operate the lattice at a Lamb-Dicke parameter η =0.45 and show the cooling of spin-polarized 85Rb atoms to the recoil temperature in both dimensions within 2.4 ms with the aid of adiabatic cooling.

  1. Smoothed dissipative particle dynamics with angular momentum conservation

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard

    2015-01-01

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier-Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor-Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  2. Dielectric barrier structure with hollow electrodes and its recoil effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gasmore » flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.« less

  3. Observation of Polarization Vortices in Momentum Space

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  4. Observation of Polarization Vortices in Momentum Space.

    PubMed

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-04

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  5. Topological photonic orbital-angular-momentum switch

    NASA Astrophysics Data System (ADS)

    Luo, Xi-Wang; Zhang, Chuanwei; Guo, Guang-Can; Zhou, Zheng-Wei

    2018-04-01

    The large number of available orbital-angular-momentum (OAM) states of photons provides a unique resource for many important applications in quantum information and optical communications. However, conventional OAM switching devices usually rely on precise parameter control and are limited by slow switching rate and low efficiency. Here we propose a robust, fast, and efficient photonic OAM switch device based on a topological process, where photons are adiabatically pumped to a target OAM state on demand. Such topological OAM pumping can be realized through manipulating photons in a few degenerate main cavities and involves only a limited number of optical elements. A large change of OAM at ˜10q can be realized with only q degenerate main cavities and at most 5 q pumping cycles. The topological photonic OAM switch may become a powerful device for broad applications in many different fields and motivate a topological design of conventional optical devices.

  6. Role of nuclear charge change and nuclear recoil on shaking processes and their possible implication on physical processes

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant

    2017-12-01

    The probable role of the sudden nuclear charge change and nuclear recoil in the shaking processes during the neutron- or heavy-ion-induced nuclear reactions and weakly interacting massive particle-nucleus scattering has been investigated in the present work. Using hydrogenic wavefunctions, general analytical expressions of survival, shakeup/shakedown, and shakeoff probability have been derived for various subshells of hydrogen-like atomic systems. These expressions are employed to calculate the shaking, shakeup/shakedown, and shakeoff probabilities in some important cases of interest in the nuclear astrophysics and the dark matter search experiments. The results underline that the shaking processes are one of the probable channels of electronic transitions during the weakly interacting massive particle-nucleus scattering, which can be used to probe the dark matter in the sub-GeV regime. Further, it is found that the shaking processes initiating due to nuclear charge change and nuclear recoil during the nuclear reactions may influence the electronic configuration of the participating atomic systems and thus may affect the nuclear reaction measurements at astrophysically relevant energies.

  7. Induced Angular Momentum

    ERIC Educational Resources Information Center

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  8. WIMP detection and slow ion dynamics in carbon nanotube arrays.

    PubMed

    Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  9. Edge momentum transport by neutrals: an interpretive numerical framework

    NASA Astrophysics Data System (ADS)

    Omotani, J. T.; Newton, S. L.; Pusztai, I.; Viezzer, E.; Fülöp, T.; The ASDEX Upgrade Team

    2017-06-01

    Due to their high cross-field mobility, neutrals can contribute to momentum transport even at the low relative densities found inside the separatrix and they can generate intrinsic rotation. We use a charge-exchange dominated solution to the neutral kinetic equation, coupled to neoclassical ions, to evaluate the momentum transport due to neutrals. Numerical solutions to the drift-kinetic equation allow us to cover the full range of collisionality, including the intermediate levels typical of the tokamak edge. In the edge there are several processes likely to contribute to momentum transport in addition to neutrals. Therefore, we present here an interpretive framework that can evaluate the momentum transport through neutrals based on radial plasma profiles. We demonstrate its application by analysing the neutral angular momentum flux for an L-mode discharge in the ASDEX Upgrade tokamak. The magnitudes of the angular momentum fluxes we find here due to neutrals of 0.6-2 \\text{N} \\text{m} are comparable to the net torque on the plasma from neutral beam injection, indicating the importance of neutrals for rotation in the edge.

  10. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  11. The detection of objects in a turbid underwater medium using orbital angular momentum (OAM)

    NASA Astrophysics Data System (ADS)

    Cochenour, Brandon; Rodgers, Lila; Laux, Alan; Mullen, Linda; Morgan, Kaitlyn; Miller, Jerome K.; Johnson, Eric G.

    2017-05-01

    We present an investigation of the optical property of orbital angular momentum (OAM) for use in the detection of objects obscured by a turbid underwater channel. In our experiment, a target is illuminated by a Gaussian beam. An optical vortex is formed by passing the object-reflected and backscattered light through a diffractive spiral phase plate at the receiver, which allows for the spatial separation of coherent and non-coherent light. This provides a method for discriminating target from environment. Initial laboratory results show that the ballistic target return can be detected 2-3 orders of magnitude below the backscatter clutter level. Furthermore, the detection of this coherent component is accomplished with the use of a complicated optical heterodyning scheme. The results suggest new optical sensing techniques for underwater imaging or LIDAR.

  12. Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Koichi; Maruyama, Ryo; Shimamura, Kohei

    2015-08-21

    Energy conversion and momentum coupling using nano-second 1-μm-wavelength pulse laser irradiation on an aluminum target were measured in air and nitrogen gas atmospheres over a wide range of laser pulse energies from sub-J to sub-kJ. From the expansion rate of the shock wave, the blast-wave energy conversion efficiency, η{sub bw}, was deduced as 0.59 ± 0.02 in the air atmosphere at an ambient pressure from 30 to 101 kPa for a constant laser fluence at 115 J/cm{sup 2}. Moreover, the momentum coupling of a circular disk target was formulated uniquely as a function of the dimensionless shock-wave radius and the ratio of the lasermore » spot radius to the disk radius, while η{sub bw} could be approximated as constant for the laser fluence from 4.7 to 4.1 kJ/cm{sup 2}, and the ambient pressure from 0.1 to 101 kPa.« less

  13. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters

    NASA Astrophysics Data System (ADS)

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won

    1996-12-01

    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  14. Relativistic differential-difference momentum operators and noncommutative differential calculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mir-Kasimov, R. M., E-mail: mirkr@theor.jinr.ru

    2013-09-15

    The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics (QM) in the Relativistic Configuration Space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated as the independent term of the total Hamiltonian. This relativistic kinetic energy term is not distinguishing in form from its nonrelativistic counterpart. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generating function for the matrix elements of the unitary irrepsmore » of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the noncommutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS.« less

  15. Characterization of the Oxidation State of 229 Th Recoils Implanted in MgF2 for the Search of the Low-lying 229 Th Isomeric State

    NASA Astrophysics Data System (ADS)

    Barker, Beau; Meyer, Edmund; Schacht, Mike; Collins, Lee; Wilkerson, Marianne; Zhao, Xinxin

    2016-05-01

    The low-lying (7.8 eV) isomeric state in 229 Th has the potential to become a nuclear frequency standard. 229 Th recoils from 233 U decays have been collected in MgF2 for use in the direct search of the transition. Of interest is the oxidation state of the implanted 229 Th atoms as this can have an influence on the decay mechanisms and photon emission rate. Too determine the oxidation state of the implanted 229 Th recoils we have employed laser induced florescence (LIF), and plan-wave pseudopotential DFT calculations to search for emission from thorium ions in oxidation states less than + 4. Our search focused on detecting emission from Th3+ ions. The DFT calculations predicted the Th3+ state to be the most likely to be present in the crystal after Th4+. We also calculated the band structure for the Th3+ doped MgF2 crystal. For LIF spectra a number of excitation wavelengths were employed, emission spectra in the visible to near-IR were recorded along with time-resolved emission spectra. We have found no evidence for Th3+ in the MgF2 plates. We also analyzed the detection limit of our apprentice and found that the minimum number of Th3+ atoms that we could detect is quite small compared to the number of implanted 229 Th recoils. The number of implanted 229 Th recoils was derived from a γ-ray spectrum by monitoring emission from the daughters of 228 Th. These were present in the MgF2 plates due to a 232 U impurity, which decays to 228 Th, in the source. LA-UR-16-20442.

  16. Does representational momentum reflect a distortion of the length or the endpoint of a trajectory?

    PubMed

    Hubbard, Timothy L; Motes, Michael A

    2002-01-01

    Observers viewed a moving target, and after the target vanished, indicated either the initial position or the final position of the target. In Experiment 1, an auditory tone cued observers to indicate either the initial position or the final position; in Experiment 2, different groups of observers indicated the initial position or the final position. Judgments of the initial position were displaced backward in the direction opposite to motion, and judgments of the final position were displaced forward in the direction of motion. The data suggest that the remembered trajectory is longer than the actual trajectory, and the displacement pattern is not consistent with the hypothesis that representational momentum results from a distortion of memory for the location of a trajectory.

  17. Experimental and Theoretical Studies of Laser Cooling and Emittance Control of Neutral Beams.

    DTIC Science & Technology

    1987-01-31

    the collective atomic recoil serves to op reduce the momentum spread of an atomic sample (laser cooling) or to produce a diffraction pattern from a...mtasured 1.5 m downstream from the OKDE interaction region, permits a measure of the ODKE momentum spread. We will discuss each of the various...spectrometer provides a real-time measure of the hydrogen flux, which can be monitored continuously during data collection . We were able to generate

  18. Nanomechanical effects of light unveil photons momentum in medium

    PubMed Central

    Verma, Gopal; Chaudhary, Komal; Singh, Kamal P.

    2017-01-01

    Precision measurement on momentum transfer between light and fluid interface has many implications including resolving the intriguing nature of photons momentum in a medium. For example, the existence of Abraham pressure of light under specific experimental configuration and the predictions of Chau-Amperian formalism of optical momentum for TE and TM polarizations remain untested. Here, we quantitatively and cleanly measure nanomehanical dynamics of water surface excited by radiation pressure of a laser beam. We systematically scanned wide range of experimental parameters including long exposure times, angle of incidence, spot size and laser polarization, and used two independent pump-probe techniques to validate a nano- bump on the water surface under all the tested conditions, in quantitative agreement with the Minkowski’s momentum of light. With careful experiments, we demonstrate advantages and limitations of nanometer resolved optical probing techniques and narrow down actual manifestation of optical momentum in a medium. PMID:28198468

  19. A new momentum management controller for the space station

    NASA Technical Reports Server (NTRS)

    Wie, B.; Byun, K. W.; Warren, V. W.

    1988-01-01

    A new approach to CMG (control moment gyro) momentum management and attitude control of the Space Station is developed. The control algorithm utilizes both the gravity-gradient and gyroscopic torques to seek torque equilibrium attitude in the presence of secular and cyclic disturbances. Depending upon mission requirements, either pitch attitude or pitch-axis CMG momentum can be held constant: yaw attitude and roll-axis CMG momentum can be held constant, while roll attitude and yaw-axis CMG momentum cannot be held constant. As a result, the overall attitude and CMG momentum oscillations caused by cyclic aero-dynamic disturbances are minimized. A state feedback controller with minimal computer storage requirement for gain scheduling is also developed. The overall closed-loop system is stable for + or - 30 percent inertia matrix variations and has more than + or - 10 dB and 45 deg stability margins in each loop.

  20. Rapidity, azimuthal, and multiplicity dependence of mean transverse momentum and transverse momentum correlations in {pi}{sup +}p and K{sup +}p collisions in {radical}(s)=22 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atayan, M.R.; Gulkanyan, H.; Bai Yuting

    Rapidity, azimuthal and multiplicity dependence of mean transverse momentum and transverse momentum correlations of charged particles is studied in {pi}{sup +}p and K{sup +}p collisions at 250 GeV/c incident beam momentum. For the first time, it is found that the rapidity dependence of the two-particle transverse momentum correlation is different from that of the mean transverse momentum, but both have similar multiplicity dependence. In particular, the transverse momentum correlations are boost invariant. This is similar to the recently found boost invariance of the charge balance function. A strong azimuthal dependence of the transverse momentum correlations originates from the constraint ofmore » energy-momentum conservation. The results are compared with those from the PYTHIA Monte Carlo generator. The similarities to and differences with the results from current heavy ion experiments are discussed.« less

  1. Chaos-assisted broadband momentum transformation in optical microresonators.

    PubMed

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-20

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. New target and detection methods: active detectors

    NASA Astrophysics Data System (ADS)

    Mittig, W.; Savajols, H.; Demonchy, C. E.; Giot, L.; Roussel-Chomaz, P.; Wang, H.; Ter-Akopian, G.; Fomichev, A.; Golovkov, M. S.; Stepansov, S.; Wolski, R.; Alamanos, N.; Drouart, A.; Gillibert, A.; Lapoux, V.; Pollacco, E.

    2003-07-01

    The study of nuclei far from stability interacting with simple target nuclei, such as protons, deuterons, 3He and 4He implies the use of inverse kinematics. The very special kinematics, together with the low intensities of the beams calls for special techniques. In july 2002 we tested a new detector, in which the detector gas is the target. This allows in principle a 4π solid angle of the detection, and a big effective target thickness without loss of resolution. The detector developped, called Maya, used isobuthane C4H10 as gas in present tests, and other gases are possible. The multiplexed electronics of more than 1000channels allows the reconstruction of the events occuring between the incoming particle and the detector gas atoms in 3D. Here we were interested in the elastic scattering of 8He on protons for the study of the isobaric analogue states (IAS) of 9He. The beam, in this case, is stopped in the detector. The resonance energy is determined by the place of interaction and the energy of the recoiling proton. The design of the detector is shown, together with some preliminary results are discussed.

