Sample records for target region amplification

  1. A multiplex primer design algorithm for target amplification of continuous genomic regions.

    PubMed

    Ozturk, Ahmet Rasit; Can, Tolga

    2017-06-19

    Targeted Next Generation Sequencing (NGS) assays are cost-efficient and reliable alternatives to Sanger sequencing. For sequencing of very large set of genes, the target enrichment approach is suitable. However, for smaller genomic regions, the target amplification method is more efficient than both the target enrichment method and Sanger sequencing. The major difficulty of the target amplification method is the preparation of amplicons, regarding required time, equipment, and labor. Multiplex PCR (MPCR) is a good solution for the mentioned problems. We propose a novel method to design MPCR primers for a continuous genomic region, following the best practices of clinically reliable PCR design processes. On an experimental setup with 48 different combinations of factors, we have shown that multiple parameters might effect finding the first feasible solution. Increasing the length of the initial primer candidate selection sequence gives better results whereas waiting for a longer time to find the first feasible solution does not have a significant impact. We generated MPCR primer designs for the HBB whole gene, MEFV coding regions, and human exons between 2000 bp to 2100 bp-long. Our benchmarking experiments show that the proposed MPCR approach is able produce reliable NGS assay primers for a given sequence in a reasonable amount of time.

  2. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    PubMed

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  3. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species.

    PubMed

    Feng, Shangguo; He, Refeng; Yang, Sai; Chen, Zhe; Jiang, Mengying; Lu, Jiangjie; Wang, Huizhong

    2015-08-10

    Two molecular marker systems, start codon targeted (SCoT) and target region amplification polymorphism (TRAP), were used for genetic relationship analysis of 36 Dendrobium species collected from China. Twenty-two selected SCoT primers produced 337 loci, of which 324 (96%) were polymorphic, whereas 13 TRAP primer combinations produced a total of 510 loci, with 500 (97.8%) of them being polymorphic. An average polymorphism information content of 0.953 and 0.983 was detected using the SCoT and TRAP primers, respectively, showing that a high degree of genetic diversity exists among Chinese Dendrobium species. The partition of clusters in the unweighted pair group method with arithmetic mean dendrogram and principal coordinate analysis plot based on the SCoT and TRAP markers was similar and clustered the 36 Dendrobium species into four main groups. Our results will provide useful information for resource protection and will also be useful to improve the current Dendrobium breeding programs. Our results also demonstrate that SCoT and TRAP markers are informative and can be used to evaluate genetic relationships between Dendrobium species. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Design of nuclease-based target recycling signal amplification in aptasensors.

    PubMed

    Yan, Mengmeng; Bai, Wenhui; Zhu, Chao; Huang, Yafei; Yan, Jiao; Chen, Ailiang

    2016-03-15

    Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  6. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    PubMed Central

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  7. Tumor target amplification: Implications for nano drug delivery systems.

    PubMed

    Seidi, Khaled; Neubauer, Heidi A; Moriggl, Richard; Jahanban-Esfahlan, Rana; Javaheri, Tahereh

    2018-04-10

    Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Selective whole genome amplification for resequencing target microbial species from complex natural samples.

    PubMed

    Leichty, Aaron R; Brisson, Dustin

    2014-10-01

    Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with <6.7-fold amplification of the background. SWGA-treated genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.

  9. MET amplification as a potential therapeutic target in gastric cancer

    PubMed Central

    Kawakami, Hisato; Okamoto, Isamu; Arao, Tokuzo; Okamoto, Wataru; Matsumoto, Kazuko; Taniguchi, Hirokazu; Kuwata, Kiyoko; Yamaguchi, Haruka; Nishio, Kazuto; Nakagawa, Kazuhiko; Yamada, Yasuhide

    2013-01-01

    Our aim was to investigate both the prevalence of MET amplification in gastric cancer as well as the potential of this genetic alteration to serve as a therapeutic target in gastric cancer. MET amplification was assessed by initial screening with a PCR-based copy number assay followed by confirmatory FISH analysis in formalin-fixed, paraffin-embedded specimens of gastric cancer obtained at surgery. The effects of MET tyrosine kinase inhibitors (MET-TKIs) in gastric cancer cells with or without MET amplification were also examined. The median MET copy number in 266 cases of gastric cancer was 1.7, with a range of 0.41 to 21.3. We performed FISH analysis for the 15 cases with the highest MET copy numbers. MET amplification was confirmed in the four assessable cases with a MET copy number of at least 4, whereas MET amplification was not detected in those with a gene copy number of <4. The prevalence of MET amplification was thus 1.5% (4 out of 266 cases). Inhibition of MET by MET-TKIs resulted in the induction of apoptosis accompanied by attenuation of downstream MET signaling in gastric cancer cell lines with MET amplification but not in those without this genetic change. MET amplification identifies a small but clinically important subgroup of gastric cancer patients who are likely to respond to MET-TKIs. Furthermore, screening with a PCR-based copy number assay is an efficient way to reduce the number of patients requiring confirmation of MET amplification by FISH analysis. PMID:23327903

  10. Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling.

    PubMed

    Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2011-11-15

    We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Amplification of biological targets via on-chip culture for biosensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Jason C.; Edwards, Thayne L.; Carson, Bryan

    The present invention, in part, relates to methods and apparatuses for on-chip amplification and/or detection of various targets, including biological targets and any amplifiable targets. In some examples, the microculture apparatus includes a single-use, normally-closed fluidic valve that is initially maintained in the closed position by a valve element bonded to an adhesive coating. The valve is opened using a magnetic force. The valve element includes a magnetic material or metal. Such apparatuses and methods are useful for in-field or real-time detection of targets, especially in limited resource settings.

  12. Mitochondrial DNA Targets Increase Sensitivity of Malaria Detection Using Loop-Mediated Isothermal Amplification

    PubMed Central

    Polley, Spencer D.; Mori, Yasuyoshi; Watson, Julie; Perkins, Mark D.; González, Iveth J.; Notomi, Tsugunori; Chiodini, Peter L.; Sutherland, Colin J.

    2010-01-01

    Loop-mediated isothermal amplification (LAMP) of DNA offers the ability to detect very small quantities of pathogen DNA following minimal tissue sample processing and is thus an attractive methodology for point-of-care diagnostics. Previous attempts to diagnose malaria by the use of blood samples and LAMP have targeted the parasite small-subunit rRNA gene, with a resultant sensitivity for Plasmodium falciparum of around 100 parasites per μl. Here we describe the use of mitochondrial targets for LAMP-based detection of any Plasmodium genus parasite and of P. falciparum specifically. These new targets allow routine amplification from samples containing as few as five parasites per μl of blood. Amplification is complete within 30 to 40 min and is assessed by real-time turbidimetry, thereby offering rapid diagnosis with greater sensitivity than is achieved by the most skilled microscopist or antigen detection using lateral flow immunoassays. PMID:20554824

  13. Assessment of primer/template mismatch effects on real-time PCR amplification of target taxa for GMO quantification.

    PubMed

    Ghedira, Rim; Papazova, Nina; Vuylsteke, Marnik; Ruttink, Tom; Taverniers, Isabel; De Loose, Marc

    2009-10-28

    GMO quantification, based on real-time PCR, relies on the amplification of an event-specific transgene assay and a species-specific reference assay. The uniformity of the nucleotide sequences targeted by both assays across various transgenic varieties is an important prerequisite for correct quantification. Single nucleotide polymorphisms (SNPs) frequently occur in the maize genome and might lead to nucleotide variation in regions used to design primers and probes for reference assays. Further, they may affect the annealing of the primer to the template and reduce the efficiency of DNA amplification. We assessed the effect of a minor DNA template modification, such as a single base pair mismatch in the primer attachment site, on real-time PCR quantification. A model system was used based on the introduction of artificial mismatches between the forward primer and the DNA template in the reference assay targeting the maize starch synthase (SSIIb) gene. The results show that the presence of a mismatch between the primer and the DNA template causes partial to complete failure of the amplification of the initial DNA template depending on the type and location of the nucleotide mismatch. With this study, we show that the presence of a primer/template mismatch affects the estimated total DNA quantity to a varying degree.

  14. Target-aptamer binding triggered quadratic recycling amplification for highly specific and ultrasensitive detection of antibiotics at the attomole level.

    PubMed

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Xu, Wei; Guo, Yuna; Huang, Jiadong

    2015-05-14

    A novel electrochemical aptasensor for ultrasensitive detection of antibiotics by combining polymerase-assisted target recycling amplification with strand displacement amplification with the help of polymerase and nicking endonuclease has been reported. This work is the first time that target-aptamer binding triggered quadratic recycling amplification has been utilized for electrochemical detection of antibiotics.

  15. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    PubMed

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. HER2 Amplification and HER2 Mutation Are Distinct Molecular Targets in Lung Cancers.

    PubMed

    Li, Bob T; Ross, Dara S; Aisner, Dara L; Chaft, Jamie E; Hsu, Meier; Kako, Severine L; Kris, Mark G; Varella-Garcia, Marileila; Arcila, Maria E

    2016-03-01

    Human epidermal growth factor receptor 2 gene (HER2 [also known as ERBB2]) alterations have been identified as oncogenic drivers and potential therapeutic targets in lung cancers. The molecular associations of HER2 gene amplification, mutation, and HER2 protein overexpression in lung cancers have not been distinctly defined. To explore these associations, Memorial Sloan Kettering Cancer Center and the University of Colorado combined their data on HER2 alterations in lung cancers. Tumor specimens from 175 patients with lung adenocarcinomas and no prior targeted therapy were evaluated for the presence of HER2 amplification and mutation and HER2 protein overexpression. Amplification was assessed by fluorescence in situ hybridization (FISH) and defined as an HER2-to-chromosome enumeration probe 17 ratio of at least 2.0. Mutation was assessed by fragment analysis, mass spectrometry genotyping, and Sanger sequencing. Overexpression was assessed by immunohistochemical (IHC) staining. The frequencies of HER2 amplification and mutation and HER2 overexpression were calculated and their overlap examined. HER2 amplification was detected by FISH in 5 of 175 cases (3%). HER2 mutation was detected in 4 of 148 specimens (3%), including three identical 12-base pair insertions (p.A775_G776insYVMA) and a 9-base pair insertion, all in exon 20. None of the HER2-mutant cases was amplified. HER2 overexpression (2+ or 3+) on IHC staining was not detected in the 25 specimens available for testing, and negative IHC staining correlated with the negative results according to FISH. HER2 mutations are not associated with HER2 amplification, thus suggesting a distinct entity and therapeutic target. HER2-positive lung cancer may not be an adequate term, and patient cohorts for the study of HER2-targeted agents should be defined by the specific HER2 alteration present. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  17. Development of Local Amplification Factors in the NEAM Region for Production of Regional Tsunami Hazard Maps

    NASA Astrophysics Data System (ADS)

    Harbitz, C. B.; Glimsdal, S.; Løvholt, F.; Orefice, S.; Romano, F.; Brizuela, B.; Lorito, S.; Hoechner, A.; Babeyko, A. Y.

    2016-12-01

    The standard way of estimating tsunami inundation is by applying numerical depth-averaged shallow-water run-up models. However, for a regional Probabilistic Tsunami Hazard Assessment (PTHA), applying such inundation models may be too time-consuming. A faster, yet less accurate procedure, is to relate the near-shore surface elevations at offshore points to maximum shoreline water levels by using a set of amplification factors based on the characteristics of the incident wave and the bathymetric slope. The surface elevation at the shoreline then acts as a rough approximation for the maximum inundation height or run-up height along the shoreline. An amplification-factor procedure based on a limited set of idealized broken shoreline segments has previously been applied to estimate the maximum inundation heights globally. Here, we present a study where this technique is developed further, by taking into account the local bathymetric profiles. We extract a large number of local bathymetric transects over a significant part of the North East Atlantic, the Mediterranean and connected seas (NEAM) region. For each bathymetric transect, we compute the wave amplification from an offshore control point to points close to the shoreline using a linear shallow-water model for waves of different period and polarity with a sinusoidal pulse wave as input. The amplification factors are then tabulated. We present maximum water levels from the amplification factor method, and compare these with results from conventional inundation models. Finally, we demonstrate how the amplification factor method can be convolved with PTHA results to provide regional tsunami hazard maps. This work has been supported by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE), and the TSUMAPS-NEAM Project (http://www.tsumapsneam.eu/), co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26.

  18. Development of Local Amplification Factors in the NEAM Region for Production of Regional Tsunami Hazard Maps

    NASA Astrophysics Data System (ADS)

    Glimsdal, Sylfest; Løvholt, Finn; Bonnevie Harbitz, Carl; Orefice, Simone; Romano, Fabrizio; Brizuela, Beatriz; Lorito, Stefano; Hoechner, Andreas; Babeyko, Andrey

    2017-04-01

    The standard way of estimating tsunami inundation is by applying numerical depth-averaged shallow-water run-up models. However, for a regional Probabilistic Tsunami Hazard Assessment (PTHA), applying such inundation models may be too time-consuming. A faster, yet less accurate procedure, is to relate the near-shore surface elevations at offshore points to maximum shoreline water levels by using a set of amplification factors based on the characteristics of the incident wave and the bathymetric slope. The surface elevation at the shoreline then acts as a rough approximation for the maximum inundation height or run-up height along the shoreline. An amplification-factor procedure based on a limited set of idealized broken shoreline segments has previously been applied to estimate the maximum inundation heights globally. Here, we present a study where this technique is developed further, by taking into account the local bathymetric profiles. We extract a large number of local bathymetric transects over a significant part of the North East Atlantic, the Mediterranean and connected seas (NEAM region). For each bathymetric transect, we compute the wave amplification from an offshore control point to points close to the shoreline using a linear shallow-water model for waves of different period and polarity with a sinusoidal pulse wave as input. The amplification factors are then tabulated. We present maximum water levels from the amplification factor method, and compare these with results from conventional inundation models. Finally, we demonstrate how the amplification factor method can be convolved with PTHA results to provide regional tsunami hazard maps. This work has been supported by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE), and the TSUMAPS-NEAM Project (http://www.tsumapsneam.eu/), co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26.

  19. [Identification of Clonorchis sinensis metacercariae based on PCR targeting ribosomal DNA ITS regions and COX1 gene].

    PubMed

    Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Yang, Yi-Chao; Li, Hong-Mei; Chen, Ying-Dan; Zhou, Xiao-Nong

    2014-06-01

    To identify Clonorchis sinensis metacercariae using PCR targeting ribosomal DNA ITS region and COX1 gene. Pseudorasbora parva were collected from Hengxian County of Guangxi at the end of May 2013. Single metacercaria of C. sinensis and other trematodes were separated from muscle tissue of P. parva by digestion method. Primers targeting ribosomal DNA ITS region and COX1 gene of C. sinensis were designed for PCR and the universal primers were used as control. The sensitivity and specificity of the PCR detection were analyzed. C. sinensis metacercariae at different stages were identified by PCR. DNA from single C. sinensis metacercaria was detected by PCR targeting ribosomal DNA ITS region and COX1 gene. The specific amplicans have sizes of 437/549, 156/249 and 195/166 bp, respectively. The ratio of the two positive numbers in PCR with universal primers and specific primers targeting C. sinensis ribosomal DNA ITS1 and ITS2 regions was 0.905 and 0.952, respectively. The target gene fragments were amplified by PCR using COX1 gene-specific primers. The PCR with specific primers did not show any non-specific amplification. However, the PCR with universal primers targeting ribosomal DNA ITS regions performed serious non-specific amplification. C. sinensis metacercariae at different stages are identified by morphological observation and PCR method. Species-specific primers targeting ribosomal DNA ITS region show higher sensitivity and specificity than the universal primers. PCR targeting COX1 gene shows similar sensitivity and specificity to PCR with specific primers targeting ribosomal DNA ITS regions.

  20. Evidence of high-elevation amplification versus Arctic amplification

    NASA Astrophysics Data System (ADS)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  1. Evidence of high-elevation amplification versus Arctic amplification

    PubMed Central

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961–2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction. PMID:26753547

  2. Target-triggering multiple-cycle signal amplification strategy for ultrasensitive detection of DNA based on QCM and SPR.

    PubMed

    Song, Weiling; Yin, Wenshuo; Sun, Wenbo; Guo, Xiaoyan; He, Peng; Yang, Xiaoyan; Zhang, Xiaoru

    2018-04-24

    Detection of ultralow concentrations of nucleic acid sequences is a central challenge in the early diagnosis of genetic diseases. Herein, we developed a target-triggering cascade multiple cycle amplification for ultrasensitive DNA detection using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). It was based on the exonuclease Ⅲ (Exo Ⅲ)-assisted signal amplification and the hybridization chain reaction (HCR). The streptavidin-coated Au-NPs (Au-NPs-SA) were assembled on the HCR products as recognition element. Upon sensing of target DNA, the duplex DNA probe triggered the Exo Ⅲ cleavage process, accompanied by generating a new secondary target DNA and releasing target DNA. The released target DNA and the secondary target DNA were recycled. Simultaneously, numerous single strands were liberated and acted as the trigger of HCR to generate further signal amplification, resulting in the immobilization of abundant Au-NPs-SA on the gold substrate. The QCM sensor results were found to be comparable to that achieved using a SPR sensor platform. This method exhibited a high sensitivity toward target DNA with a detection limit of 0.70 fM. The high sensitivity and specificity make this method a great potential for detecting DNA with trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons.

    PubMed

    Peng, Ying; Li, Daxiu; Yuan, Ruo; Xiang, Yun

    2018-05-15

    Abnormal concentrations of ATP are associated with many diseases and cancers, and quantitative detection of ATP is thus of great importance for disease diagnosis and prognosis. In the present work, we report a new dual recycling amplification sensor integrated with catalytic hairpin assembly (CHA) to achieve high sensitivity for fluorescent detection of ATP. The association of the target ATP with the aptamer beacons causes the allosteric structure switching of the aptamer beacons to expose the toehold regions, which hybridize with and unfold the fluorescently quenched hairpin signal probes (HP1) to recycle the target ATP and to trigger CHA between HP1 and the secondary hairpin probes (HP2) to form HP1/HP2 duplexes. Due to the recycling amplification, the presence of ATP leads to the formation of many HP1/HP2 duplexes, generating dramatically amplified fluorescent signals for sensitive detection of ATP. Under optimal experimental conditions, our sensor linearly responds to ATP in the range from 25 to 600nM with a calculated detection limit of 8.2nM. Furthermore, the sensor shows a high selectivity and can also be used to detect ATP in human serums to realize its application for real samples. With the distinct advantage of significant signal amplification without the involvement of any nanomaterial and enzyme, the developed sensor thus holds great potential for simple and sensitive detection of different small molecules and proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Signal amplification by rolling circle amplification on DNA microarrays

    PubMed Central

    Nallur, Girish; Luo, Chenghua; Fang, Linhua; Cooley, Stephanie; Dave, Varshal; Lambert, Jeremy; Kukanskis, Kari; Kingsmore, Stephen; Lasken, Roger; Schweitzer, Barry

    2001-01-01

    While microarrays hold considerable promise in large-scale biology on account of their massively parallel analytical nature, there is a need for compatible signal amplification procedures to increase sensitivity without loss of multiplexing. Rolling circle amplification (RCA) is a molecular amplification method with the unique property of product localization. This report describes the application of RCA signal amplification for multiplexed, direct detection and quantitation of nucleic acid targets on planar glass and gel-coated microarrays. As few as 150 molecules bound to the surface of microarrays can be detected using RCA. Because of the linear kinetics of RCA, nucleic acid target molecules may be measured with a dynamic range of four orders of magnitude. Consequently, RCA is a promising technology for the direct measurement of nucleic acids on microarrays without the need for a potentially biasing preamplification step. PMID:11726701

  5. RNase H-assisted RNA-primed rolling circle amplification for targeted RNA sequence detection.

    PubMed

    Takahashi, Hirokazu; Ohkawachi, Masahiko; Horio, Kyohei; Kobori, Toshiro; Aki, Tsunehiro; Matsumura, Yukihiko; Nakashimada, Yutaka; Okamura, Yoshiko

    2018-05-17

    RNA-primed rolling circle amplification (RPRCA) is a useful laboratory method for RNA detection; however, the detection of RNA is limited by the lack of information on 3'-terminal sequences. We uncovered that conventional RPRCA using pre-circularized probes could potentially detect the internal sequence of target RNA molecules in combination with RNase H. However, the specificity for mRNA detection was low, presumably due to non-specific hybridization of non-target RNA with the circular probe. To overcome this technical problem, we developed a method for detecting a sequence of interest in target RNA molecules via RNase H-assisted RPRCA using padlocked probes. When padlock probes are hybridized to the target RNA molecule, they are converted to the circular form by SplintR ligase. Subsequently, RNase H creates nick sites only in the hybridized RNA sequence, and single-stranded DNA is finally synthesized from the nick site by phi29 DNA polymerase. This method could specifically detect at least 10 fmol of the target RNA molecule without reverse transcription. Moreover, this method detected GFP mRNA present in 10 ng of total RNA isolated from Escherichia coli without background DNA amplification. Therefore, this method can potentially detect almost all types of RNA molecules without reverse transcription and reveal full-length sequence information.

  6. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification

    USDA-ARS?s Scientific Manuscript database

    The technique of loop-mediated isothermal amplification (LAMP) utilizes 4 (or 6) primers targeting 6 (or 8) regions within a fairly small segment of a genome for amplification, with concentration higher than that used in traditional PCR methods. The high concentrations of primers used leads to an in...

  7. Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

    PubMed Central

    Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin

    2012-01-01

    Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a

  8. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    PubMed

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization

    PubMed Central

    Girard, Laurie D.; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G.

    2014-01-01

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have a high complexity cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotidesequence-dependent segment and a unique “target sequence-independent” 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  10. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    PubMed

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  11. Sensitive SERS detection of DNA methyltransferase by target triggering primer generation-based multiple signal amplification strategy.

    PubMed

    Li, Ying; Yu, Chuanfeng; Han, Huixia; Zhao, Caisheng; Zhang, Xiaoru

    2016-07-15

    A novel and sensitive surface-enhanced Raman scattering (SERS) method is proposed for the assay of DNA methyltransferase (MTase) activity and evaluation of inhibitors by developing a target triggering primer generation-based multiple signal amplification strategy. By using of a duplex substrate for Dam MTase, two hairpin templates and a Raman probe, multiple signal amplification mode is achieved. Once recognized by Dam MTase, the duplex substrate can be cleaved by Dpn I endonuclease and two primers are released for triggering the multiple signal amplification reaction. Consequently, a wide dynamic range and remarkably high sensitivity are obtained under isothermal conditions. The detection limit is 2.57×10(-4)UmL(-1). This assay exhibits an excellent selectivity and is successfully applied in the screening of inhibitors for Dam MTase. In addition, this novel sensing system is potentially universal as the recognition element can be conveniently designed for other target analytes by changing the substrate of DNA MTase. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A novel nonenzymatic cascade amplification for ultrasensitive photoelectrochemical DNA sensing based on target driven to initiate cyclic assembly of hairpins.

    PubMed

    Wen, Guangming; Dong, Wenxia; Liu, Bin; Li, Zhongping; Fan, Lifang

    2018-05-29

    A novel cascade photoelectrochemical (PEC) signal amplification biosensing tactics was developed for DNA detection based on a target-driven DNA association to induce cyclic hairpin assembly. In the circulatory system there are two ssDNA (A and B) and two hairpins (C and D). The hybridization of these ssDNA led to the formation of an A-target-B structure. The close proximity of their toehold and branch-migration regions was able to induce the cyclic hairpin assembly. Afterwards, the assembly result further causes the separation of a double-stranded probe DNA (Q:F) to switch the PEC signal via toehold-mediated strand replacement. As such, the signal stranded DNA-CdS QDs (F) as the signal tag was released in the presence of the target DNA. The signal DNA-CdS QDs was then coated to F-doped tin oxide (FTO) electrode leading to the "signal-on" PEC signal. The designed biosensing strategy showed a low detection limit of 21.3 pM for target DNA and a broad linear range from 50 pM to 100 nM. This signal amplification PEC sensing method exhibited a potential application to detect protein molecules, RNA or metal ions via changing the sequence of A and B recognition. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    PubMed

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  14. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences.

    PubMed

    Lee, David; La Mura, Maurizio; Allnutt, Theo R; Powell, Wayne

    2009-02-02

    The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR). Here we have applied the loop-mediated isothermal amplification (LAMP) method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene) junctions. We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.

  15. Signal-on electrochemical detection of antibiotics at zeptomole level based on target-aptamer binding triggered multiple recycling amplification.

    PubMed

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Guo, Yuna; Xu, Ying; Huang, Jiadong

    2016-06-15

    In the work, a signal-on electrochemical DNA sensor based on multiple amplification for ultrasensitive detection of antibiotics has been reported. In the presence of target, the ingeniously designed hairpin probe (HP1) is opened and the polymerase-assisted target recycling amplification is triggered, resulting in autonomous generation of secondary target. It is worth noting that the produced secondary target could not only hybridize with other HP1, but also displace the Helper from the electrode. Consequently, methylene blue labeled HP2 forms a "close" probe structure, and the increase of signal is monitored. The increasing current provides an ultrasensitive electrochemical detection for antibiotics down to 1.3 fM. To our best knowledge, such work is the first report about multiple recycling amplification combing with signal-on sensing strategy, which has been utilized for quantitative determination of antibiotics. It would be further used as a general strategy associated with more analytical techniques toward the detection of a wide spectrum of analytes. Thus, it holds great potential for the development of ultrasensitive biosensing platform for the applications in bioanalysis, disease diagnostics, and clinical biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    PubMed Central

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209

  17. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    NASA Astrophysics Data System (ADS)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  18. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification.

    PubMed

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-05

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  19. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    PubMed Central

    Ziesemer, Kirsten A.; Mann, Allison E.; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T.; Brandt, Bernd W.; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C.; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A.; MacDonald, Sandy J.; Thomas, Gavin H.; Collins, Matthew J.; Lewis, Cecil M.; Hofman, Corinne; Warinner, Christina

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586

  20. Genome amplification of single sperm using multiple displacement amplification.

    PubMed

    Jiang, Zhengwen; Zhang, Xingqi; Deka, Ranjan; Jin, Li

    2005-06-07

    Sperm typing is an effective way to study recombination rate on a fine scale in regions of interest. There are two strategies for the amplification of single meiotic recombinants: repulsion-phase allele-specific PCR and whole genome amplification (WGA). The former can selectively amplify single recombinant molecules from a batch of sperm but is not scalable for high-throughput operation. Currently, primer extension pre-amplification is the only method used in WGA of single sperm, whereas it has limited capacity to produce high-coverage products enough for the analysis of local recombination rate in multiple large regions. Here, we applied for the first time a recently developed WGA method, multiple displacement amplification (MDA), to amplify single sperm DNA, and demonstrated its great potential for producing high-yield and high-coverage products. In a 50 mul reaction, 76 or 93% of loci can be amplified at least 2500- or 250-fold, respectively, from single sperm DNA, and second-round MDA can further offer >200-fold amplification. The MDA products are usable for a variety of genetic applications, including sequencing and microsatellite marker and single nucleotide polymorphism (SNP) analysis. The use of MDA in single sperm amplification may open a new era for studies on local recombination rates.

  1. Ligation with Nucleic Acid Sequence–Based Amplification

    PubMed Central

    Ong, Carmichael; Tai, Warren; Sarma, Aartik; Opal, Steven M.; Artenstein, Andrew W.; Tripathi, Anubhav

    2012-01-01

    This work presents a novel method for detecting nucleic acid targets using a ligation step along with an isothermal, exponential amplification step. We use an engineered ssDNA with two variable regions on the ends, allowing us to design the probe for optimal reaction kinetics and primer binding. This two-part probe is ligated by T4 DNA Ligase only when both parts bind adjacently to the target. The assay demonstrates that the expected 72-nt RNA product appears only when the synthetic target, T4 ligase, and both probe fragments are present during the ligation step. An extraneous 38-nt RNA product also appears due to linear amplification of unligated probe (P3), but its presence does not cause a false-positive result. In addition, 40 mmol/L KCl in the final amplification mix was found to be optimal. It was also found that increasing P5 in excess of P3 helped with ligation and reduced the extraneous 38-nt RNA product. The assay was also tested with a single nucleotide polymorphism target, changing one base at the ligation site. The assay was able to yield a negative signal despite only a single-base change. Finally, using P3 and P5 with longer binding sites results in increased overall sensitivity of the reaction, showing that increasing ligation efficiency can improve the assay overall. We believe that this method can be used effectively for a number of diagnostic assays. PMID:22449695

  2. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  3. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE PAGES

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.; ...

    2014-01-01

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  4. Amplifications of chromosomal region 20q13 as a prognostic indicator breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    2001-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  5. Clinical Characteristics and Outcome of Patients with Neuroblastoma Presenting Genomic Amplification of Loci Other than MYCN

    PubMed Central

    Guimier, Anne; Ferrand, Sandrine; Pierron, Gaëlle; Couturier, Jérôme; Janoueix-Lerosey, Isabelle; Combaret, Valérie; Mosseri, Véronique; Thebaud, Estelle; Gambart, Marion; Plantaz, Dominique; Marabelle, Aurélien; Coze, Carole; Rialland, Xavier; Fasola, Sylvie; Lapouble, Eve; Fréneaux, Paul; Peuchmaur, Michel; Michon, Jean; Delattre, Olivier; Schleiermacher, Gudrun

    2014-01-01

    Background Somatically acquired genomic alterations with MYCN amplification (MNA) are key features of neuroblastoma (NB), the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical characteristics and outcome of NBs harbouring genomic amplification(s) distinct from MYCN. Methods Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied. Clinical and histology data were retrospectively collected. Results In total, 56 patients were included and categorised into 3 groups. Group 1 (n = 8) presented regional amplification(s) without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases). This group was heterogeneous in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n = 26) had MNA as well as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3, n = 22). Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%±11% vs 34.9%±7%, log-rank p<0.05). Conclusion NBs harbouring regional amplification(s) without MNA are rare and seem to show atypical features in clinical presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group, especially when considering these alterations as predictive markers for targeted therapy. PMID:25013904

  6. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing.

    PubMed

    Zong, Liang; Chen, Jin; Zhu, Yan; Zhao, Hong-Bo

    2017-07-22

    Mutations of Connexin 26 (Cx26, GJB2), which is a predominant gap junction isoform in the cochlea, can induce high incidence of nonsyndromic hearing loss. We previously found that targeted-deletion of Cx26 in supporting Deiters cells and outer pillar cells in the cochlea can influence outer hair cell (OHC) electromotility and reduce active cochlear amplification leading to hearing loss, even though there are no gap junction connexin expressions in the auditory sensory hair cells. Here, we further report that hearing loss and the reduction of active amplification in the Cx26 targeted-deletion mice are progressive and different at high and low frequency regions, first occurring in the high frequency region and then progressively extending to the middle and low frequency regions with mouse age increased. The speed of hearing loss extending was fast in the basal high frequency region and slow in the apical low frequency region, showing a logarithmic function with mouse age. Before postnatal day 25, there were no significant hearing loss and the reduction of active cochlear amplification in the low frequency region. Hearing loss and the reduction of active cochlear amplification also had frequency difference, severe and large in the high frequency regions. These new data indicate that the effect of gap junction on active cochlear amplification is progressive, but, consistent with our previous report, exists in both high and low frequency regions in adulthood. These new data also suggest that cochlear gap junctions may have an important role in age-related hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Design of a sensitive aptasensor based on magnetic microbeads-assisted strand displacement amplification and target recycling.

    PubMed

    Li, Ying; Ji, Xiaoting; Song, Weiling; Guo, Yingshu

    2013-04-03

    A cross-circular amplification system for sensitive detection of adenosine triphosphate (ATP) in cancer cells was developed based on aptamer-target interaction, magnetic microbeads (MBs)-assisted strand displacement amplification and target recycling. Here we described a new recognition probe possessing two parts, the ATP aptamer and the extension part. The recognition probe was firstly immobilized on the surface of MBs and hybridized with its complementary sequence to form a duplex. When combined with ATP, the probe changed its conformation, revealing the extension part in single-strand form, which further served as a toehold for subsequent target recycling. The released complementary sequence of the probe acted as the catalyst of the MB-assisted strand displacement reaction. Incorporated with target recycling, a large amount of biotin-tagged MB complexes were formed to stimulate the generation of chemiluminescence (CL) signal in the presence of luminol and H2O2 by incorporating with streptavidin-HRP, reaching a detection limit of ATP as low as 6.1×10(-10)M. Moreover, sample assays of ATP in Ramos Burkitt's lymphoma B cells were performed, which confirmed the reliability and practicality of the protocol. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Label-Free Sensitive Detection of DNA Methyltransferase by Target-Induced Hyperbranched Amplification with Zero Background Signal.

    PubMed

    Zhang, Yan; Wang, Xin-Yan; Zhang, Qianyi; Zhang, Chun-Yang

    2017-11-21

    DNA methyltransferases (MTases) may specifically recognize the short palindromic sequences and transfer a methyl group from S-adenosyl-l-methionine to target cytosine/adenine. The aberrant DNA methylation is linked to the abnormal DNA MTase activity, and some DNA MTases have become promising targets of anticancer/antimicrobial drugs. However, the reported DNA MTase assays often involve laborious operation, expensive instruments, and radio-labeled substrates. Here, we develop a simple and label-free fluorescent method to sensitively detect DNA adenine methyltransferase (Dam) on the basis of terminal deoxynucleotidyl transferase (TdT)-activated Endonuclease IV (Endo IV)-assisted hyperbranched amplification. We design a hairpin probe with a palindromic sequence in the stem as the substrate and a NH 2 -modified 3' end for the prevention of nonspecific amplification. The substrate may be methylated by Dam and subsequently cleaved by DpnI, producing three single-stranded DNAs, two of which with 3'-OH termini may be amplified by hyperbranched amplification to generate a distinct fluorescence signal. Because high exactitude of TdT enables the amplification only in the presence of free 3'-OH termini and Endo IV only hydrolyzes the intact apurinic/apyrimidinic sites in double-stranded DNAs, zero background signal can be achieved. This method exhibits excellent selectivity and high sensitivity with a limit of detection of 0.003 U/mL for pure Dam and 9.61 × 10 -6 mg/mL for Dam in E. coli cells. Moreover, it can be used to screen the Dam inhibitors, holding great potentials in disease diagnosis and drug development.

  9. Loop-Mediated Isothermal Amplification Targeting Actin DNA of Trichomonas vaginalis.

    PubMed

    Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Kong, Hyun-Hee; Lee, Won-Ki; Chung, Dong-Il; Hong, Yeonchul

    2016-06-01

    Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications.

  10. Amplifications of chromosomal region 20q13 as a prognostic indicator in breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    1998-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  11. Loop-mediated isothermal amplification (LAMP) assay for speedy diagnosis of tubercular lymphadenitis: The multi-targeted 60-minute approach.

    PubMed

    Sharma, Megha; Sharma, Kusum; Sharma, Aman; Gupta, Nalini; Rajwanshi, Arvind

    2016-09-01

    Tuberculous lymphadenitis (TBLA), the most common presentation of tuberculosis, poses a significant diagnostic challenge in the developing countries. Timely, accurate and cost-effective diagnosis can decrease the high morbidity associated with TBLA especially in resource-poor high-endemic regions. The loop-mediated isothermal amplification assay (LAMP), using two targets, was evaluated for the diagnosis of TBLA. LAMP assay using 3 sets of primers (each for IS6110 and MPB64) was performed on 170 fine needle aspiration samples (85 confirmed, 35 suspected, 50 control cases of TBLA). Results were compared against IS6110 PCR, cytology, culture and smear. The overall sensitivity and specificity of LAMP assay, using multi-targeted approach, was 90% and 100% respectively in diagnosing TBLA. The sensitivity of multi-targeted LAMP, only MPB64 LAMP, only IS6110 LAMP and IS6110 PCR was 91.7%, 89.4%, 84.7% and 75.2%, respectively among confirmed cases and 85.7%, 77.1%, 68.5% and 60%, respectively among suspected cases of TBLA. Additional 12/120 (10%) cases were detected using multi-targeted method. The multi-targeted LAMP, with its speedy and reliable results, is a potential diagnostic test for TBLA in low-resource countries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification.

    PubMed

    Zheng, Jiao; Li, Ningxing; Li, Chunrong; Wang, Xinxin; Liu, Yucheng; Mao, Guobin; Ji, Xinghu; He, Zhike

    2018-06-01

    Synthetic enzyme-free DNA nanomachine performs quasi-mechanical movements in response to external intervention, suggesting the promise of constructing sensitive and specific biosensors. Herein, a smart DNA nanomachine biosensor for biomolecule (such as nucleic acid, thrombin and adenosine) detection is developed by target-assisted enzyme-free hairpin DNA cascade amplifier. The whole DNA nanomachine system is constructed on gold nanoparticle which decorated with hundreds of locked hairpin substrate strands serving as DNA tracks, and the DNA nanomachine could be activated by target molecule toehold-mediated exchange on gold nanoparticle surface, resulted in the fluorescence recovery of fluorophore. The process is repeated so that each copy of the target can open multiplex fluorophore-labeled hairpin substrate strands, resulted in amplification of the fluorescence signal. Compared with the conventional biosensors of catalytic hairpin assembly (CHA) without substrate in solution, the DNA nanomachine could generate 2-3 orders of magnitude higher fluorescence signal. Furthermore, the DNA nanomachine could be used for nucleic acid, thrombin and adenosine highly sensitive specific detection based on isothermal, and homogeneous hairpin DNA cascade signal amplification in both buffer and a complicated biomatrix, and this kind of DNA nanomachine could be efficiently applied in the field of biomedical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. EGFR Amplification as a Target in Gastroesophageal Adenocarcinoma: Do Anti-EGFR Therapies Deserve a Second Chance?

    PubMed

    Strickler, John H

    2018-06-01

    Anti-EGFR therapies have failed to improve survival for unselected patients with metastatic gastroesophageal cancer, but in a subset of patients, EGFR amplification may predict treatment benefit. Maron and colleagues report the clinical activity of anti-EGFR therapies in a cohort of patients with EGFR -amplified metastatic gastroesophageal cancer and utilize serial blood and tumor tissue collection to identify molecular drivers of treatment sensitivity and resistance. Their insights offer a path to overcome technical limitations associated with EGFR amplification and facilitate molecularly targeted therapeutic strategies. Cancer Discov; 8(6); 679-81. ©2018 AACR See related article by Maron et al., p. 696 . ©2018 American Association for Cancer Research.

  14. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    PubMed

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  15. Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy.

    PubMed

    Peng, Kanfu; Xie, Pan; Yang, Zhe-Han; Yuan, Ruo; Zhang, Keqin

    2018-04-15

    In this work, an amplified electrochemical ratiometric aptasensor for nuclear factor kappa B (NF-κB) assay based on target binding-triggered ratiometric signal readout and polymerase-assisted protein recycling amplification strategy is described. To demonstrate the effect of "signal-off" and "signal-on" change for the dual-signal electrochemical ratiometric readout, the thiol-hairpin DNA (SH-HD) hybridizes with methylene blue (MB)-modified protection DNA (MB-PD) to form capture probes, which is rationally introduced for the construction of the assay platform. On the interface, the probes can specifically bind to target NF-κB and expose a toehold region which subsequently hybridizes with the ferrocene (Fc)-modified DNA strand to take the Fc group to the electrode surface, accompanied by displacing MB-PD to release the MB group from the electrode surface, leading to the both "signal-on" of Fc (I Fc ) and "signal-off" of MB (I MB ). In order to improve the sensitivity of the electrochemical aptasensor, phi29-assisted target protein recycling amplification strategy was designed to achieve an amplified ratiometric signal. With the above advantages, the prepared aptasensor exhibits a wide linear range of 0.1pgmL -1 to 15ngmL -1 with a low detection limit of 0.03pgmL -1 . This strategy provides a simple and ingenious approach to construct ratiometric electrochemical aptasensor and shows promising potential applications in multiple disease marker detection by changing the recognition probe. Copyright © 2017. Published by Elsevier B.V.

  16. EzyAmp signal amplification cascade enables isothermal detection of nucleic acid and protein targets.

    PubMed

    Linardy, Evelyn M; Erskine, Simon M; Lima, Nicole E; Lonergan, Tina; Mokany, Elisa; Todd, Alison V

    2016-01-15

    Advancements in molecular biology have improved the ability to characterize disease-related nucleic acids and proteins. Recently, there has been an increasing desire for tests that can be performed outside of centralised laboratories. This study describes a novel isothermal signal amplification cascade called EzyAmp (enzymatic signal amplification) that is being developed for detection of targets at the point of care. EzyAmp exploits the ability of some restriction endonucleases to cleave substrates containing nicks within their recognition sites. EzyAmp uses two oligonucleotide duplexes (partial complexes 1 and 2) which are initially cleavage-resistant as they lack a complete recognition site. The recognition site of partial complex 1 can be completed by hybridization of a triggering oligonucleotide (Driver Fragment 1) that is generated by a target-specific initiation event. Binding of Driver Fragment 1 generates a completed complex 1, which upon cleavage, releases Driver Fragment 2. In turn, binding of Driver Fragment 2 to partial complex 2 creates completed complex 2 which when cleaved releases additional Driver Fragment 1. Each cleavage event separates fluorophore quencher pairs resulting in an increase in fluorescence. At this stage a cascade of signal production becomes independent of further target-specific initiation events. This study demonstrated that the EzyAmp cascade can facilitate detection and quantification of nucleic acid targets with sensitivity down to aM concentration. Further, the same cascade detected VEGF protein with a sensitivity of 20nM showing that this universal method for amplifying signal may be linked to the detection of different types of analytes in an isothermal format. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Target-responsive aptamer release from manganese dioxide nanosheets for electrochemical sensing of cocaine with target recycling amplification.

    PubMed

    Chen, Zongbao; Lu, Minghua

    2016-11-01

    A novel electrochemical sensing platform based on manganese dioxide (MnO2) nanosheets was developed for sensitive screening of target cocaine with the signal amplification. Ferrocene-labeled cocaine aptamers were initially immobilized onto MnO2 nanosheets-modified screen-printed carbon electrode because of π-stacking interaction between nucleobases and nanosheets. The immobilized ferrocene-aptamer activated the electrical contact with the electrode, thereby resulting in the sensor circuit to switch on. Upon target cocaine introduction, the analyte reacted with the aptamer and caused the dissociation of ferrocene-aptamer from the electrode, thus giving rise to the detection circuit to switch off. The released aptamer was cleaved by DNase I with target recycling. Under optimal conditions, the decreasing percentage of the electronic signal relative to background current increased with the increasing cocaine concentration in the dynamic range of 0.1-20nM, and the detection limit was 32pM. The reproducibility, selectivity and method accuracy were acceptable. Importantly, this concept offers promise for rapid, simple, and cost-effective analysis of cocaine biological samples without the needs of sample separation and multiple washing steps. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Rapid amplification of 5' complementary DNA ends (5' RACE).

    PubMed

    2005-08-01

    This method is used to extend partial cDNA clones by amplifying the 5' sequences of the corresponding mRNAs 1-3. The technique requires knowledge of only a small region of sequence within the partial cDNA clone. During PCR, the thermostable DNA polymerase is directed to the appropriate target RNA by a single primer derived from the region of known sequence; the second primer required for PCR is complementary to a general feature of the target-in the case of 5' RACE, to a homopolymeric tail added (via terminal transferase) to the 3' termini of cDNAs transcribed from a preparation of mRNA. This synthetic tail provides a primer-binding site upstream of the unknown 5' sequence of the target mRNA. The products of the amplification reaction are cloned into a plasmid vector for sequencing and subsequent manipulation.

  19. Improved Method for Direct Detection of Environmental Microorganisms Using an Amplification of 16S rDNA Region

    NASA Astrophysics Data System (ADS)

    Tsujimura, M.; Akutsu, J.; Zhang, Z.; Sasaki, M.; Tajima, H.; Kawarabayasi, Y.

    2004-12-01

    The thermostable proteins or enzymes were expected to be capable to be utilized in many areas of industries. Many thermophilic microorganisms, which possess the thermostable proteins or enzymes, were identified from the extreme environment. However, many unidentified and uncultivable microorganisms are still remaining in the environment on the earth. It is generally said that the cultivable microorganisms are less than 1% of entire microorganisms living in the earth, remaining over 99% are still uncultivable. As an approach to the uncultivable microorganisms, the PCR amplification of 16S rDNA region using primer sets designed from the conserved region has been generally utilized for detection and community analysis of microorganism in the environment. However, the facts, that PCR amplification introduces the mutation in the amplified DNA fragment and efficiency of PCR amplification is depend on the sequences of primer sets, indicated that the improving of PCR analysis was necessary for more correct detection of microorganisms. As the result of evaluation for the quality of DNA polymerases, sequences of primers used for amplification and conditions of PCR amplification, the DNA polymerase, the primer set and the conditions for amplification, which did not amplify the DNA fragment from the DNA contaminated within the DNA polymerase itself, were successfully selected. Also the rate of mutation in the DNA fragment amplified was evaluated using this conditions and the genomic DNA from cultivable microbes as a template. The result indicated the rate of mutation introduced by PCR was approximately 0.1% to 0.125%. The improved method using these conditions and error rate calculated was applied for the analysis of microorganisms in the geothermal environment. The result indicated that four kinds of dominant microorganisms, including both of bacteria and archaea, were alive within soil in the hot spring in Tohoku Area. We would like to apply this improved method to detection

  20. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    PubMed

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  1. A cascade signal amplification strategy for sensitive and label-free DNA detection based on Exo III-catalyzed recycling coupled with rolling circle amplification.

    PubMed

    Liu, Xingti; Xue, Qingwang; Ding, Yongshun; Zhu, Jing; Wang, Lei; Jiang, Wei

    2014-06-07

    A sensitive and label-free fluorescence assay for DNA detection has been developed based on cascade signal amplification combining exonuclease III (Exo III)-catalyzed recycling with rolling circle amplification. In this assay, probe DNA hybridized with template DNA was coupled onto magnetic nanoparticles to prepare a magnetic bead-probe (MNB-probe)-template complex. The complex could hybridize with the target DNA, which transformed the protruding 3' terminus of template DNA into a blunt end. Exo III could then digest template DNA, liberating the MNB-probe and target DNA. The intact target DNA then hybridized with other templates and released more MNB-probes. The liberated MNB-probe captured the primer, circular DNA and then initiated the rolling circle amplification (RCA) reaction, realizing a cascade signal amplification. Using this cascade amplification strategy, a sensitive DNA detection method was developed which was superior to many existing Exo III-based signal amplification methods. Moreover, N-methyl mesoporphyrin IX, which had a pronounced structural selectivity for the G-quadruplex, was used to combine with the G-quadruplex RCA products and generate a fluorescence signal, avoiding the need for any fluorophore-label probes. The spike and recovery experiments in a human serum sample indicated that our assay also had great potential for DNA detection in real biological samples.

  2. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    PubMed

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  3. Targeted next generation sequencing of well-differentiated/dedifferentiated liposarcoma reveals novel gene amplifications and mutations.

    PubMed

    Somaiah, Neeta; Beird, Hannah C; Barbo, Andrea; Song, Juhee; Mills Shaw, Kenna R; Wang, Wei-Lien; Eterovic, Karina; Chen, Ken; Lazar, Alexander; Conley, Anthony P; Ravi, Vinod; Hwu, Patrick; Futreal, Andrew; Simon, George; Meric-Bernstam, Funda; Hong, David

    2018-04-13

    Well-differentiated/dedifferentiated liposarcoma is a common soft tissue sarcoma with approximately 1500 new cases per year. Surgery is the mainstay of treatment but recurrences are frequent and systemic options are limited. 'Tumor genotyping' is becoming more common in clinical practice as it offers the hope of personalized targeted therapy. We wanted to evaluate the results and the clinical utility of available next-generation sequencing panels in WD/DD liposarcoma. Patients who had their tumor sequenced by either FoundationOne ( n = 13) or the institutional T200/T200.1 panels ( n = 7) were included in this study. Significant copy number alterations were identified, but mutations were infrequent. Out of the 27 mutations detected in 7 samples, 8 ( CTNNB1, MECOM, ZNF536, EGFR, EML4, CSMD3, PBRM1, PPP1R3A ) were identified as deleterious (on Condel, PolyPhen and SIFT) and a truncating mutation was found in NF2 . Of these, EGFR and NF2 are potential driver mutations and have not been reported previously in liposarcoma. MDM2 and CDK4 amplification was universally present in all the tested samples and multiple other recurrent genes with high amplification or high deletion were detected. Many of these targets are potentially actionable. Eight patients went on to receive an MDM2 inhibitor with a median time to progression of 23 months (95% CI: 10-83 months).

  4. Rapid detection of microbial DNA by a novel isothermal genome exponential amplification reaction (GEAR) assay.

    PubMed

    Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan

    2012-04-20

    In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min. Published by Elsevier Inc.

  5. Design factors that influence PCR amplification success of cross-species primers among 1147 mammalian primer pairs

    PubMed Central

    Housley, Donna JE; Zalewski, Zachary A; Beckett, Stephanie E; Venta, Patrick J

    2006-01-01

    Background Cross-species primers have been used with moderate success to address a variety of questions concerning genome structure, evolution, and gene function. However, the factors affecting their success have never been adequately addressed, particularly with respect to producing a consistent method to achieve high throughput. Using 1,147 mammalian cross-species primer pairs (1089 not previously reported), we tested several factors to determine their influence on the probability that a given target will amplify in a given species under a single amplification condition. These factors included: number of mismatches between the two species (the index species) used to identify conserved regions to which the primers were designed, GC-content of the gene and amplified region, CpG dinucleotides in the primer region, degree of encoded protein conservation, length of the primers, and the degree of evolutionary distance between the target species and the two index species. Results The amplification success rate for the cross-species primers was significantly influenced by the number of mismatches between the two index species (6–8% decrease per mismatch in a primer pair), the GC-content within the amplified region (for the dog, GC ≥ 50%, 56.9% amplified; GC<50%, 74.2% amplified), the degree of protein conservation (R2 = 0.14) and the relatedness of the target species to the index species. For the dog, 598 products of 930 primer pairs (64.3%) (excluding primers in which dog was an index species) were sequenced and shown to be the expected product, with an additional three percent producing the incorrect sequence. When hamster DNA was used with the single amplification condition in a microtiter plate-based format, 510 of 1087 primer pairs (46.9%) produced amplified products. The primer pairs are spaced at an average distance of 2.3 Mb in the human genome and may be used to produce up to several hundred thousand bp of species-specific sequence. Conclusion The most

  6. Fluorometric determination of nucleic acids based on the use of polydopamine nanotubes and target-induced strand displacement amplification.

    PubMed

    Ge, Jia; Bai, Dong-Mei; -Geng, Xin; Hu, Ya-Lei; Cai, Qi-Yong; Xing, Ke; Zhang, Lin; Li, Zhao-Hui

    2018-01-10

    The authors describe a fluorometric method for the quantitation of nucleic acids by combining (a) cycled strand displacement amplification, (b) the unique features of the DNA probe SYBR Green, and (c) polydopamine nanotubes. SYBR Green undergoes strong fluorescence enhancement upon intercalation into double-stranded DNA (dsDNA). The polydopamine nanotubes selectively adsorb single-stranded DNA (ssDNA) and molecular beacons. In the absence of target DNA, the molecular beacon, primer and SYBR Green are adsorbed on the surface of polydopamine nanotubes. This results in quenching of the fluorescence of SYBR Green, typically measured at excitation/emission wavelengths of 488/518 nm. Upon addition of analyte (target DNA) and polymerase, the stem of the molecular beacon is opened so that it can bind to the primer. This triggers target strand displacement polymerization, during which dsDNA is synthesized. The hybridized target is then displaced due to the strand displacement activity of the polymerase. The displaced target hybridizes with another molecular beacon. This triggers the next round of polymerization. Consequently, a large amount of dsDNA is formed which is detected by addition of SYBR Green. Thus, sensitive and selective fluorometric detection is realized. The fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 0.05 to 25 nM with a low limit of detection of 20 pM. Graphical abstract Schematic of a fluorometric strategy for highly sensitive and selective determination of nucleic acids by combining strand displacement amplification and the unique features of SYBR Green I (SG) and polydopamine nanotubes.

  7. Protection from feed-forward amplification in an amplified RNAi mechanism

    PubMed Central

    Pak, Julia; Maniar, Jay Mahesh; Mello, Cecilia Cabral; Fire, Andrew

    2012-01-01

    SUMMARY The effectiveness of RNA interference (RNAi) in many organisms is potentiated through the signal-amplifying activity of a targeted RNA directed RNA polymerase (RdRP) system that can convert a small population of exogenously-encountered dsRNA fragments into an abundant internal pool of small interfering RNA (siRNA). As for any biological amplification system, we expect an underlying architecture that will limit the ability of a randomly encountered trigger to produce an uncontrolled and self-escalating response. Investigating such limits in C. elegans, we find that feed-forward amplification is limited by a critical biosynthetic and structural distinction at the RNA level between (i) triggers that can produce amplification and (ii) siRNA products of the amplification reaction. By assuring that initial (primary) siRNAs can act as triggers but not templates for activation, and that the resulting (secondary) siRNAs can enforce gene silencing on additional targets without unbridled trigger amplification, the system achieves substantial but fundamentally limited signal amplification. PMID:23141544

  8. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification.

    PubMed

    Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun

    2015-07-08

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61-65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique.

  9. Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification.

    PubMed

    Zhang, Decai; Wang, Weijia; Dong, Qian; Huang, Yunxiu; Wen, Dongmei; Mu, Yuejing; Yuan, Yong

    2017-12-21

    An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H 2 O 2 -mediated oxidation of the chromogenic enzyme substrate ABTS 2- causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs. Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.

  10. Targeted next generation sequencing of well-differentiated/dedifferentiated liposarcoma reveals novel gene amplifications and mutations

    PubMed Central

    Somaiah, Neeta; Beird, Hannah C; Barbo, Andrea; Song, Juhee; Mills Shaw, Kenna R.; Wang, Wei-Lien; Eterovic, Karina; Chen, Ken; Lazar, Alexander; Conley, Anthony P.; Ravi, Vinod; Hwu, Patrick; Futreal, Andrew; Simon, George; Meric-Bernstam, Funda; Hong, David

    2018-01-01

    Well-differentiated/dedifferentiated liposarcoma is a common soft tissue sarcoma with approximately 1500 new cases per year. Surgery is the mainstay of treatment but recurrences are frequent and systemic options are limited. ‘Tumor genotyping’ is becoming more common in clinical practice as it offers the hope of personalized targeted therapy. We wanted to evaluate the results and the clinical utility of available next-generation sequencing panels in WD/DD liposarcoma. Patients who had their tumor sequenced by either FoundationOne (n = 13) or the institutional T200/T200.1 panels (n = 7) were included in this study. Significant copy number alterations were identified, but mutations were infrequent. Out of the 27 mutations detected in 7 samples, 8 (CTNNB1, MECOM, ZNF536, EGFR, EML4, CSMD3, PBRM1, PPP1R3A) were identified as deleterious (on Condel, PolyPhen and SIFT) and a truncating mutation was found in NF2. Of these, EGFR and NF2 are potential driver mutations and have not been reported previously in liposarcoma. MDM2 and CDK4 amplification was universally present in all the tested samples and multiple other recurrent genes with high amplification or high deletion were detected. Many of these targets are potentially actionable. Eight patients went on to receive an MDM2 inhibitor with a median time to progression of 23 months (95% CI: 10-83 months). PMID:29731991

  11. Frequent amplification of receptor tyrosine kinase genes in welldifferentiated/ dedifferentiated liposarcoma.

    PubMed

    Asano, Naofumi; Yoshida, Akihiko; Mitani, Sachiyo; Kobayashi, Eisuke; Shiotani, Bunsyo; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Chuman, Hirokazu; Morioka, Hideo; Matsumoto, Morio; Nakamura, Masaya; Kubo, Takashi; Kato, Mamoru; Kohno, Takashi; Kawai, Akira; Kondo, Tadashi; Ichikawa, Hitoshi

    2017-02-21

    Well-differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS) are closely related tumors commonly characterized by MDM2/CDK4 gene amplification, and lack clinically effective treatment options when inoperable. To identify novel therapeutic targets, we performed targeted genomic sequencing analysis of 19 WDLPS and 37 DDLPS tumor samples using a panel of 104 cancer-related genes (NCC oncopanel v3) developed specifically for genomic testing to select suitable molecular targeted therapies. The results of this analysis indicated that these sarcomas had very few gene mutations and a high frequency of amplifications of not only MDM2 and CDK4 but also other genes. Potential driver mutations were found in only six (11%) samples; however, gene amplification events (other than MDM2 and CDK4 amplification) were identified in 30 (54%) samples. Receptor tyrosine kinase (RTK) genes in particular were amplified in 18 (32%) samples. In addition, growth of a WDLPS cell line with IGF1R amplification was suppressed by simultaneous inhibition of CDK4 and IGF1R, using palbociclib and NVP-AEW541, respectively. Combination therapy with CDK4 and RTK inhibitors may be an effective therapeutic option for WDLPS/DDLPS patients with RTK gene amplification.

  12. Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus.

    PubMed

    Ginsberg, Stephen D; Che, Shaoli

    2004-08-01

    The use of five histochemical stains (cresyl violet, thionin, hematoxylin & eosin, silver stain, and acridine orange) was evaluated in combination with an expression profiling paradigm that included regional and single cell analyses within the hippocampus of post-mortem human brains and adult mice. Adjacent serial sections of human and mouse hippocampus were labeled by histochemistry or neurofilament immunocytochemistry. These tissue sections were used as starting material for regional and single cell microdissection followed by a newly developed RNA amplification procedure (terminal continuation (TC) RNA amplification) and subsequent hybridization to custom-designed cDNA arrays. Results indicated equivalent levels of global hybridization signal intensity and relative expression levels for individual genes for hippocampi stained by cresyl violet, thionin, and hematoxylin & eosin, and neurofilament immunocytochemistry. Moreover, no significant differences existed between the Nissl stains and neurofilament immunocytochemistry for individual CA1 neurons obtained via laser capture microdissection. In contrast, a marked decrement was observed in adjacent hippocampal sections stained for silver stain and acridine orange, both at the level of the regional dissection and at the CA1 neuron population level. Observations made on the cDNA array platform were validated by real-time qPCR using primers directed against beta-actin and glyceraldehyde-3 phosphate dehydrogenase. Thus, this report demonstrated the utility of using specific Nissl stains, but not stains that bind RNA species directly, in both human and mouse brain tissues at the regional and cellular level for state-of-the-art molecular fingerprinting studies.

  13. Miniaturized isothermal nucleic acid amplification, a review.

    PubMed

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  14. Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor.

    PubMed

    Jenison, Robert; Jaeckel, Heidi; Klonoski, Joshua; Latorra, David; Wiens, Jacinta

    2014-08-07

    Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).

  15. One-step detection of microRNA with high sensitivity and specificity via target-triggered loop-mediated isothermal amplification (TT-LAMP).

    PubMed

    Sun, Yuanyuan; Tian, Hui; Liu, Chenghui; Sun, Yueying; Li, Zhengping

    2017-10-05

    A novel one-step microRNA assay is developed based on a target-triggered loop-mediated isothermal amplification (TT-LAMP) mechanism, which enables the accurate detection of as low as 100 aM (1 zmol) microRNA with simple one-step operation by using only one-type of DNA polymerase.

  16. Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms.

    PubMed

    Moura-Melo, Suely; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Dos Santos Junior, J Ribeiro; da Silva Fonseca, Rosana A; Lobo-Castañón, Maria Jesús

    2015-08-18

    Cultivation of genetically modified organisms (GMOs) and their use in food and feed is constantly expanding; thus, the question of informing consumers about their presence in food has proven of significant interest. The development of sensitive, rapid, robust, and reliable methods for the detection of GMOs is crucial for proper food labeling. In response, we have experimentally characterized the helicase-dependent isothermal amplification (HDA) and sequence-specific detection of a transgene from the Cauliflower Mosaic Virus 35S Promoter (CaMV35S), inserted into most transgenic plants. HDA is one of the simplest approaches for DNA amplification, emulating the bacterial replication machinery, and resembling PCR but under isothermal conditions. However, it usually suffers from a lack of selectivity, which is due to the accumulation of spurious amplification products. To improve the selectivity of HDA, which makes the detection of amplification products more reliable, we have developed an electrochemical platform targeting the central sequence of HDA copies of the transgene. A binary monolayer architecture is built onto a thin gold film where, upon the formation of perfect nucleic acid duplexes with the amplification products, these are enzyme-labeled and electrochemically transduced. The resulting combined system increases genosensor detectability up to 10(6)-fold, allowing Yes/No detection of GMOs with a limit of detection of ∼30 copies of the CaMV35S genomic DNA. A set of general utility rules in the design of genosensors for detection of HDA amplicons, which may assist in the development of point-of-care tests, is also included. The method provides a versatile tool for detecting nucleic acids with extremely low abundance not only for food safety control but also in the diagnostics and environmental control areas.

  17. Construction Strategy for an Internal Amplification Control for Real-Time Diagnostic Assays Using Nucleic Acid Sequence-Based Amplification: Development and Clinical Application

    PubMed Central

    Rodríguez-Lázaro, David; D'Agostino, Martin; Pla, Maria; Cook, Nigel

    2004-01-01

    An important analytical control in molecular amplification-based methods is an internal amplification control (IAC), which should be included in each reaction mixture. An IAC is a nontarget nucleic acid sequence which is coamplified simultaneously with the target sequence. With negative results for the target nucleic acid, the absence of an IAC signal indicates that amplification has failed. A general strategy for the construction of an IAC for inclusion in molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assays is presented. Construction proceeds in two phases. In the first phase, a double-stranded DNA molecule that contains nontarget sequences flanked by target sequences complementary to the NASBA primers is produced. At the 5′ end of this DNA molecule is a T7 RNA polymerase binding sequence. In the second phase of construction, RNA transcripts are produced from the DNA by T7 RNA polymerase. This RNA is the IAC; it is amplified by the target NASBA primers and is detected by a molecular beacon probe complementary to the internal nontarget sequences. As a practical example, an IAC for use in an assay for the detection of Mycobacterium avium subsp. paratuberculosis is described, its incorporation and optimization within the assay are detailed, and its application to spiked and natural clinical samples is shown to illustrate the correct interpretation of the diagnostic results. PMID:15583319

  18. Inhibition of recombinase polymerase amplification by background DNA: a lateral flow-based method for enriching target DNA.

