Sample records for target registration errors

  1. New Protocol for Skin Landmark Registration in Image-Guided Neurosurgery: Technical Note.

    PubMed

    Gerard, Ian J; Hall, Jeffery A; Mok, Kelvin; Collins, D Louis

    2015-09-01

    Newer versions of the commercial Medtronic StealthStation allow the use of only 8 landmark pairs for patient-to-image registration as opposed to 9 landmarks in older systems. The choice of which landmark pair to drop in these newer systems can have an effect on the quality of the patient-to-image registration. To investigate 4 landmark registration protocols based on 8 landmark pairs and compare the resulting registration accuracy with a 9-landmark protocol. Four different protocols were tested on both phantoms and patients. Two of the protocols involved using 4 ear landmarks and 4 facial landmarks and the other 2 involved using 3 ear landmarks and 5 facial landmarks. Both the fiducial registration error and target registration error were evaluated for each of the different protocols to determine any difference between them and the 9-landmark protocol. No difference in fiducial registration error was found between any of the 8-landmark protocols and the 9-landmark protocol. A significant decrease (P < .05) in target registration error was found when using a protocol based on 4 ear landmarks and 4 facial landmarks compared with the other protocols based on 3 ear landmarks. When using 8 landmarks to perform the patient-to-image registration, the protocol using 4 ear landmarks and 4 facial landmarks greatly outperformed the other 8-landmark protocols and 9-landmark protocol, resulting in the lowest target registration error.

  2. Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks.

    PubMed

    Eppenhof, Koen A J; Pluim, Josien P W

    2018-04-01

    Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural network that learns to estimate registration errors from a pair of image patches. By applying the network to patches centered around every voxel, we construct registration error maps. The network is trained using a set of representative images that have been synthetically transformed to construct a set of image pairs with known deformations. The method is evaluated on deformable registrations of inhale-exhale pairs of thoracic CT scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method's ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold standard approach. The two evaluation approaches show that we can train the network to robustly estimate registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark registration errors.

  3. Target motion tracking in MRI-guided transrectal robotic prostate biopsy.

    PubMed

    Tadayyon, Hadi; Lasso, Andras; Kaushal, Aradhana; Guion, Peter; Fichtinger, Gabor

    2011-11-01

    MRI-guided prostate needle biopsy requires compensation for organ motion between target planning and needle placement. Two questions are studied and answered in this paper: 1) is rigid registration sufficient in tracking the targets with an error smaller than the clinically significant size of prostate cancer and 2) what is the effect of the number of intraoperative slices on registration accuracy and speed? we propose multislice-to-volume registration algorithms for tracking the biopsy targets within the prostate. Three orthogonal plus additional transverse intraoperative slices are acquired in the approximate center of the prostate and registered with a high-resolution target planning volume. Both rigid and deformable scenarios were implemented. Both simulated and clinical MRI-guided robotic prostate biopsy data were used to assess tracking accuracy. average registration errors in clinical patient data were 2.6 mm for the rigid algorithm and 2.1 mm for the deformable algorithm. rigid tracking appears to be promising. Three tracking slices yield significantly high registration speed with an affordable error.

  4. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    PubMed Central

    Rettmann, Maryam E.; Holmes, David R.; Kwartowitz, David M.; Gunawan, Mia; Johnson, Susan B.; Camp, Jon J.; Cameron, Bruce M.; Dalegrave, Charles; Kolasa, Mark W.; Packer, Douglas L.; Robb, Richard A.

    2014-01-01

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamic in vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration provided the noise in the surface points is not excessively high. Increased variability on the landmark fiducials resulted in increased registration errors; however, refinement of the initial landmark registration by the surface-based algorithm can compensate for small initial misalignments. The surface-based registration algorithm is quite robust to noise on the surface points and continues to improve landmark registration even at high levels of noise on the surface points. Both the canine and patient studies also demonstrate that combined landmark and surface registration has lower errors than landmark registration alone. Conclusions: In this work, we describe a model for evaluating the impact of noise variability on the input parameters of a registration algorithm in the context of cardiac ablation therapy. The model can be used to predict both registration error as well as assess which inputs have the largest effect on registration accuracy. PMID:24506630

  5. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Datamore » from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration provided the noise in the surface points is not excessively high. Increased variability on the landmark fiducials resulted in increased registration errors; however, refinement of the initial landmark registration by the surface-based algorithm can compensate for small initial misalignments. The surface-based registration algorithm is quite robust to noise on the surface points and continues to improve landmark registration even at high levels of noise on the surface points. Both the canine and patient studies also demonstrate that combined landmark and surface registration has lower errors than landmark registration alone. Conclusions: In this work, we describe a model for evaluating the impact of noise variability on the input parameters of a registration algorithm in the context of cardiac ablation therapy. The model can be used to predict both registration error as well as assess which inputs have the largest effect on registration accuracy.« less

  6. Evaluation of 4D-CT lung registration.

    PubMed

    Kabus, Sven; Klinder, Tobias; Murphy, Keelin; van Ginneken, Bram; van Lorenz, Cristian; Pluim, Josien P W

    2009-01-01

    Non-rigid registration accuracy assessment is typically performed by evaluating the target registration error at manually placed landmarks. For 4D-CT lung data, we compare two sets of landmark distributions: a smaller set primarily defined on vessel bifurcations as commonly described in the literature and a larger set being well-distributed throughout the lung volume. For six different registration schemes (three in-house schemes and three schemes frequently used by the community) the landmark error is evaluated and found to depend significantly on the distribution of the landmarks. In particular, lung regions near to the pleura show a target registration error three times larger than near-mediastinal regions. While the inter-method variability on the landmark positions is rather small, the methods show discriminating differences with respect to consistency and local volume change. In conclusion, both a well-distributed set of landmarks and a deformation vector field analysis are necessary for reliable non-rigid registration accuracy assessment.

  7. Poster - Thurs Eve-12: A needle-positioning robot co-registered with volumetric x-ray micro-computed tomography images for minimally-invasive small-animal interventions.

    PubMed

    Waspe, A C; Holdsworth, D W; Lacefield, J C; Fenster, A

    2008-07-01

    Preclinical research protocols often require the delivery of biological substances to specific targets in small animal disease models. To target biologically relevant locations in mice accurately, the needle positioning error needs to be < 200 μm. If targeting is inaccurate, experimental results can be inconclusive or misleading. We have developed a robotic manipulator that is capable of positioning a needle with a mean error < 100 μm. An apparatus and method were developed for integrating the needle-positioning robot with volumetric micro-computed tomography image guidance for interventions in small animals. Accurate image-to-robot registration is critical for integration as it enables targets identified in the image to be mapped to physical coordinates inside the animal. Registration is accomplished by injecting barium sulphate into needle tracks as the robot withdraws the needle from target points in a tissue-mimicking phantom. Registration accuracy is therefore affected by the positioning error of the robot and is assessed by measuring the point-to-line fiducial and target registration errors (FRE, TRE). Centroid points along cross-sectional slices of the track are determined using region growing segmentation followed by application of a center-of-mass algorithm. The centerline points are registered to needle trajectories in robot coordinates by applying an iterative closest point algorithm between points and lines. Implementing this procedure with four fiducial needle tracks produced a point-to-line FRE and TRE of 246 ± 58 μm and 194 ± 18 μm, respectively. The proposed registration technique produced a TRE < 200 μm, in the presence of robot positioning error, meeting design specification. © 2008 American Association of Physicists in Medicine.

  8. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    PubMed

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our calibration method and a virtual navigation evaluation system for quantifying the overall errors of the intra-operative data integration. We believe this phantom not only offers us good insights to understand the systematic errors encountered in all phases of an EM-tracked endoscopy procedure but also can provide quality control of laboratory experiments for endoscopic procedures before the experiments are transferred from the laboratory to human subjects.

  9. Splint sterilization--a potential registration hazard in computer-assisted surgery.

    PubMed

    Figl, Michael; Weber, Christoph; Assadian, Ojan; Toma, Cyril D; Traxler, Hannes; Seemann, Rudolf; Guevara-Rojas, Godoberto; Pöschl, Wolfgang P; Ewers, Rolf; Schicho, Kurt

    2012-04-01

    Registration of preoperative targeting information for the intraoperative situation is a crucial step in computer-assisted surgical interventions. Point-to-point registration using acrylic splints is among the most frequently used procedures. There are, however, no generally accepted recommendations for sterilization of the splint. An appropriate method for the thermolabile splint would be hydrogen peroxide-based plasma sterilization. This study evaluated the potential deformation of the splint undergoing such sterilization. Deformation was quantified using image-processing methods applied to computed tomographic (CT) volumes before and after sterilization. An acrylic navigation splint was used as the study object. Eight metallic markers placed in the splint were used for registration. Six steel spheres in the mouthpiece were used as targets. Two CT volumes of the splint were acquired before and after 5 sterilization cycles using a hydrogen peroxide sterilizer. Point-to-point registration was applied, and fiducial and target registration errors were computed. Surfaces were extracted from CT scans and Hausdorff distances were derived. Effectiveness of sterilization was determined using Geobacillus stearothermophilus. Fiducial-based registration of CT scans before and after sterilization resulted in a mean fiducial registration error of 0.74 mm; the target registration error in the mouthpiece was 0.15 mm. The Hausdorff distance, describing the maximal deformation of the splint, was 2.51 mm. Ninety percent of point-surface distances were shorter than 0.61 mm, and 95% were shorter than 0.73 mm. No bacterial growth was found after the sterilization process. Hydrogen peroxide-based low-temperature plasma sterilization does not deform the splint, which is the base for correct computer-navigated surgery. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. MR-CT registration using a Ni-Ti prostate stent in image-guided radiotherapy of prostate cancer.

    PubMed

    Korsager, Anne Sofie; Carl, Jesper; Østergaard, Lasse Riis

    2013-06-01

    In image-guided radiotherapy of prostate cancer defining the clinical target volume often relies on magnetic resonance (MR). The task of transferring the clinical target volume from MR to standard planning computed tomography (CT) is not trivial due to prostate mobility. In this paper, an automatic local registration approach is proposed based on a newly developed removable Ni-Ti prostate stent. The registration uses the voxel similarity measure mutual information in a two-step approach where the pelvic bones are used to establish an initial registration for the local registration. In a phantom study, the accuracy was measured to 0.97 mm and visual inspection showed accurate registration of all 30 data sets. The consistency of the registration was examined where translation and rotation displacements yield a rotation error of 0.41° ± 0.45° and a translation error of 1.67 ± 2.24 mm. This study demonstrated the feasibility for an automatic local MR-CT registration using the prostate stent.

  11. Modeling patterns of anatomical deformations in prostate patients undergoing radiation therapy with an endorectal balloon

    NASA Astrophysics Data System (ADS)

    Brion, Eliott; Richter, Christian; Macq, Benoit; Stützer, Kristin; Exner, Florian; Troost, Esther; Hölscher, Tobias; Bondar, Luiza

    2017-03-01

    External beam radiation therapy (EBRT) treats cancer by delivering daily fractions of radiation to a target volume. For prostate cancer, the target undergoes day-to-day variations in position, volume, and shape. For stereotactic photon and for proton EBRT, endorectal balloons (ERBs) can be used to limit variations. To date, patterns of non-rigid variations for patients with ERB have not been modeled. We extracted and modeled the patient-specific patterns of variations, using regularly acquired CT-images, non-rigid point cloud registration, and principal component analysis (PCA). For each patient, a non-rigid point-set registration method, called Coherent Point Drift, (CPD) was used to automatically generate landmark correspondences between all target shapes. To ensure accurate registrations, we tested and validated CPD by identifying parameter values leading to the smallest registration errors (surface matching error 0.13+/-0.09 mm). PCA demonstrated that 88+/-3.2% of the target motion could be explained using only 4 principal modes. The most dominant component of target motion is a squeezing and stretching in the anterior-posterior and superior-inferior directions. A PCA model of daily landmark displacements, generated using 6 to 10 CT-scans, could explain well the target motion for the CT-scans not included in the model (modeling error decreased from 1.83+/-0.8 mm for 6 CT-scans to 1.6+/-0.7 mm for 10 CT-scans). PCA modeling error was smaller than the naive approximation by the mean shape (approximation error 2.66+/-0.59 mm). Future work will investigate the use of the PCA-model to improve the accuracy of EBRT techniques that are highly susceptible to anatomical variations such as, proton therapy

  12. SU-D-BRA-03: Analysis of Systematic Errors with 2D/3D Image Registration for Target Localization and Treatment Delivery in Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H; Chetty, I; Wen, N

    Purpose: Determine systematic deviations between 2D/3D and 3D/3D image registrations with six degrees of freedom (6DOF) for various imaging modalities and registration algorithms on the Varian Edge Linac. Methods: The 6DOF systematic errors were assessed by comparing automated 2D/3D (kV/MV vs. CT) with 3D/3D (CBCT vs. CT) image registrations from different imaging pairs, CT slice thicknesses, couch angles, similarity measures, etc., using a Rando head and a pelvic phantom. The 2D/3D image registration accuracy was evaluated at different treatment sites (intra-cranial and extra-cranial) by statistically analyzing 2D/3D pre-treatment verification against 3D/3D localization of 192 Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy treatmentmore » fractions for 88 patients. Results: The systematic errors of 2D/3D image registration using kV-kV, MV-kV and MV-MV image pairs using 0.8 mm slice thickness CT images were within 0.3 mm and 0.3° for translations and rotations with a 95% confidence interval (CI). No significant difference between 2D/3D and 3D/3D image registrations (P>0.05) was observed for target localization at various CT slice thicknesses ranging from 0.8 to 3 mm. Couch angles (30, 45, 60 degree) did not impact the accuracy of 2D/3D image registration. Using pattern intensity with content image filtering was recommended for 2D/3D image registration to achieve the best accuracy. For the patient study, translational error was within 2 mm and rotational error was within 0.6 degrees in terms of 95% CI for 2D/3D image registration. For intra-cranial sites, means and std. deviations of translational errors were −0.2±0.7, 0.04±0.5, 0.1±0.4 mm for LNG, LAT, VRT directions, respectively. For extra-cranial sites, means and std. deviations of translational errors were - 0.04±1, 0.2±1, 0.1±1 mm for LNG, LAT, VRT directions, respectively. 2D/3D image registration uncertainties for intra-cranial and extra-cranial sites were comparable. Conclusion: The Varian Edge radiosurgery 6DOF-based system, can perform 2D/3D image registration with high accuracy for target localization in image-guided stereotactic radiosurgery. The work was supported by a Research Scholar Grant, RSG-15-137-01-CCE from the American Cancer Society.« less

  13. Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients.

    PubMed

    Jin, Shuo; Li, Dengwang; Wang, Hongjun; Yin, Yong

    2013-01-07

    Accurate registration of 18F-FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from (18)F-FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information-based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application.

  14. Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients

    PubMed Central

    Jin, Shuo; Li, Dengwang; Yin, Yong

    2013-01-01

    Accurate registration of  18F−FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from  18F−FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information‐based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application. PACS numbers: 87.57.nj, 87.57.Q‐, 87.57.uk PMID:23318381

  15. Improving oncoplastic breast tumor bed localization for radiotherapy planning using image registration algorithms

    NASA Astrophysics Data System (ADS)

    Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz

    2018-02-01

    Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem, even though the visual alignment seems to be better than for the Demons algorithm. However, no algorithm could recover the deformation field with sufficient accuracy in terms of vector length and rotation angle differences.

  16. Improved Spatial Registration and Target Tracking Method for Sensors on Multiple Missiles.

    PubMed

    Lu, Xiaodong; Xie, Yuting; Zhou, Jun

    2018-05-27

    Inspired by the problem that the current spatial registration methods are unsuitable for three-dimensional (3-D) sensor on high-dynamic platform, this paper focuses on the estimation for the registration errors of cooperative missiles and motion states of maneuvering target. There are two types of errors being discussed: sensor measurement biases and attitude biases. Firstly, an improved Kalman Filter on Earth-Centered Earth-Fixed (ECEF-KF) coordinate algorithm is proposed to estimate the deviations mentioned above, from which the outcomes are furtherly compensated to the error terms. Secondly, the Pseudo Linear Kalman Filter (PLKF) and the nonlinear scheme the Unscented Kalman Filter (UKF) with modified inputs are employed for target tracking. The convergence of filtering results are monitored by a position-judgement logic, and a low-pass first order filter is selectively introduced before compensation to inhibit the jitter of estimations. In the simulation, the ECEF-KF enhancement is proven to improve the accuracy and robustness of the space alignment, while the conditional-compensation-based PLKF method is demonstrated to be the optimal performance in target tracking.

  17. 3D point cloud analysis of structured light registration in computer-assisted navigation in spinal surgeries

    NASA Astrophysics Data System (ADS)

    Gupta, Shaurya; Guha, Daipayan; Jakubovic, Raphael; Yang, Victor X. D.

    2017-02-01

    Computer-assisted navigation is used by surgeons in spine procedures to guide pedicle screws to improve placement accuracy and in some cases, to better visualize patient's underlying anatomy. Intraoperative registration is performed to establish a correlation between patient's anatomy and the pre/intra-operative image. Current algorithms rely on seeding points obtained directly from the exposed spinal surface to achieve clinically acceptable registration accuracy. Registration of these three dimensional surface point-clouds are prone to various systematic errors. The goal of this study was to evaluate the robustness of surgical navigation systems by looking at the relationship between the optical density of an acquired 3D point-cloud and the corresponding surgical navigation error. A retrospective review of a total of 48 registrations performed using an experimental structured light navigation system developed within our lab was conducted. For each registration, the number of points in the acquired point cloud was evaluated relative to whether the registration was acceptable, the corresponding system reported error and target registration error. It was demonstrated that the number of points in the point cloud neither correlates with the acceptance/rejection of a registration or the system reported error. However, a negative correlation was observed between the number of the points in the point-cloud and the corresponding sagittal angular error. Thus, system reported total registration points and accuracy are insufficient to gauge the accuracy of a navigation system and the operating surgeon must verify and validate registration based on anatomical landmarks prior to commencing surgery.

  18. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers.

    PubMed

    Luo, Xiongbiao

    2014-06-01

    Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0-10 min(-1). The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.

  19. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiongbiao, E-mail: xiongbiao.luo@gmail.com

    2014-06-15

    Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model wasmore » designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.« less

  20. Analysis of Point Based Image Registration Errors With Applications in Single Molecule Microscopy

    PubMed Central

    Cohen, E. A. K.; Ober, R. J.

    2014-01-01

    We present an asymptotic treatment of errors involved in point-based image registration where control point (CP) localization is subject to heteroscedastic noise; a suitable model for image registration in fluorescence microscopy. Assuming an affine transform, CPs are used to solve a multivariate regression problem. With measurement errors existing for both sets of CPs this is an errors-in-variable problem and linear least squares is inappropriate; the correct method being generalized least squares. To allow for point dependent errors the equivalence of a generalized maximum likelihood and heteroscedastic generalized least squares model is achieved allowing previously published asymptotic results to be extended to image registration. For a particularly useful model of heteroscedastic noise where covariance matrices are scalar multiples of a known matrix (including the case where covariance matrices are multiples of the identity) we provide closed form solutions to estimators and derive their distribution. We consider the target registration error (TRE) and define a new measure called the localization registration error (LRE) believed to be useful, especially in microscopy registration experiments. Assuming Gaussianity of the CP localization errors, it is shown that the asymptotic distribution for the TRE and LRE are themselves Gaussian and the parameterized distributions are derived. Results are successfully applied to registration in single molecule microscopy to derive the key dependence of the TRE and LRE variance on the number of CPs and their associated photon counts. Simulations show asymptotic results are robust for low CP numbers and non-Gaussianity. The method presented here is shown to outperform GLS on real imaging data. PMID:24634573

  1. A new markerless patient-to-image registration method using a portable 3D scanner.

    PubMed

    Fan, Yifeng; Jiang, Dongsheng; Wang, Manning; Song, Zhijian

    2014-10-01

    Patient-to-image registration is critical to providing surgeons with reliable guidance information in the application of image-guided neurosurgery systems. The conventional point-matching registration method, which is based on skin markers, requires expensive and time-consuming logistic support. Surface-matching registration with facial surface scans is an alternative method, but the registration accuracy is unstable and the error in the more posterior parts of the head is usually large because the scan range is limited. This study proposes a new surface-matching method using a portable 3D scanner to acquire a point cloud of the entire head to perform the patient-to-image registration. A new method for transforming the scan points from the device space into the patient space without calibration and tracking was developed. Five positioning targets were attached on a reference star, and their coordinates in the patient space were measured prior. During registration, the authors moved the scanner around the head to scan its entire surface as well as the positioning targets, and the scanner generated a unique point cloud in the device space. The coordinates of the positioning targets in the device space were automatically detected by the scanner, and a spatial transformation from the device space to the patient space could be calculated by registering them to their coordinates in the patient space that had been measured prior. A three-step registration algorithm was then used to register the patient space to the image space. The authors evaluated their method on a rigid head phantom and an elastic head phantom to verify its practicality and to calculate the target registration error (TRE) in different regions of the head phantoms. The authors also conducted an experiment with a real patient's data to test the feasibility of their method in the clinical environment. In the phantom experiments, the mean fiducial registration error between the device space and the patient space, the mean surface registration error, and the mean TRE of 15 targets on the surface of each phantom were 0.34 ± 0.01 mm and 0.33 ± 0.02 mm, 1.17 ± 0.02 mm and 1.34 ± 0.10 mm, and 1.06 ± 0.11 mm and 1.48 ± 0.21 mm, respectively. When grouping the targets according to their positions on the head, high accuracy was achieved in all parts of the head, and the TREs were similar across different regions. The authors compared their method with the current surface registration methods that use only a part of the facial surface on the elastic phantom, and the mean TRE of 15 targets was 1.48 ± 0.21 mm and 1.98 ± 0.53 mm, respectively. In a clinical experiment, the mean TRE of seven targets on the patient's head surface was 1.92 ± 0.18 mm, which was sufficient to meet clinical requirements. The proposed surface-matching registration method provides sufficient registration accuracy even in the posterior area of the head. The 3D point cloud of the entire head, including the facial surface and the back of the head, can be easily acquired using a portable 3D scanner. The scanner does not need to be calibrated prior or tracked by the optical tracking system during scanning.