  3. Binary Black Hole Mergers and Recoil Kicks

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.

    2006-01-01

    Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.

  4. Transverse Momentum Distributions of Electron in Simulated QED Model

    NASA Astrophysics Data System (ADS)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  5. Prospects for detection of target-dependent annual modulation in direct dark matter searches

    DOE PAGES

    Nobile, Eugenio Del; Gelmini, Graciela B.; Witte, Samuel J.

    2016-02-03

    Earth's rotation about the Sun produces an annual modulation in the expected scattering rate at direct dark matter detection experiments. The annual modulation as a function of the recoil energy E R imparted by the dark matter particle to a target nucleus is expected to vary depending on the detector material. However, for most interactions a change of variables from E R to v min, the minimum speed a dark matter particle must have to impart a fixed E R to a target nucleus, produces an annual modulation independent of the target element. We recently showed that if the darkmore » matter-nucleus cross section contains a non-factorizable target and dark matter velocity dependence, the annual modulation as a function of v min can be target dependent. Here we examine more extensively the necessary conditions for target-dependent modulation, its observability in present-day experiments, and the extent to which putative signals could identify a dark matter-nucleus differential cross section with a non-factorizable dependence on the dark matter velocity.« less

  6. Plasma electron hole kinematics. I. Momentum conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, I. H.; Zhou, C.

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, includingmore » self-acceleration at formation, and hole pushing and trapping by ion streams.« less

  7. Adaptive momentum management for large space structures

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1987-01-01

    Momentum management is discussed for a Large Space Structure (LSS) with the structure selected configuration being the Initial Orbital Configuration (IOC) of the dual keel space station. The external forces considered were gravity gradient and aerodynamic torques. The goal of the momentum management scheme developed is to remove the bias components of the external torques and center the cyclic components of the stored angular momentum. The scheme investigated is adaptive to uncertainties of the inertia tensor and requires only approximate knowledge of principle moments of inertia. Computational requirements are minimal and should present no implementation problem in a flight type computer and the method proposed is shown to be effective in the presence of attitude control bandwidths as low as .01 radian/sec.

  8. The price momentum of stock in distribution

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Wang, Longfei

    2018-02-01

    In this paper, a new momentum of stock in distribution is proposed and applied in real investment. Firstly, assuming that a stock behaves as a multi-particle system, its share-exchange distribution and cost distribution are introduced. Secondly, an estimation of the share-exchange distribution is given with daily transaction data by 3 σ rule from the normal distribution. Meanwhile, an iterative method is given to estimate the cost distribution. Based on the cost distribution, a new momentum is proposed for stock system. Thirdly, an empirical test is given to compare the new momentum with others by contrarian strategy. The result shows that the new one outperforms others in many places. Furthermore, entropy of stock is introduced according to its cost distribution.

  9. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  10. Effects of Wall-Normal and Angular Momentum Injections in Airfoil Separation Control

    NASA Astrophysics Data System (ADS)

    Munday, Phillip M.; Taira, Kunihiko

    2018-05-01

    The objective of this computational study is to quantify the influence of wall-normal and angular momentum injections in suppressing laminar flow separation over a canonical airfoil. Open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at $\\alpha = 9^\\circ$ and $Re = 23,000$ is examined with large-eddy simulations. This study independently introduces wall-normal momentum and angular momentum into the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. It is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Lift enhancement and suppression of separation with the wall-normal and angular momentum inputs are characterized by modifying the standard definition of the coefficient of momentum. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With this single modified coefficient of momentum, we are able to categorize each controlled flow into separated, transitional, and attached flows.

  11. Autonomous momentum management for space station, exhibit A

    NASA Technical Reports Server (NTRS)

    Hahn, E.

    1984-01-01

    The report discusses momentum management for the CDG Planar Space Platform. The external torques on the Space Station are assumed to be gravity gradient and aerodynamic with both having bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Various techniques to counteract the bias torques and center the cyclic momentum were investigated including gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques.

  12. Time series momentum and contrarian effects in the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Shi, Huai-Long; Zhou, Wei-Xing

    2017-10-01

    This paper concentrates on the time series momentum or contrarian effects in the Chinese stock market. We evaluate the performance of the time series momentum strategy applied to major stock indices in mainland China and explore the relation between the performance of time series momentum strategies and some firm-specific characteristics. Our findings indicate that there is a time series momentum effect in the short run and a contrarian effect in the long run in the Chinese stock market. The performances of the time series momentum and contrarian strategies are highly dependent on the look-back and holding periods and firm-specific characteristics.

  13. General Navier–Stokes-like momentum and mass-energy equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monreal, Jorge, E-mail: jmonreal@mail.usf.edu

    2015-03-15

    A new system of general Navier–Stokes-like equations is proposed to model electromagnetic flow utilizing analogues of hydrodynamic conservation equations. Such equations are intended to provide a different perspective and, potentially, a better understanding of electromagnetic mass, energy and momentum behaviour. Under such a new framework additional insights into electromagnetism could be gained. To that end, we propose a system of momentum and mass-energy conservation equations coupled through both momentum density and velocity vectors.

  14. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  15. Time-resolved orbital angular momentum spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyan, Mehmet A.; Kikkawa, James M.

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  16. Angular momentum

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Sinatra, Taylor

    2013-12-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in the physics laboratory. Many traditional physics experiments can now be performed very conveniently in a pedagogically enlightening environment while simultaneously reducing the laboratory budget substantially by using student-owned smartphones.

  17. Prediction of Lunar Reconnaissance Orbiter Reaction Wheel Assembly Angular Momentum Using Regression Analysis

    NASA Technical Reports Server (NTRS)

    DeHart, Russell

    2017-01-01

    This study determines the feasibility of creating a tool that can accurately predict Lunar Reconnaissance Orbiter (LRO) reaction wheel assembly (RWA) angular momentum, weeks or even months into the future. LRO is a three-axis stabilized spacecraft that was launched on June 18, 2009. While typically nadir-pointing, LRO conducts many types of slews to enable novel science collection. Momentum unloads have historically been performed approximately once every two weeks with the goal of maintaining system total angular momentum below 70 Nms; however flight experience shows the models developed before launch are overly conservative, with many momentum unloads being performed before system angular momentum surpasses 50 Nms. A more accurate model of RWA angular momentum growth would improve momentum unload scheduling and decrease the frequency of these unloads. Since some LRO instruments must be deactivated during momentum unloads and in the case of one instrument, decontaminated for 24 hours there after a decrease in the frequency of unloads increases science collection. This study develops a new model to predict LRO RWA angular momentum. Regression analysis of data from October 2014 to October 2015 was used to develop relationships between solar beta angle, slew specifications, and RWA angular momentum growth. The resulting model predicts RWA angular momentum using input solar beta angle and mission schedule data. This model was used to predict RWA angular momentum from October 2013 to October 2014. Predictions agree well with telemetry; of the 23 momentum unloads performed from October 2013 to October 2014, the mean and median magnitude of the RWA total angular momentum prediction error at the time of the momentum unloads were 3.7 and 2.7 Nms, respectively. The magnitude of the largest RWA total angular momentum prediction error was 10.6 Nms. Development of a tool that uses the models presented herein is currently underway.

  18. Double spin asymmetries of inclusive hadron electroproductions from a transversely polarized ³He target

    DOE PAGES

    Zhao, Yuxiang X.

    2015-07-14

    We report the measurement of beam-target double-spin asymmetries A LT in the inclusive production of identified hadrons, e +³He ↑ → h + X, using a longitudinally polarized 5.9 GeV electron beam and a transversely polarized ³He target. Hadrons (π ±, K ± and proton) were detected at 16° with an average momentum h>=2.35 GeV/c and a transverse momentum (p T) coverage from 0.60 to 0.68 GeV/c. Asymmetries from the ³He target were observed to be non-zero for π ± production when the target was polarized transversely in the horizontal plane. The π⁺ and π⁻ asymmetries have opposite signs, analogousmore » to the behavior of A LT in semi-inclusive deep-inelastic scattering.« less

  19. Localization in momentum space of ultracold atoms in incommensurate lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larcher, M.; Dalfovo, F.; Modugno, M.

    2011-01-15

    We characterize the disorder-induced localization in momentum space for ultracold atoms in one-dimensional incommensurate lattices, according to the dual Aubry-Andre model. For low disorder the system is localized in momentum space, and the momentum distribution exhibits time-periodic oscillations of the relative intensity of its components. The behavior of these oscillations is explained by means of a simple three-mode approximation. We predict their frequency and visibility by using typical parameters of feasible experiments. Above the transition the system diffuses in momentum space, and the oscillations vanish when averaged over different realizations, offering a clear signature of the transition.

  20. Recoil /sup 18/F chemistry. XI. High pressure investigation of 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, R.G.; Root, J.W.

    1980-06-15

    Nuclear recoil /sup 18/F reactions in CH/sub 3/CHF/sub 2/ have been investigated throughout the effective pressure range 0.3--190 atm. The principal reaction channel is F-to-HF abstraction for which the combined yield from quasithermal and energetic processes in the presence of 5 mole% H/sub 2/S additive is 83.4% +- 0.2%. A reaction mechanism is proposed that involves the organic product forming channels F-for-F, F-for-..cap alpha..H, F-for-..beta..H, F-for-CH/sub 3/ and F-for-CHF/sub 2/. The results are compared with those reported for the /sup 18/F+CH/sub 3/CF/sub 3/ system.

  1. The mass and angular momentum of reconstructed metric perturbations

    NASA Astrophysics Data System (ADS)

    van de Meent, Maarten

    2017-06-01

    We prove a key result regarding the mass and angular momentum content of linear vacuum perturbations of the Kerr metric obtained through the formalism developed by Chrzarnowski, Cohen, and Kegeles (CCK). More precisely, we prove that the Abbott-Deser mass and angular momentum integrals of any such perturbation vanish when that perturbation was obtained from a regular Fourier mode of the Hertz potential. As a corollary we obtain a generalization of previous results on the completion of the ‘no string’ radiation gauge metric perturbation generated by a point particle. We find that for any bound orbit around a Kerr black hole, the mass and angular momentum perturbations completing the CCK metric are simply the energy and angular momentum of the particle ‘outside’ the orbit and vanish ‘inside’ the orbit.

  2. The momentum of an electromagnetic wave inside a dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Testa, Massimo, E-mail: massimo.testa@roma1.infn.it

    2013-09-15

    The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from themore » conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.« less

  3. Momentum-space cigar geometry in topological phases

    NASA Astrophysics Data System (ADS)

    Palumbo, Giandomenico

    2018-01-01

    In this paper, we stress the importance of momentum-space geometry in the understanding of two-dimensional topological phases of matter. We focus, for simplicity, on the gapped boundary of three-dimensional topological insulators in class AII, which are described by a massive Dirac Hamiltonian and characterized by an half-integer Chern number. The gap is induced by introducing a magnetic perturbation, such as an external Zeeman field or a ferromagnet on the surface. The quantum Bures metric acquires a central role in our discussion and identifies a cigar geometry. We first derive the Chern number from the cigar geometry and we then show that the quantum metric can be seen as a solution of two-dimensional non-Abelian BF theory in momentum space. The gauge connection for this model is associated to the Maxwell algebra, which takes into account the Lorentz symmetries related to the Dirac theory and the momentum-space magnetic translations connected to the magnetic perturbation. The Witten black-hole metric is a solution of this gauge theory and coincides with the Bures metric. This allows us to calculate the corresponding momentum-space entanglement entropy that surprisingly carries information about the real-space conformal field theory describing the defect lines that can be created on the gapped boundary.

  4. Hidden momentum and the Abraham-Minkowski debate

    NASA Astrophysics Data System (ADS)

    Saldanha, Pablo L.; Filho, J. S. Oliveira

    2017-04-01

    We use an extended version of electrodynamics, which admits the existence of magnetic charges and currents, to discuss how different models for electric and magnetic dipoles do or do not carry hidden momentum under the influence of external electromagnetic fields. Based on that, we discuss how the models adopted for the electric and magnetic dipoles from the particles that compose a material medium influence the expression for the electromagnetic part of the light momentum in the medium. We show that Abraham expression is compatible with electric dipoles formed by electric charges and magnetic dipoles formed by magnetic charges, while Minkowski expression is compatible with electric dipoles formed by magnetic currents and magnetic dipoles formed by electric currents. The expression ɛ0E ×B , on the other hand, is shown to be compatible with electric dipoles formed by electric charges and magnetic dipoles formed by electric currents, which are much more natural models. So this expression has an interesting interpretation in the Abraham-Minkowski debate about the momentum of light in a medium: It is the expression compatible with the nonexistence of magnetic charges. We also provide a simple justification of why Abraham and Minkowski momenta can be associated with the kinetic and canonical momentum of light, respectively.

  5. Staggering of angular momentum distribution in fission

    NASA Astrophysics Data System (ADS)

    Tamagno, Pierre; Litaize, Olivier

    2018-03-01

    We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  6. Modeling momentum transfer by the DART spacecraft into the moon of Didymos

    NASA Astrophysics Data System (ADS)

    Stickle, Angela M.; Atchison, Justin A.; Barnouin, Olivier S.; Cheng, Andy F.; Ernst, Carolyn M.; Richardson, Derek C.; Rivkin, Andy S.