    PubMed

    Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-02-03

    Recombinase polymerase amplification (RPA) may be used to detect a variety of pathogens, often after minimal sample preparation. However, previous work has shown that whole blood inhibits RPA. In this paper, we show that the concentrations of background DNA found in whole blood prevent the amplification of target DNA by RPA. First, using an HIV-1 RPA assay with known concentrations of nonspecific background DNA, we show that RPA tolerates more background DNA when higher HIV-1 target concentrations are present. Then, using three additional assays, we demonstrate that the maximum amount of background DNA that may be tolerated in RPA reactions depends on the DNA sequences used in the assay. We also show that changing the RPA reaction conditions, such as incubation time and primer concentration, has little effect on the ability of RPA to function when high concentrations of background DNA are present. Finally, we develop and characterize a lateral flow-based method for enriching the target DNA concentration relative to the background DNA concentration. This sample processing method enables RPA of 10(4) copies of HIV-1 DNA in a background of 0-14 μg of background DNA. Without lateral flow sample enrichment, the maximum amount of background DNA tolerated is 2 μg when 10(6) copies of HIV-1 DNA are present. This method requires no heating or other external equipment, may be integrated with upstream DNA extraction and purification processes, is compatible with the components of lysed blood, and has the potential to detect HIV-1 DNA in infant whole blood with high proviral loads.

  19. Helicase-dependent amplification of nucleic acids.

    PubMed

    Cao, Yun; Kim, Hyun-Jin; Li, Ying; Kong, Huimin; Lemieux, Bertrand

    2013-10-11

    Helicase-dependent amplification (HDA) is a novel method for the isothermal in vitro amplification of nucleic acids. The HDA reaction selectively amplifies a target sequence by extension of two oligonucleotide primers. Unlike the polymerase chain reaction (PCR), HDA uses a helicase enzyme to separate the deoxyribonucleic acid (DNA) strands, rather than heat denaturation. This allows DNA amplification without the need for thermal cycling. The helicase used in HDA is a helicase super family II protein obtained from a thermophilic organism, Thermoanaerobacter tengcongensis (TteUvrD). This thermostable helicase is capable of unwinding blunt-end nucleic acid substrates at elevated temperatures (60° to 65°C). The HDA reaction can also be coupled with reverse transcription for ribonucleic acid (RNA) amplification. The products of this reaction can be detected during the reaction using fluorescent probes when incubations are conducted in a fluorimeter. Alternatively, products can be detected after amplification using a disposable amplicon containment device that contains an embedded lateral flow strip. Copyright © 2013 John Wiley & Sons, Inc.

  20. A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing.

    PubMed

    Chen, Zhiqiang; Liu, Ying; Xin, Chen; Zhao, Jikuan; Liu, Shufeng

    2018-08-15

    Herein, an autocatalytic strand displacement amplification (ASDA) strategy was proposed for the first time, which was further ingeniously coupled with hybridization chain reaction (HCR) event for the isothermal, label-free and multiple amplification toward nucleic acid detection. During the ASDA module, the target recognition opens the immobilized hairpin probe (IP) and initiates the annealing of the auxiliary DNA strand (AS) with the opened IP for the successive polymerization and nicking reaction in the presence of DNA polymerase and nicking endonuclease. This induces the target recycling and generation of a large amount of intermediate DNA sequences, which can be used as target analogy to execute the autocatalytic strand displacement amplification. Simultaneously, the introduced AS strand can propagate the HCR between two hairpins (H1 and H2) to form a linear DNA concatamer with cytosine (C)-rich loop region, which can facilitate the in-situ synthesis of silver nanoclusters (AgNCs) as electrochemical tags for further amplification toward target responses. With current cascade ASDA and HCR strategy, the detection of target DNA could be achieved with a low detection limit of about 0.16 fM and a good selectivity. The developed biosensor also exhibits the distinct advantages of flexibility and simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Assessment of palindromes as platforms for DNA amplification in breast cancer

    PubMed Central

    Guenthoer, Jamie; Diede, Scott J.; Tanaka, Hisashi; Chai, Xiaoyu; Hsu, Li; Tapscott, Stephen J.; Porter, Peggy L.

    2012-01-01

    DNA amplification, particularly of chromosomes 8 and 11, occurs frequently in breast cancer and is a key factor in tumorigenesis, often associated with poor prognosis. The mechanisms involved in the amplification of these regions are not fully understood. Studies from model systems have demonstrated that palindrome formation can be an early step in DNA amplification, most notably seen in the breakage–fusion–bridge (BFB) cycle. Therefore, palindromes might be associated with gene amplicons in breast cancer. To address this possibility, we coupled high-resolution palindrome profiling by the Genome-wide Analysis of Palindrome Formation (GAPF) assay with genome-wide copy-number analyses on a set of breast cancer cell lines and primary tumors to spatially associate palindromes and copy-number gains. We identified GAPF-positive regions distributed nonrandomly throughout cell line and tumor genomes, often in clusters, and associated with copy-number gains. Commonly amplified regions in breast cancer, chromosomes 8q and 11q, had GAPF-positive regions flanking and throughout the copy-number gains. We also identified amplification-associated GAPF-positive regions at similar locations in subsets of breast cancers with similar characteristics (e.g., ERBB2 amplification). These shared positive regions offer the potential to evaluate the utility of palindromes as prognostic markers, particularly in premalignant breast lesions. Our results implicate palindrome formation in the amplification of regions with key roles in breast tumorigenesis, particularly in subsets of breast cancers. PMID:21752925

  2. Meat Species Identification using Loop-mediated Isothermal Amplification Assay Targeting Species-specific Mitochondrial DNA.

    PubMed

    Cho, Ae-Ri; Dong, Hee-Jin; Cho, Seongbeom

    2014-01-01

    Meat source fraud and adulteration scandals have led to consumer demands for accurate meat identification methods. Nucleotide amplification assays have been proposed as an alternative method to protein-based assays for meat identification. In this study, we designed Loop-mediated isothermal amplification (LAMP) assays targeting species-specific mitochondrial DNA to identify and discriminate eight meat species; cattle, pig, horse, goat, sheep, chicken, duck, and turkey. The LAMP primer sets were designed and the target genes were discriminated according to their unique annealing temperature generated by annealing curve analysis. Their unique annealing temperatures were found to be 85.56±0.07℃ for cattle, 84.96±0.08℃ for pig, and 85.99±0.05℃ for horse in the BSE-LAMP set (Bos taurus, Sus scrofa domesticus and Equus caballus); 84.91±0.11℃ for goat and 83.90±0.11℃ for sheep in the CO-LAMP set (Capra hircus and Ovis aries); and 86.31±0.23℃ for chicken, 88.66±0.12℃ for duck, and 84.49±0.08℃ for turkey in the GAM-LAMP set (Gallus gallus, Anas platyrhynchos and Meleagris gallopavo). No cross-reactivity was observed in each set. The limits of detection (LODs) of the LAMP assays in raw and cooked meat were determined from 10 pg/μL to 100 fg/μL levels, and LODs in raw and cooked meat admixtures were determined from 0.01% to 0.0001% levels. The assays were performed within 30 min and showed greater sensitivity than that of the PCR assays. These novel LAMP assays provide a simple, rapid, accurate, and sensitive technology for discrimination of eight meat species.

  3. Isothermal Amplification Methods for the Detection of Nucleic Acids in Microfluidic Devices

    PubMed Central

    Zanoli, Laura Maria; Spoto, Giuseppe

    2012-01-01

    Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed. PMID:25587397

  4. Ultrasensitive and selective signal-on electrochemical DNA detection via exonuclease III catalysis and hybridization chain reaction amplification.

    PubMed

    Ren, Wang; Gao, Zhong Feng; Li, Nian Bing; Luo, Hong Qun

    2015-01-15

    This work reported a novel, ultrasensitive, and selective platform for electrochemical detection of DNA, employing an integration of exonuclease III (Exo-III) assisted target recycling and hybridization chain reaction (HCR) for the dual signal amplification strategy. The hairpin capture probe DNA (C-DNA) with an Exo-III 3' overhang end was self-assembled on a gold electrode. In the presence of target DNA (T-DNA), C-DNA hybridized with the T-DNA to form a duplex region, exposing its 5' complementary sequence (initiator). Exo-III was applied to selectively digest duplex region from its 3-hydroxyl termini until the duplex was fully consumed, leaving the remnant initiator. The intact T-DNA spontaneously dissociated from the structure and then initiated the next hybridization process as a result of catalysis of the Exo-III. HCR event was triggered by the initiator and two hairpin helper signal probes labeled with methylene blue, facilitating the polymerization of oligonucleotides into a long nicked dsDNA molecule. The numerous exposed remnant initiators can trigger more HCR events. Because of integration of dual signal amplification and the specific HCR process reaction, the resultant sensor showed a high sensitivity for the detection of the target DNA in a linear range from 1.0 fM to 1.0 nM, and a detection limit as low as 0.2 fM. The proposed dual signal amplification strategy provides a powerful tool for detecting different sequences of target DNA by changing the sequence of capture probe and signal probes, holding a great potential for early diagnosis in gene-related diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Enhanced DNA Profiling of the Semen Donor in Late Reported Sexual Assaults: Use of Y-Chromosome-Targeted Pre-amplification and Next Generation Y-STR Amplification Systems.

    PubMed

    Hanson, Erin K; Ballantyne, Jack

    2016-01-01

    In some cases of sexual assault the victim may not report the assault for several days after the incident due to various factors. The ability to obtain an autosomal STR profile of the semen donor from a living victim rapidly diminishes as the post-coital interval is extended due to the presence of only a small amount of male DNA amidst an overwhelming amount of female DNA. Previously, we have utilized various technological tools to overcome the limitations of male DNA profiling in extended interval post-coital samples including the use of Y-chromosome STR profiling, cervical sample, and post-PCR purification permitting the recovery of Y-STR profiles of the male DNA from samples collected 5-6 days after intercourse. Despite this success, the reproductive biology literature reports the presence of spermatozoa in the human cervix up to 7-10 days post-coitus. Therefore, novel and improved methods for recovery of male profiles in extended interval post-coital samples were required. Here, we describe enhanced strategies, including Y-chromosome-targeted pre-amplification and next generation Y-STR amplification kits, that have resulted in the ability to obtain probative male profiles from samples collected 6-9 days after intercourse.

  6. EVI1, a target gene for amplification at 3q26, antagonizes transforming growth factor-β-mediated growth inhibition in hepatocellular carcinoma

    PubMed Central

    Yasui, Kohichiroh; Konishi, Chika; Gen, Yasuyuki; Endo, Mio; Dohi, Osamu; Tomie, Akira; Kitaichi, Tomoko; Yamada, Nobuhisa; Iwai, Naoto; Nishikawa, Taichiro; Yamaguchi, Kanji; Moriguchi, Michihisa; Sumida, Yoshio; Mitsuyoshi, Hironori; Tanaka, Shinji; Arii, Shigeki; Itoh, Yoshito

    2015-01-01

    EVI1 (ecotropic viral integration site 1) is one of the most aggressive oncogenes associated with myeloid leukemia. We investigated DNA copy number aberrations in human hepatocellular carcinoma (HCC) cell lines using a high-density oligonucleotide microarray. We found that a novel amplification at the chromosomal region 3q26 occurs in the HCC cell line JHH-1, and that MECOM (MDS1 and EVI1 complex locus), which lies within the 3q26 region, was amplified. Quantitative PCR analysis of the three transcripts transcribed from MECOM indicated that only EVI1, but not the fusion transcript MDS1–EVI1 or MDS1, was overexpressed in JHH-1 cells and was significantly upregulated in 22 (61%) of 36 primary HCC tumors when compared with their non-tumorous counterparts. A copy number gain of EVI1 was observed in 24 (36%) of 66 primary HCC tumors. High EVI1 expression was significantly associated with larger tumor size and higher level of des-γ-carboxy prothrombin, a tumor marker for HCC. Knockdown of EVI1 resulted in increased induction of the cyclin-dependent kinase inhibitor p15INK4B by transforming growth factor (TGF)-β and decreased expression of c-Myc, cyclin D1, and phosphorylated Rb in TGF-β-treated cells. Consequently, knockdown of EVI1 led to reduced DNA synthesis and cell viability. Collectively, our results suggest that EVI1 is a probable target gene that acts as a driving force for the amplification at 3q26 in HCC and that the oncoprotein EVI1 antagonizes TGF-β-mediated growth inhibition of HCC cells. PMID:25959919

  7. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  8. Amplified DNAs in laboratory stocks of Leishmania tarentolae: extrachromosomal circles structurally and functionally similar to the inverted-H-region amplification of methotrexate-resistant Leishmania major

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrillo-Peixoto, M.L.; Beverley, S.M.

    1988-12-01

    We describe the structure of amplified DNA that was discovered in two laboratory stocks of the protozoan parasite Leishmania tarentolae. Restriction mapping and molecular cloning revealed that a region of 42 kilobases was amplified 8- to 30-fold in these lines. Southern blot analyses of digested DNAs or chromosomes separated by pulsed-field electrophoresis showed that the amplified DNA corresponded to the H region, a locus defined originally by its amplification in methotrexate-resistant Leishmania major. Similarities between the amplified DNA of the two species included (i) extensive cross-hybridization; (ii) approximate conservation of sequence order; (iii) extrachromosomal localization; (iv) an overall inverted, head-to-headmore » configuration as a circular 140-kilobase tetrameric molecule; (v) two regions of DNA sequence rearrangement, each of which was closely associated with the two centers of the inverted repeats; (vi) association with methotrexate resistance; and (vii) phenotypically conservative amplification, in which the wild-type chromosomal arrangement was retained without apparent modification. Our data showed that amplified DNA mediating drug resistance arose in unselected L. tarentolae, although the pressures leading to apparently spontaneous amplification and maintenance of the H region are not known. The simple structure and limited extent of DNA amplified in these and other Leishmania lines suggests that the study of gene amplification in Leishmania spp. offers an attractive model system for the study of amplification in cultured mammalian cells and tumors. We also introduced a method for measuring the size of large circular DNAs, using gamma-irradiation to introduce limited double-strand breaks followed by sizing of the linear DNAs by pulsed-field electrophoresis.« less

  9. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay.

    PubMed

    Jiang, Xinya; Wang, Huijun; Wang, Haijun; Yuan, Ruo; Chai, Yaqin

    2016-09-20

    In the present work, we first found that mercury ion (Hg(2+)) has an efficient quenching effect on the electrochemiluminescence (ECL) of N-(aminobutyl)-N-(ethylisoluminol) (ABEI). Since we were inspired by this discovery, an aptamer-based ECL sensor was fabricated based on a Hg(2+) triggered signal switch coupled with an exonuclease I (Exo I)-stimulated target recycling amplification strategy for ultrasensitive determination of Hg(2+) and mucin 1 (MUC1). Concretely, the ECL intensity of ABEI-functionalized silver nanoparticles decorated graphene oxide nanocomposite (GO-AgNPs-ABEI) was initially enhanced by ferrocene labeled ssDNA (Fc-S1) (first signal switch "on" state) in the existence of H2O2. With the aid of aptamer, assistant ssDNA (S2) and full thymine (T) bases ssDNA (S3) modified Au nanoparticles (AuNPs-S2-S3) were immobilized on the sensing surface through the hybridization reaction. Then, via the strong and stable T-Hg(2+)-T interaction, an abundance of Hg(2+) was successfully captured on the AuNPs-S2-S3 and effectively inhibited the ECL reaction of ABEI (signal switch "off" state). Finally, the signal switch "on" state was executed by utilizing MUC1 as an aptamer-specific target to bind aptamer, leading to the large decrease of the captured Hg(2+). To further improve the sensitivity of the aptasensor, Exo I was implemented to digest the binded aptamer, which resulted in the release of MUC1 for achieving target recycling with strong detectable ECL signal even in a low level of MUC1. By integrating the quenching effect of Hg(2+) to reduce the background signal and target recycling for signal amplification, this proposed ECL aptasensor was successfully used to detect Hg(2+) and MUC1 sensitively with a wide linear response.

  10. Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients

    PubMed Central

    Heestand, Gregory M.; Schwaederle, Maria; Gatalica, Zoran; Arguello, David; Kurzrock, Razelle

    2017-01-01

    Background Topoisomerase I (TOPO1) and topoisomerase IIα (TOP2A) are specific targets of multiple chemotherapy drugs. Increased expression of TOPO1 protein and amplification of the TOP2A gene have been associated with treatment response in colorectal and breast cancers, respectively. TOPO1 and TOP2A may be potential therapeutic targets in other malignancies as well. Summary of methods We analysed TOPO1 protein expression and TOP2A gene amplification in patients (n = 24,262 specimens) with diverse cancers. Since HER2 and TOP2A co-amplification have been investigated for predictive value regarding anthracycline benefit, we analysed specimens for HER2 amplification as well. Results Overexpressed TOPO1 protein was present in 51% of the tumours. Four percent of the tumours had TOP2A amplification, with gallbladder tumours and gastroesophageal/oesophageal tumours having rates over 10%. Overall, 4903 specimens were assessed for both TOP2A and HER2 amplification; 129 (2.6%) had co-amplification. High rates (>40%) of HER2 amplification were seen in patients with TOP2A amplification in breast, ovarian, gastroesophageal/oesophageal and pancreatic cancer. Conclusion Our data indicate that increased TOPO1 expression and TOP2A amplification, as well as HER2 co-alterations, are present in multiple malignancies. The implications of these observations regarding sensitivity to chemotherapy not traditionally administered to these tumour types merits investigation. PMID:28728050

  11. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy.

    PubMed

    Zhao, Yang; Tan, Lu; Gao, Xiaoshan; Jie, Guifen; Huang, Tingyu

    2018-07-01

    Herein, we successfully devised a novel photoelectrochemical (PEC) platform for ultrasensitive detection of adenosine by target-triggering cascade multiple cycle amplification based on the silver nanoparticles-assisted ion-exchange reaction with CdTe quantum dots (QDs). In the presence of target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1), which could initiate the cycling cleavage process under the reaction of nicking endonuclease. Then the product (DNA b) of cycle I could act as the "DNA trigger" of cycle II to further generate a large number of DNA s1, which again go back to cycle I, thus a cascade multiple DNA cycle amplification was carried out to produce abundant DNA c. These DNA c fragments with the cytosine (C)-rich loop were captured by magnetic beads, and numerous silver nanoclusters (Ag NCs) were synthesized by AgNO 3 and sodium borohydride. The dissolved AgNCs released numerous silver ions which could induce ion exchange reaction with the CdTe QDs, thus resulting in greatly amplified change of photocurrent for target detection. The detection linear range for adenosine was 1.0 fM ~10 nM with the detection limit of 0.5 fM. The present PEC strategy combining cascade multiple DNA cycle amplification and AgNCs-induced ion-exchange reaction with QDs provides new insight into rapid, and ultrasensitive PEC detection of different biomolecules, which showed great potential for detecting trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Chromogenic detection of yam mosaic virus by closed-tube reverse transcription loop-mediated isothermal amplification (CT-RT-LAMP).

    PubMed

    Nkere, Chukwuemeka K; Oyekanmi, Joshua O; Silva, Gonçalo; Bömer, Moritz; Atiri, Gabriel I; Onyeka, Joseph; Maroya, Norbert G; Seal, Susan E; Kumar, P Lava

    2018-04-01

    A closed-tube reverse transcription loop-mediated isothermal amplification (CT-RT-LAMP) assay was developed for the detection of yam mosaic virus (YMV, genus Potyvirus) infecting yam (Dioscorea spp.). The assay uses a set of six oligonucleotide primers targeting the YMV coat protein region, and the amplification products in YMV-positive samples are visualized by chromogenic detection with SYBR Green I dye. The CT-RT-LAMP assay detected YMV in leaf and tuber tissues of infected plants. The assay is 100 times more sensitive in detecting YMV than standard RT-PCR, while maintaining the same specificity.

  13. De novo amplification within a silent human cholinesterase gene in a family subjected to prolonged exposure to organophosphorus insecticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prody, C.A.; Dreyfus, P.; Soreq, H.

    1989-01-01

    A 100-fold DNA amplification in the CHE gene, coding for serum butyrylcholinesterase (BtChoEase), was found in a farmer expressing silent CHE phenotype. Individuals homozygous for this gene display a defective serum BtChoEase and are particularly vulnerable to poisoning by agricultural organophosphorus insecticides, to which all members of this family had long been exposed. DNA blot hybridization with regional BtChoEase cDNA probes suggested that the amplification was most intense in regions encoding central sequences within BtChoEase cDNA, whereas distal sequences were amplified to a much lower extent. This is in agreement with the onion skin model, based on amplification of genesmore » in cultured cells and primary tumors. The amplification was absent in the grandparents but present at the same extent in one of their sons and in a grandson, with similar DNA blot hybridization patterns. In situ hybridization experiments localized the amplified sequences to the long arm of chromosome 3, close to the site where the authors previously mapped the CHE gene. Altogether, these observations suggest that the initial amplification event occurred early in embryogenesis, spermatogenesis, or oogenesis, where the CHE gene is intensely active and where cholinergic functioning was indicated to be physiologically necessary. These findings demonstrate a de novo amplification in apparently healthy individuals within an autosomal gene producing a target protein to an inhibitor.« less

  14. Region 6 Targeted Brownfields Assessment

    EPA Pesticide Factsheets

    A Target Brownfields Assessment (TBA) is a free service the EPA Region 6 Brownfields Team provides to communities to support their eligible brownfields projects. Region 6 consists of Arkansas, Louisiana, new Mexico, Oklahoma, and Texas.

  15. The role of land-climate interactions for the regional amplification of temperature extremes in climate projections

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Vogel, M.; Zscheischler, J.; Schwingshackl, C.; Davin, E.; Gudmundsson, L.; Guillod, B.; Hauser, M.; Hirsch, A.; Hirschi, M.; Humphrey, V.; Thiery, W.

    2017-12-01

    Regional hot extremes are projected to increase more strongly than the global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level (Seneviratne et al. 2016). This presentation will highlight the processes underlying this behavior, which is strongly related to land-climate feedbacks (Vogel et al. 2017). The identified feedbacks are also affecting the occurrence probability of compound drought and heat events (Zscheischler and Seneviratne 2017), with high relevance for impacts on forest fire and agriculture production. Moreover, the responsible land processes strongly contribute to the inter-model spread in the projections, and can thus be used to derive observations-based constraints to reduce the uncertainty of projected changes in climate extremes. Finally, we will also discuss the role of soil moisture effects on carbon uptake and their relevance for projections, as well as the role of land use changes in affecting the identified feedbacks and projected changes in climate extremes. References: Seneviratne, S.I., M. Donat, A.J. Pitman, R. Knutti, and R.L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477-483, doi:10.1038/nature16542. Vogel, M.M., R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B.J.J.M. Hurk, and S.I. Seneviratne, 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3), 1511-1519, doi:10.1002/2016GL071235. Zscheischler, J., and S.I. Seneviratne, 2017: Dependence of drivers affects risks associated with compound events. Science Advances, 3(6), doi: 10.1126/sciadv.1700263

  16. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

    PubMed

    Liu, Yacui; Zhang, Jiangyan; Tian, Jingxiao; Fan, Xiaofei; Geng, Hao; Cheng, Yongqiang

    2017-01-01

    A simple, highly sensitive, and specific assay was developed for the homogeneous and multiplex detection of microRNAs (miRNAs) by combining molecular beacon (MB) probes and T7 exonuclease-assisted cyclic amplification. An MB probe with five base pairs in the stem region without special modification can effectively prevent the digestion by T7 exonuclease. Only in the presence of target miRNA is the MB probe hybridized with the target miRNA, and then digested by T7 exonuclease in the 5' to 3' direction. At the same time, the target miRNA is released and subsequently initiates the nuclease-assisted cyclic digestion process, generating enhanced fluorescence signal significantly. The results show that the combination of T7 exonuclease-assisted cyclic amplification reaction and MB probe possesses higher sensitivity for miRNA detection. Moreover, multiplex detection of miRNAs was successfully achieved by designing two MB probes labeled with FAM and Cy3, respectively. As a result, the method opens a new pathway for the sensitive and multiplex detection of miRNAs as well as clinical diagnosis. Graphical Abstract A simple, highly sensitive, and specific assay was developed for the detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

  17. Novel Bioluminescent Quantitative Detection of Nucleic Acid Amplification in Real-Time

    PubMed Central

    Gandelman, Olga A.; Church, Vicki L.; Moore, Cathy A.; Kiddle, Guy; Carne, Christopher A.; Parmar, Surendra; Jalal, Hamid; Tisi, Laurence C.; Murray, James A. H.

    2010-01-01

    Background The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. Principal Findings Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. Conclusions The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light

  18. Diagnostic potential of multi-targeted LAMP (loop-mediated isothermal amplification) for osteoarticular tuberculosis.

    PubMed

    Sharma, Kusum; Sharma, Megha; Batra, Nitya; Sharma, Aman; Dhillon, Mandeep Singh

    2017-02-01

    Delay in diagnosing osteoarticular tuberculosis (OATB) contributes significantly to morbidity by causing disfiguration and neurological sequelae. The delay caused by conventional culture and the expertise and expense involved in other nucleic acid based tests, make LAMP (loop-mediated isothermal amplification) assay a favorable middle path. We evaluated LAMP assay using IS6110 and MPB64 for rapid diagnosis of OATB by comparing with IS6110 PCR and culture. LAMP assay was performed on 140 synovial fluid and pus samples (10 culture-positive proven cases, 80 culture-negative probable cases, and 50 negative controls) using three set of primer pairs each for IS6110 and MPB64. LAMP assay, using two-target approach, had an overall sensitivity and specificity of 90% and 100% in detecting OATB. Sensitivity of IS6110 PCR, IS6110 LAMP, and MPB64 LAMP was 80%, 100%, and 100%, respectively, for confirmed cases and 72.5%, 81.75%, and 86.25%, respectively, for probable cases. Six additional cases were picked using two-target approach. LAMP assay utilizing IS6110 and MPB64 is a cost-effective technique for an early and reliable diagnosis of OATB. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:361-365, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Identification of Genetic Elements Associated with EPSPS Gene Amplification

    PubMed Central

    Gaines, Todd A.; Wright, Alice A.; Molin, William T.; Lorentz, Lothar; Riggins, Chance W.; Tranel, Patrick J.; Beffa, Roland; Westra, Philip; Powles, Stephen B.

    2013-01-01

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene. PMID:23762434

  20. Genetic amplification of PPME1 in gastric and lung cancer and its potential as a novel therapeutic target

    PubMed Central

    Li, Jing; Han, Sufang; Qian, Ziliang; Su, Xinying; Fan, Shuqiong; Fu, Jiangang; Liu, Yuanjie; Yin, Xiaolu; Gao, Zeren; Zhang, Jingchuan; Yu, De-Hua; Ji, Qunsheng

    2014-01-01

    Protein phosphatase methylesterase 1 (PPME1) is a protein phosphatase 2A (PP2A)-specific methyl esterase that negatively regulates PP2A through demethylation at its carboxy terminal leucine 309 residue. Emerging evidence shows that the upregulation of PPME1 is associated with poor prognosis in glioblastoma patients. By performing an array comparative genomic hybridization analysis to detect copy number changes, we have been the first to identify PPME1 gene amplification in 3.8% (5/131) of Chinese gastric cancer (GC) samples and 3.1% (4/124) of Chinese lung cancer (LC) samples. This PPME1 gene amplification was confirmed by fluorescence in situ hybridization analysis and is correlated with elevated protein expression, as determined by immunohistochemistry analysis. To further investigate the role of PPME1 amplification in tumor growth, short-hairpin RNA-mediated gene silencing was employed. A knockdown of PPME1 expression resulted in a significant inhibition of cell proliferation and induction of cell apoptosis in PPME1-amplified human cancer cell lines SNU668 (GC) and Oka-C1 (LC), but not in nonamplified MKN1 (GC) and HCC95 (LC) cells. The PPME1 gene knockdown also led to a consistent decrease in PP2A demethylation at leucine 309, which was correlated with the downregulation of cellular Erk and AKT phosphorylation. Our data indicate that PPME1 could be an attractive therapeutic target for a subset of GCs and LCs. PMID:24253382

  1. A Paper-Based Device for Performing Loop-Mediated Isothermal Amplification with Real-Time Simultaneous Detection of Multiple DNA Targets.

    PubMed

    Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon

    2017-01-01

    Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 10 2 -10 5 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing.

  2. A Paper-Based Device for Performing Loop-Mediated Isothermal Amplification with Real-Time Simultaneous Detection of Multiple DNA Targets

    PubMed Central

    Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon

    2017-01-01

    Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 102-105 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing. PMID:28740546

  3. An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification

    PubMed Central

    Sotelo, Pablo H.; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; Molina, María Carmen

    2012-01-01

    Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles. PMID:22692130

  4. Nucleic Acid Amplification Based Diagnostic of Lyme (Neuro-)borreliosis – Lost in the Jungle of Methods, Targets, and Assays?

    PubMed Central

    Nolte, Oliver

    2012-01-01

    Laboratory based diagnosis of infectious diseases usually relies on culture of the disease causing micro-organism, followed by identification and susceptibility testing. Since Borrelia burgdorferi sensu lato, the etiologic agent of Lyme disease or Lyme borreliosis, requires very specific culture conditions (e.g. specific liquid media, long term cul-ture) traditional bacteriology is often not done on a routine basis. Instead, confirmation of the clinical diagnosis needs ei-ther indirect techniques (like serology or measurement of cellular activity in the presence of antigens) or direct but culture independent techniques, like microscopy or nucleic acid amplification techniques (NAT), with polymerase chain reaction (PCR) being the most frequently applied NAT method in routine laboratories. NAT uses nucleic acids of the disease causing micro-organism as template for amplification, isolated from various sources of clinical specimens. Although the underlying principle, adoption of the enzymatic process running during DNA duplication prior to prokaryotic cell division, is comparatively easy, a couple of ‘pitfalls’ is associated with the technique itself as well as with interpretation of the results. At present, no commercial, CE-marked and sufficiently validated PCR assay is available. A number of homebrew assays have been published, which are different in terms of target (i.e. the gene targeted by the amplification primers), method (nested PCR, PCR followed by hybridization, real-time PCR) and validation criteria. Inhibitory compounds may lead to false negative results, if no appropriate internal control is included. Carry-over of amplicons, insufficient handling and workflow and/or insufficiently validated targets/primers may result in false positive results. Different targets may yield different analytical sensitivity, depending, among other factors, of the redundancy of a target gene in the genome. Per-formance characteristics (e.g. analytical sensitivity and

  5. The development of loop-mediated isothermal amplification targeting alpha-tubulin DNA for the rapid detection of Plasmodium vivax.

    PubMed

    Dinzouna-Boutamba, Sylvatrie-Danne; Yang, Hye-Won; Joo, So-Young; Jeong, Sookwan; Na, Byoung-Kuk; Inoue, Noboru; Lee, Won-Ki; Kong, Hyun-Hee; Chung, Dong-Il; Goo, Youn-Kyoung; Hong, Yeonchul

    2014-06-30

    Malaria that is caused by Plasmodium vivax is the most widely distributed human malaria. Its recent resurgence in many parts of the world, including the Republic of Korea (ROK), emphasizes the importance of improved access to the early and accurate detection of P. vivax to reduce disease burden. In this study, a rapid and efficient loop-mediated isothermal amplification (LAMP)-based method was developed and validated using blood samples from malaria-suspected patients. A LAMP assay targeting the α-tubulin gene for the detection of P. vivax was developed with six primers that recognize different regions of the target gene. The diagnostic performance of the α-tubulin LAMP assay was compared to three other tests: microscopic examinations, rapid diagnostic tests (RDTs), and nested polymerase chain reactions (PCRs) using 177 whole blood specimens obtained from ROK military personnel from May to December 2011. The α-tubulin LAMP assay was highly sensitive with a detection limit of 100 copies of P. vivax α-tubulin gene per reaction within 50 min. It specifically amplified the target gene only from P. vivax. Validation of the α-tubulin LAMP assay showed that the assay had the highest sensitivity (P < 0.001 versus microscopy; P = 0.0023 versus RDT) when nested PCR was used as the gold standard and better agreement (concordance: 94.9%, kappa value: 0.865) with nested PCR than RDT and microscopy. A Receiver Operation Characteristics analysis showed that the diagnostic accuracy of the α-tubulin LAMP assay for vivax malaria was higher (Area Under Curve = 0.908) than RDT and microscopy. This study showed that the P. vivax α-tubulin LAMP assay, which can be used to diagnose early infections of vivax malaria, is an alternative molecular diagnostic tool and a point-of-care test that may help to prevent transmission in endemic areas.

  6. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection.

    PubMed

    Huang, Mengqi; Zhou, Xiaoming; Wang, Huiying; Xing, Da

    2018-02-06

    A novel CRISPR/Cas9 triggered isothermal exponential amplification reaction (CAS-EXPAR) strategy based on CRISPR/Cas9 cleavage and nicking endonuclease (NEase) mediated nucleic acids amplification was developed for rapid and site-specific nucleic acid detection. CAS-EXPAR was primed by the target DNA fragment produced by cleavage of CRISPR/Cas9, and the amplification reaction performed cyclically to generate a large number of DNA replicates which were detected using a real-time fluorescence monitoring method. This strategy that combines the advantages of CRISPR/Cas9 and exponential amplification showed high specificity as well as rapid amplification kinetics. Unlike conventional nucleic acids amplification reactions, CAS-EXPAR does not require exogenous primers, which often cause target-independent amplification. Instead, primers are first generated by Cas9/sgRNA directed site-specific cleavage of target and accumulated during the reaction. It was demonstrated this strategy gave a detection limit of 0.82 amol and showed excellent specificity in discriminating single-base mismatch. Moreover, the applicability of this method to detect DNA methylation and L. monocytogenes total RNA was also verified. Therefore, CAS-EXPAR may provide a new paradigm for efficient nucleic acid amplification and hold the potential for molecular diagnostic applications.

  7. MYCN amplification confers enhanced folate dependence and methotrexate sensitivity in neuroblastoma

    PubMed Central

    Lau, Diana T.; Flemming, Claudia L.; Gherardi, Samuele; Perini, Giovanni; Oberthuer, André; Fischer, Matthias; Juraeva, Dilafruz; Brors, Benedikt; Xue, Chengyuan; Norris, Murray D.; Marshall, Glenn M.; Haber, Michelle

    2015-01-01

    MYCN amplification occurs in 20% of neuroblastomas and is strongly related to poor clinical outcome. We have identified folate-mediated one-carbon metabolism as highly upregulated in neuroblastoma tumors with MYCN amplification and have validated this finding experimentally by showing that MYCN amplified neuroblastoma cell lines have a higher requirement for folate and are significantly more sensitive to the antifolate methotrexate than cell lines without MYCN amplification. We have demonstrated that methotrexate uptake in neuroblastoma cells is mediated principally by the reduced folate carrier (RFC; SLC19A1), that SLC19A1 and MYCN expression are highly correlated in both patient tumors and cell lines, and that SLC19A1 is a direct transcriptional target of N-Myc. Finally, we assessed the relationship between SLC19A1 expression and patient survival in two independent primary tumor cohorts and found that SLC19A1 expression was associated with increased risk of relapse or death, and that SLC19A1 expression retained prognostic significance independent of age, disease stage and MYCN amplification. This study adds upregulation of folate-mediated one-carbon metabolism to the known consequences of MYCN amplification, and suggests that this pathway might be targeted in poor outcome tumors with MYCN amplification and high SLC19A1 expression. PMID:25860940

  8. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    PubMed

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.

  9. Loop-mediated isothermal amplification assay targeting the mpb70 gene for rapid differential detection of Mycobacterium bovis.

    PubMed

    Zhang, Hui; Wang, Zhen; Cao, Xudong; Wang, Zhengrong; Sheng, Jinliang; Wang, Yong; Zhang, Jing; Li, Zhiqiang; Gu, Xinli; Chen, Chuangfu

    2016-11-01

    Loop-mediated isothermal amplification (LAMP) is a highly sensitive, rapid, cost-effective nucleic acid amplification method. Tuberculosis (TB) is widely popular in the world and it is difficult to cure. The fundamental treatment is to clear the types of TB pathogens such as Mycobacterium bovis (M. bovis), Mycobacterium tuberculosis (M. tuberculosis). In order to detect and diagnose TB early, we constructed the differential diagnostic method of TB. In this study, we used LAMP for detection of M. bovis, based on amplification of the mpb70 gene which is a unique gene in M. bovis strain. The LAMP assay was able to detect only seven copies of the gene per reaction, whereas for the conventional PCR, it was 70 copies. The LAMP was evaluated for its specificity using six strains of five Mycobacterium species and 18 related non-Mycobacterium microorganism strains as controls. The target three Mycobacterium strains were all amplified, and no cross-reaction was found with 18 non-Mycobacterium microorganism strains. TB was detected by two methods, LAMP and conventional PCR (based on mpb70 gene); the positive rates of the two methods were 9.55 and 7.01 %, respectively. Our results indicate that the LAMP method should be a potential tool with high convenience, rapidity, sensitivity and specificity for the diagnosis of TB caused by M. bovis. Most importance is that the use of LAMP as diagnostic method in association with diagnostic tests based on mpb70 gene would allow the differentiation between M. bovis and other Mycobacterium in humans or animals. The LAMP method is actually in order to detect human TB, and it can be used for differential diagnosis in this paper.

  10. Improved Performance of Loop-Mediated Isothermal Amplification Assays via Swarm Priming.

    PubMed

    Martineau, Rhett L; Murray, Sarah A; Ci, Shufang; Gao, Weimin; Chao, Shih-Hui; Meldrum, Deirdre R

    2017-01-03

    This work describes an enhancement to the loop-mediated isothermal amplification (LAMP) reaction which results in improved performance. Enhancement is achieved by adding a new set of primers to conventional LAMP reactions. These primers are termed "swarm primers" based on their relatively high concentration and their ability to create new amplicons despite the theoretical lack of single-stranded annealing sites. The primers target a region upstream of the FIP/BIP primer recognition sequences on opposite strands, substantially overlapping F1/B1 sites. Thus, despite the addition of a new primer set to an already complex assay, no significant increase in assay complexity is incurred. Swarm priming is presented for three DNA templates: Lambda phage, Synechocystis sp. PCC 6803 rbcL gene, and human HFE. The results of adding swarm primers to conventional LAMP reactions include increased amplification speed, increased indicator contrast, and increased reaction products. For at least one template, minor improvements in assay repeatability are also shown. In addition, swarm priming is shown to be effective at increasing the reaction speed for RNA amplification via RT-LAMP. Collectively, these results suggest that the addition of swarm primers will likely benefit most if not all existing LAMP assays based on state-of-the-art, six-primer reactions.

  11. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification

    PubMed Central

    Schouten, Jan P.; McElgunn, Cathal J.; Waaijer, Raymond; Zwijnenburg, Danny; Diepvens, Filip; Pals, Gerard

    2002-01-01

    We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down’s syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50–70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences. PMID:12060695

  12. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification.

    PubMed

    Schouten, Jan P; McElgunn, Cathal J; Waaijer, Raymond; Zwijnenburg, Danny; Diepvens, Filip; Pals, Gerard

    2002-06-15

    We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down's syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50-70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.

  13. 2D dynamic studies combined with the surface curvature analysis to predict Arias Intensity amplification

    NASA Astrophysics Data System (ADS)

    Torgoev, Almaz; Havenith, Hans-Balder

    2016-07-01

    A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.

  14. NASBA: A detection and amplification system uniquely suited for RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sooknanan, R.; Malek, L.T.

    1995-06-01

    The invention of PCR (polymerase chain reaction) has revolutionized our ability to amplify and manipulate a nucleic acid sequence in vitro. The commercial rewards of this revolution have driven the development of other nuclei acid amplification and detection methodologies. This has created an alphabet soup of technologies that use different amplification methods, including NASBA (nucleic acid sequence-based amplification), LCR (ligase chain reaction), SDA (strand displacement amplification), QBR (Q-beta replicase), CPR (cycling probe reaction), and bDNA (branched DNA). Despite the differences in their processes, these amplification systems can be separated into two broad categories based on how they achieve their goal:more » sequence-based amplification systems, such as PCR, NASBA, and SDA, amplify a target nucleic acid sequence. Signal-based amplification systems, such as LCR, QBR, CPR and bDNA, amplify or alter a signal from a detection reaction that is target-dependent. While the various methods have relative strengths and weaknesses, only NASBA offers the unique ability to homogeneously amplify an RNA analyte in the presence of homologous genomic DNA under isothermal conditions. Since the detection of RNA sequences almost invariably measures biological activity, it is an excellent prognostic indicator of activities as diverse as virus production, gene expression, and cell viability. The isothermal nature of the reaction makes NASBA especially suitable for large-scale manual screening. These features extend NASBA`s application range from research to commercial diagnostic applications. Field test kits are presently under development for human diagnostics as well as the burgeoning fields of food and environmental diagnostic testing. These developments suggest future integration of NASBA into robotic workstations for high-throughput screening as well. 17 refs., 1 tab.« less

  15. Invasive reaction assisted strand-displacement signal amplification for sensitive DNA detection.

    PubMed

    Zou, Bingjie; Song, Qinxin; Wang, Jianping; Liu, Yunlong; Zhou, Guohua

    2014-11-18

    A novel DNA detection assay was proposed by invasive reaction coupled with molecular beacon assisted strand-displacement signal amplification (IRASA). Target DNAs are firstly hybridized to two probes to initiate invasive reaction to produce amplified flaps. Then these flaps are further amplified by strand-displacement signal amplification. The detection limit was around 0.2 pM.

  16. Strand Displacement Amplification Reaction on Quantum Dot-Encoded Silica Bead for Visual Detection of Multiplex MicroRNAs.

    PubMed

    Qu, Xiaojun; Jin, Haojun; Liu, Yuqian; Sun, Qingjiang

    2018-03-06

    The combination of microbead array, isothermal amplification, and molecular signaling enables the continuous development of next-generation molecular diagnostic techniques. Herein we reported the implementation of nicking endonuclease-assisted strand displacement amplification reaction on quantum dots-encoded microbead (Qbead), and demonstrated its feasibility for multiplexed miRNA assay in real sample. The Qbead featured with well-defined core-shell superstructure with dual-colored quantum dots loaded in silica core and shell, respectively, exhibiting remarkably high optical encoding stability. Specially designed stem-loop-structured probes were immobilized onto the Qbead for specific target recognition and amplification. In the presence of low abundance of miRNA target, the target triggered exponential amplification, producing a large quantity of stem-G-quadruplexes, which could be selectively signaled by a fluorescent G-quadruplex intercalator. In one-step operation, the Qbead-based isothermal amplification and signaling generated emissive "core-shell-satellite" superstructure, changing the Qbead emission-color. The target abundance-dependent emission-color changes of the Qbead allowed direct, visual detection of specific miRNA target. This visualization method achieved limit of detection at the subfemtomolar level with a linear dynamic range of 4.5 logs, and point-mutation discrimination capability for precise miRNA analyses. The array of three encoded Qbeads could simultaneously quantify three miRNA biomarkers in ∼500 human hepatoma carcinoma cells. With the advancements in ease of operation, multiplexing, and visualization capabilities, the isothermal amplification-on-Qbead assay could potentially enable the development of point-of-care diagnostics.

  17. Region 6 Targeted Brownfields Assessment Brochure

    EPA Pesticide Factsheets

    A Target Brownfields Assessment (TBA) is a free service the EPA Region 6 Brownfields Team provides to communities to support their eligible brownfields projects. Region 6 consists of Arkansas, Louisiana, New Mexico, Oklahoma, and Texas.

  18. Engineering self-contained DNA circuit for proximity recognition and localized signal amplification of target biomolecules

    PubMed Central

    Ang, Yan Shan; Yung, Lin-Yue Lanry

    2014-01-01

    Biomolecular interactions have important cellular implications, however, a simple method for the sensing of such proximal events is lacking in the current molecular toolbox. We designed a dynamic DNA circuit capable of recognizing targets in close proximity to initiate a pre-programmed signal transduction process resulting in localized signal amplification. The entire circuit was engineered to be self-contained, i.e. it can self-assemble onto individual target molecules autonomously and form localized signal with minimal cross-talk. α-thrombin was used as a model protein to evaluate the performance of the individual modules and the overall circuit for proximity interaction under physiologically relevant buffer condition. The circuit achieved good selectivity in presence of non-specific protein and interfering serum matrix and successfully detected for physiologically relevant α-thrombin concentration (50 nM–5 μM) in a single mixing step without any further washing. The formation of localized signal at the interaction site can be enhanced kinetically through the control of temperature and probe concentration. This work provides a basic general framework from which other circuit modules can be adapted for the sensing of other biomolecular or cellular interaction of interest. PMID:25056307

  19. Ultrasensitive detection of nucleic acids and proteins using quartz crystal microbalance and surface plasmon resonance sensors based on target-triggering multiple signal amplification strategy.

    PubMed

    Sun, Wenbo; Song, Weiling; Guo, Xiaoyan; Wang, Zonghua

    2017-07-25

    In this study, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) sensors were combined with template enhanced hybridization processes (TEHP), rolling circle amplification (RCA) and biocatalytic precipitation (BCP) for ultrasensitive detection of DNA and protein. The DNA complementary to the aptamer was released by the specific binding of the aptamer to the target protein and then hybridized with the capture probe and the assistant DNA to form a ternary "Y" junction structure. The initiation chain was generated by the template-enhanced hybridization process which leaded to the rolling circle amplification reaction, and a large number of repeating unit sequences were formed. Hybridized with the enzyme-labeled probes, the biocatalytic precipitation reaction was further carried out, resulting in a large amount of insoluble precipitates and amplifying the detection signal. Under the optimum conditions, detection limits as low as 43 aM for target DNA and 53 aM for lysozyme were achieved. In addition, this method also showed good selectivity and sensitivity in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    PubMed

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method.

    PubMed

    Zhang, Kai; Wang, Ke; Zhu, Xue; Xu, Fei; Xie, Minhao

    2017-01-15

    MicroRNA (miRNA) has become an important biomarker candidate for cancer diagnosis, prognosis, and therapy. In this study, we have developed a novel fluorescence method for sensitive and specific miRNA detection via duplex specific nuclease (DSN) signal amplification and demonstrated its practical application in biological samples. Malachite green (MG) was employed as a "label-free" signal transducer since fluorescence of MG could be enhanced by 100-fold when MG were binding to a G-quadruplex structure formed within the d(G 2 T) 13 G sequence. The proposed signal amplification strategy is an integrated "biological circuit" designed to initiate a cascade of enzymatic reactions in order to detect, amplify, and measure a specific miRNA sequence by using the isothermal cleavage property of a DSN. The circuit is composed of two molecular switches operating in series: the amplification reaction activated by a specific miRNA and the strand-displacement polymerization reaction designed to initiate molecular beacon-assisted amplification and signal transduction by using MG/G-quadruplex complex. The hsa-miR-141 (miR141) was chosen as a target miRNA because its level specifically abnormal in a wide range of common human cancers including breast, lung, colon, and prostate cancer. The proposed method allowed quantitative sequence-specific detection of miR141 (with a detection limit of 1.03pM) in a dynamic range from 1pM to 10μM, with an excellent ability to discriminate differences in miRNAs. Moreover, the detection assay was applied to quantify miR141 in cancerous cell lysates. On the basis of these findings, we believe that this proposed sensitive and specific assay has great potential as a miRNA quantification method for use in biomedical research and clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    PubMed

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology.

    PubMed

    Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Boudreau, Dominique K; Bergeron, Michel G

    2015-04-01

    Recombinase polymerase amplification (RPA) technology relies on three major proteins, recombinase proteins, single-strand binding proteins, and polymerases, to specifically amplify nucleic acid sequences in an isothermal format. The performance of RPA with respect to sequence mismatches of closely-related non-target molecules is not well documented and the influence of the number and distribution of mismatches in DNA sequences on RPA amplification reaction is not well understood. We investigated the specificity of RPA by testing closely-related species bearing naturally occurring mismatches for the tuf gene sequence of Pseudomonas aeruginosa and/or Mycobacterium tuberculosis and for the cfb gene sequence of Streptococcus agalactiae. In addition, the impact of the number and distribution of mismatches on RPA efficiency was assessed by synthetically generating 14 types of mismatched forward primers for detecting five bacterial species of high diagnostic relevance such as Clostridium difficile, Staphylococcus aureus, S. agalactiae, P. aeruginosa, and M. tuberculosis as well as Bacillus atropheus subsp. globigii for which we use the spores as internal control in diagnostic assays. A total of 87 mismatched primers were tested in this study. We observed that target specific RPA primers with mismatches (n > 1) at their 3'extrimity hampered RPA reaction. In addition, 3 mismatches covering both extremities and the center of the primer sequence negatively affected RPA yield. We demonstrated that the specificity of RPA was multifactorial. Therefore its application in clinical settings must be selected and validated a priori. We recommend that the selection of a target gene must consider the presence of closely-related non-target genes. It is advisable to choose target regions with a high number of mismatches (≥36%, relative to the size of amplicon) with respect to closely-related species and the best case scenario would be by choosing a unique target gene. Copyright © 2014

  4. Soil amplification with a strong impedance contrast: Boston, Massachusetts

    USGS Publications Warehouse

    Baise, Laurie G.; Kaklamanos, James; Berry, Bradford M; Thompson, Eric M.

    2016-01-01

    In this study, we evaluate the effect of strong sediment/bedrock impedance contrasts on soil amplification in Boston, Massachusetts, for typical sites along the Charles and Mystic Rivers. These sites can be characterized by artificial fill overlying marine sediments overlying glacial till and bedrock, where the depth to bedrock ranges from 20 to 80 m. The marine sediments generally consist of organic silts, sand, and Boston Blue Clay. We chose these sites because they represent typical foundation conditions in the city of Boston, and the soil conditions are similar to other high impedance contrast environments. The sediment/bedrock interface in this region results in an impedance ratio on the order of ten, which in turn results in a significant amplification of the ground motion. Using stratigraphic information derived from numerous boreholes across the region paired with geologic and geomorphologic constraints, we develop a depth-to-bedrock model for the greater Boston region. Using shear-wave velocity profiles from 30 locations, we develop average velocity profiles for sites mapped as artificial fill, glaciofluvial deposits, and bedrock. By pairing the depth-to-bedrock model with the surficial geology and the average shear-wave velocity profiles, we can predict soil amplification in Boston. We compare linear and equivalent-linear site response predictions for a soil layer of varying thickness over bedrock, and assess the effects of varying the bedrock shear-wave velocity (VSb) and quality factor (Q). In a moderate seismicity region like Boston, many earthquakes will result in ground motions that can be modeled with linear site response methods. We also assess the effect of bedrock depth on soil amplification for a generic soil profile in artificial fill, using both linear and equivalent-linear site response models. Finally, we assess the accuracy of the model results by comparing the predicted (linear site response) and observed site response at the Northeastern

  5. Advances in the detection of telomerase activity using isothermal amplification

    PubMed Central

    Zhang, Xiaojin; Lou, Xiaoding; Xia, Fan

    2017-01-01

    Telomerase plays a significantly important role in keeping the telomere length of a chromosome. Telomerase overexpresses in nearly all tumor cells, suggesting that telomerase could be not only a promising biomarker but also a potential therapeutic target for cancers. Therefore, numerous efforts focusing on the detection of telomerase activity have been reported from polymerase chain reaction (PCR)-based telomeric repeat amplification protocol (TRAP) assays to PCR-free assays such as isothermal amplification in recent decade. In this review, we highlight the strategies for the detection of telomerase activity using isothermal amplification and discuss some of the challenges in designing future telomerase assays as well. PMID:28638472

  6. DNA sequence responsible for the amplification of adjacent genes.

    PubMed

    Pasion, S G; Hartigan, J A; Kumar, V; Biswas, D K

    1987-10-01

    A 10.3-kb DNA fragment in the 5'-flanking region of the rat prolactin (rPRL) gene was isolated from F1BGH(1)2C1, a strain of rat pituitary tumor cells (GH cells) that produces prolactin in response to 5-bromodeoxyuridine (BrdU). Following transfection and integration into genomic DNA of recipient mouse L cells, this DNA induced amplification of the adjacent thymidine kinase gene from Herpes simplex virus type 1 (HSV1TK). We confirmed the ability of this "Amplicon" sequence to induce amplification of other linked or unlinked genes in DNA-mediated gene transfer studies. When transferred into the mouse L cells with the 10.3-5'rPRL gene sequence of BrdU-responsive cells, both the human growth hormone and the HSV1TK genes are amplified in response to 5-bromodeoxyuridine. This observation is substantiated by BrdU-induced amplification of the cotransferred bacterial Neo gene. Cotransfection studies reveal that the BrdU-induced amplification capability is associated with a 4-kb DNA sequence in the 5'-flanking region of the rPRL gene of BrdU-responsive cells. These results demonstrate that genes of heterologous origin, linked or unlinked, and selected or unselected, can be coamplified when located within the amplification boundary of the Amplicon sequence.

  7. CCNE1 amplification is associated with aggressive potential in endometrioid endometrial carcinomas.

    PubMed

    Nakayama, Kentaro; Rahman, Mohammed Tanjimur; Rahman, Munmun; Nakamura, Kohei; Ishikawa, Masako; Katagiri, Hiroshi; Sato, Emi; Ishibashi, Tomoka; Iida, Kouji; Ishikawa, Noriyuki; Kyo, Satoru

    2016-02-01

    The clinicopathological significance of amplification was investigated of the gene encoding cyclin E (CCNE1) and we assessed whether CCNE1 was a potential target in endometrioid endometrial carcinomas. CCNE1 amplification and CCNE1 or F-box and WD repeat domain-containing 7 (FBXW7) expression in endometrial endometrioid carcinoma was assessed by immunohistochemistry and fluorescence in situ hybridization. CCNE1 knockdown by small interfering RNA (siRNA) was used to assess the CCNE1 function. The results showed that CCNE1 amplification was present in 9 (8.3%) of 108 endometrial carcinomas. CCNE1 amplification was correlated with high histological grade (Grade 3; p=0.0087) and lymphovascular space invasion (p=0.0258). No significant association was observed between CCNE1 amplification and FIGO stage (p=0.851), lymph node metastasis (p=0.078), body mass index (p=0.265), deep myometrial invasion (p=0.256), menopausal status (p=0.289) or patient age (p=0.0817). CCNE1 amplification was significantly correlated with shorter progression-free and overall survival (p=0.0081 and 0.0073, respectively). CCNE1 protein expression or loss of FBXW7 expression in endometrial endometrioid carcinoma tended to be correlated with shorter progression-free and overall survival; however, this difference was not statistically significant. Multivariate analysis showed that CCNE1 amplification was an independent prognostic factor for overall survival but not for progression-free survival (P=0.0454 and 0.2175, respectively). Profound growth inhibition was observed in siRNA-transfected cancer cells with endogenous CCNE1 overexpression compared with that in cancer cells having low CCNE1 expression. CCNE1 amplification was independent of p53, HER2, MLH1 and ARID1A expression but dependent on PTEN expression in endometrial carcinomas. These findings indicated that CCNE1 amplification was critical for the survival of endometrial endometrioid carcinomas. Furthermore, the effects of CCNE1 knockdown

  8. CCNE1 amplification is associated with aggressive potential in endometrioid endometrial carcinomas

    PubMed Central

    NAKAYAMA, KENTARO; RAHMAN, MOHAMMED TANJIMUR; RAHMAN, MUNMUN; NAKAMURA, KOHEI; ISHIKAWA, MASAKO; KATAGIRI, HIROSHI; SATO, EMI; ISHIBASHI, TOMOKA; IIDA, KOUJI; ISHIKAWA, NORIYUKI; KYO, SATORU

    2016-01-01

    The clinicopathological significance of amplification was investigated of the gene encoding cyclin E (CCNE1) and we assessed whether CCNE1 was a potential target in endometrioid endometrial carcinomas. CCNE1 amplification and CCNE1 or F-box and WD repeat domain-containing 7 (FBXW7) expression in endometrial endometrioid carcinoma was assessed by immunohistochemistry and fluorescence in situ hybridization. CCNE1 knockdown by small interfering RNA (siRNA) was used to assess the CCNE1 function. The results showed that CCNE1 amplification was present in 9 (8.3%) of 108 endometrial carcinomas. CCNE1 amplification was correlated with high histological grade (Grade 3; P=0.0087) and lymphovascular space invasion (P=0.0258). No significant association was observed between CCNE1 amplification and FIGO stage (P=0.851), lymph node metastasis (P=0.078), body mass index (P=0.265), deep myometrial invasion (P=0.256), menopausal status (P=0.289) or patient age (P=0.0817). CCNE1 amplification was significantly correlated with shorter progression-free and overall survival (P=0.0081 and 0.0073, respectively). CCNE1 protein expression or loss of FBXW7 expression in endometrial endometrioid carcinoma tended to be correlated with shorter progression-free and overall survival; however, this difference was not statistically significant. Multivariate analysis showed that CCNE1 amplification was an independent prognostic factor for overall survival but not for progression-free survival (P=0.0454 and 0.2175, respectively). Profound growth inhibition was observed in siRNA-transfected cancer cells with endogenous CCNE1 overexpression compared with that in cancer cells having low CCNE1 expression. CCNE1 amplification was independent of p53, HER2, MLH1 and ARID1A expression but dependent on PTEN expression in endometrial carcinomas. These findings indicated that CCNE1 amplification was critical for the survival of endometrial endometrioid carcinomas. Furthermore, the effects of CCNE1 knockdown

  9. Adult hearing-aid users with cochlear dead regions restricted to high frequencies: Implications for amplification.

    PubMed

    Pepler, Anna; Lewis, Kathryn; Munro, Kevin J

    2016-01-01

    Cochlear dead regions (DR) are common in adult hearing-aid users, but are usually restricted to high frequencies. The aim was to determine the benefit of high-frequency amplification for ears with and without high-frequency DRs. Participants were fitted with the study hearing aid and tested under four conditions: unfiltered (NAL-NL2 prescription), and low-pass filtered at 1.5, 2, and 3 kHz. VCV stimuli were presented at 65 dB (A) in quiet and in 20-talker babble at a signal-to-babble ratio of 0 dB. Experienced adult hearing-aid users: one group of 18 with a DR edge frequency above 1.5 kHz, and a group of 18 matched controls. Overall performance was best in the unfiltered condition. There was no significant difference in mean performance between the two groups when tested in quiet. However, the DR group obtained less benefit from high-frequency amplification when tested in babble: the mean difference between the unfiltered and 3-kHz filtered condition was 6% and 13% for the DR group and controls, respectively. In adults with a moderate hearing loss and a restricted DR, speech recognition was always best in the unfiltered condition, although mean performance in babble was lower for the DR group.

  10. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging.

    PubMed

    Fozooni, Tahereh; Ravan, Hadi; Sasan, Hosseinali

    2017-12-01

    Due to their unique properties, such as programmability, ligand-binding capability, and flexibility, nucleic acids can serve as analytes and/or recognition elements for biosensing. To improve the sensitivity of nucleic acid-based biosensing and hence the detection of a few copies of target molecule, different modern amplification methodologies, namely target-and-signal-based amplification strategies, have already been developed. These recent signal amplification technologies, which are capable of amplifying the signal intensity without changing the targets' copy number, have resulted in fast, reliable, and sensitive methods for nucleic acid detection. Working in cell-free settings, researchers have been able to optimize a variety of complex and quantitative methods suitable for deploying in live-cell conditions. In this study, a comprehensive review of the signal amplification technologies for the detection of nucleic acids is provided. We classify the signal amplification methodologies into enzymatic and non-enzymatic strategies with a primary focus on the methods that enable us to shift away from in vitro detecting to in vivo imaging. Finally, the future challenges and limitations of detection for cellular conditions are discussed.

  11. Protein Detection via Direct Enzymatic Amplification of Short DNA Aptamers

    PubMed Central

    Fischer, Nicholas O.; Tarasow, Theodore M.; Tok, Jeffrey B.-H.

    2008-01-01

    Aptamers are single-stranded nucleic acids that fold into defined tertiary structures to bind target molecules with high specificities and affinities. DNA aptamers have garnered much interest as recognition elements for biodetection and diagnostic applications due to their small size, ease of discovery and synthesis, and chemical and thermal stability. Herein, we describe the design and application of a short DNA molecule capable of both protein target binding and amplifiable bioreadout processes. As both recognition and readout capabilities are incorporated into a single DNA molecule, tedious conjugation procedures required for protein-DNA hybrids can be omitted. The DNA aptamer is designed to be amplified directly by either the polymerase chain reaction (PCR) or rolling circle amplification (RCA) processes, taking advantage of real-time amplification monitoring techniques for target detection. A combination of both RCA and PCR provides a wide protein target dynamic range (1 μM to 10 pM). PMID:17980857

  12. Detection and signal amplification in zebrafish RNA FISH.

    PubMed

    Hauptmann, Giselbert; Lauter, Gilbert; Söll, Iris

    2016-04-01

    In situ hybridization (ISH) has become an invaluable tool for the detection of RNA in cells, tissues and organisms. Due to improvements in target and signal amplification and in probe design remarkable progress has been made concerning sensitivity, specificity and resolution of chromogenic and fluorescent ISH (FISH). These advancements allow for exquisite cellular and sub-cellular resolution and for detecting multiple RNA species at a time by multiplexing. In zebrafish (F)ISH non-enzymatic and enzymatic amplification systems have been employed to obtain enhanced signal intensities and signal-to-noise ratios. These amplification strategies include branched DNA-based RNAscope and in situ hybridization chain reaction (HCR) techniques, as well as alkaline phosphatase (AP)- and horseradish peroxidase (PO)-based immunoassays. For practical application, we provide proven multiplex FISH protocols for AP- and PO-based visualization of mRNAs at high resolution. The protocols take advantage of optimized tyramide signal amplification (TSA) conditions of the PO assay and long-lasting high signal-to-noise ratio of the AP reaction, thereby enabling detection of less abundant transcripts. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. "Signal-on" photoelectrochemical biosensor for sensitive detection of human T-Cell lymphotropic virus type II DNA: dual signal amplification strategy integrating enzymatic amplification with terminal deoxynucleotidyl transferase-mediated extension.

    PubMed

    Shen, Qingming; Han, Li; Fan, Gaochao; Zhang, Jian-Rong; Jiang, Liping; Zhu, Jun-Jie

    2015-01-01

    A novel "signal-on" photoelectrochemical (PEC) biosensor for sensitive detection of human T-cell lymphotropic virus type II (HTLV-II) DNA was developed on the basis of enzymatic amplification coupled with terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. The intensity of the photocurrent signal was proportional to the concentration of the HTLV-II DNA-target DNA (tDNA) by dual signal amplification. In this protocol, GR-CdS:Mn/ZnS nanocomposites were used as photoelectric conversion material, while pDNA was used as the tDNA recognizing unit. Moreover, the TdT-mediated extension and the enzymatic signal amplification technique were used to enhance the sensitivity of detection. Using this novel dual signal amplification strategy, the prototype of PEC DNA sensor can detect as low as ∼0.033 fM of HTLV-II DNA with a linear range of 0.1-5000 fM, with excellent differentiation ability even for single-base mismatches. This PEC DNA assay opens a promising platform to detect various DNA targets at ultralow levels for early diagnoses of different diseases.

  14. Development and application of loop-mediated isothermal amplification methods targeting the seM gene for detection of Streptococcus equi subsp. equi.