  2. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation.

    PubMed

    Zeng, Bowei; Meng, Fanle; Ding, Hui; Wang, Guangzhi

    2017-08-01

    Using existing stereoelectroencephalography (SEEG) electrode implantation surgical robot systems, it is difficult to intuitively validate registration accuracy and display the electrode entry points (EPs) and the anatomical structure around the electrode trajectories in the patient space to the surgeon. This paper proposes a prototype system that can realize video see-through augmented reality (VAR) and spatial augmented reality (SAR) for SEEG implantation. The system helps the surgeon quickly and intuitively confirm the registration accuracy, locate EPs and visualize the internal anatomical structure in the image space and patient space. We designed and developed a projector-camera system (PCS) attached to the distal flange of a robot arm. First, system calibration is performed. Second, the PCS is used to obtain the point clouds of the surface of the patient's head, which are utilized for patient-to-image registration. Finally, VAR is produced by merging the real-time video of the patient and the preoperative three-dimensional (3D) operational planning model. In addition, SAR is implemented by projecting the planning electrode trajectories and local anatomical structure onto the patient's scalp. The error of registration, the electrode EPs and the target points are evaluated on a phantom. The fiducial registration error is [Formula: see text] mm (max 1.22 mm), and the target registration error is [Formula: see text] mm (max 1.18 mm). The projection overlay error is [Formula: see text] mm, and the TP error after the pre-warped projection is [Formula: see text] mm. The TP error caused by a surgeon's viewpoint deviation is also evaluated. The presented system can help surgeons quickly verify registration accuracy during SEEG procedures and can provide accurate EP locations and internal structural information to the surgeon. With more intuitive surgical information, the surgeon may have more confidence and be able to perform surgeries with better outcomes.

  3. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    PubMed

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding registration errors of 0.4 ± 0.3 mm, 0.2 ± 0.4 mm, and 0.8 ± 0.5°. The continuous method performed registration significantly faster (P < 0.05) than the user initiated method, with observed computation times of 35 ± 8 ms, 43 ± 16 ms, and 27 ± 5 ms for in-plane, out-of-plane, and roll motions, respectively, and corresponding registration errors of 0.2 ± 0.3 mm, 0.7 ± 0.4 mm, and 0.8 ± 1.0°. The presented method encourages real-time implementation of motion compensation algorithms in prostate biopsy with clinically acceptable registration errors. Continuous motion compensation demonstrated registration accuracy with submillimeter and subdegree error, while performing < 50 ms computation times. Image registration technique approaching the frame rate of an ultrasound system offers a key advantage to be smoothly integrated to the clinical workflow. In addition, this technique could be used further for a variety of image-guided interventional procedures to treat and diagnose patients by improving targeting accuracy. © 2017 American Association of Physicists in Medicine.

  4. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions.

    PubMed

    Waspe, Adam C; McErlain, David D; Pitelka, Vasek; Holdsworth, David W; Lacefield, James C; Fenster, Aaron

    2010-04-01

    Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 microm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 microm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154 +/- 113 microm. The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  5. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting amore » barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.« less

  6. SU-E-J-88: The Study of Setup Error Measured by CBCT in Postoperative Radiotherapy for Cervical Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runxiao, L; Aikun, W; Xiaomei, F

    2015-06-15

    Purpose: To compare two registration methods in the CBCT guided radiotherapy for cervical carcinoma, analyze the setup errors and registration methods, determine the margin required for clinical target volume(CTV) extending to planning target volume(PTV). Methods: Twenty patients with cervical carcinoma were enrolled. All patients were underwent CT simulation in the supine position. Transfering the CT images to the treatment planning system and defining the CTV, PTV and the organs at risk (OAR), then transmit them to the XVI workshop. CBCT scans were performed before radiotherapy and registered to planning CT images according to bone and gray value registration methods. Comparedmore » two methods and obtain left-right(X), superior-inferior(Y), anterior-posterior (Z) setup errors, the margin required for CTV to PTV were calculated. Results: Setup errors were unavoidable in postoperative cervical carcinoma irradiation. The setup errors measured by method of bone (systemic ± random) on X(1eft.right),Y(superior.inferior),Z(anterior.posterior) directions were(0.24±3.62),(0.77±5.05) and (0.13±3.89)mm, respectively, the setup errors measured by method of grey (systemic ± random) on X(1eft-right), Y(superior-inferior), Z(anterior-posterior) directions were(0.31±3.93), (0.85±5.16) and (0.21±4.12)mm, respectively.The spatial distributions of setup error was maximum in Y direction. The margins were 4 mm in X axis, 6 mm in Y axis, 4 mm in Z axis respectively.These two registration methods were similar and highly recommended. Conclusion: Both bone and grey registration methods could offer an accurate setup error. The influence of setup errors of a PTV margin would be suggested by 4mm, 4mm and 6mm on X, Y and Z directions for postoperative radiotherapy for cervical carcinoma.« less

  7. WE-AB-BRA-01: 3D-2D Image Registration for Target Localization in Spine Surgery: Comparison of Similarity Metrics Against Robustness to Content Mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Silva, T; Ketcha, M; Siewerdsen, J H

    Purpose: In image-guided spine surgery, mapping 3D preoperative images to 2D intraoperative images via 3D-2D registration can provide valuable assistance in target localization. However, the presence of surgical instrumentation, hardware implants, and soft-tissue resection/displacement causes mismatches in image content, confounding existing registration methods. Manual/semi-automatic methods to mask such extraneous content is time consuming, user-dependent, error prone, and disruptive to clinical workflow. We developed and evaluated 2 novel similarity metrics within a robust registration framework to overcome such challenges in target localization. Methods: An IRB-approved retrospective study in 19 spine surgery patients included 19 preoperative 3D CT images and 50 intraoperativemore » mobile radiographs in cervical, thoracic, and lumbar spine regions. A neuroradiologist provided truth definition of vertebral positions in CT and radiography. 3D-2D registration was performed using the CMA-ES optimizer with 4 gradient-based image similarity metrics: (1) gradient information (GI); (2) gradient correlation (GC); (3) a novel variant referred to as gradient orientation (GO); and (4) a second variant referred to as truncated gradient correlation (TGC). Registration accuracy was evaluated in terms of the projection distance error (PDE) of the vertebral levels. Results: Conventional similarity metrics were susceptible to gross registration error and failure modes associated with the presence of surgical instrumentation: for GI, the median PDE and interquartile range was 33.0±43.6 mm; similarly for GC, PDE = 23.0±92.6 mm respectively. The robust metrics GO and TGC, on the other hand, demonstrated major improvement in PDE (7.6 ±9.4 mm and 8.1± 18.1 mm, respectively) and elimination of gross failure modes. Conclusion: The proposed GO and TGC similarity measures improve registration accuracy and robustness to gross failure in the presence of strong image content mismatch. Such registration capability could offer valuable assistance in target localization without disruption of clinical workflow. G. Kleinszig and S. Vogt are employees of Siemens Healthcare.« less

  8. Localization accuracy from automatic and semi-automatic rigid registration of locally-advanced lung cancer targets during image-guided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2012-01-15

    Purpose: To evaluate localization accuracy resulting from rigid registration of locally-advanced lung cancer targets using fully automatic and semi-automatic protocols for image-guided radiation therapy. Methods: Seventeen lung cancer patients, fourteen also presenting with involved lymph nodes, received computed tomography (CT) scans once per week throughout treatment under active breathing control. A physician contoured both lung and lymph node targets for all weekly scans. Various automatic and semi-automatic rigid registration techniques were then performed for both individual and simultaneous alignments of the primary gross tumor volume (GTV{sub P}) and involved lymph nodes (GTV{sub LN}) to simulate the localization process in image-guidedmore » radiation therapy. Techniques included ''standard'' (direct registration of weekly images to a planning CT), ''seeded'' (manual prealignment of targets to guide standard registration), ''transitive-based'' (alignment of pretreatment and planning CTs through one or more intermediate images), and ''rereferenced'' (designation of a new reference image for registration). Localization error (LE) was assessed as the residual centroid and border distances between targets from planning and weekly CTs after registration. Results: Initial bony alignment resulted in centroid LE of 7.3 {+-} 5.4 mm and 5.4 {+-} 3.4 mm for the GTV{sub P} and GTV{sub LN}, respectively. Compared to bony alignment, transitive-based and seeded registrations significantly reduced GTV{sub P} centroid LE to 4.7 {+-} 3.7 mm (p = 0.011) and 4.3 {+-} 2.5 mm (p < 1 x 10{sup -3}), respectively, but the smallest GTV{sub P} LE of 2.4 {+-} 2.1 mm was provided by rereferenced registration (p < 1 x 10{sup -6}). Standard registration significantly reduced GTV{sub LN} centroid LE to 3.2 {+-} 2.5 mm (p < 1 x 10{sup -3}) compared to bony alignment, with little additional gain offered by the other registration techniques. For simultaneous target alignment, centroid LE as low as 3.9 {+-} 2.7 mm and 3.8 {+-} 2.3 mm were achieved for the GTV{sub P} and GTV{sub LN}, respectively, using rereferenced registration. Conclusions: Target shape, volume, and configuration changes during radiation therapy limited the accuracy of standard rigid registration for image-guided localization in locally-advanced lung cancer. Significant error reductions were possible using other rigid registration techniques, with LE approaching the lower limit imposed by interfraction target variability throughout treatment.« less

  9. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumormore » (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.« less

  10. Automatic image registration performance for two different CBCT systems; variation with imaging dose

    NASA Astrophysics Data System (ADS)

    Barber, J.; Sykes, J. R.; Holloway, L.; Thwaites, D. I.

    2014-03-01

    The performance of an automatic image registration algorithm was compared on image sets collected with two commercial CBCT systems, and the relationship with imaging dose was explored. CBCT images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings. Each CBCT image was registered 100 times, with random initial offsets introduced. Image registration was performed using the grey value correlation ratio algorithm in the Elekta XVI software, to a mask of the prostate volume with 5 mm expansion. Residual registration errors were calculated after correcting for the initial introduced phantom set-up error. Registration performance with the OBI images was similar to that of XVI. There was a clear dependence on imaging dose for the XVI images with residual errors increasing below 4mGy. It was not possible to acquire images with doses lower than ~5mGy with the OBI system and no evidence of reduced performance was observed at this dose. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 9% of registrations except for the lowest dose XVI scan (31%). The uncertainty in automatic image registration with both OBI and XVI images was found to be adequate for clinical use within a normal range of acquisition settings.

  11. Assessing the intrinsic precision of 3D/3D rigid image registration results for patient setup in the absence of a ground truth.

    PubMed

    Wu, Jian; Murphy, Martin J

    2010-06-01

    To assess the precision and robustness of patient setup corrections computed from 3D/3D rigid registration methods using image intensity, when no ground truth validation is possible. Fifteen pairs of male pelvic CTs were rigidly registered using four different in-house registration methods. Registration results were compared for different resolutions and image content by varying the image down-sampling ratio and by thresholding out soft tissue to isolate bony landmarks. Intrinsic registration precision was investigated by comparing the different methods and by reversing the source and the target roles of the two images being registered. The translational reversibility errors for successful registrations ranged from 0.0 to 1.69 mm. Rotations were less than 1 degrees. Mutual information failed in most registrations that used only bony landmarks. The magnitude of the reversibility error was strongly correlated with the success/ failure of each algorithm to find the global minimum. Rigid image registrations have an intrinsic uncertainty and robustness that depends on the imaging modality, the registration algorithm, the image resolution, and the image content. In the absence of an absolute ground truth, the variation in the shifts calculated by several different methods provides a useful estimate of that uncertainty. The difference observed by reversing the source and target images can be used as an indication of robust convergence.

  12. Consistency-based rectification of nonrigid registrations

    PubMed Central

    Gass, Tobias; Székely, Gábor; Goksel, Orcun

    2015-01-01

    Abstract. We present a technique to rectify nonrigid registrations by improving their group-wise consistency, which is a widely used unsupervised measure to assess pair-wise registration quality. While pair-wise registration methods cannot guarantee any group-wise consistency, group-wise approaches typically enforce perfect consistency by registering all images to a common reference. However, errors in individual registrations to the reference then propagate, distorting the mean and accumulating in the pair-wise registrations inferred via the reference. Furthermore, the assumption that perfect correspondences exist is not always true, e.g., for interpatient registration. The proposed consistency-based registration rectification (CBRR) method addresses these issues by minimizing the group-wise inconsistency of all pair-wise registrations using a regularized least-squares algorithm. The regularization controls the adherence to the original registration, which is additionally weighted by the local postregistration similarity. This allows CBRR to adaptively improve consistency while locally preserving accurate pair-wise registrations. We show that the resulting registrations are not only more consistent, but also have lower average transformation error when compared to known transformations in simulated data. On clinical data, we show improvements of up to 50% target registration error in breathing motion estimation from four-dimensional MRI and improvements in atlas-based segmentation quality of up to 65% in terms of mean surface distance in three-dimensional (3-D) CT. Such improvement was observed consistently using different registration algorithms, dimensionality (two-dimensional/3-D), and modalities (MRI/CT). PMID:26158083

  13. 4D-CT Lung registration using anatomy-based multi-level multi-resolution optical flow analysis and thin-plate splines.

    PubMed

    Min, Yugang; Neylon, John; Shah, Amish; Meeks, Sanford; Lee, Percy; Kupelian, Patrick; Santhanam, Anand P

    2014-09-01

    The accuracy of 4D-CT registration is limited by inconsistent Hounsfield unit (HU) values in the 4D-CT data from one respiratory phase to another and lower image contrast for lung substructures. This paper presents an optical flow and thin-plate spline (TPS)-based 4D-CT registration method to account for these limitations. The use of unified HU values on multiple anatomy levels (e.g., the lung contour, blood vessels, and parenchyma) accounts for registration errors by inconsistent landmark HU value. While 3D multi-resolution optical flow analysis registers each anatomical level, TPS is employed for propagating the results from one anatomical level to another ultimately leading to the 4D-CT registration. 4D-CT registration was validated using target registration error (TRE), inverse consistency error (ICE) metrics, and a statistical image comparison using Gamma criteria of 1 % intensity difference in 2 mm(3) window range. Validation results showed that the proposed method was able to register CT lung datasets with TRE and ICE values <3 mm. In addition, the average number of voxel that failed the Gamma criteria was <3 %, which supports the clinical applicability of the propose registration mechanism. The proposed 4D-CT registration computes the volumetric lung deformations within clinically viable accuracy.

  14. Applying the algorithm "assessing quality using image registration circuits" (AQUIRC) to multi-atlas segmentation

    NASA Astrophysics Data System (ADS)

    Datteri, Ryan; Asman, Andrew J.; Landman, Bennett A.; Dawant, Benoit M.

    2014-03-01

    Multi-atlas registration-based segmentation is a popular technique in the medical imaging community, used to transform anatomical and functional information from a set of atlases onto a new patient that lacks this information. The accuracy of the projected information on the target image is dependent on the quality of the registrations between the atlas images and the target image. Recently, we have developed a technique called AQUIRC that aims at estimating the error of a non-rigid registration at the local level and was shown to correlate to error in a simulated case. Herein, we extend upon this work by applying AQUIRC to atlas selection at the local level across multiple structures in cases in which non-rigid registration is difficult. AQUIRC is applied to 6 structures, the brainstem, optic chiasm, left and right optic nerves, and the left and right eyes. We compare the results of AQUIRC to that of popular techniques, including Majority Vote, STAPLE, Non-Local STAPLE, and Locally-Weighted Vote. We show that AQUIRC can be used as a method to combine multiple segmentations and increase the accuracy of the projected information on a target image, and is comparable to cutting edge methods in the multi-atlas segmentation field.

  15. An error analysis perspective for patient alignment systems.

    PubMed

    Figl, Michael; Kaar, Marcus; Hoffman, Rainer; Kratochwil, Alfred; Hummel, Johann

    2013-09-01

    This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system. In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT-based systems or Brainlab's ExacTrac. The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe. We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.

  16. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoront

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to themore » ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.« less

  17. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    PubMed

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  18. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    PubMed Central

    O’Reilly, Meaghan A.; Jones, Ryan M.; Birman, Gabriel; Hynynen, Kullervo

    2016-01-01

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available. PMID:27587036

  19. Development and application of pulmonary structure-function registration methods: towards pulmonary image-guidance tools for improved airway targeted therapies and outcomes

    NASA Astrophysics Data System (ADS)

    Guo, Fumin; Pike, Damien; Svenningsen, Sarah; Coxson, Harvey O.; Drozd, John J.; Yuan, Jing; Fenster, Aaron; Parraga, Grace

    2014-03-01

    Objectives: We aimed to develop a way to rapidly generate multi-modality (MRI-CT) pulmonary imaging structurefunction maps using novel non-rigid image registration methods. This objective is part of our overarching goal to provide an image processing pipeline to generate pulmonary structure-function maps and guide airway-targeted therapies. Methods: Anatomical 1H and functional 3He MRI were acquired in 5 healthy asymptomatic ex-smokers and 7 ex-smokers with chronic obstructive pulmonary disease (COPD) at inspiration breath-hold. Thoracic CT was performed within ten minutes of MRI using the same breath-hold volume. Landmark-based affine registration methods previously validated for imaging of COPD, was based on corresponding fiducial markers located in both CT and 1H MRI coronal slices and compared with shape-based CT-MRI non-rigid registration. Shape-based CT-MRI registration was developed by first identifying the shapes of the lung cavities manually, and then registering the two shapes using affine and thin-plate spline algorithms. We compared registration accuracy using the fiducial localization error (FLE) and target registration error (TRE). Results: For landmark-based registration, the TRE was 8.4±5.3 mm for whole lung and 7.8±4.6 mm for the R and L lungs registered independently (p=0.4). For shape-based registration, the TRE was 8.0±4.6 mm for whole lung as compared to 6.9±4.4 mm for the R and L lung registered independently and this difference was significant (p=0.01). The difference for shape-based (6.9±4.4 mm) and landmark-based R and L lung registration (7.8±4.6 mm) was also significant (p=.04) Conclusion: Shape-based registration TRE was significantly improved compared to landmark-based registration when considering L and R lungs independently.

  20. 3D-2D registration for surgical guidance: effect of projection view angles on registration accuracy

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Siewerdsen, J. H.

    2014-01-01

    An algorithm for intensity-based 3D-2D registration of CT and x-ray projections is evaluated, specifically using single- or dual-projection views to provide 3D localization. The registration framework employs the gradient information similarity metric and covariance matrix adaptation evolution strategy to solve for the patient pose in six degrees of freedom. Registration performance was evaluated in an anthropomorphic phantom and cadaver, using C-arm projection views acquired at angular separation, Δθ, ranging from ˜0°-180° at variable C-arm magnification. Registration accuracy was assessed in terms of 2D projection distance error and 3D target registration error (TRE) and compared to that of an electromagnetic (EM) tracker. The results indicate that angular separation as small as Δθ ˜10°-20° achieved TRE <2 mm with 95% confidence, comparable or superior to that of the EM tracker. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers and manual registration.

  1. An automatic markerless registration method for neurosurgical robotics based on an optical camera.

    PubMed

    Meng, Fanle; Zhai, Fangwen; Zeng, Bowei; Ding, Hui; Wang, Guangzhi

    2018-02-01

    Current markerless registration methods for neurosurgical robotics use the facial surface to match the robot space with the image space, and acquisition of the facial surface usually requires manual interaction and constrains the patient to a supine position. To overcome these drawbacks, we propose a registration method that is automatic and does not constrain patient position. An optical camera attached to the robot end effector captures images around the patient's head from multiple views. Then, high coverage of the head surface is reconstructed from the images through multi-view stereo vision. Since the acquired head surface point cloud contains color information, a specific mark that is manually drawn on the patient's head prior to the capture procedure can be extracted to automatically accomplish coarse registration rather than using facial anatomic landmarks. Then, fine registration is achieved by registering the high coverage of the head surface without relying solely on the facial region, thus eliminating patient position constraints. The head surface was acquired by the camera with a good repeatability accuracy. The average target registration error of 8 different patient positions measured with targets inside a head phantom was [Formula: see text], while the mean surface registration error was [Formula: see text]. The method proposed in this paper achieves automatic markerless registration in multiple patient positions and guarantees registration accuracy inside the head. This method provides a new approach for establishing the spatial relationship between the image space and the robot space.