    2015-11-01

    The Asteroid Impact and Deflection Assessment (AIDA) mission is a joint concept between NASA and ESA designed to test the effectiveness of a kinetic impactor in deflecting an asteroid. The mission is composed of two independent, but mutually supportive, components: the NASA-led Double Asteroid Redirect Test (DART), and the ESA-led Asteroid Impact Monitoring (AIM) mission. The spacecraft will be sent to the near-Earth binary asteroid 65803 Didymos, which makes unusually close approaches to Earth in 2022 and 2024. These close approaches make it an ideal target for a kinetic impactor asteroid deflection demonstration, as it will be easily observable from Earth-based observatories. The ~2 m3, 300 kg DART spacecraft will impact the moon of the binary system at 6.25 km/s. The deflection of the moon will then be determined by the orbiting AIM spacecraft and from ground-based observations by measuring the change in the moon’s orbital period. A modeling study supporting this mission concept was performed to determine the expected momentum transfer to the moon following impact. The combination of CTH hydrocode models, analytical scaling predictions, and N-body pkdgrav simulations helps to constrain the expected results of the kinetic impactor experiment.To better understand the large parameter space (including material strength, porosity, impact location and angle), simulations of the DART impact were performed using the CTH hydrocode. The resultant crater size, velocity imparted to the moon, and momentum transfer were calculated for all cases. For “realistic” asteroid types, simulated DART impacts produce craters with diameters on the order of 10 m, an imparted Δv of 0.5-2 mm/s and a dimensionless momentum enhancement (“beta factor”) of 1.07-5 for targets ranging from a highly porous aggregate to a fully dense rock. These results generally agree with predictions from theoretical and analytical studies. Following impact, pkdgrav simulations of the system evolution

  7. An optical model description of momentum transfer in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Townsend, Lawrence W.; Wilson, J. W.; Norbury, John W.

    1989-01-01

    An optical model description of momentum transfer in relativistic heavy ion collisions, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating collision impact parameters is discussed.

  8. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  9. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  10. A systematic construction of microstate geometries with low angular momentum

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Heidmann, Pierre; Ramírez, Pedro F.

    2017-10-01

    We outline a systematic procedure to obtain horizonless microstate geometries that have the same charges as three-charge five-dimensional black holes with a macroscopically-large horizon area and an arbitrarily-small angular momentum. There are two routes through which such solutions can be constructed: using multi-center Gibbons-Hawking (GH) spaces or using superstratum technology. So far the only solutions corre-sponding to microstate geometries for black holes with no angular momentum have been obtained via superstrata [1], and multi-center Gibbons-Hawking spaces have been believed to give rise only to microstate geometries of BMPV black holes with a large angular mo-mentum [2]. We perform a thorough search throughout the parameter space of smooth horizonless solutions with four GH centers and find that these have an angular momentum that is generally larger than 80% of the cosmic censorship bound. However, we find that solutions with three GH centers and one supertube (which are smooth in six-dimensional supergravity) can have an arbitrarily-low angular momentum. Our construction thus gives a recipe to build large classes of microstate geometries for zero-angular-momentum black holes without resorting to superstratum technology.

  11. Momentum transfer conduits -- A new microscopic look at porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moaveni, S.

    In this paper, the flow of fluid through porous media is investigated on a microscopic scale by representing a porous medium by an assemblage of hypothetical conduits through which the fluid momentum is transferred across the medium. It is shown that the rate of transfer of fluid momentum depends on the geometrical structure of the conduits such as the number density of momentum transfer conduits (MTCs), the length distribution and the directional distribution of these hypothetical conduits. In addition an expression for the total number of momentum transfer conduits reaching an arbitrary areal element is developed. Finally, an average heightmore » normal to an arbitrary areal element at which the MTCs were last discharged is formulated. This idea leads to definition of momentum thickness, which in turn may be used to define an effective (pseudo) viscosity for a given porous medium.« less

  12. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, N.; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Yan, N., E-mail: yanning@ipp.ac.cn

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentummore » transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.« less

  13. Effect of stride length on overarm throwing delivery: A linear momentum response.

    PubMed

    Ramsey, Dan K; Crotin, Ryan L; White, Scott

    2014-12-01

    Changing stride length during overhand throwing delivery is thought to alter total body and throwing arm linear momentums, thereby altering the proportion of throwing arm momentum relative to the total body. Using a randomized cross-over design, nineteen pitchers (15 collegiate and 4 high school) were assigned to pitch two simulated 80-pitch games at ±25% of their desired stride length. An 8-camera motion capture system (240Hz) integrated with two force plates (960Hz) and radar gun tracked each throw. Segmental linear momentums in each plane of motion were summed yielding throwing arm and total body momentums, from which compensation ratio's (relative contribution between the two) were derived. Pairwise comparisons at hallmark events and phases identified significantly different linear momentum profiles, in particular, anteriorly directed total body, throwing arm, and momentum compensation ratios (P⩽.05) as a result of manipulating stride length. Pitchers with shorter strides generated lower forward (anterior) momentum before stride foot contact, whereas greater upward and lateral momentum (toward third base) were evident during the acceleration phase. The evidence suggests insufficient total body momentum in the intended throwing direction may potentially influence performance (velocity and accuracy) and perhaps precipitate throwing arm injuries. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Recoil Inversion in the Photodissociation of Carbonyl Sulfide near 234 nm.

    PubMed

    Sofikitis, Dimitris; Suarez, Jaime; Schmidt, Johan A; Rakitzis, T Peter; Farantos, Stavros C; Janssen, Maurice H M

    2017-06-23

    We report the observation of recoil inversion of the CO (v=0, J_{CO}=66) state in the UV dissociation of lab-frame oriented carbonyl sulfide (OCS). This state is ejected in the opposite direction with respect to all other (>30) states and in absence of any OCS rotation, thus resulting in spatial filtering of this particular high-J rovibrational state. This inversion is caused by resonances occurring in shallow local minima of the molecular potential, which bring the sulfur closer to the oxygen than the carbon atom, and is a striking example where such subtleties severely modify the photofragment trajectories. The resonant behavior is observed only in the photofragment trajectories and not in their population, showing that stereodynamic measurements from oriented molecules offer an indispensable probe for exploring energy landscapes.

  15. Reactive Collisions in Crossed Molecular Beams

    DOE R&D Accomplishments Database

    Herschbach, D. R.

    1962-02-01

    The distribution of velocity vectors of reaction products is discussed with emphasis on the restrictions imposed by the conservation laws. The recoil velocity that carries the products away from the center of mass shows how the energy of reaction is divided between internal excitation and translation. Similarly, the angular distributions, as viewed from the center of mass, reflect the partitioning of the total angular momentum between angular momenta of individual molecules and orbital angular momentum associated with their relative motion. Crossed-beam studies of several reactions of the type M + RI yields R + MI are described, where M = K, Rb, Cs, and R = CH{sub 3}, C{sub 3}H{sub 5}, etc. The results show that most of the energy of reaction goes into internal excitation of the products and that the angular distribution is quite anisotropic, with most of the MI recoiling backward (and R forward) with respect to the incoming K beam. (auth)

  16. Nonlinear parallel momentum transport in strong electrostatic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu, E-mail: luwang@hust.edu.cn; Wen, Tiliang; Diamond, P. H.

    2015-05-15

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller thanmore » the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.« less

  17. Modeling Momentum Transfer from Kinetic Impacts: Implications for Redirecting Asteroids

    DOE PAGES

    Stickle, A. M.; Atchison, J. A.; Barnouin, O. S.; ...

    2015-05-19

    Kinetic impactors are one way to deflect a potentially hazardous object headed for Earth. The Asteroid Impact and Deflection Assessment (AIDA) mission is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is composed of a ~300-kg spacecraft designed to impact the moon of the binary system 65803 Didymos. The deflection of the moon will be measured by the ESA-led Asteroid Impact Mission (AIM) (which will characterize the moon) and from ground-based observations. Because the material properties and internal structure ofmore » the target are poorly constrained, however, analytical models and numerical simulations must be used to understand the range of potential outcomes. Here, we describe a modeling effort combining analytical models and CTH simulations to determine possible outcomes of the DART impact. We examine a wide parameter space and provide predictions for crater size, ejecta mass, and momentum transfer following the impact into the moon of the Didymos system. For impacts into “realistic” asteroid types, these models produce craters with diameters on the order of 10 m, an imparted Δv of 0.5–2 mm/s and a momentum enhancement of 1.07 to 5 for a highly porous aggregate to a fully dense rock.« less

  18. INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; Lin, D. N. C.; McElwaine, J. N.

    2013-07-20

    We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation, and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in Earth's atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explainmore » many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars, and the non-synchronous orbits of interacting binaries.« less

  19. Gravity wave momentum flux estimation from CRISTA satellite data

    NASA Astrophysics Data System (ADS)

    Ern, M.; Preusse, P.; Alexander, M. J.; Offermann, D.

    2003-04-01

    Temperature altitude profiles measured by the CRISTA satellite were analyzed for gravity waves (GWs). Amplitudes, vertical and horizontal wavelengths of GWs are retrieved by applying a combination of maximum entropy method (MEM) and harmonic analysis (HA) to the temperature height profiles and subsequently comparing the so retrieved GW phases of adjacent altitude profiles. From these results global maps of the absolute value of the vertical flux of horizontal momentum have been estimated. Significant differences between distributions of the temperature variance and distributions of the momentum flux exist. For example, global maps of the momentum flux show a pronounced northward shift of the equatorial maximum whereas temperature variance maps of the tropics/subtropics are nearly symmetric with respect to the equator. This indicates the importance of the influence of horizontal and vertical wavelength distribution on global structures of the momentum flux.

  20. X-ray burst studies with the JENSA gas jet target

    NASA Astrophysics Data System (ADS)

    Schmidt, Konrad; Chipps, Kelly A.; Ahn, Sunghoon; Allen, Jacob M.; Ayoub, Sara; Bardayan, Daniel W.; Blackmon, Jeffrey C.; Blankstein, Drew; Browne, Justin; Cha, Soomi; Chae, Kyung YUK; Cizewski, Jolie; Deibel, Catherine M.; Deleeuw, Eric; Gomez, Orlando; Greife, Uwe; Hager, Ulrike; Hall, Matthew R.; Jones, Katherine L.; Kontos, Antonios; Kozub, Raymond L.; Lee, Eunji; Lepailleur, Alex; Linhardt, Laura E.; Matos, Milan; Meisel, Zach; Montes, Fernando; O'Malley, Patrick D.; Ong, Wei Jia; Pain, Steven D.; Sachs, Alison; Schatz, Hendrik; Schmitt, Kyle T.; Smith, Karl; Smith, Michael S.; Soares de Bem, Natã F.; Thompson, Paul J.; Toomey, Rebecca; Walter, David

    2018-01-01

    When a neutron star accretes hydrogen and helium from the outer layers of its companion star, thermonuclear burning enables the αp-process as a break out mechanism from the hot CNO cycle. Model calculations predict (α, p) reaction rates significantly affect both the light curves and elemental abundances in the burst ashes. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target enables the direct measurement of previously inaccessible (α,p) reactions with radioactive beams provided by the rare isotope re-accelerator ReA3 at the National Superconducting Cyclotron Laboratory (NSCL), USA. JENSA is going to be the main target for the Recoil Separator for Capture Reactions (SECAR) at the Facility for Rare Isotope Beams (FRIB). Commissioning of JENSA and first experiments at Oak Ridge National Laboratory (ORNL) showed a highly localized, pure gas target with a density of ˜1019 atoms per square centimeter. Preliminary results are presented from the first direct cross section measurement of the 34Ar(α, p)37 K reaction at NSCL.

  1. The energy-momentum tensor(s) in classical gauge theories

    DOE PAGES

    Blaschke, Daniel N.; Gieres, François; Reboud, Méril; ...

    2016-07-12

    We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. In conclusion, the relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.

  2. Differential cross sections and recoil polarizations for the reaction γ p → K + Σ 0

    DOE PAGES

    Dey, B.; Meyer, C. A.; Bellis, M.; ...

    2010-08-06

    Here, high-statistics measurements of differential cross sections and recoil polarizations for the reactionmore » $$\\gamma p \\rightarrow K^+ \\Sigma^0$$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($$\\sqrt{s}$$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $$K^{+}p\\pi^{-}$$($$\\gamma$$) and $$K^{+}p$$($$\\pi^-,\\gamma$$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $$\\sqrt{s}$$ coverage. Above $$\\sqrt{s} \\approx 2.5$$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($$P_\\Sigma$$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $$P_\\Sigma$$ is of the same magnitude but opposite sign as $$P_\\Lambda$$, in agreement with the static SU(6) quark model prediction of $$P_\\Sigma \\approx -P_\\Lambda$$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $$P_\\Sigma$$ and $$P_\\Lambda$$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.« less

  3. The total energy-momentum tensor for electromagnetic fields in a dielectric

    NASA Astrophysics Data System (ADS)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density

  4. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE PAGES

    Aghasyan, M.; Avakian, H.; De Sanctis, E.; ...

    2015-03-01

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  5. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghasyan, M.; Avakian, H.; De Sanctis, E.

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  6. Dead-blow hammer design applied to a calibration target mechanism to dampen excessive rebound

    NASA Technical Reports Server (NTRS)

    Lim, Brian Y.

    1991-01-01

    An existing rotary electromagnetic driver was specified to be used to deploy and restow a blackbody calibration target inside of a spacecraft infrared science instrument. However, this target was much more massive than any other previously inherited design applications. The target experienced unacceptable bounce when reaching its stops. Without any design modification, the momentum generated by the driver caused the target to bounce back to its starting position. Initially, elastomeric dampers were used between the driver and the target. However, this design could not prevent the bounce, and it compromised the positional accuracy of the calibration target. A design that successfully met all the requirements incorporated a sealed pocket 85 percent full of 0.75 mm diameter stainless steel balls in the back of the target to provide the effect of a dead-blow hammer. The energy dissipation resulting from the collision of balls in the pocket successfully dampened the excess momentum generated during the target deployment. The disastrous effects of new requirements on a design with a successful flight history, the modifications that were necessary to make the device work, and the tests performed to verify its functionality are described.