    PubMed

    Hobo, Seiji; Niwa, Hidekazu; Oku, Kazuomi

    2012-03-01

    Loop-mediated isothermal amplification (LAMP) constitutes a potentially valuable diagnostic tool for rapid diagnosis of contagious diseases. In this study, we developed a novel LAMP method (seM-LAMP) to detect the seM gene of Streptococcus equi subsp. equi (S. equi), the causative agent of strangles in equids. The seM-LAMP successfully amplified the target sequence of the seM gene at 63°C within 60 min. The sensitivity of the seM-LAMP was slightly lower than the 2nd reaction of the seM semi-nested PCR. To evaluate the species specificity of the seM-LAMP, we tested 100 S. equi and 189 non-S. equi strains. Significant amplification of the DNA originating from S. equi was observed within 60 min incubation, but no amplification of non-S. equi DNA occurred. The results were identical to those of seM semi-nested PCR. To investigate the clinical usefulness of the methods, the seM-LAMP and the seM semi-nested PCR were used to screen 590 nasal swabs obtained during an outbreak of strangles. Both methods showed that 79 and 511 swabs were S. equi positive and negative, respectively, and the results were identical to those of the culture examination. These results indicate that the seM-LAMP is potentially useful for the reliable routine diagnosis of Streptococcus equi subsp. equi infections.

  15. Colocalization recognition-activated cascade signal amplification strategy for ultrasensitive detection of transcription factors.

    PubMed

    Zhu, Desong; Wang, Lei; Xu, Xiaowen; Jiang, Wei

    2017-03-15

    Transcription factors (TFs) bind to specific double-stranded DNA (dsDNA) sequences in the regulatory regions of genes to regulate the process of gene transcription. Their expression levels sensitively reflect cell developmental situation and disease state. TFs have become potential diagnostic markers and therapeutic targets of cancers and some other diseases. Hence, high sensitive detection of TFs is of vital importance for early diagnosis of diseases and drugs development. The traditional exonucleases-assisted signal amplification methods suffered from the false positives caused by incomplete digestion of excess recognition probes. Herein, based on a new recognition way-colocalization recognition (CR)-activated dual signal amplification, an ultrasensitive fluorescent detection strategy for TFs was developed. TFs-induced the colocalization of three split recognition components resulted in noticeable increases of local effective concentrations and hybridization of three split components, which activated the subsequent cascade signal amplification including strand displacement amplification (SDA) and exponential rolling circle amplification (ERCA). This strategy eliminated the false positive influence and achieved ultra-high sensitivity towards the purified NF-κB p50 with detection limit of 2.0×10 -13 M. Moreover, NF-κB p50 can be detected in as low as 0.21ngμL -1 HeLa cell nuclear extracts. In addition, this proposed strategy could be used for the screening of NF-κB p50 activity inhibitors and potential anti-NF-κB p50 drugs. Finally, our proposed strategy offered a potential method for reliable detection of TFs in medical diagnosis and treatment research of cancers and other related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Signal amplification of padlock probes by rolling circle replication.

    PubMed Central

    Banér, J; Nilsson, M; Mendel-Hartvig, M; Landegren, U

    1998-01-01

    Circularizing oligonucleotide probes (padlock probes) have the potential to detect sets of gene sequences with high specificity and excellent selectivity for sequence variants, but sensitivity of detection has been limiting. By using a rolling circle replication (RCR) mechanism, circularized but not unreacted probes can yield a powerful signal amplification. We demonstrate here that in order for the reaction to proceed efficiently, the probes must be released from the topological link that forms with target molecules upon hybridization and ligation. If the target strand has a nearby free 3' end, then the probe-target hybrids can be displaced by the polymerase used for replication. The displaced probe can then slip off the targetstrand and a rolling circle amplification is initiated. Alternatively, the target sequence itself can prime an RCR after its non-base paired 3' end has been removed by exonucleolytic activity. We found the Phi29 DNA polymerase to be superior to the Klenow fragment in displacing the target DNA strand, and it maintained the polymerization reaction for at least 12 h, yielding an extension product that represents several thousand-fold the length of the padlock probe. PMID:9801302

  17. Whole Genome Amplification of Labeled Viable Single Cells Suited for Array-Comparative Genomic Hybridization.

    PubMed

    Kroneis, Thomas; El-Heliebi, Amin

    2015-01-01

    Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.

  18. Internal Light Source-Driven Photoelectrochemical 3D-rGO/Cellulose Device Based on Cascade DNA Amplification Strategy Integrating Target Analog Chain and DNA Mimic Enzyme.

    PubMed

    Lan, Feifei; Liang, Linlin; Zhang, Yan; Li, Li; Ren, Na; Yan, Mei; Ge, Shenguang; Yu, Jinghua

    2017-11-01

    In this work, a chemiluminescence-driven collapsible greeting card-like photoelectrochemical lab-on-paper device (GPECD) with hollow channel was demonstrated, in which target-triggering cascade DNA amplification strategy was ingeniously introduced. The GPECD had the functions of reagents storage and signal collection, and the change of configuration could control fluidic path, reaction time and alterations in electrical connectivity. In addition, three-dimentional reduced graphene oxide affixed Au flower was in situ grown on paper cellulose fiber for achieving excellent conductivity and biocompatibility. The cascade DNA amplification strategy referred to the cyclic formation of target analog chain and its trigger action to hybridization chain reaction (HCR), leading to the formation of numerous hemin/G-quadruplex DNA mimic enzyme with the presence of hemin. Subjected to the catalysis of hemin/G-quadruplex, the strong chemiluminiscence of luminol-H 2 O 2 system was obtained, which then was used as internal light source to excite photoactive materials realizing the simplification of instrument. In this analyzing process, thrombin served as proof-of-concept, and the concentration of target was converted into the DNA signal output by the specific recognition of aptamer-protein and target analog chain recycling. The target analog chain was produced in quantity with the presence of target, which further triggered abundant HCR and introduced hemin/G-quadruplex into the system. The photocurrent signal was obtained after the nitrogen-doped carbon dots sensitized ZnO was stimulated by chemiluminescence. The proposed GPECD exhibited excellent specificity and sensitivity toward thrombin with a detection limit of 16.7 fM. This judiciously engineered GPECD paved a luciferous way for detecting other protein with trace amounts in bioanalysis and clinical biomedicine.

  19. A surface-confined DNA assembly amplification strategy on DNA nanostructural scaffold for electrochemiluminescence biosensing.

    PubMed

    Feng, Qiu-Mei; Guo, Yue-Hua; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-02-15

    A critical challenge in surface-based DNA assembly amplification is the reduced accessibility of DNA strands arranged on a heterogeneous surface compared to that in homogeneous solution. Here, a novel in situ surface-confined DNA assembly amplification electrochemiluminescence (ECL) biosensor based on DNA nanostructural scaffold was presented. In this design, a stem-loop structural DNA segment (Hairpin 1) was constructed on the vertex of DNA nanostructural scaffold as recognition probe. In the present of target DNA, the hairpin structure changed to rod-like through complementary hybridization with target DNA, resulting in the formation of Hairpin 1:target DNA. When the obtained Hairpin 1:target DNA met Hairpin 2 labeled with glucose oxidase (GOD), the DNA cyclic amplification was activated, releasing target DNA into homogeneous solution for the next recycling. Thus, the ECL signal of Ru(bpy) 3 2+ -TPrA system was quenched by H 2 O 2 , the product of GOD catalyzing glucose. As a result, this proposed method achieved a linear range response from 50 aM to 10 pM with lower detection limit of 20 aM. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quenching of unincorporated amplification signal reporters in reverse-transcription loop-mediated isothermal amplification enabling bright, single-step, closed-tube, and multiplexed detection of RNA viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Cameron S.; Light, Yooli K.; Koh, Chung -Yan

    Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of themore » reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read “quasar”), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). As a result, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.« less

  1. Quenching of unincorporated amplification signal reporters in reverse-transcription loop-mediated isothermal amplification enabling bright, single-step, closed-tube, and multiplexed detection of RNA viruses

    DOE PAGES

    Ball, Cameron S.; Light, Yooli K.; Koh, Chung -Yan; ...

    2016-03-16

    Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of themore » reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read “quasar”), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). As a result, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.« less

  2. Quenching of Unincorporated Amplification Signal Reporters in Reverse-Transcription Loop-Mediated Isothermal Amplification Enabling Bright, Single-Step, Closed-Tube, and Multiplexed Detection of RNA Viruses.

    PubMed

    Ball, Cameron S; Light, Yooli K; Koh, Chung-Yan; Wheeler, Sarah S; Coffey, Lark L; Meagher, Robert J

    2016-04-05

    Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of the reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read "quasar"), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). Furthermore, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA.

  3. A large ungated TPC with GEM amplification

    NASA Astrophysics Data System (ADS)

    Berger, M.; Ball, M.; Fabbietti, L.; Ketzer, B.; Arora, R.; Beck, R.; Böhmer, F. V.; Chen, J.-C.; Cusanno, F.; Dørheim, S.; García, F.; Hehner, J.; Herrmann, N.; Höppner, C.; Kaiser, D.; Kis̆, M.; Kleipa, V.; Konorov, I.; Kunkel, J.; Kurz, N.; Leifels, Y.; Müllner, P.; Münzer, R.; Neubert, S.; Rauch, J.; Schmidt, C. J.; Schmitz, R.; Soyk, D.; Vandenbroucke, M.; Voss, B.; Walther, D.; Zmeskal, J.

    2017-10-01

    A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost 4 π. The high density of hits on a given particle track facilitates the task of pattern recognition in a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC). The design requirements have driven innovations in the construction of a light-weight field-cage, a supporting media flange, the GEM amplification and the readout system, which are

  4. Development of a Quantitative Recombinase Polymerase Amplification Assay with an Internal Positive Control

    PubMed Central

    Richards-Kortum, Rebecca

    2015-01-01

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest. PMID:25867513

  5. Development of a quantitative recombinase polymerase amplification assay with an internal positive control.

    PubMed

    Crannell, Zachary A; Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-03-30

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.

  6. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges.

    PubMed

    Qing, Taiping; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Wen, Li; Shangguan, Jingfang; Mao, Zhengui; Lei, Yanli

    2016-04-01

    Owing to their highly efficient catalytic effects and substrate specificity, the nucleic acid tool enzymes are applied as 'nano-tools' for manipulating different nucleic acid substrates both in the test-tube and in living organisms. In addition to the function as molecular scissors and molecular glue in genetic engineering, the application of nucleic acid tool enzymes in biochemical analysis has also been extensively developed in the past few decades. Used as amplifying labels for biorecognition events, the nucleic acid tool enzymes are mainly applied in nucleic acids amplification sensing, as well as the amplification sensing of biorelated variations of nucleic acids. With the introduction of aptamers, which can bind different target molecules, the nucleic acid tool enzymes-aided signal amplification strategies can also be used to sense non-nucleic targets (e.g., ions, small molecules, proteins, and cells). This review describes and discusses the amplification strategies of nucleic acid tool enzymes-aided biosensors for biochemical analysis applications. Various analytes, including nucleic acids, ions, small molecules, proteins, and cells, are reviewed briefly. This work also addresses the future trends and outlooks for signal amplification in nucleic acid tool enzymes-aided biosensors.

  7. Identification of a candidate oncogene SEI-1 within a minimal amplified region at 19q13.1 in ovarian cancer cell lines.

    PubMed

    Tang, Terence C-M; Sham, Jonathan S T; Xie, Dan; Fang, Yan; Huo, Ke-Ke; Wu, Qiu-Liang; Guan, Xin-Yuan

    2002-12-15

    High-level amplification of DNA sequence at 19q13.1 is one of the frequent genetic alterations in ovarian cancer. In an attempt to verify the minimal amplified region (MAR) at 19q13.1 and to identify the target oncogenes, 49 probes within a region from D19S425 to D19S907 ( approximately 19.5 cM) were used to survey the amplification status in four ovarian cancer cell lines that have been confirmed as containing amplification at 19q13.1. Two separated overlapping MARs, MAR1 (approximately 200 kb) and MAR2 (approximately 1.1 Mb), were identified at 19q13.1. Two candidate oncogenes, AKT2 and SEI-1, were identified in MAR2. Amplification and overexpression of these two genes in four ovarian cancer cell lines were confirmed by Southern and Northern blot analyses. The proliferation-related function of AKT2 and SEI-1 suggests that both genes are likely to be biological targets of an amplification event at 19q13.1 in ovarian cancer and to play important roles in ovarian tumorigenesis.

  8. New target for inhibition of bacterial RNA polymerase: 'switch region'.

    PubMed

    Srivastava, Aashish; Talaue, Meliza; Liu, Shuang; Degen, David; Ebright, Richard Y; Sineva, Elena; Chakraborty, Anirban; Druzhinin, Sergey Y; Chatterjee, Sujoy; Mukhopadhyay, Jayanta; Ebright, Yon W; Zozula, Alex; Shen, Juan; Sengupta, Sonali; Niedfeldt, Rui Rong; Xin, Cai; Kaneko, Takushi; Irschik, Herbert; Jansen, Rolf; Donadio, Stefano; Connell, Nancy; Ebright, Richard H

    2011-10-01

    A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.

    2006-10-15

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60 J on target in a 500 fs pulse, around 100 TW, at the fundamental laser wavelength of 1.054 {mu}m. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibratedmore » radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 10{sup 19} W cm{sup -2} and to underwrite the facility radiological safety system.« less

  10. Describing Site Amplification for Surface Waves in Realistic Basins

    NASA Astrophysics Data System (ADS)

    Bowden, D. C.; Tsai, V. C.

    2017-12-01

    Standard characterizations of site-specific site response assume a vertically-incident shear wave; given a 1D velocity profile, amplification and resonances can be calculated based on conservation of energy. A similar approach can be applied to surface waves, resulting in an estimate of amplification relative to a hard rock site that is different in terms of both amount of amplification and frequency. This prediction of surface-wave site amplification has been well validated through simple simulations, and in this presentation we explore the extent to which a 1D profile can explain observed amplifications in more realistic scenarios. Comparisons of various simple 2D and 3D simulations, for example, allow us to explore the effect of different basin shapes and the relative importance of effects such as focusing, conversion of wave-types and lateral surface wave resonances. Additionally, the 1D estimates for vertically-incident shear waves and for surface waves are compared to spectral ratios of historic events in deep sedimentary basins to demonstrate the appropriateness of the two different predictions. This difference in amplification responses between the wave types implies that a single measurement of site response, whether analytically calculated from 1D models or empirically observed, is insufficient for regions where surface waves play a strong role.

  11. Detection and identification of Brettanomyces/Dekkera sp. yeasts with a loop-mediated isothermal amplification method.

    PubMed

    Hayashi, Nobuyuki; Arai, Ritsuko; Tada, Setsuzo; Taguchi, Hiroshi; Ogawa, Yutaka

    2007-01-01

    Primer sets for a loop-mediated isothermal amplification (LAMP) method were developed to specifically identify each of the four Brettanomyces/Dekkera species, Dekkera anomala, Dekkera bruxellensis, Dekkera custersiana and Brettanomyces naardenensis. Each primer set was designed with target sequences in the ITS region of the four species and could specifically amplify the target DNA of isolates from beer, wine and soft drinks. Furthermore, the primer sets differentiated strains of the target species from strains belonging to other species, even within the genus Brettanomyces/Dekkera. Moreover, the LAMP method with these primer sets could detect about 1 x 10(1) cfu/ml of Brettanomyces/Dekkera yeasts from suspensions in distilled water, wine and beer. This LAMP method with primer sets for the identification of Brettanomyces/Dekkera yeasts is advantageous in terms of specificity, sensitivity and ease of operation compared with standard PCR methods.

  12. A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection

    PubMed Central

    Veigas, Bruno; Águas, Hugo; Fortunato, Elvira; Martins, Rodrigo; Baptista, Pedro Viana; Igreja, Rui

    2017-01-01

    Digital microfluidics (DMF) arises as the next step in the fast-evolving field of operation platforms for molecular diagnostics. Moreover, isothermal schemes, such as loop-mediated isothermal amplification (LAMP), allow for further simplification of amplification protocols. Integrating DMF with LAMP will be at the core of a new generation of detection devices for effective molecular diagnostics at point-of-care (POC), providing simple, fast, and automated nucleic acid amplification with exceptional integration capabilities. Here, we demonstrate for the first time the role of coupling DMF and LAMP, in a dedicated device that allows straightforward mixing of LAMP reagents and target DNA, as well as optimum temperature control (reaction droplets undergo a temperature variation of just 0.3 °C, for 65 °C at the bottom plate). This device is produced using low-temperature and low-cost production processes, adaptable to disposable and flexible substrates. DMF-LAMP is performed with enhanced sensitivity without compromising reaction efficacy or losing reliability and efficiency, by LAMP-amplifying 0.5 ng/µL of target DNA in just 45 min. Moreover, on-chip LAMP was performed in 1.5 µL, a considerably lower volume than standard bench-top reactions. PMID:29144379

  13. Development of a rapid assay to detect the jellyfish Cyanea nozakii using a loop-mediated isothermal amplification method.

    PubMed

    Liu, Zhongyuan; Dong, Zhijun; Liu, Dongyan

    2016-07-01

    Blooms of the harmful jellyfish Cyanea nozakii, which are a severe nuisance to fisheries and tourisms, frequently occur in the northern East China Sea, Yellow Sea, and Bohai Sea. To provide early warning of this species, a simple and effective molecular method for identifying C. nozakii was developed using the loop-mediated isothermal amplification method (LAMP). The LAMP assay is highly specific and uses a set of four primers that target six different regions on the mitochondrial cytochrome c oxidase subunit I (COI) gene of C. nozakii. The amplification conditions, including the dNTP and betaine concentrations, the inner primer to outer primer concentration ratio, reaction time and temperature, were optimized. The LAMP assay amplified DNA extracted from tissue samples of C. nozakii but did not amplify DNA from other common scyphozoans and hydrozoans collected in the same region. In addition, the LAMP assay was more sensitive than conventional PCR. Therefore, the established LAMP assay is a sensitive, specific, fast, and easily performed method for detection of C. nozakii at different stages in their life cycle.

  14. Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification

    PubMed Central

    2010-01-01

    Background Reverse phase protein arrays (RPPA) emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA) strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89) between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range. PMID:20569466

  15. Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yen; Lee, Gwo-Bin; Lin, Jr-Lung; Huang, Fu-Chun; Liao, Chia-Sheng

    2005-06-01

    The present paper reports a fully automated microfluidic system for the DNA amplification process by integrating an electroosmotic pump, an active micromixer and an on-chip temperature control system. In this DNA amplification process, the cell lysis is initially performed in a micro cell lysis reactor. Extracted DNA samples, primers and reagents are then driven electroosmotically into a mixing region where they are mixed by the active micromixer. The homogeneous mixture is then thermally cycled in a micro-PCR (polymerase chain reaction) chamber to perform DNA amplification. Experimental results show that the proposed device can successfully automate the sample pretreatment operation for DNA amplification, thereby delivering significant time and effort savings. The new microfluidic system, which facilitates cell lysis, sample driving/mixing and DNA amplification, could provide a significant contribution to ongoing efforts to miniaturize bio-analysis systems by utilizing a simple fabrication process and cheap materials.

  16. MET expression and amplification in patients with localized gastric cancer

    PubMed Central

    Janjigian, Yelena Y.; Tang, Laura H.; Coit, Daniel G.; Kelsen, David P.; Francone, Todd D.; Weiser, Martin R.; Jhanwar, Suresh C.; Shah, Manish A.

    2013-01-01

    Background MET, the receptor for hepatocyte growth factor has been proposed as a therapeutic target in gastric cancer. This study assessed the incidence of MET expression and gene amplification in tumors of Western patients with gastric cancer. Methods Tumor specimens from patients enrolled on a preoperative chemotherapy study (NCI 5700) were examined for presence of MET gene amplification by fluorescence in situ hybridization (FISH), MET mRNA expression by quantitative polymerase chain reaction, MET overexpression by immunohistochemistry (IHC), and for evidence of MET pathway activation by p-MET IHC. Results Although high-level of MET protein and mRNA were commonly encountered (in 63% and 50% of resected tumor specimens, respectively), none of these tumors had MET gene amplification by FISH, and only 6.6% had evidence of MET tyrosine kinase activity by p-MET IHC. Conclusions In this cohort of patients with localized gastric cancer, the presence of high MET protein and RNA expression does not correlate with MET gene amplification or pathway activation as evidenced by the absence of amplification by FISH and negative p-MET IHC analysis. Impact This paper demonstrates a lack of MET amplification and pathway activation in a cohort of 38 patients with localized gastric cancer, suggesting that MET-driven gastric cancers are relatively rare in Western patients. PMID:21393565

  17. Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand

    PubMed Central

    Auburn, Sarah; Serre, David; Pearson, Richard D.; Amato, Roberto; Sriprawat, Kanlaya; To, Sheren; Handayuni, Irene; Suwanarusk, Rossarin; Russell, Bruce; Drury, Eleanor; Stalker, Jim; Miotto, Olivo; Kwiatkowski, Dominic P.; Nosten, Francois; Price, Ric N.

    2016-01-01

    In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax. Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6–kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003–2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms. PMID:27456706

  18. Control of Brillouin short-pulse seed amplification by chirping the pump pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, G.; Spatschek, K. H.

    Seed amplification via Brillouin backscattering of a long pump pulse is considered. Similar to Raman amplification, several obstructive effects may occur during short-pulse Brillouin amplification. One is the spontaneous Raman backscattering of the pump before interacting with the seed. Preforming the plasma and/or chirping the pump will reduce unwanted pump backscattering. Optimized regions for low-loss pump propagation were proposed already in conjunction with Raman seed amplification. Hence, the influence of the chirp of the pump during Brillouin interaction with the seed becomes important and will be considered here. Both, the linear as well as the nonlinear evolution phases of themore » seed caused by Brillouin amplification under the action of a chirped pump are investigated. The amplification rate as well as the seed profiles are presented as function of the chirping rate. Also the dependence of superradiant scaling rates on the chirp parameter is discussed.« less

  19. By-product formation in repetitive PCR amplification of DNA libraries during SELEX.

    PubMed

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper; Mayer, Günter

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments. Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation and improving the success rate of aptamer selection.

  20. By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX

    PubMed Central

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper; Mayer, Günter

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments. Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation and improving the success rate of aptamer selection. PMID:25490402

  1. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi.

    PubMed

    Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte, Darryl; Moresco, James J; Chaves, Daniel A; Mitani, Shohei; Yates, John R; Tsai, Ming-Daw; Mello, Craig C

    2015-01-29

    Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi

    PubMed Central

    Tsai, Hsin-Yue; Chen, Chun-Chieh G.; Conte, Darryl; Moresco, James J.; Chaves, Daniel A.; Mitani, Shohei; Yates, John R.; Tsai, Ming-Daw; Mello, Craig C.

    2015-01-01

    SUMMARY Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering (si) RNAs are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3′ uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3’ uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. PMID:25635455

  3. Homogenous assay for protein detection based on proximity DNA hybridization and isothermal circular strand displacement amplification reaction.

    PubMed

    Zhang, Manjun; Li, Ruimin; Ling, Liansheng

    2017-06-01

    This work proposed a homogenous fluorescence assay for proteins, based on the target-triggered proximity DNA hybridization in combination with strand displacement amplification (SDA). It benefited from target-triggered proximity DNA hybridization to specifically recognize the target and SDA making recycling signal amplification. The system included a molecular beacon (MB), an extended probe (EP), and an assistant probe (AP), which were not self-assembly in the absence of target proteins, due to the short length of the designed complementary sequence among MB, EP, and AP. Upon addition of the target proteins, EP and AP are bound to the target proteins, which induced the occurrence of proximity hybridization between MB, EP, and AP and followed by strand displacement amplification. Through the primer extension, a tripartite complex of probes and target was displaced and recycled to hybridize with another MB, and the more opened MB enabled the detection signal to amplify. Under optimum conditions, it was used for the detection of streptavidin and thrombin. Fluorescence intensity was proportional to the concentration of streptavidin and thrombin in the range of 0.2-30 and 0.2-35 nmol/L, respectively. Furthermore, this fluorescent method has a good selectivity, in which the fluorescence intensity of thrombin was ~37-fold or even larger than that of the other proteins at the same concentration. It is a new and simple method for SDA-involved target protein detection and possesses a great potential for other protein detection in the future. Graphical abstract A homogenous assay for protein detection is based on proximity DNA hybridization and strand displacement amplification reaction.

  4. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas

    PubMed Central

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F.; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-01-01

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs. 25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2. In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance. PMID:27662657

  5. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas.

    PubMed

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-11-15

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs.25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2.In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance.

  6. Uniform amplification of phage display libraries in monodisperse emulsions.

    PubMed

    Matochko, Wadim L; Ng, Simon; Jafari, Mohammad R; Romaniuk, Joseph; Tang, Sindy K Y; Derda, Ratmir

    2012-09-01

    In this paper, we describe a complete experimental setup for the uniform amplification of libraries of phage. Uniform amplification, which multiplies every phage clone by the same amount irrespective of the growth rate of the clone is essential for phage-display screening. Amplification of phage libraries in a common solution is often non-uniform: it favors fast-growing clones and eliminates those that grow slower. This competition leads to elimination of many useful binding clones, and it is a major barrier to identification of ligands for targets with multiple binding sites such as cells, tissues, or mixtures of proteins. Uniform amplification is achieved by encapsulating individual phage clones into isolated compartments (droplets) of identical volume. Each droplet contains culture medium and an excess of host (Escherichia coli). Here, we describe microfluidics devices that generate mono-disperse droplet-based compartments, and optimal conditions for amplification of libraries of different size. We also describe the detailed synthesis of a perfluoro surfactant, which gives droplets exceptional stability. Droplets stabilized by this compound do not coalesce after many hours in shaking culture. We identified a commercially available compound (Krytox), which destabilizes these droplets to recover the amplified libraries. Overall, uniform amplification is a sequence of three simple steps: (1) encapsulation of mixture of phage and bacteria in droplets using microfluidics; (2) incubation of droplets in a shaking culture; (3) destabilization of droplets to harvest the amplified phage. We anticipate that this procedure can be easily adapted in any academic or industrial laboratory that uses phage display. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Cascade Signal Amplification Based on Copper Nanoparticle-Reported Rolling Circle Amplification for Ultrasensitive Electrochemical Detection of the Prostate Cancer Biomarker.

    PubMed

    Zhu, Ye; Wang, Huijuan; Wang, Lin; Zhu, Jing; Jiang, Wei

    2016-02-03

    An ultrasensitive and highly selective electrochemical assay was first attempted by combining the rolling circle amplification (RCA) reaction with poly(thymine)-templated copper nanoparticles (CuNPs) for cascade signal amplification. As proof of concept, prostate specific antigen (PSA) was selected as a model target. Using a gold nanoparticle (AuNP) as a carrier, we synthesized the primer-AuNP-aptamer bioconjugate for signal amplification by increasing the primer/aptamer ratio. The specific construction of primer-AuNP-aptamer/PSA/anti-PSA sandwich structure triggered the effective RCA reaction, in which thousands of tandem poly(thymine) repeats were generated and directly served as the specific templates for the subsequent CuNP formation. The signal readout was easily achieved by dissolving the RCA product-templated CuNPs and detecting the released copper ions with differential pulse stripping voltammetry. Because of the designed cascade signal amplification strategy, the newly developed method achieved a linear range of 0.05-500 fg/mL, with a remarkable detection limit of 0.020 ± 0.001 fg/mL PSA. Finally, the feasibility of the developed method for practical application was investigated by analyzing PSA in the real clinical human serum samples. The ultrasensitivity, specificity, convenience, and capability for analyzing the clinical samples demonstrate that this method has great potential for practical disease diagnosis applications.

  8. Proximity-dependent isothermal cycle amplification for small-molecule detection based on surface enhanced Raman scattering.

    PubMed

    Li, Ying; Zeng, Yan; Mao, Yaning; Lei, Chengcun; Zhang, Shusheng

    2014-01-15

    A novel proximity-dependent isothermal cycle amplification (PDICA) strategy has been proposed and successfully used for the determination of cocaine coupled with surface enhanced Raman scattering (SERS). For enhancing the SERS signal, Raman dye molecules modified bio-barcode DNA and gold nanoparticles (AuNPs) are used to prepare the Raman probes. Magnetic beads (MBs) are used as the carrier of amplification template and signal output products for circumventing the problem of high background induced by excess bio-barcode DNA. In the presence of target molecules, two label-free proximity probes can hybridize with each other and subsequently opens the hairpin connector-probe to perform the PDICA reaction including the target recycling amplification and strand-displacement amplification. As a result, abundant AuNPs Raman probes can be anchored on the surface of MBs and a low detection limit of 0.1 nM for cocaine is obtained. This assay also exhibits an excellent selectivity and has been successfully performed in human serum, which confirms the reliability and practicality of this protocol. © 2013 Elsevier B.V. All rights reserved.

  9. Unusual isothermal multimerization and amplification by the strand-displacing DNA polymerases with reverse transcription activities.

    PubMed

    Wang, Guoping; Ding, Xiong; Hu, Jiumei; Wu, Wenshuai; Sun, Jingjing; Mu, Ying

    2017-10-24

    Existing isothermal nucleic acid amplification (INAA) relying on the strand displacement activity of DNA polymerase usually requires at least two primers. However, in this paper, we report an unusual isothermal multimerization and amplification (UIMA) which only needs one primer and is efficiently initiated by the strand-displacing DNA polymerases with reverse transcription activities. On electrophoresis, the products of UIMA present a cascade-shape band and they are confirmed to be multimeric DNAs with repeated target sequences. In contrast to current methods, UIMA is simple to product multimeric DNA, due to the independent of multiple primers and rolling circle structures. Through assaying the synthesized single-stranded DNA targets, UIMA performs high sensitivity and specificity, as well as the universality. In addition, a plausible mechanism of UIMA is proposed, involving short DNA bending, mismatch extension, and template slippage. UIMA is a good explanation for why nonspecific amplification easily happens in existing INAAs. As the simplest INAA till now, UIMA provides a new insight for deeply understanding INAA and opens a new avenue for thoroughly addressing nonspecific amplification.

  10. Erwinia amylovora loop-mediated isothermal amplification (LAMP) assay for rapid pathogen detection and on-site diagnosis of fire blight.

    PubMed

    Bühlmann, Andreas; Pothier, Joël F; Rezzonico, Fabio; Smits, Theo H M; Andreou, Michael; Boonham, Neil; Duffy, Brion; Frey, Jürg E

    2013-03-01

    Several molecular methods have been developed for the detection of Erwinia amylovora, the causal agent of fire blight in pear and apple, but none are truly applicable for on-site use in the field. We developed a fast, reliable and field applicable detection method using a novel target on the E. amylovora chromosome that we identified by applying a comparative genomic pipeline. The target coding sequences (CDSs) are both uniquely specific for and all-inclusive of E. amylovora genotypes. This avoids potential false negatives that can occur with most commonly used methods based on amplification of plasmid gene targets, which can vary among strains. Loop-mediated isothermal AMPlification (LAMP) with OptiGene Genie II chemistry and instrumentation proved to be an exceptionally rapid (under 15 min) and robust method for detecting E. amylovora in orchards, as well as simple to use in the plant diagnostic laboratory. Comparative validation results using plant samples from inoculated greenhouse trials and from natural field infections (of regional and temporal diverse origin) showed that our LAMP had an equivalent or greater performance regarding sensitivity, specificity, speed and simplicity than real-time PCR (TaqMan), other LAMP assays, immunoassays and plating, demonstrating its utility for routine testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Binding-induced DNA walker for signal amplification in highly selective electrochemical detection of protein.

    PubMed

    Ji, Yuhang; Zhang, Lei; Zhu, Longyi; Lei, Jianping; Wu, Jie; Ju, Huangxian

    2017-10-15

    A binding-induced DNA walker-assisted signal amplification was developed for highly selective electrochemical detection of protein. Firstly, the track of DNA walker was constructed by self-assembly of the high density ferrocene (Fc)-labeled anchor DNA and aptamer 1 on the gold electrode surface. Sequentially, a long swing-arm chain containing aptamer 2 and walking strand DNA was introduced onto gold electrode through aptamers-target specific recognition, and thus initiated walker strand sequences to hybridize with anchor DNA. Then, the DNA walker was activated by the stepwise cleavage of the hybridized anchor DNA by nicking endonuclease to release multiple Fc molecules for signal amplification. Taking thrombin as the model target, the Fc-generated electrochemical signal decreased linearly with logarithm value of thrombin concentration ranging from 10pM to 100nM with a detection limit of 2.5pM under the optimal conditions. By integrating the specific recognition of aptamers to target with the enzymatic cleavage of nicking endonuclease, the aptasensor showed the high selectivity. The binding-induced DNA walker provides a promising strategy for signal amplification in electrochemical biosensor, and has the extensive applications in sensitive and selective detection of the various targets. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. swga: a primer design toolkit for selective whole genome amplification.

    PubMed

    Clarke, Erik L; Sundararaman, Sesh A; Seifert, Stephanie N; Bushman, Frederic D; Hahn, Beatrice H; Brisson, Dustin

    2017-07-15

    Population genomic analyses are often hindered by difficulties in obtaining sufficient numbers of genomes for analysis by DNA sequencing. Selective whole-genome amplification (SWGA) provides an efficient approach to amplify microbial genomes from complex backgrounds for sequence acquisition. However, the process of designing sets of primers for this method has many degrees of freedom and would benefit from an automated process to evaluate the vast number of potential primer sets. Here, we present swga , a program that identifies primer sets for SWGA and evaluates them for efficiency and selectivity. We used swga to design and test primer sets for the selective amplification of Wolbachia pipientis genomic DNA from infected Drosophila melanogaster and Mycobacterium tuberculosis from human blood. We identify primer sets that successfully amplify each against their backgrounds and describe a general method for using swga for arbitrary targets. In addition, we describe characteristics of primer sets that correlate with successful amplification, and present guidelines for implementation of SWGA to detect new targets. Source code and documentation are freely available on https://www.github.com/eclarke/swga . The program is implemented in Python and C and licensed under the GNU Public License. ecl@mail.med.upenn.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  13. Polymer-based microfluidic chips for isothermal amplification of nucleic acids

    NASA Astrophysics Data System (ADS)

    Posmitnaya, Y. S.; Rudnitskaya, G. E.; Tupik, A. N.; Lukashenko, T. A.; Bukatin, A. C.; Evstrapov, A. A.

    2017-11-01

    Creation of low-cost compact devices based on microfluidic platforms for biological and medical research depends on the degree of development and enhancement of prototyping technologies. Two designs of polymer and hybrid microfluidic devices fabricated by soft lithography and intended for isothermal amplification and polymerase chain reaction are presented in this paper. The digital helicase-dependent isothermal amplification was tested in the device containing a droplet generator. Polymerase chain reaction was carried out in the hybrid microfluidic device having ten reaction chambers. A synthesized cDNA fragment of GAPDH housekeeping gene was used as a target.

  14. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification.

    PubMed

    Lin, Zhenyu; Yang, Weiqiang; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2011-08-28

    A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.

  15. Multiplex ligation-dependent probe amplification analysis on capillary electrophoresis instruments for a rapid gene copy number study.

    PubMed

    Jankowski, Stéphane; Currie-Fraser, Erica; Xu, Licen; Coffa, Jordy

    2008-09-01

    Annotated DNA samples that had been previously analyzed were tested using multiplex ligation-dependent probe amplification (MLPA) assays containing probes targeting BRCA1, BRCA2, and MMR (MLH1/MSH2 genes) and the 9p21 chromosomal region. MLPA polymerase chain reaction products were separated on a capillary electrophoresis platform, and the data were analyzed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA). After signal normalization, loci regions that had undergone deletions or duplications were identified using the GeneMapper Report Manager and verified using the DyeScale functionality. The results highlight an easy-to-use, optimal sample preparation and analysis workflow that can be used for both small- and large-scale studies.

  16. Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand.

    PubMed

    Auburn, Sarah; Serre, David; Pearson, Richard D; Amato, Roberto; Sriprawat, Kanlaya; To, Sheren; Handayuni, Irene; Suwanarusk, Rossarin; Russell, Bruce; Drury, Eleanor; Stalker, Jim; Miotto, Olivo; Kwiatkowski, Dominic P; Nosten, Francois; Price, Ric N

    2016-10-15

    In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6-kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003-2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  17. Visualization and Enumeration of Bacteria Carrying a Specific Gene Sequence by In Situ Rolling Circle Amplification

    PubMed Central

    Maruyama, Fumito; Kenzaka, Takehiko; Yamaguchi, Nobuyasu; Tani, Katsuji; Nasu, Masao

    2005-01-01

    Rolling circle amplification (RCA) generates large single-stranded and tandem repeats of target DNA as amplicons. This technique was applied to in situ nucleic acid amplification (in situ RCA) to visualize and count single Escherichia coli cells carrying a specific gene sequence. The method features (i) one short target sequence (35 to 39 bp) that allows specific detection; (ii) maintaining constant fluorescent intensity of positive cells permeabilized extensively after amplicon detection by fluorescence in situ hybridization, which facilitates the detection of target bacteria in various physiological states; and (iii) reliable enumeration of target bacteria by concentration on a gelatin-coated membrane filter. To test our approach, the presence of the following genes were visualized by in situ RCA: green fluorescent protein gene, the ampicillin resistance gene and the replication origin region on multicopy pUC19 plasmid, as well as the single-copy Shiga-like toxin gene on chromosomes inside E. coli cells. Fluorescent antibody staining after in situ RCA also simultaneously identified cells harboring target genes and determined the specificity of in situ RCA. E. coli cells in a nonculturable state from a prolonged incubation were periodically sampled and used for plasmid uptake study. The numbers of cells taking up plasmids determined by in situ RCA was up to 106-fold higher than that measured by selective plating. In addition, in situ RCA allowed the detection of cells taking up plasmids even when colony-forming cells were not detected during the incubation period. By optimizing the cell permeabilization condition for in situ RCA, this method can become a valuable tool for studying free DNA uptake, especially in nonculturable bacteria. PMID:16332770

  18. Non-biased and efficient global amplification of a single-cell cDNA library

    PubMed Central

    Huang, Huan; Goto, Mari; Tsunoda, Hiroyuki; Sun, Lizhou; Taniguchi, Kiyomi; Matsunaga, Hiroko; Kambara, Hideki

    2014-01-01

    Analysis of single-cell gene expression promises a more precise understanding of molecular mechanisms of a living system. Most techniques only allow studies of the expressions for limited numbers of gene species. When amplification of cDNA was carried out for analysing more genes, amplification biases were frequently reported. A non-biased and efficient global-amplification method, which uses a single-cell cDNA library immobilized on beads, was developed for analysing entire gene expressions for single cells. Every step in this analysis from reverse transcription to cDNA amplification was optimized. By removing degrading excess primers, the bias due to the digestion of cDNA was prevented. Since the residual reagents, which affect the efficiency of each subsequent reaction, could be removed by washing beads, the conditions for uniform and maximized amplification of cDNAs were achieved. The differences in the amplification rates for randomly selected eight genes were within 1.5-folds, which could be negligible for most of the applications of single-cell analysis. The global amplification gives a large amount of amplified cDNA (>100 μg) from a single cell (2-pg mRNA), and that amount is enough for downstream analysis. The proposed global-amplification method was used to analyse transcript ratios of multiple cDNA targets (from several copies to several thousand copies) quantitatively. PMID:24141095

  19. Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region

    NASA Astrophysics Data System (ADS)

    He, W.; Donaldson, C. R.; Zhang, L.; Ronald, K.; Phelps, A. D. R.; Cross, A. W.

    2017-11-01

    Experimental results are presented of a broadband, high power, gyrotron traveling wave amplifier (gyro-TWA) operating in the (75-110)-GHz frequency band and based on a helically corrugated interaction region. The second harmonic cyclotron mode of a 55-keV, 1.5-A, axis-encircling electron beam is used to resonantly interact with a traveling TE21 -like eigenwave achieving broadband amplification. The gyro-TWA demonstrates a 3-dB gain bandwidth of at least 5.5 GHz in the experimental measurement with 9 GHz predicted for a wideband drive source with a measured unsaturated output power of 3.4 kW and gain of 36-38 dB. The approach may allow a gyro-TWA to operate at 1 THz.

  20. Gene amplification of the transcription factor DP1 and CTNND1 in human lung cancer.

    PubMed

    Castillo, Sandra D; Angulo, Barbara; Suarez-Gauthier, Ana; Melchor, Lorenzo; Medina, Pedro P; Sanchez-Verde, Lydia; Torres-Lanzas, Juan; Pita, Guillermo; Benitez, Javier; Sanchez-Cespedes, Montse

    2010-09-01

    The search for novel oncogenes is important because they could be the target of future specific anticancer therapies. In the present paper we report the identification of novel amplified genes in lung cancer by means of global gene expression analysis. To screen for amplicons, we aligned the gene expression data according to the position of transcripts in the human genome and searched for clusters of over-expressed genes. We found several clusters with gene over-expression, suggesting an underlying genomic amplification. FISH and microarray analysis for DNA copy number in two clusters, at chromosomes 11q12 and 13q34, confirmed the presence of amplifications spanning about 0.4 and 1 Mb for 11q12 and 13q34, respectively. Amplification at these regions each occurred at a frequency of 3%. Moreover, quantitative RT-PCR of each individual transcript within the amplicons allowed us to verify the increased in gene expression of several genes. The p120ctn and DP1 proteins, encoded by two candidate oncogenes, CTNND1 and TFDP1, at 11q12 and 13q amplicons, respectively, showed very strong immunostaining in lung tumours with gene amplification. We then focused on the 13q34 amplicon and in the TFDP1 candidate oncogene. To further determine the oncogenic properties of DP1, we searched for lung cancer cell lines carrying TFDP1 amplification. Depletion of TFDP1 expression by small interference RNA in a lung cancer cell line (HCC33) with TFDP1 amplification and protein over-expression reduced cell viability by 50%. In conclusion, we report the identification of two novel amplicons, at 13q34 and 11q12, each occurring at a frequency of 3% of non-small cell lung cancers. TFDP1, which encodes the E2F-associated transcription factor DP1 is a candidate oncogene at 13q34. The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series Accession No. GSE21168.

  1. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids.

    PubMed

    Kivlehan, Francine; Mavré, François; Talini, Luc; Limoges, Benoît; Marchal, Damien

    2011-09-21

    We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.

  2. Detection and genotyping of bovine diarrhea virus by reverse transcription-polymerase chain amplification of the 5' untranslated region.

    PubMed

    Letellier, C; Kerkhofs, P; Wellemans, G; Vanopdenbosch, E

    1999-01-01

    A reverse-transcription polymerase chain reaction (RT-PCR) was developed to differentiate the bovine diarrhea virus (BVDV) from other pestiviruses, and to determine the genotype of the BVDV isolates. For this purpose, primer pairs were selected in the 5' untranslated region (5'UTR). The primers BE and B2 were located in highly conserved regions and were pestivirus-specific. Two primer pairs named B3B4 and B5B6 were specific of BVDV genotypes I and II, respectively. With this technique, an amplification product of the expected size was obtained with either the B3B4 or the B5B6 primer pairs for the 107 BVDV isolates tested but not for BDV or CSFV. For some isolates that were grouped in the genotype II, sequence analysis of the PCR fragments confirmed their classification into this genotype.

  3. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    PubMed

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Functional integration of PCR amplification and capillary eletrophoresis in a microfabricated DNA analysis device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolley, A.T.; deMello, A.J.; Mathies, R.A.

    Microfabricated silicon PCR reactors and glass capillary electrophoresis (CE) chips have been successfully coupled to form an integrated DNA analysis system. This construct combines the rapid thermal cycling capabilities of microfabricated PCR devices (10{degree}C/s heating, 2.5{degree}C/s cooling) with the high-speed (<120 s) DNA separations provided by microfabricated CE chips. The PCR chamber and the CE chip were directly linked through a photolithographically fabricated channel filled with hydroxyethylcellulose sieving matrix. Electrophoretic injection directly from the PCR chamber through the cross injection channel was used as an `electrophoretic valve` to couple the PCR and CE devices on-chip. To demonstrate the functionality ofmore » this system, a 15 min PCR amplification of a {Beta}-globin target cloned in m13 was immediately followed by high-speed CE chip separation in under 120 s, providing a rapid PCR-CE analysis in under 20 min. A rapid assay for genomic Salmonella DNA was performed in under 45 min, demonstrating that challenging amplifications of diagnostically interesting targets can also be performed. Real-time monitoring of PCR target amplification in these integrated PCR-CE devices is also feasible. 33 refs., 6 figs.« less

  5. An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA.

    PubMed

    Zhang, Pu; Wu, Xiaoyan; Yuan, Ruo; Chai, Yaqin

    2015-03-17

    In this study, an off-on switching of a dual amplified electrochemiluminescence (ECL) biosensor based on Pb(2+)-induced DNAzyme-assisted target recycling and rolling circle amplification (RCA) was constructed for microRNA (miRNA) detection. First, the primer probe with assistant probe and miRNA formed Y junction which was cleaved with the addition of Pb(2+) to release miRNA. Subsequently, the released miRNA could initiate the next recycling process, leading to the generation of numerous intermediate DNA sequences (S2). Afterward, bare glassy carbon electrode (GCE) was immersed into HAuCl4 solution to electrodeposit a Au nanoparticle layer (depAu), followed by the assembly of a hairpin probe (HP). Then, dopamine (DA)-modified DNA sequence (S1) was employed to hybridize with HP, which switching off the sensing system. This is the first work that employs DA to quench luminol ECL signal, possessing the biosensor ultralow background signal. Afterward, S2 produced by the target recycling process was loaded onto the prepared electrode to displace S1 and served as an initiator for RCA. With rational design, numerous repeated DNA sequences coupling with hemin to form hemin/G-quadruplex were generated, which could exhibit strongly catalytic toward H2O2, thus amplified the ECL signal and switched the ON state of the sensing system. The liner range for miRNA detection was from 1.0 fM to 100 pM with a low detection limit down to 0.3 fM. Moreover, with the high sensitivity and specificity induced by the dual signal amplification, the proposed miRNA biosensor holds great potential for analysis of other interesting tumor markers.

  6. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp.

    PubMed

    Williams, Maggie R; Stedtfeld, Robert D; Engle, Cathrine; Salach, Paul; Fakher, Umama; Stedtfeld, Tiffany; Dreelin, Erin; Stevenson, R Jan; Latimore, Jo; Hashsham, Syed A

    2017-01-01

    Loop-mediated isothermal amplification (LAMP) of aquatic invasive species environmental DNA (AIS eDNA) was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA) basin. The method was validated for two uses including i) direct amplification of eDNA using a hand filtration system and ii) confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels) per L for Dreissena sp.) or 20 L samples concentrated through 35 μm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i) filtered concentrate for direct amplification validation and ii) 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification), direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a portable

  7. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp.

    PubMed Central

    Stedtfeld, Robert D.; Engle, Cathrine; Salach, Paul; Fakher, Umama; Stedtfeld, Tiffany; Dreelin, Erin; Stevenson, R. Jan; Latimore, Jo; Hashsham, Syed A.

    2017-01-01

    Loop-mediated isothermal amplification (LAMP) of aquatic invasive species environmental DNA (AIS eDNA) was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA) basin. The method was validated for two uses including i) direct amplification of eDNA using a hand filtration system and ii) confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels) per L for Dreissena sp.) or 20 L samples concentrated through 35 μm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i) filtered concentrate for direct amplification validation and ii) 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification), direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a portable

  8. The siRNA Non-seed Region and Its Target Sequences Are Auxiliary Determinants of Off-Target Effects.

    PubMed

    Kamola, Piotr J; Nakano, Yuko; Takahashi, Tomoko; Wilson, Paul A; Ui-Tei, Kumiko

    2015-12-01

    RNA interference (RNAi) is a powerful tool for post-transcriptional gene silencing. However, the siRNA guide strand may bind unintended off-target transcripts via partial sequence complementarity by a mechanism closely mirroring micro RNA (miRNA) silencing. To better understand these off-target effects, we investigated the correlation between sequence features within various subsections of siRNA guide strands, and its corresponding target sequences, with off-target activities. Our results confirm previous reports that strength of base-pairing in the siRNA seed region is the primary factor determining the efficiency of off-target silencing. However, the degree of downregulation of off-target transcripts with shared seed sequence is not necessarily similar, suggesting that there are additional auxiliary factors that influence the silencing potential. Here, we demonstrate that both the melting temperature (Tm) in a subsection of siRNA non-seed region, and the GC contents of its corresponding target sequences, are negatively correlated with the efficiency of off-target effect. Analysis of experimentally validated miRNA targets demonstrated a similar trend, indicating a putative conserved mechanistic feature of seed region-dependent targeting mechanism. These observations may prove useful as parameters for off-target prediction algorithms and improve siRNA 'specificity' design rules.

  9. Target-regulated proximity hybridization with three-way DNA junction for in situ enhanced electronic detection of marine biotoxin based on isothermal cycling signal amplification strategy.

    PubMed

    Liu, Bingqian; Chen, Jinfeng; Wei, Qiaohua; Zhang, Bing; Zhang, Lan; Tang, Dianping

    2015-07-15

    A new signal amplification strategy based on target-regulated DNA proximity hybridization (TRPH) reaction accompanying formation of three-way DNA junction was designed for electronic detection of Microcystin-LR (MC-LR used in this case), coupling with junction-induced isothermal cycling signal amplification. Initially, a sandwiched-type immunoreaction was carried out in a low-cost PCR tube between anti-MC-LR mAb1 antibody-labeled DNA1 (mAb1-DNA1) and anti-MC-LR mAb2-labeled DNA2 (mAb2-DNA2) in the presence of target to form a three-way DNA junction. Then, the junction could undergo an unbiased strand displacement reaction on an h-like DNA nanostructure-modified electrode (labeled with methylene blue redox tag on the short DNA strand), thereby resulting in the dissociation of methylene blue-labeled signal DNA from the electrode. The newly formed double-stranded DNA could be cleaved again by exonuclease III, and the released three-way DNA junction retriggered the strand-displacement reaction with h-like DNA nanostructures for junction recycling. During the strand-displacement reaction, numerous methylene blue-labeled DNA strands were far away from the electrode, thus decreasing the detectable electrochemical signal within the applied potentials. Under optimal conditions, the TRPH-based immunosensing system exhibited good electrochemical responses for detecting target MC-LR at a concentration as low as 1.0ngkg(-1) (1.0ppt). Additionally, the precision, reproducibility, specificity and method accuracy were also investigated with acceptable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Biomass changes and trophic amplification of plankton in a warmer ocean.

    PubMed

    Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-07-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  11. Ultrasensitive photoelectrochemical biosensor for the detection of HTLV-I DNA: A cascade signal amplification strategy integrating λ-exonuclease aided target recycling with hybridization chain reaction and enzyme catalysis.

    PubMed

    Shi, Xiao-Mei; Fan, Gao-Chao; Tang, Xueying; Shen, Qingming; Zhu, Jun-Jie

    2018-06-30

    Sensitive and specific detection of DNA is of great significance for clinical diagnosis. In this paper, an effective cascade signal amplification strategy was introduced into photoelectrochemical (PEC) biosensor for ultrasensitive detection of human T-cell lymphotropic virus type I (HTLV-I) DNA. This proposed signal amplification strategy integrates λ-exonuclease (λ-Exo) aided target recycling with hybridization chain reaction (HCR) and enzyme catalysis. In the presence of target DNA (tDNA) of HTLV-I, the designed hairpin DNA (h 1 DNA) hybridized with tDNA, subsequently recognized and cleaved by λ-Exo to set free tDNA. With the λ-Exo aided tDNA recycling, an increasing number of DNA fragments (output DNA, oDNA) were released from the digestion of h 1 DNA. Then, triggered by the hybridization of oDNA with capture DNA (cDNA), numerous biotin-labeled hairpin DNAs (h 2 DNA and h 3 DNA) could be loaded onto the photoelectrode via the HCR. Finally, avidin-labeled alkaline phosphatase (avidin-ALP) could be introduced onto the electrode by specific interaction between biotin and avidin. The ALP could catalyze dephosphorylation of phospho-L-ascorbic acid trisodium salt (AAP) to generate an efficient electron donor of ascorbic acid (AA), and thereby greatly increasing the photocurrent signal. By utilizing the proposed cascade signal amplification strategy, the fabricated PEC biosensor exhibited an ultrasensitive and specific detection of HTLV-I DNA down to 11.3 aM, and it also offered an effective strategy to detect other DNAs at ultralow levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Detection and differentiation of Fusarium oxysporum f. sp. lycopersici race 1 using loop-mediated isothermal amplification with three primer sets.

    PubMed

    Ayukawa, Y; Komatsu, K; Kashiwa, T; Akai, K; Yamada, M; Teraoka, T; Arie, T

    2016-09-01

    Fusarium oxysporum f. sp. lycopersici (Fol) causes tomato wilt. Based on the difference in pathogenicity towards tomato cultivars, Fol is classified into three races. In this study, a rapid method is developed for the detection and discrimination of Fol race 1 using a loop-mediated isothermal amplification (LAMP) assay with two primer sets targeting a region of the nucleotide sequence of the SIX4 gene specific for race 1 and a primer set targeting the SIX5 gene, conserved in all known Fol isolates. Upon LAMP reaction, amplification using all three primer sets was observed only when DNA of Fol race 1 was used as a template, and not when DNA of other Fol races or other fungal species was used. This method could detect 300 fg of Fol race 1 DNA, a 100-fold higher sensitivity than that obtained by conventional PCR. The method can also detect DNA extracted from soil artificially infested with Fol race 1. It is now possible to detect Fol race 1 in colonies and infected tomato stems without DNA isolation. This method is a rapid and simple tool for discrimination of Fol race 1. This study developed a loop-mediated isothermal amplification (LAMP) assay for detection and differentiation of Fusarium oxysporum f. sp. lycopersici (Fol) race 1 by using three primer sets targeting for the SIX4 and SIX5 genes. These genes are present together only in Fol race 1. This method can detect Fol race 1 in infected tomato stems without DNA extraction, affording an efficient diagnosis of Fusarium wilt on tomatoes in the field. © 2016 The Society for Applied Microbiology.

  13. FGFR1 Amplification Is Often Homogeneous and Strongly Linked to the Squamous Cell Carcinoma Subtype in Esophageal Carcinoma

    PubMed Central

    Burkhardt, Lia; Simon, Ronald; Steurer, Stefan; Burdak-Rothkamm, Susanne; Jacobsen, Frank; Sauter, Guido; Krech, Till

    2015-01-01

    Background and Aims Amplification of the fibroblast growth factor receptor 1 (FGFR1) is believed to predict response to multi-kinase inhibitors targeting FGFR1. Esophageal cancer is an aggressive disease, for which novel targeted therapies are highly warranted. Methods This study was designed to investigate the prevalence and clinical significance of FGFR1 amplification in a tissue microarray containing 346 adenocarcinomas and 254 squamous cell carcinomas of the esophagus, using dual-labeling fluorescence in situ hybridization (FISH) analysis. Results FGFR1 amplification, defined as a ratio of FGFR1:centromere 8 copy numbers ≥ 2.0, was more frequently seen in squamous cell carcinoma (8.9% of 202 interpretable cases) than in adenocarcinoma (1.6% of 308; p<0.0001). There was no association between FGFR1 amplification and tumor phenotype or clinical outcome. To study potential heterogeneity of FGFR1 amplification, all available tumor blocks from 23 FGFR1 amplified tumors were analyzed on conventional large sections. This analysis revealed complete homogeneity of FGFR1 amplification in 20 (86.9%) primary tumors and in all available lymph node metastases. Remarkably, FGFR1 amplification was also seen in dysplasia adjacent to tumor in 6 of 9 patients with FGFR1 amplified primary cancers. Conclusions In conclusion, FGFR1 amplification occurs in a relevant subgroup of carcinomas of the esophagus and may play a particular role for development of squamous cell cancers. The high homogeneity of FGFR1 amplification suggests that patients with FGFR1 amplified esophageal cancers may particularly benefit from anti-FGFR1 therapies and prompt for clinical studies in this tumor type. PMID:26555375

  14. Gene amplification during myogenic differentiation

    PubMed Central

    Fischer, Ulrike; Ludwig, Nicole; Raslan, Abdulrahman; Meier, Carola; Meese, Eckart

    2016-01-01

    Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians. PMID:26760505

  15. Telomerase Repeated Amplification Protocol (TRAP).

    PubMed

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al. , 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC - counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al. , 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is

  16. Molecular identification of Neofabraea species associated with bull's-eye rot on apple using rolling-circle amplification of partial EF-1α sequence.

    PubMed

    Lin, Huijiao; Jiang, Xiang; Yi, Jianping; Wang, Xinguo; Zuo, Ranling; Jiang, Zide; Wang, Weifang; Zhou, Erxun

    2018-01-01

    A rolling-circle amplification (RCA) method with padlock probes targeted on EF-1α regions was developed for rapid detection of apple bull's-eye rot pathogens, including Neofabraea malicorticis, N. perennans, N. kienholzii, and N. vagabunda (synonym: N. alba). Four padlock probes (PLP-Nm, PLP-Np, PLP-Nk, and PLP-Nv) were designed and tested against 28 samples, including 22 BER pathogen cultures, 4 closely related species, and 2 unrelated species that may cause serious apple decays. The assay successfully identified all the bull's-eye rot pathogenic fungi at the level of species, while no cross-reaction was observed in all target species and no false-positive reaction was observed with all strains used for reference. This study showed that the use of padlock probes and the combination of probe signal amplification by RCA provided an effective and sensitive method for the rapid identification of Neofabraea spp. The method could therefore be a useful tool for monitoring bull's-eye rot pathogens in port quarantine and orchard epidemiological studies.

  17. Detection of periodontal pathogen Porphyromonas gingivalis by loop-mediated isothermal amplification method.

    PubMed

    Maeda, Hiroshi; Kokeguchi, Susumu; Fujimoto, Chiyo; Tanimoto, Ichiro; Yoshizumi, Wakako; Nishimura, Fusanori; Takashiba, Shogo

    2005-02-01

    A method for nucleic acid amplification, loop-mediated isothermal amplification (LAMP) was employed to develop a rapid and simple detection system for periodontal pathogen, Porphyromonas gingivalis. A set of six primers was designed by targeting the 16S ribosomal RNA gene. By the detection system, target DNA was amplified and visualized on agarose gel within 30 min under isothermal condition at 64 degrees C with a detection limit of 20 cells of P. gingivalis. Without gel electrophoresis, the LAMP amplicon was directly visualized in the reaction tube by addition of SYBR Green I for a naked-eye inspection. The LAMP reaction was also assessed by white turbidity of magnesium pyrophosphate (a by-product of LAMP) in the tube. Detection limits of these naked-eye inspections were 20 cells and 200 cells, respectively. Although false-positive DNA amplification was observed from more than 10(7) cells of Porphyromonas endodontalis, no amplification was observed in other five related oral pathogens. Further, quantitative detection of P. gingivalis was accomplished by a real-time monitoring of the LAMP reaction using SYBR Green I with linearity over a range of 10(2)-10(6) cells. The real-time LAMP was then applied to clinical samples of dental plaque and demonstrated almost identical results to the conventional real-time PCR with an advantage of rapidity. These findings indicate the potential usefulness of LAMP for detecting and quantifying P. gingivalis, especially in its rapidity and simplicity.

  18. Drug-induced amplification of nanoparticle targeting to tumors

    PubMed Central

    Lin, Kevin Y.; Kwon, Ester J.; Lo, Justin H.; Bhatia, Sangeeta N.

    2018-01-01

    Summary Nanomedicines have the potential to significantly impact cancer therapy by improving drug efficacy and decreasing off-target effects, yet our ability to efficiently home nanoparticles to disease sites remains limited. One frequently overlooked constraint of current active targeting schemes is the relative dearth of targetable antigens within tumors, which restricts the amount of cargo that can be delivered in a tumor-specific manner. To address this limitation, we exploit tumor-specific responses to drugs to construct a cooperative targeting system where a small molecule therapeutic modulates the disease microenvironment to amplify nanoparticle recruitment in vivo. We first administer a vascular disrupting agent, ombrabulin, which selectively affects tumors and leads to locally elevated presentation of the stress-related protein, p32. This increase in p32 levels provides more binding sites for circulating p32-targeted nanoparticles, enhancing their delivery of diagnostic or therapeutic cargos to tumors. We show that this cooperative targeting system recruits over five times higher doses of nanoparticles to tumors and decreases tumor burden when compared with non-cooperative controls. These results suggest that using nanomedicine in conjunction with drugs that enhance the presentation of target antigens in the tumor environment may be an effective strategy for improving the diagnosis and treatment of cancer. PMID:29731806

  19. Universal primers for amplification of the complete mitochondrial control region in marine fish species.

    PubMed

    Cheng, Y Z; Xu, T J; Jin, X X; Tang, D; Wei, T; Sun, Y Y; Meng, F Q; Shi, G; Wang, R X

    2012-01-01

    Through multiple alignment analysis of mitochondrial tRNA-Thr and tRNA-Phe sequences from 161 fishes, new universal primers specially targeting the entire mitochondrial control region were designed. This new primer set successfully amplified the expected PCR products from various kinds of marine fish species, belonging to various families, and the amplified segments were confirmed to be the control region by sequencing. These primers provide a useful tool to study the control region diversity in economically important fish species, the possible mechanism of control region evolution, and the functions of the conserved motifs in the control region.

  20. Development of a recombinase polymerase amplification assay for Vibrio parahaemolyticus detection with an internal amplification control.

    PubMed

    Yang, Huan-Lan; Wei, Shuang; Gooneratne, Ravi; Mutukumira, Anthony N; Ma, Xue-Jun; Tang, Shu-Ze; Wu, Xi-Yang

    2018-04-01

    A novel RPA-IAC assay using recombinase polymerase and an internal amplification control (IAC) for Vibrio parahaemolyticus detection was developed. Specific primers were designed based on the coding sequence for the toxR gene in V. parahaemolyticus. The recombinase polymerase amplification (RPA) reaction was conducted at a constant low temperature of 37 °C for 20 min. Assay specificity was validated by using 63 Vibrio strains and 10 non-Vibrio bacterial species. In addition, a competitive IAC was employed to avoid false-negative results, which co-amplified simultaneously with the target sequence. The sensitivity of the assay was determined as 3 × 10 3 CFU/mL, which is decidedly more sensitive than the established PCR method. This method was then used to test seafood samples that were collected from local markets. Seven out of 53 different raw seafoods were detected as V. parahaemolyticus-positive, which were consistent with those obtained using traditional culturing method and biochemical assay. This novel RPA-IAC assay provides a rapid, specific, sensitive, and more convenient detection method for V. parahaemolyticus.