  2. Registration and fusion quantification of augmented reality based nasal endoscopic surgery.

    PubMed

    Chu, Yakui; Yang, Jian; Ma, Shaodong; Ai, Danni; Li, Wenjie; Song, Hong; Li, Liang; Chen, Duanduan; Chen, Lei; Wang, Yongtian

    2017-12-01

    This paper quantifies the registration and fusion display errors of augmented reality-based nasal endoscopic surgery (ARNES). We comparatively investigated the spatial calibration process for front-end endoscopy and redefined the accuracy level of a calibrated endoscope by using a calibration tool with improved structural reliability. We also studied how registration accuracy was combined with the number and distribution of the deployed fiducial points (FPs) for positioning and the measured registration time. A physically integrated ARNES prototype was customarily configured for performance evaluation in skull base tumor resection surgery with an innovative approach of dynamic endoscopic vision expansion. As advised by surgical experts in otolaryngology, we proposed a hierarchical rendering scheme to properly adapt the fused images with the required visual sensation. By constraining the rendered sight in a known depth and radius, the visual focus of the surgeon can be induced only on the anticipated critical anatomies and vessel structures to avoid misguidance. Furthermore, error analysis was conducted to examine the feasibility of hybrid optical tracking based on point cloud, which was proposed in our previous work as an in-surgery registration solution. Measured results indicated that the error of target registration for ARNES can be reduced to 0.77 ± 0.07 mm. For initial registration, our results suggest that a trade-off for a new minimal time of registration can be reached when the distribution of five FPs is considered. For in-surgery registration, our findings reveal that the intrinsic registration error is a major cause of performance loss. Rigid model and cadaver experiments confirmed that the scenic integration and display fluency of ARNES are smooth, as demonstrated by three clinical trials that surpassed practicality. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Incorporating target registration error into robotic bone milling

    NASA Astrophysics Data System (ADS)

    Siebold, Michael A.; Dillon, Neal P.; Webster, Robert J.; Fitzpatrick, J. Michael

    2015-03-01

    Robots have been shown to be useful in assisting surgeons in a variety of bone drilling and milling procedures. Examples include commercial systems for joint repair or replacement surgeries, with in vitro feasibility recently shown for mastoidectomy. Typically, the robot is guided along a path planned on a CT image that has been registered to the physical anatomy in the operating room, which is in turn registered to the robot. The registrations often take advantage of the high accuracy of fiducial registration, but, because no real-world registration is perfect, the drill guided by the robot will inevitably deviate from its planned path. The extent of the deviation can vary from point to point along the path because of the spatial variation of target registration error. The allowable deviation can also vary spatially based on the necessary safety margin between the drill tip and various nearby anatomical structures along the path. Knowledge of the expected spatial distribution of registration error can be obtained from theoretical models or experimental measurements and used to modify the planned path. The objective of such modifications is to achieve desired probabilities for sparing specified structures. This approach has previously been studied for drilling straight holes but has not yet been generalized to milling procedures, such as mastoidectomy, in which cavities of more general shapes must be created. In this work, we present a general method for altering any path to achieve specified probabilities for any spatial arrangement of structures to be protected. We validate the method via numerical simulations in the context of mastoidectomy.

  4. Incorporating Target Registration Error Into Robotic Bone Milling

    PubMed Central

    Siebold, Michael A.; Dillon, Neal P.; Webster, Robert J.; Fitzpatrick, J. Michael

    2015-01-01

    Robots have been shown to be useful in assisting surgeons in a variety of bone drilling and milling procedures. Examples include commercial systems for joint repair or replacement surgeries, with in vitro feasibility recently shown for mastoidectomy. Typically, the robot is guided along a path planned on a CT image that has been registered to the physical anatomy in the operating room, which is in turn registered to the robot. The registrations often take advantage of the high accuracy of fiducial registration, but, because no real-world registration is perfect, the drill guided by the robot will inevitably deviate from its planned path. The extent of the deviation can vary from point to point along the path because of the spatial variation of target registration error. The allowable deviation can also vary spatially based on the necessary safety margin between the drill tip and various nearby anatomical structures along the path. Knowledge of the expected spatial distribution of registration error can be obtained from theoretical models or experimental measurements and used to modify the planned path. The objective of such modifications is to achieve desired probabilities for sparing specified structures. This approach has previously been studied for drilling straight holes but has not yet been generalized to milling procedures, such as mastoidectomy, in which cavities of more general shapes must be created. In this work, we present a general method for altering any path to achieve specified probabilities for any spatial arrangement of structures to be protected. We validate the method via numerical simulations in the context of mastoidectomy. PMID:26692630

  5. SU-E-J-29: Automatic Image Registration Performance of Three IGRT Systems for Prostate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, J; University of Sydney, Sydney, NSW; Sykes, J

    Purpose: To compare the performance of an automatic image registration algorithm on image sets collected on three commercial image guidance systems, and explore its relationship with imaging parameters such as dose and sharpness. Methods: Images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on the CBCT systems of Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings; and MVCT on a Tomotherapy Hi-ART accelerator with a range of pitch. Using the 6D correlation ratio algorithm of XVI, each image was registered to a mask of the prostate volume with a 5 mm expansion.more » Registrations were repeated 100 times, with random initial offsets introduced to simulate daily matching. Residual registration errors were calculated by correcting for the initial phantom set-up error. Automatic registration was also repeated after reconstructing images with different sharpness filters. Results: All three systems showed good registration performance, with residual translations <0.5mm (1σ) for typical clinical dose and reconstruction settings. Residual rotational error had larger range, with 0.8°, 1.2° and 1.9° for 1σ in XVI, OBI and Tomotherapy respectively. The registration accuracy of XVI images showed a strong dependence on imaging dose, particularly below 4mGy. No evidence of reduced performance was observed at the lowest dose settings for OBI and Tomotherapy, but these were above 4mGy. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 10% of registrations. Changing the sharpness of image reconstruction had no significant effect on registration performance. Conclusions: Using the present automatic image registration algorithm, all IGRT systems tested provided satisfactory registrations for clinical use, within a normal range of acquisition settings.« less

  6. Ultrasound guidance system for prostate biopsy

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Kerschner, Reinhard; Kaar, Marcus; Birkfellner, Wolfgang; Figl, Michael

    2017-03-01

    We designed a guidance system for prostate biopsy based on PET/MR images and 3D ultrasound (US). With our proposed method common inter-modal MR-US (or CT-US in case of PET/CTs) registration can be replaced by an intra-modal 3D/3D-US/US registration and an optical tracking system (OTS). On the pre-operative site, a PET/MR calibration allows to link both hybrid modalities with an abdominal 3D-US. On the interventional site, another abdominal 3D US is taken to merge the pre-operative images with the real-time 3D-US via 3D/3D-US/US registration. Finally, the images of a tracked trans-rectal US probe can be displayed with the pre-operative images by overlay. For PET/MR image fusion we applied a point-to-point registration between PET and OTS and MR and OTS, respectively. 3D/3D-US/US registration was evaluated for images taken in supine and lateral patient position. To enable table shifts between PET/MR and US image acquisition a table calibration procedure is presented. We found fiducial registration errors of 0.9 mm and 2.8 mm, respectively, with respect to the MR and PET calibration. A target registration error between MR and 3D US amounted to 1.4 mm. The registration error for the 3D/3D-US/US registration was found to be 3.7 mm. Furthermore, we have shown that ultrasound is applicable in an MR environment.

  7. Image-guided ex-vivo targeting accuracy using a laparoscopic tissue localization system

    NASA Astrophysics Data System (ADS)

    Bieszczad, Jerry; Friets, Eric; Knaus, Darin; Rauth, Thomas; Herline, Alan; Miga, Michael; Galloway, Robert; Kynor, David

    2007-03-01

    In image-guided surgery, discrete fiducials are used to determine a spatial registration between the location of surgical tools in the operating theater and the location of targeted subsurface lesions and critical anatomic features depicted in preoperative tomographic image data. However, the lack of readily localized anatomic landmarks has greatly hindered the use of image-guided surgery in minimally invasive abdominal procedures. To address these needs, we have previously described a laser-based system for localization of internal surface anatomy using conventional laparoscopes. During a procedure, this system generates a digitized, three-dimensional representation of visible anatomic surfaces in the abdominal cavity. This paper presents the results of an experiment utilizing an ex-vivo bovine liver to assess subsurface targeting accuracy achieved using our system. During the experiment, several radiopaque targets were inserted into the liver parenchyma. The location of each target was recorded using an optically-tracked insertion probe. The liver surface was digitized using our system, and registered with the liver surface extracted from post-procedure CT images. This surface-based registration was then used to transform the position of the inserted targets into the CT image volume. The target registration error (TRE) achieved using our surface-based registration (given a suitable registration algorithm initialization) was 2.4 mm +/- 1.0 mm. A comparable TRE (2.6 mm +/- 1.7 mm) was obtained using a registration based on traditional fiducial markers placed on the surface of the same liver. These results indicate the potential of fiducial-free, surface-to-surface registration for image-guided lesion targeting in minimally invasive abdominal surgery.

  8. An image warping technique for rodent brain MRI-histology registration based on thin-plate splines with landmark optimization

    NASA Astrophysics Data System (ADS)

    Liu, Yutong; Uberti, Mariano; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael D.

    2009-02-01

    Coregistration of in vivo magnetic resonance imaging (MRI) with histology provides validation of disease biomarker and pathobiology studies. Although thin-plate splines are widely used in such image registration, point landmark selection is error prone and often time-consuming. We present a technique to optimize landmark selection for thin-plate splines and demonstrate its usefulness in warping rodent brain MRI to histological sections. In this technique, contours are drawn on the corresponding MRI slices and images of histological sections. The landmarks are extracted from the contours by equal spacing then optimized by minimizing a cost function consisting of the landmark displacement and contour curvature. The technique was validated using simulation data and brain MRI-histology coregistration in a murine model of HIV-1 encephalitis. Registration error was quantified by calculating target registration error (TRE). The TRE of approximately 8 pixels for 20-80 landmarks without optimization was stable at different landmark numbers. The optimized results were more accurate at low landmark numbers (TRE of approximately 2 pixels for 50 landmarks), while the accuracy decreased (TRE approximately 8 pixels for larger numbers of landmarks (70- 80). The results demonstrated that registration accuracy decreases with the increasing landmark numbers offering more confidence in MRI-histology registration using thin-plate splines.

  9. Registration of organs with sliding interfaces and changing topologies

    NASA Astrophysics Data System (ADS)

    Berendsen, Floris F.; Kotte, Alexis N. T. J.; Viergever, Max A.; Pluim, Josien P. W.

    2014-03-01

    Smoothness and continuity assumptions on the deformation field in deformable image registration do not hold for applications where the imaged objects have sliding interfaces. Recent extensions to deformable image registration that accommodate for sliding motion of organs are limited to sliding motion along approximately planar surfaces or cannot model sliding that changes the topological configuration in case of multiple organs. We propose a new extension to free-form image registration that is not limited in this way. Our method uses a transformation model that consists of uniform B-spline transformations for each organ region separately, which is based on segmentation of one image. Since this model can create overlapping regions or gaps between regions, we introduce a penalty term that minimizes this undesired effect. The penalty term acts on the surfaces of the organ regions and is optimized simultaneously with the image similarity. To evaluate our method registrations were performed on publicly available inhale-exhale CT scans for which performances of other methods are known. Target registration errors are computed on dense landmark sets that are available with these datasets. On these data our method outperforms the other methods in terms of target registration error and, where applicable, also in terms of overlap and gap volumes. The approximation of the other methods of sliding motion along planar surfaces is reasonably well suited for the motion present in the lung data. The ability of our method to handle sliding along curved boundaries and for changing region topology configurations was demonstrated on synthetic images.

  10. Improvement of registration accuracy in accelerated partial breast irradiation using the point-based rigid-body registration algorithm for patients with implanted fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Minoru; Yoshimura, Michio, E-mail: myossy@kuhp.kyoto-u.ac.jp; Sato, Sayaka

    2015-04-15

    Purpose: To investigate image-registration errors when using fiducial markers with a manual method and the point-based rigid-body registration (PRBR) algorithm in accelerated partial breast irradiation (APBI) patients, with accompanying fiducial deviations. Methods: Twenty-two consecutive patients were enrolled in a prospective trial examining 10-fraction APBI. Titanium clips were implanted intraoperatively around the seroma in all patients. For image-registration, the positions of the clips in daily kV x-ray images were matched to those in the planning digitally reconstructed radiographs. Fiducial and gravity registration errors (FREs and GREs, respectively), representing resulting misalignments of the edge and center of the target, respectively, were comparedmore » between the manual and algorithm-based methods. Results: In total, 218 fractions were evaluated. Although the mean FRE/GRE values for the manual and algorithm-based methods were within 3 mm (2.3/1.7 and 1.3/0.4 mm, respectively), the percentages of fractions where FRE/GRE exceeded 3 mm using the manual and algorithm-based methods were 18.8%/7.3% and 0%/0%, respectively. Manual registration resulted in 18.6% of patients with fractions of FRE/GRE exceeding 5 mm. The patients with larger clip deviation had significantly more fractions showing large FRE/GRE using manual registration. Conclusions: For image-registration using fiducial markers in APBI, the manual registration results in more fractions with considerable registration error due to loss of fiducial objectivity resulting from their deviation. The authors recommend the PRBR algorithm as a safe and effective strategy for accurate, image-guided registration and PTV margin reduction.« less

  11. A spline-based non-linear diffeomorphism for multimodal prostate registration.

    PubMed

    Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice

    2012-08-01

    This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Nonrigid registration of carotid ultrasound and MR images using a "twisting and bending" model

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Nuwan D.; Chiu, Bernard; Samani, Abbas; Spence, J. David; Parraga, Grace; Samarabandu, Jagath; Fenster, Aaron

    2008-03-01

    Atherosclerosis at the carotid bifurcation resulting in cerebral emboli is a major cause of ischemic stroke. Most strokes associated with carotid atherosclerosis can be prevented by lifestyle/dietary changes and pharmacological treatments if identified early by monitoring carotid plaque changes. Plaque composition information from magnetic resonance (MR) carotid images and dynamic characteristics information from 3D ultrasound (US) are necessary for developing and validating US imaging tools to identify vulnerable carotid plaques. Combining these images requires nonrigid registration to correct the non-linear miss-alignments caused by relative twisting and bending in the neck due to different head positions during the two image acquisitions sessions. The high degree of freedom and large number of parameters associated with existing nonrigid image registration methods causes several problems including unnatural plaque morphology alteration, computational complexity, and low reliability. Our approach was to model the normal movement of the neck using a "twisting and bending model" with only six parameters for nonrigid registration. We evaluated our registration technique using intra-subject in-vivo 3D US and 3D MR carotid images acquired on the same day. We calculated the Mean Registration Error (MRE) between the segmented vessel surfaces in the target image and the registered image using a distance-based error metric after applying our "twisting bending model" based nonrigid registration algorithm. We achieved an average registration error of 1.33+/-0.41mm using our nonrigid registration technique. Visual inspection of segmented vessel surfaces also showed a substantial improvement of alignment with our non-rigid registration technique.

  13. A study on the theoretical and practical accuracy of conoscopic holography-based surface measurements: toward image registration in minimally invasive surgery†

    PubMed Central

    Burgner, J.; Simpson, A. L.; Fitzpatrick, J. M.; Lathrop, R. A.; Herrell, S. D.; Miga, M. I.; Webster, R. J.

    2013-01-01

    Background Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. Methods We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. Results Experiments agree with model predictions, producing point RMS errors consistently < 1 mm, surface-based registration with mean closest point error < 1 mm in the phantom and a RMS target registration error of 0.8 mm in the human cadaver kidney. Conclusions Tracked conoscopic holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery. PMID:22761086

  14. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  15. Validation of elastic registration algorithms based on adaptive irregular grids for medical applications

    NASA Astrophysics Data System (ADS)

    Franz, Astrid; Carlsen, Ingwer C.; Renisch, Steffen; Wischmann, Hans-Aloys

    2006-03-01

    Elastic registration of medical images is an active field of current research. Registration algorithms have to be validated in order to show that they fulfill the requirements of a particular clinical application. Furthermore, validation strategies compare the performance of different registration algorithms and can hence judge which algorithm is best suited for a target application. In the literature, validation strategies for rigid registration algorithms have been analyzed. For a known ground truth they assess the displacement error at a few landmarks, which is not sufficient for elastic transformations described by a huge number of parameters. Hence we consider the displacement error averaged over all pixels in the whole image or in a region-of-interest of clinical relevance. Using artificially, but realistically deformed images of the application domain, we use this quality measure to analyze an elastic registration based on transformations defined on adaptive irregular grids for the following clinical applications: Magnetic Resonance (MR) images of freely moving joints for orthopedic investigations, thoracic Computed Tomography (CT) images for the detection of pulmonary embolisms, and transmission images as used for the attenuation correction and registration of independently acquired Positron Emission Tomography (PET) and CT images. The definition of a region-of-interest allows to restrict the analysis of the registration accuracy to clinically relevant image areas. The behaviour of the displacement error as a function of the number of transformation control points and their placement can be used for identifying the best strategy for the initial placement of the control points.

  16. Local Setup Reproducibility of the Spinal Column When Using Intensity-Modulated Radiation Therapy for Craniospinal Irradiation With Patient in Supine Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de; Department of Medical Physics, German Cancer Research Center, Heidelberg; Giske, Kristina

    Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived frommore » a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.« less

  17. Hand-eye calibration using a target registration error model.

    PubMed

    Chen, Elvis C S; Morgan, Isabella; Jayarathne, Uditha; Ma, Burton; Peters, Terry M

    2017-10-01

    Surgical cameras are prevalent in modern operating theatres and are often used as a surrogate for direct vision. Visualisation techniques (e.g. image fusion) made possible by tracking the camera require accurate hand-eye calibration between the camera and the tracking system. The authors introduce the concept of 'guided hand-eye calibration', where calibration measurements are facilitated by a target registration error (TRE) model. They formulate hand-eye calibration as a registration problem between homologous point-line pairs. For each measurement, the position of a monochromatic ball-tip stylus (a point) and its projection onto the image (a line) is recorded, and the TRE of the resulting calibration is predicted using a TRE model. The TRE model is then used to guide the placement of the calibration tool, so that the subsequent measurement minimises the predicted TRE. Assessing TRE after each measurement produces accurate calibration using a minimal number of measurements. As a proof of principle, they evaluated guided calibration using a webcam and an endoscopic camera. Their endoscopic camera results suggest that millimetre TRE is achievable when at least 15 measurements are acquired with the tracker sensor ∼80 cm away on the laparoscope handle for a target ∼20 cm away from the camera.

  18. A gaussian mixture + demons deformable registration method for cone-beam CT-guided robotic transoral base-of-tongue surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Liu, W. P.; Schafer, S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Richmon, J.; Sorger, J.; Siewerdsen, J. H.; Taylor, R. H.

    2013-03-01

    Purpose: An increasingly popular minimally invasive approach to resection of oropharyngeal / base-of-tongue cancer is made possible by a transoral technique conducted with the assistance of a surgical robot. However, the highly deformed surgical setup (neck flexed, mouth open, and tongue retracted) compared to the typical patient orientation in preoperative images poses a challenge to guidance and localization of the tumor target and adjacent critical anatomy. Intraoperative cone-beam CT (CBCT) can account for such deformation, but due to the low contrast of soft-tissue in CBCT images, direct localization of the target and critical tissues in CBCT images can be difficult. Such structures may be more readily delineated in preoperative CT or MR images, so a method to deformably register such information to intraoperative CBCT could offer significant value. This paper details the initial implementation of a deformable registration framework to align preoperative images with the deformed intraoperative scene and gives preliminary evaluation of the geometric accuracy of registration in CBCT-guided TORS. Method: The deformable registration aligns preoperative CT or MR to intraoperative CBCT by integrating two established approaches. The volume of interest is first segmented (specifically, the region of the tongue from the tip to the hyoid), and a Gaussian mixture (GM) mode1 of surface point clouds is used for rigid initialization (GMRigid) as well as an initial deformation (GMNonRigid). Next, refinement of the registration is performed using the Demons algorithm applied to distance transformations of the GM-registered and CBCT volumes. The registration accuracy of the framework was quantified in preliminary studies using a cadaver emulating preoperative and intraoperative setups. Geometric accuracy of registration was quantified in terms of target registration error (TRE) and surface distance error. Result: With each step of the registration process, the framework demonstrated improved registration, achieving mean TRE of 3.0 mm following the GM rigid, 1.9 mm following GM nonrigid, and 1.5 mm at the output of the registration process. Analysis of surface distance demonstrated a corresponding improvement of 2.2, 0.4, and 0.3 mm, respectively. The evaluation of registration error revealed the accurate alignment in the region of interest for base-of-tongue robotic surgery owing to point-set selection in the GM steps and refinement in the deep aspect of the tongue in the Demons step. Conclusions: A promising framework has been developed for CBCT-guided TORS in which intraoperative CBCT provides a basis for registration of preoperative images to the highly deformed intraoperative setup. The registration framework is invariant to imaging modality (accommodating preoperative CT or MR) and is robust against CBCT intensity variations and artifact, provided corresponding segmentation of the volume of interest. The approach could facilitate overlay of preoperative planning data directly in stereo-endoscopic video in support of CBCT-guided TORS.