  7. Gas kinematics, morphology and angular momentum in the FIRE simulations

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew; Hopkins, Philip F.; Weisz, Daniel R.; Chan, T. K.; Fitts, Alex; Boylan-Kolchin, Michael; Kereš, Dušan; Faucher-Giguère, Claude-André; Garrison-Kimmel, Shea

    2018-01-01

    We study the z = 0 gas kinematics, morphology and angular momentum content of isolated galaxies in a suite of cosmological zoom-in simulations from the FIRE project spanning Mstar = 106-11 M⊙. Gas becomes increasingly rotationally supported with increasing galaxy mass. In the lowest mass galaxies (Mstar < 108 M⊙), gas fails to form a morphological disc and is primarily dispersion and pressure supported. At intermediate masses (Mstar = 108-10 M⊙), galaxies display a wide range of gas kinematics and morphologies, from thin, rotating discs to irregular spheroids with negligible net rotation. All the high-mass (Mstar = 1010-11 M⊙) galaxies form rotationally supported gas discs. Many of the haloes whose galaxies fail to form discs harbour high angular momentum gas in their circumgalactic medium. The ratio of the specific angular momentum of gas in the central galaxy to that of the dark matter halo increases significantly with galaxy mass, from 〈jgas〉/〈jDM〉 ∼ 0.1 at M_star=10^{6-7} M_{⊙} to 〈jgas〉/〈jDM〉 ∼ 2 at Mstar = 1010-11 M⊙. The reduced rotational support in the lowest mass galaxies owes to (a) stellar feedback and the UV background suppressing the accretion of high angular momentum gas at late times, and (b) stellar feedback driving large non-circular gas motions. We broadly reproduce the observed scaling relations between galaxy mass, gas rotation velocity, size and angular momentum, but may somewhat underpredict the incidence of disky, high angular momentum galaxies at the lowest observed masses (Mstar = (106-2 × 107) M⊙). Stars form preferentially from low angular momentum gas near the galactic centre and are less rotationally supported than gas. The common assumption that stars follow the same rotation curve as gas thus substantially overestimates the simulated galaxies' stellar angular momentum, particularly at low masses.

  8. The magnetic toroidal sector: a broad-band electron-positron pair spectrometer

    NASA Astrophysics Data System (ADS)

    Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Litvinov, Yuri; Spillmann, Uwe

    2016-05-01

    At the future relativistic storage-ring HESR at FAIR the study of electron-positron pairs from non-nuclear, atomic processes will be one of the goals of the experimental program with kinematically complete experiments focusing on momentum spectroscopy of coincident emission of electrons and positrons from free-free pairs and corresponding recoil ions. The underlying production mechanisms belong to central topics of QED in strong fields. We present first results on the electron-optical properties of a magnetic toroidal sector configuration enabling coincident detection of free-free electron-positron pairs; this spectrometer is suitable for implementation into a storage ring with a supersonic jet target and covering a wide range of lepton emission into the forward hemisphere. The simulation calculations are performed using the OPERA code.

  9. Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. Angular momentum

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.; Li, Yanyan; Weinstein, Gilbert

    2008-10-01

    We extend the validity of Dain's angular-momentum inequality to maximal, asymptotically flat, initial data sets on a simply connected manifold with several asymptotically flat ends which are invariant under a U(1) action and which admit a twist potential.

  10. Neutron spectrum measurements using proton recoil proportional counters: results of measurements of leakage spectra for the Little Boy assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, E.F.; Yule, T.J.

    1984-01-01

    Measurements of degraded fission-neutron spectra using recoil proportional counters are done routinely for studies involving fast reactor mockups. The same techniques are applicable to measurements of neutron spectra required for personnel dosimetry in fast neutron environments. A brief discussion of current applications of these methods together with the results of a measurement made on the LITTLE BOY assembly at Los Alamos are here described.

  11. Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2015-04-01

    We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.

  12. Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2015-10-01

    We present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. Advantages of employing Bessel weighting are that transverse momentum weighted asymmetries provide a means to disentangle the convolutions in the cross section in a model independent way. The resulting compact expressions immediately connect to work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions. As a test case, we apply the procedure to studies of the double longitudinal spin asymmetry in SIDIS using a dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations. Bessel weighting provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs. Work is supported by the U.S. Department of Energy under Contract No. DE-FG02-07ER41460.

  13. Axial momentum lost to a lateral wall of a helicon plasma source.

    PubMed

    Takahashi, Kazunori; Chiba, Aiki; Komuro, Atsushi; Ando, Akira

    2015-05-15

    Momentum exerted to a lateral wall of a helicon plasma source is individually measured for argon, krypton, and xenon gases. A significant loss of the axial plasma momentum to the lateral wall, which has been assumed to be negligible, is experimentally identified when an axially asymmetric density profile is formed in the source. This indicates that the radially lost ions deliver not only the radial momentum but also the axial momentum to the lateral wall. The formation of the axial asymmetry causing the momentum loss is interpreted with competition between the magnetic field and neutral depletion effects.

  14. Flow structure at low momentum ratio river confluences

    NASA Astrophysics Data System (ADS)

    Moradi, Gelare; Rennie, Colin. D.; Cardot, Romain; Mettra, François; Lane, Stuart. N.

    2017-04-01

    The flow structure at river confluences is a complex pattern of fluid motion and can be characterized by the formation of secondary circulation. As river confluences play an essential role on flow hydrodynamics and control the movement of sediment through river networks, there has been substantial attention given to this subject in recent decades. However, there is still much debate over how momentum ratio and sediment transport can control secondary circulation and mixing processes. In particular, studies have tended to assume that there is some equilibrium between the bed morphology present and the flow structures that form in the junction region. However, this overlooks the fact that tributaries may be associated with highly varying sediment supply regimes, especially for shorter and steeper tributaries, with temporal changes in sediment delivery ratios (between the main stem and the tributary) that do not follow exactly changes in momentum ratio. This may lead to bed morphologies that are a function of rates of historical sediment supply during sediment transporting events and not the momentum ratio associated with the junction during its measurement. It is quite possible that tributaries with low flow momentum ratio have a relatively higher sediment delivery ratio, such that the tributary is still able to influence significantly secondary circulation in the main channel, long after the sediment transport event, and despite its low flow momentum during measurement. The focus of this paper is low momentum ratio junctions where it is possible that the tributary can deliver large amounts of sediment. Secondary circulation at junctions is thought to be dominated by streamwise-oriented vortical cells. These cells are produced by the convergence of surface flow towards the centre of the main channel, with descending motion in the zone of maximum flow convergence. Once flow arrives at the bed, it diverges and completes its rotation by an upwelling motion through the

  15. Effects of sport expertise on representational momentum during timing control.

    PubMed

    Nakamoto, Hiroki; Mori, Shiro; Ikudome, Sachi; Unenaka, Satoshi; Imanaka, Kuniyasu

    2015-04-01

    Sports involving fast visual perception require players to compensate for delays in neural processing of visual information. Memory for the final position of a moving object is distorted forward along its path of motion (i.e., "representational momentum," RM). This cognitive extrapolation of visual perception might compensate for the neural delay in interacting appropriately with a moving object. The present study examined whether experienced batters cognitively extrapolate the location of a fast-moving object and whether this extrapolation is associated with coincident timing control. Nine expert and nine novice baseball players performed a prediction motion task in which a target moved from one end of a straight 400-cm track at a constant velocity. In half of the trials, vision was suddenly occluded when the target reached the 200-cm point (occlusion condition). Participants had to press a button concurrently with the target arrival at the end of the track and verbally report their subjective assessment of the first target-occluded position. Experts showed larger RM magnitude (cognitive extrapolation) than did novices in the occlusion condition. RM magnitude and timing errors were strongly correlated in the fast velocity condition in both experts and novices, whereas in the slow velocity condition, a significant correlation appeared only in experts. This suggests that experts can cognitively extrapolate the location of a moving object according to their anticipation and, as a result, potentially circumvent neural processing delays. This process might be used to control response timing when interacting with moving objects.

  16. Bootstrapping rapidity anomalous dimensions for transverse-momentum resummation

    DOE PAGES

    Li, Ye; Zhu, Hua Xing

    2017-01-11

    Soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders are computed through to three loops in the expansion of strong coupling, with the help of bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. Furthermore, an intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found.

  17. Proposed CMG momentum management scheme for space station

    NASA Technical Reports Server (NTRS)

    Bishop, L. R.; Bishop, R. H.; Lindsay, K. L.

    1987-01-01

    A discrete control moment gyro (CMG) momentum management scheme (MMS) applicable to spacecraft with principal axes misalignments, such as the proposed NASA dual keel space station, is presented in this paper. The objective of the MMS is to minmize CMG angular momentum storage requirements for maintaining the space station near local vertical in the presence of environmental disturbances. It utilizes available environmental disturbances, namely gravity gradient torques, to minimize CMG momentum storage. The MMS is executed once per orbit and generates a commanded torque equilibrium attitude (TEA) time history which consists of a yaw, pitch and roll angle command profile. Although the algorithm is called only once per orbit to compute the TEA profile, the space station will maneuver several discrete times each orbit.

  18. Chirality and the angular momentum of light

    PubMed Central

    Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.

    2017-01-01

    Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light–matter interactions. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069764

  19. The Magnetic Recoil Spectrometer for time-resolved neutron measurements (MRSt) at the NIF

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Frenje, J. A.; Wink, C. W.; Gatu Johnson, M.; Lahmann, B.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bionta, R.; Casey, D. T.; Khater, H. Y.; Forrest, C. J.; Glebov, V. Yu.; Sorce, C.; Hares, J. D.; Siegmund, O. H. W.

    2017-10-01

    The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the DT-neutron spectrum. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn in Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). The neutron spectrum in the energy range 12-16 MeV will be measured with high accuracy ( 5%), unprecedented energy resolution ( 100 keV) and, for the first time ever, time resolution ( 20 ps). An overview of the physics motivation, conceptual design for meeting these performance requirements, and the status of the offline tests for critical components will be presented. This work was supported in part by the U.S. DOE, LLNL, and LLE.

  20. Hovering Dual-Spin Vehicle Groundwork for Bias Momentum Sizing Validation Experiment

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Moerder, Daniel D.; Lim, Kyong B.

    2008-01-01

    Angular bias momentum offers significant stability augmentation for hovering flight vehicles. The reliance of the vehicle on thrust vectoring for agility and disturbance rejection is greatly reduced with significant levels of stored angular momentum in the system. A methodical procedure for bias momentum sizing has been developed in previous studies. This current study provides groundwork for experimental validation of that method using an experimental vehicle called the Dual-Spin Test Device, a thrust-levitated platform. Using measured data the vehicle's thrust vectoring units are modeled and a gust environment is designed and characterized. Control design is discussed. Preliminary experimental results of the vehicle constrained to three rotational degrees of freedom are compared to simulation for a case containing no bias momentum to validate the simulation. A simulation of a bias momentum dominant case is presented.

  1. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    NASA Technical Reports Server (NTRS)

    Reynolds, R. G.; Markley, F. Landis

    2001-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum which the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical implementation strategies for specific wheel configurations are also considered.

  2. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  3. Studies of the electron density in the highest occupied molecular orbitals of PH 3, PF 3 and P(CH 3) 3 by electron momentum spectroscopy and Hartree-Fock, MRSD-CI and DFT calculations

    NASA Astrophysics Data System (ADS)

    Rolke, J.; Brion, C. E.

    1996-06-01

    The spherically averaged momentum profiles for the highest occupied molecular orbitals of PF 3 and P(CH 3) 3 have been obtained by electron momentum spectroscopy. The measurements provide a stringent test of basis set effects and the quality of ab-initio methods in the description of these larger molecular systems. As in previous work on the methyl-substituted amines, intuitive arguments fail to predict the correct amount of s- and p-type contributions to the momentum profile while delocalized molecular orbital concepts provide a more adequate description of the HOMOs. The experimental momentum profiles have been compared with theoretical momentum profiles calculated at the level of the target Hartree-Fock approximation with a range of basis sets. New Hartree-Fock calculations are also presented for the HOMO of PH 3 and compared to previously published experimental and theoretical momentum profiles. The experimental momentum profiles have further been compared to calculations at the level of the target Kohn-Sham approximation using density functional theory with the local density approximation and also with gradient corrected (non-local) exchange correlation potentials. In addition, total energies and dipole moments have been calculated for all three molecules by the various theoretical methods and compared to experimental values. Calculated 'density difference maps' show the regions where the HOMO momentum and position electron densities of PF 3 and P(CH 3) 3 change relative to the corresponding HOMO density of PH 3. The results suggest that methyl groups have an electron-attracting effect (relative to H) on the HOMO charge density in trimethyl phosphines. These conclusions are supported by a consideration of dipole moments and the 31P NMR chemical shifts for PH 3, PF 3 and P(CH 3) 3.

  4. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C 2H 4, C 2H 3F, and 1,1-C 2H 2F 2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  5. Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu; Wen, Tiliang; Diamond, P. H.

    2016-08-11

    Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux—more » $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ in strong electrostatic turbulence is calculated using the Hasegawa–Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.« less

  6. Relation of the runaway avalanche threshold to momentum space topology

    NASA Astrophysics Data System (ADS)

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian-Zhu

    2018-02-01

    The underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accurately described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.