  1. Multiplex Ligation-Dependent Probe Amplification Analysis on Capillary Electrophoresis Instruments for a Rapid Gene Copy Number Study

    PubMed Central

    Jankowski, Stéphane; Currie-Fraser, Erica; Xu, Licen; Coffa, Jordy

    2008-01-01

    Annotated DNA samples that had been previously analyzed were tested using multiplex ligation-dependent probe amplification (MLPA) assays containing probes targeting BRCA1, BRCA2, and MMR (MLH1/MSH2 genes) and the 9p21 chromosomal region. MLPA polymerase chain reaction products were separated on a capillary electrophoresis platform, and the data were analyzed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA). After signal normalization, loci regions that had undergone deletions or duplications were identified using the GeneMapper Report Manager and verified using the DyeScale functionality. The results highlight an easy-to-use, optimal sample preparation and analysis workflow that can be used for both small- and large-scale studies. PMID:19137113

  2. Analytically Sensitive Protein Detection in Microtiter Plates by Proximity Ligation with Rolling Circle Amplification.

    PubMed

    Ebai, Tonge; Souza de Oliveira, Felipe Marques; Löf, Liza; Wik, Lotta; Schweiger, Caroline; Larsson, Anders; Keilholtz, Ulrich; Haybaeck, Johannes; Landegren, Ulf; Kamali-Moghaddam, Masood

    2017-09-01

    Detecting proteins at low concentrations in plasma is crucial for early diagnosis. Current techniques in clinical routine, such as sandwich ELISA, provide sensitive protein detection because of a dependence on target recognition by pairs of antibodies, but detection of still lower protein concentrations is often called for. Proximity ligation assay with rolling circle amplification (PLARCA) is a modified proximity ligation assay (PLA) for analytically specific and sensitive protein detection via binding of target proteins by 3 antibodies, and signal amplification via rolling circle amplification (RCA) in microtiter wells, easily adapted to instrumentation in use in hospitals. Proteins captured by immobilized antibodies were detected using a pair of oligonucleotide-conjugated antibodies. Upon target recognition these PLA probes guided oligonucleotide ligation, followed by amplification via RCA of circular DNA strands that formed in the reaction. The RCA products were detected by horseradish peroxidase-labeled oligonucleotides to generate colorimetric reaction products with readout in an absorbance microplate reader. We compared detection of interleukin (IL)-4, IL-6, IL-8, p53, and growth differentiation factor 15 (GDF-15) by PLARCA and conventional sandwich ELISA or immuno-RCA. PLARCA detected lower concentrations of proteins and exhibited a broader dynamic range compared to ELISA and iRCA using the same antibodies. IL-4 and IL-6 were detected in clinical samples at femtomolar concentrations, considerably lower than for ELISA. PLARCA offers detection of lower protein levels and increased dynamic ranges compared to ELISA. The PLARCA procedure may be adapted to routine instrumentation available in hospitals and research laboratories. © 2017 American Association for Clinical Chemistry.

  3. Regional price targets appropriate for advanced coal extraction

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Whipple, D. M.

    1980-01-01

    A methodology is presented for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed is a supply and demand model that focuses on underground mining since the advanced technology is expected to be developed for these reserves by the target years. Coal reserve data and the cost of operating a mine are used to obtain the minimum acceptable selling price that would induce the producer to bring the mine into production. Based on this information, market supply curves can be generated. Demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. The results show a growth in the size of the markets for compliance and low sulphur coal regions. A significant rise in the real price of coal is not expected even by the year 2000. The model predicts heavy reliance on mines with thick seams, larger block size and deep overburden.

  4. Enhanced solid-phase recombinase polymerase amplification and electrochemical detection.

    PubMed

    Del Río, Jonathan Sabaté; Lobato, Ivan Magriñà; Mayboroda, Olena; Katakis, Ioanis; O'Sullivan, Ciara K

    2017-05-01

    Recombinase polymerase amplification (RPA) is an elegant method for the rapid, isothermal amplification of nucleic acids. Here, we elucidate the optimal surface chemistry for rapid and efficient solid-phase RPA, which was fine-tuned in order to obtain a maximum signal-to-noise ratio, defining the optimal DNA probe density, probe-to-lateral spacer ratio (1:0, 1:1, 1:10 and 1:100) and length of a vertical spacer of the probe as well as investigating the effect of different types of lateral spacers. The use of different labelling strategies was also examined in order to reduce the number of steps required for the analysis, using biotin or horseradish peroxidase-labelled reverse primers. Optimisation of the amplification temperature used and the use of surface blocking agents were also pursued. The combination of these changes facilitated a significantly more rapid amplification and detection protocol, with a lowered limit of detection (LOD) of 1 · 10 -15 M. The optimised protocol was applied to the detection of Francisella tularensis in real samples from hares and a clear correlation with PCR and qPCR results observed and the solid-phase RPA demonstrated to be capable of detecting 500 fM target DNA in real samples. Graphical abstract Relative size of thiolated lateral spacers tested versus the primer and the uvsx recombinase protein.

  5. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification.

    PubMed

    Zhang, Li-rong; Zhu, Guichi; Zhang, Chun-yang

    2014-07-01

    MicroRNAs (miRNAs) are an emerging class of biomarkers and therapeutic targets for various diseases including cancers. Here, we develop a homogeneous and label-free method for sensitive detection of let-7a miRNA based on bifunctional strand displacement amplification (SDA)-mediated hyperbranched rolling circle amplification (HRCA). The binding of target miRNA with the linear template initiates the bifunctional SDA reaction, generating two different kinds of triggers which can hybridize with the linear template to initiate new rounds of SDA reaction for the production of more and more triggers. In the meantime, the released two different kinds of triggers can function as the first and the second primers, respectively, to initiate the HRCA reaction whose products can be simply monitored by a standard fluorometer with SYBR Green I as the fluorescent indicator. The proposed method exhibits high sensitivity with a detection limit of as low as 1.8 × 10(-13) M and a large dynamic range of 5 orders of magnitude from 0.1 pM to 10 nM, and it can even discriminate the single-base difference among the miRNA family members. Moreover, this method can be used to analyze the total RNA samples from the human lung tissues and might be further applied for sensitive detection of various proteins, small molecules, and metal ions in combination with specific aptamers.

  6. VS30, site amplifications and some comparisons: The Adapazari (Turkey) case

    NASA Astrophysics Data System (ADS)

    Ozcep, Tazegul; Ozcep, Ferhat; Ozel, Oguz

    The aim of this study was to investigate the role of VS30 in site amplifications in the Adapazari region, Turkey. To fulfil this aim, amplifications from VS30 measurements were compared with earthquake data for different soil types in the seismic design codes. The Adapazari area was selected as the study area, and shear-wave velocity distribution was obtained by the multichannel analysis of surface waves (MASWs) method at 100 sites for the top 50 m of soil. Aftershock data following the Mw 7.4 Izmit earthquake of 17 August 1999 gave magnitudes between 4.0 and 5.6 at six stations installed in and around the Adapazari Basin, at Babalı, Şeker, Genç, Hastane, Toyota and Imar. This data was used to estimate site amplifications by the reference-station method. In addition, the fundamental periods of the station sites were estimated by the single station method. Site classifications based on VS30 in the seismic design codes were compared with the fundamental periods and amplification values. It was found that site amplifications (from earthquake data) and relevant spectra (from VS30) are not in good agreement for soils in Adapazari (Turkey).

  7. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification.

    PubMed

    Wang, Ye; Gan, Ning; Zhou, You; Li, Tianhua; Hu, Futao; Cao, Yuting; Chen, Yinji

    2017-11-15

    Novel label-free and multiplex aptasensors have been developed for simultaneous detection of several antibiotics based on a microchip electrophoresis (MCE) platform and target catalyzed hairpin assembly (CHA) for signal amplification. Kanamycin (Kana) and oxytetracycline (OTC) were employed as models for testing the system. These aptasensors contained six DNA strands termed as Kana aptamer-catalysis strand (Kana apt-C), Kana inhibit strand (Kana inh), OTC aptamer-catalysis strand (OTC apt-C), OTC inhibit strand (OTC inh), hairpin structures H1 and H2 which were partially complementary. Upon the addition of Kana or OTC, the binding event of aptamer and target triggered the self-assembly between H1 and H2, resulting in the formation of many H1-H2 complexes. They could show strong signals which represented the concentration of Kana or OTC respectively in the MCE system. With the help of the well-designed and high-quality CHA amplification, the assay could yield 300-fold amplified signal comparing that from non-amplified system. Under optimal conditions, this assay exhibited a linear correlation in the ranges from 0.001ngmL -1 to 10ngmL -1 , with the detection limits of 0.7pgmL -1 and 0.9pgmL -1 (S/N=3) toward Kana and OTC, respectively. The platform has the following advantages: firstly, the aptamer probes can be fabricated easily without labeling signal tags for MCE detection; Secondly, the targets can just react with probes and produce the amplified signal in one-pot. Finally, the targets can be simultaneously detected within 10min in different channels, thus high-throughput measurement can be achieved. Based on this work, it is estimated that this detection platform will be universally served as a simple, sensitive and portable platform for antibiotic contaminants detection in biological and environmental samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Rapid detection of infectious bovine Rhinotracheitis virus using recombinase polymerase amplification assays.

    PubMed

    Hou, Peili; Wang, Hongmei; Zhao, Guimin; He, Chengqiang; He, Hongbin

    2017-12-13

    Infectious bovine rhinotracheitis virus (IBRV) is a major pathogen in cattle and has led to significant economic losses to the dairy industry worldwide, and therefore a more optimal method for the rapid diagnosis of IBRV infection is highly needed. In this study, we described the development of a lateral flow dipstrip (LFD) of isothermal recombinase polymerase amplification (RPA) method for rapid detection of IBRV. Distinct regions were selected as a candidate target for designing the LFD-RPA primers and probes. The analytical sensitivity of the RPA assay was determined using ten-fold serially diluted IBRV DNA. The specificity of the assay was assessed with other viral pathogens of cattle with similar clinic and other herpesviruses. The clinical performance was evaluated by testing 106 acute-phase high fever clinical specimens. RPA primers and probe were designed to target the specific conserved UL52 region fragment of IBRV. The detection could be completed at a constant temperature of 38 °C for 25 min, and the amplification products were easily visualized on a simple LFD. The detection limit of this assay was 5 copies per reaction of IBRV DNA and there was no cross-reactivity with other viruses causing bovine gastrointestinal and respiratory infections or other herpesviruses. The assay performance on acute-phase high fever clinical samples collected from cattle with no vaccine against IBRV, which were suspected to be infected with IBRV, was validated by detecting 24 fecal, 36 blood, 38 nasal swab and 8 tissue specimens, and compared with SYBR Green I based real-time PCR. The coincidence between IBRV LFD-RPA and real-time PCR was 100%. IBRV LFD-RPA was fast and much easier to serve as an alternative to the common measures used for IBRV diagnosis, as there is reduction in the use of instruments for identification of the infected animals. In addition, this assay may be the potential candidate to be used as point-of-care diagnostics in the field.

  9. Dual-primer self-generation SERS signal amplification assay for PDGF-BB using label-free aptamer.

    PubMed

    Ye, SuJuan; Zhai, XiaoMo; Wu, YanYing; Kuang, ShaoPing

    2016-05-15

    Highly sensitive detection of proteins, especially those associated with cancers, is essential to biomedical research as well as clinical diagnosis. In this work, a simple and novel one-two-three signal amplification surface-enhanced Raman scattering (SERS) method for the detection of protein is fabricated by using label-free aptamer and dual-primer self-generation. Platelet-derived growth factor B-chain (PDGF-BB) is selected as the model protein. The one-two-three cascade DNA amplification means one target-aptamer binding event, two hairpin DNA switches and three DNA amplification reactions. This strategy possesses some remarkable features compared to conventional signal amplification methods: (i) A smart probe including a label-free aptamer is fabricated, for suitable hybridization without hindering the affinity of the aptamer toward its target. (ii) Using the unique structure switch of the aptamer and cooperator, a one-two-three working mode is developed to amplify the SERS signal. The amplification efficiency is enhanced. Given the unique and attractive characteristics, a simple and universal strategy is designed to accomplish ultrasensitive detection of proteins. The detection limit of PDGF-BB via SERS detection is 0.42 pM, with the linear range from 1.0×10(-12)M to 10(-8)M. It is potentially universal because the aptamer can be easily designed for biomolecules whose aptamers undergo similar conformational changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Rolling Circle Amplification of Complete Nematode Mitochondrial Genomes

    PubMed Central

    Tang, Sha; Hyman, Bradley C.

    2005-01-01

    To enable investigation of nematode mitochondrial DNA evolution, methodology has been developed to amplify intact nematode mitochondrial genomes in preparative yields using a rolling circle replication strategy. Successful reactions were generated from whole cell template DNA prepared by alkaline lysis of the rhabditid nematode Caenorhabditis elegans and a mermithid nematode, Thaumamermis cosgrovei. These taxa, representing the two major nematode classes Chromodorea and Enoplea, maintain mitochondrial genomes of 13.8 kb and 20.0 kb, respectively. Efficient amplifications were conducted on template DNA isolated from individual or pooled nematodes that were alive or stored at -80°C. Unexpectedly, these experiments revealed that multiple T. cosgrovei mitochondrial DNA haplotypes are maintained in our local population. Rolling circle amplification products can be used as templates for standard PCR reactions with specific primers that target mitochondrial genes or for direct DNA sequencing. PMID:19262866

  11. [Interest of crizotinib in a lung cancer patient with de novo amplification of MET].

    PubMed

    Rabeau, A; Rouquette, I; Vantelon, J-M; Taranchon-Clermont, E; Mazières, J

    2017-01-01

    Targeted therapy in lung cancer changes the prognostic and treatment of patients. MET is an oncogene including exon 14 mutations and gene amplification associated with worse prognosis. We here report the case of a 47-year-old former smoker, woman, with a stage IV lung adenocarcinoma with multiple chemotherapy failure. A MET amplification was identified and the patient consequently received crizotinib. A major response was observed after eight weeks of treatment. MET amplification screening appears to be interesting with some oncogenic-addicted tumor response rate. Those patients should be enrolled in clinical trials dedicated to tumor with MET alteration. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  12. Semiquantitative Nucleic Acid Test with Simultaneous Isotachophoretic Extraction and Amplification.

    PubMed

    Bender, Andrew T; Borysiak, Mark D; Levenson, Amanda M; Lillis, Lorraine; Boyle, David S; Posner, Jonathan D

    2018-06-19

    Nucleic acid amplification tests (NAATs) provide high diagnostic accuracy for infectious diseases and quantitative results for monitoring viral infections. The majority of NAATs require complex equipment, cold chain dependent reagents, and skilled technicians to perform the tests. This largely confines NAATs to centralized laboratories and can significantly delay appropriate patient care. Low-cost, point-of-care (POC) NAATs are especially needed in low-resource settings to provide patients with diagnosis and treatment planning in a single visit to improve patient care. In this work, we present a rapid POC NAAT with integrated sample preparation and amplification using electrokinetics and paper substrates. We use simultaneous isotachophoresis (ITP) and recombinase polymerase amplification (RPA) to rapidly extract, amplify, and detect target nucleic acids from serum and whole blood in a paper-based format. We demonstrate simultaneous ITP and RPA can consistently detect 5 copies per reaction in buffer and 10 000 copies per milliliter of human serum with no intermediate user steps. We also show preliminary extraction and amplification of DNA from whole blood samples. Our test is rapid (results in less than 20 min) and made from low-cost materials, indicating its potential for detecting infectious diseases and monitoring viral infections at the POC in low resource settings.

  13. Internal amplification control of PCR for the Glu1-Dx5 allele in wheat.

    PubMed

    Heim, H N; Vieira, E S N; Polo, L R T; Lima, N K; Silva, G J; Linde, G A; Colauto, N B; Schuster, I

    2017-08-17

    One of the limiting factors in using dominant markers is the unique amplification of the target fragment. Therefore, failures in polymerase chain reaction (PCR) or non-amplifications can be interpreted as an absence of the allele. The possibility of false negatives implies in reduced efficiency in the selection process in genetic breeding programs besides the loss of valuable genetic material. Thus, this study aimed to evaluate the viability of a microsatellite marker as an internal amplification control with a dominant marker for the wheat Glu1-Dx5 gene. A population of 77 wheat cultivars/breeding lines was analyzed. Fourteen microsatellite markers were analyzed in silico regarding the formation of dimers and clamps. The biplex reaction conditions were optimized, and the Xbarc117 marker was selected as the internal amplification control with a Glu1-Dx5 marker in wheat. It was concluded that the Xbarc117 microsatellite marker was effective in the simultaneous amplification with a dominant Glu1-Dx5 marker, making biplex PCR viable in wheat for the studied markers.

  14. Pre-amplification in the context of high-throughput qPCR gene expression experiment.

    PubMed

    Korenková, Vlasta; Scott, Justin; Novosadová, Vendula; Jindřichová, Marie; Langerová, Lucie; Švec, David; Šídová, Monika; Sjöback, Robert

    2015-03-11

    With the introduction of the first high-throughput qPCR instrument on the market it became possible to perform thousands of reactions in a single run compared to the previous hundreds. In the high-throughput reaction, only limited volumes of highly concentrated cDNA or DNA samples can be added. This necessity can be solved by pre-amplification, which became a part of the high-throughput experimental workflow. Here, we focused our attention on the limits of the specific target pre-amplification reaction and propose the optimal, general setup for gene expression experiment using BioMark instrument (Fluidigm). For evaluating different pre-amplification factors following conditions were combined: four human blood samples from healthy donors and five transcripts having high to low expression levels; each cDNA sample was pre-amplified at four cycles (15, 18, 21, and 24) and five concentrations (equivalent to 0.078 ng, 0.32 ng, 1.25 ng, 5 ng, and 20 ng of total RNA). Factors identified as critical for a success of cDNA pre-amplification were cycle of pre-amplification, total RNA concentration, and type of gene. The selected pre-amplification reactions were further tested for optimal Cq distribution in a BioMark Array. The following concentrations combined with pre-amplification cycles were optimal for good quality samples: 20 ng of total RNA with 15 cycles of pre-amplification, 20x and 40x diluted; and 5 ng and 20 ng of total RNA with 18 cycles of pre-amplification, both 20x and 40x diluted. We set up upper limits for the bulk gene expression experiment using gene expression Dynamic Array and provided an easy-to-obtain tool for measuring of pre-amplification success. We also showed that variability of the pre-amplification, introduced into the experimental workflow of reverse transcription-qPCR, is lower than variability caused by the reverse transcription step.

  15. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays.

    PubMed

    Brooks, Adam D; Yeung, Kimy; Lewis, Gregory G; Phillips, Scott T

    2015-09-07

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics.

  16. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays

    PubMed Central

    Brooks, Adam D.; Yeung, Kimy; Lewis, Gregory G.

    2015-01-01

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics. PMID:26604988

  17. Photoelectrochemical DNA Biosensor Based on Dual-Signal Amplification Strategy Integrating Inorganic-Organic Nanocomposites Sensitization with λ-Exonuclease-Assisted Target Recycling.

    PubMed

    Shi, Xiao-Mei; Fan, Gao-Chao; Shen, Qingming; Zhu, Jun-Jie

    2016-12-28

    Sensitive and accurate analysis of DNA is crucial to better understanding of DNA functions and early diagnosis of fatal disease. Herein, an enhanced photoelectrochemical (PEC) DNA biosensor was proposed based on dual-signal amplification via coupling inorganic-organic nanocomposites sensitization with λ-exonuclease (λ-Exo)-assisted target recycling. The short DNA sequence about chronic myelogenous leukemia (CML, type b3a2) was selected as target DNA (tDNA). ZnO nanoplates were deposited with CdS nanocrystals to form ZnO/CdS hetero-nanostructure, and it was used as PEC substrate for immobilizing hairpin DNA (hDNA). CdTe quantum dots (QDs) covalently linked with meso-tetra(4-carboxyphenyl)porphine (TCPP) to form CdTe/TCPP inorganic-organic nanocomposites, which were utilized as sensitization agents labeling at the terminal of probe DNA (pDNA). When the hDNA-modified sensing electrode was incubated with tDNA and λ-Exo, hDNA hybridized with tDNA, and meanwhile it could be recognized and cleaved by λ-Exo, resulting in the release of tDNA. The rest of nonhybridized hDNA would continuously hybridize with the released tDNA, cleave by λ-Exo, and set free the tDNA again. After λ-Exo-assisted tDNA recycling, more amounts of short DNA (sDNA) fragments coming from digestion of hDNA produced on the electrode and hybridized with CdTe/TCPP-labeled pDNA (pDNA-CdTe/TCPP conjugates). In this case, the sensitization of CdTe/TCPP inorganic-organic nanocomposites occurred, which evidently extend the absorption range and strengthened the absorption intensity of light energy, and accordingly the photocurrent signal significantly promoted. Through introducing the dual-signal amplification tactics, the developed PEC assay allowed a low calculated detection limit of 25.6 aM with a wide detection scope from 0.1 fM to 5 pM for sensitive and selective determination of tDNA.

  18. Observational Evidence for Desert Amplification Using Multiple Satellite Datasets.

    PubMed

    Wei, Nan; Zhou, Liming; Dai, Yongjiu; Xia, Geng; Hua, Wenjian

    2017-05-17

    Desert amplification identified in recent studies has large uncertainties due to data paucity over remote deserts. Here we present observational evidence using multiple satellite-derived datasets that desert amplification is a real large-scale pattern of warming mode in near surface and low-tropospheric temperatures. Trend analyses of three long-term temperature products consistently confirm that near-surface warming is generally strongest over the driest climate regions and this spatial pattern of warming maximizes near the surface, gradually decays with height, and disappears in the upper troposphere. Short-term anomaly analyses show a strong spatial and temporal coupling of changes in temperatures, water vapor and downward longwave radiation (DLR), indicating that the large increase in DLR drives primarily near surface warming and is tightly associated with increasing water vapor over deserts. Atmospheric soundings of temperature and water vapor anomalies support the results of the long-term temperature trend analysis and suggest that desert amplification is due to comparable warming and moistening effects of the troposphere. Likely, desert amplification results from the strongest water vapor feedbacks near the surface over the driest deserts, where the air is very sensitive to changes in water vapor and thus efficient in enhancing the longwave greenhouse effect in a warming climate.

  19. Evaluation of four novel isothermal amplification assays towards simple and rapid genotyping of chloroquine resistant Plasmodium falciparum.

    PubMed

    Chahar, Madhvi; Anvikar, Anup; Dixit, Rajnikant; Valecha, Neena

    2018-07-01

    Loop mediated isothermal amplification (LAMP) assay is sensitive, prompt, high throughput and field deployable technique for nucleic acid amplification under isothermal conditions. In this study, we have developed and optimized four different visualization methods of loop-mediated isothermal amplification (LAMP) assay to detect Pfcrt K76T mutants of P. falciparum and compared their important features for one-pot in-field applications. Even though all the four tested LAMP methods could successfully detect K76T mutants of P. falciparum, however considering the time, safety, sensitivity, cost and simplicity, the malachite green and HNB based methods were found more efficient. Among four different visual dyes uses to detect LAMP products accurately, hydroxynaphthol blue and malachite green could produce long stable color change and brightness in a close tube-based approach to prevent cross-contamination risk. Our results indicated that the LAMP offers an interesting novel and convenient best method for the rapid, sensitive, cost-effective, and fairly user friendly tool for detection of K76T mutants of P. falciparum and therefore presents an alternative to PCR-based assays. Based on our comparative analysis, better field based LAMP visualization method can be chosen easily for the monitoring of other important drug targets (Kelch13 propeller region). Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A Pilot Study of Quantitative Loop-mediated Isothermal Amplification-guided Target Therapies for Hospital-acquired Pneumonia.

    PubMed

    Wang, Fang; Li, Ran; Shang, Ying; Wang, Can; Wang, Guo-Qing; Zhou, De-Xun; Yang, Dong-Hong; Xi, Wen; Wang, Ke-Qiang; Bao, Jing; Kang, Yu; Gao, Zhan-Cheng

    2016-01-20

    It is important to achieve the definitive pathogen identification in hospital-acquired pneumonia (HAP), but the traditional culture results always delay the target antibiotic therapy. We assessed the method called quantitative loop-mediated isothermal amplification (qLAMP) as a new implement for steering of the antibiotic decision-making in HAP. Totally, 76 respiratory tract aspiration samples were prospectively collected from 60 HAP patients. DNA was isolated from these samples. Specific DNA fragments for identifying 11 pneumonia-related bacteria were amplified by qLAMP assay. Culture results of these patients were compared with the qLAMP results. Clinical data and treatment strategies were analyzed to evaluate the effects of qLAMP results on clinical data. McNemar test and Fisher's exact test were used for statistical analysis. The detection of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Stenotrophomonas maltophilia, Streptococcus pneumonia, and Acinetobacter baumannii by qLAMP was consistent with sputum culture (P > 0.05). The qLAMP results of 4 samples for Haemophilus influenzae, Legionella pneumophila, or Mycoplasma pneumonia (MP) were inconsistent with culture results; however, clinical data revealed that the qLAMP results were all reliable except 1 MP positive sample due to the lack of specific species identified in the final diagnosis. The improvement of clinical condition was more significant (P < 0.001) in patients with pathogen target-driven therapy based on qLAMP results than those with empirical therapy. qLAMP is a more promising method for detection of pathogens in an early, rapid, sensitive, and specific manner than culture.

  1. Discovery of a photoresponse amplification mechanism in compensated PN junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Yuchun; Liu, Yu-Hsin; Rahman, Samia N.; Hall, David; Sham, L. J.; Lo, Yu-Hwa

    2015-01-01

    We report the experimental evidence of uncovering a photoresponse amplification mechanism in heavily doped, partially compensated silicon p-n junctions under very low bias voltage. We show that the observed photocurrent gain occurs at a bias that is more than an order of magnitude below the threshold voltage for conventional impact ionization. Moreover, contrary to the case of avalanche detectors and p-i-n diodes, the amplified photoresponse is enhanced rather than suppressed with increasing temperature. These distinctive characteristics lead us to hypothesize that the inelastic scattering between energetic electrons (holes) and the ionized impurities in the depletion and charge neutral regions of the p-n junction in a cyclic manner plays a significant role in the amplification process. Such an internal signal amplification mechanism, which occurs at much lower bias than impact ionization and favors room temperature over cryogenic temperature, makes it promising for practical device applications.

  2. Phase-preserving wavefront amplification at 590 nm by stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Wick, D. V.; Gruneisen, M. T.; Peterson, P. R.

    1998-03-01

    This paper presents an experimental demonstration of high-gain optical-wavefront amplification by stimulated Raman scattering near the D 1 resonance in atomic sodium vapor. Single-pass weak-field gain of nearly 400 is achieved with only 800 mW of pump power. Through judicious focusing, the weak wavefront is confined to the central region of the focused pump wave where saturation of the dispersion profile minimizes phase distortions due to self-focusing effects. Phase-preserving amplification is demonstrated by interferometric measurements of an amplified TEM 00 wavefront.

  3. Host-Guest Recognition-Assisted Electrochemical Release: Its Reusable Sensing Application Based on DNA Cross Configuration-Fueled Target Cycling and Strand Displacement Reaction Amplification.

    PubMed

    Chang, Yuanyuan; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2017-08-15

    In this work, an elegantly designed host-guest recognition-assisted electrochemical release was established and applied in a reusable electrochemical biosensor for the detection of microRNA-182-5p (miRNA-182-5p), a prostate cancer biomarker in prostate cancer, based on the DNA cross configuration-fueled target cycling and strand displacement reaction (SDR) amplification. With such a design, the single target miRNA input could be converted to large numbers of single-stranded DNA (S1-Trp and S2-Trp) output, which could be trapped by cucurbit[8]uril methyl viologen (CB-8-MV 2+ ) based on the host-guest recognition, significantly enhancing the sensitivity for miRNA detection. Moreover, the nucleic acids products obtained from the process of cycling amplification could be utilized sufficiently, avoiding the waste and saving the experiment cost. Impressively, by resetting a settled voltage, the proposed biosensor could release S1-Trp and S2-Trp from the electrode surface, attributing that the guest ion methyl viologen (MV 2+ ) was reduced to MV +· under this settled voltage and formed a more-stable CB-8-MV +· -MV +· complex. Once O 2 was introduced in this system, MV +· could be oxidized to MV 2+ , generating the complex of CB-8-MV 2+ for capturing S1-Trp and S2-Trp again in only 5 min. As a result, the simple and fast regeneration of biosensor for target detection was realized on the base of electrochemical redox-driven assembly and release, overcoming the challenges of time-consuming, burdensome operations and expensive experimental cost in traditional reusable biosensors and updating the construction method for a reusable bisensor. Furthermore, the biosensor could be reused for more than 10 times with a regeneration rate of 93.20%-102.24%. After all, the conception of this work provides a novel thought for the construction of effective reusable biosensor to detect miRNA and other biomarkers and has great potential application in the area requiring the release of

  4. A Simple Method for Amplifying RNA Targets (SMART)

    PubMed Central

    McCalla, Stephanie E.; Ong, Carmichael; Sarma, Aartik; Opal, Steven M.; Artenstein, Andrew W.; Tripathi, Anubhav

    2012-01-01

    We present a novel and simple method for amplifying RNA targets (named by its acronym, SMART), and for detection, using engineered amplification probes that overcome existing limitations of current RNA-based technologies. This system amplifies and detects optimal engineered ssDNA probes that hybridize to target RNA. The amplifiable probe-target RNA complex is captured on magnetic beads using a sequence-specific capture probe and is separated from unbound probe using a novel microfluidic technique. Hybridization sequences are not constrained as they are in conventional target-amplification reactions such as nucleic acid sequence amplification (NASBA). Our engineered ssDNA probe was amplified both off-chip and in a microchip reservoir at the end of the separation microchannel using isothermal NASBA. Optimal solution conditions for ssDNA amplification were investigated. Although KCl and MgCl2 are typically found in NASBA reactions, replacing 70 mmol/L of the 82 mmol/L total chloride ions with acetate resulted in optimal reaction conditions, particularly for low but clinically relevant probe concentrations (≤100 fmol/L). With the optimal probe design and solution conditions, we also successfully removed the initial heating step of NASBA, thus achieving a true isothermal reaction. The SMART assay using a synthetic model influenza DNA target sequence served as a fundamental demonstration of the efficacy of the capture and microfluidic separation system, thus bridging our system to a clinically relevant detection problem. PMID:22691910

  5. Rescue of Targeted Regions of Mammalian Chromosomes by in Vivo Recombination in Yeast

    PubMed Central

    Kouprina, Natalya; Kawamoto, Kensaku; Barrett, J. Carl; Larionov, Vladimir; Koi, Minoru

    1998-01-01

    In contrast to other animal cell lines, the chicken pre-B cell lymphoma line, DT40, exhibits a high level of homologous recombination, which can be exploited to generate site-specific alterations in defined target genes or regions. In addition, the ability to generate human/chicken monochromosomal hybrids in the DT40 cell line opens a way for specific targeting of human genes. Here we describe a new strategy for direct isolation of a human chromosomal region that is based on targeting of the chromosome with a vector containing a yeast selectable marker, centromere, and an ARS element. This procedure allows rescue of the targeted region by transfection of total genomic DNA into yeast spheroplasts. Selection for the yeast marker results in isolation of chromosome sequences in the form of large circular yeast artificial chromosomes (YACs) up to 170 kb in size containing the targeted region. These YACs are generated by homologous recombination in yeast between common repeated sequences in the targeted chromosomal fragment. Alternatively, the targeted region can be rescued as a linear YACs when a YAC fragmentation vector is included in the yeast transformation mixture. Because the entire isolation procedure of the chromosomal region, once a target insertion is obtained, can be accomplished in ∼1 week, the new method greatly expands the utility of the homologous recombinationproficient DT40 chicken cell system. PMID:9647640

  6. An evaluation of direct PCR amplification

    PubMed Central

    Hall, Daniel E.; Roy, Reena

    2014-01-01

    Aim To generate complete DNA profiles from blood and saliva samples deposited on FTA® and non-FTA® paper substrates following a direct amplification protocol. Methods Saliva samples from living donors and blood samples from deceased individuals were deposited on ten different FTA® and non-FTA® substrates. These ten paper substrates containing body fluids were kept at room temperature for varying lengths of time ranging from one day to approximately one year. For all assays in this research, 1.2 mm punches were collected from each substrate containing one type of body fluid and amplified with reagents provided in the nine commercial polymerase chain reaction (PCR) amplification kits. The substrates were not subjected to purification reagent or extraction buffer prior to amplification. Results Success rates were calculated for all nine amplification kits and all ten substrates based on their ability to yield complete DNA profiles following a direct amplification protocol. Six out of the nine amplification kits, and four out of the ten paper substrates had the highest success rates overall. Conclusion The data show that it is possible to generate complete DNA profiles following a direct amplification protocol using both standard (non-direct) and direct PCR amplification kits. The generation of complete DNA profiles appears to depend more on the success of the amplification kit rather than the than the FTA®- or non-FTA®-based substrates. PMID:25559837

  7. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib.

    PubMed

    Lennerz, Jochen K; Kwak, Eunice L; Ackerman, Allison; Michael, Michael; Fox, Stephen B; Bergethon, Kristin; Lauwers, Gregory Y; Christensen, James G; Wilner, Keith D; Haber, Daniel A; Salgia, Ravi; Bang, Yung-Jue; Clark, Jeffrey W; Solomon, Benjamin J; Iafrate, A John

    2011-12-20

    Amplification of the MET proto-oncogene in gastroesophageal cancer (GEC) may constitute a molecular marker for targeted therapy. We examined a GEC cohort with follow-up and reported the clinical response of four additional patients with MET-amplified tumors to the small molecule inhibitor crizotinib as part of an expanded phase I cohort study. From 2007 to 2009, patients with GEC were genetically screened as a consecutive series of 489 tumors (stages 0, I, and II, 39%; III, 25%; IV, 36%; n = 222 esophageal, including n = 21 squamous carcinomas). MET, EGFR, and HER2 amplification status was assessed by using fluorescence in situ hybridization. Ten (2%) of 489 patients screened harbored MET amplification; 23 (4.7%) harbored EGFR amplification; 45 (8.9%) harbored HER2 amplification; and 411 (84%) were wild type for all three genes (ie, negative). MET-amplified tumors were typically high-grade adenocarcinomas that presented at advanced stages (5%; n = 4 of 80). EGFR-amplified tumors showed the highest fraction of squamous cell carcinoma (17%; n = 4 of 23). HER2, MET, and EGFR amplification were, with one exception (MET and EGFR positive), mutually exclusive events. Survival analysis in patients with stages III and IV disease showed substantially shorter median survival in MET/EGFR-amplified groups, with a rank order for all groups by median survival (from most to least aggressive): MET (7.1 months; P < .001) less than EGFR (11.2 months; P = .16) less than HER2 (16.9 months; P = .89) when compared with the negative group (16.2 months). Two of four patients with MET-amplified tumors treated with crizotinib experienced tumor shrinkage (-30% and -16%) and experienced progression after 3.7 and 3.5 months. MET amplification defines a small and aggressive subset of GEC with indications of transient sensitivity to the targeted MET inhibitor crizotinib (PF-02341066).

  8. Palindromic Molecule Beacon-Based Cascade Amplification for Colorimetric Detection of Cancer Genes.

    PubMed

    Shen, Zhi-Fa; Li, Feng; Jiang, Yi-Fan; Chen, Chang; Xu, Huo; Li, Cong-Cong; Yang, Zhe; Wu, Zai-Sheng

    2018-03-06

    A highly sensitive and selective colorimetric assay based on a multifunctional molecular beacon with palindromic tail (PMB) was proposed for the detection of target p53 gene. The PMB probe can serve as recognition element, primer, and polymerization template and contains a nicking site and a C-rich region complementary to a DNAzyme. In the presence of target DNA, the hairpin of PMB is opened, and the released palindromic tails intermolecularly hybridize with each other, triggering the autonomous polymerization/nicking/displacement cycles. Although only one type of probe is involved, the system can execute triple and continuous polymerization strand displacement amplifications, generating large amounts of G-quadruplex fragments. These G-rich fragments can bind to hemin and form the DNAzymes that possess the catalytic activity similar to horseradish peroxidase, catalyzing the oxidation of ABTS by H 2 O 2 and producing the colorimetric signal. Utilizing the newly proposed sensing system, target DNA can be detected down to 10 pM with a linear response range from 10 pM to 200 nM, and mutant target DNAs are able to be distinguished even by the naked eye. The desirable detection sensitivity, high specificity, and operation convenience without any separation step and chemical modification demonstrate that the palindromic molecular beacon holds the potential for detecting and monitoring a variety of nucleic acid-related biomarkers.

  9. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2013-07-01

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  10. Formation of template-switching artifacts by linear amplification.

    PubMed

    Chakravarti, Dhrubajyoti; Mailander, Paula C

    2008-07-01

    Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1-2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.

  11. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    PubMed

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  12. Site Amplification in the Central U.S.: Towards and understanding of factors influencing the site effect

    NASA Astrophysics Data System (ADS)

    Yassminh, R.; Sandvol, E. A.

    2017-12-01

    We have mapped site amplification using a Reverse Two Station (RTS) approach across much of the Central United States. We have found several unexpected results including a lack of amplification in Paleozoic basins such as the Illinois and Michigan basins. In general, we found that the amplification of high frequency regional waves is related to the topography. We also suggest that the HVSR spectra are primarily a function of the shallow velocity structure. The Central United States Seismic Observatory (CUSSO) is a vertical seismic array located adjacent to the central segment of the NMSZ. CUSSO data gives us the opportunity to understand the amplification of the ground motion at different depths within the uppermost crust. Simulating ground motions throughout the CUSSO borehole and examining the factors affecting the ground amplification, such as the velocity and thicknesses of the model layers and the source sizes, is an effective way to understand the role different factors playing in modifying the ground motion for both the local and regional seismic phases. We have used the spectral-element method (SEMs) with a 1D crustal velocity structure derived from logging data taken from CUSSO borehole. This model is comprised of near surface sediment layers and a Paleozoic basement. Utilizing the software package SPECFEM2D with virtual seismometers located on the surface and in the bottom of the different sediment layers, we have computed the true synthetic site amplification for frequencies between 0.01-3 Hz. For the local model, we have tested the sensitivity of the ground motion amplification to the source magnitude. For frequencies>0.6, the ground motions have been amplified with decreasing the magnitudes while for HZ<0.6 the the horizontal amplification increases with increasing the magnitudes. The effect of the velocity of the upper 30m was tested and the result shows that decreasing the Vs30m resulted in amplifying of the ground motion and decreasing of the

  13. Discovery of a photoresponse amplification mechanism in compensated PN junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuchun; Rahman, Samia N.; Hall, David

    2015-01-19

    We report the experimental evidence of uncovering a photoresponse amplification mechanism in heavily doped, partially compensated silicon p-n junctions under very low bias voltage. We show that the observed photocurrent gain occurs at a bias that is more than an order of magnitude below the threshold voltage for conventional impact ionization. Moreover, contrary to the case of avalanche detectors and p-i-n diodes, the amplified photoresponse is enhanced rather than suppressed with increasing temperature. These distinctive characteristics lead us to hypothesize that the inelastic scattering between energetic electrons (holes) and the ionized impurities in the depletion and charge neutral regions ofmore » the p-n junction in a cyclic manner plays a significant role in the amplification process. Such an internal signal amplification mechanism, which occurs at much lower bias than impact ionization and favors room temperature over cryogenic temperature, makes it promising for practical device applications.« less

  14. Prognostic significance of MYCN gene amplification and protein expression in primary brain tumors: Astrocytoma and meningioma.

    PubMed

    Estiar, Mehrdad Asghari; Javan, Firouzeh; Zekri, Ali; Mehrazin, Masoud; Mehdipour, Parvin

    2017-07-04

    Astrocytoma and meningioma are the most common primary brain tumors. MYCN as a member of MYC proto-oncogenes has recently appeared as an attractive therapeutic target. Functions of MYCN are critical for growth of nervous system and neural differentiation. We examined MYCN amplification and protein expression in astrocytoma and meningioma cases. In this study, we used real-time PCR, FISH assay and flowcytometry to analyze DNA amplification and protein expression of MYCN. Among 30 samples of brain tumor, 14 cases (46.6%) revealed MYCN amplification. High-protein expression of MYCN was also observed in 43.3% of patients. There was a significant correlation between MYCN gene amplification and protein expression (r= 0.523; p= 0.003), interestingly five case showed discrepancy between the gene amplification and protein expression. Although MYCN amplification fails to show correlation with poor prognosis (p= 0.305), protein high-expression of MYCN significantly reduce disease-free survival (p= 0.019). Our results challenge the concept of the neural specificity of MYCN by demonstrating contribution of MYCN in meningioma. Moreover, this study highlights the importance of research at both level of DNA and protein, to determine the biological functions and medical impacts of MYCN.

  15. Chlamydia trachomatis infection positivity rates determined by nucleic acid amplification test in patients of hospitals in the northeastern region of Ukraine.

    PubMed

    Belozorov, Alexei; Fedets, Olga; Chastii, Tatjana; Milutina, Elena; Sokol, Oksana; Grigorova, Ritsa; Unuchko, Sergey

    2017-12-01

    There are no accurate data regarding the prevalence of Chlamydia trachomatis infection in Ukraine. This study aims to estimate the prevalence in the northeastern region of the country through reviewing nucleic acid amplification test results in patients of medical institutions in the Kharkov region during 2014-2016. Samples from 6920 patients (5028 women and 1892 men) aged 12-76 years were tested. The overall positivity rate was 4.5% (95% CI 4.0-5.0): 3.9% (95% CI 3.4-4.5) in women and 6.1% (95% CI 5.1-7.3) in men. The highest prevalence was found in the 16-20 (8.5%, CI 6.3-11.4) and 21-25 (8.0%, CI 6.7-9.4) year age groups. The prevalence in men was higher than in women in all investigated groups. The results show the need for more attention to the prevention, diagnosis, and treatment of chlamydial infection in these age groups of women and men in this region.

  16. Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification.

    PubMed

    Boyle, David S; Lehman, Dara A; Lillis, Lorraine; Peterson, Dylan; Singhal, Mitra; Armes, Niall; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie

    2013-04-02

    Early diagnosis and treatment of human immunodeficiency virus type 1 (HIV-1) infection in infants can greatly reduce mortality rates. However, current infant HIV-1 diagnostics cannot reliably be performed at the point of care, often delaying treatment and compromising its efficacy. Recombinase polymerase amplification (RPA) is a novel technology that is ideal for an HIV-1 diagnostic, as it amplifies target DNA in <20 min at a constant temperature, without the need for complex thermocycling equipment. Here we tested 63 HIV-1-specific primer and probe combinations and identified two RPA assays that target distinct regions of the HIV-1 genome (long terminal repeat [LTR] and pol) and can reliably detect 3 copies of proviral DNA by the use of fluorescence detection and lateral-flow strip detection. These pol and LTR primers amplified 98.6% and 93%, respectively, of the diverse HIV-1 variants tested. This is the first example of an isothermal assay that consistently detects all of the major HIV-1 global subtypes.

  17. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    PubMed

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  18. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification.

    PubMed

    del Río, Jonathan Sabaté; Yehia Adly, Nouran; Acero-Sánchez, Josep Lluis; Henry, Olivier Y F; O'Sullivan, Ciara K

    2014-04-15

    Solid-phase isothermal DNA amplification was performed exploiting the homology protein recombinase A (recA). The system was primarily tested on maleimide activated microtitre plates as a proof-of-concept and later translated to an electrochemical platform. In both cases, forward primer for Francisella tularensis holarctica genomic DNA was surface immobilised via a thiol or an amino moiety and then elongated during the recA mediated amplification, carried out in the presence of specific target sequence and reverse primers. The formation of the subsequent surface tethered amplicons was either colorimetrically or electrochemically monitored using a horseradish peroxidase (HRP)-labelled DNA secondary probe complementary to the elongated strand. The amplification time was optimised to amplify even low amounts of DNA copies in less than an hour at a constant temperature of 37°C, achieving a limit of detection of 1.3×10(-13) M (4×10(6) copies in 50 μL) for the colorimetric assay and 3.3×10(-14) M (2×10(5) copies in 10 μL) for the chronoamperometric assay. The system was demonstrated to be highly specific with negligible cross-reactivity with non-complementary targets or primers. © 2013 Elsevier B.V. All rights reserved.

  19. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics

    PubMed Central

    Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina

    2017-01-01

    Background We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. Methodology An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. Principal findings The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1–10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Conclusions Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring. PMID:29155823

  20. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    PubMed

    Brinkmann, Annika; Ergünay, Koray; Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina; Nitsche, Andreas

    2017-11-01

    We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  1. Evaluation of Site Amplification Functions For Generalized Soil Types Using Earthquake Records and Spectral Models

    NASA Astrophysics Data System (ADS)

    Sokolov, V.; Loh, C. H.; Wen, K. L.

    When evaluating the local site influence on seismic ground motion, in certain cases (e.g. building codes provisions) it is sufficient to describe the variety of soil condi- tions by a few number of generalized site classes. The site classification system that is widely used at present is based on on the properties of top 30 m of soil column, dis- regarding the characteristics of the deeper geology. Six site categories are defined on the basis of averaged shear waves velocity, namely: A - hard rock; B - rock; C - very dense or stiff soil; D - stiff soil; E - soft soil; F - soils requiring special studies. The generalized site amplification curves were developed for several site classes in west- ern US (Boore and Joyner, 1997) and Greece (Klimis et al., 1999) using available geotechnical data from near-surface boreholes. We propose to evaluate the amplifica- tion functions as the ratios between the spectra of real earthquakes recordings and the spectra modeled for "very hard rock" (VHR) conditions. The VHR spectra (regional source scaling and attenuation models) are constructed on the basis of ground motion records. The approach allows, on the one hand, to analyze all obtained records. On the other hand, it is possible to test applicability of the used spectral model. Moreover, the uncertainty of site response may be evaluated and described in terms of random variable characteristics to be considered in seismic hazard analysis. The results of the approach application are demonstrated for the case of Taiwan region. The char- acteristics of site amplification functions (mean values and standard deviation) were determined and analyzed in frequency range of 0.2-13 Hz for site classes B and C us- ing recordings of the 1999 Chi-Chi, Taiwan, earthquake (M=7.6), strong aftershocks (M=6.8), and several earthquakes (M < 6.5) occurred in the region in 1995-1998. When comparing the empirical amplification function resulting from the Taiwan data with that proposed for western US

  2. Reverse transcription strand invasion based amplification (RT-SIBA): a method for rapid detection of influenza A and B.

    PubMed

    Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark

    2016-06-01

    Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings.

  3. Dynamics and control of DNA sequence amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marimuthu, Karthikeyan; Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu; Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reactionmore » are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.« less

  4. Questioning cochlear amplification

    NASA Astrophysics Data System (ADS)

    van der Heijden, Marcel; Versteegh, Corstiaen P. C.

    2015-12-01

    Thirty years ago it was hypothesized that motile processes inject mechanical energy into cochlear traveling waves. This mechanical amplification, alternatively described as negative damping, is invoked to explain both the sensitivity and the nonlinear compression of cochlear responses. There is a recent trend to present cochlear amplification as an established fact, even though the evidence is at most circumstantial and several thorny problems have remained unresolved. We analyze several of these issues, and present new basilar membrane recordings that allowed us to quantify cochlear energy flow. Specifically, we address the following questions: (1) Does auditory sensitivity require narrowband amplification? (2) Has the "RC problem" (lowpass filtering of outer hair cell receptor potential) been resolved? (3) Can OHC motility improve auditory sensitivity? (4) Is there a net power gain between neighboring locations on the basilar membrane? The analyses indicate that mechanical amplification in the cochlea is neither necessary nor useful, and that realizing it by known forms of motility would reduce sensitivity rather than enhance it. Finally, our experimental data show that the peaking of the traveling wave is realized by focusing the acoustic energy rather than amplifying it. (Abbreviations. BM: basilar membrane; CF: characteristic frequency; IHC: inner hair cell; ME: middle ear; MT; mechanotransducer; OHC: outer hair cell; SPL: sound pressure level.)

  5. Electrochemical detection of Piscirickettsia salmonis genomic DNA from salmon samples using solid-phase recombinase polymerase amplification.

    PubMed

    Del Río, Jonathan Sabaté; Svobodova, Marketa; Bustos, Paulina; Conejeros, Pablo; O'Sullivan, Ciara K

    2016-12-01

    Electrochemical detection of solid-phase isothermal recombinase polymerase amplification (RPA) of Piscirickettsia salmonis in salmon genomic DNA is reported. The electrochemical biosensor was constructed by surface functionalization of gold electrodes with a thiolated forward primer specific to the genomic region of interest. Solid-phase RPA and primer elongation were achieved in the presence of the specific target sequence and biotinylated reverse primers. The formation of the subsequent surface-tethered duplex amplicons was electrochemically monitored via addition of streptavidin-linked HRP upon completion of solid-phase RPA. Successful quantitative amplification and detection were achieved in less than 1 h at 37 °C, calibrating with PCR-amplified genomic DNA standards and achieving a limit of detection of 5 · 10 -8  μg ml -1 (3 · 10 3 copies in 10 μl). The presented system was applied to the analysis of eight real salmon samples, and the method was also compared to qPCR analysis, observing an excellent degree of correlation. Graphical abstract Schematic of use of electrochemical RPA for detection of Psiricketessia salmonis in salmon liver.

  6. Biomaterials in light amplification

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  7. Rapid screening for human-pathogenic Mucorales using rolling circle amplification.

    PubMed

    Dolatabadi, S; Najafzadeh, M J; de Hoog, G S

    2014-12-01

    Mucormycosis has emerged as a relatively common severe mycosis in patients with haematological and allogeneic stem cell transplantation. Source of transmission is from unidentified sources in the environment. Early diagnosis of infection and its source of contamination are paramount for rapid and appropriate therapy. In this study, rolling circle amplification (RCA) is introduced as a sensitive, specific and reproducible isothermal DNA amplification technique for rapid molecular identification of six of the most virulent species (Rhizopus microsporus, R. arrhizus var. arrhizus, R. arrhizus var. delemar, Mucor irregularis, Mucor circinelloides, Lichtheimia ramosa, Lichtheimia corymbifera). DNAs of target species were successfully amplified, with no cross reactivity between species. RCA can be considered as a rapid detection method with high specificity and sensitivity, suitable for large screening. © 2014 Blackwell Verlag GmbH.

  8. Estimation of empirical site amplification factors in Taiwan

    NASA Astrophysics Data System (ADS)

    Chung, Chi-Hsuan; Wen, Kuo-Liang; Kuo, Chun-Hsiang

    2017-04-01

    Lots of infrastructures are under construction in metropolises in Taiwan in recent years and thus leads to increasement of population density and urbanization in those area. Taiwan island is located in plate boundaries in which the high seismicity is caused by active tectonic plates. The Chi-Chi earthquake (Mw 7.6) in 1999 caused a fatality of more than 2000, and the Meinong earthquake (Mw 6.5) in 2016 caused a fatality of 117 in Tainan city as well as damages on hundreds of buildings. The cases imply seismic vulnerability of urban area. During the improvements for seismic hazard analysis and seismic design, consideration of seismic site amplifications in different site conditions is one of important issues. This study used selected and processed strong motion records observed by the TSMIP network. The site conditions considered as Vs30 used in this study were investigated at most stations (Kuo et al. 2012; Kuo et al. 2016). Since strong motion records and site conditions are both available, we are able to use the data to analyze site amplifications of seismic waves at different periods. The result may be a reference for future modification of seismic design codes to decrease potential seismic hazards and losses. We adopted the strong motion and site database of the SSHAC (Senior Seismic Hazard Analysis Committee) Level 3 project in Taiwan. The selected significant crustal and subduction events of magnitude larger than six for analysis. The amplification factors of PGA, PGV, PGD, and spectra acceleration at 0.3, 1.0, and 3.0 seconds were evaluated using the processed strong motions. According to the recommendation of SSHAC Level 3 project, the site condition of Vs30 = 760 m/s is considered as the reference rock site in this study. The stations with Vs30 between 600 m/s and 900 m/s and used as the reference rock sites in reality. For each event, we find a reference rock site and other site within a certain distance (region dependent) to calculate site amplifications

  9. Polymerase chain reaction assay for verifying the labeling of meat and commercial meat products from game birds targeting specific sequences from the mitochondrial D-loop region.

    PubMed

    Rojas, M; González, I; Pavón, M A; Pegels, N; Hernández, P E; García, T; Martín, R

    2010-05-01

    A PCR assay was developed for the identification of meats and commercial meat products from quail (Coturnix coturnix), pheasant (Phasianus colchicus), partridge (Alectoris spp.), guinea fowl (Numida meleagris), pigeon (Columba spp.), Eurasian woodcock (Scolopax rusticola), and song thrush (Turdus philomelos) based on oligonucleotide primers targeting specific sequences from the mitochondrial D-loop region. The primers designed generated specific fragments of 96, 100, 104, 106, 147, 127, and 154 bp in length for quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock, and song thrush tissues, respectively. The specificity of each primer pair was tested against DNA from various game and domestic species. In this work, satisfactory amplification was accomplished in the analysis of experimentally pasteurized (72 degrees C for 30 min) and sterilized (121 degrees C for 20 min) meats, as well as in commercial meat products from the target species. The technique was also applied to raw and sterilized muscular binary mixtures, with a detection limit of 0.1% (wt/wt) for each of the targeted species. The proposed PCR assay represents a rapid and straightforward method for the detection of possible mislabeling in game bird meat products.

  10. Invariant target detection by a correlation radiometer

    NASA Astrophysics Data System (ADS)

    Murza, L. P.

    1986-12-01

    The paper is concerned with the problem of the optimal detection of a heat-emitting target by a two-channel radiometer with an unstable amplification circuit. An expression is obtained for an asymptotically sufficient detection statistic which is invariant to changes in the amplification coefficients of the channels. The algorithm proposed here can be implemented numerically using a relatively simple program.

  11. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials

    PubMed Central

    Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-01-01

    Abstract HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti‐EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK–AKT pathway activation through HER2 up‐regulation. We assessed HER2‐amplification/overexpression in stage II–III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II–III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2‐amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression‐free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II–III tumours showed HER2 protein overexpression. Of the HER2‐overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II–III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2‐overexpression was associated with KRAS/BRAF wild‐type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II–III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II–III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2‐overexpressing cases experienced recurrence, but the difference was not significant. HER2‐amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II–III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2‐targeted therapy in patients with HER2‐amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John

  12. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials.

    PubMed

    Richman, Susan D; Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-03-01

    HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti-EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK-AKT pathway activation through HER2 up-regulation. We assessed HER2-amplification/overexpression in stage II-III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II-III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2-amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression-free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II-III tumours showed HER2 protein overexpression. Of the HER2-overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II-III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2-overexpression was associated with KRAS/BRAF wild-type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II-III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II-III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2-overexpressing cases experienced recurrence, but the difference was not significant. HER2-amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II-III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2-targeted therapy in patients with HER2-amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society

  13. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis.

    PubMed

    Anadón, C; Guil, S; Simó-Riudalbas, L; Moutinho, C; Setien, F; Martínez-Cardús, A; Moran, S; Villanueva, A; Calaf, M; Vidal, A; Lazo, P A; Zondervan, I; Savola, S; Kohno, T; Yokota, J; Ribas de Pouplana, L; Esteller, M

    2016-08-18

    The introduction of new therapies against particular genetic mutations in non-small-cell lung cancer is a promising avenue for improving patient survival, but the target population is small. There is a need to discover new potential actionable genetic lesions, to which end, non-conventional cancer pathways, such as RNA editing, are worth exploring. Herein we show that the adenosine-to-inosine editing enzyme ADAR1 undergoes gene amplification in non-small cancer cell lines and primary tumors in association with higher levels of the corresponding mRNA and protein. From a growth and invasion standpoint, the depletion of ADAR1 expression in amplified cells reduces their tumorigenic potential in cell culture and mouse models, whereas its overexpression has the opposite effects. From a functional perspective, ADAR1 overexpression enhances the editing frequencies of target transcripts such as NEIL1 and miR-381. In the clinical setting, patients with early-stage lung cancer, but harboring ADAR1 gene amplification, have poor outcomes. Overall, our results indicate a role for ADAR1 as a lung cancer oncogene undergoing gene amplification-associated activation that affects downstream RNA editing patterns and patient prognosis.

  14. Improved multiple displacement amplification (iMDA) and ultraclean reagents.

    PubMed

    Motley, S Timothy; Picuri, John M; Crowder, Chris D; Minich, Jeremiah J; Hofstadler, Steven A; Eshoo, Mark W

    2014-06-06

    Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA). A specialized ethylene oxide treatment was developed that renders free DNA and DNA present within Gram positive bacterial cells undetectable by qPCR. To reduce DNA contamination in amplification reagents, a combination of ion exchange chromatography, filtration, and lot testing protocols were developed. Our multiple displacement amplification protocol employs a second strand-displacing DNA polymerase, improved buffers, improved reaction conditions and DNA free reagents. The iMDA protocol, when used in combination with DNA-free laboratory consumables and reagents, significantly improved efficiency and accuracy of amplification and sequencing of specimens with moderate to low levels of DNA. The sensitivity and specificity of sequencing of amplified DNA prepared using iMDA was compared to that of DNA obtained with two commercial whole genome amplification kits using 10 fg (~1-2 bacterial cells worth) of bacterial genomic DNA as a template. Analysis showed >99% of the iMDA reads mapped to the template organism whereas only 0.02% of the reads from the commercial kits mapped to the template. To assess the ability of iMDA to achieve balanced genomic coverage, a non-stochastic amount of bacterial genomic DNA (1 pg) was amplified and sequenced, and data obtained were compared to sequencing data obtained directly from genomic DNA. The iMDA DNA and genomic DNA sequencing had comparable coverage 99.98% of the reference genome at ≥1X coverage and 99.9% at ≥5X coverage while maintaining both balance

  15. Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification.

    PubMed

    Li, Fan; Liu, Xiaoguo; Zhao, Bin; Yan, Juan; Li, Qian; Aldalbahi, Ali; Shi, Jiye; Song, Shiping; Fan, Chunhai; Wang, Lihua

    2017-05-10

    Isothermal amplification is an efficient way to amplify DNA with high accuracy; however, the real-time monitoring for quantification analysis mostly relied on expensive and precisely designed probes. In the present study, a graphene oxide (GO)-based nanoprobe was used to real-time monitor the isothermal amplification process. The interaction between GO and different DNA structures was systematically investigated, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), DNA 3-helix, and long rolling circle amplification (RCA) and hybridization chain reaction (HCR) products, which existed in one-, two-, and three-dimensional structures. It was found that the high rigid structures exhibited much lower affinity with GO than soft ssDNA, and generally the rigidity was dependent on the length of targets and the hybridization position with probe DNA. On the basis of these results, we successfully monitored HCR amplification process, RCA process, and the enzyme restriction of RCA products with GO nanoprobe; other applications including the detection of the assembly/disassembly of DNA 3-helix structures were also performed. Compared to the widely used end-point detection methods, the GO-based sensing platform is simple, sensitive, cost-effective, and especially in a real-time monitoring mode. We believe such studies can provide comprehensive understandings and evocation on design of GO-based biosensors for broad application in various fields.

  16. Amplification of the NSD3-BRD4-CHD8 pathway in pelvic high-grade serous carcinomas of tubo-ovarian and endometrial origin.

    PubMed

    Jones, Derek H; Lin, Douglas I

    2017-08-01

    Identification of novel therapeutics in pelvic high-grade serous carcinoma (HGSC) has been hampered by a paucity of actionable point mutations in target genes. The aim of the present study was to investigate the extent of amplification of the therapeutically targetable NSD3-CHD8-BRD4 pathway in pelvic HGSC, and to determine whether amplification is associated with worse prognosis. The Cancer Genome Atlas (TCGA) ovarian and endometrial cancer cohorts were retrospectively analyzed via online data-mining tools to test the association of NSD3 , CHD8 and BRD4 genomic alterations with survival of pelvic HGSC patients. It was demonstrated that amplification of the NSD3-CHD8-BRD4 pathway in the ovarian HGSC cohort (observed in 18% of the cases, 88/489) was significantly associated with worse overall and progression-free survival compared with non-amplified cases. In addition, amplification of NSD3 , CHD8 and BRD4 also occurred in 9% (21/232) of overall endometrial cancer TCGA cases, which was associated with worse overall survival. In the endometrial cancer TCGA cohort, NSD3 , CHD8 and BRD4 amplification occurred specifically in the serous carcinoma (25%, 13/53) and 'serous-like' copy number high endometrial carcinoma (33%, 20/60) subgroups, compared with the polymerase e (0%, 0/17), microsatellite instability high (0%, 0/65) or low copy number (1%, 1/90) subgroups. These findings support the hypothesis that amplification of the NSD3-BRD4-CDH8 axis is frequent in pelvic HGSC of both ovarian and endometrial origin, and that this pathway is potentially targetable in a subset of HGSC patients.

  17. Comparison of HER2 gene amplification and KRAS alteration in eyelid sebaceous carcinomas with that in other eyelid tumors.