  19. 3D non-rigid surface-based MR-TRUS registration for image-guided prostate biopsy

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Qiu, Wu; Romagnoli, Cesare; Fenster, Aaron

    2014-03-01

    Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate biopsy is the standard approach for definitive diagnosis of prostate cancer (PCa). However, due to the lack of image contrast of prostate tumors needed to clearly visualize early-stage PCa, prostate biopsy often results in false negatives, requiring repeat biopsies. Magnetic Resonance Imaging (MRI) has been considered to be a promising imaging modality for noninvasive identification of PCa, since it can provide a high sensitivity and specificity for the detection of early stage PCa. Our main objective is to develop and validate a registration method of 3D MR-TRUS images, allowing generation of volumetric 3D maps of targets identified in 3D MR images to be biopsied using 3D TRUS images. Our registration method first makes use of an initial rigid registration of 3D MR images to 3D TRUS images using 6 manually placed approximately corresponding landmarks in each image. Following the manual initialization, two prostate surfaces are segmented from 3D MR and TRUS images and then non-rigidly registered using a thin-plate spline (TPS) algorithm. The registration accuracy was evaluated using 4 patient images by measuring target registration error (TRE) of manually identified corresponding intrinsic fiducials (calcifications and/or cysts) in the prostates. Experimental results show that the proposed method yielded an overall mean TRE of 2.05 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.

  20. Efficient feature-based 2D/3D registration of transesophageal echocardiography to x-ray fluoroscopy for cardiac interventions

    NASA Astrophysics Data System (ADS)

    Hatt, Charles R.; Speidel, Michael A.; Raval, Amish N.

    2014-03-01

    We present a novel 2D/ 3D registration algorithm for fusion between transesophageal echocardiography (TEE) and X-ray fluoroscopy (XRF). The TEE probe is modeled as a subset of 3D gradient and intensity point features, which facilitates efficient 3D-to-2D perspective projection. A novel cost-function, based on a combination of intensity and edge features, evaluates the registration cost value without the need for time-consuming generation of digitally reconstructed radiographs (DRRs). Validation experiments were performed with simulations and phantom data. For simulations, in silica XRF images of a TEE probe were generated in a number of different pose configurations using a previously acquired CT image. Random misregistrations were applied and our method was used to recover the TEE probe pose and compare the result to the ground truth. Phantom experiments were performed by attaching fiducial markers externally to a TEE probe, imaging the probe with an interventional cardiac angiographic x-ray system, and comparing the pose estimated from the external markers to that estimated from the TEE probe using our algorithm. Simulations found a 3D target registration error of 1.08(1.92) mm for biplane (monoplane) geometries, while the phantom experiment found a 2D target registration error of 0.69mm. For phantom experiments, we demonstrated a monoplane tracking frame-rate of 1.38 fps. The proposed feature-based registration method is computationally efficient, resulting in near real-time, accurate image based registration between TEE and XRF.

  1. Feasibility study on image guided patient positioning for stereotactic body radiation therapy of liver malignancies guided by liver motion.

    PubMed

    Heinz, Christian; Gerum, Sabine; Freislederer, Philipp; Ganswindt, Ute; Roeder, Falk; Corradini, Stefanie; Belka, Claus; Niyazi, Maximilian

    2016-06-27

    Fiducial markers are the superior method to compensate for interfractional motion in liver SBRT. However this method is invasive and thereby limits its application range. In this retrospective study, the compensation method for the interfractional motion using fiducial markers (gold standard) was compared to a new non-invasive approach, which does rely on the organ motion of the liver and the relative tumor position within this volume. We analyzed six patients (3 m, 3f) treated with SBRT in 2014. After fiducial marker implantation, all patients received a treatment CT (free breathing, without abdominal compression) and a 4D-CT (consisting of 10 respiratory phases). For all patients the gross tumor volumes (GTVs), internal target volume (ITV), planning target volume (PTV), internal marker target volumes (IMTVs) and the internal liver target volume (ILTV) were delineated based on the CT and 4D-CT images. CBCT imaging was used for the standard treatment setup based on the fiducial markers. According to the patient coordinates the 3 translational compensation values (t x , t y , t z ) for the interfractional motion were calculated by matching the blurred fiducial markers with the corresponding IMTV structures. 4 observers were requested to recalculate the translational compensation values for each CBCT (31) based on the ILTV structures. The differences of the translational compensation values between the IMTV and ILTV approach were analyzed. The magnitude of the mean absolute 3D registration error with regard to the gold standard overall patients and observers was 0.50 cm ± 0.28 cm. Individual registration errors up to 1.3 cm were observed. There was no significant overall linear correlation between the respiratory motion and the registration error of the ILTV approach. Two different methods to calculate the translational compensation values for interfractional motion in stereotactic liver therapy were evaluated. The registration accuracy of the ILTV approach is mainly limited by the non-rigid behavior of the liver and the individual registration experience of the observer. The ILTV approach lacks the accuracy that would be desired for stereotactic radiotherapy of the liver.

  2. Concepts and Preliminary Data Toward the Realization of Image-guided Liver Surgery

    PubMed Central

    Cash, David M.; Miga, Michael I.; Glasgow, Sean C.; Dawant, Benoit M.; Clements, Logan W.; Cao, Zhujiang; Galloway, Robert L.; Chapman, William C.

    2013-01-01

    Image-guided surgery provides navigational assistance to the surgeon by displaying the surgical probe position on a set of preoperative tomograms in real time. In this study, the feasibility of implementing image-guided surgery concepts into liver surgery was examined during eight hepatic resection procedures. Preoperative tomographic image data were acquired and processed. Accompanying intraoperative data on liver shape and position were obtained through optically tracked probes and laser range scanning technology. The preoperative and intraoperative representations of the liver surface were aligned using the iterative closest point surface matching algorithm. Surface registrations resulted in mean residual errors from 2 to 6 mm, with errors of target surface regions being below a stated goal of 1 cm. Issues affecting registration accuracy include liver motion due to respiration, the quality of the intraoperative surface data, and intraoperative organ deformation. Respiratory motion was quantified during the procedures as cyclical, primarily along the cranial–caudal direction. The resulting registrations were more robust and accurate when using laser range scanning to rapidly acquire thousands of points on the liver surface and when capturing unique geometric regions on the liver surface, such as the inferior edge. Finally, finite element models recovered much of the observed intraoperative deformation, further decreasing errors in the registration. Image-guided liver surgery has shown the potential to provide surgeons with important navigation aids that could increase the accuracy of targeting lesions and the number of patients eligible for surgical resection. PMID:17458587

  3. A Demons algorithm for image registration with locally adaptive regularization.

    PubMed

    Cahill, Nathan D; Noble, J Alison; Hawkes, David J

    2009-01-01

    Thirion's Demons is a popular algorithm for nonrigid image registration because of its linear computational complexity and ease of implementation. It approximately solves the diffusion registration problem by successively estimating force vectors that drive the deformation toward alignment and smoothing the force vectors by Gaussian convolution. In this article, we show how the Demons algorithm can be generalized to allow image-driven locally adaptive regularization in a manner that preserves both the linear complexity and ease of implementation of the original Demons algorithm. We show that the proposed algorithm exhibits lower target registration error and requires less computational effort than the original Demons algorithm on the registration of serial chest CT scans of patients with lung nodules.

  4. Inverse consistent non-rigid image registration based on robust point set matching

    PubMed Central

    2014-01-01

    Background Robust point matching (RPM) has been extensively used in non-rigid registration of images to robustly register two sets of image points. However, except for the location at control points, RPM cannot estimate the consistent correspondence between two images because RPM is a unidirectional image matching approach. Therefore, it is an important issue to make an improvement in image registration based on RPM. Methods In our work, a consistent image registration approach based on the point sets matching is proposed to incorporate the property of inverse consistency and improve registration accuracy. Instead of only estimating the forward transformation between the source point sets and the target point sets in state-of-the-art RPM algorithms, the forward and backward transformations between two point sets are estimated concurrently in our algorithm. The inverse consistency constraints are introduced to the cost function of RPM and the fuzzy correspondences between two point sets are estimated based on both the forward and backward transformations simultaneously. A modified consistent landmark thin-plate spline registration is discussed in detail to find the forward and backward transformations during the optimization of RPM. The similarity of image content is also incorporated into point matching in order to improve image matching. Results Synthetic data sets, medical images are employed to demonstrate and validate the performance of our approach. The inverse consistent errors of our algorithm are smaller than RPM. Especially, the topology of transformations is preserved well for our algorithm for the large deformation between point sets. Moreover, the distance errors of our algorithm are similar to that of RPM, and they maintain a downward trend as whole, which demonstrates the convergence of our algorithm. The registration errors for image registrations are evaluated also. Again, our algorithm achieves the lower registration errors in same iteration number. The determinant of the Jacobian matrix of the deformation field is used to analyse the smoothness of the forward and backward transformations. The forward and backward transformations estimated by our algorithm are smooth for small deformation. For registration of lung slices and individual brain slices, large or small determinant of the Jacobian matrix of the deformation fields are observed. Conclusions Results indicate the improvement of the proposed algorithm in bi-directional image registration and the decrease of the inverse consistent errors of the forward and the reverse transformations between two images. PMID:25559889

  5. Prostate Localization on Daily Cone-Beam Computed Tomography Images: Accuracy Assessment of Similarity Metrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinkoo, E-mail: jkim3@hfhs.or; Hammoud, Rabih; Pradhan, Deepak

    2010-07-15

    Purpose: To evaluate different similarity metrics (SM) using natural calcifications and observation-based measures to determine the most accurate prostate and seminal vesicle localization on daily cone-beam CT (CBCT) images. Methods and Materials: CBCT images of 29 patients were retrospectively analyzed; 14 patients with prostate calcifications (calcification data set) and 15 patients without calcifications (no-calcification data set). Three groups of test registrations were performed. Test 1: 70 CT/CBCT pairs from calcification dataset were registered using 17 SMs (6,580 registrations) and compared using the calcification mismatch error as an endpoint. Test 2: Using the four best SMs from Test 1, 75 CT/CBCTmore » pairs in the no-calcification data set were registered (300 registrations). Accuracy of contour overlays was ranked visually. Test 3: For the best SM from Tests 1 and 2, accuracy was estimated using 356 CT/CBCT registrations. Additionally, target expansion margins were investigated for generating registration regions of interest. Results: Test 1-Incremental sign correlation (ISC), gradient correlation (GC), gradient difference (GD), and normalized cross correlation (NCC) showed the smallest errors ({mu} {+-} {sigma}: 1.6 {+-} 0.9 {approx} 2.9 {+-} 2.1 mm). Test 2-Two of the three reviewers ranked GC higher. Test 3-Using GC, 96% of registrations showed <3-mm error when calcifications were filtered. Errors were left/right: 0.1 {+-} 0.5mm, anterior/posterior: 0.8 {+-} 1.0mm, and superior/inferior: 0.5 {+-} 1.1 mm. The existence of calcifications increased the success rate to 97%. Expansion margins of 4-10 mm were equally successful. Conclusion: Gradient-based SMs were most accurate. Estimated error was found to be <3 mm (1.1 mm SD) in 96% of the registrations. Results suggest that the contour expansion margin should be no less than 4 mm.« less

  6. Supervised local error estimation for nonlinear image registration using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Eppenhof, Koen A. J.; Pluim, Josien P. W.

    2017-02-01

    Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation of a registration error map for nonlinear image registration. The method is based on a convolutional neural network that estimates the norm of the residual deformation from patches around each pixel in two registered images. This norm is interpreted as the registration error, and is defined for every pixel in the image domain. The network is trained using a set of artificially deformed images. Each training example is a pair of images: the original image, and a random deformation of that image. No manually labeled ground truth error is required. At test time, only the two registered images are required as input. We train and validate the network on registrations in a set of 2D digital subtraction angiography sequences, such that errors up to eight pixels can be estimated. We show that for this range of errors the convolutional network is able to learn the registration error in pairs of 2D registered images at subpixel precision. Finally, we present a proof of principle for the extension to 3D registration problems in chest CTs, showing that the method has the potential to estimate errors in 3D registration problems.

  7. Comparison of carina-based versus bony anatomy-based registration for setup verification in esophageal cancer radiotherapy.

    PubMed

    Machiels, Mélanie; Jin, Peng; van Gurp, Christianne H; van Hooft, Jeanin E; Alderliesten, Tanja; Hulshof, Maarten C C M

    2018-03-21

    To investigate the feasibility and geometric accuracy of carina-based registration for CBCT-guided setup verification in esophageal cancer IGRT, compared with current practice bony anatomy-based registration. Included were 24 esophageal cancer patients with 65 implanted fiducial markers, visible on planning CTs and follow-up CBCTs. All available CBCT scans (n = 236) were rigidly registered to the planning CT with respect to the bony anatomy and the carina. Target coverage was visually inspected and marker position variation was quantified relative to both registration approaches; the variation of systematic (Σ) and random errors (σ) was estimated. Automatic carina-based registration was feasible in 94.9% of the CBCT scans, with an adequate target coverage in 91.1% compared to 100% after bony anatomy-based registration. Overall, Σ (σ) in the LR/CC/AP direction was 2.9(2.4)/4.1(2.4)/2.2(1.8) mm using the bony anatomy registration compared to 3.3(3.0)/3.6(2.6)/3.9(3.1) mm for the carina. Mid-thoracic placed markers showed a non-significant but smaller Σ in CC and AP direction when using the carina-based registration. Compared with a bony anatomy-based registration, carina-based registration for esophageal cancer IGRT results in inadequate target coverage in 8.9% of cases. Furthermore, large Σ and σ, requiring larger anisotropic margins, were seen after carina-based registration. Only for tumors entirely confined to the mid-thoracic region the carina-based registration might be slightly favorable.

  8. Augmenting real-time video with virtual models for enhanced visualization for simulation, teaching, training and guidance

    NASA Astrophysics Data System (ADS)

    Potter, Michael; Bensch, Alexander; Dawson-Elli, Alexander; Linte, Cristian A.

    2015-03-01

    In minimally invasive surgical interventions direct visualization of the target area is often not available. Instead, clinicians rely on images from various sources, along with surgical navigation systems for guidance. These spatial localization and tracking systems function much like the Global Positioning Systems (GPS) that we are all well familiar with. In this work we demonstrate how the video feed from a typical camera, which could mimic a laparoscopic or endoscopic camera used during an interventional procedure, can be used to identify the pose of the camera with respect to the viewed scene and augment the video feed with computer-generated information, such as rendering of internal anatomy not visible beyond the imaged surface, resulting in a simple augmented reality environment. This paper describes the software and hardware environment and methodology for augmenting the real world with virtual models extracted from medical images to provide enhanced visualization beyond the surface view achieved using traditional imaging. Following intrinsic and extrinsic camera calibration, the technique was implemented and demonstrated using a LEGO structure phantom, as well as a 3D-printed patient-specific left atrial phantom. We assessed the quality of the overlay according to fiducial localization, fiducial registration, and target registration errors, as well as the overlay offset error. Using the software extensions we developed in conjunction with common webcams it is possible to achieve tracking accuracy comparable to that seen with significantly more expensive hardware, leading to target registration errors on the order of 2 mm.

  9. Temporal subtraction contrast-enhanced dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0-16%), NCC (0-6%), NMI (0-13%) and TRE (0-34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was implemented using a parallel processing architecture resulting in rapid execution time for the iterative segmentation and intensity-adaptive registration techniques. Characterization of contrast-enhanced lesions is improved using temporal subtraction contrast-enhanced dedicated breast CT. Adaptation of Demons registration forces as a function of contrast-enhancement levels provided a means to accurately align breast tissue in pre- and post-contrast image acquisitions, improving subtraction results. Spatial subtraction of the aligned images yields useful diagnostic information with respect to enhanced lesion morphology and uptake.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan

    Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less

  11. Residual Seminal Vesicle Displacement in Marker-Based Image-Guided Radiotherapy for Prostate Cancer and the Impact on Margin Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob

    Purpose: The objectives of this study were to quantify residual interfraction displacement of seminal vesicles (SV) and investigate the efficacy of rotation correction on SV displacement in marker-based prostate image-guided radiotherapy (IGRT). We also determined the effect of marker registration on the measured SV displacement and its impact on margin design. Methods and Materials: SV displacement was determined relative to marker registration by using 296 cone beam computed tomography scans of 13 prostate cancer patients with implanted markers. SV were individually registered in the transverse plane, based on gray-value information. The target registration error (TRE) for the SV due tomore » marker registration inaccuracies was estimated. Correlations between prostate gland rotations and SV displacement and between individual SV displacements were determined. Results: The SV registration success rate was 99%. Displacement amounts of both SVs were comparable. Systematic and random residual SV displacements were 1.6 mm and 2.0 mm in the left-right direction, respectively, and 2.8 mm and 3.1 mm in the anteroposterior (AP) direction, respectively. Rotation correction did not reduce residual SV displacement. Prostate gland rotation around the left-right axis correlated with SV AP displacement (R{sup 2} = 42%); a correlation existed between both SVs for AP displacement (R{sup 2} = 62%); considerable correlation existed between random errors of SV displacement and TRE (R{sup 2} = 34%). Conclusions: Considerable residual SV displacement exists in marker-based IGRT. Rotation correction barely reduced SV displacement, rather, a larger SV displacement was shown relative to the prostate gland that was not captured by the marker position. Marker registration error partly explains SV displacement when correcting for rotations. Correcting for rotations, therefore, is not advisable when SV are part of the target volume. Margin design for SVs should take these uncertainties into account.« less

  12. Multiview marker-free registration of forest terrestrial laser scanner data with embedded confidence metrics

    DOE PAGES

    Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan; ...

    2016-10-18

    Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less

  13. Open-source image registration for MRI-TRUS fusion-guided prostate interventions.

    PubMed

    Fedorov, Andriy; Khallaghi, Siavash; Sánchez, C Antonio; Lasso, Andras; Fels, Sidney; Tuncali, Kemal; Sugar, Emily Neubauer; Kapur, Tina; Zhang, Chenxi; Wells, William; Nguyen, Paul L; Abolmaesumi, Purang; Tempany, Clare

    2015-06-01

    We propose two software tools for non-rigid registration of MRI and transrectal ultrasound (TRUS) images of the prostate. Our ultimate goal is to develop an open-source solution to support MRI-TRUS fusion image guidance of prostate interventions, such as targeted biopsy for prostate cancer detection and focal therapy. It is widely hypothesized that image registration is an essential component in such systems. The two non-rigid registration methods are: (1) a deformable registration of the prostate segmentation distance maps with B-spline regularization and (2) a finite element-based deformable registration of the segmentation surfaces in the presence of partial data. We evaluate the methods retrospectively using clinical patient image data collected during standard clinical procedures. Computation time and Target Registration Error (TRE) calculated at the expert-identified anatomical landmarks were used as quantitative measures for the evaluation. The presented image registration tools were capable of completing deformable registration computation within 5 min. Average TRE was approximately 3 mm for both methods, which is comparable with the slice thickness in our MRI data. Both tools are available under nonrestrictive open-source license. We release open-source tools that may be used for registration during MRI-TRUS-guided prostate interventions. Our tools implement novel registration approaches and produce acceptable registration results. We believe these tools will lower the barriers in development and deployment of interventional research solutions and facilitate comparison with similar tools.

  14. Hand–eye calibration using a target registration error model

    PubMed Central

    Morgan, Isabella; Jayarathne, Uditha; Ma, Burton; Peters, Terry M.

    2017-01-01

    Surgical cameras are prevalent in modern operating theatres and are often used as a surrogate for direct vision. Visualisation techniques (e.g. image fusion) made possible by tracking the camera require accurate hand–eye calibration between the camera and the tracking system. The authors introduce the concept of ‘guided hand–eye calibration’, where calibration measurements are facilitated by a target registration error (TRE) model. They formulate hand–eye calibration as a registration problem between homologous point–line pairs. For each measurement, the position of a monochromatic ball-tip stylus (a point) and its projection onto the image (a line) is recorded, and the TRE of the resulting calibration is predicted using a TRE model. The TRE model is then used to guide the placement of the calibration tool, so that the subsequent measurement minimises the predicted TRE. Assessing TRE after each measurement produces accurate calibration using a minimal number of measurements. As a proof of principle, they evaluated guided calibration using a webcam and an endoscopic camera. Their endoscopic camera results suggest that millimetre TRE is achievable when at least 15 measurements are acquired with the tracker sensor ∼80 cm away on the laparoscope handle for a target ∼20 cm away from the camera. PMID:29184657

  15. Robust Nonrigid Multimodal Image Registration using Local Frequency Maps*

    PubMed Central

    Jian, Bing; Vemuri, Baba C.; Marroquin, José L.