  7. Relation of the runaway avalanche threshold to momentum space topology

    DOE PAGES

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian -Zhu

    2018-01-05

    Here, the underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accuratelymore » described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.« less

  8. Relation of the runaway avalanche threshold to momentum space topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian -Zhu

    Here, the underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accuratelymore » described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.« less

  9. Interaction of a magnet and a point charge: Unrecognized internal electromagnetic momentum

    NASA Astrophysics Data System (ADS)

    Boyer, Timothy H.

    2015-05-01

    Whereas nonrelativistic mechanics always connects the total momentum of a system to the motion of the center of mass, relativistic systems, such as interacting electromagnetic charges, can have internal linear momentum in the absence of motion of the system's center of energy. This internal linear momentum of a system is related to the controversial concept of "hidden momentum." We suggest that the term "hidden momentum" be abandoned. Here, we use the relativistic conservation law for the center of energy to give an unambiguous definition of the "internal momentum of a system," and then we exhibit this internal momentum for the system of a magnet (modeled as a circular ring of moving charges) and a distant static point charge. The calculations provide clear illustrations of this system for three cases: (a) the moving charges of the magnet are assumed to continue in their unperturbed motion; (b) the moving charges of the magnet are free to accelerate but have no mutual interactions; and (c) the moving charges of the magnet are free to accelerate and also interact with each other. When the current-carrying charges of the magnet are allowed to interact, the magnet itself will contain internal electromagnetic linear momentum, something that has not been described clearly in the research and teaching literature.

  10. Momentum distributions for H 2 ( e , e ' p )

    DOE PAGES

    Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.

    2014-12-29

    [Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmore » state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this process can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.« less

  11. Intense structures of different momentum fluxes in turbulent channels

    NASA Astrophysics Data System (ADS)

    Osawa, Kosuke; Jiménez, Javier

    2018-04-01

    The effect of different definitions of the momentum flux on the properties of the coherent structures of the logarithmic region of wall-bounded turbulence is investigated by comparing the structures of intense tangential Reynolds stress with those of the alternative flux proposed in [Jimenez (2016) J. Fluid Mech. 809:585]. Despite the fairly different statistical properties of the two flux definitions, it is found that their intense structures show many similarities, such as the dominance of ‘wall-attached’ objects, and geometric self-similarity. However, the new structures are wider, although not taller, than the classical ones, and include both high- and low-momentum regions within the same object. It is concluded that they represent the same phenomenon as the classical group of a sweep, an ejection, and a roller, which should thus be considered as the fundamental coherent structure of the momentum flux. The present results suggest that the properties of these momentum structures are robust with respect to the definition of the fluxes.

  12. Low-momentum ghost dressing function and the gluon mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.

    2010-09-01

    We study the low-momentum ghost propagator Dyson-Schwinger equation in the Landau gauge, assuming for the truncation a constant ghost-gluon vertex, as it is extensively done, and a simple model for a massive gluon propagator. Then, regular Dyson-Schwinger equation solutions (the zero-momentum ghost dressing function not diverging) appear to emerge, and we show the ghost propagator to be described by an asymptotic expression reliable up to the order O(q{sup 2}). That expression, depending on the gluon mass and the zero-momentum Taylor-scheme effective charge, is proven to fit pretty well some low-momentum ghost propagator data [I. L. Bogolubsky, E. M. Ilgenfritz, M.more » Muller-Preussker, and A. Sternbeck, Phys. Lett. B 676, 69 (2009); Proc. Sci., LAT2007 (2007) 290] from big-volume lattice simulations where the so-called ''simulated annealing algorithm'' is applied to fix the Landau gauge.« less

  13. Spacecraft momentum unloading using controlled magnetic torques

    NASA Technical Reports Server (NTRS)

    Linder, David M. (Inventor); Goodzeit, Neil E. (Inventor); Schwarzschild, Marc (Inventor)

    1992-01-01

    A method for maintaining the attitude of a three-axis controlled satellite by use of magnetic torquers includes using magnetometers for measuring the direction of the ambient geomagnetic field. The direction of the net reaction wheel momentum is also determined. The angle between the direction of the geomagnetic field and the net reaction wheel momentum is determined. The angle is compared with a threshold value. Magnetic torquer power consumption is reduced by operating the magnetic torquers only when the angle exceeds the threshold value.

  14. SDSS J1056+5516: A Triple AGN or an SMBH Recoil Candidate?

    NASA Astrophysics Data System (ADS)

    Kalfountzou, E.; Santos Lleo, M.; Trichas, M.

    2017-12-01

    We report the discovery of a kiloparsec-scale triple supermassive black hole system at z = 0.256: SDSS J1056+5516, discovered by our systematic search for binary quasars. The system contains three strong emission-line nuclei, which are offset by < 250 {km} {{{s}}}-1 and by 15-18 kpc in projected separation, suggesting that the nuclei belong to the same physical structure. The system includes a tidal arm feature spanning ˜100 kpc in projected distance at the systems’ redshift, inhabiting an ongoing or recent galaxy merger. Based on our results, such a structure can only satisfy one of the three scenarios; a triple supermasive black hole (SMBH) interacting system, a triple AGN, or a recoiling SMBH. Each of these scenarios is unique for our understanding of the hierarchical growth of galaxies, AGN triggering, and gravitational waves.

  15. Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.

    PubMed

    Ki, Dae-Han; Jung, Young-Dae

    2013-04-21

    The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.

  16. Waters Rockets for Teaching Momentum and Energy Concepts

    NASA Astrophysics Data System (ADS)

    Sizemore, Jim; Parish, R. J.; Hooten, James T.

    2012-10-01

    Concepts regarding momentum and energy are especially difficult for students to grasp and concrete examples are valuable. We will discuss, and show video, of launching water rockets using standard plastic soda and water bottles and describe the launcher composed of PVC pipe and a bicycle pump. We pose the question to students of the ratio of water to air that achieves the greatest time-of-flight. Immediate feedback is obtained by immediately testing student's hypotheses. After several launches the students understanding of Newton's Third Law and momentum and energy concepts improves. This is an engaging activity, students enjoy watching their instructors become thoroughly drenched, and students are enthusiastic. This enthusiasm, fun, and immediate testing of hypotheses reinforce momentum and energy concepts as will be shown by questionnaire results.

  17. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  18. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  19. Transverse momentum resummation for dijet correlation in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Yuan, C.-P.; Yuan, Feng

    2015-11-01

    We study transverse momentum resummation for the azimuthal angular correlation in dijet production in hadron collisions based on the Collins-Soper-Sterman formalism. The complete one-loop calculations are carried out in the collinear framework for the differential cross sections at low imbalance transverse momentum between the two jets. Important cross-checks are performed to demonstrate that the soft divergences are canceled out between different diagrams and, in particular, for those associated with the final state jets. The leading and subleading logarithms are identified. All order resummation is derived following the transverse momentum dependent factorization at this order. Its phenomenological applications are also presented.

  20. An interactive computer program for sizing spacecraft momentum storage devices

    NASA Technical Reports Server (NTRS)

    Wilcox, F. J., Jr.

    1980-01-01

    An interactive computer program was developed which computes the sizing requirements for nongimbled reaction wheels, control moment gyros (CMG), and dual momentum control devices (DMCD) used in Earth-orbiting spacecraft. The program accepts as inputs the spacecraft's environmental disturbance torques, rotational inertias, maneuver rates, and orbital data. From these inputs, wheel weights are calculated for a range of radii and rotational speeds. The shape of the momentum wheel may be chosen to be either a hoop, solid cylinder, or annular cylinder. The program provides graphic output illustrating the trade-off potential between the weight, radius, and wheel speed. A number of the intermediate calculations such as the X-, Y-, and Z-axis total momentum, the momentum absorption requirements for reaction wheels, CMG's, DMCD's, and basic orbit analysis information are also provided as program output.

  1. Zero-point angular momentum of supersymmetric Penning trap

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-zu; Xu, Qiang

    2000-10-01

    The quantum behavior of supersymmetric Penning trap, specially the superpartner of its angular momentum, is investigated in the formulation of multi-dimensional semiunitary transformation of supersymmetric quantum mechanics. In the limit case of vanishing kinetic energy it is found that its lowest angular momentum is 3ℏ/2, which provides a possibility of directly checking the idea of supersymmetric quantum mechanics and thus suggests a possible experimental verification about this prediction.

  2. Symmetric large momentum transfer for atom interferometry with BECs

    NASA Astrophysics Data System (ADS)

    Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  3. Direct measurement of resonance strengths in 34S(α ,γ )38Ar at astrophysically relevant energies using the DRAGON recoil separator

    NASA Astrophysics Data System (ADS)

    Connolly, D.; O'Malley, P. D.; Akers, C.; Chen, A. A.; Christian, G.; Davids, B.; Erikson, L.; Fallis, J.; Fulton, B. R.; Greife, U.; Hager, U.; Hutcheon, D. A.; Ilyushkin, S.; Laird, A. M.; Mahl, A.; Ruiz, C.

    2018-03-01

    Background: Nucleosynthesis of mid-mass elements is thought to occur under hot and explosive astrophysical conditions. Radiative α capture on 34S has been shown to impact nucleosynthesis in several such conditions, including core and shell oxygen burning, explosive oxygen burning, and type Ia supernovae. Purpose: Broad uncertainties exist in the literature for the strengths of three resonances within the astrophysically relevant energy range (ECM=1.94 -3.42 MeV at T =2.2 GK ). Further, there are several states in 38Ar within this energy range which have not been previously measured. This work aimed to remeasure the resonance strengths of states for which broad uncertainty existed as well as to measure the resonance strengths and energies of previously unmeasured states. Methods: Resonance strengths and energies of eight narrow resonances (five of which had not been previously studied) were measured in inverse kinematics with the DRAGON facility at TRIUMF by impinging an isotopically pure beam of 34S ions on a windowless 4He gas target. Prompt γ emissions of de-exciting 38Ar recoils were detected in an array of bismuth germanate scintillators in coincidence with recoil nuclei, which were separated from unreacted beam ions by an electromagnetic mass separator and detected by a time-of-flight system and a multianode ionization chamber. Results: The present measurements agree with previous results. Broad uncertainty in the resonance strength of the ECM=2709 keV resonance persists. Resonance strengths and energies were determined for five low-energy resonances which had not been studied previously, and their strengths were determined to be significantly weaker than those of previously measured resonances. Conclusions: The five previously unmeasured resonances were found not to contribute significantly to the total thermonuclear reaction rate. A median total thermonuclear reaction rate calculated using data from the present work along with existing literature values

  4. On the physics of momentum in ballistics: can the human body be displaced or knocked down by a small arms projectile?

    PubMed

    Karger, B; Kneubuehl, B P

    1996-01-01

    Shooting incidents are often portrayed as resulting in a sometimes violent backwards displacement of the victim. This opinion is also not infrequently held by expert witnesses. The physical force responsible for this would be momentum (mass x velocity). The physics of momentum in ballistic injury is explained in detail. The maximum momentum transferred from different small arms projectiles including large calibre rifles and a 12-gauge shotgun only results in a backwards motion of a 80 kg target body of 0.01-0.18 m/s, which is negligible compared to the velocity of a pedestrian (1-2 m/s). Furthermore, counterbalance is constantly maintained by neurophysiological reflexes. So the effect of the momentum transferred from the missile is virtually zero and there is no backwards motion of the person shot. Empirical evidence verifying these calculations can be obtained from hunting big game, from human gunshot victims and from a video documentary demonstrating the lack of any backwards motion of a person wearing body armour after hits from a centre fire rifle. So the alleged backwards hurling of a person shot is nothing but a myth which should be refuted not only because it is incorrect but also because it can result in miscarriages of justice.

  5. Energy-momentum tensor of bouncing gravitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iofa, Mikhail Z.

    2015-07-14

    In models of the Universe with extra dimensions gravity propagates in the whole space-time. Graviton production by matter on the brane is significant in the early hot Universe. In a model of 3-brane with matter embedded in 5D space-time conditions for gravitons emitted from the brane to the bulk to return back to the brane are found. For a given 5-momentum of graviton falling back to the brane the interval between the times of emission and return to the brane is calculated. A method to calculate contribution to the energy-momentum tensor from multiple graviton bouncings is developed. Explicit expressions formore » contributions to the energy-momentum tensor of gravitons which have made one, two and three bounces are obtained and their magnitudes are numerically calculated. These expressions are used to solve the evolution equation for dark radiation. A relation connecting reheating temperature and the scale of extra dimension is obtained. For the reheating temperature T{sub R}∼10{sup 6} GeV we estimate the scale of extra dimension μ to be of order 10{sup −9} GeV (μ{sup −1}∼10{sup −5} cm)« less

  6. Energy-momentum tensor of bouncing gravitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iofa, Mikhail Z., E-mail: iofa@theory.sinp.msu.ru

    2015-07-01

    In models of the Universe with extra dimensions gravity propagates in the whole space-time. Graviton production by matter on the brane is significant in the early hot Universe. In a model of 3-brane with matter embedded in 5D space-time conditions for gravitons emitted from the brane to the bulk to return back to the brane are found. For a given 5-momentum of graviton falling back to the brane the interval between the times of emission and return to the brane is calculated. A method to calculate contribution to the energy-momentum tensor from multiple graviton bouncings is developed. Explicit expressions formore » contributions to the energy-momentum tensor of gravitons which have made one, two and three bounces are obtained and their magnitudes are numerically calculated. These expressions are used to solve the evolution equation for dark radiation. A relation connecting reheating temperature and the scale of extra dimension is obtained. For the reheating temperature T{sub R}∼ 10{sup 6} GeV we estimate the scale of extra dimension μ to be of order 10{sup −9} GeV (μ{sup −1}∼ 10{sup −5} cm)« less

  7. Rubidium Cloud Size in a Magneto-Optical Trap

    NASA Astrophysics Data System (ADS)

    Chatwin-Davies, A.; Kong, T.; Behr, J. A.; Gorelov, A.; Pearson, M.