    PubMed

    Kwon, Mi Jung; Shin, Hyung Sik; Nam, Eun Sook; Cho, Seong Jin; Lee, Min Joung; Lee, Samuel; Park, Hye-Rim

    2015-05-01

    Eyelid sebaceous carcinoma (SC) represents a highly aggressive malignancy. Despite the poor prognosis, genetic alterations as potential molecular targets are not available. KRAS mutation and HER2 gene amplification may be candidates related to their genetic alterations. We examined the HER2 and KRAS alteration status in eyelid SCs and compared it with that in other eyelid tumors. The controversial topics of the human papillomavirus (HPV) and p16 expression were also investigated. HER2 amplification was determined by silver in situ hybridization, while immunohistochemistry was performed to study protein expressions in 14 SCs and controls, including 23 other eyelid malignancies and 14 benign tumors. Peptide nucleic acid-mediated PCR clamping and direct sequencing were used to detect KRAS mutations. HER2 protein overexpression was observed in 85.7% (12/14) of the SCs, of which two-thirds showed HER2 gene amplification. HER2 protein overexpression and HER2 amplification were found more frequently in eyelid SCs than in other eyelid tumors. All SCs harbored wild type KRAS genes. No HPV infections were identified in the SCs. Nevertheless, p16 overexpression was found in 71.4% (10/14) of SCs, irrespective of the status of HPV infection. Furthermore, p16 overexpression in eyelid SCs was also significantly higher than that in other eyelid tumors. HER2 protein overexpression, HER2 gene amplifications, and wild type KRAS genes are common in eyelid SCs. HER2 gene amplification may represent potential therapeutic targets for the treatment of eyelid SCs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. MET Amplification Identifies a Small and Aggressive Subgroup of Esophagogastric Adenocarcinoma With Evidence of Responsiveness to Crizotinib

    PubMed Central

    Lennerz, Jochen K.; Kwak, Eunice L.; Ackerman, Allison; Michael, Michael; Fox, Stephen B.; Bergethon, Kristin; Lauwers, Gregory Y.; Christensen, James G.; Wilner, Keith D.; Haber, Daniel A.; Salgia, Ravi; Bang, Yung-Jue; Clark, Jeffrey W.; Solomon, Benjamin J.; Iafrate, A. John

    2011-01-01

    Purpose Amplification of the MET proto-oncogene in gastroesophageal cancer (GEC) may constitute a molecular marker for targeted therapy. We examined a GEC cohort with follow-up and reported the clinical response of four additional patients with MET-amplified tumors to the small molecule inhibitor crizotinib as part of an expanded phase I cohort study. Patients and Methods From 2007 to 2009, patients with GEC were genetically screened as a consecutive series of 489 tumors (stages 0, I, and II, 39%; III, 25%; IV, 36%; n = 222 esophageal, including n = 21 squamous carcinomas). MET, EGFR, and HER2 amplification status was assessed by using fluorescence in situ hybridization. Results Ten (2%) of 489 patients screened harbored MET amplification; 23 (4.7%) harbored EGFR amplification; 45 (8.9%) harbored HER2 amplification; and 411 (84%) were wild type for all three genes (ie, negative). MET-amplified tumors were typically high-grade adenocarcinomas that presented at advanced stages (5%; n = 4 of 80). EGFR-amplified tumors showed the highest fraction of squamous cell carcinoma (17%; n = 4 of 23). HER2, MET, and EGFR amplification were, with one exception (MET and EGFR positive), mutually exclusive events. Survival analysis in patients with stages III and IV disease showed substantially shorter median survival in MET/EGFR-amplified groups, with a rank order for all groups by median survival (from most to least aggressive): MET (7.1 months; P < .001) less than EGFR (11.2 months; P = .16) less than HER2 (16.9 months; P = .89) when compared with the negative group (16.2 months). Two of four patients with MET-amplified tumors treated with crizotinib experienced tumor shrinkage (−30% and −16%) and experienced progression after 3.7 and 3.5 months. Conclusion MET amplification defines a small and aggressive subset of GEC with indications of transient sensitivity to the targeted MET inhibitor crizotinib (PF-02341066). PMID:22042947

  19. Rapid detection of newly isolated Tembusu-related Flavivirus by reverse-transcription loop-mediated isothermal amplification assay

    PubMed Central

    2011-01-01

    Background From April 2010 to January 2011, a severe new viral disease had devastated most duck-farming regions in China. This disease affected not only laying ducks but also meat ducks, causing huge economic losses for the poultry industry. The objective of this study is to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of the new virus related to Tembusu-related Flavivirus. Results The RT-LAMP assay is very simple and rapid, and the amplification can be completed within 50 min under isothermal conditions at 63°C by a set of 6 primers targeting the E gene based on the sequences analysis of the newly isolated viruses and other closely related Flavivirus.The monitoring of gene amplification can also be visualized by using SYBR green I fluorescent dye. In addition, the RT-LAMP assay for newly isolated Tembusu-related Flavivirus showed higher sensitivity with an RNA detection-limit of 2 copies/μL compared with 190 copies/μL of the conventional RT-PCR method. The specificity was identified without cross reaction to other common avian pathogens. By screening a panel of clinical samples this method was more feasible in clinical settings and there was higher positive coincidence rate than conventional RT-PCR and virus isolation. Conclusion The RT-LAMP assay for newly isolated Tembusu-related Flavivirus is a valuable tool for the rapid and real-time detection not only in well-equipped laboratories but also in general conditions. PMID:22185513

  20. Construction and Evaluation of Internal Control DNA for PCR Amplification of Chlamydia trachomatis DNA from Urine Samples

    PubMed Central

    Betsou, Fotini; Beaumont, Katy; Sueur, Jean Marie; Orfila, Jeanne

    2003-01-01

    An internal control DNA (ICD) with the same primer binding sequences as the target Chlamydia trachomatis DNA was constructed and evaluated in a PCR assay with immunoenzymatic detection. One hundred urine specimens were tested, and 23 were found to contain inhibitors of the PCR, if not subjected to DNA extraction prior to amplification. Coamplification and detection of the ICD appeared to be a useful method for estimating the effects of inhibitors on C. trachomatis DNA amplification. PMID:12624066

  1. Cascade DNA nanomachine and exponential amplification biosensing.

    PubMed

    Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee

    2015-11-15

    DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites.

    PubMed

    Jia, Xianbo; Lin, Xinjian; Chen, Jichen

    2017-11-02

    Current genome walking methods are very time consuming, and many produce non-specific amplification products. To amplify the flanking sequences that are adjacent to Tn5 transposon insertion sites in Serratia marcescens FZSF02, we developed a genome walking method based on TAIL-PCR. This PCR method added a 20-cycle linear amplification step before the exponential amplification step to increase the concentration of the target sequences. Products of the linear amplification and the exponential amplification were diluted 100-fold to decrease the concentration of the templates that cause non-specific amplification. Fast DNA polymerase with a high extension speed was used in this method, and an amplification program was used to rapidly amplify long specific sequences. With this linear and exponential TAIL-PCR (LETAIL-PCR), we successfully obtained products larger than 2 kb from Tn5 transposon insertion mutant strains within 3 h. This method can be widely used in genome walking studies to amplify unknown sequences that are adjacent to known sequences.

  3. Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method.

    PubMed

    Kim, Eun-Young; Stanton, Jennifer; Korber, Bette T M; Krebs, Kendall; Bogdan, Derek; Kunstman, Kevin; Wu, Samuel; Phair, John P; Mirkin, Chad A; Wolinsky, Steven M

    2008-06-01

    Detection of HIV-1 in patients is limited by the sensitivity and selectivity of available tests. The nanotechnology-based bio-barcode-amplification method offers an innovative approach to detect specific HIV-1 antigens from diverse HIV-1 subtypes. We evaluated the efficacy of this protein-detection method in detecting HIV-1 in men enrolled in the Chicago component of the Multicenter AIDS Cohort Study (MACS). The method relies on magnetic microparticles with antibodies that specifically bind the HIV-1 p24 Gag protein and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the microparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes (hundreds per target) were identified by a nanoparticle-based detection method that does not rely on PCR. Of 112 plasma samples from HIV-1-infected subjects, 111 were positive for HIV-1 p24 Gag protein (range: 0.11-71.5 ng/ml of plasma) by the bio-barcode-amplification method. HIV-1 p24 Gag protein was detected in only 23 out of 112 men by the conventional ELISA. A total of 34 uninfected subjects were negative by both tests. Thus, the specificity of the bio-barcode-amplification method was 100% and the sensitivity 99%. The bio-barcode-amplification method detected HIV-1 p24 Gag protein in plasma from all study subjects with less than 200 CD4(+) T cells/microl of plasma (100%) and 19 out of 20 (95%) HIV-1-infected men who had less than 50 copies/ml of plasma of HIV-1 RNA. In a separate group of 60 diverse international isolates, representative of clades A, B, C and D and circulating recombinant forms CRF01_AE and CRF02_AG, the bio-barcode-amplification method identified the presence of virus correctly. The bio-barcode-amplification method was superior to the conventional ELISA assay for the detection of HIV-1 p24 Gag protein in plasma with a breadth of coverage for diverse

  4. Gene amplification confers glyphosate resistance in Amaranthus palmeri

    PubMed Central

    Gaines, Todd A.; Zhang, Wenli; Wang, Dafu; Bukun, Bekir; Chisholm, Stephen T.; Shaner, Dale L.; Nissen, Scott J.; Patzoldt, William L.; Tranel, Patrick J.; Culpepper, A. Stanley; Grey, Timothy L.; Webster, Theodore M.; Vencill, William K.; Sammons, R. Douglas; Jiang, Jiming; Preston, Christopher; Leach, Jan E.; Westra, Philip

    2009-01-01

    The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology. PMID:20018685

  5. Development of loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Penicillium nordicum in dry-cured meat products.

    PubMed

    Ferrara, M; Perrone, G; Gallo, A; Epifani, F; Visconti, A; Susca, A

    2015-06-02

    The need of powerful diagnostic tools for rapid, simple, and cost-effective detection of food-borne fungi has become very important in the area of food safety. Currently, several isothermal nucleic acid amplification methods have been developed as an alternative to PCR-based analyses. Loop-mediated isothermal amplification (LAMP) is one of these innovative methods; it requires neither gel electrophoresis to separate and visualize the products nor expensive laboratory equipment and it has been applied already for detection of pathogenic organisms. In the current study, we developed a LAMP assay for the specific detection of Penicillium nordicum, the major causative agent of ochratoxin A contamination in protein-rich food, especially dry-cured meat products. The assay was based on targeting otapksPN gene, a key gene in the biosynthesis of ochratoxin A (OTA) in P. nordicum. Amplification of DNA during the reaction was detected directly in-tube by color transition of hydroxynaphthol blue from violet to sky blue, visible to the naked eye, avoiding further post amplification analyses. Only DNAs isolated from several P. nordicum strains led to positive results and no amplification was observed from non-target OTA and non OTA-producing strains. The assay was able to detect down to 100 fg of purified targeted genomic DNA or 10(2) conidia/reaction within 60 min. The LAMP assay for detection and identification of P. nordicum was combined with a rapid DNA extraction method set up on serially diluted conidia, providing an alternative rapid, specific and sensitive DNA-based method suitable for application directly "on-site", notably in key steps of dry-cured meat production. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity.

    PubMed

    Liu, Wanli; Li, Jianpei; Wu, Yixian; Xing, Shan; Lai, Yanzhen; Zhang, Ge

    2018-04-15

    Tumor-derived exosomes (TEXs) are extracellular vesicles that are continuously released into the blood by tumor cells and carry specific surface markers of the original tumor cells. Substantial evidence has implicated TEXs as attractive diagnostic markers for cancer. However, the detection of TEXs in blood at an early tumor stage is challenging due to their very low concentration. Here, we established a method called PLA-RPA-TMA assay that allows TEXs to be detected with high sensitivity and specificity. Based on two proximity ligation assay (PLA) probes that recognize a biomarker on a TEX, we generated a unique surrogate DNA signal for the specific biomarker, which was synchronously amplified twice by recombinase polymerase amplification (RPA) coupled with transcription-mediated amplification (TMA), and then the products of the RPA-TMA reaction were quantitatively detected using a gold nanoparticle-based colorimetric assay. We established proof-of-concept evidence for this approach using TEXs from nasopharyngeal carcinoma (NPC) cells, with a detection limit of 10 2 particles/mL, and reported the measurement of plasma Epstein-Barr virus latent membrane protein 1 (LPM1)-positive (LMP1 + , accuracy: 0.956) and epidermal growth factor receptor (EGFR)-positive (EGFR + , accuracy: 0.906) TEXs as potent early diagnostic biomarkers for NPC. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Single palindromic molecular beacon-based amplification for genetic analysis of cancers.

    PubMed

    Li, Feng; Zhao, Hui; Wang, Zheng-Yong; Wu, Zai-Sheng; Yang, Zhe; Li, Cong-Cong; Xu, Huo; Lyu, Jian-Xin; Shen, Zhi-Fa

    2017-05-15

    The detection of biomarkers is of crucial importance in reducing the morbidity and mortality of complex diseases. Thus, there is a great desire to develop highly efficient and simple sensing methods to fulfill the different diagnostic and therapeutic purposes. Herein, using tumor suppressor p53 gene as model target DNA, we developed a novel palindromic fragment-incorporated molecular beacon (P-MB) that can perform multiple functions, including recognition element, signal reporter, polymerization template and primer. Upon specific hybridization with target DNA, P-MBs can interact with each other and are extended by polymerase without any additional probes. As a result, hybridized targets are peeled off from P-MBs and initiate the next round of reactions, leading to the unique strand displacement amplification (SDA). The newly-proposed enzymatic amplification displays the detection limit as low as 100pM and excellent selectivity in distinguishing single-base mutation with the linear response range from 100pM to 75nM. This is the simplest SDA sensing system so far because of only involving one type of DNA probe. This impressive sensing paradigm is expected to provide new insight into developing new-type of DNA probes that hold tremendous potential with important applications in molecular biology research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    PubMed

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  9. Linear nicking endonuclease-mediated strand-displacement DNA amplification.

    PubMed

    Joneja, Aric; Huang, Xiaohua

    2011-07-01

    We describe a method for linear isothermal DNA amplification using nicking endonuclease-mediated strand displacement by a DNA polymerase. The nicking of one strand of a DNA target by the endonuclease produces a primer for the polymerase to initiate synthesis. As the polymerization proceeds, the downstream strand is displaced into a single-stranded form while the nicking site is also regenerated. The combined continuous repetitive action of nicking by the endonuclease and strand-displacement synthesis by the polymerase results in linear amplification of one strand of the DNA molecule. We demonstrate that DNA templates up to 5000 nucleotides can be linearly amplified using a nicking endonuclease with 7-bp recognition sequence and Sequenase version 2.0 in the presence of single-stranded DNA binding proteins. We also show that a mixture of three templates of 500, 1000, and 5000 nucleotides in length is linearly amplified with the original molar ratios of the templates preserved. Moreover, we demonstrate that a complex library of hydrodynamically sheared genomic DNA from bacteriophage lambda can be amplified linearly. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Linear nicking endonuclease-mediated strand displacement DNA amplification

    PubMed Central

    Joneja, Aric; Huang, Xiaohua

    2011-01-01

    We describe a method for linear isothermal DNA amplification using nicking endonuclease-mediated strand displacement by a DNA polymerase. The nicking of one strand of a DNA target by the endonuclease produces a primer for the polymerase to initiate synthesis. As the polymerization proceeds, the downstream strand is displaced into a single-stranded form while the nicking site is also regenerated. The combined continuous repetitive action of nicking by the endonuclease and strand displacement synthesis by the polymerase results in linear amplification of one strand of the DNA molecule. We demonstrate that DNA templates up to five thousand nucleotides can be linearly amplified using a nicking endonuclease with seven base-pair recognition sequence and Sequenase version 2.0 in the presence of single-stranded DNA binding proteins. We also show that a mixture of three templates of 500, 1000, and 5000 nucleotides in length are linearly amplified with the original molar ratios of the templates preserved. Moreover, we demonstrate that a complex library of hydrodynamically sheared genomic DNA from bacteriophage lambda can be amplified linearly. PMID:21342654

  11. Profiling In Situ Microbial Community Structure with an Amplification Microarray

    PubMed Central

    Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.

    2013-01-01

    The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129

  12. Comparison of the rolling circle amplification and ligase-dependent reaction methods for the identification of opportunistic Exophiala species.

    PubMed

    Kaplan, Engin; Ilkit, Macit; de Hoog, G Sybren

    2017-10-26

    We developed two ligase-dependent probe amplification assays based on rolling circle amplification (RCA) and the ligase-dependent reaction (LDR) to differentiate species of Exophiala targeting the rDNA internal transcribed spacer region. We focused on Exophiala dermatitidis and E. phaeomuriformis, two opportunistic inhabitants of indoor wet cells, and further detected E. heteromorpha, E. xenobiotica, and E. crusticola; 57 reference isolates representing the five species were tested. Depending on the RCA probes used, the sensitivity was 100%, and the specificity ranged from 3.7% to 88.6% (median: 46.1%). In contrast, the sensitivity and specificity of the LDR probes targeting the same isolates were 88.6-100% (median: 95.8%) and 95.4-100% (median: 97.7%), respectively. We analyzed 198 additional environmental isolates representing the same Exophiala species. Overall, the sensitivity and specificity of LDR ranged from 89.7% to 100% (median: 94.1%) and from 93.9% to 100% (median: 96.9%), respectively. The assessment of performance and validation of LDR probes using SYBR Green quantitative polymerase chain reaction revealed high reproducibility and an acceptable range limit, in line with the guidelines of the European Network of GMO Laboratories. In conclusion, the LDR assay was more reliable and less expensive than RCA for species-level identification of Exophiala isolates. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Self-Assembled DNA Tetrahedral Scaffolds for the Construction of Electrochemiluminescence Biosensor with Programmable DNA Cyclic Amplification.

    PubMed

    Feng, Qiu-Mei; Guo, Yue-Hua; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-05-24

    A novel DNA tetrahedron-structured electrochemiluminescence (ECL) platform for bioanalysis with programmable DNA cyclic amplification was developed. In this work, glucose oxidase (GOD) was labeled to a DNA sequence (S) as functional conjugation (GOD-S), which could hybridize with other DNA sequences (L and P) to form GOD-S:L:P probe. In the presence of target DNA and a help DNA (A), the programmable DNA cyclic amplification was activated and released GOD-S via toehold-mediated strand displacement. Then, the obtained GOD-S was further immobilized on the DNA tetrahedral scaffolds with a pendant capture DNA and Ru(bpy) 3 2+ -conjugated silica nanoparticles (RuSi NPs) decorated on the electrode surface. Thus, the amount of GOD-S assembled on the electrode surface depended on the concentration of target DNA and GOD could catalyze glucose to generate H 2 O 2 in situ. The ECL signal of Ru(bpy) 3 2+ -TPrA system was quenched by the presence of H 2 O 2 . By integrating the programmable DNA cyclic amplification and in situ generating H 2 O 2 as Ru(bpy) 3 2+ ECL quencher, a sensitive DNA tetrahedron-structured ECL sensing platform was proposed for DNA detection. Under optimized conditions, this biosensor showed a wide linear range from 100 aM to 10 pM with a detection limit of 40 aM, indicating a promising application in DNA analysis. Furthermore, by labeling GOD to different recognition elements, the proposed strategy could be used for the detection of various targets. Thus, this programmable cascade amplification strategy not only retains the high selectivity and good capturing efficiency of tetrahedral-decorated electrode surface but also provides potential applications in the construction of ECL biosensor.

  14. Simplified Real-Time Multiplex Detection of Loop-Mediated Isothermal Amplification Using Novel Mediator Displacement Probes with Universal Reporters.

    PubMed

    Becherer, Lisa; Bakheit, Mohammed; Frischmann, Sieghard; Stinco, Silvina; Borst, Nadine; Zengerle, Roland; von Stetten, Felix

    2018-04-03

    A variety of real-time detection techniques for loop-mediated isothermal amplification (LAMP) based on the change in fluorescence intensity during DNA amplification enable simultaneous detection of multiple targets. However, these techniques depend on fluorogenic probes containing target-specific sequences. That complicates the adaption to different targets leading to time-consuming assay optimization. Here, we present the first universal real-time detection technique for multiplex LAMP. The novel approach allows simple assay design and is easy to implement for various targets. The innovation features a mediator displacement probe and a universal reporter. During amplification of target DNA the mediator is displaced from the mediator displacement probe. Then it hybridizes to the reporter generating a fluorescence signal. The novel mediator displacement (MD) detection was validated against state-of-the-art molecular beacon (MB) detection by means of a HIV-1 RT-LAMP: MD surpassed MB detection by accelerated probe design (MD: 10 min, MB: 3-4 h), shorter times to positive (MD 4.1 ± 0.1 min shorter than MB, n = 36), improved signal-to-noise fluorescence ratio (MD: 5.9 ± 0.4, MB: 2.7 ± 0.4; n = 15), and showed equally good or better analytical performance parameters. The usability of one universal mediator-reporter set in different multiplex assays was successfully demonstrated for a biplex RT-LAMP of HIV-1 and HTLV-1 and a biplex LAMP of Haemophilus ducreyi and Treponema pallidum, both showing good correlation between target concentration and time to positive. Due to its simple implementation it is suggested to extend the use of the universal mediator-reporter sets to the detection of various other diagnostic panels.

  15. Novel One-Tube-One-Step Real-Time Methodology for Rapid Transcriptomic Biomarker Detection: Signal Amplification by Ternary Initiation Complexes.

    PubMed

    Fujita, Hiroto; Kataoka, Yuka; Tobita, Seiji; Kuwahara, Masayasu; Sugimoto, Naoki

    2016-07-19

    We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.

  16. New insights into siRNA amplification and RNAi

    PubMed Central

    Zhang, Chi; Ruvkun, Gary

    2012-01-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes. PMID:22858672

  17. New insights into siRNA amplification and RNAi.

    PubMed

    Zhang, Chi; Ruvkun, Gary

    2012-08-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes.

  18. Simultaneous identification and DNA barcoding of six Eimeria species infecting turkeys using PCR primers targeting the mitochondrial cytochrome c oxidase subunit I (mtCOI) locus.

    PubMed

    Hafeez, Mian A; Shivaramaiah, Srichaitanya; Dorsey, Kristi Moore; Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Cobean, Julie; Barta, John R

    2015-05-01

    Species-specific PCR primers targeting the mitochondrial cytochrome c oxidase subunit I (mtCOI) locus were generated that allow for the specific identification of the most common Eimeria species infecting turkeys (i.e., Eimeria adenoeides, Eimeria meleagrimitis, Eimeria gallopavonis, Eimeria meleagridis, Eimeria dispersa, and Eimeria innocua). PCR reaction chemistries were optimized with respect to divalent cation (MgCl2) and dNTP concentrations, as well as PCR cycling conditions (particularly anneal temperature for primers). Genomic DNA samples from single oocyst-derived lines of six Eimeria species were tested to establish specificity and sensitivity of these newly designed primer pairs. A mixed 60-ng total DNA sample containing 10 ng of each of the six Eimeria species was used as DNA template to demonstrate specific amplification of the correct product using each of the species-specific primer pairs. Ten nanograms of each of the five non-target Eimeria species was pooled to provide a non-target, control DNA sample suitable to test the specificity of each primer pair. The amplifications of the COI region with species-specific primer pairs from pooled samples yielded products of expected sizes (209 to 1,012 bp) and no amplification of non-target Eimeria sp. DNA was detected using the non-target, control DNA samples. These primer pairs specific for Eimeria spp. of turkeys did not amplify any of the seven Eimeria species infecting chickens. The newly developed PCR primers can be used as a diagnostic tool capable of specifically identifying six turkey Eimeria species; additionally, sequencing of the PCR amplification products yields sequence-based genotyping data suitable for identification and molecular phylogenetics.

  19. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification.

    PubMed

    Silva, Gonçalo; Bömer, Moritz; Nkere, Chukwuemeka; Kumar, P Lava; Seal, Susan E

    2015-09-15

    Yam mosaic virus (YMV; genus Potyvirus) is considered to cause the most economically important viral disease of yams (Dioscorea spp.) in West Africa which is the dominant region for yam production globally. Yams are a vegetatively propagated crop and the use of virus-free planting material forms an essential component of disease control. Current serological and PCR-based diagnostic methods for YMV are time consuming involving a succession of target detection steps. In this study, a novel assay for specific YMV detection is described that is based on isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA). This test has been shown to be reproducible and able to detect as little as 14 pg/μl of purified RNA obtained from an YMV-infected plant, a sensitivity equivalent to that obtained with the reverse transcription-polymerase chain reaction (RT-PCR) in current general use. The RT-exoRPA assay has, however, several advantages over the RT-PCR; positive samples can be detected in less than 30 min, and amplification only requires a single incubation temperature (optimum 37°C). These features make the RT-exoRPA assay a promising candidate for adapting into a field test format to be used by yam breeding programmes or certification laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Solid-Phase Nucleic Acid Sequence-Based Amplification and Length-Scale Effects during RNA Amplification.

    PubMed

    Ma, Youlong; Teng, Feiyue; Libera, Matthew

    2018-06-05

    Solid-phase oligonucleotide amplification is of interest because of possible applications to next-generation sequencing, multiplexed microarray-based detection, and cell-free synthetic biology. Its efficiency is, however, less than that of traditional liquid-phase amplification involving unconstrained primers and enzymes, and understanding how to optimize the solid-phase amplification process remains challenging. Here, we demonstrate the concept of solid-phase nucleic acid sequence-based amplification (SP-NASBA) and use it to study the effect of tethering density on amplification efficiency. SP-NASBA involves two enzymes, avian myeloblastosis virus reverse transcriptase (AMV-RT) and RNase H, to convert tethered forward and reverse primers into tethered double-stranded DNA (ds-DNA) bridges from which RNA - amplicons can be generated by a third enzyme, T7 RNA polymerase. We create microgels on silicon surfaces using electron-beam patterning of thin-film blends of hydroxyl-terminated and biotin-terminated poly(ethylene glycol) (PEG-OH, PEG-B). The tethering density is linearly related to the PEG-B concentration, and biotinylated primers and molecular beacon detection probes are tethered to streptavidin-activated microgels. While SP-NASBA is very efficient at low tethering densities, the efficiency decreases dramatically with increasing tethering density due to three effects: (a) a reduced hybridization efficiency of tethered molecular beacon detection probes; (b) a decrease in T7 RNA polymerase efficiency; (c) inhibition of T7 RNA polymerase activity by AMV-RT.

  1. A cascade signal amplification strategy for surface enhanced Raman spectroscopy detection of thrombin based on DNAzyme assistant DNA recycling and rolling circle amplification.

    PubMed

    Gao, Fenglei; Du, Lili; Tang, Daoquan; Lu, Yao; Zhang, Yanzhuo; Zhang, Lixian

    2015-04-15

    A sensitive protocol for surface enhanced Raman spectroscopy (SERS) detection of thrombin is designed with R6G-Ag NPs as a signal tag by combining DNAzyme assistant DNA recycling and rolling circle amplification (RCA). Molecular beacon (MB) as recognition probe immobilizes on the glass slides and performs the amplification procedure. After thrombin-induced structure-switching DNA hairpins of probe 1, the DNAzyme is liberated from the caged structure, which hybridizes with the MB for cleavage of the MB in the presence of cofactor Zn(2+) and initiates the DNA recycling process, leading to the cleavage of a large number of MB and the generation of numerous primers for triggering RCA reaction. The long amplified RCA product which contained hundreds of tandem-repeat sequences, which can bind with oligonucleotide functionalized Ag NPs reporters. The attached signal tags can be easily read out by SERS. Because of the cascade signal amplification, these newly designed protocols provides a sensitive SERS detection of thrombin down to the femolar level (2.3fM) with a linear range of 5 orders of magnitude (from 10(-14) to 10(-9)M) and have high selectivity toward its target protein. The proposed method is expected to be a good clinical tool for the diagnosis of a thrombotic disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    PubMed

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-07

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  3. Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification.

    PubMed

    Shuai, Hong-Lei; Huang, Ke-Jing; Xing, Ling-Li; Chen, Ying-Xu

    2016-12-15

    An ultrasensitive electrochemical biosensor for microRNA (miRNA) is developed based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. WO3-Gr is prepared by a simple hydrothermal method and then coupled with gold nanoparticles to act as a sensing platform. The thiol-terminated capture probe H1 is immobilized on electrode through Au-S interaction. In the presence of target miRNA, H1 opens its hairpin structure by hybridization with target miRNA. This hybridization can be displaced from the structure by another stable biotinylated hairpin DNA (H2), and target miRNA is released back to the sample solution for next cycle. Thus, a large amount of H1-H2 duplex is produced after the cyclic process. At this point, a lot of signal indicators streptavidin-conjugated alkaline phosphatase (SA-ALP) are immobilized on the electrode by the specific binding of avidin-biotin. Then, thousands of ascorbic acid, which is the enzymatic product of ALP, induces the electrochemical-chemical-chemical redox cycling to produce a strongly electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under the optimal experimental conditions, the established biosensor can detect target miRNA down to 0.05fM (S/N=3) with a linear range from 0.1fM to 100pM, and discriminate target miRNA from mismatched miRNA with a high selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Multiplex amplification of large sets of human exons.

    PubMed

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  5. A Complementary Isothermal Amplification Method to the U.S. EPA Quantitative Polymerase Chain Reaction Approach for the Detection of Enterococci in Environmental Waters

    PubMed Central

    2017-01-01

    We report a novel molecular assay, based on helicase-dependent amplification (HDA), for the detection of enterococci as markers for fecal pollution in water. This isothermal assay targets the same Enterococcus 23S rRNA gene region as the existing quantitative polymerase chain reaction (qPCR) assays of U.S. Environmental Protection Agency Methods 1611 and 1609 but can be entirely performed on a simple heating block. The developed Enterococcus HDA assay successfully discriminated 15 enterococcal from 15 non-enterococcal reference strains and reliably detected 48 environmental isolates of enterococci. The limit of detection was 25 target copies per reaction, only 3 times higher than that of qPCR. The applicability of the assay was tested on 30 environmental water sample DNA extracts, simulating a gradient of fecal pollution. Despite the isothermal nature of the reaction, the HDA results were consistent with those of the qPCR reference. Given this performance, we conclude that the developed Enterococcus HDA assay has great potential as a qualitative molecular screening method for resource-limited settings when combined with compatible up- and downstream processes. This amplification strategy can pave the way for developing a new generation of rapid, low-cost, and field-deployable molecular diagnostic tools for water quality monitoring. PMID:28541661

  6. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    PubMed

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples.

  7. Annexin A9 (ANXA9) biomarker and therapeutic target in epithelial cancer

    DOEpatents

    Hu, Zhi [El Cerrito, CA; Kuo, Wen-Lin [San Ramon, CA; Neve, Richard M [San Mateo, CA; Gray, Joe W [San Francisco, CA

    2012-06-12

    Amplification of the ANXA9 gene in human chromosomal region 1q21 in epithelial cancers indicates a likelihood of both in vivo drug resistance and metastasis, and serves as a biomarker indicating these aspects of the disease. ANXA9 can also serve as a therapeutic target. Interfering RNAs (iRNAs) (such as siRNA and miRNA) and shRNA adapted to inhibit ANXA9 expression, when formulated in a therapeutic composition, and delivered to cells of the tumor, function to treat the epithelial cancer.

  8. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification

    PubMed Central

    Maruyama, Toru; Yamagishi, Keisuke; Mori, Tetsushi; Takeyama, Haruko

    2015-01-01

    Whole genome amplification (WGA) is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA), using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL) within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples. PMID:26389587

  9. Evaluating whole transcriptome amplification for gene profiling experiments using RNA-Seq.

    PubMed

    Faherty, Sheena L; Campbell, C Ryan; Larsen, Peter A; Yoder, Anne D

    2015-07-30

    RNA-Seq has enabled high-throughput gene expression profiling to provide insight into the functional link between genotype and phenotype. Low quantities of starting RNA can be a severe hindrance for studies that aim to utilize RNA-Seq. To mitigate this bottleneck, whole transcriptome amplification (WTA) technologies have been developed to generate sufficient sequencing targets from minute amounts of RNA. Successful WTA requires accurate replication of transcript abundance without the loss or distortion of specific mRNAs. Here, we test the efficacy of NuGEN's Ovation RNA-Seq V2 system, which uses linear isothermal amplification with a unique chimeric primer for amplification, using white adipose tissue from standard laboratory rats (Rattus norvegicus). Our goal was to investigate potential biological artifacts introduced through WTA approaches by establishing comparisons between matched raw and amplified RNA libraries derived from biological replicates. We found that 93% of expressed genes were identical between all unamplified versus matched amplified comparisons, also finding that gene density is similar across all comparisons. Our sequencing experiment and downstream bioinformatic analyses using the Tuxedo analysis pipeline resulted in the assembly of 25,543 high-quality transcripts. Libraries constructed from raw RNA and WTA samples averaged 15,298 and 15,253 expressed genes, respectively. Although significant differentially expressed genes (P < 0.05) were identified in all matched samples, each of these represents less than 0.15% of all shared genes for each comparison. Transcriptome amplification is efficient at maintaining relative transcript frequencies with no significant bias when using this NuGEN linear isothermal amplification kit under ideal laboratory conditions as presented in this study. This methodology has broad applications, from clinical and diagnostic, to field-based studies when sample acquisition, or sample preservation, methods prove

  10. Ultrasensitive electrochemical detection of DNA based on Zn²⁺ assistant DNA recycling followed with hybridization chain reaction dual amplification.

    PubMed

    Qian, Yong; Wang, Chunyan; Gao, Fenglei

    2015-01-15

    A new strategy to combine Zn(2+) assistant DNA recycling followed with hybridization chain reaction dual amplification was designed for highly sensitive electrochemical detection of target DNA. A gold electrode was used to immobilize molecular beacon (MB) as the recognition probe and perform the amplification procedure. In the presence of the target DNA, the hairpin probe 1 was opened, and the DNAzyme was liberated from the caged structure. The activated DNAzyme hybridized with the MB and catalyzed its cleavage in the presence of Zn(2+) cofactor and resulting in a free DNAzyme strand. Finally, each target-induced activated DNAzyme underwent many cycles triggering the cleavage of MB, thus forming numerous MB fragments. The MB fragments triggered the HCR and formed a long double-helix DNA structure. Because both H1 and H2 were labeled by biotin, a lot of SA-ALP was captured on the electrode surface, thus catalyzing a silver deposition process for electrochemical stripping analysis. This novel cascade signal amplification strategy can detect target DNA down to the attomolar level with a dynamic range spanning 6 orders of magnitude. This highly sensitive and specific assay has a great potential to become a promising DNA quantification method in biomedical research and clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Targeting vector construction through recombineering.

    PubMed

    Malureanu, Liviu A

    2011-01-01

    Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.

  12. [Synthesis of Circular DNA Templates with T4 RNA Ligase for Rolling Circle Amplification].

    PubMed

    Sakhabutdinova, A R; Maksimova, M A; Garafutdinov, R R

    2017-01-01

    Currently, isothermal methods of nucleic acid amplification have been well established; in particular, rolling circle amplification is of great interest. In this approach, circular ssDNA molecules have been used as a target that can be obtained by the intramolecular template-dependent ligation of an oligonucleotide C-probe. Here, a new method of synthesizing small circular DNA molecules via the cyclization of ssDNA based on T4 RNA ligase has been proposed. Circular ssDNA is further used as the template for the rolling circle amplification. The maximum yield of the cyclization products was observed in the presence of 5-10% polyethylene glycol 4000, and the optimum DNA length for the cyclization constituted 50 nucleotides. This highly sensitive method was shown to detect less than 10^(2) circular DNA molecules. The method reliability was proved based on artificially destroyed dsDNA, which suggests its implementation for analyzing any significantly fragmented dsDNA.

  13. Simple Approaches to Minimally-Instrumented, Microfluidic-Based Point-of-Care Nucleic Acid Amplification Tests

    PubMed Central

    Mauk, Michael G.; Song, Jinzhao; Liu, Changchun; Bau, Haim H.

    2018-01-01

    Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges (‘chips’) that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed. PMID:29495424

  14. Dynamical mechanisms of Arctic amplification.

    PubMed

    Dethloff, Klaus; Handorf, Dörthe; Jaiser, Ralf; Rinke, Annette; Klinghammer, Pia

    2018-05-12

    The Arctic has become a hot spot of climate change, but the nonlinear interactions between regional and global scales in the coupled climate system responsible for Arctic amplification are not well understood and insufficiently described in climate models. Here, we compare reanalysis data with model simulations for low and high Arctic sea ice conditions to identify model biases with respect to atmospheric Arctic-mid-latitude linkages. We show that an appropriate description of Arctic sea ice forcing is able to reproduce the observed winter cooling in mid-latitudes as result of improved tropospheric-stratospheric planetary wave propagation triggering a negative phase of the Arctic Oscillation/North Atlantic Oscillation in late winter. © 2018 New York Academy of Sciences.

  15. Enhanced Arctic Amplification Began at the Mid-Brunhes Event ~400,000 years ago.

    PubMed

    Cronin, T M; Dwyer, G S; Caverly, E K; Farmer, J; DeNinno, L H; Rodriguez-Lazaro, J; Gemery, L

    2017-11-03

    Arctic Ocean temperatures influence ecosystems, sea ice, species diversity, biogeochemical cycling, seafloor methane stability, deep-sea circulation, and CO 2 cycling. Today's Arctic Ocean and surrounding regions are undergoing climatic changes often attributed to "Arctic amplification" - that is, amplified warming in Arctic regions due to sea-ice loss and other processes, relative to global mean temperature. However, the long-term evolution of Arctic amplification is poorly constrained due to lack of continuous sediment proxy records of Arctic Ocean temperature, sea ice cover and circulation. Here we present reconstructions of Arctic Ocean intermediate depth water (AIW) temperatures and sea-ice cover spanning the last ~ 1.5 million years (Ma) of orbitally-paced glacial/interglacial cycles (GIC). Using Mg/Ca paleothermometry of the ostracode Krithe and sea-ice planktic and benthic indicator species, we suggest that the Mid-Brunhes Event (MBE), a major climate transition ~ 400-350 ka, involved fundamental changes in AIW temperature and sea-ice variability. Enhanced Arctic amplification at the MBE suggests a major climate threshold was reached at ~ 400 ka involving Atlantic Meridional Overturning Circulation (AMOC), inflowing warm Atlantic Layer water, ice sheet, sea-ice and ice-shelf feedbacks, and sensitivity to higher post-MBE interglacial CO 2 concentrations.

  16. Enhanced Arctic amplification began at the Mid-Brunhes Event 430,000 years ago

    USGS Publications Warehouse

    Cronin, Thomas M.; Dwyer, Gary S.; Caverly, Emma; Farmer, Jesse; DeNinno, Lauren H.; Rodriguez-Lazaro, Julio; Gemery, Laura

    2017-01-01

    Arctic Ocean temperatures influence ecosystems, sea ice, species diversity, biogeochemical cycling, seafloor methane stability, deep-sea circulation, and CO2 cycling. Today's Arctic Ocean and surrounding regions are undergoing climatic changes often attributed to "Arctic amplification" - that is, amplified warming in Arctic regions due to sea-ice loss and other processes, relative to global mean temperature. However, the long-term evolution of Arctic amplification is poorly constrained due to lack of continuous sediment proxy records of Arctic Ocean temperature, sea ice cover and circulation. Here we present reconstructions of Arctic Ocean intermediate depth water (AIW) temperatures and sea-ice cover spanning the last ~ 1.5 million years (Ma) of orbitally-paced glacial/interglacial cycles (GIC). Using Mg/Ca paleothermometry of the ostracode Krithe and sea-ice planktic and benthic indicator species, we suggest that the Mid-Brunhes Event (MBE), a major climate transition ~ 400-350 ka, involved fundamental changes in AIW temperature and sea-ice variability. Enhanced Arctic amplification at the MBE suggests a major climate threshold was reached at ~ 400 ka involving Atlantic Meridional Overturning Circulation (AMOC), inflowing warm Atlantic Layer water, ice sheet, sea-ice and ice-shelf feedbacks, and sensitivity to higher post-MBE interglacial CO2 concentrations.

  17. Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification.

    PubMed

    Ji, Hanxu; Yan, Feng; Lei, Jianping; Ju, Huangxian

    2012-08-21

    An ultrasensitive protocol for electrochemical detection of DNA is designed with quantum dots (QDs) as a signal tag by combining the template enhanced hybridization process (TEHP) and rolling circle amplification (RCA). Upon the recognition of the molecular beacon (MB) to target DNA, the MB hybridizes with assistants and target DNA to form a ternary ''Y-junction''. The target DNA can be dissociated from the structure under the reaction of nicking endonuclease to initiate the next hybridization process. The template enhanced MB fragments further act as the primers of the RCA reaction to produce thousands of repeated oligonucleotide sequences, which can bind with oligonucleotide functionalized QDs. The attached signal tags can be easily read out by square-wave voltammetry after dissolving with acid. Because of the cascade signal amplification and the specific TEHP and RCA reaction, this newly designed protocol provides an ultrasensitive electrochemical detection of DNA down to the attomolar level (11 aM) with a linear range of 6 orders of magnitude (from 1 × 10(-17) to 1 × 10(-11) M) and can discriminate mismatched DNA from perfect matched target DNA with high selectivity. The high sensitivity and specificity make this method a great potential for early diagnosis in gene-related diseases.

  18. MYC gene amplification is a rare event in atypical fibroxanthoma and pleomorphic dermal sarcoma

    PubMed Central

    Bach, Marisa; Kind, Peter; Helbig, Doris; Quaas, Alexander; Utikal, Jochen; Marx, Alexander; Gaiser, Maria Rita

    2018-01-01

    Atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS) are rare malignancies typically occurring in elderly patients and predominantly located in skin regions exposed to UV-light. Thus, a role of UV-radiation-induced damage for AFX and PDS tumorigenesis has been postulated. MYC gene amplification has been demonstrated as a distinctive feature of radiation-induced angiosarcoma. In order to investigate whether chronic exposure to UV-light might also lead to MYC copy number changes, 51 AFX and 24 PDS samples were retrospectively analyzed for MYC amplification by fluorescence in situ hybridization using a MYC and a CEP8 gene probe. Of the 44 analyzable AFX samples, one case showed MYC amplification (defined as a MYC/CEP8 ratio ≥2.0), whereas 13 cases demonstrated low level copy number gains (defined as MYC/CEP8 ratio ≥ 1.2−< 2.0). MYC amplification was seen in an AFX sample of extraordinary tumor thickness of 17.5 mm (vs. median 3.25 mm for all samples). Of the 24 PDS cases, five specimen demonstrated MYC low level copy number gains. Immunohistochemically, neither the AFX nor the PDS cases showed MYC protein expression. In summary, these findings rule out that MYC amplification is a major genetic driver in the process of AFX or PDS tumorigenesis. However, MYC amplification may occur as a late event during AFX development and hence might only be detectable in advanced, thick lesions. PMID:29765529

  19. MYC gene amplification is a rare event in atypical fibroxanthoma and pleomorphic dermal sarcoma.

    PubMed

    Gaiser, Timo; Hirsch, Daniela; Orouji, Azadeh; Bach, Marisa; Kind, Peter; Helbig, Doris; Quaas, Alexander; Utikal, Jochen; Marx, Alexander; Gaiser, Maria Rita

    2018-04-20

    Atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS) are rare malignancies typically occurring in elderly patients and predominantly located in skin regions exposed to UV-light. Thus, a role of UV-radiation-induced damage for AFX and PDS tumorigenesis has been postulated. MYC gene amplification has been demonstrated as a distinctive feature of radiation-induced angiosarcoma. In order to investigate whether chronic exposure to UV-light might also lead to MYC copy number changes, 51 AFX and 24 PDS samples were retrospectively analyzed for MYC amplification by fluorescence in situ hybridization using a MYC and a CEP8 gene probe. Of the 44 analyzable AFX samples, one case showed MYC amplification (defined as a MYC /CEP8 ratio ≥2.0), whereas 13 cases demonstrated low level copy number gains (defined as MYC /CEP8 ratio ≥ 1.2-< 2.0). MYC amplification was seen in an AFX sample of extraordinary tumor thickness of 17.5 mm (vs. median 3.25 mm for all samples). Of the 24 PDS cases, five specimen demonstrated MYC low level copy number gains. Immunohistochemically, neither the AFX nor the PDS cases showed MYC protein expression. In summary, these findings rule out that MYC amplification is a major genetic driver in the process of AFX or PDS tumorigenesis. However, MYC amplification may occur as a late event during AFX development and hence might only be detectable in advanced, thick lesions.

  20. Spin noise amplification and giant noise in optical microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification ofmore » broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.« less

  1. Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection.

    PubMed

    Chen, Anyi; Gui, Guo-Feng; Zhuo, Ying; Chai, Ya-Qin; Xiang, Yun; Yuan, Ruo

    2015-06-16

    A target induced cycling strand displacement amplification (SDA) mediated by phi29 DNA polymerase (phi29) was first investigated and applied in a signal-off electrochemiluminescence (ECL) biosensor for microRNA (miRNA) detection. Herein, the target miRNA triggered the phi29-mediated SDA which could produce amounts of single-stranded DNA (assistant probe) with accurate and comprehensive nucleotide sequence. Then, the assistant probe hybridized with the capture probe and the ferrocene-labeled probe (Fc-probe) to form a ternary "Y" structure for ECL signal quenching by ferrocene. Therefore, the ECL intensity would decrease with increasing concentration of the target miRNA, and the sensitivity of biosensor would be promoted on account of the efficient signal amplification of the target induced cycling reaction. Besides, a self-enhanced Ru(II) ECL system was designed to obtain a stable and strong initial signal to further improve the sensitivity. The ECL assay for miRNA-21 detection is developed with excellent sensitivity of a concentration variation from 10 aM to 1.0 pM and limit of detection down to 3.3 aM.

  2. Amplification of curvature perturbations in cyclic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-12-15

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  3. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus: Geographical distribution and evolutionary origin

    PubMed Central

    Grigoraki, Linda; Pipini, Dimitra; Labbé, Pierrick; Chaskopoulou, Alexandra; Weill, Mylene; Vontas, John

    2017-01-01

    Background Aedes albopictus is one of the most invasive human disease vectors. Its control has been largely based on insecticides, such as the larvicide temephos. Temephos resistance has been associated with the up-regulation, through gene amplification, of two carboxylesterase (CCE) genes closely linked on the genome, capable of sequestering and metabolizing temephos oxon, the activated form of temephos. Principal findings Here, we investigated the occurrence, geographical distribution and origin of the CCE amplicon in Ae. albopictus populations from several geographical regions worldwide. The haplotypic diversity at the CCEae3a locus revealed high polymorphism, while phylogenetic analysis showed an absence of correlation between haplotype similarity and geographic origin. Two types of esterase amplifications were found, in two locations only (Athens and Florida): one, previously described, results in the amplification of both CCEae3a and CCEae6a; the second is being described for the first time and results in the amplification of CCEae3a only. The two amplification events are independent, as confirmed by sequence analysis. All individuals from Athens and Florida carrying the CCEae3a-CCEae6a co-amplicon share a common haplotype, indicating a single amplification event, which spread between the two countries. Significance The importance of passive transportation of disease vectors, including individuals carrying resistance mechanisms, is discussed in the light of efficient and sustainable vector control strategies. PMID:28394886

  4. fM to aM nucleic acid amplification for molecular diagnostics in a non-stick-coated metal microfluidic bioreactor

    PubMed Central

    Huang, Guoliang; Huang, Qin; Ma, Li; Luo, Xianbo; Pang, Biao; Zhang, Zhixin; Wang, Ruliang; Zhang, Junqi; Li, Qi; Fu, Rongxin; Ye, Jiancheng

    2014-01-01

    A sensitive DNA isothermal amplification method for the detection of DNA at fM to aM concentrations for pathogen identification was developed using a non-stick-coated metal microfluidic bioreactor. A portable confocal optical detector was utilized to monitor the DNA amplification in micro- to nanoliter reaction assays in real-time, with fluorescence collection near the optical diffraction limit. The non-stick-coated metal microfluidic bioreactor, with a surface contact angle of 103°, was largely inert to bio-molecules, and DNA amplification could be performed in a minimum reaction volume of 40 nL. The isothermal nucleic acid amplification for Mycoplasma pneumoniae identification in the non-stick-coated microfluidic bioreactor could be performed at a minimum DNA template concentration of 1.3 aM, and a detection limit of three copies of genomic DNA was obtained. This microfluidic bioreactor offers a promising clinically relevant pathogen molecular diagnostic method via the amplification of targets from only a few copies of genomic DNA from a single bacterium. PMID:25475544

  5. Droplet microfluidics for amplification-free genetic detection of single cells.

    PubMed

    Rane, Tushar D; Zec, Helena C; Puleo, Chris; Lee, Abraham P; Wang, Tza-Huei

    2012-09-21

    In this article we present a novel droplet microfluidic chip enabling amplification-free detection of single pathogenic cells. The device streamlines multiple functionalities to carry out sample digitization, cell lysis, probe-target hybridization for subsequent fluorescent detection. A peptide nucleic acid fluorescence resonance energy transfer probe (PNA beacon) is used to detect 16S rRNA present in pathogenic cells. Initially the sensitivity and quantification abilities of the platform are tested using a synthetic target mimicking the actual expression level of 16S rRNA in single cells. The capability of the device to perform "sample-to-answer" pathogen detection of single cells is demonstrated using E. coli as a model pathogen.

  6. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones

    PubMed Central

    2016-01-01

    Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests. PMID:26900709

  7. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  8. Cognitive functions of intracellular mechanisms for contextual amplification.

    PubMed

    Phillips, William A

    2017-03-01

    Evidence for the hypothesis that input to the apical tufts of neocortical pyramidal cells plays a central role in cognition by amplifying their responses to feedforward input is reviewed. Apical tufts are electrically remote from the soma, and their inputs come from diverse sources including direct feedback from higher cortical regions, indirect feedback via the thalamus, and long-range lateral connections both within and between cortical regions. This suggests that input to tuft dendrites may amplify the cell's response to basal inputs that they receive via layer 4 and which have synapses closer to the soma. ERP data supporting this inference is noted. Intracellular studies of apical amplification (AA) and of disamplification by inhibitory interneurons targeted only at tufts are reviewed. Cognitive processes that have been related to them by computational, electrophysiological, and psychopathological studies are then outlined. These processes include: figure-ground segregation and Gestalt grouping; contextual disambiguation in perception and sentence comprehension; priming; winner-take-all competition; attention and working memory; setting the level of consciousness; cognitive control; and learning. It is argued that theories in cognitive neuroscience should not assume that all neurons function as integrate-and-fire point processors, but should use the capabilities of cells with distinct sites of integration for driving and modulatory inputs. Potentially 'unifying' theories that depend upon these capabilities are reviewed. It is concluded that evolution of the primitives of AA and disamplification in neocortex may have extended cognitive capabilities beyond those built from the long-established primitives of excitation, inhibition, and disinhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Loop-mediated isothermal amplification assay for rapid and sensitive detection of sheep pox and goat pox viruses in clinical samples.

    PubMed

    Venkatesan, G; Balamurugan, V; Bhanuprakash, V; Singh, R K; Pandey, A B

    2016-06-01

    A Loop-mediated isothermal amplification (LAMP) assay targeting the highly conserved DNA polymerase gene of capripox virus genome was developed and evaluated for rapid detection of sheep pox and goat pox viruses. The optimized LAMP assay is found specific and sensitive for amplification of target DNA with a diagnostic sensitivity and specificity of 96.6% and 100% respectively compared to quantitative PCR. The detection rate of LAMP, PCR and Q-PCR assays is found to be 81.5%, 67% and 83% respectively. This LAMP assay has the potential for rapid clinical diagnosis and surveillance of sheep pox and goat pox in field diagnostic laboratories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Empirical evidence for acceleration-dependent amplification factors

    USGS Publications Warehouse

    Borcherdt, R.D.

    2002-01-01

    Site-specific amplification factors, Fa and Fv, used in current U.S. building codes decrease with increasing base acceleration level as implied by the Loma Prieta earthquake at 0.1g and extrapolated using numerical models and laboratory results. The Northridge earthquake recordings of 17 January 1994 and subsequent geotechnical data permit empirical estimates of amplification at base acceleration levels up to 0.5g. Distance measures and normalization procedures used to infer amplification ratios from soil-rock pairs in predetermined azimuth-distance bins significantly influence the dependence of amplification estimates on base acceleration. Factors inferred using a hypocentral distance norm do not show a statistically significant dependence on base acceleration. Factors inferred using norms implied by the attenuation functions of Abrahamson and Silva show a statistically significant decrease with increasing base acceleration. The decrease is statistically more significant for stiff clay and sandy soil (site class D) sites than for stiffer sites underlain by gravely soils and soft rock (site class C). The decrease in amplification with increasing base acceleration is more pronounced for the short-period amplification factor, Fa, than for the midperiod factor, Fv.

  11. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection

    PubMed Central

    Abd El Wahed, Ahmed; Patel, Pranav; Faye, Oumar; Thaloengsok, Sasikanya; Heidenreich, Doris; Matangkasombut, Ponpan; Manopwisedjaroen, Khajohnpong; Sakuntabhai, Anavaj; Sall, Amadou A.; Hufert, Frank T.; Weidmann, Manfred

    2015-01-01

    Background Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF). Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR) are the standard method for molecular detection of the dengue virus (DENV). Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA) assays were developed to detect DENV1-4. Methodology/Principal Findings Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4) to 241 (DENV1-3) RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal) and in Bangkok (Thailand). In Kedougou, the RT-RPA was operated at an ambient temperature of 38°C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31) and 100% (n=23), respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90) and 100%(n=41), respectively. Conclusions/Significance During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations. PMID:26075598

  12. Detection of Hepatitis A Virus by the Nucleic Acid Sequence-Based Amplification Technique and Comparison with Reverse Transcription-PCR

    PubMed Central

    Jean, Julie; Blais, Burton; Darveau, André; Fliss, Ismaïl

    2001-01-01

    A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 × 102 PFU/ml) was obtained with NASBA, compared to 50 PFU (1 × 104 PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples. PMID:11722911

  13. Detection of hepatitis A virus by the nucleic acid sequence-based amplification technique and comparison with reverse transcription-PCR.

    PubMed

    Jean, J; Blais, B; Darveau, A; Fliss, I

    2001-12-01

    A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 x 10(2) PFU/ml) was obtained with NASBA, compared to 50 PFU (1 x 10(4) PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples.

  14. Sensitive Detection Using Microfluidics and Nonlinear Amplification

    DTIC Science & Technology

    2011-07-22

    Quantification of Nucleic Acids via Simultaneous Chemical Initiation of Recombinase Polymerase Amplification Reactions on SlipChip" 2011, 83, 3533... Amplification 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-08-1-0936 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Rustem F. Ismagilov 5d. PROJECT NUMBER 5e...concentrations by combining controlled chemical autocatalytic amplification and stochastic confinement of small particles with the microfluidic

  15. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization

    PubMed Central

    Yu, Xu; Zhang, Zhi-Ling; Zheng, Si-Yang

    2014-01-01

    A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant colour change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10 pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays. PMID:25500528

  16. Parametric amplification in MoS2 drum resonator.

    PubMed

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  17. A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III-aided cycling amplification.

    PubMed

    Zeng, Yan; Wan, Yi; Zhang, Dun; Qi, Peng

    2015-01-01

    A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III (Exo-III) aided cycling amplification has been developed. This magneto-DNA duplex probe contains a partly hybrid fluorophore-modified capture probe and a fluorophore-modified signal probe with magnetic microparticle as carrier. In the presence of a perfectly matched target bacterial DNA, blunt 3'-terminus of the capture probe is formed, activating the Exo-III aided cycling amplification. Thus, Exo-III catalyzes the stepwise removal of mononucleotides from this terminus, releasing both fluorophore-modified signal probe, fluorescent dyes of the capture probe and target DNA. The released target DNA then starts a new cycle, while released fluorescent fragments are recovered with magnetic separation for fluorescence signal collection. This system exhibited sensitive detection of bacterial DNA, with a detection limit of 14 pM because of the unique cleavage function of Exo-III, high fluorescence intensity, and separating function of magneto-DNA duplex probes. Besides this sensitivity, this strategy exhibited excellent selectivity with mismatched bacterial DNA targets and other bacterial species targets and good applicability in real seawater samples, hence, this strategy could be potentially used for qualitative and quantitative analysis of bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Magnetic flux amplification by Lenz lenses

    NASA Astrophysics Data System (ADS)

    Schoenmaker, J.; Pirota, K. R.; Teixeira, J. C.

    2013-08-01

    Tailoring magnetic flux distribution is highly desirable in a wide range of applications such as magnetic sensors and biomedicine. In this paper we study the manipulation of induced currents in passive devices in order to engineer the distribution of magnetic flux intensity in a given region. We propose two different approaches, one based on especially designed wire loops (Lenz law) and the other based on solid conductive pieces (eddy currents). The gain of such devices is mainly determined by geometry giving perspective of high amplification. We consistently modeled, simulated, and executed the proposed devices. Doubled magnetic flux intensity is demonstrated experimentally for a moderate aspect ratio.

  19. Magnetic flux amplification by Lenz lenses.

    PubMed

    Schoenmaker, J; Pirota, K R; Teixeira, J C

    2013-08-01

    Tailoring magnetic flux distribution is highly desirable in a wide range of applications such as magnetic sensors and biomedicine. In this paper we study the manipulation of induced currents in passive devices in order to engineer the distribution of magnetic flux intensity in a given region. We propose two different approaches, one based on especially designed wire loops (Lenz law) and the other based on solid conductive pieces (eddy currents). The gain of such devices is mainly determined by geometry giving perspective of high amplification. We consistently modeled, simulated, and executed the proposed devices. Doubled magnetic flux intensity is demonstrated experimentally for a moderate aspect ratio.

  20. Successful Combination of Nucleic Acid Amplification Test Diagnostics and Targeted Deferred Neisseria gonorrhoeae Culture

    PubMed Central

    Wind, Carolien M.; de Vries, Henry J. C.; Schim van der Loeff, Maarten F.; Unemo, Magnus

    2015-01-01

    Nucleic acid amplification tests (NAATs) are recommended for the diagnosis of N. gonorrhoeae infections because of their superior sensitivity. Increasing NAAT use causes a decline in crucial antimicrobial resistance (AMR) surveillance data, which rely on culture. We analyzed the suitability of the ESwab system for NAAT diagnostics and deferred targeted N. gonorrhoeae culture to allow selective and efficient culture based on NAAT results. We included patients visiting the STI Clinic Amsterdam, The Netherlands, in 2013. Patient characteristics and urogenital and rectal samples for direct N. gonorrhoeae culture, standard NAAT, and ESwab were collected. Standard NAAT and NAAT on ESwab samples were performed using the Aptima Combo 2 assay for N. gonorrhoeae and C. trachomatis. Two deferred N. gonorrhoeae cultures were performed on NAAT-positive ESwab samples after storage at 4°C for 1 to 3 days. We included 2,452 samples from 1,893 patients. In the standard NAAT, 107 samples were N. gonorrhoeae positive and 284 were C. trachomatis positive. The sensitivities of NAAT on ESwab samples were 83% (95% confidence interval [CI], 75 to 90%) and 87% (95% CI, 82 to 90%), respectively. ESwab samples were available for 98 of the gonorrhea-positive samples. Of these, 82% were positive in direct culture and 69% and 56% were positive in the 1st and 2nd deferred cultures, respectively (median storage times, 27 and 48 h, respectively). Deferred culture was more often successful in urogenital samples or when the patient had symptoms at the sampling site. Deferred N. gonorrhoeae culture of stored ESwab samples is feasible and enables AMR surveillance. To limit the loss in NAAT sensitivity, we recommend obtaining separate samples for NAAT and deferred culture. PMID:25832300

  1. Influence of interfacial Dzyaloshinskii-Moriya interaction on the parametric amplification of spin waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verba, Roman, E-mail: verrv@ukr.net; Tiberkevich, Vasil; Slavin, Andrei

    2015-09-14

    The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) on the parametric amplification of spin waves propagating in ultrathin ferromagnetic film is considered theoretically. It is shown that the IDMI changes the relation between the group velocities of the signal and idler spin waves in a parametric amplifier, which may result in the complete vanishing of the reversed idler wave. In the optimized case, the idler spin wave does not propagate from the pumping region at all, which increases the efficiency of the amplification of the signal wave and suppresses the spurious impact of the idler waves on neighboring spin-wave processingmore » devices.« less

  2. Magnetic nanobeads present during enzymatic amplification and labeling for a simplified DNA detection protocol based on AC susceptometry

    NASA Astrophysics Data System (ADS)

    Bejhed, Rebecca S.; Strømme, Maria; Svedlindh, Peter; Ahlford, Annika; Strömberg, Mattias

    2015-12-01

    Magnetic biosensors are promising candidates for low-cost point-of-care biodiagnostic devices. For optimal efficiency it is crucial to minimize the time and complexity of the assay protocol including target recognition, amplification, labeling and read-out. In this work, possibilities for protocol simplifications for a DNA biodetection principle relying on hybridization of magnetic nanobeads to rolling circle amplification (RCA) products are investigated. The target DNA is recognized through a padlock ligation assay resulting in DNA circles serving as templates for the RCA process. It is found that beads can be present during amplification without noticeably interfering with the enzyme used for RCA (phi29 polymerase). As a result, the bead-coil hybridization can be performed immediately after amplification in a one-step manner at elevated temperature within a few minutes prior to read-out in an AC susceptometer setup, i.e. a combined protocol approach. Moreover, by recording the phase angle ξ = arctan(χ″/χ'), where χ and χ″ are the in-phase and out-of-phase components of the AC susceptibility, respectively, at one single frequency the total assay time for the optimized combined protocol would be no more than 1.5 hours, often a relevant time frame for diagnosis of cancer and infectious disease. Also, applying the phase angle method normalization of AC susceptibility data is not needed. These findings are useful for the development of point-of-care biodiagnostic devices relying on bead-coil binding and magnetic AC susceptometry.

  3. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification.

    PubMed

    Lameris, Thomas K; Scholten, Ilse; Bauer, Silke; Cobben, Marleen M P; Ens, Bruno J; Nolet, Bart A

    2017-10-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long-distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. Chronic centrosome amplification without tumorigenesis

    PubMed Central

    Vitre, Benjamin; Holland, Andrew J.; Kulukian, Anita; Shoshani, Ofer; Hirai, Maretoshi; Wang, Yin; Maldonado, Marcus; Cho, Thomas; Boubaker, Jihane; Swing, Deborah A.; Tessarollo, Lino; Evans, Sylvia M.; Fuchs, Elaine; Cleveland, Don W.

    2015-01-01

    Centrosomes are microtubule-organizing centers that facilitate bipolar mitotic spindle assembly and chromosome segregation. Recognizing that centrosome amplification is a common feature of aneuploid cancer cells, we tested whether supernumerary centrosomes are sufficient to drive tumor development. To do this, we constructed and analyzed mice in which centrosome amplification can be induced by a Cre-recombinase–mediated increase in expression of Polo-like kinase 4 (Plk4). Elevated Plk4 in mouse fibroblasts produced supernumerary centrosomes and enhanced the expected mitotic errors, but proliferation continued only after inactivation of the p53 tumor suppressor. Increasing Plk4 levels in mice with functional p53 produced centrosome amplification in liver and skin, but this did not promote spontaneous tumor development in these tissues or enhance the growth of chemically induced skin tumors. In the absence of p53, Plk4 overexpression generated widespread centrosome amplification, but did not drive additional tumors or affect development of the fatal thymic lymphomas that arise in animals lacking p53. We conclude that, independent of p53 status, supernumerary centrosomes are not sufficient to drive tumor formation. PMID:26578792

  5. DNA extraction and amplification from contemporary Polynesian bark-cloth.

    PubMed

    Moncada, Ximena; Payacán, Claudia; Arriaza, Francisco; Lobos, Sergio; Seelenfreund, Daniela; Seelenfreund, Andrea

    2013-01-01

    Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles. Recovery of nucleic acids from paper mulberry bark-cloth has not been reported before. We describe a simple method for the extraction of PCR-amplifiable DNA from small samples of contemporary Polynesian bark-cloth (tapa) using two types of nuclear markers. We report the amplification of about 300 bp sequences of the ITS1 region and of a microsatellite marker. Sufficient DNA was retrieved from all bark-cloth samples to permit successful PCR amplification. This method shows a means of obtaining useful genetic information from modern bark-cloth samples and opens perspectives for the analyses of small fragments derived from ethnographic materials.

  6. A novel electrochemical biosensor for ultrasensitive and specific detection of DNA based on molecular beacon mediated circular strand displacement and rolling circle amplification.