    2008-01-01

    Automatic multi-modal image registration is central to numerous tasks in medical imaging today and has a vast range of applications e.g., image guidance, atlas construction, etc. In this paper, we present a novel multi-modal 3D non-rigid registration algorithm where in 3D images to be registered are represented by their corresponding local frequency maps efficiently computed using the Riesz transform as opposed to the popularly used Gabor filters. The non-rigid registration between these local frequency maps is formulated in a statistically robust framework involving the minimization of the integral squared error a.k.a. L2E (L2 error). This error is expressed as the squared difference between the true density of the residual (which is the squared difference between the non-rigidly transformed reference and the target local frequency representations) and a Gaussian or mixture of Gaussians density approximation of the same. The non-rigid transformation is expressed in a B-spline basis to achieve the desired smoothness in the transformation as well as computational efficiency. The key contributions of this work are (i) the use of Riesz transform to achieve better efficiency in computing the local frequency representation in comparison to Gabor filter-based approaches, (ii) new mathematical model for local-frequency based non-rigid registration, (iii) analytic computation of the gradient of the robust non-rigid registration cost function to achieve efficient and accurate registration. The proposed non-rigid L2E-based registration is a significant extension of research reported in literature to date. We present experimental results for registering several real data sets with synthetic and real non-rigid misalignments. PMID:17354721

  16. Multimodality Non-Rigid Image Registration for Planning, Targeting and Monitoring during CT-guided Percutaneous Liver Tumor Cryoablation

    PubMed Central

    Elhawary, Haytham; Oguro, Sota; Tuncali, Kemal; Morrison, Paul R.; Tatli, Servet; Shyn, Paul B.; Silverman, Stuart G.; Hata, Nobuhiko

    2010-01-01

    Rationale and Objectives To develop non-rigid image registration between pre-procedure contrast enhanced MR images and intra-procedure unenhanced CT images, to enhance tumor visualization and localization during CT-guided liver tumor cryoablation procedures. Materials and Methods After IRB approval, a non-rigid registration (NRR) technique was evaluated with different pre-processing steps and algorithm parameters and compared to a standard rigid registration (RR) approach. The Dice Similarity Coefficient (DSC), Target Registration Error (TRE), 95% Hausdorff distance (HD) and total registration time (minutes) were compared using a two-sided Student’s t-test. The entire registration method was then applied during five CT-guided liver cryoablation cases with the intra-procedural CT data transmitted directly from the CT scanner, with both accuracy and registration time evaluated. Results Selected optimal parameters for registration were section thickness of 5mm, cropping the field of view to 66% of its original size, manual segmentation of the liver, B-spline control grid of 5×5×5 and spatial sampling of 50,000 pixels. Mean 95% HD of 3.3mm (2.5x improvement compared to RR, p<0.05); mean DSC metric of 0.97 (13% increase); and mean TRE of 4.1mm (2.7x reduction) were measured. During the cryoablation procedure registration between the pre-procedure MR and the planning intra-procedure CT took a mean time of 10.6 minutes, the MR to targeting CT image took 4 minutes and MR to monitoring CT took 4.3 minutes. Mean registration accuracy was under 3.4mm. Conclusion Non-rigid registration allowed improved visualization of the tumor during interventional planning, targeting and evaluation of tumor coverage by the ice ball. Future work is focused on reducing segmentation time to make the method more clinically acceptable. PMID:20817574

  17. SU-F-T-638: Is There A Need For Immobilization in SRS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masterova, K; Sethi, A; Anderson, D

    2016-06-15

    Purpose: Frameless Stereotactic radiosurgery (SRS) is increasingly used in the clinic. Cone-Beam CT (CBCT) to simulation-CT match has replaced the 3-dimensional coordinate based set up using a stereotactic localizing frame. The SRS frame however served as both a localizing and immobilizing device. We seek to measure the quality of frameless (mask based) and frame based immobilization and evaluate its impact on target dose. Methods: Each SRS patient was set up by kV on-board imaging (OBI) and then fine-tuned with CBCT. A second CBCT was done at treatment-end to ascertain intrafraction motion. We compared pre- vs post-treatment CBCT shifts for bothmore » frameless and frame based SRS patients. CBCT to sim-CT fusion was repeated for each patient off-line to assess systematic residual image registration error. Each patient was re-planned with measured shifts to assess effects on target dose. Results: We analyzed 11 patients (12 lesions) treated with frameless SRS and 6 patients (11 lesions) with a fixed frame system. Average intra-fraction iso-center positioning errors for frameless and frame-based treatments were 1.24 ± 0.57 mm and 0.28 ± 0.08 mm (mean ± s.d.) respectively. Residual error in CBCT registration was 0.24 mm. The frameless positioning uncertainties led to target dose errors in Dmin and D95 of 15.5 ± 18.4% and 6.6 ± 9.1% respectively. The corresponding errors in fixed frame SRS were much lower with Dmin and D95 reduced by 4.2 ± 6.5% and D95 2.5 ± 3.8% respectively. Conclusion: Frameless mask provides good immobilization with average patient motion of 1.2 mm during treatment. This exceeds MRI voxel dimensions (∼0.43mm) used for target delineation. Frame-based SRS provides superior patient immobilization with measureable movement no greater than the background noise of the CBCT registration. Small lesions requiring submm precision are better served with a frame based SRS.« less

  18. Deformable planning CT to cone-beam CT image registration in head-and-neck cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou Jidong; Guerrero, Mariana; Chen, Wenjuan

    2011-04-15

    Purpose: The purpose of this work was to implement and validate a deformable CT to cone-beam computed tomography (CBCT) image registration method in head-and-neck cancer to eventually facilitate automatic target delineation on CBCT. Methods: Twelve head-and-neck cancer patients underwent a planning CT and weekly CBCT during the 5-7 week treatment period. The 12 planning CT images (moving images) of these patients were registered to their weekly CBCT images (fixed images) via the symmetric force Demons algorithm and using a multiresolution scheme. Histogram matching was used to compensate for the intensity difference between the two types of images. Using nine knownmore » anatomic points as registration targets, the accuracy of the registration was evaluated using the target registration error (TRE). In addition, region-of-interest (ROI) contours drawn on the planning CT were morphed to the CBCT images and the volume overlap index (VOI) between registered contours and manually delineated contours was evaluated. Results: The mean TRE value of the nine target points was less than 3.0 mm, the slice thickness of the planning CT. Of the 369 target points evaluated for registration accuracy, the average TRE value was 2.6{+-}0.6 mm. The mean TRE for bony tissue targets was 2.4{+-}0.2 mm, while the mean TRE for soft tissue targets was 2.8{+-}0.2 mm. The average VOI between the registered and manually delineated ROI contours was 76.2{+-}4.6%, which is consistent with that reported in previous studies. Conclusions: The authors have implemented and validated a deformable image registration method to register planning CT images to weekly CBCT images in head-and-neck cancer cases. The accuracy of the TRE values suggests that they can be used as a promising tool for automatic target delineation on CBCT.« less

  19. Model-to-image based 2D-3D registration of angiographic data

    NASA Astrophysics Data System (ADS)

    Mollus, Sabine; Lübke, Jördis; Walczuch, Andreas J.; Schumann, Heidrun; Weese, Jürgen

    2008-03-01

    We propose a novel registration method, which combines well-known vessel detection techniques with aspects of model adaptation. The proposed method is tailored to the requirements of 2D-3D-registration of interventional angiographic X-ray data such as acquired during abdominal procedures. As prerequisite, a vessel centerline is extracted out of a rotational angiography (3DRA) data set to build an individual model of the vascular tree. Following the two steps of local vessel detection and model transformation the centerline model is matched to one dynamic subtraction angiography (DSA) target image. Thereby, the in-plane position and the 3D orientation of the centerline is related to the vessel candidates found in the target image minimizing the residual error in least squares manner. In contrast to feature-based methods, no segmentation of the vessel tree in the 2D target image is required. First experiments with synthetic angiographies and clinical data sets indicate that matching with the proposed model-to-image based registration approach is accurate and robust and is characterized by a large capture range.

  20. Local-search based prediction of medical image registration error

    NASA Astrophysics Data System (ADS)

    Saygili, Görkem

    2018-03-01

    Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.

  1. Panorama imaging for image-to-physical registration of narrow drill holes inside spongy bones

    NASA Astrophysics Data System (ADS)

    Bergmeier, Jan; Fast, Jacob Friedemann; Ortmaier, Tobias; Kahrs, Lüder Alexander

    2017-03-01

    Image-to-physical registration based on volumetric data like computed tomography on the one side and intraoperative endoscopic images on the other side is an important method for various surgical applications. In this contribution, we present methods to generate panoramic views from endoscopic recordings for image-to-physical registration of narrow drill holes inside spongy bone. One core application is the registration of drill poses inside the mastoid during minimally invasive cochlear implantations. Besides the development of image processing software for registration, investigations are performed on a miniaturized optical system, achieving 360° radial imaging with one shot by extending a conventional, small, rigid, rod lens endoscope. A reflective cone geometry is used to deflect radially incoming light rays into the endoscope optics. Therefore, a cone mirror is mounted in front of a conventional 0° endoscope. Furthermore, panoramic images of inner drill hole surfaces in artificial bone material are created. Prior to drilling, cone beam computed tomography data is acquired from this artificial bone and simulated endoscopic views are generated from this data. A qualitative and quantitative image comparison of resulting views in terms of image-to-image registration is performed. First results show that downsizing of panoramic optics to a diameter of 3mm is possible. Conventional rigid rod lens endoscopes can be extended to produce suitable panoramic one-shot image data. Using unrolling and stitching methods, images of the inner drill hole surface similar to computed tomography image data of the same surface were created. Registration is performed on ten perturbations of the search space and results in target registration errors of (0:487 +/- 0:438)mm at the entry point and (0:957 +/- 0:948)mm at the exit as well as an angular error of (1:763 +/- 1:536)°. The results show suitability of this image data for image-to-image registration. Analysis of the error components in different directions reveals a strong influence of the pattern structure, meaning higher diversity results into smaller errors.

  2. 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy.

    PubMed

    De Silva, Tharindu; Fenster, Aaron; Cool, Derek W; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D

    2013-02-01

    Three-dimensional (3D) transrectal ultrasound (TRUS)-guided systems have been developed to improve targeting accuracy during prostate biopsy. However, prostate motion during the procedure is a potential source of error that can cause target misalignments. The authors present an image-based registration technique to compensate for prostate motion by registering the live two-dimensional (2D) TRUS images acquired during the biopsy procedure to a preacquired 3D TRUS image. The registration must be performed both accurately and quickly in order to be useful during the clinical procedure. The authors implemented an intensity-based 2D-3D rigid registration algorithm optimizing the normalized cross-correlation (NCC) metric using Powell's method. The 2D TRUS images acquired during the procedure prior to biopsy gun firing were registered to the baseline 3D TRUS image acquired at the beginning of the procedure. The accuracy was measured by calculating the target registration error (TRE) using manually identified fiducials within the prostate; these fiducials were used for validation only and were not provided as inputs to the registration algorithm. They also evaluated the accuracy when the registrations were performed continuously throughout the biopsy by acquiring and registering live 2D TRUS images every second. This measured the improvement in accuracy resulting from performing the registration, continuously compensating for motion during the procedure. To further validate the method using a more challenging data set, registrations were performed using 3D TRUS images acquired by intentionally exerting different levels of ultrasound probe pressures in order to measure the performance of our algorithm when the prostate tissue was intentionally deformed. In this data set, biopsy scenarios were simulated by extracting 2D frames from the 3D TRUS images and registering them to the baseline 3D image. A graphics processing unit (GPU)-based implementation was used to improve the registration speed. They also studied the correlation between NCC and TREs. The root-mean-square (RMS) TRE of registrations performed prior to biopsy gun firing was found to be 1.87 ± 0.81 mm. This was an improvement over 4.75 ± 2.62 mm before registration. When the registrations were performed every second during the biopsy, the RMS TRE was reduced to 1.63 ± 0.51 mm. For 3D data sets acquired under different probe pressures, the RMS TRE was found to be 3.18 ± 1.6 mm. This was an improvement from 6.89 ± 4.1 mm before registration. With the GPU based implementation, the registrations were performed with a mean time of 1.1 s. The TRE showed a weak correlation with the similarity metric. However, the authors measured a generally convex shape of the metric around the ground truth, which may explain the rapid convergence of their algorithm to accurate results. Registration to compensate for prostate motion during 3D TRUS-guided biopsy can be performed with a measured accuracy of less than 2 mm and a speed of 1.1 s, which is an important step toward improving the targeting accuracy of a 3D TRUS-guided biopsy system.

  3. Automated reconstruction of standing posture panoramas from multi-sector long limb x-ray images

    NASA Astrophysics Data System (ADS)

    Miller, Linzey; Trier, Caroline; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2016-03-01

    Due to the digital X-ray imaging system's limited field of view, several individual sector images are required to capture the posture of an individual in standing position. These images are then "stitched together" to reconstruct the standing posture. We have created an image processing application that automates the stitching, therefore minimizing user input, optimizing workflow, and reducing human error. The application begins with pre-processing the input images by removing artifacts, filtering out isolated noisy regions, and amplifying a seamless bone edge. The resulting binary images are then registered together using a rigid-body intensity based registration algorithm. The identified registration transformations are then used to map the original sector images into the panorama image. Our method focuses primarily on the use of the anatomical content of the images to generate the panoramas as opposed to using external markers employed to aid with the alignment process. Currently, results show robust edge detection prior to registration and we have tested our approach by comparing the resulting automatically-stitched panoramas to the manually stitched panoramas in terms of registration parameters, target registration error of homologous markers, and the homogeneity of the digitally subtracted automatically- and manually-stitched images using 26 patient datasets.

  4. Temporal subtraction contrast-enhanced dedicated breast CT

    PubMed Central

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-01-01

    Purpose To develop a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. Methods An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, Intensity Difference Adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using Normalized Cross Correlation (NCC), Symmetric Uncertainty Coefficient (SUC), Normalized Mutual Information (NMI), Mean Square Error (MSE) and Target Registration Error (TRE). Results The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE(0–16%), NCC (0–6%), NMI (0–13%) and TRE (0–34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was implemented using a parallel processing architecture resulting in rapid execution time for the iterative segmentation and intensity-adaptive registration techniques. Conclusion Characterization of contrast-enhanced lesions is improved using temporal subtraction contrast-enhanced dedicated breast CT. Adaptation of Demons registration forces as a function of contrast-enhancement levels provided a means to accurately align breast tissue in pre- and post-contrast image acquisitions, improving subtraction results. Spatial subtraction of the aligned images yields useful diagnostic information with respect to enhanced lesion morphology and uptake. PMID:27494376

  5. Joint estimation of subject motion and tracer kinetic parameters of dynamic PET data in an EM framework

    NASA Astrophysics Data System (ADS)

    Jiao, Jieqing; Salinas, Cristian A.; Searle, Graham E.; Gunn, Roger N.; Schnabel, Julia A.

    2012-02-01

    Dynamic Positron Emission Tomography is a powerful tool for quantitative imaging of in vivo biological processes. The long scan durations necessitate motion correction, to maintain the validity of the dynamic measurements, which can be particularly challenging due to the low signal-to-noise ratio (SNR) and spatial resolution, as well as the complex tracer behaviour in the dynamic PET data. In this paper we develop a novel automated expectation-maximisation image registration framework that incorporates temporal tracer kinetic information to correct for inter-frame subject motion during dynamic PET scans. We employ the Zubal human brain phantom to simulate dynamic PET data using SORTEO (a Monte Carlo-based simulator), in order to validate the proposed method for its ability to recover imposed rigid motion. We have conducted a range of simulations using different noise levels, and corrupted the data with a range of rigid motion artefacts. The performance of our motion correction method is compared with pairwise registration using normalised mutual information as a voxel similarity measure (an approach conventionally used to correct for dynamic PET inter-frame motion based solely on intensity information). To quantify registration accuracy, we calculate the target registration error across the images. The results show that our new dynamic image registration method based on tracer kinetics yields better realignment of the simulated datasets, halving the target registration error when compared to the conventional method at small motion levels, as well as yielding smaller residuals in translation and rotation parameters. We also show that our new method is less affected by the low signal in the first few frames, which the conventional method based on normalised mutual information fails to realign.

  6. Direct endoscopic video registration for sinus surgery

    NASA Astrophysics Data System (ADS)

    Mirota, Daniel; Taylor, Russell H.; Ishii, Masaru; Hager, Gregory D.

    2009-02-01

    Advances in computer vision have made possible robust 3D reconstruction of monocular endoscopic video. These reconstructions accurately represent the visible anatomy and, once registered to pre-operative CT data, enable a navigation system to track directly through video eliminating the need for an external tracking system. Video registration provides the means for a direct interface between an endoscope and a navigation system and allows a shorter chain of rigid-body transformations to be used to solve the patient/navigation-system registration. To solve this registration step we propose a new 3D-3D registration algorithm based on Trimmed Iterative Closest Point (TrICP)1 and the z-buffer algorithm.2 The algorithm takes as input a 3D point cloud of relative scale with the origin at the camera center, an isosurface from the CT, and an initial guess of the scale and location. Our algorithm utilizes only the visible polygons of the isosurface from the current camera location during each iteration to minimize the search area of the target region and robustly reject outliers of the reconstruction. We present example registrations in the sinus passage applicable to both sinus surgery and transnasal surgery. To evaluate our algorithm's performance we compare it to registration via Optotrak and present closest distance point to surface error. We show our algorithm has a mean closest distance error of .2268mm.

  7. Interactive 3-D registration of ultrasound and magnetic resonance images based on a magnetic position sensor.

    PubMed

    Pagoulatos, N; Edwards, W S; Haynor, D R; Kim, Y

    1999-12-01

    The use of stereotactic systems has been one of the main approaches for image-based guidance of the surgical tool within the brain. The main limitation of stereotactic systems is that they are based on preoperative images that might become outdated and invalid during the course of surgery. Ultrasound (US) is considered the most practical and cost-effective intraoperative imaging modality, but US images inherently have a low signal-to-noise ratio. Integrating intraoperative US with stereotactic systems has recently been attempted. In this paper, we present a new system for interactively registering two-dimensional US and three-dimensional magnetic resonance (MR) images. This registration is based on tracking the US probe with a dc magnetic position sensor. We have performed an extensive analysis of the errors of our system by using a custom-built phantom. The registration error between the MR and the position sensor space was found to have a mean value of 1.78 mm and a standard deviation of 0.18 mm. The registration error between US and MR space was dependent on the distance of the target point from the US probe face. For a 3.5-MHz phased one-dimensional array transducer and a depth of 6 cm, the mean value of the registration error was 2.00 mm and the standard deviation was 0.75 mm. The registered MR images were reconstructed using either zeroth-order or first-order interpolation. The ease of use and the interactive nature of our system (approximately 6.5 frames/s for 344 x 310 images and first-order interpolation on a Pentium II 450 MHz) demonstrates its potential to be used in the operating room.

  8. A comparison of registration errors with imageless computer navigation during MIS total knee arthroplasty versus standard incision total knee arthroplasty: a cadaveric study.

    PubMed

    Davis, Edward T; Pagkalos, Joseph; Gallie, Price A M; Macgroarty, Kelly; Waddell, James P; Schemitsch, Emil H

    2015-01-01

    Optimal component alignment in total knee arthroplasty has been associated with better functional outcome as well as improved implant longevity. The ability to align components optimally during minimally invasive (MIS) total knee replacement (TKR) has been a cause of concern. Computer navigation is a useful aid in achieving the desired alignment although it is limited by the error during the manual registration of landmarks. Our study aims to compare the registration process error between a standard and a MIS surgical approach. We hypothesized that performing the registration error via an MIS approach would increase the registration process error. Five fresh frozen lower limbs were routinely prepared and draped. The registration process was performed through an MIS approach. This was then extended to the standard approach and the registration was performed again. Two surgeons performed the registration process five times with each approach. Performing the registration process through the MIS approach was not associated with higher error compared to the standard approach in the alignment parameters of interest. This rejects our hypothesis. Image-free navigated MIS TKR does not appear to carry higher risk of component malalignment due to the registration process error. Navigation can be used during MIS TKR to improve alignment without reduced accuracy due to the approach.

  9. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C

    2018-06-01

    Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.

  10. Evaluating the utility of 3D TRUS image information in guiding intra-procedure registration for motion compensation

    NASA Astrophysics Data System (ADS)

    De Silva, Tharindu; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    In targeted 3D transrectal ultrasound (TRUS)-guided biopsy, patient and prostate movement during the procedure can cause target misalignments that hinder accurate sampling of pre-planned suspicious tissue locations. Multiple solutions have been proposed for motion compensation via registration of intra-procedural TRUS images to a baseline 3D TRUS image acquired at the beginning of the biopsy procedure. While 2D TRUS images are widely used for intra-procedural guidance, some solutions utilize richer intra-procedural images such as bi- or multi-planar TRUS or 3D TRUS, acquired by specialized probes. In this work, we measured the impact of such richer intra-procedural imaging on motion compensation accuracy, to evaluate the tradeoff between cost and complexity of intra-procedural imaging versus improved motion compensation. We acquired baseline and intra-procedural 3D TRUS images from 29 patients at standard sextant-template biopsy locations. We used the planes extracted from the 3D intra-procedural scans to simulate 2D and 3D information available in different clinically relevant scenarios for registration. The registration accuracy was evaluated by calculating the target registration error (TRE) using manually identified homologous fiducial markers (micro-calcifications). Our results indicate that TRE improves gradually when the number of intra-procedural imaging planes used in registration is increased. Full 3D TRUS information helps the registration algorithm to robustly converge to more accurate solutions. These results can also inform the design of a fail-safe workflow during motion compensation in a system using a tracked 2D TRUS probe, by prescribing rotational acquisitions that can be performed quickly and easily by the physician immediately prior to needle targeting.