    2008-05-01

    Preparations for a search for exotic 20 - 556 keV-mass particles emitted during the nuclear 2-body decay of ^86Rb confined in a magneto-optical trap (MOT) are underway at TRIUMF. Such emissions would correspond to a peak in the recoil momentum distribution at a momentum lower than that caused by 556 keV γ emission. The stable isotope ^85Rb is being used to optimize the experimental apparatus since its atomic hyperfine splitting is similar to that of ^86Rb, producing similar laser cooling properties. The size of the cloud of trapped atoms directly affects the achievable momentum resolution of the recoil and must hence be minimized. A Doppler-limited model for cloud size ignoring cooling beyond that generated by the photon scattering force is presented and compared with experimental data. Analysis suggested reducing the intensity and red-detuning from resonance of the trapping light from optimal values for atom collection. We also better balanced the power in the trapping beams. Recent data in disagreement with a Doppler-limited theory indicate sub-Doppler cooling mechanisms (J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989)) are now at work. A cloud full width at half-maximum of less than 0.25 mm has since been achieved.

  8. Too Much Too Fast: The Dangers of Technological Momentum.

    ERIC Educational Resources Information Center

    Dyer, Dean

    This paper discusses the dangers of technological momentum. Technological momentum is defined as the increase in the rate of the evolution of technology, its infusion into societal tasks and recreations, society's dependence on technology, and the impact of technology on society. Topics of discussion include changes in response to user needs,…

  9. Polarization Transfer in Proton Compton Scattering at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Hamilton, D. J.; Mamyan, V. H.; Aniol, K. A.; Annand, J. R.; Bertin, P. Y.; Bimbot, L.; Bosted, P.; Calarco, J. R.; Camsonne, A.; Chang, G. C.; Chang, T.-H.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Danagoulian, A.; Degtyarenko, P.; de Jager, C. W.; Deur, A.; Dutta, D.; Egiyan, K.; Gao, H.; Garibaldi, F.; Gayou, O.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Hansen, J.-O.; Hayes, D.; Higinbotham, D.; Hinton, W.; Horn, T.; Howell, C.; Hunyady, T.; Hyde-Wright, C. E.; Jiang, X.; Jones, M. K.; Khandaker, M.; Ketikyan, A.; Kubarovsky, V.; Kramer, K.; Kumbartzki, G.; Laveissière, G.; Lerose, J.; Lindgren, R. A.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; Meziani, Z.-E.; Michaels, R.; Moussiegt, P.; Nanda, S.; Nathan, A. M.; Nikolenko, D. M.; Nelyubin, V.; Norum, B. E.; Paschke, K.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Pomatsalyuk, R.; Punjabi, V. A.; Rachek, I.; Radyushkin, A.; Reitz, B.; Roche, R.; Roedelbronn, M.; Ron, G.; Sabatie, F.; Saha, A.; Savvinov, N.; Shahinyan, A.; Shestakov, Y.; Širca, S.; Slifer, K.; Solvignon, P.; Stoler, P.; Tajima, S.; Sulkosky, V.; Todor, L.; Vlahovic, B.; Weinstein, L. B.; Wang, K.; Wojtsekhowski, B.; Voskanyan, H.; Xiang, H.; Zheng, X.; Zhu, L.

    2005-06-01

    Compton scattering from the proton was investigated at s=6.9 GeV2 and t=-4.0 GeV2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in disagreement with a prediction of perturbative QCD based on a two-gluon exchange mechanism, but agree well with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton.

  10. Do the flash-lag effect and representational momentum involve similar extrapolations?

    PubMed Central

    Hubbard, Timothy L.

    2013-01-01

    In the flash-lag effect (FLE) and in representational momentum (RM), the represented position of a moving target is displaced in the direction of motion. Effects of numerous variables on the FLE and on RM are briefly considered. In many cases, variables appear to have the same effect on the FLE and on RM, and this is consistent with a hypothesis that displacements in the FLE and in RM result from overlapping or similar mechanisms. In other cases, variables initially appear to have different effects on the FLE and on RM, but accounts reconciling those apparent differences with a hypothesis of overlapping or similar mechanisms are suggested. Given that RM is simpler and accounts for a wider range of findings (i.e., RM involves a single stimulus rather than the relationship between two stimuli, RM accounts for displacement in absolute position of a single stimulus and for differences in relative position of two stimuli), it is suggested that (at least some cases of) the FLE might be a special case of RM in which the position of the target is assessed relative to the position of another stimulus (i.e., the flashed object) rather than relative to the actual position of the target. PMID:23734140

  11. Angular momentum exchange in white dwarf binaries accreting through direct impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepinsky, J. F.; Kalogera, V., E-mail: jeremy.sepinsky@scranton.edu, E-mail: vicky@northwestern.edu

    We examine the exchange of angular momentum between the component spins and the orbit in semi-detached double white dwarf binaries undergoing mass transfer through direct impact of the transfer stream. We approximate the stream as a series of discrete massive particles ejected in the ballistic limit at the inner Lagrangian point of the donor toward the accretor. This work improves upon similar earlier studies in a number of ways. First, we self-consistently calculate the total angular momentum of the orbit at all times. This includes changes in the orbital angular momentum during the ballistic trajectory of the ejected mass, asmore » well as changes during the ejection/accretion due to the radial component of the particle's velocity. Second, we calculate the particle's ballistic trajectory for each system, which allows us to determine the precise position and velocity of the particle upon accretion. We can then include specific information about the radius of the accretor as well as the angle of impact. Finally, we ensure that the total angular momentum is conserved, which requires the donor star spin to vary self-consistently. With these improvements, we calculate the angular momentum change of the orbit and each binary component across the entire parameter space of direct impact double white dwarf binary systems. We find a significant decrease in the amount of angular momentum removed from the orbit during mass transfer, as well as cases where this process increases the angular momentum of the orbit at the expense of the spin angular momentum of the donor. We conclude that, unlike earlier claims in the literature, mass transfer through direct impact need not destabilize the binary and that the quantity and sign of the orbital angular momentum transfer depends on the binary properties, particularly the masses of the double white dwarf binary component stars. This stabilization may significantly impact the population synthesis calculations of the expected numbers

  12. Predicting rainfall erosivity by momentum and kinetic energy in Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Carollo, Francesco G.; Ferro, Vito; Serio, Maria A.

    2018-05-01

    Rainfall erosivity is an index that describes the power of rainfall to cause soil erosion and it is used around the world for assessing and predicting soil loss on agricultural lands. Erosivity can be represented in terms of both rainfall momentum and kinetic energy, both calculated per unit time and area. Contrasting results on the representativeness of these two variables are available: some authors stated that momentum and kinetic energy are practically interchangeable in soil loss estimation while other found that kinetic energy is the most suitable expression of rainfall erosivity. The direct and continuous measurements of momentum and kinetic energy by a disdrometer allow also to establish a relationship with rainfall intensity at the study site. At first in this paper a comparison between the momentum-rainfall intensity relationships measured at Palermo and El Teularet by an optical disdrometer is presented. For a fixed rainfall intensity the measurements showed that the rainfall momentum values measured at the two experimental sites are not coincident. However both datasets presented a threshold value of rainfall intensity over which the rainfall momentum assumes a quasi-constant value. Then the reliability of a theoretically deduced relationship, linking momentum, rainfall intensity and median volume diameter, is positively verified using measured raindrop size distributions. An analysis to assess which variable, momentum or kinetic energy per unit area and time, is the best predictor of erosivity in Italy and Spain was also carried out. This investigation highlighted that the rainfall kinetic energy per unit area and time can be substituted by rainfall momentum as index for estimating the rainfall erosivity, and this result does not depend on the site where precipitation occurs. Finally, rainfall intensity measurements and soil loss data collected from the bare plots equipped at Sparacia experimental area were used to verify the reliability of some

  13. Twisted molecular excitons as mediators for changing the angular momentum of light

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning; Lusk, Mark T.

    2017-07-01

    Molecules with CN or CN h symmetry can absorb quanta of optical angular momentum to generate twisted excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended to a time-dependent density functional theory setting where the key results are shown to hold in a many-body, multilevel setting.

  14. Modeling of Momentum Correlations in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Pruneau, Claude; Sharma, Monika

    2010-02-01

    Measurements of transverse momentum (pt) correlations and fluctuations in heavy ion collisions (HIC) are of interest because they provide information on the collision dynamics not readily available from number correlations. For instance, pt fluctuations are expected to diverge for a system near its tri-critical point [1]. Integral momentum correlations may also be used to estimate the shear viscosity of the quark gluon plasma produced in HIC [2]. Integral correlations measured over large fractions of the particle phase space average out several dynamical contributions and as such may be difficult to interpret. It is thus of interest to seek extensions of integral correlation variables that may provide more detailed information about the collision dynamics. We introduce a variety of differential momentum correlations and discuss their basic properties in the light of simple toy models. We also present theoretical predictions based on the PYTHIA, HIJING, AMPT, and EPOS models. Finally, we discuss the interplay of various dynamical effects that may play a role in the determination of the shear viscosity based on the broadening of momentum correlations measured as function of collision centrality. [1] L. Stodolsky, Phys. Rev. Lett. 75 (1995) 1044. [2] S. Gavin and M. A. Aziz, Phys. Rev. Lett. 97 (2006) 162302. )

  15. Initial angular momentum and flow in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  16. Spacecraft momentum management procedures. [large space telescope

    NASA Technical Reports Server (NTRS)

    Chen, L. C.; Davenport, P. B.; Sturch, C. R.

    1980-01-01

    Techniques appropriate for implementation onboard the space telescope and other spacecraft to manage the accumulation of momentum in reaction wheel control systems using magnetic torquing coils are described. Generalized analytical equations are derived for momentum control laws that command the magnetic torquers. These control laws naturally fall into two main categories according to the methods used for updating the magnetic dipole command: closed loop, in which the update is based on current measurements to achieve a desired torque instantaneously, and open-loop, in which the update is based on predicted information to achieve a desired momentum at the end of a period of time. Physical interpretations of control laws in general and of the Space Telescope cross product and minimum energy control laws in particular are presented, and their merits and drawbacks are discussed. A technique for retaining the advantages of both the open-loop and the closed-loop control laws is introduced. Simulation results are presented to compare the performance of these control laws in the Space Telescope environment.

  17. Angular momentum conservation law in light-front quantum field theory

    DOE PAGES

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.

    2017-03-31

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less

  18. Angular momentum conservation law in light-front quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less

  19. Angular momentum conservation law in light-front quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QEDmore » and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less

  20. Orbiter/Space lab momentum management for POP orientations

    NASA Technical Reports Server (NTRS)

    Cox, J. W.

    1974-01-01

    An angular momentum management scheme applicable to the orbiter/spacelab is described. The basis of the scheme is to periodically maneuver the vehicle through a small angle thereby using the gravity gradient torque to dump momentum from the control moment gyro (CMG) control system. The orbiter is operated with its principal vehicle axis perpendicular to the orbital plane. Numerous case runs were conducted on the hybrid simulation and representative cases are included.

  1. Some concepts of the advanced mass spectrometry at the COMBAS magnetic separator of nuclear reaction products

    NASA Astrophysics Data System (ADS)

    Artukh, A. G.; Tarantin, N. I.

    Proposed is an in-flight measurement method of recoil nuclei masses with the help of a Penning trap located behind the COMBAS magnetic separator for nuclear reaction products. The method is based on the following operations: (i) Accepting the recoil nuclear reaction products by the magnetic separator and decreasing their kinetic energy by degraders. (ii) In-flight transportation of the retarded nuclei into the magnetic field of the Penning trap's solenoid and transforming their remaining longitudinal momentum into orbital rotation by the fringing magnetic field of the solenoid. (iii) Cooling the orbital rotation of the ions by the high-frequency azimuthal electric field of the Penning trap's electric hyperboloid.

  2. Demonstrating the conservation of angular momentum using spherical magnets

    NASA Astrophysics Data System (ADS)

    Lindén, Johan; Slotte, Joakim; Källman, Kjell-Mikael

    2018-01-01

    An experimental setup for demonstrating the conservation of angular momentum of rotating spherical magnets is described. Two spherical Nd-Fe-B magnets are placed on a double inclined plane and projected towards each other with pre-selected impact parameters ranging from zero to a few tens of millimeters. After impact, the two magnets either revolve vigorously around the common center of mass or stop immediately, depending on the value of the impact parameter. Using a pick-up coil connected to an oscilloscope, the angular frequency for the rotating magnets was measured, and an estimate for the angular momentum was obtained. A high-speed video camera captured the impact and was used for measuring linear and angular velocities of the magnets. A very good agreement between the initial angular momentum before the impact and the final angular momentum of the revolving dumbbell is observed. The two rotating magnets, and the rotating electromagnetic field emanating from them, can also be viewed as a toy model for the newly discovered gravitational waves, where two black holes collide after revolving around each other. (Enhanced online)

  3. Momentum flux measurements: Techniques and needs, part 4.5A

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.