    PubMed

    Cheng, Wei; Zhang, Wei; Yan, Yurong; Shen, Bo; Zhu, Dan; Lei, Pinhua; Ding, Shijia

    2014-12-15

    A novel electrochemical biosensing strategy was developed for ultrasensitive and specific detection of target DNA using a cascade signal amplification based on molecular beacon (MB) mediated circular strand displacement (CSD), rolling circle amplification (RCA), biotin-strepavidin system, and enzymatic amplification. The target DNA hybridized with the loop portion of MB probe immobilized on the gold electrode and triggered the CSD, leading to multiple biotin-tagged DNA duplex. Furthermore, via biotin-streptavidin interaction, the RCA was implemented, producing long massive tandem-repeat DNA sequences for binding numerous biotinylated detection probes. This enabled an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor showed very high sensitivity and selectivity with a dynamic response range from 1 fM to 100 pM. The proposed strategy could have the potential for applying in clinical molecular diagnostics and environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Gene Signal Distribution and HER2 Amplification in Gastroesophageal Cancer.

    PubMed

    Jørgensen, Jan Trøst; Nielsen, Karsten Bork; Kjærsgaard, Gitte; Jepsen, Anna; Mollerup, Jens

    2017-01-01

    Background : HER2 serves as an important therapeutic target in gastroesophageal cancer. Differences in HER2 gene signal distribution patterns can be observed at the tissue level, but how it influences the HER2 amplification status has not been studied so far. Here, we investigated the link between HER2 amplification and the different types of gene signal distribution. Methods : Tumor samples from 140 patients with gastroesophageal adenocarcinoma where analyzed using the HER2 IQFISH pharmDx™ assay. Specimens covered non-amplified and amplified cases with a preselected high proportion of HER2 amplified cases. Based on the HER2 /CEN-17 ratio, specimens were categorized into amplified or non-amplified. The signal distribution patterns were divided into homogeneous, heterogeneous focal or heterogeneous mosaic. The study was conducted based on anonymized specimens with limited access to clinicopathological data. Results: Among the 140 analyzed specimens 83 had a heterogeneous HER2 signal distribution, with 62 being focal and 21 of the mosaic type. The remaining 57 specimens had a homogeneous signal distribution. HER2 amplification was observed in 63 of the 140 specimens, and nearly all (93.7%) were found among specimens with a heterogeneous focal signal distribution (p<0.0001). The mean HER2 /CEN-17 ratio for the focal heterogeneous group was 8.75 (CI95%: 6.87 - 10.63), compared to 1.53 (CI95%: 1.45 - 1.61) and 1.70 (CI95%: 1.22 - 2.18) for the heterogeneous mosaic and homogeneous groups, respectively, (p<0.0001). Conclusions: A clear relationship between HER2 amplification and the focal heterogeneous signal distribution was demonstrated in tumor specimens from patients with gastroesophageal cancer. Furthermore, we raise the hypothesis that the signal distribution patterns observed with FISH might be related to different subpopulations of HER2 positive tumor cells.

  8. Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus.

    PubMed

    Yanai, Koji; Murakami, Takeshi; Bibb, Mervyn

    2006-06-20

    Streptomyces kanamyceticus 12-6 is a derivative of the wild-type strain developed for industrial kanamycin (Km) production. Southern analysis and DNA sequencing revealed amplification of a large genomic segment including the entire Km biosynthetic gene cluster in the chromosome of strain 12-6. At 145 kb, the amplifiable unit of DNA (AUD) is the largest AUD reported in Streptomyces. Striking repetitive DNA sequences belonging to the clustered regularly interspaced short palindromic repeats family were found in the AUD and may play a role in its amplification. Strain 12-6 contains a mixture of different chromosomes with varying numbers of AUDs, sometimes exceeding 36 copies and producing an amplified region >5.7 Mb. The level of Km production depended on the copy number of the Km biosynthetic gene cluster, suggesting that DNA amplification occurred during strain improvement as a consequence of selection for increased Km resistance. Amplification of DNA segments including entire antibiotic biosynthetic gene clusters might be a common mechanism leading to increased antibiotic production in industrial strains.

  9. Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification.

    PubMed

    Gupta, A; Young, R J; Shah, A D; Schweitzer, A D; Graber, J J; Shi, W; Zhang, Z; Huse, J; Omuro, A M P

    2015-06-01

    Molecular and genetic testing is becoming increasingly relevant in GBM. We sought to determine whether dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) perfusion imaging could predict EGFR-defined subtypes of GBM. We retrospectively identified 106 consecutive glioblastoma (GBM) patients with known EGFR gene amplification, and a subset of 65 patients who also had known EGFRvIII gene mutation status. All patients underwent T2* DSC MRI perfusion. DSC perfusion maps and T2* signal intensity time curves were evaluated, and the following measures of tumor perfusion were recorded: (1) maximum relative cerebral blood volume (rCBV), (2) relative peak height (rPH), and (3) percent signal recovery (PSR). The imaging metrics were correlated to EGFR gene amplification and EGFRvIII mutation status using univariate analyses. EGFR amplification was present in 44 (41.5 %) subjects and absent in 62 (58.5 %). Among the 65 subjects who had undergone EGFRvIII mutation transcript analysis, 18 subjects (27.7 %) tested positive for the EGFRvIII mutation, whereas 47 (72.3 %) did not. Higher median rCBV (3.31 versus 2.62, p = 0.01) and lower PSR (0.70 versus 0.78, p = 0.03) were associated with high levels of EGFR amplification. Higher median rPH (3.68 versus 2.76, p = 0.03) was associated with EGFRvIII mutation. DSC MRI perfusion may have a role in identifying patients with EGFR gene amplification and EGFRvIII gene mutation status, potential targets for individualized treatment protocols. Our results raise the need for further investigation for imaging biomarkers of genetically unique GBM subtypes.

  10. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    PubMed

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification.

    PubMed

    Shi, Muling; Zheng, Jing; Liu, Changhui; Tan, Guixiang; Qing, Zhihe; Yang, Sheng; Yang, Jinfeng; Tan, Yongjun; Yang, Ronghua

    2016-03-15

    As an important biomarker and therapeutic target, telomerase has attracted extensive attention concerning its detection and monitoring. Recently, enzyme-assisted amplification approaches have provided useful platforms for the telomerase activity detection, however, further improvement in sensitivity is still hindered by the single-step signal amplification. Herein, we develop a quadratic signal amplification strategy for ultrasensitive surface-enhanced Raman scattering (SERS) detection of telomerase activity. The central idea of our design is using telomerase-induced silver nanoparticles (AgNPs) assembly and silver ions (Ag(+))-mediated cascade amplification. In our approach, each telomerase-aided DNA sequence extension could trigger the formation of a long double-stranded DNA (dsDNA), making numerous AgNPs assembling along with this long strand through specific Ag-S bond, to form a primary amplification element. For secondary amplification, each conjugated AgNP was dissolved into Ag(+), which can effectively induce the 4-aminobenzenethiol (4-ABT) modified gold nanoparticles (AuNPs@4-ABT) to undergo aggregation to form numerous "hot-spots". Through quadratic amplifications, a limit of detection down to single HeLa cell was achieved. More importantly, this method demonstrated good performance when applied to tissues from colon cancer patients, which exhibits great potential in the practical application of telomerase-based cancer diagnosis in early stages. To demonstrate the potential in screening the telomerase inhibitors and telomerase-targeted drugs, the proposed design is successfully employed to measure the inhibition of telomerase activity by 3'-azido-3'-deoxythymidine. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification

    PubMed Central

    Cain-Hom, Carol; Splinter, Erik; van Min, Max; Simonis, Marieke; van de Heijning, Monique; Martinez, Maria; Asghari, Vida

    2017-01-01

    Abstract Cre/LoxP technology is widely used in the field of mouse genetics for spatial and/or temporal regulation of gene function. For Cre lines generated via pronuclear microinjection of a Cre transgene construct, the integration site is random and in most cases not known. Integration of a transgene can disrupt an endogenous gene, potentially interfering with interpretation of the phenotype. In addition, knowledge of where the transgene is integrated is important for planning of crosses between animals carrying a conditional allele and a given Cre allele in case the alleles are on the same chromosome. We have used targeted locus amplification (TLA) to efficiently map the transgene location in seven previously published Cre and CreERT2 transgenic lines. In all lines, transgene insertion was associated with structural changes of variable complexity, illustrating the importance of testing for rearrangements around the integration site. In all seven lines the exact integration site and breakpoint sequences were identified. Our methods, data and genotyping assays can be used as a resource for the mouse community and our results illustrate the power of the TLA method to not only efficiently map the integration site of any transgene, but also provide additional information regarding the transgene integration events. PMID:28053125

  13. New primer for specific amplification of the CAG repeat in Huntington disease alleles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, C.E.; Hodes, M.E.

    1994-09-01

    Huntington disease is an autosomal dominant neurodegenerative disorder caused by an expansion of a CAG trinucleotide repeat near the 5{prime} end of the gene for Huntington disease (IT15). The CAG repeat is flanked by a variable-length CCG repeat that is included in the amplification product obtained with most currently used primer sets and PCR protocols. Inclusion of this adjacent CCG repeat complicates the accurate assessment of CAG repeat length and interferes with the genotype determination of those individuals carrying alleles in the intermediate range between normal and expanded sized. Due to the GC-rich nature of this region, attempts at designingmore » a protocol for amplification of only the CAG repeat have proved unreliable and difficult to execute. We report here the development of a compatible primer set and PCR protocol that yields consistent amplification of the CAG-repeat region. PCR products can be visualized in ethidium bromide-stained agarose gels for rapid screening or in 6% polyacrylamide gels for determination of exact repeat length. This assay produces bands that can be sized accurately, while eliminating most nonspecific products. Fifty-five specimens examined showed consistency with another well-known method, but one that amplifies the CCG repeats as well. The results we obtained also matched the known carrier status of the donors.« less

  14. Lable-free quadruple signal amplification strategy for sensitive electrochemical p53 gene biosensing.

    PubMed

    Wang, Zonghua; Xia, Jianfei; Song, Daimin; Zhang, Feifei; Yang, Min; Gui, Rijun; Xia, Lin; Bi, Sai; Xia, Yanzhi

    2016-03-15

    A versatile label-free quadruple signal amplification biosensing platform for p53 gene (target DNA) detection was proposed. The chitosan-graphene (CS-GR) modified electrode with excellent electron transfer ability could provide a large specific surface for high levels of AuNPs-DNA attachment. The large amount of AuNPs could immobilize more capture probes and enhance the electrochemical signal with the excellent electrocatalytic activity. Furthermore, with the assist of N.BstNB I (the nicking endonuclease), target DNA could be reused and more G-quadruplex-hemin DNAzyme could be formed, allowing significant signal amplification in the presence of H2O2. Such strategy can enhance the oxidation-reduction reaction of adsorbed methylene blue (MB) and efficiently improve the sensitivity of the proposed biosensor. The morphologies of materials and the stepwise biosensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Differential pulse voltammetry (DPV) signals of MB provided quantitative measures of the concentrations of target DNA, with a linear calibration range of 1.0 × 10(-15)-1.0 × 10(-9)M and a detection limit of 3.0 × 10(-16)M. Moreover, the resulting biosensor also exhibited good specificity, acceptable reproducibility and stability, indicating that the present strategy was promising for broad potential application in clinic assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Classroom Amplification Technology: Theory and Practice.

    ERIC Educational Resources Information Center

    Crandell, Carl C.; Smaldino, Joseph J.

    2000-01-01

    This article reviews some relevant events in the development of acoustical standards for classrooms, describes classroom challenges to providing clear acoustical signals to children in classrooms, and outlines amplification solutions to some of those classroom challenges. Solutions include personal amplification devices and use of signal-to-noise…

  16. Quantitative analysis of night skyglow amplification under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Solano Lamphar, Héctor Antonio

    2014-10-01

    The radiance produced by artificial light is a major source of nighttime over-illumination. It can, however, be treated experimentally using ground-based and satellite data. These two types of data complement each other and together have a high information content. For instance, the satellite data enable upward light emissions to be normalized, and this in turn allows skyglow levels at the ground to be modelled under cloudy or overcast conditions. Excessive night lighting imposes an unacceptable burden on nature, humans and professional astronomy. For this reason, there is a pressing need to determine the total amount of downwelling diffuse radiation. Undoubtedly, cloudy periods can cause a significant increase in skyglow as a result of amplification owing to diffuse reflection from clouds. While it is recognized that the amplification factor (AF) varies with cloud cover, the effects of different types of clouds, of atmospheric turbidity and of the geometrical relationships between the positions of an individual observer, the cloud layer, and the light source are in general poorly known. In this paper the AF is quantitatively analysed considering different aerosol optical depths (AODs), urban layout sizes and cloud types with specific albedos and altitudes. The computational results show that the AF peaks near the edges of a city rather than at its centre. In addition, the AF appears to be a decreasing function of AOD, which is particularly important when modelling the skyglow in regions with apparent temporal or seasonal variability of atmospheric turbidity. The findings in this paper will be useful to those designing engineering applications or modelling light pollution, as well as to astronomers and environmental scientists who aim to predict the amplification of skyglow caused by clouds. In addition, the semi-analytical formulae can be used to estimate the AF levels, especially in densely populated metropolitan regions for which detailed computations may be CPU

  17. HER-2 amplification in tubular carcinoma of the breast.

    PubMed

    Oakley, Gerard J; Tubbs, Raymond R; Crowe, Joseph; Sebek, Bruce; Budd, G Thomas; Patrick, Rebecca J; Procop, Gary W

    2006-07-01

    The prognostic and therapeutic implications of HER-2 gene amplification and estrogen and progesterone receptor status in breast cancer are well described. To address the relative paucity of information concerning HER-2 amplification for tubular carcinomas, we assessed the frequency of gene amplification in 55 tubular carcinomas of the breast from 54 patients, 5 of which had axillary node metastases. The HER-2 gene copy number was assessed by fluorescence in situ hybridization for the majority of tumors analyzed, whereas estrogen and progesterone receptor status was achieved by immunohistochemical analysis. HER-2 gene amplification was not observed in any of the tumors examined, and most were estrogen receptor-positive. This HER-2 gene amplification frequency was significantly lower than the frequency of gene amplification previously reported for all invasive ductal carcinoma of no special type (P < .01). HER-2 gene amplification likely occurs infrequently, or not at all, in tubular carcinomas of the breast, whereas most express estrogen receptors.

  18. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology.

    PubMed

    Hu, Bo; Guo, Jing; Xu, Ying; Wei, Hua; Zhao, Guojie; Guan, Yifu

    2017-08-01

    Rapid and accurate detection of microRNAs in biological systems is of great importance. Here, we report the development of a visual colorimetric assay which possesses the high amplification capabilities and high selectivity of the rolling circle amplification (RCA) method and the simplicity and convenience of gold nanoparticles used as a signal indicator. The designed padlock probe recognizes the target miRNA and is circularized, and then acts as the template to extend the target miRNA into a long single-stranded nucleotide chain of many tandem repeats of nucleotide sequences. Next, the RCA product is hybridized with oligonucleotides tagged onto gold nanoparticles. This interaction leads to the aggregation of gold nanoparticles, and the color of the system changes from wine red to dark blue according to the abundance of miRNA. A linear correlation between fluorescence and target oligonucleotide content was obtained in the range 0.3-300 pM, along with a detection limit of 0.13 pM (n = 7) and a RSD of 3.9% (30 pM, n = 9). The present approach provides a simple, rapid, and accurate visual colorimetric assay that allows sensitive biodetection and bioanalysis of DNA and RNA nucleotides of interest in biologically important samples. Graphical abstract The colorimetric assay system for analyzing target oligonucleotides.

  19. Loop-mediated isothermal amplification for detection of the tomato and potato late blight pathogen, Phytophthora infestans

    USDA-ARS?s Scientific Manuscript database

    Aims: To design and validate a colorimetric loop-mediated isothermal amplification assay for rapid detection of P. infestans DNA. Methods and Results: Two sets of LAMP primers were designed and evaluated for their sensitivity and specificity for P. infestans. ITSII primers targeted a portion of the ...

  20. Label-free thioflavin T/G-quadruplex-based real-time strand displacement amplification for biosensing applications.

    PubMed

    Du, Yi-Chen; Zhu, Li-Na; Kong, De-Ming

    2016-12-15

    To promote application of strand-displacement amplification (SDA) techniques in biosensing, a label-free, real-time monitoring strategy for isothermal nucleic acid amplification reactions was designed. G-quadruplex structures were introduced into SDA products using specific recognition of G-quadruplexes by the fluorogenic dye thioflavin T. Performance was good for real-time monitoring of traditional SDA by a linear-amplification mechanism and for exponential cross-triggered SDA amplification. The strategy worked on a commercial real-time PCR instrument, making it suitable for biosensing platforms. As examples, two highly sensitive and specific biosensors were designed for analysis of the activity of uracil-DNA glycosylase (UDG) and the restriction endonuclease EcoRI. Detection limits were 6×10(-5)U/mL for UDG and 0.016U/mL for EcoRI. Detection of corresponding targets in complex matrices such as cell lysates or human serum was also demonstrated. Compared to traditional end-point detection methods, real-time SDA-based approaches have the advantages of simple, fast operation; high sensitivity; low risk of carryover contamination; and very high throughput. The introduction of real-time monitoring strategies may promote application of SDA reactions in biosensor design. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. New Fpg probe chemistry for direct detection of recombinase polymerase amplification on lateral flow strips.

    PubMed

    Powell, Michael L; Bowler, Frank R; Martinez, Aurore J; Greenwood, Catherine J; Armes, Niall; Piepenburg, Olaf

    2018-02-15

    Rapid, cost-effective and sensitive detection of nucleic acids has the ability to improve upon current practices employed for pathogen detection in diagnosis of infectious disease and food testing. Furthermore, if assay complexity can be reduced, nucleic acid amplification tests could be deployed in resource-limited and home use scenarios. In this study, we developed a novel Fpg (Formamidopyrimidine DNA glycosylase) probe chemistry, which allows lateral flow detection of amplification in undiluted recombinase polymerase amplification (RPA) reactions. The prototype nucleic acid lateral flow chemistry was applied to a human genomic target (rs1207445), Campylobacter jejuni 16S rDNA and two genetic markers of the important food pathogen E. coli O157:H7. All four assays have an analytical sensitivity between 10 and 100 copies DNA per amplification. Furthermore, the assay is performed with fewer hands-on steps than using the current RPA Nfo lateral flow method as dilution of amplicon is not required for lateral flow analysis. Due to the simplicity of the workflow, we believe that the lateral flow chemistry for direct detection could be readily adapted to a cost-effective single-use consumable, ideal for use in non-laboratory settings. Copyright © 2017. Published by Elsevier Inc.

  2. Selective Amplification of the Genome Surrounding Key Placental Genes in Trophoblast Giant Cells.

    PubMed

    Hannibal, Roberta L; Baker, Julie C

    2016-01-25

    While most cells maintain a diploid state, polyploid cells exist in many organisms and are particularly prevalent within the mammalian placenta [1], where they can generate more than 900 copies of the genome [2]. Polyploidy is thought to be an efficient method of increasing the content of the genome by avoiding the costly and slow process of cytokinesis [1, 3, 4]. Polyploidy can also affect gene regulation by amplifying a subset of genomic regions required for specific cellular function [1, 3, 4]. This mechanism is found in the fruit fly Drosophila melanogaster, where polyploid ovarian follicle cells amplify genomic regions containing chorion genes, which facilitate secretion of eggshell proteins [5]. Here, we report that genomic amplification also occurs in mammals at selective regions of the genome in parietal trophoblast giant cells (p-TGCs) of the mouse placenta. Using whole-genome sequencing (WGS) and digital droplet PCR (ddPCR) of mouse p-TGCs, we identified five amplified regions, each containing a gene family known to be involved in mammalian placentation: the prolactins (two clusters), serpins, cathepsins, and the natural killer (NK)/C-type lectin (CLEC) complex [6-12]. We report here the first description of amplification at selective genomic regions in mammals and present evidence that this is an important mode of genome regulation in placental TGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    PubMed

    Boyle, David S; McNerney, Ruth; Teng Low, Hwee; Leader, Brandon Troy; Pérez-Osorio, Ailyn C; Meyer, Jessica C; O'Sullivan, Denise M; Brooks, David G; Piepenburg, Olaf; Forrest, Matthew S

    2014-01-01

    Improved access to effective tests for diagnosing tuberculosis (TB) has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA) is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC) DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110) and 20 fg (IS1081)were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9) and 86.1% (95%CI: 78.1, 94.1) respectively (n = 71). Specificities were 100% and 88.6% (95% CI: 80.8, 96.1) respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2) and 70.8% (95%CI: 62.9, 78.7) were obtained (n = 90). Specificities were 95.4 (95% CI: 92.3,98.1) and 88% (95% CI: 83.6, 92.4) respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB assays

  4. Optofluidic analysis system for amplification-free, direct detection of Ebola infection

    NASA Astrophysics Data System (ADS)

    Cai, H.; Parks, J. W.; Wall, T. A.; Stott, M. A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R. A.; Carrion, R.; Patterson, J. L.; Hawkins, A. R.; Schmidt, H.

    2015-09-01

    The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.

  5. Microwave amplification with nanomechanical resonators.

    PubMed

    Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A

    2011-12-14

    The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

  6. A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Geng, Yunyun; Yuan, Wanzhe

    2017-10-01

    A recombinase polymerase amplification (RPA)-based method was developed for rapid and specific detection of African swine fever virus (ASFV), the etiologic agent of African swine fever, a devastating disease of swine. Primers and the exo probe targeting the conserved region of the P72 gene of ASFV were designed and the reaction was run on the Genie III scanner device. Using recombinant plasmid DNA containing the P72 gene as template, we showed that the amplified product could be detected in less than 10 min and that the detection limit was 10 2 copies DNA/reaction [same detection limit as real-time polymerase chain reaction (PCR)]. The RPA assay did not cross-detect CSFV, PCV-2, PRV, PRRSV, or FMDV, common viruses seen in pigs. Tests of recombinant plasmid-spiked serum samples revealed that RPA and real-time PCR had the same diagnostic rate. The RPA assay, which is simple, cost-effective, and fast, is a promising alternative to real-time PCR for ASFV detection.

  7. A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus

    PubMed Central

    Wang, Jianchang; Wang, Jinfeng; Geng, Yunyun; Yuan, Wanzhe

    2017-01-01

    A recombinase polymerase amplification (RPA)-based method was developed for rapid and specific detection of African swine fever virus (ASFV), the etiologic agent of African swine fever, a devastating disease of swine. Primers and the exo probe targeting the conserved region of the P72 gene of ASFV were designed and the reaction was run on the Genie III scanner device. Using recombinant plasmid DNA containing the P72 gene as template, we showed that the amplified product could be detected in less than 10 min and that the detection limit was 102 copies DNA/reaction [same detection limit as real-time polymerase chain reaction (PCR)]. The RPA assay did not cross-detect CSFV, PCV-2, PRV, PRRSV, or FMDV, common viruses seen in pigs. Tests of recombinant plasmid-spiked serum samples revealed that RPA and real-time PCR had the same diagnostic rate. The RPA assay, which is simple, cost-effective, and fast, is a promising alternative to real-time PCR for ASFV detection. PMID:29081590

  8. Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification.

    PubMed

    Dong, Haifeng; Meng, Xiangdan; Dai, Wenhao; Cao, Yu; Lu, Huiting; Zhou, Shufeng; Zhang, Xueji

    2015-04-21

    Herein, a highly sensitive and selective microRNA (miRNA) detection strategy using DNA-bio-bar-code amplification (BCA) and Nb·BbvCI nicking enzyme-assisted strand cycle for exponential signal amplification was designed. The DNA-BCA system contains a locked nucleic acid (LNA) modified DNA probe for improving hybridization efficiency, while a signal reported molecular beacon (MB) with an endonuclease recognition site was designed for strand cycle amplification. In the presence of target miRNA, the oligonucleotides functionalized magnetic nanoprobe (MNP-DNA) and gold nanoprobe (AuNP-DNA) with numerous reported probes (RP) can hybridize with target miRNA, respectively, to form a sandwich structure. After sandwich structures were separated from the solution by the magnetic field, the RP were released under high temperature to recognize the MB and cleaved the hairpin DNA to induce the dissociation of RP. The dissociated RP then triggered the next strand cycle to produce exponential fluorescent signal amplification for miRNA detection. Under optimized conditions, the exponential signal amplification system shows a good linear range of 6 orders of magnitude (from 0.3 pM to 3 aM) with limit of detection (LOD) down to 52.5 zM, while the sandwich structure renders the system with high selectivity. Meanwhile, the feasibility of the proposed strategy for cell miRNA detection was confirmed by analyzing miRNA-21 in HeLa lysates. Given the high-performance for miRNA analysis, the strategy has a promising application in biological detection and in clinical diagnosis.

  9. pH responsive label-assisted click chemistry triggered sensitivity amplification for ultrasensitive electrochemical detection of carbohydrate antigen 24-2.

    PubMed

    Zheng, Yun; Zhao, Lihua; Ma, Zhanfang

    2018-05-15

    Sensitivity amplification strategy by implementing click chemistry in the construction of biosensing interface can efficiently improve the performance of immunosensor. Herein, we developed a sandwich-type amperometric immunosensor for ultrasensitive detection of carbohydrate antigen 24-2 (CA 242) based on pH responsive label-assisted click chemistry triggered sensitivity amplification strategy. The sensitivity of amperometric immunosensor relies on the current response differences (ΔI) caused by per unit concentration target analyte. The pH responsive Cu 2+ -loaded polydopamine (CuPDA) particles conjugated with detection antibodies were employed as labels, which can release Cu(II) ions by regulating pH. In the presence of ascorbic acid (reductant), Cu(II) ions were reduced to Cu(I) ions. Azide-functionalized double-stranded DNA (dsDNA) as signal enhancer was immobilized on the substrate through Cu + -catalyzed azide/alkyne cycloaddition reaction. With the help of the click reaction, the ΔI caused by target was elevated prominently, resulting in sensitivity amplification of the immunosensor. Under optimal condition, the proposed immunosensor exhibited excellent performance with linear range from 0.0001 to 100 U mL -1 and ultralow detection limit of 20.74 μU mL -1 . This work successfully combines click chemistry with pH-responsive labels in sandwich-type amperometric immunosensor, providing a promising sensitivity amplification strategy to construct immunosensing platform for analysis of other tumor marker. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor.

    PubMed

    Zheng, Wanli; Teng, Jun; Cheng, Lin; Ye, Yingwang; Pan, Daodong; Wu, Jingjing; Xue, Feng; Liu, Guodong; Chen, Wei

    2016-06-15

    An electrochemical aptasensor for trace detection of aflatoxin B1 (AFB1) was developed by using an aptamer as the recognition unit while adopting the telomerase and EXO III based two-round signal amplification strategy as the signal enhancement units. The telomerase amplification was used to elongate the ssDNA probes on the surface of gold nanoparticles, by which the signal response range of the signal-off model electrochemical aptasensor could be correspondingly enlarged. Then, the EXO III amplification was used to hydrolyze the 3'-end of the dsDNA after the recognition of target AFB1, which caused the release of bounded AFB1 into the sensing system, where it participated in the next recognition-sensing cycle. With this two-round signal amplified electrochemical aptasensor, target AFB1 was successfully measured at trace concentrations with excellent detection limit of 0.6*10(-4)ppt and satisfied specificity due to the excellent affinity of the aptamer against AFB1. Based on this designed two-round signal amplification strategy, both the sensing range and detection limit were greatly improved. This proposed ultrasensitive electrochemical aptasensor method was also validated by comparison with the classic instrumental methods. Importantly, this hetero-enzyme based two-round signal amplified electrochemical aptasensor offers a great promising protocol for ultrasensitive detection of AFB1 and other mycotoxins by replacing the core recognition sequence of the aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nuclemeter: A Reaction-Diffusion Column for Quantifying Nucleic Acids Undergoing Enzymatic Amplification

    NASA Astrophysics Data System (ADS)

    Bau, Haim; Liu, Changchun; Killawala, Chitvan; Sadik, Mohamed; Mauk, Michael

    2014-11-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in many medical and biotechnological applications. In the case of infectious diseases, quantification of the pathogen-load in patient specimens is critical to assessing disease progression, effectiveness of drug therapy, and emergence of drug-resistance. Typically, nucleic acid quantification requires sophisticated and expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low resource settings. We describe a simple, low-cost, reactiondiffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. We model the process with the Fisher Kolmogoroff Petrovskii Piscounoff (FKPP) Equation and compare theoretical predictions with experimental observations. The proposed method is suitable for nucleic acid quantification at the point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. C.L. was supported by NIH/NIAID K25AI099160; M.S. was supported by the Pennsylvania Ben Franklin Technology Development Authority; C.K. and H.B. were funded, in part, by NIH/NIAID 1R41AI104418-01A1.

  12. Amplification of Mitochondrial DNA for detection of Plasmodiumvivax in Balochistan.

    PubMed

    Shahwani, Muhammad Naeem; Nisar, Samia; Aleem, Abdul; Panezai, Marina; Afridi, Sarwat; Malik, Shaukat Iqbal

    2017-05-01

    To access a new step using PCR to amplify the targeted mtDNA sequence for detecting specifically Plasmodium vivax and its co-infections, false positive and false negative results with Plasmodium falciparum. In this study we have standardized a new technical approach in which the target mitochondrial DNA sequence (mtDNA) was amplified by using a PCR technique as a tool to detect Plasmodium spp. Species specific primers were designed to hybridize with cytochrome c oxidase gene of P. vivax (cox I) and P. falciparum (cox III). Two hundred blood samples were collected on the basis of clinical symptoms which were initially examined through microscopic analysis after preparing Giemsa stained thick and thin blood smears. Afterwards genomic DNA was extracted from all samples and was then subjected to PCR amplification by using species specific primers and amplified segments were sequenced for confirmation of results. One-hundred and thirty-two blood samples were detected as positive for malaria by PCR, out of which 64 were found to be positive by PCR and 53 by both microscopy and PCR for P.vivax infection. Nine samples were found to be false negative, one P.vivax mono infection was declared as co infection by PCR and 3 samples identified as having P.falciparum gametes were confirmed as P.vivax by PCR amplification. Sensitivity and specificity were found to be 85% and 92% respectively. Results obtained through PCR method were comparatively better and reliable than microscopy.

  13. High-resolution genomic mapping reveals consistent amplification of the fibroblast growth factor receptor substrate 2 gene in well-differentiated and dedifferentiated liposarcoma.

    PubMed

    Wang, Xiaoke; Asmann, Yan W; Erickson-Johnson, Michele R; Oliveira, Jennifer L; Zhang, Hongying; Moura, Rafael D; Lazar, Alexander J; Lev, Dina; Bill, Katelynn; Lloyd, Ricardo V; Yaszemski, Michael J; Maran, Avudaiappan; Oliveira, Andre M

    2011-11-01

    Well-differentiated liposarcoma (WDLS) is one of the most common malignant mesenchymal tumors and dedifferentiated liposarcoma (DDLS) is a malignant tumor consisting of both WDLS and a transformed nonlipogenic sarcomatous component. Cytogenetically, WDLS is characterized by the presence of ring or giant rod chromosomes containing several amplified genes, including MDM2, TSPAN31, CDK4, and others mainly derived from chromosome bands 12q13-15. However, the 12q13-15 amplicon is large and discontinuous. The focus of this study was to identify novel critical genes that are consistently amplified in primary (nonrecurrent) WDLS and with potential relevance for future targeted therapy. Using a high-resolution (5.0 kb) "single nucleotide polymorphism"/copy number variation microarray to screen the whole genome in a series of primary WDLS, two consistently amplified areas were found on chromosome 12: one region containing the MDM2 and CPM genes, and another region containing the FRS2 gene. Based on these findings, we further validated FRS2 amplification in both WDLS and DDLS. Fluorescence in situ hybridization confirmed FRS2 amplification in all WDLS and DDLS tested (n = 57). Real time PCR showed FRS2 mRNA transcriptional upregulation in WDLS (n = 19) and DDLS (n = 13) but not in lipoma (n = 5) and normal fat (n = 9). Immunoblotting revealed high expression levels of phospho-FRS2 at Y436 and slightly overexpression of total FRS2 protein in liposarcoma but not in normal fat or preadipocytes. Considering the critical role of FRS2 in mediating fibroblast growth factor receptor signaling, our findings indicate that FRS2 signaling should be further investigated as a potential therapeutic target for liposarcoma. Copyright © 2011 Wiley-Liss, Inc.

  14. Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect

    PubMed Central

    Maram, Reza; Van Howe, James; Li, Ming; Azaña, José

    2014-01-01

    Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system. PMID:25319207

  15. Dual-cyclical nucleic acid strand-displacement polymerization based signal amplification system for highly sensitive determination of p53 gene.

    PubMed

    Xu, Jianguo; Wu, Zai-Sheng; Li, Hongling; Wang, Zhenmeng; Le, Jingqing; Zheng, Tingting; Jia, Lee

    2016-12-15

    In the present study, we proposed a novel dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) based signal amplification system for highly sensitive determination of tumor suppressor genes. The system primarily consisted of a signaling hairpin probe (SHP), a label-free hairpin probe (LHP) and an initiating primer (IP). The presence of target DNA was able to induce one CNDP through continuous process of ligation, polymerization and nicking, leading to extensively accumulation of two nicked triggers (NT1 and NT2). Intriguingly, the NT1 could directly hybridize SHP, while the NT2 could act as the target analog to induce another CNDP. The resulting dual-CNDP contributed the striking signal amplification, and only a very weak blank noise existed since the ligation template of target was not involved. In this case, the target could be detected in a wide linear range (5 orders of magnitude), and a low detection limit (78 fM) was obtained, which is superior to most of the existing fluorescent methods. Moreover, the dual-CNDP sensing system provided a high selectivity towards target DNA against mismatched target and was successfully applied to analysis of target gene extracted from cancer cells or in human serum-contained samples, indicating its great potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Amplification and generation of surface plasmon polaritons in a semiconductor film - dielectric structure

    NASA Astrophysics Data System (ADS)

    Abramov, A. S.; Zolotovskii, I. O.; Moiseev, S. G.; Sementsov, D. I.

    2018-01-01

    The peculiarities of propagation and amplification of surface waves of plasmon polariton type in a planar semiconductor film - dielectric structure are considered for the THz frequency region, with allowance for dissipation in a semiconductor. Two spectral regions are found, where the group velocity of surface plasmon polaritons is negative. It is shown that in these regions the structure can be considered as an amplifying waveguide with distributed feedback and a high gain with respect to the reflected and transmitted signals. The possibility of generation of electromagnetic radiation in such structures is established.

  17. Microarray-based comparison of three amplification methods for nanogram amounts of total RNA

    PubMed Central

    Singh, Ruchira; Maganti, Rajanikanth J.; Jabba, Sairam V.; Wang, Martin; Deng, Glenn; Heath, Joe Don; Kurn, Nurith; Wangemann, Philine

    2007-01-01

    Gene expression profiling using microarrays requires microgram amounts of RNA, which limits its direct application for the study of nanogram RNA samples obtained using microdissection, laser capture microscopy, or needle biopsy. A novel system based on Ribo-SPIA technology (RS, Ovation-Biotin amplification and labeling system) was recently introduced. The utility of the RS system, an optimized prototype system for picogram RNA samples (pRS), and two T7-based systems involving one or two rounds of amplification (OneRA, Standard Protocol, or TwoRA, Small Sample Prototcol, version II) were evaluated in the present study. Mouse kidney (MK) and mouse universal reference (MUR) RNA samples, 0.3 ng to 10 μg, were analyzed using high-density Affymetrix Mouse Genome 430 2.0 GeneChip arrays. Call concordance between replicates, correlations of signal intensity, signal intensity ratios, and minimal fold increase necessary for significance were determined. All systems amplified partially overlapping sets of genes with similar signal intensity correlations. pRS amplified the highest number of genes from 10-ng RNA samples. We detected 24 of 26 genes verified by RT-PCR in samples prepared using pRS. TwoRA yielded somewhat higher call concordances than did RS and pRS (91.8% vs. 89.3% and 88.1%, respectively). Although all target preparation methods were suitable, pRS amplified the highest number of targets and was found to be suitable for amplification of as little as 0.3 ng of total RNA. In addition, RS and pRS were faster and simpler to use than the T7-based methods and resulted in the generation of cDNA, which is more stable than cRNA. PMID:15613496

  18. Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples.

    PubMed

    Rahman, S M Mazidur; Song, Hyun Beom; Jin, Yan; Oh, Jin-Kyoung; Lim, Min Kyung; Hong, Sung-Tae; Choi, Min-Ho

    2017-10-01

    Clonorchiasis is prevalent in the Far East, and a major health problem in endemic areas. Infected persons may experience, if not treated, serious complications such as bile stone formation, pyogenic cholangitis, and even cholangiocarcinoma. Early diagnosis and treatment are important to prevent serious complications and, therefore, the simple and reliable diagnostic method is necessary to control clonorchiasis in endemic areas, where resources for the diagnosis are limited. The loop-mediated isothermal amplification (LAMP) assay has been applied for the detection of Clonorchis sinensis DNA. Six primers targeting eight locations on the cytochrome c oxidase subunit 1 gene of C. sinensis were designed for species-specific amplification using the LAMP assay. The LAMP assay was sensitive enough to detect as little as 100 fg of C. sinensis genomic DNA and the detection limit in 100 mg of stool was as low as one egg. The assay was highly specific because no cross-reactivity was observed with the DNA of other helminths, protozoa or Escherichia coli. Then, LAMP assay was applied to human fecal samples collected from an endemic area of clonorchiasis in Korea. Using samples showing consistent results by both Kato-Katz method and real-time PCR as reference standards, the LAMP assay showed 97.1% (95% CI, 90.1-99.2) of sensitivity and 100% (95% CI, 92.9-100) of specificity. In stool samples with more than 100 eggs per gram of feces, the sensitivity achieved 100%. To detect C. sinensis in human fecal samples, the LAMP assay was applied and achieved high sensitivity and specificity. The LAMP assay can be utilized in field laboratories as a powerful tool for diagnosis and epidemiological survey of clonorchiasis.

  19. New methods to characterize site amplification

    USGS Publications Warehouse

    Safak, Erdal

    1993-01-01

    Methods alternative to spectral ratios are introduced to characterize site amplification. The methods are developed by using a range of models, from the simple constant amplification model to the time-varying filter model. Examples are given for each model by using a pair of rock- and soil-site recordings from the Loma Prieta earthquake.

  20. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates.

    PubMed

    Kalle, Elena; Gulevich, Alexander; Rensing, Christopher

    2013-11-01

    In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products. © 2013 Elsevier B.V. All rights reserved.

  1. The DEAD box helicase RDE-12 promotes amplification of RNAi in cytoplasmic foci in C. elegans

    PubMed Central

    Yang, Huan; Vallandingham, Jim; Shiu, Philip; Li, Hua; Hunter, Craig P.; Mak, Ho Yi

    2014-01-01

    Summary RNA interference (RNAi) is a potent mechanism for down-regulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi and other eukaryotes [1–3]. In C. elegans, the RNAi response is greatly amplified by the synthesis of abundant secondary siRNAs [4–6]. Exogenous double stranded RNA is processed by Dicer and RDE-1/Argonaute into primary siRNA that guides target mRNA recognition. The RDE-10/RDE-11 complex and the RNA dependent RNA polymerase RRF-1 then engage the target mRNA for secondary siRNA synthesis [7, 8]. However, the molecular link between primary siRNA production and secondary siRNA synthesis remains largely unknown. Furthermore, it is unclear if the sub-cellular sites for target mRNA recognition and degradation coincide with sites where siRNA synthesis and amplification occur. In the C. elegans germline, cytoplasmic P granules at the nuclear pores and perinuclear Mutator foci contribute to target mRNA surveillance and siRNA amplification, respectively [9–11]. We report that RDE-12, a conserved FG domain containing DEAD-box helicase, localizes in P-granules and cytoplasmic foci that are enriched in RSD-6 but are excluded from the Mutator foci. Our results suggest that RDE-12 promotes secondary siRNA synthesis by orchestrating the recruitment of RDE-10 and RRF-1 to primary siRNA targeted mRNA in distinct cytoplasmic compartments. PMID:24684930

  2. The DEAD box helicase RDE-12 promotes amplification of RNAi in cytoplasmic foci in C. elegans.

    PubMed

    Yang, Huan; Vallandingham, Jim; Shiu, Philip; Li, Hua; Hunter, Craig P; Mak, Ho Yi

    2014-04-14

    RNAi is a potent mechanism for downregulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi, and other eukaryotes. In C. elegans, the RNAi response is greatly amplified by the synthesis of abundant secondary small interfering RNAs (siRNAs). Exogenous double-stranded RNA is processed by Dicer and RDE-1/Argonaute into primary siRNA that guides target mRNA recognition. The RDE-10/RDE-11 complex and the RNA-dependent RNA polymerase RRF-1 then engage the target mRNA for secondary siRNA synthesis. However, the molecular link between primary siRNA production and secondary siRNA synthesis remains largely unknown. Furthermore, it is unclear whether the subcellular sites for target mRNA recognition and degradation coincide with sites where siRNA synthesis and amplification occur. In the C. elegans germline, cytoplasmic P granules at the nuclear pores and perinuclear Mutator foci contribute to target mRNA surveillance and siRNA amplification, respectively. We report that RDE-12, a conserved phenylalanine-glycine (FG) domain-containing DEAD box helicase, localizes in P granules and cytoplasmic foci that are enriched in RSD-6 but are excluded from the Mutator foci. Our results suggest that RDE-12 promotes secondary siRNA synthesis by orchestrating the recruitment of RDE-10 and RRF-1 to primary siRNA-targeted mRNA in distinct cytoplasmic compartments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.

    PubMed

    Zhu, Jing; Ding, Yongshun; Liu, Xingti; Wang, Lei; Jiang, Wei

    2014-09-15

    Highly sensitive and selective detection strategy for single-base mutations is essential for risk assessment of malignancy and disease prognosis. In this work, a fluorescent detection method for single-base mutation was proposed based on high selectivity of toehold-mediated strand displacement reaction (TSDR) and powerful signal amplification capability of isothermal DNA amplification. A discrimination probe was specially designed with a stem-loop structure and an overhanging toehold domain. Hybridization between the toehold domain and the perfect matched target initiated the TSDR along with the unfolding of the discrimination probe. Subsequently, the target sequence acted as a primer to initiate the polymerization and nicking reactions, which released a great abundant of short sequences. Finally, the released strands were annealed with the reporter probe, launching another polymerization and nicking reaction to produce lots of G-quadruplex DNA, which could bind the N-methyl mesoporphyrin IX to yield an enhanced fluorescence response. However, when there was even a single base mismatch in the target DNA, the TSDR was suppressed and so subsequent isothermal DNA amplification and fluorescence response process could not occur. The proposed approach has been successfully implemented for the identification of the single-base mutant sequences in the human KRAS gene with a detection limit of 1.8 pM. Furthermore, a recovery of 90% was obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of this detection strategy for single-base mutations in biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Flux amplification in helicity injected spherical tori

    NASA Astrophysics Data System (ADS)

    Tang, X. Z.; Boozer, A. H.

    2005-04-01

    An important measure of the effective current drive by helicity injection into spheromaks and spherical tori is provided by the flux amplification factor, defined as the ratio between the closed poloidal flux in the relaxed mean field and the initial injector vacuum poloidal flux. Flux amplification in magnetic helicity injection is governed by a resonant behavior for Taylor-relaxed plasmas satisfying j =kB. Under the finite net toroidal flux constraint in a spherical torus (ST), the constrained linear resonance k1c is upshifted substantially from the primary Jensen-Chu resonance k1 that was known to be responsible for flux amplification in spheromak formation. Standard coaxial helicity injection into a ST operates at large M, with M the characteristic dimensionless parameter defined as the ratio between the toroidal flux in the discharge chamber and the injector poloidal flux. Meaningful flux amplification for ST plasmas is limited by a critical kr at which edge toroidal field reverses its direction. The kr is downshifted from k1 by a small amount inversely proportional to M. The maximum flux amplification factor Ar≡A(k=kr) scales linearly with M. At the other end of k, substantial flux amplification A(k =ko)˜1 becomes available for ko that scales inversely proportional to M, a significant departure from that in spheromak formation. These important parameters follow the inequality koamplification factor in a ST to be smaller than M. The scaling laws are given analytically in the asymptotic limit of M ≫1, but numerical solutions indicate that they are useful even for M ˜1.

  5. Changes in southern hemispheric polar amplification over the past 5 million years revealed by climate modelling

    NASA Astrophysics Data System (ADS)

    Hoencamp, Jori; Stap, Lennert; Tuenter, Erik; Lourens, Luc; van de Wal, Roderik

    2016-04-01

    Knowledge on polar amplification is important to relate high latitude climate records to global mean temperature changes. Several studies have pointed out that the strength of polar amplification in the Northern Hemisphere varies considerably due to the presence of large ice sheets and more sea ice during colder climate conditions. As a result, the polar amplification in the Northern Hemisphere decreases for warmer climates. In this study, we address the fact that these changes in the Northern Hemisphere also affect the polar amplification in the Southern Hemisphere. We study the Southern and Northern Hemisphere amplification together over the past 5 million years with the CLIMBER-2 intermediate complexity model. Radiation, land ice extent and height, and greenhouse gases are prescribed as forcing. We find that in contrast to the reduction in polar amplification in the Northern Hemisphere, polar amplification in the Southern Hemisphere increases for warmer climates. The amplification decreases in the Northern Hemisphere from 2.7 during glacial conditions to 1.6 for a pre-industrial climate, which is line with other climate simulations. Over the same CO2 range the southern hemispheric polar amplification increases from 1 to 1.6. This is caused by the fact that the atmospheric transport needed to balance the radiation surplus in the equatorial region needs to be compensated by relatively stronger transport of energy in Southern direction while the transport in Northern direction reduces. This reduction in Northern direction is driven by less (land and sea) ice resulting in a smaller meridional gradient in Northern direction and hence a smaller atmospheric transport. As a consequence, the traditional scaled (with LGM temperature) Dome C record needs to be corrected with a maximum of 0.6 degrees half-way glacial and interglacial conditions, if it is to be interpreted as global mean temperature change indicator. While this changes the amplitude, the phasing of

  6. Amplification of Angular Rotations Using Weak Measurements

    NASA Astrophysics Data System (ADS)

    Magaña-Loaiza, Omar S.; Mirhosseini, Mohammad; Rodenburg, Brandon; Boyd, Robert W.

    2014-05-01

    We present a weak measurement protocol that permits a sensitive estimation of angular rotations based on the concept of weak-value amplification. The shift in the state of a pointer, in both angular position and the conjugate orbital angular momentum bases, is used to estimate angular rotations. This is done by an amplification of both the real and imaginary parts of the weak-value of a polarization operator that has been coupled to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment demonstrates the first realization of weak-value amplification in the azimuthal degree of freedom. We have achieved effective amplification factors as large as 100, providing a sensitivity that is on par with more complicated methods that employ quantum states of light or extremely large values of orbital angular momentum.

  7. Highly Sensitive Colorimetric Cancer Cell Detection Based on Dual Signal Amplification.

    PubMed

    Yu, Tao; Dai, Pan-Pan; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-02-01

    Facile and efficient detection of cancer cells at their preclinical stages is one of the central challenges in cancer diagnostics. A direct, rapid, highly sensitive and specific biosensor for detection of cancer biomarkers is desirable in early diagnosis and prognosis of cancer. In this work, we developed, for the first time, an easy and intuitive dispersion-dominated colorimetric strategy for cancer cell detection based on combining multi-DNA released from an aptamer scaffold with cyclic enzymatic amplification, which was triggered by aptamer DNA conformational switch and demonstrated by non-cross-linking gold nanoparticles (Au NPs) aggregation. First, five kinds of messenger DNAs (mDNAs) were aligned on the cancer cell aptamers modified on magnetic beads (MBs) to form mDNAs-Apt-MBs biocompatible nanosensors. In the presence of target cells, the aptamer would bind to the receptors on the cell membranes, and mDNAs would be released, resulting in the first amplification that one biological binding event would cause the release of multiple kinds of mDNAs simultaneously. After magnetic separation, the released mDNAs were introduced into the cyclic enzymatic amplification to cleave more single strand DNA (ssDNA) fragments. Instead of modification of Au NPs, these fragments and mDNAs could be adsorbed on the surface of Au NPs to prevent particle aggregation and ensure the stability and color of solution in high salt environments. The linear response for HL-60 cells in a concentration range from 10 to 10(4) cells was obtained with a detection limit of four cells in buffer solution. Moreover, the feasibility of the proposed strategy was demonstrated in a diluted serum sample. This dual signal amplification method can be extended to other types of cancer cells, which has potential application in point-of-care cancer diagnosis.

  8. Diagnostic devices for isothermal nucleic acid amplification.

    PubMed

    Chang, Chia-Chen; Chen, Chien-Cheng; Wei, Shih-Chung; Lu, Hui-Hsin; Liang, Yang-Hung; Lin, Chii-Wann

    2012-01-01

    Since the development of the polymerase chain reaction (PCR) technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  9. Diagnostic Devices for Isothermal Nucleic Acid Amplification

    PubMed Central

    Chang, Chia-Chen; Chen, Chien-Cheng; Wei, Shih-Chung; Lu, Hui-Hsin; Liang, Yang-Hung; Lin, Chii-Wann

    2012-01-01

    Since the development of the polymerase chain reaction (PCR) technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development. PMID:22969402

  10. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range.

    PubMed

    Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi

    2016-12-15

    Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses.

    PubMed

    Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J

    1994-02-01

    We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay.

  12. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses.

    PubMed Central

    Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J

    1994-01-01

    We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay. PMID:7512096

  13. Diverse host feeding on nesting birds may limit early-season West Nile virus amplification.

    PubMed

    Egizi, Andrea M; Farajollahi, Ary; Fonseca, Dina M

    2014-06-01

    Arboviral activity tracks vector availability, which in temperate regions means that transmission ceases during the winter and must be restarted each spring. In the northeastern United States, Culex restuans Theobald resumes its activity earlier than Culex pipiens L. and is thought to be important in restarting West Nile virus (WNV) transmission. Its role in WNV amplification, however, is unclear, because viral levels commonly remain low until the rise of Cx. pipiens later in the season. Because a vector's feeding habits can reveal key information about disease transmission, we identified early-season (April-June) blood meals from Cx. restuans collected throughout New Jersey, and compared them to published datasets from later in the season and also from other parts of the country. We found significantly higher avian diversity, including poor WNV hosts, and fewer blood meals derived from American Robins (17% versus over 40% found in later season). Critically, we identified blood meals from significantly more female than male birds in species where females are the incubating sex, suggesting that Cx. restuans is able to feed on such a wide variety of hosts in early spring because incubating birds are easy targets. Because WNV amplification depends on virus consistently reaching competent hosts, our results indicate that Cx. restuans is unlikely to be an amplifying vector of WNV in the early season. As the season progresses, however, changes in the availability of nesting birds may make it just as capable as Cx. pipiens, although at somewhat lower abundance as the summer progresses.

  14. Ultrabright multikilovolt x-ray source: saturated amplification on noble gas transition arrays from hollow atom states

    DOEpatents

    Rhodes, Charles K.; Boyer, Keith

    2004-02-17

    An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.

  15. Oncogene-like induction of cellular invasion from centrosome amplification

    PubMed Central

    Godinho, Susana A.; Picone, Remigio; Burute, Mithila; Dagher, Regina; Su, Ying; Leung, Cheuk T.; Polyak, Kornelia; Brugge, Joan S.; Thery, Manuel; Pellman, David

    2014-01-01

    Centrosome amplification has long been recognized as a feature of human tumors, however its role in tumorigenesis remains unclear1. Centrosome amplification is poorly tolerated by non-transformed cells, and, in the absence of selection, extra centrosomes are spontaneously lost2. Thus, the high frequency of centrosome amplification, particularly in more aggressive tumors3, raises the possibility that extra centrosomes could, in some contexts, confer advantageous characteristics that promote tumor progression. Using a three-dimensional model system and other approaches to culture human mammary epithelial cells, we find that centrosome amplification triggers cell invasion. This invasive behavior is similar to that induced by overexpression of the breast cancer oncogene ErbB24 and indeed enhances invasiveness triggered by ErbB2. We show that, through increased centrosomal microtubule nucleation, centrosome amplification increases Rac1 activity, which disrupts normal cell-cell adhesion and promotes invasion. These findings demonstrate that centrosome amplification, a structural alteration of the cytoskeleton, can promote features of malignant transformation. PMID:24739973

  16. Embryo Sexing and Sex Chromosomal Chimerism Analysis by Loop-Mediated Isothermal Amplification in Cattle and Water Buffaloes

    PubMed Central

    HIRAYAMA, Hiroki; KAGEYAMA, Soichi; MORIYASU, Satoru; SAWAI, Ken; MINAMIHASHI, Akira

    2013-01-01

    Abstract In domestic animals of the family Bovidae, sex preselection of offspring has been demanded for convenience of milk/beef production and animal breeding. Development of the nonsurgical embryo transfer technique and sexing methods of preimplantation embryos made it possible. Sexing based on detection of Y chromosome-specific DNA sequences is considered the most reliable method to date. PCR enables amplification of a target sequence from a small number of blastomeres. However, it requires technical skill and is time consuming. Furthermore, PCR has the risk of false positives because of DNA contamination during handling of the PCR products in duplicate PCR procedures and/or electrophoresis. Therefore, for embryo sexing to become widely used in the cattle embryo transfer industry, a simple, rapid and precise sexing method needs to be developed. Loop-mediated isothermal amplification (LAMP) is a novel DNA amplification method, and the reaction is carried out under isothermal conditions (range, 60 to 65 C) using DNA polymerase with strand displacement activity. When the target DNA is amplified by LAMP, a white precipitate derived from magnesium pyrophosphate (a by-product of the LAMP reaction) is observed. It is noteworthy that LAMP does not need special reagents or electrophoresis to detect the amplified DNA. This review describes the development and application of an embryo sexing method using LAMP in cattle and water buffaloes. PMID:23965599

  17. DNA Extraction and Amplification from Contemporary Polynesian Bark-Cloth

    PubMed Central

    Moncada, Ximena; Payacán, Claudia; Arriaza, Francisco; Lobos, Sergio; Seelenfreund, Daniela; Seelenfreund, Andrea

    2013-01-01

    Background Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles. Recovery of nucleic acids from paper mulberry bark-cloth has not been reported before. Methodology We describe a simple method for the extraction of PCR-amplifiable DNA from small samples of contemporary Polynesian bark-cloth (tapa) using two types of nuclear markers. We report the amplification of about 300 bp sequences of the ITS1 region and of a microsatellite marker. Conclusions Sufficient DNA was retrieved from all bark-cloth samples to permit successful PCR amplification. This method shows a means of obtaining useful genetic information from modern bark-cloth samples and opens perspectives for the analyses of small fragments derived from ethnographic materials. PMID:23437166

  18. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification.

    PubMed

    Cain-Hom, Carol; Splinter, Erik; van Min, Max; Simonis, Marieke; van de Heijning, Monique; Martinez, Maria; Asghari, Vida; Cox, J Colin; Warming, Søren

    2017-05-05

    Cre/LoxP technology is widely used in the field of mouse genetics for spatial and/or temporal regulation of gene function. For Cre lines generated via pronuclear microinjection of a Cre transgene construct, the integration site is random and in most cases not known. Integration of a transgene can disrupt an endogenous gene, potentially interfering with interpretation of the phenotype. In addition, knowledge of where the transgene is integrated is important for planning of crosses between animals carrying a conditional allele and a given Cre allele in case the alleles are on the same chromosome. We have used targeted locus amplification (TLA) to efficiently map the transgene location in seven previously published Cre and CreERT2 transgenic lines. In all lines, transgene insertion was associated with structural changes of variable complexity, illustrating the importance of testing for rearrangements around the integration site. In all seven lines the exact integration site and breakpoint sequences were identified. Our methods, data and genotyping assays can be used as a resource for the mouse community and our results illustrate the power of the TLA method to not only efficiently map the integration site of any transgene, but also provide additional information regarding the transgene integration events. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Development and Evaluation of Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) Assay Coupled with a Portable Device for Rapid Diagnosis of Ebola Virus Disease in Guinea

    PubMed Central

    Kurosaki, Yohei; Magassouba, N’Faly; Oloniniyi, Olamide K.; Cherif, Mahamoud S.; Sakabe, Saori; Takada, Ayato; Hirayama, Kenji; Yasuda, Jiro

    2016-01-01

    Given the current absence of specific drugs or vaccines for Ebola virus disease (EVD), rapid, sensitive, and reliable diagnostic methods are required to stem the transmission chain of the disease. We have developed a rapid detection assay for Zaire ebolavirus based on reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and coupled with a novel portable isothermal amplification and detection platform. The RT-LAMP assay is based on primer sets that target the untranscribed trailer region or nucleoprotein coding region of the viral RNA. The test could specifically detect viral RNAs of Central and West African Ebola virus strains within 15 minutes with no cross-reactivity to other hemorrhagic fever viruses and arboviruses, which cause febrile disease. The assay was evaluated using a total of 100 clinical specimens (serum, n = 44; oral swab, n = 56) collected from suspected EVD cases in Guinea. The specificity of this diagnostic test was 100% for both primer sets, while the sensitivity was 100% and 97.9% for the trailer and nucleoprotein primer sets, respectively, compared with a reference standard RT-PCR test. These observations suggest that our diagnostic assay is useful for identifying EVD cases, especially in the field or in settings with insufficient infrastructure. PMID:26900929

  20. Development and Evaluation of Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) Assay Coupled with a Portable Device for Rapid Diagnosis of Ebola Virus Disease in Guinea.

    PubMed

    Kurosaki, Yohei; Magassouba, N'Faly; Oloniniyi, Olamide K; Cherif, Mahamoud S; Sakabe, Saori; Takada, Ayato; Hirayama, Kenji; Yasuda, Jiro

    2016-02-01

    Given the current absence of specific drugs or vaccines for Ebola virus disease (EVD), rapid, sensitive, and reliable diagnostic methods are required to stem the transmission chain of the disease. We have developed a rapid detection assay for Zaire ebolavirus based on reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and coupled with a novel portable isothermal amplification and detection platform. The RT-LAMP assay is based on primer sets that target the untranscribed trailer region or nucleoprotein coding region of the viral RNA. The test could specifically detect viral RNAs of Central and West African Ebola virus strains within 15 minutes with no cross-reactivity to other hemorrhagic fever viruses and arboviruses, which cause febrile disease. The assay was evaluated using a total of 100 clinical specimens (serum, n = 44; oral swab, n = 56) collected from suspected EVD cases in Guinea. The specificity of this diagnostic test was 100% for both primer sets, while the sensitivity was 100% and 97.9% for the trailer and nucleoprotein primer sets, respectively, compared with a reference standard RT-PCR test. These observations suggest that our diagnostic assay is useful for identifying EVD cases, especially in the field or in settings with insufficient infrastructure.

  1. An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification.

    PubMed

    Xu, Jingguo; Guo, Jia; Maina, Sarah Wanjiku; Yang, Yumeng; Hu, Yimin; Li, Xuanxuan; Qiu, Jiarong; Xin, Zhihong

    2018-05-15

    An ultra-sensitive aptamer-based biosensor for the detection of staphylococcus aureus was established by adopting the nicking enzyme amplification reaction (NEAR) and the rolling circle amplification (RCA) technologies. Aptamer-probe (AP), containing an aptamer and a probe sequence, was developed to act as the recognition unit of the biosensor, which was specifically bound to S. aureus. The probe was released from AP and initiated into the subsequent DNA amplification reactions where S. aureus was present, converting the detection of S. aureus to the investigation of probe oligonucleotide. The RCA amplification products contained a G-quadruplex motif and formed a three dimensional structure in presence of hemin. The G4/hemin complex showed horseradish peroxidase (HRP)-mimic activity and catalyzed the chemiluminescence reaction of luminol mediated by H 2 O 2 . The results showed that the established biosensor could detect S. aureus specifically with a good linear correlation at 5-10 4  CFU/mL. The signal values based on NEAR-RCA two-step cycle were boosted acutely, much higher than that relied on one-cycle magnification. The limit of detection (LoD) was determined to be as low as 5 CFU/mL. The established aptasensor exhibited a good discrimination of living against dead S. aureus, and can be applied to detect S. aureus in the food industry. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Rapid screening method for male DNA by using the loop-mediated isothermal amplification assay.

    PubMed

    Kitamura, Masashi; Kubo, Seiji; Tanaka, Jin; Adachi, Tatsushi

    2017-08-12

    Screening for male-derived biological material from collected samples plays an important role in criminal investigations, especially those involving sexual assaults. We have developed a loop-mediated isothermal amplification (LAMP) assay targeting multi-repeat sequences of the Y chromosome for detecting male DNA. Successful amplification occurred with 0.5 ng of male DNA under isothermal conditions of 61 to 67 °C, but no amplification occurred with up to 10 ng of female DNA. Under the optimized conditions, the LAMP reaction initiated amplification within 10 min and amplified for 20 min. The LAMP reaction was sensitive at levels as low as 1-pg male DNA, and a quantitative LAMP assay could be developed because of the strong correlation between the reaction time and the amount of template DNA in the range of 10 pg to 10 ng. Furthermore, to apply the LAMP assay to on-site screening for male-derived samples, we evaluated a protocol using a simple DNA extraction method and a colorimetric intercalating dye that allows detection of the LAMP reaction by evaluating the change in color of the solution. Using this protocol, samples of male-derived blood and saliva stains were processed in approximately 30 min from DNA extraction to detection. Because our protocol does not require much hands-on time or special equipment, this LAMP assay promises to become a rapid and simple screening method for male-derived samples in forensic investigations.

  3. Finite Element Modelling of the Indo-Gangetic Basin to Study Site Amplification

    NASA Astrophysics Data System (ADS)

    Sivasubramonian, J.; Jaya, D.; Raghukanth, S. T. G.; Mai, P. M.