  11. Phase measurement error in summation of electron holography series.

    PubMed

    McLeod, Robert A; Bergen, Michael; Malac, Marek

    2014-06-01

    Off-axis electron holography is a method for the transmission electron microscope (TEM) that measures the electric and magnetic properties of a specimen. The electrostatic and magnetic potentials modulate the electron wavefront phase. The error in measurement of the phase therefore determines the smallest observable changes in electric and magnetic properties. Here we explore the summation of a hologram series to reduce the phase error and thereby improve the sensitivity of electron holography. Summation of hologram series requires independent registration and correction of image drift and phase wavefront drift, the consequences of which are discussed. Optimization of the electro-optical configuration of the TEM for the double biprism configuration is examined. An analytical model of image and phase drift, composed of a combination of linear drift and Brownian random-walk, is derived and experimentally verified. The accuracy of image registration via cross-correlation and phase registration is characterized by simulated hologram series. The model of series summation errors allows the optimization of phase error as a function of exposure time and fringe carrier frequency for a target spatial resolution. An experimental example of hologram series summation is provided on WS2 fullerenes. A metric is provided to measure the object phase error from experimental results and compared to analytical predictions. The ultimate experimental object root-mean-square phase error is 0.006 rad (2π/1050) at a spatial resolution less than 0.615 nm and a total exposure time of 900 s. The ultimate phase error in vacuum adjacent to the specimen is 0.0037 rad (2π/1700). The analytical prediction of phase error differs with the experimental metrics by +7% inside the object and -5% in the vacuum, indicating that the model can provide reliable quantitative predictions. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  12. Surface driven biomechanical breast image registration

    NASA Astrophysics Data System (ADS)

    Eiben, Björn; Vavourakis, Vasileios; Hipwell, John H.; Kabus, Sven; Lorenz, Cristian; Buelow, Thomas; Williams, Norman R.; Keshtgar, M.; Hawkes, David J.

    2016-03-01

    Biomechanical modelling enables large deformation simulations of breast tissues under different loading conditions to be performed. Such simulations can be utilised to transform prone Magnetic Resonance (MR) images into a different patient position, such as upright or supine. We present a novel integration of biomechanical modelling with a surface registration algorithm which optimises the unknown material parameters of a biomechanical model and performs a subsequent regularised surface alignment. This allows deformations induced by effects other than gravity, such as those due to contact of the breast and MR coil, to be reversed. Correction displacements are applied to the biomechanical model enabling transformation of the original pre-surgical images to the corresponding target position. The algorithm is evaluated for the prone-to-supine case using prone MR images and the skin outline of supine Computed Tomography (CT) scans for three patients. A mean target registration error (TRE) of 10:9 mm for internal structures is achieved. For the prone-to-upright scenario, an optical 3D surface scan of one patient is used as a registration target and the nipple distances after alignment between the transformed MRI and the surface are 10:1 mm and 6:3 mm respectively.

  13. Accuracy of Novel Computed Tomography-Guided Frameless Stereotactic Drilling and Catheter System in Human Cadavers.

    PubMed

    Sankey, Eric W; Butler, Eric; Sampson, John H

    2017-10-01

    To evaluate accuracy of a computed tomography (CT)-guided frameless stereotactic drilling and catheter system. A prospective, single-arm study was performed using human cadaver heads to evaluate placement accuracy of a novel, flexible intracranial catheter and stabilizing bone anchor system and drill kit. There were 20 catheter placements included in the analysis. The primary endpoint was accuracy of catheter tip location on intraoperative CT. Secondary endpoints included target registration error and entry and target point error before and after drilling. Measurements are reported as mean ± SD (median, range). Target registration error was 0.46 mm ± 0.26 (0.50 mm, -1.00 to 1.00 mm). Two (10%) target point trajectories were negatively impacted by drilling. Intracranial catheter depth was 59.8 mm ± 9.4 (60.5 mm, 38.0-80.0 mm). Drilling angle was 22° ± 9 (21°, 7°-45°). Deviation between planned and actual entry point on CT was 1.04 mm ± 0.38 (1.00 mm, 0.40-2.00 mm). Deviation between planned and actual target point on CT was 1.60 mm ± 0.98 (1.40 mm, 0.40-4.00 mm). No correlation was observed between intracranial catheter depth and target point deviation (accuracy) (Pearson coefficient 0.018) or between technician experience and accuracy (Pearson coefficient 0.020). There was no significant difference in accuracy with trajectories performed for different cadaver heads (P = 0.362). Highly accurate catheter placement is achievable using this novel flexible catheter and bone anchor system placed via frameless stereotaxy, with an average deviation between planned and actual target point of 1.60 mm ± 0.98 (1.40 mm, 0.40-4.00 mm). Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Monitoring tumor motion by real time 2D/3D registration during radiotherapy.

    PubMed

    Gendrin, Christelle; Furtado, Hugo; Weber, Christoph; Bloch, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Bergmann, Helmar; Stock, Markus; Fichtinger, Gabor; Georg, Dietmar; Birkfellner, Wolfgang

    2012-02-01

    In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Intensity-based 2D 3D registration for lead localization in robot guided deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Hunsche, Stefan; Sauner, Dieter; El Majdoub, Faycal; Neudorfer, Clemens; Poggenborg, Jörg; Goßmann, Axel; Maarouf, Mohammad

    2017-03-01

    Intraoperative assessment of lead localization has become a standard procedure during deep brain stimulation surgery in many centers, allowing immediate verification of targeting accuracy and, if necessary, adjustment of the trajectory. The most suitable imaging modality to determine lead positioning, however, remains controversially discussed. Current approaches entail the implementation of computed tomography and magnetic resonance imaging. In the present study, we adopted the technique of intensity-based 2D 3D registration that is commonly employed in stereotactic radiotherapy and spinal surgery. For this purpose, intraoperatively acquired 2D x-ray images were fused with preoperative 3D computed tomography (CT) data to verify lead placement during stereotactic robot assisted surgery. Accuracy of lead localization determined from 2D 3D registration was compared to conventional 3D 3D registration in a subsequent patient study. The mean Euclidian distance of lead coordinates estimated from intensity-based 2D 3D registration versus flat-panel detector CT 3D 3D registration was 0.7 mm  ±  0.2 mm. Maximum values of these distances amounted to 1.2 mm. To further investigate 2D 3D registration a simulation study was conducted, challenging two observers to visually assess artificially generated 2D 3D registration errors. 95% of deviation simulations, which were visually assessed as sufficient, had a registration error below 0.7 mm. In conclusion, 2D 3D intensity-based registration revealed high accuracy and reliability during robot guided stereotactic neurosurgery and holds great potential as a low dose, cost effective means for intraoperative lead localization.

  16. Nonrigid liver registration for image-guided surgery using partial surface data: a novel iterative approach

    NASA Astrophysics Data System (ADS)

    Rucker, D. Caleb; Wu, Yifei; Ondrake, Janet E.; Pheiffer, Thomas S.; Simpson, Amber L.; Miga, Michael I.

    2013-03-01

    In the context of open abdominal image-guided liver surgery, the efficacy of an image-guidance system relies on its ability to (1) accurately depict tool locations with respect to the anatomy, and (2) maintain the work flow of the surgical team. Laser-range scanned (LRS) partial surface measurements can be taken intraoperatively with relatively little impact on the surgical work flow, as opposed to other intraoperative imaging modalities. Previous research has demonstrated that this kind of partial surface data may be (1) used to drive a rigid registration of the preoperative CT image volume to intraoperative patient space, and (2) extrapolated and combined with a tissue-mechanics-based organ model to drive a non-rigid registration, thus compensating for organ deformations. In this paper we present a novel approach for intraoperative nonrigid liver registration which iteratively reconstructs a displacement field on the posterior side of the organ in order to minimize the error between the deformed model and the intraopreative surface data. Experimental results with a phantom liver undergoing large deformations demonstrate that this method achieves target registration errors (TRE) with a mean of 4.0 mm in the prediction of a set of 58 locations inside the phantom, which represents a 50% improvement over rigid registration alone, and a 44% improvement over the prior non-iterative single-solve method of extrapolating boundary conditions via a surface Laplacian.

  17. SU-E-J-13: Six Degree of Freedom Image Fusion Accuracy for Cranial Target Localization On the Varian Edge Stereotactic Radiosurgery System: Comparison Between 2D/3D and KV CBCT Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H; Song, K; Chetty, I

    Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was alsomore » evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF-based system provides accurate target positioning for frameless image-guided cranial stereotactic radiosurgery.« less

  18. Automated dental implantation using image-guided robotics: registration results.

    PubMed

    Sun, Xiaoyan; McKenzie, Frederic D; Bawab, Sebastian; Li, Jiang; Yoon, Yongki; Huang, Jen-K

    2011-09-01

    One of the most important factors affecting the outcome of dental implantation is the accurate insertion of the implant into the patient's jaw bone, which requires a high degree of anatomical accuracy. With the accuracy and stability of robots, image-guided robotics is expected to provide more reliable and successful outcomes for dental implantation. Here, we proposed the use of a robot for drilling the implant site in preparation for the insertion of the implant. An image-guided robotic system for automated dental implantation is described in this paper. Patient-specific 3D models are reconstructed from preoperative Cone-beam CT images, and implantation planning is performed with these virtual models. A two-step registration procedure is applied to transform the preoperative plan of the implant insertion into intra-operative operations of the robot with the help of a Coordinate Measurement Machine (CMM). Experiments are carried out with a phantom that is generated from the patient-specific 3D model. Fiducial Registration Error (FRE) and Target Registration Error (TRE) values are calculated to evaluate the accuracy of the registration procedure. FRE values are less than 0.30 mm. Final TRE values after the two-step registration are 1.42 ± 0.70 mm (N = 5). The registration results of an automated dental implantation system using image-guided robotics are reported in this paper. Phantom experiments show that the practice of robot in the dental implantation is feasible and the system accuracy is comparable to other similar systems for dental implantation.

  19. SU-E-J-94: Positioning Errors Resulting From Using Bony Anatomy Alignment for Treating SBRT Lung Tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frame, C; Ding, G

    Purpose: To quantify patient setups errors based on bony anatomy registration rather than 3D tumor alignment for SBRT lung treatments. Method: A retrospective study was performed for patients treated with lung SBRT and imaged with kV cone beam computed tomography (kV-CBCT) image-guidance. Daily CBCT images were registered to treatment planning CTs based on bony anatomy alignment and then inter-fraction tumor movement was evaluated by comparing shift in the tumor center in the medial-lateral, anterior-posterior, and superior-inferior directions. The PTV V100% was evaluated for each patient based on the average daily tumor displacement to assess the impact of the positioning errormore » on the target coverage when the registrations were based on bony anatomy. Of the 35 patients studied, 15 were free-breathing treatments, 10 used abdominal compression with a stereotactic body frame, and the remaining 10 were performed with BodyFIX vacuum bags. Results: For free-breathing treatments, the range of tumor displacement error is between 1–6 mm in the medial-lateral, 1–13 mm in the anterior-posterior, and 1–7 mm in the superior-inferior directions. These positioning errors lead to 6–22% underdose coverage for PTV - V100% . Patients treated with abdominal compression immobilization showed positional errors of 0–4mm mediallaterally, 0–3mm anterior-posteriorly, and 0–2 mm inferior-superiorly with PTV - V100% underdose ranging between 6–17%. For patients immobilized with the vacuum bags, the positional errors were found to be 0–1 mm medial-laterally, 0–1mm anterior-posteriorly, and 0–2 mm inferior-superiorly with PTV - V100% under dose ranging between 5–6% only. Conclusion: It is necessary to align the tumor target by using 3D image guidance to ensure adequate tumor coverage before performing SBRT lung treatments. The BodyFIX vacuum bag immobilization method has the least positioning errors among the three methods studied when bony anatomy is used for registration.« less

  20. The ANACONDA algorithm for deformable image registration in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weistrand, Ola; Svensson, Stina, E-mail: stina.svensson@raysearchlabs.com

    2015-01-15

    Purpose: The purpose of this work was to describe a versatile algorithm for deformable image registration with applications in radiotherapy and to validate it on thoracic 4DCT data as well as CT/cone beam CT (CBCT) data. Methods: ANAtomically CONstrained Deformation Algorithm (ANACONDA) combines image information (i.e., intensities) with anatomical information as provided by contoured image sets. The registration problem is formulated as a nonlinear optimization problem and solved with an in-house developed solver, tailored to this problem. The objective function, which is minimized during optimization, is a linear combination of four nonlinear terms: 1. image similarity term; 2. grid regularizationmore » term, which aims at keeping the deformed image grid smooth and invertible; 3. a shape based regularization term which works to keep the deformation anatomically reasonable when regions of interest are present in the reference image; and 4. a penalty term which is added to the optimization problem when controlling structures are used, aimed at deforming the selected structure in the reference image to the corresponding structure in the target image. Results: To validate ANACONDA, the authors have used 16 publically available thoracic 4DCT data sets for which target registration errors from several algorithms have been reported in the literature. On average for the 16 data sets, the target registration error is 1.17 ± 0.87 mm, Dice similarity coefficient is 0.98 for the two lungs, and image similarity, measured by the correlation coefficient, is 0.95. The authors have also validated ANACONDA using two pelvic cases and one head and neck case with planning CT and daily acquired CBCT. Each image has been contoured by a physician (radiation oncologist) or experienced radiation therapist. The results are an improvement with respect to rigid registration. However, for the head and neck case, the sample set is too small to show statistical significance. Conclusions: ANACONDA performs well in comparison with other algorithms. By including CT/CBCT data in the validation, the various aspects of the algorithm such as its ability to handle different modalities, large deformations, and air pockets are shown.« less

  1. In vivo estimation of target registration errors during augmented reality laparoscopic surgery.

    PubMed

    Thompson, Stephen; Schneider, Crispin; Bosi, Michele; Gurusamy, Kurinchi; Ourselin, Sébastien; Davidson, Brian; Hawkes, David; Clarkson, Matthew J

    2018-06-01

    Successful use of augmented reality for laparoscopic surgery requires that the surgeon has a thorough understanding of the likely accuracy of any overlay. Whilst the accuracy of such systems can be estimated in the laboratory, it is difficult to extend such methods to the in vivo clinical setting. Herein we describe a novel method that enables the surgeon to estimate in vivo errors during use. We show that the method enables quantitative evaluation of in vivo data gathered with the SmartLiver image guidance system. The SmartLiver system utilises an intuitive display to enable the surgeon to compare the positions of landmarks visible in both a projected model and in the live video stream. From this the surgeon can estimate the system accuracy when using the system to locate subsurface targets not visible in the live video. Visible landmarks may be either point or line features. We test the validity of the algorithm using an anatomically representative liver phantom, applying simulated perturbations to achieve clinically realistic overlay errors. We then apply the algorithm to in vivo data. The phantom results show that using projected errors of surface features provides a reliable predictor of subsurface target registration error for a representative human liver shape. Applying the algorithm to in vivo data gathered with the SmartLiver image-guided surgery system shows that the system is capable of accuracies around 12 mm; however, achieving this reliably remains a significant challenge. We present an in vivo quantitative evaluation of the SmartLiver image-guided surgery system, together with a validation of the evaluation algorithm. This is the first quantitative in vivo analysis of an augmented reality system for laparoscopic surgery.

  2. Enhanced Optical Head Tracking for Cranial Radiation Therapy: Supporting Surface Registration by Cutaneous Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wissel, Tobias, E-mail: wissel@rob.uni-luebeck.de; Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck; Stüber, Patrick

    2016-06-01

    Purpose: To support surface registration in cranial radiation therapy by structural information. The risk for spatial ambiguities is minimized by using tissue thickness variations predicted from backscattered near-infrared (NIR) light from the forehead. Methods and Materials: In a pilot study we recorded NIR surface scans by laser triangulation from 30 volunteers of different skin type. A ground truth for the soft-tissue thickness was segmented from MR scans. After initially matching the NIR scans to the MR reference, Gaussian processes were trained to predict tissue thicknesses from NIR backscatter. Moreover, motion starting from this initial registration was simulated by 5000 randommore » transformations of the NIR scan away from the MR reference. Re-registration to the MR scan was compared with and without tissue thickness support. Results: By adding prior knowledge to the backscatter features, such as incident angle and neighborhood information in the scanning grid, we showed that tissue thickness can be predicted with mean errors of <0.2 mm, irrespective of the skin type. With this additional information, the average registration error improved from 3.4 mm to 0.48 mm by a factor of 7. Misalignments of more than 1 mm were almost thoroughly (98.9%) pushed below 1 mm. Conclusions: For almost all cases tissue-enhanced matching achieved better results than purely spatial registration. Ambiguities can be minimized if the cutaneous structures do not agree. This valuable support for surface registration increases tracking robustness and avoids misalignment of tumor targets far from the registration site.« less

  3. Overlay improvement by exposure map based mask registration optimization

    NASA Astrophysics Data System (ADS)

    Shi, Irene; Guo, Eric; Chen, Ming; Lu, Max; Li, Gordon; Li, Rivan; Tian, Eric

    2015-03-01

    Along with the increased miniaturization of semiconductor electronic devices, the design rules of advanced semiconductor devices shrink dramatically. [1] One of the main challenges of lithography step is the layer-to-layer overlay control. Furthermore, DPT (Double Patterning Technology) has been adapted for the advanced technology node like 28nm and 14nm, corresponding overlay budget becomes even tighter. [2][3] After the in-die mask registration (pattern placement) measurement is introduced, with the model analysis of a KLA SOV (sources of variation) tool, it's observed that registration difference between masks is a significant error source of wafer layer-to-layer overlay at 28nm process. [4][5] Mask registration optimization would highly improve wafer overlay performance accordingly. It was reported that a laser based registration control (RegC) process could be applied after the pattern generation or after pellicle mounting and allowed fine tuning of the mask registration. [6] In this paper we propose a novel method of mask registration correction, which can be applied before mask writing based on mask exposure map, considering the factors of mask chip layout, writing sequence, and pattern density distribution. Our experiment data show if pattern density on the mask keeps at a low level, in-die mask registration residue error in 3sigma could be always under 5nm whatever blank type and related writer POSCOR (position correction) file was applied; it proves random error induced by material or equipment would occupy relatively fixed error budget as an error source of mask registration. On the real production, comparing the mask registration difference through critical production layers, it could be revealed that registration residue error of line space layers with higher pattern density is always much larger than the one of contact hole layers with lower pattern density. Additionally, the mask registration difference between layers with similar pattern density could also achieve under 5nm performance. We assume mask registration excluding random error is mostly induced by charge accumulation during mask writing, which may be calculated from surrounding exposed pattern density. Multi-loading test mask registration result shows that with x direction writing sequence, mask registration behavior in x direction is mainly related to sequence direction, but mask registration in y direction would be highly impacted by pattern density distribution map. It proves part of mask registration error is due to charge issue from nearby environment. If exposure sequence is chip by chip for normal multi chip layout case, mask registration of both x and y direction would be impacted analogously, which has also been proved by real data. Therefore, we try to set up a simple model to predict the mask registration error based on mask exposure map, and correct it with the given POSCOR (position correction) file for advanced mask writing if needed.

  4. Robust video super-resolution with registration efficiency adaptation

    NASA Astrophysics Data System (ADS)

    Zhang, Xinfeng; Xiong, Ruiqin; Ma, Siwei; Zhang, Li; Gao, Wen

    2010-07-01

    Super-Resolution (SR) is a technique to construct a high-resolution (HR) frame by fusing a group of low-resolution (LR) frames describing the same scene. The effectiveness of the conventional super-resolution techniques, when applied on video sequences, strongly relies on the efficiency of motion alignment achieved by image registration. Unfortunately, such efficiency is limited by the motion complexity in the video and the capability of adopted motion model. In image regions with severe registration errors, annoying artifacts usually appear in the produced super-resolution video. This paper proposes a robust video super-resolution technique that adapts itself to the spatially-varying registration efficiency. The reliability of each reference pixel is measured by the corresponding registration error and incorporated into the optimization objective function of SR reconstruction. This makes the SR reconstruction highly immune to the registration errors, as outliers with higher registration errors are assigned lower weights in the objective function. In particular, we carefully design a mechanism to assign weights according to registration errors. The proposed superresolution scheme has been tested with various video sequences and experimental results clearly demonstrate the effectiveness of the proposed method.

  5. Sulcal set optimization for cortical surface registration.

    PubMed

    Joshi, Anand A; Pantazis, Dimitrios; Li, Quanzheng; Damasio, Hanna; Shattuck, David W; Toga, Arthur W; Leahy, Richard M

    2010-04-15

    Flat mapping based cortical surface registration constrained by manually traced sulcal curves has been widely used for inter subject comparisons of neuroanatomical data. Even for an experienced neuroanatomist, manual sulcal tracing can be quite time consuming, with the cost increasing with the number of sulcal curves used for registration. We present a method for estimation of an optimal subset of size N(C) from N possible candidate sulcal curves that minimizes a mean squared error metric over all combinations of N(C) curves. The resulting procedure allows us to estimate a subset with a reduced number of curves to be traced as part of the registration procedure leading to optimal use of manual labeling effort for registration. To minimize the error metric we analyze the correlation structure of the errors in the sulcal curves by modeling them as a multivariate Gaussian distribution. For a given subset of sulci used as constraints in surface registration, the proposed model estimates registration error based on the correlation structure of the sulcal errors. The optimal subset of constraint curves consists of the N(C) sulci that jointly minimize the estimated error variance for the subset of unconstrained curves conditioned on the N(C) constraint curves. The optimal subsets of sulci are presented and the estimated and actual registration errors for these subsets are computed. Copyright 2009 Elsevier Inc. All rights reserved.

  6. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y.; Liang, J.; Yan, D.