    1984-01-01

    The vertical flux of horizontal momentum by internal gravity waves is now recognized to play a significant role in the large-scale circulation and thermal structure of the middle atmosphere. This is because a divergence of momentum flux due to wave dissipation results in an acceleration of the local mean flow towards the phase speed of the gravity wave. Such mean flow acceleration are required to offset the large zonal accelerations driven by Coriolis torques acting on the diabatic meridional circulation. Techniques and observations regarding the momentum flux distribution in the middle atmosphere are discussed.

  4. Orbital Angular Momentum Multiplexing over Visible Light Communication Systems

    NASA Astrophysics Data System (ADS)

    Tripathi, Hardik Rameshchandra

    This thesis proposes and explores the possibility of using Orbital Angular Momentum multiplexing in Visible Light Communication system. Orbital Angular Momentum is mainly applied for laser and optical fiber transmissions, while Visible Light Communication is a technology using the light as a carrier for wireless communication. In this research, the study of the state of art and experiments showing some results on multiplexing based on Orbital Angular Momentum over Visible Light Communication system were done. After completion of the initial stage; research work and simulations were performed on spatial multiplexing over Li-Fi channel modeling. Simulation scenarios which allowed to evaluate the Signal-to-Noise Ratio, Received Power Distribution, Intensity and Illuminance were defined and developed.

  5. Control of the Spin Angular Momentum and Orbital Angular Momentum of a Reflected Wave by Multifunctional Graphene Metasurfaces.

    PubMed

    Zhang, Chen; Deng, Li; Zhu, Jianfeng; Hong, Weijun; Wang, Ling; Yang, Wenjie; Li, Shufang

    2018-06-21

    Three kinds of multifunctional graphene metasurfaces based on Pancharatnam⁻Berry (PB) phase cells are proposed and numerically demonstrated to control a reflected wave’s spin angular momentum (SAM) and orbital angular momentum (OAM) in the terahertz (THz) regime. Each proposed metasurface structure is composed of an array of graphene strips with different deviation angles and a back-grounded quartz substrate. In order to further help readers have a deeper insight into the graphene-based metasurfaces, a detailed design strategy is also provided. With the aid of the designed graphene elements, the proposed metasurfaces can achieve the full 360° range of phase coverage and provide manipulation of SAM and OAM of a circularly polarized (CP) wave at will. More importantly, simultaneous control of these two momentums can also be realized, and in order to demonstrate this function, a THz spin-controlled OAM beam generator with diverse topological charges is created, which can provide one more degree of freedom to improve the channel capability without increasing the bandwidth compared to a linearly polarized (LP) OAM beam. Numerical results verify the proposed graphene metasurfaces, which pave the way for generating spin OAM vortex waves for THz communication systems.

  6. First measurement of the VESUVIO neutron spectrum in the 30-80 MeV energy range using a Proton Recoil Telescope technique

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Tardocchi, M.; Croci, G.; Frost, C.; Giacomelli, L.; Grosso, G.; Hjalmarsson, A.; Rebai, M.; Rhodes, N. J.; Schooneveld, E. M.; Gorini, G.

    2013-11-01

    Measurements of the fast neutron energy spectrum at the ISIS spallation source are reported. The measurements were performed with a Proton Recoil Telescope consisting of a thin plastic foil placed in the neutron beam and two scintillator detectors. Results in the neutron energy range 30 MeV < En < 80 MeV are in good agreement with Monte Carlo simulations of the neutron spectrum.

  7. Predictive momentum management for a space station measurement and computation requirements

    NASA Technical Reports Server (NTRS)

    Adams, John Carl

    1986-01-01

    An analysis is made of the effects of errors and uncertainties in the predicting of disturbance torques on the peak momentum buildup on a space station. Models of the disturbance torques acting on a space station in low Earth orbit are presented, to estimate how accurately they can be predicted. An analysis of the torque and momentum buildup about the pitch axis of the Dual Keel space station configuration is formulated, and a derivation of the Average Torque Equilibrium Attitude (ATEA) is presented, for the case of no MRMS (Mobile Remote Manipulation System) motion, Y vehicle axis MRMS motion, and Z vehicle axis MRMS motion. Results showed the peak momentum buildup to be approximately 20000 N-m-s and to be relatively insensitive to errors in the predicting torque models, for Z axis motion of the MRMS was found to vary significantly with model errors, but not exceed a value of approximately 15000 N-m-s for the Y axis MRMS motion with 1 deg attitude hold error. Minimum peak disturbance momentum was found not to occur at the ATEA angle, but at a slightly smaller angle. However, this minimum peak momentum attitude was found to produce significant disturbance momentum at the end of the predicting time interval.

  8. Development of a magnetically suspended momentum wheel

    NASA Technical Reports Server (NTRS)

    Hamilton, S. B.

    1973-01-01

    An engineering model of a magnetically suspended momentum wheel was designed, fabricated, and tested under laboratory conditions. The basic unit consisted of two magnet bearings, a sculptured aluminum rotor, brushless dc spin motor, and electronics. The magnet bearings, utilizing rare-earth cobltrat-samarium magnets were active radially and passive axially. The results of the program showed that momentum wheels with magnetic bearings are feasible and operable, and that magnetic bearings of this type are capable of being used for applications where high capacity, high stiffness, and low power consumption are required. The tests performed developed criteria for improved performance for future designs.

  9. Simplified Generation of High-Angular-Momentum Light Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the

  10. Theoretical issues on the spontaneous rotation of axisymmetric plasmas

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Zhou, T.

    2014-09-01

    An extensive series of experiments have confirmed that the observed ‘spontaneous rotation’ phenomenon in axisymmetric plasmas is related to the confinement properties of these plasmas and connected to the excitation of collective modes associated with these properties (Coppi 2000 18th IAEA Fusion Energy Conf. (Sorrento, Italy, 2000) THP 1/17, www-pub.iaea.org/MTCD/publications/PDF/csp_008c/html/node343.htm and Coppi 2002 Nucl. Fusion 42 1). In particular, radially localized modes can extract angular momentum from the plasma column from which they grow while the background plasma has to recoil in the direction opposite to that of the mode phase velocity. In the case of the excitation of the plasma modes at the edge, the loss of their angular momentum can be connected to the directed particle ejection to the surrounding medium. The recoil angular momentum is then redistributed inside the plasma column mainly by the combination of an effective viscous diffusion and an inward angular momentum transport velocity that is connected, for instance, to ion temperature gradient (ITG) driven modes. The linear and quasi-linear theories of the collisionless trapped electron modes and of the toroidal ITG driven modes are re-examined in the context of their influence on angular momentum transport. Internal modes that produce magnetic reconnection and are electromagnetic in nature, acquire characteristic phase velocity directions in high temperature regimes and become relevant to the ‘generation’ of angular momentum. The drift-tearing mode, the ‘complex’ reconnecting mode and the m0 = 1 internal mode belong to this category, the last mode acquiring different features depending on the strength of its driving factor. Toroidal velocity profiles that reproduce the experimental observations are obtained considering a global angular momentum balance equation that includes the localized sources associated with the excited internal electrostatic and electromagnetic modes

  11. Relativistic Momentum and Kinetic Energy, and E = mc[superscript 2

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2009-01-01

    Based on relativistic velocity addition and the conservation of momentum and energy, I present simple derivations of the expressions for the relativistic momentum and kinetic energy of a particle, and for the formula E = mc[superscript 2]. (Contains 5 footnotes and 2 figures.)

  12. Polarization Transfer in Proton Compton Scattering at High Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.J. Hamilton; Vahe Mamyan

    2004-10-01

    Compton scattering from the proton was investigated at s = 6.9 GeV{sup 2} and t = -4.0 TeV{sup 2} via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.

  13. Target Practice? Using the Arts for Social Inclusion

    ERIC Educational Resources Information Center

    Lynch, Heather; Allan, Julie

    2007-01-01

    Use of creative processes as a tool for social inclusion has gathered momentum in recent years. This article reports the views of education professionals based in Scotland on the use and effects of targeting. While this strategy aims to improve access to those communities considered marginal, it is apparent that some of the effects are detrimental…

  14. Professional tennis players' serve: correlation between segmental angular momentums and ball velocity.

    PubMed

    Martin, Caroline; Kulpa, Richard; Delamarche, Paul; Bideau, Benoit

    2013-03-01

    The purpose of the study was to identify the relationships between segmental angular momentum and ball velocity between the following events: ball toss, maximal elbow flexion (MEF), racket lowest point (RLP), maximal shoulder external rotation (MER), and ball impact (BI). Ten tennis players performed serves recorded with a real-time motion capture. Mean angular momentums of the trunk, upper arm, forearm, and the hand-racket were calculated. The anteroposterior axis angular momentum of the trunk was significantly related with ball velocity during the MEF-RLP, RLP-MER, and MER-BI phases. The strongest relationships between the transverse-axis angular momentums and ball velocity followed a proximal-to-distal timing sequence that allows the transfer of angular momentum from the trunk (MEF-RLP and RLP-MER phases) to the upper arm (RLP-MER phase), forearm (RLP-MER and MER-BI phases), and the hand-racket (MER-BI phase). Since sequence is crucial for ball velocity, players should increase angular momentums of the trunk during MEF-MER, upper arm during RLP-MER, forearm during RLP-BI, and the hand-racket during MER-BI.

  15. Gain stabilization control system of the upgraded magnetic proton recoil neutron spectrometer at JET.

    PubMed

    Sjöstrand, Henrik; Andersson Sundén, E; Conroy, S; Ericsson, G; Gatu Johnson, M; Giacomelli, L; Gorini, G; Hellesen, C; Hjalmarsson, A; Popovichev, S; Ronchi, E; Tardocchi, M; Weiszflog, M

    2009-06-01

    Burning plasma experiments such as ITER and DEMO require diagnostics capable of withstanding the harsh environment generated by the intense neutron flux and to maintain stable operating conditions for times longer than present day systems. For these reasons, advanced control and monitoring (CM) systems will be necessary for the reliable operation of diagnostics. This paper describes the CM system of the upgraded magnetic proton recoil neutron spectrometer installed at the Joint European Torus focusing in particular on a technique for the stabilization of the gain of the photomultipliers coupled to the neutron detectors. The results presented here show that this technique provides good results over long time scales. The technique is of general interest for all diagnostics that employ scintillators coupled to photomultiplier tubes.

  16. The Momentum Kick Model Description of the Near-Side Ridge and Jet Quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Cheuk-Yin

    2008-12-01

    In the momentum kick model, a near-side jet parton occurs near the surface, kicks medium partons, loses energy, and fragments into the trigger particle and fragmentation products. The kicked medium partons subsequently materialize as the observed ridge particles which cary direct information on the magnitude of the momentum kick and the initial parton momentum distribution at the moment of jet-parton collision. The initial parton momentum distribution, extracted from the STAR ridge data for central Au-Au collisions at \\sqrt{s_NN} = 200 GeV, has a thermal-like transverse momentum distribution, but a non-Gaussian, relatively flat rapidity distribution at mid-rapidity with sharp kinematic boundariesmore » at large rapidities. The degree of jet quenching and the centrality dependence of the ridge yield can also be described by the momentum kick model.« less

  17. Variations in atmospheric angular momentum and the length of day

    NASA Technical Reports Server (NTRS)

    Rosen, R. D.; Salstein, D. A.

    1982-01-01

    Six years of twice daily global analyses were used to create and study a lengthy time series of high temporal resolution angular momentum values. Changes in these atmospheric values were compared to independently determined charges in the rotation rate of the solid Earth. Finally, the atmospheric data was examined in more detail to determine the time and space scales on which variations in momentum occur within the atmosphere and which regions are contributing most to the changes found in the global integral. The data and techniques used to derive the time series of momentum values are described.

  18. Incoherent beam combining based on the momentum SPGD algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Guo, Jin; Wang, Tingfeng

    2018-05-01

    Incoherent beam combining (ICBC) technology is one of the most promising ways to achieve high-energy, near-diffraction laser output. In this paper, the momentum method is proposed as a modification of the stochastic parallel gradient descent (SPGD) algorithm. The momentum method can improve the speed of convergence of the combining system efficiently. The analytical method is employed to interpret the principle of the momentum method. Furthermore, the proposed algorithm is testified through simulations as well as experiments. The results of the simulations and the experiments show that the proposed algorithm not only accelerates the speed of the iteration, but also keeps the stability of the combining process. Therefore the feasibility of the proposed algorithm in the beam combining system is testified.

  19. Adaptive momentum management for the dual keel Space Station

    NASA Technical Reports Server (NTRS)

    Hopkins, M.; Hahn, E.

    1987-01-01

    The report discusses momentum management for a large space structure with the structure selected configuration being the Initial Orbital Configuration of the dual-keel Space Station. The external torques considered were gravity gradient and aerodynamic torques. The goal of the momentum management scheme developed is to remove the bias components of the external torques and center the cyclic components of the stored angular momentum. The scheme investigated is adaptive to uncertainties of the inertia tensor and requires only approximate knowledge of principal moments of inertia. Computational requirements are minimal and should present no implementation problem in a flight-type computer. The method proposed is shown to be effective in the presence of attitude control bandwidths as low as 0.01 radian/sec.

  20. Design and Optimization of Composite Gyroscope Momentum Wheel Rings

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2007-01-01

    Stress analysis and preliminary design/optimization procedures are presented for gyroscope momentum wheel rings composed of metallic, metal matrix composite, and polymer matrix composite materials. The design of these components involves simultaneously minimizing both true part volume and mass, while maximizing angular momentum. The stress analysis results are combined with an anisotropic failure criterion to formulate a new sizing procedure that provides considerable insight into the design of gyroscope momentum wheel ring components. Results compare the performance of two optimized metallic designs, an optimized SiC/Ti composite design, and an optimized graphite/epoxy composite design. The graphite/epoxy design appears to be far superior to the competitors considered unless a much greater premium is placed on volume efficiency compared to mass efficiency.