    2017-12-01

    We have developed a finite-element model of the 3D velocity structure of the Indo-Gangetic basin (IG basin) to quantify site amplifications due to seismic waves emanated from regional earthquakes. Estimating seismic wave amplifications is difficult in case of limited instrumentation, thus motivating us to propose a new simulation-based approach. The input required for the finite-element model include the spatial coordinates and the material properties (density, P-wave and S-wave velocities, Q factor) of the basin. Recent studies in the basin demarcate sediment layers of varying thickness, reaching down to a depth of 6 km and S-wave velocities ranging from 0.4-2.4 km/s (Srinivas et al., 2013). In the present study, our regional model has dimensions 900 x 900 x 80 km in x, y and z directions, discretized into 320 x 320 x 53 hexahedral elements. The top 6 km of the IG basin is divided into 8 different sediment layers with varying material properties. We use kinematic rupture models for the earthquake sources to simulate past as well as hypothetical future events. Two past earthquakes (Mw4.9, Delhi; Mw5.2, Chamoli) and two hypothetical earthquakes (Mw7.1; Mw8.5) are considered in our study. The rupture plane dimensions (L and W) and the slip distribution are estimated using the method of Mai and Beroza (2002). Based on focal-mechanism solutions and the depths of seismicity, we define the strike (580, 3090), the dip (650, 210), the rake (160, 770), and the depth of top edge of fault (5 km, 19 km) for the two large hypothetical earthquakes. Based on these parameters, the Centroid Moment Tensor (CMT) solution of the source is obtained. Ground motions are then simulated by solving the three-dimensional wave equation using the spectral element method (Komatitsch and Tromp, 1999). The key observations from our results are: 1) basin amplification factors for Peak Ground Velocity (PGV) are twice as high as Peak Ground Displacement (PGD) 2) PGV amplifications are as high as a

  4. Amplification of the basic reproduction number in cattle farm networks

    PubMed Central

    2018-01-01

    The popularly known 20–80 rule or Pareto rule states that 20% of efforts leads to 80% of results. This rule has been applied to the study of infection transmission in contact networks, and specifically, contact networks between cattle farms. Woolhouse and collaborators showed that targeting interventions for disease control and prevention to the 20% of the farms that contribute the most to the basic reproduction number (Ro), could reduce it by 80%. The rule results from the number of incoming and outgoing contacts per farm being highly heterogeneous. Besides, Woolhouse and collaborators showed that this high contact heterogeneity, together with a high positive correlation between the number of incoming and outgoing animal movements per farm leads to an amplification in the Ro. Two previous studies carried out with Scottish cattle transport data found either no correlation or only a weak correlation (rho up to 0.33) when using weighted data. Using data from the contacts between Swiss cattle farms in 2015, we found that the 20–80 rule applies with respect to Ro, although the proportion of highly active farms is smaller (11%). Besides, a positive strong correlation (rho = 0.64, weighted data) between the incoming and outgoing contacts of farms exists. This means that the amplification of Ro (due to the contact heterogeneities and the existing correlation) in cattle contact networks can be much higher than known until now. Our results highlight the importance of an effective active surveillance, more so than in other countries were these amplification mechanisms are absent. PMID:29672512

  5. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  6. Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas.

    PubMed

    Saâda-Bouzid, Esma; Burel-Vandenbos, Fanny; Ranchère-Vince, Dominique; Birtwisle-Peyrottes, Isabelle; Chetaille, Bruno; Bouvier, Corinne; Château, Marie-Christine; Peoc'h, Michel; Battistella, Maxime; Bazin, Audrey; Gal, Jocelyn; Michiels, Jean-François; Coindre, Jean-Michel; Pedeutour, Florence; Bianchini, Laurence

    2015-11-01

    HMGA2, CDK4, and JUN genes have been described as frequently coamplified with MDM2 in atypical lipomatous tumor, well-differentiated liposarcoma, and dedifferentiated liposarcoma. We studied the frequency of amplification of these genes in a series of 48 dedifferentiated liposarcomas and 68 atypical lipomatous tumors/well-differentiated liposarcomas. We correlated their amplification status with clinicopathological features and outcomes. Histologically, both CDK4 (P=0.007) and JUN (P=0.005) amplifications were associated with dedifferentiated liposarcoma, whereas amplification of the proximal parts of HMGA2 (5'-untranslated region (UTR) and exons 1-3) was associated with atypical lipomatous tumor/well-differentiated liposarcoma (P=0.01). CDK4 amplification was associated with axial tumors. Amplification of 5'-UTR and exons 1-3 of HMGA2 was associated with primary status and grade 1. Shorter overall survival was correlated with: age >64 years (P=0.03), chemotherapy used in first intent (P<0.001), no surgery (P=0.003), grade 3 (P<0.001), distant metastasis (P<0.001), node involvement (P=0.006), and CDK4 amplification (P=0.07). In multivariate analysis, distant metastasis (HR=8.8) and grade 3 (HR=18.2) were associated with shorter overall survival. A shorter recurrence-free survival was associated with dedifferentiated liposarcoma (P<0.001), grade 3 (P<0.001), node involvement (P<0.001), distant metastasis (P=0.02), recurrent status (P=0.009), axial location (P=0.001), and with molecular features such as CDK4 (P=0.05) and JUN amplification (P=0.07). Amplification of 5'-UTR and exons 1-3 (P=0.08) and 3'-UTR (P=0.01) of HMGA2 were associated with longer recurrence-free survival. Distant metastasis was associated with shorter recurrence-free survival (HR=5.8) in multivariate analysis. Dedifferentiated liposarcoma type was associated with axial location, grade 3 and recurrent status. In conclusion, we showed that the amplification of HMGA2 was associated with the atypical

  7. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification.

    PubMed

    Xiao, Kunyi; Liu, Juan; Chen, Hui; Zhang, Song; Kong, Jilie

    2017-05-15

    A label-free and high-efficient graphene oxide (GO)-based aptasensor was developed for the detection of low quantity cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and dye-labeled linker DNAs stably coexisted in solution, and the fluorescence was quenched by the GO-based FÖrster resonance energy transfer (FRET) process. In the presence of target cells, the specific binding of HAPs with the target cells triggered a conformational alternation, which resulted in linker DNA complementary pairing and cleavage by nicking endonuclease-strand scission cycles. Consequently, more cleaved fragments of linker DNAs with more the terminal labeled dyes could show the enhanced fluorescence because these cleaved DNA fragments hardly combine with GOs and prevent the FRET process. Fluorescence analysis demonstrated that this GO-based aptasensor exhibited selective and sensitive response to the presence of target CCRF-CEM cells in the concentration range from 50 to 10 5 cells. The detection limit of this method was 25 cells, which was approximately 20 times lower than the detection limit of normal fluorescence aptasensors without amplification. With high sensitivity and specificity, it provided a simple and cost-effective approach for early cancer diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Rolling circle amplification of metazoan mitochondrialgenomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  9. Combination of Mass Signal Amplification and Isotope-Labeled Alkanethiols for the Multiplexed Detection of miRNAs.

    PubMed

    Kang, Hyunook; Hong, Seol-Hye; Sung, Jiha; Yeo, Woon-Seok

    2017-08-04

    We report a fast and sensitive method for the multiplexed detection of miRNAs by combining mass signal amplification and isotope-labeled signal reporter molecules. In our strategy, target miRNAs are captured specifically by immobilized DNAs on gold nanoparticles (AuNPs), which carry a large number of small molecules, called amplification tags (Am-tags), as the reporter for the detection of target miRNAs. For multiplexed detection, we designed and synthesized four Am-tags containing 0, 4, 8, 12 isotopes so that they had same molecular properties but different molecular weights. By observing the mass signals of the Am-tags on AuNPs decorated along with different probe DNAs, four types of miRNAs in a sample could be easily discriminated, and the relative amounts of these miRNAs could be quantified. The practicability of our strategy was further verified by measuring the expression levels of two miRNAs in HUVECs in response to different CuSO 4 concentrations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Amplification and overexpression of topoisomerase IIalpha predict response to anthracycline-based therapy in locally advanced breast cancer.

    PubMed

    Coon, John S; Marcus, Elizabeth; Gupta-Burt, Shalina; Seelig, Steven; Jacobson, Kris; Chen, Shande; Renta, Vivian; Fronda, Geraldo; Preisler, Harvey D

    2002-04-01

    The putative association between erbB-2 overexpression and favorable response to anthracyline-based therapy in breast cancer is controversial, and the mechanism unclear. We sought to determine whether coamplification and overexpression of the topoisomerase IIalpha gene, near erbB-2 on chromosome 17, and a known anthracycline target, may underlie the association. Thirty-five patients who had locally advanced breast cancer (LABC) and who had received neoadjuvant, anthracycline-based therapy were studied. Copy number of topoisomerase IIalpha and erbB-2 was determined by fluorescence in situ hybridization, and expression by immunohistochemistry. Of 8 patients with erbB-2 amplification, 5 had a complete response (CR) or minimal residual disease (MRD), 3 had a partial response (PR), and none had stable (StD) or progressive disease (PD) at the time of mastectomy, versus 3 CR or MRD, 16 PR, and 8 StD or PD for patients without amplification (P = 0.008). In contrast, erbB-2 overexpression was not significantly associated with response (P = 0.114). Of 6 patients with topoisomerase IIalpha amplification, 4 had CR or MRD, 2 PR, and none StD or PD, versus 4 CR or MRD, 17 PR, and 8 StD or PD for patients without amplification (P = 0.034). All of the tumors with topoisomerase IIalpha amplification also had erbB-2 amplification, but not vice versa. Overexpression of topoisomerase IIalpha (9 patients) was also associated with favorable response (P = 0.021). Coamplification of erbB-2 and topoisomerase IIalpha is significantly associated with favorable local response to anthracycline-based therapy in LABC. The expression data favor a plausible mechanism based on topoisomerase IIalpha biology.

  11. Can Anomalous Amplification be Attained without Postselection?

    PubMed

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I; Howell, John C

    2016-03-11

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  12. Can Anomalous Amplification be Attained without Postselection?

    NASA Astrophysics Data System (ADS)

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.

    2016-03-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  13. Reverse strand-displacement amplification strategy for rapid detection of p53 gene.

    PubMed

    Wang, Lisha; Han, Ying; Xiao, Shuai; Lv, Sha; Wang, Cong; Zhang, Nan; Wang, Zhengyong; Tang, Yongqiong; Li, Hongbo; Lyu, Jianxin; Xu, Huo; Shen, Zhifa

    2018-09-01

    The development of rapid approaches to detect prognostic markers is significant in reducing the morbidity and mortality of cancer. In this paper, we describe a rapid and specific biosensing platform for target DNA (p53 gene as a model) detection based on reverse strand displacement amplification (R-SDA). When the p53 gene is added, multifuctional molecular beacon (MMB) is unfolded via the hybridization with p53 gene. With the assist of Klenow fragment (KF) and Nt.BbvCI (the nicking endonuclease), p53 gene recycling could be initiated and considerable amount of complementary sequences for the MMBs (Nicked fragments, NFs) could be formed, generating enhanced fluorescence signal. Using this amplification strategy, the proposed biosensor displays the detection limit of 1 nM and a wide linear range from 1 to 100 nM, even if only one type of probe is involved. Notably, remarkable detection specificity for single-base mismatched target p53 gene is achieved. Moreover, the described biosensor also exhibited the stability in real biological samples (human serum). The rapid detection strategy can be performed less than 30 min without harsh reaction conditions or expensive nanoparticles. This biosensor shows great potential for application in clinic assay, especially, for early cancer diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller.

    PubMed

    Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun

    2017-01-03

    Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.

  15. Lidar using the backscatter amplification effect

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.

    2018-04-01

    Experimental data proving the possibility of lidar measurement of the refractive turbulence strength based on the effect of backscatter amplification (BSA) are reported. It is shown that the values of the amplification factor correlate with the variance of random jitter of optical image of an incoherent light source depending on the value of the structure constant of the air refractive index turbulent fluctuations averaged over the probing path. This paper presents the results of measurements of the BSA factor in comparison with the simultaneous measurements of the BSA peak, which is very narrow and only occurs on the laser beam axis. It is constructed the range-time images of the derivative of the amplification factor gives a comprehensive picture of the location of turbulent zones and their temporal dynamics.

  16. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection.

    PubMed

    Tang, Ruihua; Yang, Hui; Gong, Yan; You, MinLi; Liu, Zhi; Choi, Jane Ru; Wen, Ting; Qu, Zhiguo; Mei, Qibing; Xu, Feng

    2017-03-29

    Nucleic acid testing (NAT) has been widely used for disease diagnosis, food safety control and environmental monitoring. At present, NAT mainly involves nucleic acid extraction, amplification and detection steps that heavily rely on large equipment and skilled workers, making the test expensive, time-consuming, and thus less suitable for point-of-care (POC) applications. With advances in paper-based microfluidic technologies, various integrated paper-based devices have recently been developed for NAT, which however require off-chip reagent storage, complex operation steps and equipment-dependent nucleic acid amplification, restricting their use for POC testing. To overcome these challenges, we demonstrate a fully disposable and integrated paper-based sample-in-answer-out device for NAT by integrating nucleic acid extraction, helicase-dependent isothermal amplification and lateral flow assay detection into one paper device. This simple device allows on-chip dried reagent storage and equipment-free nucleic acid amplification with simple operation steps, which could be performed by untrained users in remote settings. The proposed device consists of a sponge-based reservoir and a paper-based valve for nucleic acid extraction, an integrated battery, a PTC ultrathin heater, temperature control switch and on-chip dried enzyme mix storage for isothermal amplification, and a lateral flow test strip for naked-eye detection. It can sensitively detect Salmonella typhimurium, as a model target, with a detection limit of as low as 10 2 CFU ml -1 in wastewater and egg, and 10 3 CFU ml -1 in milk and juice in about an hour. This fully disposable and integrated paper-based device has great potential for future POC applications in resource-limited settings.

  17. Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples

    PubMed Central

    Rahman, S. M. Mazidur; Song, Hyun Beom; Jin, Yan; Oh, Jin-Kyoung; Lim, Min Kyung; Hong, Sung-Tae

    2017-01-01

    Background Clonorchiasis is prevalent in the Far East, and a major health problem in endemic areas. Infected persons may experience, if not treated, serious complications such as bile stone formation, pyogenic cholangitis, and even cholangiocarcinoma. Early diagnosis and treatment are important to prevent serious complications and, therefore, the simple and reliable diagnostic method is necessary to control clonorchiasis in endemic areas, where resources for the diagnosis are limited. Methodology/Principle findings The loop-mediated isothermal amplification (LAMP) assay has been applied for the detection of Clonorchis sinensis DNA. Six primers targeting eight locations on the cytochrome c oxidase subunit 1 gene of C. sinensis were designed for species-specific amplification using the LAMP assay. The LAMP assay was sensitive enough to detect as little as 100 fg of C. sinensis genomic DNA and the detection limit in 100 mg of stool was as low as one egg. The assay was highly specific because no cross-reactivity was observed with the DNA of other helminths, protozoa or Escherichia coli. Then, LAMP assay was applied to human fecal samples collected from an endemic area of clonorchiasis in Korea. Using samples showing consistent results by both Kato-Katz method and real-time PCR as reference standards, the LAMP assay showed 97.1% (95% CI, 90.1–99.2) of sensitivity and 100% (95% CI, 92.9–100) of specificity. In stool samples with more than 100 eggs per gram of feces, the sensitivity achieved 100%. Conclusions To detect C. sinensis in human fecal samples, the LAMP assay was applied and achieved high sensitivity and specificity. The LAMP assay can be utilized in field laboratories as a powerful tool for diagnosis and epidemiological survey of clonorchiasis. PMID:28991924

  18. Targeted Therapies in NSCLC: Emerging oncogene targets following the success of EGFR

    PubMed Central

    Berge, Eamon M; Doebele, Robert C

    2014-01-01

    The diagnostic testing, treatment and prognosis of non-small cell lung cancer (NSCLC) has undergone a paradigm shift since the discovery of sensitizing mutations in the epidermal growth factor receptor (EGFR) gene in a subset of NSCLC patients. Several additional oncogenic mutations, including gene fusions and amplifications have since been discovered, with a number of drugs that target each specific oncogene. This review focuses on oncogenes in NSCLC other than EGFR and their companion ‘targeted therapies’. Particular emphasis is placed on the role of ALK, ROS1, RET, MET, BRAF, and HER2 in NSCLC. PMID:24565585

  19. Human long intrinsically disordered protein regions are frequent targets of positive selection.

    PubMed

    Afanasyeva, Arina; Bockwoldt, Mathias; Cooney, Christopher R; Heiland, Ines; Gossmann, Toni I

    2018-06-01

    Intrinsically disordered regions occur frequently in proteins and are characterized by a lack of a well-defined three-dimensional structure. Although these regions do not show a higher order of structural organization, they are known to be functionally important. Disordered regions are rapidly evolving, largely attributed to relaxed purifying selection and an increased role of genetic drift. It has also been suggested that positive selection might contribute to their rapid diversification. However, for our own species, it is currently unknown whether positive selection has played a role during the evolution of these protein regions. Here, we address this question by investigating the evolutionary pattern of more than 6600 human proteins with intrinsically disordered regions and their ordered counterparts. Our comparative approach with data from more than 90 mammalian genomes uses a priori knowledge of disordered protein regions, and we show that this increases the power to detect positive selection by an order of magnitude. We can confirm that human intrinsically disordered regions evolve more rapidly, not only within humans but also across the entire mammalian phylogeny. They have, however, experienced substantial evolutionary constraint, hinting at their fundamental functional importance. We find compelling evidence that disordered protein regions are frequent targets of positive selection and estimate that the relative rate of adaptive substitutions differs fourfold between disordered and ordered protein regions in humans. Our results suggest that disordered protein regions are important targets of genetic innovation and that the contribution of positive selection in these regions is more pronounced than in other protein parts. © 2018 Afanasyeva et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Amplification, Technology, and Cochlear Implants for Infants.

    ERIC Educational Resources Information Center

    Adam, Arlie J.

    1993-01-01

    Early amplification is crucial to efficient habilitation and development of oral communication skills in hearing-impaired infants. Initial evaluation and fitting of amplification is a joint effort by the audiologist, therapist, and parents, whether the child uses traditional hearing aids or cochlear implants, and should be supplemented by a…

  1. Beam cleaning of an incoherent laser via plasma Raman amplification

    DOE PAGES

    Edwards, Matthew R.; Qu, Kenan; Mikhailova, Julia M.; ...

    2017-09-25

    We show that backward Raman amplification in plasma can efficiently compress a temporally incoherent pump laser into an intense coherent amplified seed pulse, provided that the correlation time of the pump is longer than the inverse plasma frequency. One analytical theory for Raman amplification using pump beams with different correlation functions is developed and compared to numerical calculations and particle-in-cell simulations. Since incoherence on scales shorter than the instability growth time suppresses spontaneous noise amplification, we point out a broad regime where quasi-coherent sources may be used as efficient low-noise Raman amplification pumps. As the amplified seed is coherent, Ramanmore » amplification provides an additional a beam-cleaning mechanism for removing incoherence. At near-infrared wavelengths, finite coherence times as short as 50 fs allow amplification with only minor losses in efficiency.« less

  2. Beam cleaning of an incoherent laser via plasma Raman amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew R.; Qu, Kenan; Mikhailova, Julia M.

    We show that backward Raman amplification in plasma can efficiently compress a temporally incoherent pump laser into an intense coherent amplified seed pulse, provided that the correlation time of the pump is longer than the inverse plasma frequency. One analytical theory for Raman amplification using pump beams with different correlation functions is developed and compared to numerical calculations and particle-in-cell simulations. Since incoherence on scales shorter than the instability growth time suppresses spontaneous noise amplification, we point out a broad regime where quasi-coherent sources may be used as efficient low-noise Raman amplification pumps. As the amplified seed is coherent, Ramanmore » amplification provides an additional a beam-cleaning mechanism for removing incoherence. At near-infrared wavelengths, finite coherence times as short as 50 fs allow amplification with only minor losses in efficiency.« less

  3. Recombinase Polymerase Amplification (RPA) of CaMV-35S Promoter and nos Terminator for Rapid Detection of Genetically Modified Crops

    PubMed Central

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-01-01

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops. PMID:25310647

  4. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops.

    PubMed

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-10-10

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37-42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15-25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  5. Chemical amplification based on fluid partitioning

    DOEpatents

    Anderson, Brian L [Lodi, CA; Colston, Jr., Billy W.; Elkin, Chris [San Ramon, CA

    2006-05-09

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  6. Amplification of earthquake ground motions in Washington, DC, and implications for hazard assessments in central and eastern North America

    USGS Publications Warehouse

    Pratt, Thomas L.; Horton, J. Wright; Munoz, Jessica; Hough, Susan E.; Chapman, Martin C.; Olgun, C. Guney

    2017-01-01

    The extent of damage in Washington, DC, from the 2011 Mw 5.8 Mineral, VA, earthquake was surprising for an epicenter 130 km away; U.S. Geological Survey “Did-You-Feel-It” reports suggest that Atlantic Coastal Plain and other unconsolidated sediments amplified ground motions in the city. We measure this amplification relative to bedrock sites using earthquake signals recorded on a temporary seismometer array. The spectral ratios show strong amplification in the 0.7 to 4 Hz frequency range for sites on sediments. This range overlaps with resonant frequencies of buildings in the city as inferred from their heights, suggesting amplification at frequencies to which many buildings are vulnerable to damage. Our results emphasize that local amplification can raise moderate ground motions to damaging levels in stable continental regions, where low attenuation extends shaking levels over wide areas and unconsolidated deposits on crystalline metamorphic or igneous bedrock can result in strong contrasts in near-surface material properties.

  7. Explanatory model for sound amplification in a stethoscope

    NASA Astrophysics Data System (ADS)

    Eshach, H.; Volfson, A.

    2015-01-01

    In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with opportunities to not only better understand the amplification mechanism of a stethoscope, but also to strengthen their understanding of sound, pressure, waves, resonance modes, etc.

  8. Amplification of the Gp41 gene for detection of mutations conferring resistance to HIV-1 fusion inhibitors on genotypic assay

    NASA Astrophysics Data System (ADS)

    Tanumihardja, J.; Bela, B.

    2017-08-01

    Fusion inhibitors have potential for future use in HIV control programs in Indonesia, so the capacity to test resistance to such drugs needs to be developed. Resistance-detection with a genotypic assay began with amplification of the target gene, gp41. Based on the sequence of the two most common HIV subtypes in Indonesia, AE and B, a primer pair was designed. Plasma samples containing both subtypes were extracted to obtain HIV RNA. Using PCR, the primer pair was used to produce the amplification product, the identity of which was checked based on length under electrophoresis. Eleven plasma samples were included in this study. One-step PCR using the primer pair was able to amplify gp41 from 54.5% of the samples, and an unspecific amplification product was seen in 1.1% of the samples. Amplification failed in 36.4% of the samples, which may be due to an inappropriate primer sequence. It was also found that the optimal annealing temperature for producing the single expected band was 57.2 °C. With one-step PCR, the designed primer pair amplified the HIV-1 gp41 gene from subtypes AE and B. However, further research should be done to determine the conditions that will increase the sensitivity and specificity of the amplification process.

  9. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification.

    PubMed

    Chen, Meng; Gan, Ning; Zhou, You; Li, Tianhua; Xu, Qing; Cao, Yuting; Chen, Yinji

    2016-12-01

    An ultrasensitive electrochemical aptasensor for simultaneous detection of oxytetracycline (OTC) and kanamycin (KAN) has been developed based on metal ions doped metal organic frame materials (MOFs) as signal tracers and RecJ f exonuclease-catalyzed targets recycling amplification. The aptasensor consists of capture beads (the anti-single-stranded DNA Antibody, as anti-ssDNA Ab, labeled on Dynabeads) and nanoscale MOF (NMOF) based signal tracers (simplified as Apts-MNM, the NMOF labeled with metal ions and the aptamers). Particularly, the MOF (UiO-66-NH 2 ), with large internal surface areas, ultrahigh porosity and abundant amine groups in the pores, was employed as substrates to carry plenty of metal ions (Pb 2+ or Cd 2+ ) and label aptamers of OTC or KAN. Thus, the aptasensor is formed by the specific recognition between anti-ssDNA Ab and aptamers. In the presence of targets (OTC and KAN), aptamers prefer to form targets-Apts-MNM complexes in lieu of anti-ssDNA Ab-aptamer complexes, which results in the dissociation of Apts-MNM from capture beads. With the employment of RecJ f exonuclease, targets-Apts-MNM in supernatant was digested into mononucleotides and liberated the target, which can further participate in the next reaction cycling to produce more signal tracers. After magnetic separation, the enhanced square wave voltammetry (SWV) signals were produced from signal tracers. The aptasensor exhibited a linear correlation in the range from 0.5pM to 50nM, with detection limits of 0.18pM and 0.15pM (S/N=3) toward OTC and KAN respectively. This strategy provides specificity and sensitive approach for multiplex antibiotics detection and has promising applications in food analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: A new signal amplification mechanism.

    PubMed

    Qi, Yingying; Xiu, Fu-Rong; Yu, Gending; Huang, Lili; Li, Baoxin

    2017-01-15

    Detection of ultralow concentration of heavy metal ion Hg 2+ is important for human health protection and environment monitoring because of the gradual accumulation in environmental and biological fields. Herein, we report a convenient chemiluminescence (CL) biosensing platform for ultrasensitive Hg 2+ detection by signal amplification mechanism from positively charged gold nanoparticles ((+)AuNPs). It is based on (+)AuNPs charge effect and aptamer conformation change induced by target to stimulate the generation of CL in the presence of H 2 O 2 and luminol without high salt medium. Notably particularly, the typical problem of the high salt medium from (-) AuNPs system, like influencing aptamers' bind with target and hindering CL reaction can be effectively addressed through the direct introduction of (+)AuNPs. Therefore, the proposed biosensing exhibits a high sensitivity toward target Hg 2+ with a detection limit of 16 pM, which is far below the limit (10nM) defined by the U.S. Environmental Protection Agency in drinkable water, and is about 10-fold lower than the previously reported aptamer-based assays for Hg 2+ . This sensing platform provides a simple, rapid, and cost-effective approach for label-free sensitive detection of Hg 2+ . Moreover, it is universal for the detection of other targets. Undoubtedly, such a direct utilizing of (+)AuNPs' charge effect will provide a new signal amplification way for label-free aptamer-based CL analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Direct amplification of casework bloodstains using the Promega PowerPlex(®) 21 PCR amplification system.

    PubMed

    Gray, Kerryn; Crowle, Damian; Scott, Pam

    2014-09-01

    A significant number of evidence items submitted to Forensic Science Service Tasmania (FSST) are blood swabs or bloodstained items. Samples from these items routinely undergo phenol:chloroform:isoamyl alcohol organic extraction and quantitative Polymerase Chain Reaction (qPCR) testing prior to PowerPlex(®) 21 amplification. This multi-step process has significant cost and timeframe implications in a fiscal climate of tightening government budgets, pressure towards improved operating efficiencies, and an increasing emphasis on rapid techniques better supporting intelligence-led policing. Direct amplification of blood and buccal cells on cloth and Whatman FTA™ card with PowerPlex(®) 21 has already been successfully implemented for reference samples, eliminating the requirement for sample pre-treatment. Scope for expanding this method to include less pristine casework blood swabs and samples from bloodstained items was explored in an endeavour to eliminate lengthy DNA extraction, purification and qPCR steps for a wider subset of samples. Blood was deposited onto a range of substrates including those historically found to inhibit STR amplification. Samples were collected with micro-punch, micro-swab, or both. The potential for further fiscal savings via reduced volume amplifications was assessed by amplifying all samples at full and reduced volume (25 and 13μL). Overall success rate data showed 80% of samples yielded a complete profile at reduced volume, compared to 78% at full volume. Particularly high success rates were observed for the blood on fabric/textile category with 100% of micro-punch samples yielding complete profiles at reduced volume and 85% at full volume. Following the success of this trial, direct amplification of suitable casework blood samples has been implemented at reduced volume. Significant benefits have been experienced, most noticeably where results from crucial items have been provided to police investigators prior to interview of

  12. Polymerization-based signal amplification under ambient conditions with thirty-five second reaction times.

    PubMed

    Kaastrup, Kaja; Sikes, Hadley D

    2012-10-21

    Although polymerization-based amplification (PBA) has demonstrated promise as an inexpensive technique for use in molecular diagnostics, oxygen inhibition of radical photopolymerization has hindered its implementation in point-of-care devices. The addition of 0.3-0.7 μM eosin to an aqueous acrylate monomer solution containing a tertiary amine allows an interfacial polymerization reaction to proceed in air only near regions of a test surface where additional eosin initiators coupled to proteins have been localized as a function of molecular recognition events. The dose of light required for the reaction is inversely related to eosin concentration. This system achieves sensitivities comparable to those reported for inert gas-purged systems and requires significantly shorter reaction times. We provide several comparisons of this system with other implementations of polymerization-based amplification.

  13. Direct detection of microRNAs using isothermal amplification and molecular beacon with excellent sensitivity and specificity

    NASA Astrophysics Data System (ADS)

    Zhang, Wancun; Zhang, Qi; Qian, Zhiyu; Gu, Yueqing

    2017-02-01

    MicroRNAs (miRNAs) play important roles in a wide range of biological processes, including proliferation, development, metabolism, immunological response, tumorigenesis, and viral infection. The detection of miRNAs is imperative for gaining a better understanding of the functions of these biomolecules and has great potential for the early diagnosis of human disease as well as the discovery of new drugs through the use of miRNAs as targets. In this article, we develop a highly sensitive, and specific miRNA assay based on the two-stage isothermal amplification reactions and molecular beacon. The two-stage isothermal amplification reactions involves two templates and two-stage amplification reactions under isothermal conditions. The first template enables the amplification of miRNA, and the second template enables the conversion of miRNA to the reporter oligonucleotide(Y). Importantly, different miRNAs can be converted to the same Y seperately, which can hybridize with the same set of molecular beacon to generate fluorescent signals. This assay is highly sensitive and specific with a detection limit of 1 fM and can even discriminate single-nucleotide differences. Moreover, in combination with the specific templates, this method can be applied for multiplex miRNA assay by simply using the same molecular beacon. This method has potential to become a promising miRNA quantification method in biomedical research and clinical diagnosis.

  14. Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection

    PubMed Central

    Kim, Sungho

    2015-01-01

    Sea-based infrared search and track (IRST) is important for homeland security by detecting missiles and asymmetric boats. This paper proposes a novel scheme to interpret various infrared scenes by classifying the infrared background types and detecting the coastal regions in omni-directional images. The background type or region-selective small infrared target detector should be deployed to maximize the detection rate and to minimize the number of false alarms. A spatial filter-based small target detector is suitable for identifying stationary incoming targets in remote sea areas with sky only. Many false detections can occur if there is an image sector containing a coastal region, due to ground clutter and the difficulty in finding true targets using the same spatial filter-based detector. A temporal filter-based detector was used to handle these problems. Therefore, the scene type and coastal region information is critical to the success of IRST in real-world applications. In this paper, the infrared scene type was determined using the relationships between the sensor line-of-sight (LOS) and a horizontal line in an image. The proposed coastal region detector can be activated if the background type of the probing sector is determined to be a coastal region. Coastal regions can be detected by fusing the region map and curve map. The experimental results on real infrared images highlight the feasibility of the proposed sea-based scene interpretation. In addition, the effects of the proposed scheme were analyzed further by applying region-adaptive small target detection. PMID:26404308

  15. The μ-RWELL: A compact, spark protected, single amplification-stage MPGD

    NASA Astrophysics Data System (ADS)

    Poli Lener, M.; Bencivenni, G.; de Olivera, R.; Felici, G.; Franchino, S.; Gatta, M.; Maggi, M.; Morello, G.; Sharma, A.

    2016-07-01

    In this work we present two innovative architectures of resistive MPGDs based on the WELL-amplification concept: - the micro-Resistive WELL (μ-RWELL) is a compact spark-protected single amplification-stage Micro-Pattern Gas Detector (MPGD). The amplification stage, realized with a structure very similar to a GEM foil (called WELL), is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new architecture, showing an excellent space resolution, 50 μm, is a very compact device, robust against discharges and exhibiting a large gain (>104), simple to construct and easy for engineering and then suitable for large area tracking devices as well as digital calorimeters. - the Fast Timing Micro-pattern (FTM): a new device with an architecture based on a stack of several coupled full-resistive layers where drift and multiplication stages (WELL type) alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings, providing a signal with a gain of 104-105. The main advantage of this new device is the improvement of the timing provided by the competition of the ionization processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as for applications like medical imaging.

  16. Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection.

    PubMed

    Barreda-García, Susana; González-Álvarez, María José; de-Los-Santos-Álvarez, Noemí; Palacios-Gutiérrez, Juan José; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús

    2015-06-15

    A highly sensitive and robust method for the quantification of specific DNA sequences based on coupling asymmetric helicase-dependent DNA amplification to electrochemical detection is described. This method relies on the entrapment of the amplified ssDNA sequences on magnetic beads followed by a post-amplification hybridization assay to provide an added degree of specificity. As a proof-of-concept a 84-bases long sequence specific of Mycobacterium tuberculosis is amplified at 65°C, providing 3×10(6) amplification after 90 min. Using this system 0.5 aM, corresponding to 15 copies of the target gene in 50 µL of sample, can be successfully detected and reliably quantified under isothermal conditions in less than 4h. The assay has been applied to the detection of M. tuberculosis in sputum, pleural fluid and urine samples. Besides this application, the proposed assays is a powerful and general tool for molecular diagnostic that can be applied to the detection of other specific DNA sequences, taking full advantage of the plethora of genomic information now available. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Successful amplification of DNA aboard the International Space Station.

    PubMed

    Boguraev, Anna-Sophia; Christensen, Holly C; Bonneau, Ashley R; Pezza, John A; Nichols, Nicole M; Giraldez, Antonio J; Gray, Michelle M; Wagner, Brandon M; Aken, Jordan T; Foley, Kevin D; Copeland, D Scott; Kraves, Sebastian; Alvarez Saavedra, Ezequiel

    2017-01-01

    As the range and duration of human ventures into space increase, it becomes imperative that we understand the effects of the cosmic environment on astronaut health. Molecular technologies now widely used in research and medicine will need to become available in space to ensure appropriate care of astronauts. The polymerase chain reaction (PCR) is the gold standard for DNA analysis, yet its potential for use on-orbit remains under-explored. We describe DNA amplification aboard the International Space Station (ISS) through the use of a miniaturized miniPCR system. Target sequences in plasmid, zebrafish genomic DNA, and bisulfite-treated DNA were successfully amplified under a variety of conditions. Methylation-specific primers differentially amplified bisulfite-treated samples as would be expected under standard laboratory conditions. Our findings establish proof of concept for targeted detection of DNA sequences during spaceflight and lay a foundation for future uses ranging from environmental monitoring to on-orbit diagnostics.

  18. Problems encountered when defining Arctic amplification as a ratio.

    PubMed

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-07-27

    In climate change science the term 'Arctic amplification' has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the 'Ratio of Means' and 'Mean Ratio' approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases.

  19. Direct detection of various pathogens by loop-mediated isothermal amplification assays on bacterial culture and bacterial colony.

    PubMed

    Yan, Muxia; Li, Weidong; Zhou, Zhenwen; Peng, Hongxia; Luo, Ziyan; Xu, Ling

    2017-01-01

    In this work, loop-mediated isothermal amplification based detection assay using bacterial culture and bacterial colony for various common pathogens direct detection had been established, evaluated and further applied. A total of five species of common pathogens and nine detection targets (tlh, tdh and trh for V. Parahaemolyticus, rfbE, stx1 and stx2 for E. coli, oprI for P. aeruginosa, invA for Salmonella and hylA for L. monocytogenes) were performed on bacterial culture and bacterial colony LAMP. To evaluate and optimize this assay, a total of 116 standard strains were included. Then, for each detected targets, 20 random selected strains were applied. Results were determined through both visual observation of the changed color by naked eye and electrophoresis, which increased the accuracy of survey. The minimum adding quantity of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 45 min with 25 μl reaction volume. The detection limit of bacterial culture LAMP and PCR assay were determined to be 10 2 and 10 4 or 10 5  CFU/reaction, respectively. No false positive amplification was observed when subjecting the bacterial -LAMP assay to 116 reference strains. This was the first report of colony-LAMP and culture-LAMP assay, which had been demonstrated to be a fast, reliable, cost-effective and simple method on detection of various common pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Amplification of seismic waves by the Seattle basin, Washington State

    USGS Publications Warehouse

    Pratt, T.L.; Brocher, T.M.; Weaver, C.S.; Creager, K.C.; Snelson, C.M.; Crosson, R.S.; Miller, K.C.; Trehu, A.M.

    2003-01-01

    Recordings of the 1999 Mw 7.6 Chi-Chi (Taiwan) earthquake, two local earthquakes, and five blasts show seismic-wave amplification over a large sedimentary basin in the U.S. Pacific Northwest. For weak ground motions from the Chi-Chi earthquake, the Seattle basin amplified 0.2- to 0.8-Hz waves by factors of 8 to 16 relative to bedrock sites west of the basin. The amplification and peak frequency change during the Chi-Chi coda: the initial S-wave arrivals (0-30 sec) had maximum amplifications of 12 at 0.5-0.8 Hz, whereas later arrivals (35-65 sec) reached amplifications of 16 at 0.3-0.5 Hz. Analysis of local events in the 1.0- to 10.0-Hz frequency range show fourfold amplifications for 1.0-Hz weak ground motion over the Seattle basin. Amplifications decrease as frequencies increase above 1.0 Hz, with frequencies above 7 Hz showing lower amplitudes over the basin than at bedrock sites. Modeling shows that resonance in low-impedance deposits forming the upper 550 m of the basin beneath our profile could cause most of the observed amplification, and the larger amplification at later arrival times suggests surface waves also play a substantial role. These results emphasize the importance of shallow deposits in determining ground motions over large basins.

  1. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia.

    PubMed

    Fallahi, Shirzad; Seyyed Tabaei, Seyyed Javad; Pournia, Yadollah; Zebardast, Nozhat; Kazemi, Bahram

    2014-07-01

    Toxoplasmosis diagnosis constitutes an important measure for disease prevention and control. In this paper, a newly described DNA amplification technique, loop-mediated isothermal amplification (LAMP), and nested-PCR targeting the repeated element (RE) and B1 gene, were compared to each other for the detection of Toxoplasma gondii DNA in blood samples of children with leukaemia. One hundred ten blood samples from these patients were analyzed by LAMP and nested-PCR. Out of 50 seropositive samples (IgM+, IgG+), positive results were obtained with 92% and 86% on RE, B1-LAMP and 82% and 68% on RE, B1-nested PCR analyses, respectively. Of the 50 seronegative samples, three, two and one samples were detected positive by RE-LAMP, B1-LAMP and RE-nested PCR assays, respectively, while none were detected positive by B1-nested PCR. None of the 10 IgM-, IgG+ samples was detected positive after testing LAMP and nested-PCR assays in duplicate. This is the first report of a study in which the LAMP method was applied with high sensitivity and efficacy for the diagnosis of T. gonii in blood samples of children with leukaemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Raman Amplification with a Flying Focus

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Bucht, S.; Davies, A.; Haberberger, D.; Kessler, T.; Shaw, J. L.; Froula, D. H.

    2018-01-01

    We propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus"—a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v =-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just above the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that this will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.

  3. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, S.K.

    1998-03-24

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.

  4. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, Stefan K.

    1998-01-01

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.

  5. Evaluation of six NEHRP B/C crustal amplification models proposed for use in western North America

    USGS Publications Warehouse

    Boore, David; Campbell, Kenneth W.

    2016-01-01

    We evaluate six crustal amplification models based on National Earthquake Hazards Reduction Program (NEHRP) B/C crustal profiles proposed for use in western North America (WNA) and often used in other active crustal regions where crustal properties are unknown. One of the models is based on an interpolation of generic rock velocity profiles previously proposed for WNA and central and eastern North America (CENA), in conjunction with material densities based on an updated velocity–density relationship. A second model is based on the velocity profile used to develop amplification factors for the Next Generation Attenuation (NGA)‐West2 project. A third model is based on a near‐surface velocity profile developed from the NGA‐West2 site database. A fourth model is based on velocity and density profiles originally proposed for use in CENA but recently used to represent crustal properties in California. We propose two alternatives to this latter model that more closely represent WNA crustal properties. We adopt a value of site attenuation (κ0) for each model that is either recommended by the author of the model or proposed by us. Stochastic simulation is used to evaluate the Fourier amplification factors and their impact on response spectra associated with each model. Based on this evaluation, we conclude that among the available models evaluated in this study the NEHRP B/C amplification model of Boore (2016) best represents median crustal amplification in WNA, although the amplification models based on the crustal profiles of Kamai et al. (2013, 2016, unpublished manuscript, see Data and Resources) and Yenier and Atkinson (2015), the latter adjusted to WNA crustal properties, can be used to represent epistemic uncertainty.

  6. A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA.

    PubMed

    Cordray, Michael S; Richards-Kortum, Rebecca R

    2015-11-26

    Isothermal amplification techniques are emerging as a promising method for malaria diagnosis since they are capable of detecting extremely low concentrations of parasite target while mitigating the need for infrastructure and training required by other nucleic acid based tests. Recombinase polymerase amplification (RPA) is promising for further development since it operates in a short time frame (<30 min) and produces a product that can be visually detected on a lateral flow dipstick. A self-sealing paper and plastic system that performs both the amplification and detection of a malaria DNA sequence is presented. Primers were designed using the NCBI nBLAST tools and screened using gel electrophoresis. Paper and plastic devices were prototyped using commercial design software and parts were cut using a laser cutter and assembled by hand. Synthetic copies of the Plasmodium 18S gene were spiked into solution and used as targets for the RPA reaction. To test the performance of the device the same samples spiked with synthetic target were run in parallel both in the paper and plastic devices and using conventional bench top methods. Novel RPA primers were developed that bind to sequences present in the four species of Plasmodium which infect humans. The paper and plastic devices were found to be capable of detecting as few as 5 copies/µL of synthetic Plasmodium DNA (50 copies total), comparable to the same reaction run on the bench top. The devices produce visual results in an hour, cost approximately $1, and are self-contained once the device is sealed. The device was capable of carrying out the RPA reaction and detecting meaningful amounts of synthetic Plasmodium DNA in a self-sealing and self-contained device. This device may be a step towards making nucleic acid tests more accessible for malaria detection.

  7. Rapid and Sensitive Detection of Norovirus Genomes in Oysters by a Two-Step Isothermal Amplification Assay System Combining Nucleic Acid Sequence-Based Amplification and Reverse Transcription-Loop-Mediated Isothermal Amplification Assays▿

    PubMed Central

    Fukuda, Shinji; Sasaki, Yukie; Seno, Masato

    2008-01-01

    We developed a two-step isothermal amplification assay system, which achieved the detection of norovirus (NoV) genomes in oysters with a sensitivity similar to that of reverse transcription-seminested PCR. The time taken for the amplification of NoV genomes from RNA extracts was shortened to about 3 h. PMID:18456857

  8. PCR amplification on microarrays of gel immobilized oligonucleotides

    DOEpatents

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  9. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa.

    PubMed

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2016-07-01

    In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66°C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control.

  10. Relative Role of Horizontal and Vertical Processes in Arctic Amplification

    NASA Astrophysics Data System (ADS)

    Kim, K. Y.

    2017-12-01

    The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.

  11. Thermal Analysis of a Disposable, Instrument-Free DNA Amplification Lab-on-a-Chip Platform.

    PubMed

    Pardy, Tamás; Rang, Toomas; Tulp, Indrek

    2018-06-04

    Novel second-generation rapid diagnostics based on nucleic acid amplification tests (NAAT) offer performance metrics on par with clinical laboratories in detecting infectious diseases at the point of care. The diagnostic assay is typically performed within a Lab-on-a-Chip (LoC) component with integrated temperature regulation. However, constraints on device dimensions, cost and power supply inherent with the device format apply to temperature regulation as well. Thermal analysis on simplified thermal models for the device can help overcome these barriers by speeding up thermal optimization. In this work, we perform experimental thermal analysis on the simplified thermal model for our instrument-free, single-use LoC NAAT platform. The system is evaluated further by finite element modelling. Steady-state as well as transient thermal analysis are performed to evaluate the performance of a self-regulating polymer resin heating element in the proposed device geometry. Reaction volumes in the target temperature range of the amplification reaction are estimated in the simulated model to assess compliance with assay requirements. Using the proposed methodology, we demonstrated our NAAT device concept capable of performing loop-mediated isothermal amplification in the 20⁻25 °C ambient temperature range with 32 min total assay time.

  12. BEAMing LAMP: single-molecule capture and on-bead isothermal amplification for digital detection of hepatitis C virus in plasma.

    PubMed

    Chen, Jiyun; Xu, Xiaomin; Huang, Zhimei; Luo, Yuan; Tang, Lijuan; Jiang, Jian-Hui

    2018-01-02

    A novel dNAD platform (BEAMing LAMP) by combining emulsion micro-reactors, single-molecule magnetic capture and on-bead loop-mediated isothermal amplification has been developed for DNA detection, which enables absolute and high-precision quantification of a target with a detection limit of 300 copies.

  13. Topographical and geological amplification: case studies and engineering implications

    USGS Publications Warehouse

    Celebi, M.

    1991-01-01

    Topographical and geological amplification that occurred during past earthquakes are quantified using spectral ratios of recorded motions. Several cases are presented from the 1985 Chilean and Mexican earthquakes as well as the 1983 Coalinga (California) and 1987 Supersition Hills (California) earthquake. The strong motions recorded in Mexico City during the 1985 Michoacan earthquake are supplemented by ambient motions recorded within Mexico City to quantify the now well known resonating frequencies of the Mexico City lakebed. Topographical amplification in Canal Beagle (Chile), Coalinga and Superstition Hills (California) are quantified using the ratios derived from the aftershocks following the earthquakes. A special dense array was deployed to record the aftershocks in each case. The implications of both geological and topographical amplification are discussed in light of current code provisions. The observed geological amplifications has already influenced the code provisions. Suggestions are made to the effect that the codes should include further provisions to take the amplification due to topography into account. ?? 1991.

  14. An enzyme-free flow cytometric bead assay for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification.

    PubMed

    Qi, Yan; Qiu, Liying; Fan, Wenjiao; Liu, Chenghui; Li, Zhengping

    2017-08-07

    A versatile flow cytometric bead assay (FCBA) coupled with a completely enzyme-free signal amplification mechanism is developed for the sensitive detection of microRNAs (miRNAs). This new strategy integrates click chemistry-mediated ligation chain reaction (CLCR) with hybridization chain reaction (HCR) for enzyme-free signal amplification on magnetic beads (MBs), and a flow cytometer for the robust fluorescence readout of the MBs. Firstly, target miRNA can initiate CLCR on the surface of MBs based on the click chemical ligation between dibenzocyclooctyne (DBCO)- and azide-modified single-stranded DNA (ssDNA) probes, and the amount of ligated ssDNA sequences on the MBs will be proportional to the dosage of target miRNA. Afterward, each of the ligated ssDNA products can trigger a cascade chain reaction of hybridization events between two alternating fluorophore-tagged hairpin probes, resulting in another signal amplification pathway with an amplified accumulation of fluorophores on the MBs. Finally, the fluorophore-anchored MBs are directly and rapidly analyzed by using a flow cytometer without any separation or elution processes. Herein, the click nucleic acid ligation only occurs on the surface of MBs, so the nonspecific ligations are greatly inhibited compared with that of ligation reaction performed in homogeneous solution. Furthermore, the signal amplification by CLCR-HCR is highly efficient but totally enzyme-free, which may overcome the potential drawbacks of conventional enzyme-catalyzed signal amplification protocols and lead to a high sensitivity. The CLCR-HCR-based FCBA has pushed the detection limit of let-7a miRNA down to the femtomolar (fM) level, showing great potential in miRNA-related biological studies and disease diagnosis.

  15. Diagnostic performance of a novel loop-mediated isothermal amplification (LAMP) assay targeting the apicoplast genome for malaria diagnosis in a field setting in sub-Saharan Africa.

    PubMed

    Oriero, Eniyou C; Okebe, Joseph; Jacobs, Jan; Van Geertruyden, Jean-Pierre; Nwakanma, Davis; D'Alessandro, Umberto

    2015-10-09

    New diagnostic tools to detect reliably and rapidly asymptomatic and low-density malaria infections are needed as their treatment could interrupt transmission. Isothermal amplification techniques are being explored for field diagnosis of malaria. In this study, a novel molecular tool (loop-mediated isothermal amplification-LAMP) targeting the apicoplast genome of Plasmodium falciparum was evaluated for the detection of asymptomatic malaria-infected individuals in a rural setting in The Gambia. A blood was collected from 341 subjects (median age 9 years, range 1-68 years) screened for malaria. On site, a rapid diagnostic test (RDT, SD Bioline Malaria Antigen P.f) was performed, thick blood films (TBF) slides for microscopy were prepared and dry blood spots (DBS) were collected on Whatman(®) 903 Specimen collection paper. The TBF and DBS were transported to the field laboratory where microscopy and LAMP testing were performed. The latter was done on DNA extracted from the DBS using a crude (methanol/heating) extraction method. A laboratory-based PCR amplification was done on all the samples using DNA extracted with the Qiagen kit and its results were taken as reference for all the other tests. Plasmodium falciparum malaria prevalence was 37 % (127/341) as detected by LAMP, 30 % (104/341) by microscopy and 37 % (126/341) by RDT. Compared to the reference PCR method, sensitivity was 92 % for LAMP, 78 % for microscopy, and 76 % for RDT; specificity was 97 % for LAMP, 99 % for microscopy, and 88 % for RDT. Area under the receiver operating characteristic (ROC) curve in comparison with the reference standard was 0.94 for LAMP, 0.88 for microscopy and 0.81 for RDT. Turn-around time for the entire LAMP assay was approximately 3 h and 30 min for an average of 27 ± 9.5 samples collected per day, compared to a minimum of 10 samples an hour per operator by RDT and over 8 h by microscopy. The LAMP assay could produce reliable results the same day of the screening. It could

  16. HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures

    PubMed Central

    Kho, Eun-Young; Wang, Hsu-Kun; Banerjee, N. Sanjib; Broker, Thomas R.; Chow, Louise T.

    2013-01-01

    Human papillomaviruses (HPVs) amplify in differentiated strata of a squamous epithelium. The HPV E7 protein destabilizes the p130/retinoblastoma susceptibility protein family of tumor suppressors and reactivates S-phase reentry, thereby facilitating viral DNA amplification. The high-risk HPV E6 protein destabilizes the p53 tumor suppressor and many other host proteins. However, the critical E6 targets relevant to viral DNA amplification have not been identified, because functionally significant E6 mutants are not stably maintained in transfected cells. Using Cre-loxP recombination, which efficiently generates HPV genomic plasmids in transfected primary human keratinocytes, we have recapitulated a highly productive infection of HPV-18 in organotypic epithelial cultures. By using this system, we now report the characterization of four HPV-18 E6 mutations. An E6 null mutant accumulated high levels of p53 and amplified very poorly. p53 siRNA or ectopic WT E6 partially restored amplification, whereas three missense E6 mutations that did not effectively destabilize p53 complemented the null mutant poorly. Unexpectedly, in cis, two of the missense mutants amplified, albeit to a lower extent than the WT and only in cells with undetectable p53. These observations and others implicate p53 and additional host proteins in regulating viral DNA amplification and also suggest an inhibitory effect of E6 overexpression. We show that high levels of viral DNA amplification are critical for late protein expression and report several previously undescribed viral RNAs, including bicistronic transcripts predicted to encode E5 and L2 or an alternative form of E1^E4 and L1. PMID:23572574

  17. Regional Reliability of Quantitative Signal Targeting with Alternating Radiofrequency (STAR) Labeling of Arterial Regions (QUASAR)

    PubMed Central

    Tatewaki, Yasuko; Higano, Shuichi; Taki, Yasuyuki; Thyreau, Benjamin; Murata, Takaki; Mugikura, Shunji; Ito, Daisuke; Takase, Kei; Takahashi, Shoki

    2014-01-01

    BACKGROUND AND PURPOSE Quantitative signal targeting with alternating radiofrequency labeling of arterial regions (QUASAR) is a recent spin labeling technique that could improve the reliability of brain perfusion measurements. Although it is considered reliable for measuring gray matter as a whole, it has never been evaluated regionally. Here we assessed this regional reliability. METHODS Using a 3-Tesla Philips Achieva whole-body system, we scanned four times 10 healthy volunteers, in two sessions 2 weeks apart, to obtain QUASAR images. We computed perfusion images and ran a voxel-based analysis within all brain structures. We also calculated mean regional cerebral blood flow (rCBF) within regions of interest configured for each arterial territory distribution. RESULTS The mean CBF over whole gray matter was 37.74 with intraclass correlation coefficient (ICC) of .70. In white matter, it was 13.94 with an ICC of .30. Voxel-wise ICC and coefficient-of-variation maps showed relatively lower reliability in watershed areas and white matter especially in deeper white matter. The absolute mean rCBF values were consistent with the ones reported from PET, as was the relatively low variability in different feeding arteries. CONCLUSIONS Thus, QUASAR reliability for regional perfusion is high within gray matter, but uncertain within white matter. PMID:25370338

  18. Blocked recombinase polymerase amplification for mutation analysis of PIK3CA gene.

    PubMed

    Martorell, Sara; Palanca, Sarai; Maquieira, Ángel; Tortajada-Genaro, Luis A

    2018-03-01

    A blocked recombinase polymerase amplification (blocked-RPA) approach has been developed for the enrichment of mutated templates in heterogeneous specimens as tumor tissues. This isothermal amplification technique opens alternative solutions for meeting the technological demand of physician office laboratories. Herein, the detection of mutations in PIK3CA gene, such as p.E545K, and p.H1047L, is presented. The main element was an oligonucleotide (dideoxycytidine functionalized at 3'-end) which matched with wild-type sequence in the target locus. The amplification was performed operating at 37 °C during 40 min. The results demonstrated that the competition between the upstream primer and the blocker reduced the percentage of amplified wild-type allele, making the detection of the present mutation easier. For mutation discrimination, a fast hybridization assay was performed in microarray format on plastic chip and colorimetric detection. This approach enabled the reliable discrimination of specific mutations against a background of up to 95% wild-type DNA. The applicability of the method, based on the combination of blocked-RPA and low-cost chip hybridization, was successfully proven for the genotyping of various cancer cell lines as well as tumor tissues. The assignations agreed with those provided by next-generation sequencing. Therefore, these investigations would support a personalized approach to patient care based on the molecular signature of human cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Simultaneous amplification of two bacterial genes: more reliable method of Helicobacter pylori detection in microbial rich dental plaque samples.

    PubMed

    Chaudhry, Saima; Idrees, Muhammad; Izhar, Mateen; Butt, Arshad Kamal; Khan, Ayyaz Ali

    2011-01-01

    Polymerase Chain reaction (PCR) assay is considered superior to other methods for detection of Helicobacter pylori (H. pylori) in oral cavity; however, it also has limitations when sample under study is microbial rich dental plaque. The type of gene targeted and number of primers used for bacterial detection in dental plaque samples can have a significant effect on the results obtained as there are a number of closely related bacterial species residing in plaque biofilm. Also due to high recombination rate of H. pylori some of the genes might be down regulated or absent. The present study was conducted to determine the frequency of H. pylori colonization of dental plaque by simultaneously amplifying two genes of the bacterium. One hundred dental plaque specimens were collected from dyspeptic patients before their upper gastrointestinal endoscopy and presence of H. pylori was determined through PCR assay using primers targeting two different genes of the bacterium. Eighty-nine of the 100 samples were included in final analysis. With simultaneous amplification of two bacterial genes 51.6% of the dental plaque samples were positive for H. pylori while this prevalence increased to 73% when only one gene amplification was used for bacterial identification. Detection of H. pylori in dental plaque samples is more reliable when two genes of the bacterium are simultaneously amplified as compared to one gene amplification only.

  20. Research on regional intrusion prevention and control system based on target tracking

    NASA Astrophysics Data System (ADS)

    Liu, Yanfei; Wang, Jieling; Jiang, Ke; He, Yanhui; Wu, Zhilin

    2017-08-01

    In view of the fact that China’s border is very long and the border prevention and control measures are single, we designed a regional intrusion prevention and control system which based on target-tracking. The system consists of four parts: solar panel, radar, electro-optical equipment, unmanned aerial vehicle and intelligent tracking platform. The solar panel provides independent power for the entire system. The radar detects the target in real time and realizes the high precision positioning of suspicious targets, then through the linkage of electro-optical equipment, it can achieve full-time automatic precise tracking of targets. When the target appears within the range of detection, the drone will be launched to continue the tracking. The system is mainly to realize the full time, full coverage, whole process integration and active realtime control of the border area.

  1. Whole-genome multiple displacement amplification from single cells.

    PubMed

    Spits, Claudia; Le Caignec, Cédric; De Rycke, Martine; Van Haute, Lindsey; Van Steirteghem, André; Liebaers, Inge; Sermon, Karen

    2006-01-01

    Multiple displacement amplification (MDA) is a recently described method of whole-genome amplification (WGA) that has proven efficient in the amplification of small amounts of DNA, including DNA from single cells. Compared with PCR-based WGA methods, MDA generates DNA with a higher molecular weight and shows better genome coverage. This protocol was developed for preimplantation genetic diagnosis, and details a method for performing single-cell MDA using the phi29 DNA polymerase. It can also be useful for the amplification of other minute quantities of DNA, such as from forensic material or microdissected tissue. The protocol includes the collection and lysis of single cells, and all materials and steps involved in the MDA reaction. The whole procedure takes 3 h and generates 1-2 microg of DNA from a single cell, which is suitable for multiple downstream applications, such as sequencing, short tandem repeat analysis or array comparative genomic hybridization.

  2. EGFR Gene Amplification and KRAS Mutation Predict Response to Combination Targeted Therapy in Metastatic Colorectal Cancer.

    PubMed

    Khan, Sajid A; Zeng, Zhaoshi; Shia, Jinru; Paty, Philip B

    2017-07-01

    Genetic variability in KRAS and EGFR predicts response to cetuximab in irinotecan refractory colorectal cancer. Whether these markers or others remain predictive in combination biologic therapies including bevacizumab is unknown. We identified predictive biomarkers from patients with irinotecan refractory metastatic colorectal cancer treated with cetuximab plus bevacizumab. Patients who received cetuximab plus bevacizumab for irinotecan refractory colorectal cancer in either of two Phase II trials conducted were identified. Tumor tissue was available for 33 patients. Genomic DNA was extracted and used for mutational analysis of KRAS, BRAF, and p53 genes. Fluorescence in situ hybridization was performed to assess EGFR copy number. The status of single genes and various combinations were tested for association with response. Seven of 33 patients responded to treatment. KRAS mutations were found in 14/33 cases, and 0 responded to treatment (p = 0.01). EGFR gene amplification was seen in 3/33 of tumors and in every case was associated with response to treatment (p < 0.001). TP53 and BRAF mutations were found in 18/33 and 0/33 tumors, respectively, and there were no associations with response to either gene. EGFR gene amplification and KRAS mutations are predictive markers for patients receiving combination biologic therapy of cetuximab plus bevacizumab for metastatic colorectal cancer. One marker or the other is present in the tumor of half of all patients allowing treatment response to be predicted with a high degree of certainty. The role for molecular markers in combination biologic therapy seems promising.

  3. ESR1 gene amplification in endometrial carcinomas: a clinicopathological analysis.

    PubMed

    Rahman, Mohammed Tanjimur; Nakayama, Kentaro; Rahman, Munmun; Ishikawa, Masako; Katagiri, Hiroshi; Katagiri, Atsuko; Ishibashi, Tomoka; Sato, Emi; Iida, Kouji; Ishikawa, Noriyuki; Nakayama, Naomi; Miyazaki, Kohji

    2013-09-01

    This study investigated the clinicopathological significance of estrogen receptor 1 (ESR1) gene amplification and its relationship to phosphatase and tensin homolog (PTEN), human epidermal growth factor receptor 2 (HER2), MutL homolog 1 (MLH1), p53, and AT rich interactive domain 1A (ARID1A) expression in endometrial carcinomas. ESR1 amplification and expression were assessed by fluorescence in situ hybridization and immunohistochemistry. Clinical data were collected by retrospective chart review. ESR1 amplification was identified in 13 out of 111 (11.7%) endometrial carcinomas. No significant association was observed between ESR1 amplification and International Federation of Gynecology and Obstetrics (FIGO) stage (p=0.17), histological grade (p=0.35), lymph node metastasis (p=0.51), or deep myometrial invasion (p=0.46). ESR1 amplification was independent of PTEN, p53, HER2, MLH1, and ARID1A protein expression. Patients without estrogen receptor (ER) or progesterone receptor (PR) expression had shorter progression-free and overall survival than those with ER or PR expression (p<0.01). ESR1 amplification is independent of known clinicopathological factors related to poor prognosis and PTEN, p53, HER2, MLH1, and ARID1A protein expression, suggesting ESR1 amplification may be an early event in endometrial carcinoma development.

  4. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells.

    PubMed

    Sherbenou, Daniel W; Aftab, Blake T; Su, Yang; Behrens, Christopher R; Wiita, Arun; Logan, Aaron C; Acosta-Alvear, Diego; Hann, Byron C; Walter, Peter; Shuman, Marc A; Wu, Xiaobo; Atkinson, John P; Wolf, Jeffrey L; Martin, Thomas G; Liu, Bin

    2016-12-01

    Multiple myeloma is incurable by standard approaches because of inevitable relapse and development of treatment resistance in all patients. In our prior work, we identified a panel of macropinocytosing human monoclonal antibodies against CD46, a negative regulator of the innate immune system, and constructed antibody-drug conjugates (ADCs). In this report, we show that an anti-CD46 ADC (CD46-ADC) potently inhibited proliferation in myeloma cell lines with little effect on normal cells. CD46-ADC also potently eliminated myeloma growth in orthometastatic xenograft models. In primary myeloma cells derived from bone marrow aspirates, CD46-ADC induced apoptosis and cell death, but did not affect the viability of nontumor mononuclear cells. It is of clinical interest that the CD46 gene resides on chromosome 1q, which undergoes genomic amplification in the majority of relapsed myeloma patients. We found that the cell surface expression level of CD46 was markedly higher in patient myeloma cells with 1q gain than in those with normal 1q copy number. Thus, genomic amplification of CD46 may serve as a surrogate for target amplification that could allow patient stratification for tailored CD46-targeted therapy. Overall, these findings indicate that CD46 is a promising target for antibody-based treatment of multiple myeloma, especially in patients with gain of chromosome 1q.