    2006-02-15

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationshipsmore » between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material uncertainty, the registration error is limited to within 1.3 mm. For a solid organ such as the prostate, the registration errors are much larger. Given 30% in material uncertainty, the registration error can reach 4.5 mm. However, the registration error distribution for prostates shows that most of the subvolumes have a much smaller registration error. A deformable organ registration technique that uses FEM is a good candidate in IGART if the mean material parameters are available.« less

  7. Investigation of 3D histograms of oriented gradients for image-based registration of CT with interventional CBCT

    NASA Astrophysics Data System (ADS)

    Trimborn, Barbara; Wolf, Ivo; Abu-Sammour, Denis; Henzler, Thomas; Schad, Lothar R.; Zöllner, Frank G.

    2017-03-01

    Image registration of preprocedural contrast-enhanced CTs to intraprocedual cone-beam computed tomography (CBCT) can provide additional information for interventional liver oncology procedures such as transcatheter arterial chemoembolisation (TACE). In this paper, a novel similarity metric for gradient-based image registration is proposed. The metric relies on the patch-based computation of histograms of oriented gradients (HOG) building the basis for a feature descriptor. The metric was implemented in a framework for rigid 3D-3D-registration of pre-interventional CT with intra-interventional CBCT data obtained during the workflow of a TACE. To evaluate the performance of the new metric, the capture range was estimated based on the calculation of the mean target registration error and compared to the results obtained with a normalized cross correlation metric. The results show that 3D HOG feature descriptors are suitable as image-similarity metric and that the novel metric can compete with established methods in terms of registration accuracy

  8. Three-dimensional nonrigid landmark-based magnetic resonance to transrectal ultrasound registration for image-guided prostate biopsy.

    PubMed

    Sun, Yue; Qiu, Wu; Yuan, Jing; Romagnoli, Cesare; Fenster, Aaron

    2015-04-01

    Registration of three-dimensional (3-D) magnetic resonance (MR) to 3-D transrectal ultrasound (TRUS) prostate images is an important step in the planning and guidance of 3-D TRUS guided prostate biopsy. In order to accurately and efficiently perform the registration, a nonrigid landmark-based registration method is required to account for the different deformations of the prostate when using these two modalities. We describe a nonrigid landmark-based method for registration of 3-D TRUS to MR prostate images. The landmark-based registration method first makes use of an initial rigid registration of 3-D MR to 3-D TRUS images using six manually placed approximately corresponding landmarks in each image. Following manual initialization, the two prostate surfaces are segmented from 3-D MR and TRUS images and then nonrigidly registered using the following steps: (1) rotationally reslicing corresponding segmented prostate surfaces from both 3-D MR and TRUS images around a specified axis, (2) an approach to find point correspondences on the surfaces of the segmented surfaces, and (3) deformation of the surface of the prostate in the MR image to match the surface of the prostate in the 3-D TRUS image and the interior using a thin-plate spline algorithm. The registration accuracy was evaluated using 17 patient prostate MR and 3-D TRUS images by measuring the target registration error (TRE). Experimental results showed that the proposed method yielded an overall mean TRE of [Formula: see text] for the rigid registration and [Formula: see text] for the nonrigid registration, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm. A landmark-based nonrigid 3-D MR-TRUS registration approach is proposed, which takes into account the correspondences on the prostate surface, inside the prostate, as well as the centroid of the prostate. Experimental results indicate that the proposed method yields clinically sufficient accuracy.

  9. A finite element method to correct deformable image registration errors in low-contrast regions

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.

    2012-06-01

    Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the ‘demons’ registration. For each voxel in the registration's target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the ‘demons’ algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the ‘demons’ algorithm on the computed tomography (CT) images of lung and prostate patients. The performance of the FEM correction relating to the ‘demons’ registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the ‘demons’ registration has the maximum error of 1.2 cm, which can be corrected by the FEM to 0.4 cm, and the average error of the ‘demons’ registration is reduced from 0.17 to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the ‘demons’ algorithm were found unrealistic at several places. In these places, the displacement differences between the ‘demons’ registrations and their FEM corrections were found in the range of 0.4 and 1.1 cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 min of computation time on a 2.6 GHz computer. This study has demonstrated that the FEM can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions.

  10. Lung motion estimation using dynamic point shifting: An innovative model based on a robust point matching algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jianbing, E-mail: yijianbing8@163.com; Yang, Xuan, E-mail: xyang0520@263.net; Li, Yan-Ran, E-mail: lyran@szu.edu.cn

    2015-10-15

    Purpose: Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. Methods: An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered atmore » points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. Results: The performances of the authors’ method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors’ method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the 3000 landmark points of ten cases by the authors’ method are 1.21 and 1.04 mm. In the EMPIRE10 lung registration challenge, the authors’ method ranks 24 of 39. According to the index of the maximum shear stretch, the authors’ method is also efficient to describe the discontinuous motion at the lung boundaries. Conclusions: By establishing the correspondence of the landmark points in the source phase and the other target phases combining shape matching and image intensity matching together, the mismatching issue in the robust point matching algorithm is adequately addressed. The target registration errors are statistically reduced by shifting the virtual target points and target points. The authors’ method with consideration of sliding conditions can effectively estimate the discontinuous motion, and the estimated motion is natural. The primary limitation of the proposed method is that the temporal constraints of the trajectories of voxels are not introduced into the motion model. However, the proposed method provides satisfactory motion information, which results in precise tumor coverage by the radiation dose during radiotherapy.« less

  11. Lung motion estimation using dynamic point shifting: An innovative model based on a robust point matching algorithm.

    PubMed

    Yi, Jianbing; Yang, Xuan; Chen, Guoliang; Li, Yan-Ran

    2015-10-01

    Image-guided radiotherapy is an advanced 4D radiotherapy technique that has been developed in recent years. However, respiratory motion causes significant uncertainties in image-guided radiotherapy procedures. To address these issues, an innovative lung motion estimation model based on a robust point matching is proposed in this paper. An innovative robust point matching algorithm using dynamic point shifting is proposed to estimate patient-specific lung motion during free breathing from 4D computed tomography data. The correspondence of the landmark points is determined from the Euclidean distance between the landmark points and the similarity between the local images that are centered at points at the same time. To ensure that the points in the source image correspond to the points in the target image during other phases, the virtual target points are first created and shifted based on the similarity between the local image centered at the source point and the local image centered at the virtual target point. Second, the target points are shifted by the constrained inverse function mapping the target points to the virtual target points. The source point set and shifted target point set are used to estimate the transformation function between the source image and target image. The performances of the authors' method are evaluated on two publicly available DIR-lab and POPI-model lung datasets. For computing target registration errors on 750 landmark points in six phases of the DIR-lab dataset and 37 landmark points in ten phases of the POPI-model dataset, the mean and standard deviation by the authors' method are 1.11 and 1.11 mm, but they are 2.33 and 2.32 mm without considering image intensity, and 1.17 and 1.19 mm with sliding conditions. For the two phases of maximum inhalation and maximum exhalation in the DIR-lab dataset with 300 landmark points of each case, the mean and standard deviation of target registration errors on the 3000 landmark points of ten cases by the authors' method are 1.21 and 1.04 mm. In the EMPIRE10 lung registration challenge, the authors' method ranks 24 of 39. According to the index of the maximum shear stretch, the authors' method is also efficient to describe the discontinuous motion at the lung boundaries. By establishing the correspondence of the landmark points in the source phase and the other target phases combining shape matching and image intensity matching together, the mismatching issue in the robust point matching algorithm is adequately addressed. The target registration errors are statistically reduced by shifting the virtual target points and target points. The authors' method with consideration of sliding conditions can effectively estimate the discontinuous motion, and the estimated motion is natural. The primary limitation of the proposed method is that the temporal constraints of the trajectories of voxels are not introduced into the motion model. However, the proposed method provides satisfactory motion information, which results in precise tumor coverage by the radiation dose during radiotherapy.

  12. MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery.

    PubMed

    Reaungamornrat, Sureerat; De Silva, Tharindu; Uneri, Ali; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, Akhil J; Wolinsky, Jean-Paul; Prince, Jerry L; Siewerdsen, Jeffrey H

    2016-11-01

    Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine.

  13. MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, Sureerat; De Silva, Tharindu; Uneri, Ali; Vogt, Sebastian; Kleinszig, Gerhard; Khanna, Akhil J; Wolinsky, Jean-Paul; Prince, Jerry L.

    2016-01-01

    Intraoperative localization of target anatomy and critical structures defined in preoperative MR/CT images can be achieved through the use of multimodality deformable registration. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality-independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, finds a deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the integrated velocity fields, a modality-insensitive similarity function suitable to multimodality images, and smoothness on the diffeomorphisms themselves. Direct optimization without relying on the exponential map and stationary velocity field approximation used in conventional diffeomorphic Demons is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, normalized MI (NMI) Demons, and MIND with a diffusion-based registration method (MIND-elastic). The method yielded sub-voxel invertibility (0.008 mm) and nonzero-positive Jacobian determinants. It also showed improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.7 mm compared to 11.3, 3.1, 5.6, and 2.4 mm for MI FFD, LMI FFD, NMI Demons, and MIND-elastic methods, respectively. Validation in clinical studies demonstrated realistic deformations with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. PMID:27295656

  14. Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans

    2015-03-01

    Since the first clinical interventions in the late 1980s, Deep Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area deep inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-observer variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.

  15. Combination of intensity-based image registration with 3D simulation in radiation therapy.

    PubMed

    Li, Pan; Malsch, Urban; Bendl, Rolf

    2008-09-07

    Modern techniques of radiotherapy like intensity modulated radiation therapy (IMRT) make it possible to deliver high dose to tumors of different irregular shapes at the same time sparing surrounding healthy tissue. However, internal tumor motion makes precise calculation of the delivered dose distribution challenging. This makes analysis of tumor motion necessary. One way to describe target motion is using image registration. Many registration methods have already been developed previously. However, most of them belong either to geometric approaches or to intensity approaches. Methods which take account of anatomical information and results of intensity matching can greatly improve the results of image registration. Based on this idea, a combined method of image registration followed by 3D modeling and simulation was introduced in this project. Experiments were carried out for five patients 4DCT lung datasets. In the 3D simulation, models obtained from images of end-exhalation were deformed to the state of end-inhalation. Diaphragm motions were around -25 mm in the cranial-caudal (CC) direction. To verify the quality of our new method, displacements of landmarks were calculated and compared with measurements in the CT images. Improvement of accuracy after simulations has been shown compared to the results obtained only by intensity-based image registration. The average improvement was 0.97 mm. The average Euclidean error of the combined method was around 3.77 mm. Unrealistic motions such as curl-shaped deformations in the results of image registration were corrected. The combined method required less than 30 min. Our method provides information about the deformation of the target volume, which we need for dose optimization and target definition in our planning system.

  16. Results of a Multi-Institutional Benchmark Test for Cranial CT/MR Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulin, Kenneth; Urie, Marcia M., E-mail: murie@qarc.or; Cherlow, Joel M.

    2010-08-01

    Purpose: Variability in computed tomography/magnetic resonance imaging (CT/MR) cranial image registration was assessed using a benchmark case developed by the Quality Assurance Review Center to credential institutions for participation in Children's Oncology Group Protocol ACNS0221 for treatment of pediatric low-grade glioma. Methods and Materials: Two DICOM image sets, an MR and a CT of the same patient, were provided to each institution. A small target in the posterior occipital lobe was readily visible on two slices of the MR scan and not visible on the CT scan. Each institution registered the two scans using whatever software system and method itmore » ordinarily uses for such a case. The target volume was then contoured on the two MR slices, and the coordinates of the center of the corresponding target in the CT coordinate system were reported. The average of all submissions was used to determine the true center of the target. Results: Results are reported from 51 submissions representing 45 institutions and 11 software systems. The average error in the position of the center of the target was 1.8 mm (1 standard deviation = 2.2 mm). The least variation in position was in the lateral direction. Manual registration gave significantly better results than did automatic registration (p = 0.02). Conclusion: When MR and CT scans of the head are registered with currently available software, there is inherent uncertainty of approximately 2 mm (1 standard deviation), which should be considered when defining planning target volumes and PRVs for organs at risk on registered image sets.« less

  17. The feasibility of manual parameter tuning for deformable breast MR image registration from a multi-objective optimization perspective.

    PubMed

    Pirpinia, Kleopatra; Bosman, Peter A N; Loo, Claudette E; Winter-Warnars, Gonneke; Janssen, Natasja N Y; Scholten, Astrid N; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2017-06-23

    Deformable image registration is typically formulated as an optimization problem involving a linearly weighted combination of terms that correspond to objectives of interest (e.g. similarity, deformation magnitude). The weights, along with multiple other parameters, need to be manually tuned for each application, a task currently addressed mainly via trial-and-error approaches. Such approaches can only be successful if there is a sensible interplay between parameters, objectives, and desired registration outcome. This, however, is not well established. To study this interplay, we use multi-objective optimization, where multiple solutions exist that represent the optimal trade-offs between the objectives, forming a so-called Pareto front. Here, we focus on weight tuning. To study the space a user has to navigate during manual weight tuning, we randomly sample multiple linear combinations. To understand how these combinations relate to desirability of registration outcome, we associate with each outcome a mean target registration error (TRE) based on expert-defined anatomical landmarks. Further, we employ a multi-objective evolutionary algorithm that optimizes the weight combinations, yielding a Pareto front of solutions, which can be directly navigated by the user. To study how the complexity of manual weight tuning changes depending on the registration problem, we consider an easy problem, prone-to-prone breast MR image registration, and a hard problem, prone-to-supine breast MR image registration. Lastly, we investigate how guidance information as an additional objective influences the prone-to-supine registration outcome. Results show that the interplay between weights, objectives, and registration outcome makes manual weight tuning feasible for the prone-to-prone problem, but very challenging for the harder prone-to-supine problem. Here, patient-specific, multi-objective weight optimization is needed, obtaining a mean TRE of 13.6 mm without guidance information reduced to 7.3 mm with guidance information, but also providing a Pareto front that exhibits an intuitively sensible interplay between weights, objectives, and registration outcome, allowing outcome selection.

  18. The feasibility of manual parameter tuning for deformable breast MR image registration from a multi-objective optimization perspective

    NASA Astrophysics Data System (ADS)

    Pirpinia, Kleopatra; Bosman, Peter A. N.; E Loo, Claudette; Winter-Warnars, Gonneke; Y Janssen, Natasja N.; Scholten, Astrid N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2017-07-01

    Deformable image registration is typically formulated as an optimization problem involving a linearly weighted combination of terms that correspond to objectives of interest (e.g. similarity, deformation magnitude). The weights, along with multiple other parameters, need to be manually tuned for each application, a task currently addressed mainly via trial-and-error approaches. Such approaches can only be successful if there is a sensible interplay between parameters, objectives, and desired registration outcome. This, however, is not well established. To study this interplay, we use multi-objective optimization, where multiple solutions exist that represent the optimal trade-offs between the objectives, forming a so-called Pareto front. Here, we focus on weight tuning. To study the space a user has to navigate during manual weight tuning, we randomly sample multiple linear combinations. To understand how these combinations relate to desirability of registration outcome, we associate with each outcome a mean target registration error (TRE) based on expert-defined anatomical landmarks. Further, we employ a multi-objective evolutionary algorithm that optimizes the weight combinations, yielding a Pareto front of solutions, which can be directly navigated by the user. To study how the complexity of manual weight tuning changes depending on the registration problem, we consider an easy problem, prone-to-prone breast MR image registration, and a hard problem, prone-to-supine breast MR image registration. Lastly, we investigate how guidance information as an additional objective influences the prone-to-supine registration outcome. Results show that the interplay between weights, objectives, and registration outcome makes manual weight tuning feasible for the prone-to-prone problem, but very challenging for the harder prone-to-supine problem. Here, patient-specific, multi-objective weight optimization is needed, obtaining a mean TRE of 13.6 mm without guidance information reduced to 7.3 mm with guidance information, but also providing a Pareto front that exhibits an intuitively sensible interplay between weights, objectives, and registration outcome, allowing outcome selection.

  19. Accuracy of radiotherapy dose calculations based on cone-beam CT: comparison of deformable registration and image correction based methods

    NASA Astrophysics Data System (ADS)

    Marchant, T. E.; Joshi, K. D.; Moore, C. J.

    2018-03-01

    Radiotherapy dose calculations based on cone-beam CT (CBCT) images can be inaccurate due to unreliable Hounsfield units (HU) in the CBCT. Deformable image registration of planning CT images to CBCT, and direct correction of CBCT image values are two methods proposed to allow heterogeneity corrected dose calculations based on CBCT. In this paper we compare the accuracy and robustness of these two approaches. CBCT images for 44 patients were used including pelvis, lung and head & neck sites. CBCT HU were corrected using a ‘shading correction’ algorithm and via deformable registration of planning CT to CBCT using either Elastix or Niftyreg. Radiotherapy dose distributions were re-calculated with heterogeneity correction based on the corrected CBCT and several relevant dose metrics for target and OAR volumes were calculated. Accuracy of CBCT based dose metrics was determined using an ‘override ratio’ method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the same image is assumed to be constant for each patient, allowing comparison to the patient’s planning CT as a gold standard. Similar performance is achieved by shading corrected CBCT and both deformable registration algorithms, with mean and standard deviation of dose metric error less than 1% for all sites studied. For lung images, use of deformed CT leads to slightly larger standard deviation of dose metric error than shading corrected CBCT with more dose metric errors greater than 2% observed (7% versus 1%).

  20. Ultrasound fusion image error correction using subject-specific liver motion model and automatic image registration.

    PubMed

    Yang, Minglei; Ding, Hui; Zhu, Lei; Wang, Guangzhi

    2016-12-01

    Ultrasound fusion imaging is an emerging tool and benefits a variety of clinical applications, such as image-guided diagnosis and treatment of hepatocellular carcinoma and unresectable liver metastases. However, respiratory liver motion-induced misalignment of multimodal images (i.e., fusion error) compromises the effectiveness and practicability of this method. The purpose of this paper is to develop a subject-specific liver motion model and automatic registration-based method to correct the fusion error. An online-built subject-specific motion model and automatic image registration method for 2D ultrasound-3D magnetic resonance (MR) images were combined to compensate for the respiratory liver motion. The key steps included: 1) Build a subject-specific liver motion model for current subject online and perform the initial registration of pre-acquired 3D MR and intra-operative ultrasound images; 2) During fusion imaging, compensate for liver motion first using the motion model, and then using an automatic registration method to further correct the respiratory fusion error. Evaluation experiments were conducted on liver phantom and five subjects. In the phantom study, the fusion error (superior-inferior axis) was reduced from 13.90±2.38mm to 4.26±0.78mm by using the motion model only. The fusion error further decreased to 0.63±0.53mm by using the registration method. The registration method also decreased the rotation error from 7.06±0.21° to 1.18±0.66°. In the clinical study, the fusion error was reduced from 12.90±9.58mm to 6.12±2.90mm by using the motion model alone. Moreover, the fusion error decreased to 1.96±0.33mm by using the registration method. The proposed method can effectively correct the respiration-induced fusion error to improve the fusion image quality. This method can also reduce the error correction dependency on the initial registration of ultrasound and MR images. Overall, the proposed method can improve the clinical practicability of ultrasound fusion imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Investigation of Parallax Issues for Multi-Lens Multispectral Camera Band Co-Registration

    NASA Astrophysics Data System (ADS)

    Jhan, J. P.; Rau, J. Y.; Haala, N.; Cramer, M.

    2017-08-01

    The multi-lens multispectral cameras (MSCs), such as Micasense Rededge and Parrot Sequoia, can record multispectral information by each separated lenses. With their lightweight and small size, which making they are more suitable for mounting on an Unmanned Aerial System (UAS) to collect high spatial images for vegetation investigation. However, due to the multi-sensor geometry of multi-lens structure induces significant band misregistration effects in original image, performing band co-registration is necessary in order to obtain accurate spectral information. A robust and adaptive band-to-band image transform (RABBIT) is proposed to perform band co-registration of multi-lens MSCs. First is to obtain the camera rig information from camera system calibration, and utilizes the calibrated results for performing image transformation and lens distortion correction. Since the calibration uncertainty leads to different amount of systematic errors, the last step is to optimize the results in order to acquire a better co-registration accuracy. Due to the potential issues of parallax that will cause significant band misregistration effects when images are closer to the targets, four datasets thus acquired from Rededge and Sequoia were applied to evaluate the performance of RABBIT, including aerial and close-range imagery. From the results of aerial images, it shows that RABBIT can achieve sub-pixel accuracy level that is suitable for the band co-registration purpose of any multi-lens MSC. In addition, the results of close-range images also has same performance, if we focus on the band co-registration on specific target for 3D modelling, or when the target has equal distance to the camera.

  2. Incorporation of a laser range scanner into image-guided liver surgery: surface acquisition, registration, and tracking.