  1. Nuclear Microprobe using Elastic Recoil Detection (ERD) for Hydrogen Profiling in High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Berger, Pascal; Sayir, Ali; Berger, Marie-Helene

    2004-01-01

    The interaction between hydrogen and various high temperature protonic conductors (HTPC) has not been clearly understood due to poor densification and unreacted secondary phases. the melt-processing technique is used in producing fully dense simple SrCe(0.9)Y (0.10) O(3-delta) and complex Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskites that can not be achieved by solid-state sintering. the possibilities of ion beam analysis have been investigated to quantify hydrogen distribution in HTPC perovskites subjected to water heat treatment. Nuclear microprobe technique is based on the interactions of a focused ion beam of MeV light ions (H-1, H-2, He-3, He-4,.) with the sample to be analyzed to determine local elemental concentrations at the cubic micrometer scale, the elastic recoil detection analysis technique (ERDA) has been carried out using He-4(+) microbeams and detecting the resulting recoil protons. Mappings of longitudinal sections of water treated SrCeO3 and Sr(Ca(1/3)Nb(2/3))O3 perovskites have been achieved, the water treatment strongly alters the surface of simple SrCe(0.9)Y(0.10)O(3-delta) perovskite. From Rutherford Back Scattering measurements (RBS), both Ce depletion and surface re-deposition is evidenced. the ERDA investigations on water treated Sr3Ca(1+x)Nb(2+x)O(9-delta) perovskite did not exhibit any spatial difference for the hydrogen incorporation from the surface to the centre. the amount of hydrogen incorporation for Sr3Ca(1+x)Nb(2+x)O(9-delta) was low and required further development of two less conventional techniques, ERDA in forward geometry and forward elastic diffusion H-1(p,p) H-1 with coincidence detection.

  2. CONNECTING ANGULAR MOMENTUM AND GALACTIC DYNAMICS: THE COMPLEX INTERPLAY BETWEEN SPIN, MASS, AND MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus

    The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticummore » Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total

  3. Wave-Induced Momentum Flux over Wind-driven Surface Waves

    NASA Astrophysics Data System (ADS)

    Yousefi, Kianoosh; Veron, Fabrice; Buckley, Marc; Husain, Nyla; Hara, Tetsu

    2017-11-01

    In recent years, the exchange of momentum between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of wave-induced momentum fluxes are lacking. In the current study, using a combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) system, we obtained laboratory measurements of the airflow velocity above surface waves for wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-coherent velocity fields are then extracted from instantaneous measurements. Wave-induced stress can, therefore, be estimated. In strongly forced cases in high wind speeds, the wave-induced stress near the surface is a significant fraction of the total stress. At lower wind speeds and larger wave ages, the wave-induced stress is positive very close to the surface, below the critical height and decreases to a negative value further above the critical height. This indicates a shift in the direction of the wave-coherent momentum flux across the critical layer. NSF OCE1458977, NSF OCE1634051.

  4. GALACTIC ANGULAR MOMENTUM IN THE ILLUSTRIS SIMULATION: FEEDBACK AND THE HUBBLE SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genel, Shy; Fall, S. Michael; Snyder, Gregory F.

    We study the stellar angular momentum of thousands of galaxies in the Illustris cosmological simulation, which captures gravitational and gas dynamics within galaxies, as well as feedback from stars and black holes. We find that the angular momentum of the simulated galaxies matches observations well, and in particular two distinct relations are found for late-type versus early-type galaxies. The relation for late-type galaxies corresponds to the value expected from full conservation of the specific angular momentum generated by cosmological tidal torques. The relation for early-type galaxies corresponds to retention of only ∼30% of that, but we find that those early-typemore » galaxies with low angular momentum at z = 0 nevertheless reside at high redshift on the late-type relation. Some of them abruptly lose angular momentum during major mergers. To gain further insight, we explore the scaling relations in simulations where the galaxy formation physics is modified with respect to the fiducial model. We find that galactic winds with high mass-loading factors are essential for obtaining the high angular momentum relation typical for late-type galaxies, while active galactic nucleus feedback largely operates in the opposite direction. Hence, feedback controls the stellar angular momentum of galaxies, and appears to be instrumental for establishing the Hubble sequence.« less

  5. Revolution evolution: tracing angular momentum during star and planetary system formation

    NASA Astrophysics Data System (ADS)

    Davies, Claire Louise

    2015-04-01

    Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the

  6. Contribution of limb momentum to power transfer in athletic wheelchair pushing.

    PubMed

    Masson, G; Bégin, M-A; Lopez Poncelas, M; Pelletier, S-K; Lessard, J-L; Laroche, J; Berrigan, F; Langelier, E; Smeesters, C; Rancourt, D

    2016-09-06

    Pushing capacity is a key parameter in athletic racing wheelchair performance. This study estimated the potential contribution of upper limb momentum to pushing. The question is relevant since it may affect the training strategy adopted by an athlete. A muscle-free Lagrangian dynamic model of the upper limb segments was developed and theoretical predictions of power transfer to the wheelchair were computed during the push phase. Results show that limb momentum capacity for pushing can be in the order of 40J per push cycle at 10m/s, but it varies with the specific pushing range chosen by the athlete. Although use of momentum could certainly help an athlete improve performance, quantifying the actual contribution of limb momentum to pushing is not trivial. A preliminary experimental investigation on an ergometer, along with a simplified model of the upper limb, suggests that momentum is not the sole contributor to power transfer to a wheelchair. Muscles substantially contribute to pushing, even at high speeds. Moreover, an optimal pushing range is challenging to find since it most likely differs if an athlete chooses a limb momentum pushing strategy versus a muscular exertion pushing strategy, or both at the same time. The study emphasizes the importance of controlling pushing range, although one should optimize it while also taking the dynamics of the recovery period into account. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Incorporating swirl effects into the coefficient of momentum for separation control

    NASA Astrophysics Data System (ADS)

    Taira, Kunihiko; Munday, Phillip

    2017-11-01

    Addition of swirl in flow control has been known to enhance suppression of separation over airfoils at high angles of attack. Utilizing large eddy simulations, the present open-loop control study examines the influence of wall-normal and angular momentum injections in mitigating separation over a NACA0012 airfoil at α =9° and Re = 23 , 000 . We introduce these swirling jets near the separation point with wall-normal momentum and swirl independently prescribed through velocity boundary conditions. The changes to the flow from control are examined and the corresponding lift enhancement and drag reduction are assessed as a function of the two velocity components. Since the standard coefficient of momentum does not consider swirling effects, we extend its definition to incorporate both the wall-normal momentum and swirl to quantify the overall flow control effectiveness. We are able to observe a trend in lift force enhancement over this single modified coefficient of momentum (that is dependent on the non-dimensional jet velocity ratio and swirl number). Moreover, we are able to identify a critical value for the modified momentum coefficient and categorize controlled flows into separated, transitional, and attached flows. This work was supported by the Air Force Office of Scientific Research (Award Number FA9550-13-1-0183) and the Office of Naval Research (Award Number N00014-16-1-2443).

  8. The transverse momentum distribution of hadrons within jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  9. Tunable orbital angular momentum in high-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, David; Ribič, P. Rebernik; Adhikary, G.

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions,more » and the disentanglement and independent control of the intrinsic and extrinsic components of the photon’s angular momentum at short-wavelengths. Finally, the methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms.« less

  10. Orbital and spin angular momentum in conical diffraction

    NASA Astrophysics Data System (ADS)

    Berry, M. V.; Jeffrey, M. R.; Mansuripur, M.

    2005-11-01

    The angular momentum Jinc of a light beam can be changed by passage through a slab of crystal. When the beam is incident along the optic axis of a biaxial crystal, which may also possess optical activity (chirality), the final angular momentum J can have both orbital (Jorb) and spin (Jsp) contributions, which we calculate paraxially exactly for arbitrary biaxiality and chirality and initially uniformly polarized beams with circular symmetry. For the familiar special case of a non-chiral crystal with fully developed conical-refraction rings, J is purely orbital and equal to Jinc/2, reflecting an interesting singularity structure in the beam. Explicit formulas and numerical computations are presented for a Gaussian incident beam. The change in angular momentum results in a torque on the crystal, along the axis of the incident beam. An additional, much larger, torque, about an axis lying in the slab, arises from the offset of the cone of conical refraction relative to the incident beam.

  11. Tunable orbital angular momentum in high-harmonic generation

    DOE PAGES

    Gauthier, David; Ribič, P. Rebernik; Adhikary, G.; ...

    2017-04-05

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions,more » and the disentanglement and independent control of the intrinsic and extrinsic components of the photon’s angular momentum at short-wavelengths. Finally, the methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms.« less

  12. The transverse momentum distribution of hadrons within jets

    DOE PAGES

    Kang, Zhong -Bo; Liu, Xiaohui; Ringer, Felix; ...

    2017-11-13

    We study the transverse momentum distribution of hadrons within jets, where the transverse momentum is defined with respect to the standard jet axis. We consider the case where the jet substructure measurement is performed for an inclusive jet sample pp → jet + X. We demonstrate that this observable provides new opportunities to study transverse momentum dependent fragmentation functions (TMDFFs) which are currently poorly constrained from data, especially for gluons. The factorization of the cross section is obtained within Soft Collinear Effective Theory (SCET), and we show that the relevant TMDFFs are the same as for the more traditional processesmore » semi-inclusive deep inelastic scattering (SIDIS) and electron-positron annihilation. Different than in SIDIS, the observable for the in-jet fragmentation does not depend on TMD parton distribution functions which allows for a cleaner and more direct probe of TMDFFs. We present numerical results and compare to available data from the LHC.« less

  13. On the energy-momentum tensor in Moyal space

    DOE PAGES

    Balasin, Herbert; Blaschke, Daniel N.; Gieres, François; ...

    2015-06-26

    We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another starproduct. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the latter two procedures are incompatible with each other if couplings of gaugemore » fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice-versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line.« less

  14. Tunable orbital angular momentum in high-harmonic generation

    PubMed Central

    Gauthier, D.; Ribič, P. Rebernik; Adhikary, G.; Camper, A.; Chappuis, C.; Cucini, R.; DiMauro, L. F.; Dovillaire, G.; Frassetto, F.; Géneaux, R.; Miotti, P.; Poletto, L.; Ressel, B.; Spezzani, C.; Stupar, M.; Ruchon, T.; De Ninno, G.

    2017-01-01

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions, and the disentanglement and independent control of the intrinsic and extrinsic components of the photon's angular momentum at short-wavelengths. The methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms. PMID:28378741

  15. Double-slit experiment in momentum space

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2016-08-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  16. A Precise Measurement of the Deuteron Elastic Structure Function A(Q 2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honegger, Andrian

    1999-12-07

    During summer 1997 experiment 394-018 measured the deuteron tensor polarization in D(e,e'more » $$vec\\{d}$$) scattering in Hall C at Jefferson Laboratory. In a momentum transfer range between 0.66 and 1.8 (GeV=c) 2, with slight changes in the experimental setup, the collaboration performed six precision measurements of the deuteron structure function A(Q 2) in elastic D(e,e'd) scattering . Scattered electrons and recoil deuterons were detected in coincidence in the High Momentum Spectrometer and the recoil polarimeter POLDER, respectively. At every kinematics H(e,e') data were taken to study systematic effects of the measurement. These new precise measurements resolve discrepancies between older data sets and put significant constraints on existing models of the deuteron electromagnetic structure. This work was supported by the Swiss National Science Foundation, the French Centre National de la Recherche Scientifique and the Commissariat 'a l'Energie Atomique, the U.S. Department of Energy and the National Science Foundation and the K.C. Wong Foundation.« less

  17. Photon-tagged and B-meson-tagged b-jet production at the LHC

    DOE PAGES

    Huang, Jinrui; Kang, Zhong -Bo; Vitev, Ivan; ...

    2015-09-18

    Tagged jet measurements in high energy hadronic and nuclear reactions provide constraints on the energy and parton flavor origin of the parton shower that recoils against the tagging particle. Such additional insight can be especially beneficial in illuminating the mechanisms of heavy flavor production in proton–proton collisions at the LHC and their modification in the heavy ion environment, which are not fully understood. With this motivation, we present theoretical results for isolated-photon-tagged and B-meson-tagged b-jet production at √s NN = 5.1 TeV for comparison to the upcoming lead–lead data. We find that photon-tagged b-jets exhibit smaller momentum imbalance shift inmore » nuclear matter, and correspondingly smaller energy loss, than photon-tagged light flavor jets. Our results show that B-meson tagging is most effective in ensuring that the dominant fraction of recoiling jets originate from prompt b-quarks. Furthermore, in this channel the large suppression of the cross section is not accompanied by a significant momentum imbalance shift.« less

  18. Angular Momentum and Galaxy Formation Revisited

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf

  19. ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-15

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii aremore » generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that

  20. Predictive momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Hatis, P. D.

    1986-01-01

    Space station control moment gyro momentum management is addressed by posing a deterministic optimization problem with a performance index that includes station external torque loading, gyro control torque demand, and excursions from desired reference attitudes. It is shown that a simple analytic desired attitude solution exists for all axes with pitch prescription decoupled, but roll and yaw coupled. Continuous gyro desaturation is shown to fit neatly into the scheme. Example results for pitch axis control of the NASA power tower Space Station are shown based on predictive attitude prescription. Control effector loading is shown to be reduced by this method when compared to more conventional momentum management techniques.