  5. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction

    PubMed Central

    2012-01-01

    Background Choosing appropriate primers is probably the single most important factor affecting the polymerase chain reaction (PCR). Specific amplification of the intended target requires that primers do not have matches to other targets in certain orientations and within certain distances that allow undesired amplification. The process of designing specific primers typically involves two stages. First, the primers flanking regions of interest are generated either manually or using software tools; then they are searched against an appropriate nucleotide sequence database using tools such as BLAST to examine the potential targets. However, the latter is not an easy process as one needs to examine many details between primers and targets, such as the number and the positions of matched bases, the primer orientations and distance between forward and reverse primers. The complexity of such analysis usually makes this a time-consuming and very difficult task for users, especially when the primers have a large number of hits. Furthermore, although the BLAST program has been widely used for primer target detection, it is in fact not an ideal tool for this purpose as BLAST is a local alignment algorithm and does not necessarily return complete match information over the entire primer range. Results We present a new software tool called Primer-BLAST to alleviate the difficulty in designing target-specific primers. This tool combines BLAST with a global alignment algorithm to ensure a full primer-target alignment and is sensitive enough to detect targets that have a significant number of mismatches to primers. Primer-BLAST allows users to design new target-specific primers in one step as well as to check the specificity of pre-existing primers. Primer-BLAST also supports placing primers based on exon/intron locations and excluding single nucleotide polymorphism (SNP) sites in primers. Conclusions We describe a robust and fully implemented general purpose primer design tool

  6. Genomic Profiling of Penile Squamous Cell Carcinoma Reveals New Opportunities for Targeted Therapy.

    PubMed

    McDaniel, Andrew S; Hovelson, Daniel H; Cani, Andi K; Liu, Chia-Jen; Zhai, Yali; Zhang, Yajia; Weizer, Alon Z; Mehra, Rohit; Feng, Felix Y; Alva, Ajjai S; Morgan, Todd M; Montgomery, Jeffrey S; Siddiqui, Javed; Sadis, Seth; Bandla, Santhoshi; Williams, Paul D; Cho, Kathleen R; Rhodes, Daniel R; Tomlins, Scott A

    2015-12-15

    Penile squamous cell carcinoma (PeSCCA) is a rare malignancy for which there are limited treatment options due to a poor understanding of the molecular alterations underlying disease development and progression. Therefore, we performed comprehensive, targeted next-generation sequencing to identify relevant somatic genomic alterations in a retrospective cohort of 60 fixed tumor samples from 43 PeSCCA cases (including 14 matched primary/metastasis pairs). We identified a median of two relevant somatic mutations and one high-level copy-number alteration per sample (range, 0-5 and 0-6, respectively). Expression of HPV and p16 was detectable in 12% and 28% of patients, respectively. Furthermore, advanced clinical stage, lack of p16 expression, and MYC and CCND1 amplifications were significantly associated with shorter time to progression or PeSCCA-specific survival. Notably, four cases harbored EGFR amplifications and one demonstrated CDK4 amplification, genes for which approved and investigational targeted therapies are available. Importantly, although paired primary tumors and lymph node metastases were largely homogeneous for relevant somatic mutations, we identified heterogeneous EGFR amplification in primary tumor/lymph node metastases in 4 of 14 cases, despite uniform EGFR protein overexpression. Likewise, activating HRAS mutations occurred in 8 of 43 cases. Taken together, we provide the first comprehensive molecular PeSCCA analysis, which offers new insight into potential precision medicine approaches for this disease, including strategies targeting EGFR. ©2015 American Association for Cancer Research.

  7. Loop-mediated isothermal amplification method targeting the TTS1 gene cluster for detection of Burkholderia pseudomallei and diagnosis of melioidosis.

    PubMed

    Chantratita, Narisara; Meumann, Ella; Thanwisai, Aunchalee; Limmathurotsakul, Direk; Wuthiekanun, Vanaporn; Wannapasni, Saran; Tumapa, Sarinna; Day, Nicholas P J; Peacock, Sharon J

    2008-02-01

    Melioidosis is a severe infection caused by Burkholderia pseudomallei. The timely implementation of effective antimicrobial treatment requires rapid diagnosis. Loop-mediated isothermal amplification (LAMP) targeting the TTS1 gene cluster was developed for the detection of B. pseudomallei. LAMP was sensitive and specific for the laboratory detection of this organism. The lower limit of detection was 38 genomic copies per reaction, and LAMP was positive for 10 clinical B. pseudomallei isolates but negative for 5 B. thailandensis and 5 B. mallei isolates. A clinical evaluation was conducted in northeast Thailand to compare LAMP to an established real-time PCR assay targeting the same TTS1 gene cluster. A total of 846 samples were obtained from 383 patients with suspected melioidosis, 77 of whom were subsequently diagnosed with culture-confirmed melioidosis. Of these 77 patients, a positive result was obtained from one or more specimens by PCR in 26 cases (sensitivity, 34%; 95% confidence interval [CI], 23.4 to 45.4%) and by LAMP in 34 cases (sensitivity, 44%; 95% CI, 32.8 to 55.9%) (P = 0.02). All samples from 306 patients that were culture negative for B. pseudomallei were negative by PCR (specificity, 100%; 95% CI, 98.8 to 100%), but 5 of 306 patients (1.6%) were positive by LAMP (specificity, 98.4%; 95% CI, 96.2 to 99.5%) (P = 0.03). The diagnostic accuracies of PCR and LAMP were 86.7% (95% CI, 82.9 to 89.9%) and 87.5% (95% CI, 83.7 to 90.6%), respectively (P = 0.47). Both assays were very insensitive when applied to blood samples; PCR and LAMP were positive for 0 and 1 of 44 positive blood cultures, respectively. The PCR and LAMP assays evaluated here are not sufficiently sensitive to replace culture in our clinical setting.

  8. Sensitive detection of point mutation using exponential strand displacement amplification-based surface enhanced Raman spectroscopy.

    PubMed

    Huang, Si-Qiang; Hu, Juan; Zhu, Guichi; Zhang, Chun-Yang

    2015-03-15

    Accurate identification of point mutation is particularly imperative in the field of biomedical research and clinical diagnosis. Here, we develop a sensitive and specific method for point mutation assay using exponential strand displacement amplification (SDA)-based surface enhanced Raman spectroscopy (SERS). In this method, a discriminating probe and a hairpin probe are designed to specifically recognize the sequence of human K-ras gene. In the presence of K-ras mutant target (C→T), the 3'-terminal of discriminating probe and the 5'-terminal of hairpin probe can be ligated to form a SDA template. Subsequently, the 3'-terminal of hairpin probe can function as a primer to initiate the SDA reaction, producing a large amount of triggers. The resultant triggers can further hybridize with the discriminating probes to initiate new rounds of SDA reaction, leading to an exponential amplification reaction. With the addition of capture probe-modified gold nanoparticles (AuNPs) and the Rox-labeled reporter probes, the amplified triggers can be assembled on the surface of AuNPs through the formation of sandwich hybrids of capture probe-trigger-reporter probe, generating a strong Raman signal. While in the presence of K-ras wild-type target (C), neither ligation nor SDA reaction can be initiated and no Raman signal is observed. The proposed method exhibits high sensitivity with a detection limit of 1.4pM and can accurately discriminate as low as 1% variant frequency from the mixture of mutant target and wild-type target. Importantly, this method can be further applied to analyze the mutant target in the spiked HEK293T cell lysate, holding great potential for genetic analysis and disease prognosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Microchip Module for Blood Sample Preparation and Nucleic Acid Amplification Reactions

    PubMed Central

    Yuen, Po Ki; Kricka, Larry J.; Fortina, Paolo; Panaro, Nicholas J.; Sakazume, Taku; Wilding, Peter

    2001-01-01

    A computer numerical control-machined plexiglas-based microchip module was designed and constructed for the integration of blood sample preparation and nucleic acid amplification reactions. The microchip module is comprised of a custom-made heater-cooler for thermal cycling, a series of 254 μm × 254 μm microchannels for transporting human whole blood and reagents in and out of an 8–9 μL dual-purpose (cell isolation and PCR) glass-silicon microchip. White blood cells were first isolated from a small volume of human whole blood (<3 μL) in an integrated cell isolation–PCR microchip containing a series of 3.5-μm feature-sized “weir-type” filters, formed by an etched silicon dam spanning the flow chamber. A genomic target, a region in the human coagulation Factor V gene (226-bp), was subsequently directly amplified by microchip-based PCR on DNA released from white blood cells isolated on the filter section of the microchip mounted onto the microchip module. The microchip module provides a convenient means to simplify nucleic acid analyses by integrating two key steps in genetic testing procedures, cell isolation and PCR and promises to be adaptable for additional types of integrated assays. PMID:11230164

  10. Backward Raman amplification in the long-wavelength infrared

    NASA Astrophysics Data System (ADS)

    Johnson, L. A.; Gordon, D. F.; Palastro, J. P.; Hafizi, B.

    2017-03-01

    The wealth of work in backward Raman amplification in plasma has focused on the extreme intensity limit; however, backward Raman amplification may also provide an effective and practical mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation (LWIR). An electromagnetic simulation coupled with a relativistic cold fluid plasma model is used to demonstrate the generation of picosecond pulses at a wavelength of 10 μm with terawatt powers through backward Raman amplification. The effects of collisional damping, Landau damping, pump depletion, and wave breaking are examined, as well as the resulting design considerations for an LWIR Raman amplifier.

  11. Amplification, Redundancy, and Quantum Chernoff Information

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2014-04-01

    Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.

  12. Amplification of hofmeister effect by alcohols.

    PubMed

    Xu, Yun; Liu, Guangming

    2014-07-03

    We have demonstrated that Hofmeister effect can be amplified by adding alcohols to aqueous solutions. The lower critical solution temperature behavior of poly(N-isopropylacrylamide) has been employed as the model system to study the amplification of Hofmeister effect. The alcohols can more effectively amplify the Hofmeister effect following the series methanol < ethanol < 1-propanol < 2-propanol for the monohydric alcohols and following the series d-sorbitol ≈ xylitol ≈ meso-erythritol < glycerol < ethylene glycol < methanol for the polyhydric alcohols. Our study reveals that the relative extent of amplification of Hofmeister effect is determined by the stability of the water/alcohol complex, which is strongly dependent on the chemical structure of alcohols. The more stable solvent complex formed via stronger hydrogen bonds can more effectively differentiate the anions through the anion-solvent complex interactions, resulting in a stronger amplification of Hofmeister effect. This study provides an alternative method to tune the relative strength of Hofmeister effect besides salt concentration.

  13. Protein detection through different platforms of immuno-loop-mediated isothermal amplification

    NASA Astrophysics Data System (ADS)

    Pourhassan-Moghaddam, Mohammad; Rahmati-Yamchi, Mohammad; Akbarzadeh, Abolfazl; Daraee, Hadis; Nejati-Koshki, Kazem; Hanifehpour, Younes; Joo, Sang Woo

    2013-11-01

    Different immunoassay-based methods have been devised to detect protein targets. These methods have some challenges that make them inefficient for assaying ultra-low-amounted proteins. ELISA, iPCR, iRCA, and iNASBA are the common immunoassay-based methods of protein detection, each of which has specific and common technical challenges making it necessary to introduce a novel method in order to avoid their problems for detection of target proteins. Here we propose a new method nominated as `immuno-loop-mediated isothermal amplification' or `iLAMP'. This new method is free from the problems of the previous methods and has significant advantages over them. In this paper we also offer various configurations in order to improve the applicability of this method in real-world sample analyses. Important potential applications of this method are stated as well.

  14. The Target Model of Strategic Interaction of Kazan Federal University and the Region in the Field of Education

    ERIC Educational Resources Information Center

    Gabdulchakov, Valerian F.

    2016-01-01

    The subject of the study in the article is conceptual basis of construction of the target model of interaction between University and region. Hence the topic of the article "the Target model of strategic interaction between the University and the region in the field of education." The objective was to design a target model of this…

  15. A Label-Free and Sensitive Fluorescent Qualitative Assay for Bisphenol A Based on Rolling Circle Amplification/Exonuclease III-Combined Cascade Amplification.

    PubMed

    Li, Xia; Song, Juan; Xue, Qing-Wang; You, Fu-Heng; Lu, Xia; Kong, Yan-Cong; Ma, Shu-Yi; Jiang, Wei; Li, Chen-Zhong

    2016-10-21

    Bisphenol A (BPA) detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA)/Exonuclease III (Exo III)-combined cascade amplification strategy. First, the duplex DNA probe (RP) with anti-BPA aptamer and trigger sequence was designed for BPA recognition and signal amplification. Next, under the action of BPA, the trigger probe was liberated from RP to initiate RCA reaction as primary amplification. Subsequently, the RCA products were used to trigger Exo III assisted secondary amplification with the help of hairpin probes, producing plenty of "G-quadruplex" in lantern-like structures. Finally, the continuously enriched "G-quadruplex lanterns" were lightened by zinc(II)-protoporphyrin IX (ZnPPIX) generating enhanced fluorescence signals. By integrating the primary RCA and secondary Exo III mediated cascade amplification strategy, this method displayed an excellent sensitivity with the detection limits of 5.4 × 10 -17 M. In addition, the anti-BPA aptamer exhibits high recognition ability with BPA, guaranteeing the specificity of detection. The reporter signal probe (G-quadruplex with ZnPPIX) provides a label-free fluorescence signals readout without complicated labeling procedures, making the method simple in design and cost-effective in operation. Moreover, environmental samples analysis was also performed, suggesting that our strategy was reliable and had a great potential application in environmental monitoring.

  16. A Label-Free and Sensitive Fluorescent Qualitative Assay for Bisphenol A Based on Rolling Circle Amplification/Exonuclease III-Combined Cascade Amplification

    PubMed Central

    Li, Xia; Song, Juan; Xue, Qing-Wang; You, Fu-Heng; Lu, Xia; Kong, Yan-Cong; Ma, Shu-Yi; Jiang, Wei; Li, Chen-Zhong

    2016-01-01

    Bisphenol A (BPA) detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA)/Exonuclease III (Exo III)-combined cascade amplification strategy. First, the duplex DNA probe (RP) with anti-BPA aptamer and trigger sequence was designed for BPA recognition and signal amplification. Next, under the action of BPA, the trigger probe was liberated from RP to initiate RCA reaction as primary amplification. Subsequently, the RCA products were used to trigger Exo III assisted secondary amplification with the help of hairpin probes, producing plenty of “G-quadruplex” in lantern-like structures. Finally, the continuously enriched “G-quadruplex lanterns” were lightened by zinc(II)-protoporphyrin IX (ZnPPIX) generating enhanced fluorescence signals. By integrating the primary RCA and secondary Exo III mediated cascade amplification strategy, this method displayed an excellent sensitivity with the detection limits of 5.4 × 10−17 M. In addition, the anti-BPA aptamer exhibits high recognition ability with BPA, guaranteeing the specificity of detection. The reporter signal probe (G-quadruplex with ZnPPIX) provides a label-free fluorescence signals readout without complicated labeling procedures, making the method simple in design and cost-effective in operation. Moreover, environmental samples analysis was also performed, suggesting that our strategy was reliable and had a great potential application in environmental monitoring. PMID:28335318

  17. Ultrasensitive detection of uranyl by graphene oxide-based background reduction and RCDzyme-based enzyme strand recycling signal amplification.

    PubMed

    Li, Ming-Hui; Wang, Yong-Sheng; Cao, Jin-Xiu; Chen, Si-Han; Tang, Xian; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin

    2015-10-15

    We proposed a novel strategy which combines graphene oxide-based background reduction with RCDzyme-based enzyme strand recycling amplification for ultrahigh sensitive detection of uranyl. The RCDzyme is designed to contain a guanine (G)-rich sequence that replaces the partial sequence in an uranyl-specific DNAzyme. This multifunctional probe can act as the target recognition element, DNAzyme and the primer of signal amplification. The presence of UO2(2+) can induce the cleavage of the substrate strands in RCDzyme. Then, each released enzyme strand can hybridize with another substrate strands to trigger many cycles of the cleavage by binding uranyl, leading to the formation of more G-quadruplexes by split guanine-rich oligonucleotide fragments. The resulting G-quadruplexes could bind to N-methyl-mesoporphyrin IX (NMM), causing an amplified detection signal for the target uranyl. Next, graphene oxide-based background reduction strategy was further employed for adsorbing free ssDNA and NMM, thereby providing a proximalis zero-background signal. The combination of RCDzyme signal amplification and proximalis zero-background signal remarkably improves the sensitivity of this method, achieving a dynamic range of two orders of magnitude and giving a detection limit down to 86 pM, which is much lower than those of related literature reports. These achievements might be helpful in the design of highly sensitive analytical platform for wide applications in environmental and biomedical fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis.

    PubMed

    Santiago-Felipe, S; Tortajada-Genaro, L A; Puchades, R; Maquieira, A

    2014-02-06

    Polymerase chain reaction in conjunction with enzyme-linked immunosorbent assay (PCR-ELISA) is a well-established technique that provides a suitable rapid, sensitive, and selective method for a broad range of applications. However, the need for precise rapid temperature cycling of PCR is an important drawback that can be overcome by employing isothermal amplification reactions such as recombinase polymerase amplification (RPA). The RPA-ELISA combination is proposed for amplification at a low, constant temperature (40°C) in a short time (40 min), for the hybridisation of labelled products to specific 5'-biotinylated probes/streptavidin in coated microtiter plates at room temperature, and for detection by colorimetric immunoassay. RPA-ELISA was applied to screen common safety threats in foodstuffs, such as allergens (hazelnut, peanut, soybean, tomato, and maize), genetically modified organisms (P35S and TNOS), pathogenic bacteria (Salmonella sp. and Cronobacter sp.), and fungi (Fusarium sp.). Satisfactory sensitivity and reproducibility results were achieved for all the targets. The RPA-ELISA technique does away with thermocycling and provides a suitable sensitive, specific, and cost-effective method for routine applications, and proves particularly useful for resource-limited settings. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Improving Mobile Phone Speech Recognition by Personalized Amplification: Application in People with Normal Hearing and Mild-to-Moderate Hearing Loss.

    PubMed

    Kam, Anna Chi Shan; Sung, John Ka Keung; Lee, Tan; Wong, Terence Ka Cheong; van Hasselt, Andrew

    In this study, the authors evaluated the effect of personalized amplification on mobile phone speech recognition in people with and without hearing loss. This prospective study used double-blind, within-subjects, repeated measures, controlled trials to evaluate the effectiveness of applying personalized amplification based on the hearing level captured on the mobile device. The personalized amplification settings were created using modified one-third gain targets. The participants in this study included 100 adults of age between 20 and 78 years (60 with age-adjusted normal hearing and 40 with hearing loss). The performance of the participants with personalized amplification and standard settings was compared using both subjective and speech-perception measures. Speech recognition was measured in quiet and in noise using Cantonese disyllabic words. Subjective ratings on the quality, clarity, and comfortableness of the mobile signals were measured with an 11-point visual analog scale. Subjective preferences of the settings were also obtained by a paired-comparison procedure. The personalized amplification application provided better speech recognition via the mobile phone both in quiet and in noise for people with hearing impairment (improved 8 to 10%) and people with normal hearing (improved 1 to 4%). The improvement in speech recognition was significantly better for people with hearing impairment. When the average device output level was matched, more participants preferred to have the individualized gain than not to have it. The personalized amplification application has the potential to improve speech recognition for people with mild-to-moderate hearing loss, as well as people with normal hearing, in particular when listening in noisy environments.

  20. Preclinical evaluation of potential therapeutic targets in dedifferentiated liposarcoma.

    PubMed

    Hanes, Robert; Grad, Iwona; Lorenz, Susanne; Stratford, Eva W; Munthe, Else; Reddy, Chilamakuri Chandra Sekhar; Meza-Zepeda, Leonardo A; Myklebost, Ola

    2016-08-23

    Sarcomas are rare cancers with limited treatment options. Patients are generally treated by chemotherapy and/or radiotherapy in combination with surgery, and would benefit from new personalized approaches. In this study we demonstrate the potential of combining personal genomic characterization of patient tumors to identify targetable mutations with in vitro testing of specific drugs in patient-derived cell lines. We have analyzed three metastases from a patient with high-grade metastatic dedifferentiated liposarcoma (DDLPS) by exome and transcriptome sequencing as well as DNA copy number analysis. Genomic aberrations of several potentially targetable genes, including amplification of KITLG and FRS2, in addition to amplification of CDK4 and MDM2, characteristic of this disease, were identified. We evaluated the efficacy of drugs targeting these aberrations or the corresponding signaling pathways in a cell line derived from the patient. Interestingly, the pan-FGFR inhibitor NVP-BGJ398, which targets FGFR upstream of FRS2, strongly inhibited cell proliferation in vitro and induced an accumulation of cells into the G0 phase of the cell cycle. This study indicates that FGFR inhibitors have therapeutic potential in the treatment of DDLPS with amplified FRS2.

  1. Characterization of genome-wide copy number aberrations in colonic mixed adenoneuroendocrine carcinoma and neuroendocrine carcinoma reveals recurrent amplification of PTGER4 and MYC genes.

    PubMed

    Sinha, Namita; Gaston, Daniel; Manders, Daniel; Goudie, Marissa; Matsuoka, Makoto; Xie, Tao; Huang, Weei-Yuarn

    2018-03-01

    Colonic mixed adenoneuroendocrine carcinoma (MANEC) is an aggressive neoplasm with worse prognosis compared with adenocarcinoma. To gain a better understanding of the molecular features of colonic MANEC, we characterized the genome-wide copy number aberrations of 14 MANECs and 5 neuroendocrine carcinomas using the OncoScan FFPE (Affymetrix, Santa Clara, CA) assay. Compared with 269 colonic adenocarcinomas, 19 of 42 chromosomal arms of MANEC exhibited a similar frequency of major aberrant events as adenocarcinomas, and 13 chromosomal arms exhibited a higher frequency of copy number gains. Among them, the most significant chromosomal arms were 5p (77% versus 13%, P = .000012) and 8q (85% versus 33%, P = .0018). The Genomic Identification of Significant Targets in Cancers algorithm identified 7 peaks that drive the tumorgenesis of MANEC. For all except 5p13.1, the peaks largely overlapped with those of adenocarcinoma. Two tumors exhibited MYC amplification localized in 8q24.21, and 2 tumors exhibited PTGER4 amplification localized in 5p13.1. A total of 8 tumors exhibited high copy number gain of PTGER4 and/or MYC. Whereas the frequency of MYC amplification was similar to adenocarcinoma (10.5% versus 4%, P = .2), the frequency of PTGER4 amplification was higher than adenocarcinoma (10.5% versus 0.3%, P = .01). Our study demonstrates similar, but also distinct, copy number aberrations in MANEC compared with adenocarcinoma and suggests an important role for the MYC pathway of colonic carcinoma with neuroendocrine differentiation. The discovery of recurrent PTGER4 amplification implies a potential of exploring targeting therapy to the prostaglandin synthesis pathways in a subset of these tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Raman Amplification with a Flying Focus

    DOE PAGES

    Turnbull, D.; Bucht, S.; Davies, A.; ...

    2018-01-12

    Here, we propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus" - a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v=-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just about the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that thismore » will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.« less

  3. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.

    PubMed

    Le, Binh Huy; Seo, Young Jun

    2018-01-25

    We have developed a gold nanoparticle (AuNP)-based CTG repeat probing system displaying high quenching capability and combined it with isothermal amplification for the detection of miRNA 146a. This method of using a AuNP-based CTG repeat probing system with isothermal amplification allowed the highly sensitive (14 aM) and selective detection of miRNA 146a. A AuNP-based CTG repeat probing system having a hairpin structure and a dT F fluorophore exhibited highly efficient quenching because the CTG repeat-based stable hairpin structure imposed a close distance between the AuNP and the dT F residue. A small amount of miRNA 146a induced multiple copies of the CAG repeat sequence during rolling circle amplification; the AuNP-based CTG repeat probing system then bound to the complementary multiple-copy CAG repeat sequence, thereby inducing a structural change from a hairpin to a linear structure with amplified fluorescence. This AuNP-based CTG probing system combined with isothermal amplification could also discriminate target miRNA 146a from one- and two-base-mismatched miRNAs (ORN 1 and ORN 2, respectively). This simple AuNP-based CTG probing system, combined with isothermal amplification to induce a highly sensitive change in fluorescence, allows the detection of miRNA 146a with high sensitivity (14 aM) and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. EGFR Amplification and IDH Mutations in Glioblastoma Patients of the Northeast of Morocco

    PubMed Central

    Louati, Sara; Chbani, Laila; El Fatemi, Hind; Hammas, Nawal; Mikou, Karima; Maaroufi, Mustapha; Benzagmout, Mohammed; Boujraf, Said; El Bardai, Sanae; Giry, Marine; Marie, Yannick; Chaoui El Faiz, Mohammed; Mokhtari, Karima; Amarti, Afaf; Bennis, Sanae

    2017-01-01

    Glioblastomas are the most frequent and aggressive primary brain tumors which are expressing various evolutions, aggressiveness, and prognosis. Thus, the 2007 World Health Organization classification based solely on the histological criteria is no longer sufficient. It should be complemented by molecular analysis for a true histomolecular classification. The new 2016 WHO classification of tumors of the central nervous system uses molecular parameters in addition to histology to reclassify these tumors and reduce the interobserver variability. The aim of this study is to determine the prevalence of IDH mutations and EGFR amplifications in the population of the northeast region of Morocco and then to compare the results with other studies. Methods. IDH1 codon 132 and IDH2 codon 172 were directly sequenced and the amplification of exon 20 of EGFR gene was investigated by qPCR in 65 glioblastoma tumors diagnosed at the University Hospital of Fez between 2010 and 2014. Results. The R132H IDH1 mutation was observed in 8 of 65 tumor samples (12.31%). No mutation of IDH2 was detected. EGFR amplification was identified in 17 cases (26.15%). Conclusion. A systematic search of both histological and molecular markers should be requisite for a good diagnosis and a better management of glioblastomas. PMID:28785587

  5. EGFR Amplification and IDH Mutations in Glioblastoma Patients of the Northeast of Morocco.

    PubMed

    Senhaji, Nadia; Louati, Sara; Chbani, Laila; El Fatemi, Hind; Hammas, Nawal; Mikou, Karima; Maaroufi, Mustapha; Benzagmout, Mohammed; Boujraf, Said; El Bardai, Sanae; Giry, Marine; Marie, Yannick; Chaoui El Faiz, Mohammed; Mokhtari, Karima; Idbaih, Ahmed; Amarti, Afaf; Bennis, Sanae

    2017-01-01

    Glioblastomas are the most frequent and aggressive primary brain tumors which are expressing various evolutions, aggressiveness, and prognosis. Thus, the 2007 World Health Organization classification based solely on the histological criteria is no longer sufficient. It should be complemented by molecular analysis for a true histomolecular classification. The new 2016 WHO classification of tumors of the central nervous system uses molecular parameters in addition to histology to reclassify these tumors and reduce the interobserver variability. The aim of this study is to determine the prevalence of IDH mutations and EGFR amplifications in the population of the northeast region of Morocco and then to compare the results with other studies. Methods . IDH1 codon 132 and IDH2 codon 172 were directly sequenced and the amplification of exon 20 of EGFR gene was investigated by qPCR in 65 glioblastoma tumors diagnosed at the University Hospital of Fez between 2010 and 2014. Results . The R132H IDH1 mutation was observed in 8 of 65 tumor samples (12.31%). No mutation of IDH2 was detected. EGFR amplification was identified in 17 cases (26.15%). Conclusion . A systematic search of both histological and molecular markers should be requisite for a good diagnosis and a better management of glioblastomas.

  6. Limited efficiency of universal mini-barcode primers for DNA amplification from desert reptiles, birds and mammals.

    PubMed

    Arif, I A; Khan, H A; Al Sadoon, M; Shobrak, M

    2011-10-31

    In recent years, DNA barcoding has emerged as a powerful tool for species identification. We report an extended validation of a universal DNA mini-barcode for amplification of 130-bp COI segments from 23 specimens collected from a desert environment, including 11 reptiles, five mammals and seven birds. Besides the standard double-annealing protocol, we also tested a more stringent single-annealing protocol. The PCR success rate for the amplification of the mini-barcode region was: mammals (4/5), reptiles (5/11) and birds (4/7). These findings demonstrate the limited utility of universal primers for mini-barcoding, at least for these vertebrate taxa that we collected from the Saudi Arabian desert.

  7. Regional reliability of quantitative signal targeting with alternating radiofrequency (STAR) labeling of arterial regions (QUASAR).

    PubMed

    Tatewaki, Yasuko; Higano, Shuichi; Taki, Yasuyuki; Thyreau, Benjamin; Murata, Takaki; Mugikura, Shunji; Ito, Daisuke; Takase, Kei; Takahashi, Shoki

    2014-01-01

    Quantitative signal targeting with alternating radiofrequency labeling of arterial regions (QUASAR) is a recent spin labeling technique that could improve the reliability of brain perfusion measurements. Although it is considered reliable for measuring gray matter as a whole, it has never been evaluated regionally. Here we assessed this regional reliability. Using a 3-Tesla Philips Achieva whole-body system, we scanned four times 10 healthy volunteers, in two sessions 2 weeks apart, to obtain QUASAR images. We computed perfusion images and ran a voxel-based analysis within all brain structures. We also calculated mean regional cerebral blood flow (rCBF) within regions of interest configured for each arterial territory distribution. The mean CBF over whole gray matter was 37.74 with intraclass correlation coefficient (ICC) of .70. In white matter, it was 13.94 with an ICC of .30. Voxel-wise ICC and coefficient-of-variation maps showed relatively lower reliability in watershed areas and white matter especially in deeper white matter. The absolute mean rCBF values were consistent with the ones reported from PET, as was the relatively low variability in different feeding arteries. Thus, QUASAR reliability for regional perfusion is high within gray matter, but uncertain within white matter. © 2014 The Authors. Journal of Neuroimaging published by the American Society of Neuroimaging.

  8. [Prognostic significance of MYCN amplification in children neuroblastic tumors].

    PubMed

    Niu, Huilin; Xu, Tao; Wang, Fenghua; Chen, Zhengrong; Gao, Qiu; Yi, Peng; Xia, Jianqing

    2015-02-01

    To summarize the clinicopathologic features of neuroblastic tumors (NT), and to explore the prognostic significance of MYCN amplification in NT. The clinicopathologic data of 267 NT were reviewed. MYCN gene amplification was detected by fluorescence in situ hybridization (FISH) in 119 cases and the relationship with pathological characteristics and prognostic significance were analyzed. The study included 267 cases of children NT from patients aged from 1 day to 13 years (median 27 months). The male to female ratio was 1.43. There were 38 cases (14.2%), 43 cases (16.1%), 71 cases (26.6%), and 115 cases (43.1%) of INSS stages I, II, III and IV respectively.Favorable histology group had 157 cases (59.9%); unfavorable histology group had 110 cases (40.1%).Of the 119 NT cases with MYCN FISH performed, 18 cases (15.1%) showed amplification and the signal ratio of MYCN to CEP2 was 4.08-43.29. One hundred and one cases of non-amplified MYCN included MYCN gain in 79 cases (66.3%) and MYCN negative in 22 cases (18.5%). MYCN expression showed significant difference (P = 0.000) between ages, gender, NT type and MKI, but not INPC and clinical stage (P > 0.05).Of the 18 cases with MYCN amplification, 3 were undifferentiated, and 15 poorly differentiated; 17 had high MKI and one moderate MKI. All 18 cases were in unfavorable histology group; the overall survival rate was 3/18, with an average survival time of (17.9 ± 2.4) months.Of the 101 MYCN non-amplification cases, the overall survival rate was 68.3% (69/101), with an average survival time of (29.8 ± 1.3) months. Survival analysis showed the cases with MYCN amplification had worse prognosis (P < 0.05). NT were commonly diagnosed in early ages and easily to metastasize. Most of cases with favorable histology. The cases of MYCN amplification showed unfavorable histology, and the majority cases with high MKI; The patients with MYCN gene amplification had poor prognosis.

  9. Whole genome amplification of DNA extracted from FFPE tissues.

    PubMed

    Bosso, Mira; Al-Mulla, Fahd

    2011-01-01

    Whole genome amplification systems were developed to meet the increasing research demands on DNA resources and to avoid DNA shortage. The technology enables amplification of nanogram amounts of DNA into microgram quantities and is increasingly used in the amplification of DNA from multiple origins such as blood, fresh frozen tissue, formalin-fixed paraffin-embedded tissues, saliva, buccal swabs, bacteria, and plant and animal sources. This chapter focuses on the use of GenomePlex(®) tissue Whole Genome Amplification Kit, to amplify DNA directly from archived tissue. In addition, this chapter documents our unique experience with the utilization of GenomePlex(®) amplified DNA using several molecular techniques including metaphase Comparative Genomic Hybridization, array Comparative Genomic Hybridization, and real-time quantitative polymerase chain reaction assays. GenomePlex(®) is a registered trademark of Rubicon Genomics Incorporation.

  10. The focusing effect in backward Raman amplification in plasma

    NASA Astrophysics Data System (ADS)

    Li, Zhaoli; Peng, Hao; Zuo, Yanlei; Su, Jingxin; Yang, Suhui

    2018-04-01

    In this paper, the focusing effect on backward Raman amplification in plasma is investigated. A fluid model, used to simulate the backward Raman amplification and including the relativistic, ponderomotive, and thermal self-focusing and the mutual-focusing effect simultaneously, is proposed and investigated. The focusing effect is shown to severely distort the profile of the seed when the seed intensity was as high as 10 17 W/cm2. Reducing the plasma density can relax the focusing effect, but at the cost of decreasing the amplification efficiency. Changing the profile of the seed has a limited effect on mitigating the focusing effect. A Gaussian profile of the pump and a defocusing shape of the plasma density seem to be an effective way to mitigate the focusing effect without decreasing the amplification efficiency.

  11. Preparation of DNA-containing extract for PCR amplification

    DOEpatents

    Dunbar, John M.; Kuske, Cheryl R.

    2006-07-11

    Environmental samples typically include impurities that interfere with PCR amplification and DNA quantitation. Samples of soil, river water, and aerosol were taken from the environment and added to an aqueous buffer (with or without detergent). Cells from the sample are lysed, releasing their DNA into the buffer. After removing insoluble cell components, the remaining soluble DNA-containing extract is treated with N-phenacylthiazolium bromide, which causes rapid precipitation of impurities. Centrifugation provides a supernatant that can be used or diluted for PCR amplification of DNA, or further purified. The method may provide a DNA-containing extract sufficiently pure for PCR amplification within 5–10 minutes.

  12. Raman amplification in the coherent wave-breaking regime.

    PubMed

    Farmer, J P; Pukhov, A

    2015-12-01

    In regimes far beyond the wave-breaking threshold of Raman amplification, we show that significant amplification can occur after the onset of wave breaking, before phase mixing destroys the coherent coupling between pump, probe, and plasma wave. Amplification in this regime is therefore a transient effect, with the higher-efficiency "coherent wave-breaking" (CWB) regime accessed by using a short, intense probe. Parameter scans illustrate the marked difference in behavior between below wave breaking, in which the energy-transfer efficiency is high but total energy transfer is low, wave breaking, in which efficiency is low, and CWB, in which moderate efficiencies allow the highest total energy transfer.

  13. Direct and quantitative detection of HIV-1 RNA in human plasma with a branched DNA signal amplification assay.

    PubMed

    Urdea, M S; Wilber, J C; Yeghiazarian, T; Todd, J A; Kern, D G; Fong, S J; Besemer, D; Hoo, B; Sheridan, P J; Kokka, R

    1993-11-01

    To determine the relative effect of sample matrix on the quantitation of HIV RNA in plasma. Two HIV-positive specimens were diluted into five and 10 different HIV-negative plasma samples, respectively. Branched DNA signal amplification technology and reverse-transcriptase polymerase chain reaction were used to measure the viral load. In one sample the viral load by polymerase chain reaction ranged from undetectable to 1.9 x 10(5) copies/ml, and the branched DNA results ranged from 2.6 x 10(4) to 4.2 x 10(4) HIV RNA equivalent/ml. In the other sample the corresponding figures were 6.3 x 10(4) to 5.5 x 10(5) copies/ml and 5.7 x 10(4) to 7.5 x 10(4) HIV RNA equivalents/ml. In contrast to reverse-transcriptase polymerase chain reaction the branched DNA signal amplification assay does not require a separate extraction step or enzymatic amplification of the target. Therefore this measurement is less affected by the sample matrix and the signal generated is directly proportional to the viral load.

  14. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform.

    PubMed

    Zhao, Qian; Piao, Jiafang; Peng, Weipan; Wang, Yang; Zhang, Bo; Gong, Xiaoqun; Chang, Jin

    2018-01-31

    Identifying the microRNA (miRNA) expression level can provide critical information for early diagnosis of cancers or monitoring the cancer therapeutic efficacy. This paper focused on a kind of gold-nanoparticle-coated polystyrene microbeads (PS@Au microspheres)-based DNA probe as miRNA capture and duplex-specific nuclease (DSN) signal amplification platform based on an RGB value readout for detection of miRNAs. In virtue of the outstanding selectivity and simple experimental operation, 5'-fluorochrome-labeled molecular beacons (MBs) were immobilized on PS@Au microspheres via their 3'-thiol, in the wake of the fluorescence quenching by nanoparticle surface energy transfer (NSET). Target miRNAs were captured by the PS@Au microspheres-based DNA probe through DNA/RNA hybridization. DSN enzyme subsequently selectively cleaved the DNA to recycle the target miRNA and release of fluorophores, thereby triggering the signal amplification with more free fluorophores. The RGB value measurement enabled a detection limit of 50 fM, almost 4 orders of magnitude lower than PS@Au microspheres-based DNA probe detection without DSN. Meanwhile, by different encoding of dyes, miRNA-21 and miRNA-10b were simultaneously detected in the same sample. Considering the ability for quantitation, high sensitivity, and convenient merits, the PS@Au microspheres-based DNA probe and DSN signal amplification platform supplied valuable information for early diagnosis of cancers.

  15. Construction of a microfluidic chip, using dried-down reagents, for LATE-PCR amplification and detection of single-stranded DNA.

    PubMed

    Jia, Yanwei; Mak, Pui-In; Massey, Conner; Martins, Rui P; Wangh, Lawrence J

    2013-12-07

    LATE-PCR is an advanced form of non-symmetric PCR that efficiently generates single-stranded DNA which can readily be characterized at the end of amplification by hybridization to low-temperature fluorescent probes. We demonstrate here for the first time that monoplex and duplex LATE-PCR amplification and probe target hybridization can be carried out in double layered PDMS microfluidics chips containing dried reagents. Addition of a set of reagents during dry down overcomes the common problem of single-stranded oligonucleotide binding to PDMS. These proof-of-principle results open the way to construction of inexpensive point-of-care devices that take full advantage of the analytical power of assays built using LATE-PCR and low-temperature probes.

  16. Population diversity of ammonium oxidizers investigated by specific PCR amplification

    USGS Publications Warehouse

    Ward, B.B.; Voytek, M.A.; Witzel, K.-P.

    1997-01-01

    The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels.

  17. A low molecular weight artificial RNA of unique size with multiple probe target regions

    NASA Technical Reports Server (NTRS)

    Pitulle, C.; Dsouza, L.; Fox, G. E.

    1997-01-01

    Artificial RNAs (aRNAs) containing novel sequence segments embedded in a deletion mutant of Vibrio proteolyticus 5S rRNA have previously been shown to be expressed from a plasmid borne growth rate regulated promoter in E. coli. These aRNAs accumulate to high levels and their detection is a promising tool for studies in molecular microbial ecology and in environmental monitoring. Herein a new construct is described which illustrates the versatility of detection that is possible with aRNAs. This 3xPen aRNA construct carries a 72 nucleotide insert with three copies of a unique 17 base probe target sequence. This aRNA is 160 nucleotides in length and again accumulates to high levels in the E. coli cytoplasm without incorporating into ribosomes. The 3xPen aRNA illustrates two improvements in detection. First, by appropriate selection of insert size, we obtained an aRNA which provides a unique and hence, easily quantifiable peak, on a high resolution gel profile of low molecular weight RNAs. Second, the existence of multiple probe targets results in a nearly commensurate increase in signal when detection is by hybridization. These aRNAs are naturally amplified and carry sequence segments that are not found in known rRNA sequences. It thus may be possible to detect them directly. An experimental step involving RT-PCR or PCR amplification of the gene could therefore be avoided.

  18. Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun

    2010-08-01

    A novel DNA detection platform based on a hairpin-DNA switch, nanoparticles, and enzyme signal amplification for ultrasensitive detection of DNA hybridization has been developed in this work. In this DNA assay, a “stem-loop” DNA probe dually labeled with a thiol at its 5’ end and a biotin at its 3’ end, respectively, was used. This probe was immobilized on the gold nanoparticles (AuNPs) anchored by a protein, globulin, on a 96-well microplate. In the absence of target DNA, the immobilized probe with the stem-loop structure shields the biotin from being approached by a bulky horseradish peroxidase linked-avidin (avidin-HRP) conjugate duemore » to the steric hindrance. However, in the presence of target DNA, the hybridization between the hairpin DNA probe and the target DNA causes significant conformational change of the probe, which forces biotin away from the surface of AuNPs. As a result, the biotin becomes accessible by the avidin-HRP, and the target hybridization event can be sensitively detected via the HRP catalyzed substrate 3, 3', 5, 5'-tetramethylbenzidine using spectrophometric method. Some experimental parameters governing the performance of the assay have been optimized. At optimal conditions, this DNA assay can detect DNA at the concentration of femtomolar level by means of a signal amplification strategy based on the combination of enzymes and nanoparticles. This approach also has shown excellent specificity to distinguish single-base mismatches of DNA targets because of the intrinsic high selectivity of the hairpin DNA probe.« less

  19. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  20. [Principle of LAMP method--a simple and rapid gene amplification method].

    PubMed

    Ushikubo, Hiroshi

    2004-06-01

    So far nucleic acid test (NAT) has been employed in various fields, including infectious disease diagnoses. However, due to its complicated procedures and relatively high cost, it has not been widely utilized in many actual diagnostic applications. We have therefore developed a simple and rapid gene amplification technology, Loop-mediated Isothermal Amplification (LAMP) method, which has shown prominent results of surpassing the performance of the conventional gene amplification methods. LAMP method acquires three main features: (1) all reaction can be carried out under isothermal conditions; (2) the amplification efficiency is extremely high and tremendous amount of amplification products can be obtained; and (3) the reaction is highly specific. Furthermore, developed from the standard LAMP method, a rapid LAMP method, by adding in the loop primers, can reduce the amplification time from the previous 1 hour to less than 30 minutes. Enormous amount of white precipitate of magnesium pyrophosphate is produced as a by-product of the amplification, therefore, direct visual detection is possible without using any reaction indicators and detection equipments. We believe LAMP technology, with the integration of these features, can rightly apply to clinical genetic testing, food and environmental analysis, as well as NAT in different fields.

  1. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    PubMed

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  2. Quality control for quantitative PCR based on amplification compatibility test.

    PubMed

    Tichopad, Ales; Bar, Tzachi; Pecen, Ladislav; Kitchen, Robert R; Kubista, Mikael; Pfaffl, Michael W

    2010-04-01

    Quantitative qPCR is a routinely used method for the accurate quantification of nucleic acids. Yet it may generate erroneous results if the amplification process is obscured by inhibition or generation of aberrant side-products such as primer dimers. Several methods have been established to control for pre-processing performance that rely on the introduction of a co-amplified reference sequence, however there is currently no method to allow for reliable control of the amplification process without directly modifying the sample mix. Herein we present a statistical approach based on multivariate analysis of the amplification response data generated in real-time. The amplification trajectory in its most resolved and dynamic phase is fitted with a suitable model. Two parameters of this model, related to amplification efficiency, are then used for calculation of the Z-score statistics. Each studied sample is compared to a predefined reference set of reactions, typically calibration reactions. A probabilistic decision for each individual Z-score is then used to identify the majority of inhibited reactions in our experiments. We compare this approach to univariate methods using only the sample specific amplification efficiency as reporter of the compatibility. We demonstrate improved identification performance using the multivariate approach compared to the univariate approach. Finally we stress that the performance of the amplification compatibility test as a quality control procedure depends on the quality of the reference set. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Approaches to Selection and Fitting of Amplification for Infants and Toddlers.

    ERIC Educational Resources Information Center

    Beauchaine, Kathryn L.

    This paper addresses three areas related to amplification for infants and toddlers with hearing impairments: (1) identification issues as they relate to early amplification; (2) selection of amplification; and (3) assessment of aided function. Identification issues discussed include the goal of early identification of hearing loss and the impact…

  4. Problems encountered when defining Arctic amplification as a ratio

    PubMed Central

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-01-01

    In climate change science the term ‘Arctic amplification’ has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the ‘Ratio of Means’ and ‘Mean Ratio’ approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases. PMID:27461918

  5. Limits on amplification by Aharonov-Albert-Vaidman weak measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Tatsuhiko; Tanaka, Saki

    2011-12-15

    We analyze the amplification by the Aharonov-Albert-Vaidman weak quantum measurement on a Sagnac interferometer [Dixon et al., Phys. Rev. Lett. 102, 173601 (2009)] up to all orders of the coupling strength between the measured system and the measuring device. The amplifier transforms a small tilt of a mirror into a large transverse displacement of the laser beam. The conventional analysis has shown that the measured value is proportional to the weak value, so that the amplification can be made arbitrarily large in the cost of decreasing output laser intensity. It is shown that the measured displacement and the amplification factormore » are in fact not proportional to the weak value and rather vanish in the limit of infinitesimal output intensity. We derive the optimal overlap of the pre- and postselected states with which the amplification become maximum. We also show that the nonlinear effects begin to arise in the performed experiments so that any improvements in the experiment, typically with an amplification greater than 100, should require the nonlinear theory in translating the observed value to the original displacement.« less

  6. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice.

    PubMed

    Ma, Jianxin; Jackson, Scott A

    2006-02-01

    The abundance of repetitive DNA varies greatly across centromeres within an individual or between different organisms. To shed light on the molecular mechanisms of centromere repeat proliferation, we performed structural analysis of LTR-retrotransposons, mostly centromere retrotransposons of rice (CRRs), and phylogenetic analysis of CentO satellite repeats harbored in the core region of the rice chromosome 4 centromere (CEN4). The data obtained demonstrate that the CRRs in the centromeric region we investigated have been enriched more significantly by recent rounds of segmental duplication than by original integration of active elements, suggesting that segmental duplication is an important process for CRR accumulation in the centromeric region. Our results also indicate that segmental duplication of large arrays of satellite repeats is primarily responsible for the amplification of satellite repeats, contributing to rapid reshuffling of CentO satellites. Intercentromere satellite homogenization was revealed by genome-wide comparison of CentO satellite monomers. However, a 10-bp duplication present in nearly half of the CEN4 monomers was found to be completely absent in rice centromere 8 (CEN8), suggesting that CEN4 and CEN8 may represent two different stages in the evolution of rice centromeres. These observations, obtained from the only complex eukaryotic centromeres to have been completely sequenced thus far, depict the evolutionary dynamics of rice centromeres with respect to the nature, timing, and process of centromeric repeat amplification.

  7. Accelerated isothermal nucleic acid amplification in betaine-free reaction.

    PubMed

    Ma, Cuiping; Wang, Yifan; Zhang, Pansong; Shi, Chao

    2017-08-01

    Betaine was used as a common additive to isothermal nucleic acid amplification reactions because of lowering the melting temperature (Tm) of DNA. Herein, we reported a novel finding that betaine was inhibiting the reaction efficiency of isothermal amplification reactions. In this work, we have verified this finding by classical loop-mediated isothermal amplification that the addition of 0.8 M betaine inhibited the efficiency of reaction dropping to approximately 1%. Additionally, we clarified the mechanism of betaine hindering isothermal amplification reactions with a molecular barrier to lower associate rate constant K1 for intermolecular hybridization. This finding would be very significant for studies on the interaction between small molecule substance and DNA, and the development of point-of-care testing because of simplifying reaction system and increasing reaction efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Explanatory Model for Sound Amplification in a Stethoscope

    ERIC Educational Resources Information Center

    Eshach, H.; Volfson, A.

    2015-01-01

    In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with…

  9. Nuclease-resistant double-stranded DNA controls or standards for hepatitis B virus nucleic acid amplification assays

    PubMed Central

    2009-01-01

    Background Identical blood samples tested using different kits can give markedly different hepatitis B virus (HBV) DNA levels, which can cause difficulty in the interpretation of viral load. A universal double-stranded DNA control or standard that can be used in all commercial HBV DNA nucleic acid amplification assay kits is urgently needed. By aligning all HBV genotypes (A-H), we found that the surface antigen gene and precore-core gene regions of HBV are the most conserved regions among the different HBV genotypes. We constructed a chimeric fragment by overlapping extension polymerase chain reaction and obtained a 1,349-bp HBVC+S fragment. We then packaged the fragment into lambda phages using a traditional lambda phage cloning procedure. Results The obtained armored DNA was resistant to DNase I digestion and was stable, noninfectious to humans, and could be easily extracted using commercial kits. More importantly, the armored DNA may be used with all HBV DNA nucleic acid amplification assay kits. Conclusions The lambda phage packaging system can be used as an excellent expression platform for armored DNA. The obtained armored DNA possessed all characteristics of an excellent positive control or standard. In addition, this armored DNA is likely to be appropriate for all commercial HBV DNA nucleic acid amplification detection kits. Thus, the constructed armored DNA can probably be used as a universal positive control or standard in HBV DNA assays. PMID:20025781

  10. Diagnostic Accuracy of Molecular Amplification Tests for Human African Trypanosomiasis—Systematic Review

    PubMed Central

    Boer, Kimberly R.; Dyserinck, Heleen C.; Büscher, Philippe; Schallig, Henk D. H. F.; Leeflang, Mariska M. G.

    2012-01-01

    Background A range of molecular amplification techniques have been developed for the diagnosis of Human African Trypanosomiasis (HAT); however, careful evaluation of these tests must precede implementation to ensure their high clinical accuracy. Here, we investigated the diagnostic accuracy of molecular amplification tests for HAT, the quality of articles and reasons for variation in accuracy. Methodology Data from studies assessing diagnostic molecular amplification tests were extracted and pooled to calculate accuracy. Articles were included if they reported sensitivity and specificity or data whereby values could be calculated. Study quality was assessed using QUADAS and selected studies were analysed using the bivariate random effects model. Results 16 articles evaluating molecular amplification tests fulfilled the inclusion criteria: PCR (n = 12), NASBA (n = 2), LAMP (n = 1) and a study comparing PCR and NASBA (n = 1). Fourteen articles, including 19 different studies were included in the meta-analysis. Summary sensitivity for PCR on blood was 99.0% (95% CI 92.8 to 99.9) and the specificity was 97.7% (95% CI 93.0 to 99.3). Differences in study design and readout method did not significantly change estimates although use of satellite DNA as a target significantly lowers specificity. Sensitivity and specificity of PCR on CSF for staging varied from 87.6% to 100%, and 55.6% to 82.9% respectively. Conclusion Here, PCR seems to have sufficient accuracy to replace microscopy where facilities allow, although this conclusion is based on multiple reference standards and a patient population that was not always representative. Future studies should, therefore, include patients for which PCR may become the test of choice and consider well designed diagnostic accuracy studies to provide extra evidence on the value of PCR in practice. Another use of PCR for control of disease could be to screen samples collected from rural areas and test in reference

  11. Diagnostic accuracy of molecular amplification tests for human African trypanosomiasis--systematic review.

    PubMed

    Mugasa, Claire M; Adams, Emily R; Boer, Kimberly R; Dyserinck, Heleen C; Büscher, Philippe; Schallig, Henk D H F; Leeflang, Mariska M G

    2012-01-01

    A range of molecular amplification techniques have been developed for the diagnosis of Human African Trypanosomiasis (HAT); however, careful evaluation of these tests must precede implementation to ensure their high clinical accuracy. Here, we investigated the diagnostic accuracy of molecular amplification tests for HAT, the quality of articles and reasons for variation in accuracy. Data from studies assessing diagnostic molecular amplification tests were extracted and pooled to calculate accuracy. Articles were included if they reported sensitivity and specificity or data whereby values could be calculated. Study quality was assessed using QUADAS and selected studies were analysed using the bivariate random effects model. 16 articles evaluating molecular amplification tests fulfilled the inclusion criteria: PCR (n = 12), NASBA (n = 2), LAMP (n = 1) and a study comparing PCR and NASBA (n = 1). Fourteen articles, including 19 different studies were included in the meta-analysis. Summary sensitivity for PCR on blood was 99.0% (95% CI 92.8 to 99.9) and the specificity was 97.7% (95% CI 93.0 to 99.3). Differences in study design and readout method did not significantly change estimates although use of satellite DNA as a target significantly lowers specificity. Sensitivity and specificity of PCR on CSF for staging varied from 87.6% to 100%, and 55.6% to 82.9% respectively. Here, PCR seems to have sufficient accuracy to replace microscopy where facilities allow, although this conclusion is based on multiple reference standards and a patient population that was not always representative. Future studies should, therefore, include patients for which PCR may become the test of choice and consider well designed diagnostic accuracy studies to provide extra evidence on the value of PCR in practice. Another use of PCR for control of disease could be to screen samples collected from rural areas and test in reference laboratories, to spot epidemics quickly and

  12. Graphene Ambipolar Nanoelectronics for High Noise Rejection Amplification.

    PubMed

    Liu, Che-Hung; Chen, Qi; Liu, Chang-Hua; Zhong, Zhaohui

    2016-02-10

    In a modern wireless communication system, signal amplification is critical for overcoming losses during multiple data transformations/processes and long-distance transmission. Common mode and differential mode are two fundamental amplification mechanisms, and they utilize totally different circuit configurations. In this paper, we report a new type of dual-gate graphene ambipolar device with capability of operating under both common and differential modes to realize signal amplification. The signal goes through two stages of modulation where the phase of signal can be individually modulated to be either in-phase or out-of-phase at two stages by exploiting the ambipolarity of graphene. As a result, both common and differential mode amplifications can be achieved within one single device, which is not possible in the conventional circuit configuration. In addition, a common-mode rejection ratio as high as 80 dB can be achieved, making it possible for low noise circuit application. These results open up new directions of graphene-based ambipolar electronics that greatly simplify the RF circuit complexity and the design of multifunction device operation.

  13. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification

    USDA-ARS?s Scientific Manuscript database

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39 °C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in ...

  14. Detection of MET amplification in gastroesophageal tumor specimens using IQFISH

    PubMed Central

    Nielsen, Karsten Bork; Mollerup, Jens; Jepsen, Anna; Go, Ning

    2017-01-01

    Background The gene mesenchymal epithelial transition factor (MET) is a proto-oncogene that encodes a transmembrane receptor with intrinsic tyrosine kinase activity known as Met or cMet. MET is found to be amplified in several human cancers including gastroesophageal cancer. Methods Here we report the MET amplification prevalence data from 159 consecutive tumor specimens from patients with gastric (G), gastroesophageal junction (GEJ) and esophageal (E) adenocarcinoma, using a novel fluorescence in situ hybridization (FISH) assay, MET/CEN-7 IQFISH Probe Mix [an investigational use only (IUO) assay]. MET amplification was defined as a MET/CEN-7 ratio ≥2.0. Furthermore, the link between the MET signal distribution and amplification status was investigated. Results The prevalence of MET amplification was found to be 6.9%. The FISH assay demonstrated a high inter-observer reproducibility. The inter-observer results showed a 100% overall agreement with respect to the MET status (amplified/non-amplified). The inter-observer CV was estimated to 11.8% (95% CI: 10.2–13.4). For the signal distribution, the inter-observer agreement was reported to be 98.7%. We also report an association of MET amplification and a unique signal distribution pattern in the G/GEJ/E tumor specimens. We found that the prevalence of MET amplification was markedly higher in tumors specimens with a heterogeneous (66.7%) versus homogeneous (2.0%) signal distribution. Furthermore, specimens with a heterogeneous signal distribution had a statically significantly higher median MET/CEN-7 ratio (2.35 versus 1.04; P<0.0001). Conclusions The novel FISH assay showed a high inter-observer reproducibility both with respect to amplification status and signal distribution. Based on the finding in the study it is suggested that MET amplification mainly is associated with tumor cells that is represented by a heterogonous growth pattern. PMID:29285491

  15. Detection of MET amplification in gastroesophageal tumor specimens using IQFISH.

    PubMed

    Jørgensen, Jan Trøst; Nielsen, Karsten Bork; Mollerup, Jens; Jepsen, Anna; Go, Ning

    2017-12-01

    The gene mesenchymal epithelial transition factor ( MET ) is a proto-oncogene that encodes a transmembrane receptor with intrinsic tyrosine kinase activity known as Met or cMet. MET is found to be amplified in several human cancers including gastroesophageal cancer. Here we report the MET amplification prevalence data from 159 consecutive tumor specimens from patients with gastric (G), gastroesophageal junction (GEJ) and esophageal (E) adenocarcinoma, using a novel fluorescence in situ hybridization (FISH) assay, MET /CEN-7 IQFISH Probe Mix [an investigational use only (IUO) assay]. MET amplification was defined as a MET /CEN-7 ratio ≥2.0. Furthermore, the link between the MET signal distribution and amplification status was investigated. The prevalence of MET amplification was found to be 6.9%. The FISH assay demonstrated a high inter-observer reproducibility. The inter-observer results showed a 100% overall agreement with respect to the MET status (amplified/non-amplified). The inter-observer CV was estimated to 11.8% (95% CI: 10.2-13.4). For the signal distribution, the inter-observer agreement was reported to be 98.7%. We also report an association of MET amplification and a unique signal distribution pattern in the G/GEJ/E tumor specimens. We found that the prevalence of MET amplification was markedly higher in tumors specimens with a heterogeneous (66.7%) versus homogeneous (2.0%) signal distribution. Furthermore, specimens with a heterogeneous signal distribution had a statically significantly higher median MET /CEN-7 ratio (2.35 versus 1.04; P<0.0001). The novel FISH assay showed a high inter-observer reproducibility both with respect to amplification status and signal distribution. Based on the finding in the study it is suggested that MET amplification mainly is associated with tumor cells that is represented by a heterogonous growth pattern.

  16. [Amplification of γδ T cells in PBMCs of healthy donors and osteosarcoma patients stimulated by zoledronate].

    PubMed

    Li, Zhao-xu; Sun, Ling-ling; Cheng, Rui-lin; Sun, Zheng-wang; Ye, Zhao-ming

    2012-08-01

    To investigate the amplification and cytotoxicity of γδ T cells in peripheral blood mononuclear cells (PBMCs) of healthy donors and osteosarcoma patients stimulated by zoledronate (Zol) and IL-2. PBMCs from healthy donors and osteosarcoma patients were stimulated with IL-2 and Zol+IL-2, respectively. After 14-day culture, the purity of γδ T cells was assessed by flow cytometry. The cytotoxicity of γδ T cells against target cells was analyzed using a standard lactate dehydrogenase release assay with γδ T lymphocyte-sensitive Daudi cells, γδ T lymphocyte-resistant Raji cells and human osteoblast cell line, hFOB, as the target cells. After 2-week culture ex vivo of PBMCs from healthy donors and osteosarcoma patients, compared with stimulation of IL-2, Zol+IL-2 significantly promoted the amplification of γδ T cells. In addition, γδ T cells showed the higher cytotoxicity against Daudi cells, but no cytotoxic effect on normal cells like hFOB. γδ T cells of high purity and high cytotoxicity can be obtained by the stimulation of Zol combined with IL-2 on PBMCs from healthy donors and osteosarcoma patients.

  17. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle

    NASA Astrophysics Data System (ADS)

    McNeil, B.

    2016-02-01

    Elevated carbon dioxide concentrations in seawater (hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual oceanic carbon dioxide variability, but relevant global observational data are sparse. Here we diagnose global ocean patterns of monthly carbon variability based on observations that allow us to examine the evolution of surface ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We find that some oceanic regions undergo an up to 10-fold amplification of the natural cycle of CO2 by 2100, if atmospheric carbon dioxide concentrations continue to rise throughout this century (RCP8.5). Projections from a suite of Earth System Climate Models are broadly consistent with the findings from our data based approach. Our predicted amplification in the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic Oceans to high CO2 events many decades earlier than expected from average atmospheric CO2 concentrations. We suggest that these ocean 'CO2 hotspots' evolve as a combination of the strong seasonal dynamics of CO2 and the long-term effective storage of anthropogenic CO2 that lowers the buffer capacity in those regions, causing a non-linear CO2 amplification over the annual cycle. The onset of ocean hypercapnia events (pCO2 >1000 µatm) is forecast for atmospheric CO2 concentrations that exceed 650 ppm, with hypercapnia spreading to up to one half of the surface ocean by the year 2100 under a high-emissions scenario (RCP8.5) with potential implications for fisheries over the coming century.

  18. Evaluation of a Field-Portable DNA Microarray Platform and Nucleic Acid Amplification Strategies for the Detection of Arboviruses, Arthropods, and Bloodmeals

    PubMed Central

    Grubaugh, Nathan D.; Petz, Lawrence N.; Melanson, Vanessa R.; McMenamy, Scott S.; Turell, Michael J.; Long, Lewis S.; Pisarcik, Sarah E.; Kengluecha, Ampornpan; Jaichapor, Boonsong; O'Guinn, Monica L.; Lee, John S.

    2013-01-01

    Highly multiplexed assays, such as microarrays, can benefit arbovirus surveillance by allowing researchers to screen for hundreds of targets at once. We evaluated amplification strategies and the practicality of a portable DNA microarray platform to analyze virus-infected mosquitoes. The prototype microarray design used here targeted the non-structural protein 5, ribosomal RNA, and cytochrome b genes for the detection of flaviviruses, mosquitoes, and bloodmeals, respectively. We identified 13 of 14 flaviviruses from virus inoculated mosquitoes and cultured cells. Additionally, we differentiated between four mosquito genera and eight whole blood samples. The microarray platform was field evaluated in Thailand and successfully identified flaviviruses (Culex flavivirus, dengue-3, and Japanese encephalitis viruses), differentiated between mosquito genera (Aedes, Armigeres, Culex, and Mansonia), and detected mammalian bloodmeals (human and dog). We showed that the microarray platform and amplification strategies described here can be used to discern specific information on a wide variety of viruses and their vectors. PMID:23249687

  19. One-step reverse transcription loop mediated isothermal amplification assay for detection of Apple chlorotic leaf spot virus

    USDA-ARS?s Scientific Manuscript database

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Apple chlorotic leaf spot virus (ACLSV) was developed. In this method, a set of four primers was designed based on the conserved regions in the coat protein gene of ACLSV, and was synthesized for the ...

  20. Nucleic acid amplification tests (NAATs) for gonorrhoea diagnosis in women: experience of a tertiary care hospital in north India.

    PubMed

    Sood, Seema; Verma, Rachna; Mir, Shazia Shaheen; Agarwal, Madhav; Singh, Neeta; Kar, Hemanta Kumar; Sharma, Vinod Kumar

    2014-11-01

    Gonorrhoea is among the most frequent of the estimated bacterial sexually transmitted infections (STIs) and has significant health implications in women. The use of nucleic acid amplification tests (NAATs) has been shown to provide enhanced diagnosis of gonorrhoea in female patients. However, it is recommended that an on-going assessment of the test assays should be performed to check for any probable sequence variation occurring in the targeted region. In this study, an in-house PCR targeting opa-gene of Neisseria gonorrhoeae was used in conjunction with 16S ribosomal PCR to determine the presence of gonorrhoea in female patients attending the tertiary care hospitals. Endocervical samples collected from 250 female patients with complaints of vaginal or cervical discharge or pain in lower abdomen were tested using opa and 16S ribosomal assay. The samples were also processed by conventional methods. Of the 250 female patients included in the study, only one was positive by conventional methods (microscopy and culture) whereas 17 patients were found to be positive based on PCR results. The clinical sensitivity of conventional methods for the detection of N. gonorrhoeae in female patients was low. The gonococcal detection rates increased when molecular method was used giving 16 additional positives. Studies should be done to find out other gene targets that may be used in the screening assays to detect the presence of gonorrhoea.