    PubMed

    Cash, David M; Sinha, Tuhin K; Chapman, William C; Terawaki, Hiromi; Dawant, Benoit M; Galloway, Robert L; Miga, Michael I

    2003-07-01

    As image guided surgical procedures become increasingly diverse, there will be more scenarios where point-based fiducials cannot be accurately localized for registration and rigid body assumptions no longer hold. As a result, procedures will rely more frequently on anatomical surfaces for the basis of image alignment and will require intraoperative geometric data to measure and compensate for tissue deformation in the organ. In this paper we outline methods for which a laser range scanner may be used to accomplish these tasks intraoperatively. A laser range scanner based on the optical principle of triangulation acquires a dense set of three-dimensional point data in a very rapid, noncontact fashion. Phantom studies were performed to test the ability to link range scan data with traditional modes of image-guided surgery data through localization, registration, and tracking in physical space. The experiments demonstrate that the scanner is capable of localizing point-based fiducials to within 0.2 mm and capable of achieving point and surface based registrations with target registration error of less than 2.0 mm. Tracking points in physical space with the range scanning system yields an error of 1.4 +/- 0.8 mm. Surface deformation studies were performed with the range scanner in order to determine if this device was capable of acquiring enough information for compensation algorithms. In the surface deformation studies, the range scanner was able to detect changes in surface shape due to deformation comparable to those detected by tomographic image studies. Use of the range scanner has been approved for clinical trials, and an initial intraoperative range scan experiment is presented. In all of these studies, the primary source of error in range scan data is deterministically related to the position and orientation of the surface within the scanner's field of view. However, this systematic error can be corrected, allowing the range scanner to provide a rapid, robust method of acquiring anatomical surfaces intraoperatively.

  3. Deformable image registration for tissues with large displacements

    PubMed Central

    Huang, Xishi; Ren, Jing; Green, Mark

    2017-01-01

    Abstract. Image registration for internal organs and soft tissues is considered extremely challenging due to organ shifts and tissue deformation caused by patients’ movements such as respiration and repositioning. In our previous work, we proposed a fast registration method for deformable tissues with small rotations. We extend our method to deformable registration of soft tissues with large displacements. We analyzed the deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation components and concluded that in many clinical cases, the liver deformation contains large rotations and small deformations. This analysis justified the use of linear elastic theory in our image registration method. We also proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed the effectiveness of the proposed registration method. We have also compared the performance of the proposed method with the previous method on tissues with large rotations and showed that the proposed method outperformed the previous method when dealing with the combination of pure deformation and large rotations. Validation results show that we can achieve a target registration error of 1.87±0.87  mm and an average centerline distance error of 1.28±0.78  mm. The proposed technique has the potential to significantly improve registration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion. PMID:28149924

  4. Local setup errors in image-guided radiotherapy for head and neck cancer patients immobilized with a custom-made device.

    PubMed

    Giske, Kristina; Stoiber, Eva M; Schwarz, Michael; Stoll, Armin; Muenter, Marc W; Timke, Carmen; Roeder, Falk; Debus, Juergen; Huber, Peter E; Thieke, Christian; Bendl, Rolf

    2011-06-01

    To evaluate the local positioning uncertainties during fractionated radiotherapy of head-and-neck cancer patients immobilized using a custom-made fixation device and discuss the effect of possible patient correction strategies for these uncertainties. A total of 45 head-and-neck patients underwent regular control computed tomography scanning using an in-room computed tomography scanner. The local and global positioning variations of all patients were evaluated by applying a rigid registration algorithm. One bounding box around the complete target volume and nine local registration boxes containing relevant anatomic structures were introduced. The resulting uncertainties for a stereotactic setup and the deformations referenced to one anatomic local registration box were determined. Local deformations of the patients immobilized using our custom-made device were compared with previously published results. Several patient positioning correction strategies were simulated, and the residual local uncertainties were calculated. The patient anatomy in the stereotactic setup showed local systematic positioning deviations of 1-4 mm. The deformations referenced to a particular anatomic local registration box were similar to the reported deformations assessed from patients immobilized with commercially available Aquaplast masks. A global correction, including the rotational error compensation, decreased the remaining local translational errors. Depending on the chosen patient positioning strategy, the remaining local uncertainties varied considerably. Local deformations in head-and-neck patients occur even if an elaborate, custom-made patient fixation method is used. A rotational error correction decreased the required margins considerably. None of the considered correction strategies achieved perfect alignment. Therefore, weighting of anatomic subregions to obtain the optimal correction vector should be investigated in the future. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  6. PET guidance for liver radiofrequency ablation: an evaluation

    NASA Astrophysics Data System (ADS)

    Lei, Peng; Dandekar, Omkar; Mahmoud, Faaiza; Widlus, David; Malloy, Patrick; Shekhar, Raj

    2007-03-01

    Radiofrequency ablation (RFA) is emerging as the primary mode of treatment of unresectable malignant liver tumors. With current intraoperative imaging modalities, quick, precise, and complete localization of lesions remains a challenge for liver RFA. Fusion of intraoperative CT and preoperative PET images, which relies on PET and CT registration, can produce a new image with complementary metabolic and anatomic data and thus greatly improve the targeting accuracy. Unlike neurological images, alignment of abdominal images by combined PET/CT scanner is prone to errors as a result of large nonrigid misalignment in abdominal images. Our use of a normalized mutual information-based 3D nonrigid registration technique has proven powerful for whole-body PET and CT registration. We demonstrate here that this technique is capable of acceptable abdominal PET and CT registration as well. In five clinical cases, both qualitative and quantitative validation showed that the registration is robust and accurate. Quantitative accuracy was evaluated by comparison between the result from the algorithm and clinical experts. The accuracy of registration is much less than the allowable margin in liver RFA. Study findings show the technique's potential to enable the augmentation of intraoperative CT with preoperative PET to reduce procedure time, avoid repeating procedures, provide clinicians with complementary functional/anatomic maps, avoid omitting dispersed small lesions, and improve the accuracy of tumor targeting in liver RFA.

  7. Cortical Surface Registration for Image-Guided Neurosurgery Using Laser-Range Scanning

    PubMed Central

    Sinha, Tuhin K.; Cash, David M.; Galloway, Robert L.; Weil, Robert J.

    2013-01-01

    In this paper, a method of acquiring intraoperative data using a laser range scanner (LRS) is presented within the context of model-updated image-guided surgery. Registering textured point clouds generated by the LRS to tomographic data is explored using established point-based and surface techniques as well as a novel method that incorporates geometry and intensity information via mutual information (SurfaceMI). Phantom registration studies were performed to examine accuracy and robustness for each framework. In addition, an in vivo registration is performed to demonstrate feasibility of the data acquisition system in the operating room. Results indicate that SurfaceMI performed better in many cases than point-based (PBR) and iterative closest point (ICP) methods for registration of textured point clouds. Mean target registration error (TRE) for simulated deep tissue targets in a phantom were 1.0 ± 0.2, 2.0 ± 0.3, and 1.2 ± 0.3 mm for PBR, ICP, and SurfaceMI, respectively. With regard to in vivo registration, the mean TRE of vessel contour points for each framework was 1.9 ± 1.0, 0 9 ± 0.6, and 1.3 ± 0.5 for PBR, ICP, and SurfaceMI, respectively. The methods discussed in this paper in conjunction with the quantitative data provide impetus for using LRS technology within the model-updated image-guided surgery framework. PMID:12906252

  8. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3Dmore » image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and template matching and final registration involving C-arm calibration were 36%, 73%, and 93%, respectively, while registration accuracy of 0.59 mm was the best after final registration. By compensating in-plane translation errors by initial template matching, the success rates achieved after the final stage improved consistently for all methods, especially if C-arm calibration was performed simultaneously with the 3D–2D image registration. Conclusions: Because the tested methods perform simultaneous C-arm calibration and 3D–2D registration based solely on anatomical information, they have a high potential for automation and thus for an immediate integration into current interventional workflow. One of the authors’ main contributions is also comprehensive and representative validation performed under realistic conditions as encountered during cerebral EIGI.« less

  9. 3D prostate MR-TRUS non-rigid registration using dual optimization with volume-preserving constraint

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Yuan, Jing; Fenster, Aaron

    2016-03-01

    We introduce an efficient and novel convex optimization-based approach to the challenging non-rigid registration of 3D prostate magnetic resonance (MR) and transrectal ultrasound (TRUS) images, which incorporates a new volume preserving constraint to essentially improve the accuracy of targeting suspicious regions during the 3D TRUS guided prostate biopsy. Especially, we propose a fast sequential convex optimization scheme to efficiently minimize the employed highly nonlinear image fidelity function using the robust multi-channel modality independent neighborhood descriptor (MIND) across the two modalities of MR and TRUS. The registration accuracy was evaluated using 10 patient images by calculating the target registration error (TRE) using manually identified corresponding intrinsic fiducials in the whole prostate gland. We also compared the MR and TRUS manually segmented prostate surfaces in the registered images in terms of the Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). Experimental results showed that the proposed method with the introduced volume-preserving prior significantly improves the registration accuracy comparing to the method without the volume-preserving constraint, by yielding an overall mean TRE of 2:0+/-0:7 mm, and an average DSC of 86:5+/-3:5%, MAD of 1:4+/-0:6 mm and MAXD of 6:5+/-3:5 mm.

  10. Identifying types and causes of errors in mortality data in a clinical registry using multiple information systems.

    PubMed

    Koetsier, Antonie; Peek, Niels; de Keizer, Nicolette

    2012-01-01

    Errors may occur in the registration of in-hospital mortality, making it less reliable as a quality indicator. We assessed the types of errors made in in-hospital mortality registration in the clinical quality registry National Intensive Care Evaluation (NICE) by comparing its mortality data to data from a national insurance claims database. Subsequently, we performed site visits at eleven Intensive Care Units (ICUs) to investigate the number, types and causes of errors made in in-hospital mortality registration. A total of 255 errors were found in the NICE registry. Two different types of software malfunction accounted for almost 80% of the errors. The remaining 20% were five types of manual transcription errors and human failures to record outcome data. Clinical registries should be aware of the possible existence of errors in recorded outcome data and understand their causes. In order to prevent errors, we recommend to thoroughly verify the software that is used in the registration process.

  11. 3D ultrasound-based patient positioning for radiotherapy

    NASA Astrophysics Data System (ADS)

    Wang, Michael H.; Rohling, Robert N.; Archip, Neculai; Clark, Brenda G.

    2006-03-01

    A new 3D ultrasound-based patient positioning system for target localisation during radiotherapy is described. Our system incorporates the use of tracked 3D ultrasound scans of the target anatomy acquired using a dedicated 3D ultrasound probe during both the simulation and treatment sessions, fully automatic 3D ultrasound-toultrasound registration, and OPTOTRAK IRLEDs for registering simulation CT to ultrasound data. The accuracy of the entire radiotherapy treatment process resulting from the use of our system, from simulation to the delivery of radiation, has been validated on a phantom. The overall positioning error is less than 5mm, which includes errors from estimation of the irradiated region location in the phantom.

  12. NOTE: Optimization of megavoltage CT scan registration settings for thoracic cases on helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Woodford, Curtis; Yartsev, Slav; Van Dyk, Jake

    2007-08-01

    This study aims to investigate the settings that provide optimum registration accuracy when registering megavoltage CT (MVCT) studies acquired on tomotherapy with planning kilovoltage CT (kVCT) studies of patients with lung cancer. For each experiment, the systematic difference between the actual and planned positions of the thorax phantom was determined by setting the phantom up at the planning isocenter, generating and registering an MVCT study. The phantom was translated by 5 or 10 mm, MVCT scanned, and registration was performed again. A root-mean-square equation that calculated the residual error of the registration based on the known shift and systematic difference was used to assess the accuracy of the registration process. The phantom study results for 18 combinations of different MVCT/kVCT registration options are presented and compared to clinical registration data from 17 lung cancer patients. MVCT studies acquired with coarse (6 mm), normal (4 mm) and fine (2 mm) slice spacings could all be registered with similar residual errors. No specific combination of resolution and fusion selection technique resulted in a lower residual error. A scan length of 6 cm with any slice spacing registered with the full image fusion selection technique and fine resolution will result in a low residual error most of the time. On average, large corrections made manually by clinicians to the automatic registration values are infrequent. Small manual corrections within the residual error averages of the registration process occur, but their impact on the average patient position is small. Registrations using the full image fusion selection technique and fine resolution of 6 cm MVCT scans with coarse slices have a low residual error, and this strategy can be clinically used for lung cancer patients treated on tomotherapy. Automatic registration values are accurate on average, and a quick verification on a sagittal MVCT slice should be enough to detect registration outliers.

  13. Direct three-dimensional ultrasound-to-video registration using photoacoustic markers

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Kang, Jin U.; Taylor, Russell H.; Boctor, Emad M.

    2013-06-01

    Modern surgical procedures often have a fusion of video and other imaging modalities to provide the surgeon with information support. This requires interventional guidance equipment and surgical navigation systems to register different tools and devices together, such as stereoscopic endoscopes and ultrasound (US) transducers. In this work, the focus is specifically on the registration between these two devices. Electromagnetic and optical trackers are typically used to acquire this registration, but they have various drawbacks typically leading to target registration errors (TRE) of approximately 3 mm. We introduce photoacoustic markers for direct three-dimensional (3-D) US-to-video registration. The feasibility of this method was demonstrated on synthetic and ex vivo porcine liver, kidney, and fat phantoms with an air-coupled laser and a motorized 3-D US probe. The resulting TRE for each experiment ranged from 380 to 850 μm with standard deviations ranging from 150 to 450 μm. We also discuss a roadmap to bring this system into the surgical setting and possible challenges along the way.

  14. A Robust Linear Feature-Based Procedure for Automated Registration of Point Clouds

    PubMed Central

    Poreba, Martyna; Goulette, François

    2015-01-01

    With the variety of measurement techniques available on the market today, fusing multi-source complementary information into one dataset is a matter of great interest. Target-based, point-based and feature-based methods are some of the approaches used to place data in a common reference frame by estimating its corresponding transformation parameters. This paper proposes a new linear feature-based method to perform accurate registration of point clouds, either in 2D or 3D. A two-step fast algorithm called Robust Line Matching and Registration (RLMR), which combines coarse and fine registration, was developed. The initial estimate is found from a triplet of conjugate line pairs, selected by a RANSAC algorithm. Then, this transformation is refined using an iterative optimization algorithm. Conjugates of linear features are identified with respect to a similarity metric representing a line-to-line distance. The efficiency and robustness to noise of the proposed method are evaluated and discussed. The algorithm is valid and ensures valuable results when pre-aligned point clouds with the same scale are used. The studies show that the matching accuracy is at least 99.5%. The transformation parameters are also estimated correctly. The error in rotation is better than 2.8% full scale, while the translation error is less than 12.7%. PMID:25594589

  15. a Global Registration Algorithm of the Single-Closed Ring Multi-Stations Point Cloud

    NASA Astrophysics Data System (ADS)

    Yang, R.; Pan, L.; Xiang, Z.; Zeng, H.

    2018-04-01

    Aimed at the global registration problem of the single-closed ring multi-stations point cloud, a formula in order to calculate the error of rotation matrix was constructed according to the definition of error. The global registration algorithm of multi-station point cloud was derived to minimize the error of rotation matrix. And fast-computing formulas of transformation matrix with whose implementation steps and simulation experiment scheme was given. Compared three different processing schemes of multi-station point cloud, the experimental results showed that the effectiveness of the new global registration method was verified, and it could effectively complete the global registration of point cloud.

  16. A method to map errors in the deformable registration of 4DCT images1

    PubMed Central

    Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.

    2010-01-01

    Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288

  17. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  18. Validation of non-rigid point-set registration methods using a porcine bladder pelvic phantom

    NASA Astrophysics Data System (ADS)

    Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Spadinger, Ingrid

    2016-01-01

    The problem of accurate dose accumulation in fractionated radiotherapy treatment for highly deformable organs, such as bladder, has garnered increasing interest over the past few years. However, more research is required in order to find a robust and efficient solution and to increase the accuracy over the current methods. The purpose of this study was to evaluate the feasibility and accuracy of utilizing non-rigid (affine or deformable) point-set registration in accumulating dose in bladder of different sizes and shapes. A pelvic phantom was built to house an ex vivo porcine bladder with fiducial landmarks adhered onto its surface. Four different volume fillings of the bladder were used (90, 180, 360 and 480 cc). The performance of MATLAB implementations of five different methods were compared, in aligning the bladder contour point-sets. The approaches evaluated were coherent point drift (CPD), gaussian mixture model, shape context, thin-plate spline robust point matching (TPS-RPM) and finite iterative closest point (ICP-finite). The evaluation metrics included registration runtime, target registration error (TRE), root-mean-square error (RMS) and Hausdorff distance (HD). The reference (source) dataset was alternated through all four points-sets, in order to study the effect of reference volume on the registration outcomes. While all deformable algorithms provided reasonable registration results, CPD provided the best TRE values (6.4 mm), and TPS-RPM yielded the best mean RMS and HD values (1.4 and 6.8 mm, respectively). ICP-finite was the fastest technique and TPS-RPM, the slowest.

  19. Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases

    PubMed Central

    Qutaish, Mohammed Q.; Zhou, Zhuxian; Prabhu, David; Liu, Yiqiao; Busso, Mallory R.; Izadnegahdar, Donna; Gargesha, Madhusudhana; Lu, Hong; Lu, Zheng-Rong

    2018-01-01

    We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy. PMID:29805438

  20. Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method

    PubMed Central

    Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu

    2016-01-01

    A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis. PMID:28029121

  1. Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method.

    PubMed

    Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu

    2016-12-24

    A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis.

  2. Effect of limbal marking prior to laser ablation on the magnitude of cyclotorsional error.

    PubMed

    Chen, Xiangjun; Stojanovic, Aleksandar; Stojanovic, Filip; Eidet, Jon Roger; Raeder, Sten; Øritsland, Haakon; Utheim, Tor Paaske

    2012-05-01

    To evaluate the residual registration error after limbal-marking-based manual adjustment in cyclotorsional tracker-controlled laser refractive surgery. Two hundred eyes undergoing custom surface ablation with the iVIS Suite (iVIS Technologies) were divided into limbal marked (marked) and non-limbal marked (unmarked) groups. Iris registration information was acquired preoperatively from all eyes. Preoperatively, the horizontal axis was recorded in the marked group for use in manual cyclotorsional alignment prior to surgical iris registration. During iris registration, the preoperative iris information was compared to the eye-tracker captured image. The magnitudes of the registration error angle and cyclotorsional movement during the subsequent laser ablation were recorded and analyzed. Mean magnitude of registration error angle (absolute value) was 1.82°±1.31° (range: 0.00° to 5.50°) and 2.90°±2.40° (range: 0.00° to 13.50°) for the marked and unmarked groups, respectively (P<.001). Mean magnitude of cyclotorsional movement during the laser ablation (absolute value) was 1.15°±1.34° (range: 0.00° to 7.00°) and 0.68°±0.97° (range: 0.00° to 6.00°) for the marked and unmarked groups, respectively (P=.005). Forty-six percent and 60% of eyes had registration error >2°, whereas 22% and 20% of eyes had cyclotorsional movement during ablation >2° in the marked and unmarked groups, respectively. Limbal-marking-based manual alignment prior to laser ablation significantly reduced cyclotorsional registration error. However, residual registration misalignment and cyclotorsional movements remained during ablation. Copyright 2012, SLACK Incorporated.

  3. Ultrasound to video registration using a bi-plane transrectal probe with photoacoustic markers

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Kang, Hyun Jae; Zhang, Haichong K.; Taylor, Russell H.; Boctor, Emad M.

    2016-03-01

    Modern surgical scenarios typically provide surgeons with additional information through fusion of video and other imaging modalities. To provide this information, the tools and devices used in surgery must be registered together with interventional guidance equipment and surgical navigation systems. In this work, we focus explicitly on registering ultrasound with a stereo camera system using photoacoustic markers. Previous work has shown that photoacoustic markers can be used in this registration task to achieve target registration errors lower than the current available systems. Photoacoustic markers are defined as a set of non-collinear laser spots projected onto some surface. They can be simultaneously visualized by a stereo camera system and an ultrasound transducer because of the photoacoustic effect. In more recent work, the three-dimensional ultrasound volume was replaced by images from a single ultrasound image pose from a convex array transducer. The feasibility of this approach was demonstrated, but the accuracy was lacking due to the physical limitations of the convex array transducer. In this work, we propose the use of a bi-plane transrectal ultrasound transducer. The main advantage of using this type of transducer is that the ultrasound elements are no longer restricted to a single plane. While this development would be limited to prostate applications, liver and kidney applications are also feasible if a suitable transducer is built. This work is demonstrated in two experiments, one without photoacoustic sources and one with. The resulting target registration error for these experiments were 1.07mm±0.35mm and 1.27mm+/-0.47mm respectively, both of which are better than current available navigation systems.

  4. Navigation system for minimally invasive esophagectomy: experimental study in a porcine model.

    PubMed

    Nickel, Felix; Kenngott, Hannes G; Neuhaus, Jochen; Sommer, Christof M; Gehrig, Tobias; Kolb, Armin; Gondan, Matthias; Radeleff, Boris A; Schaible, Anja; Meinzer, Hans-Peter; Gutt, Carsten N; Müller-Stich, Beat-Peter

    2013-10-01

    Navigation systems potentially facilitate minimally invasive esophagectomy and improve patient outcome by improving intraoperative orientation, position estimation of instruments, and identification of lymph nodes and resection margins. The authors' self-developed navigation system is highly accurate in static environments. This study aimed to test the overall accuracy of the navigation system in a realistic operating room scenario and to identify the different sources of error altering accuracy. To simulate a realistic environment, a porcine model (n = 5) was used with endoscopic clips in the esophagus as navigation targets. Computed tomography imaging was followed by image segmentation and target definition with the medical imaging interaction toolkit software. Optical tracking was used for registration and localization of animals and navigation instruments. Intraoperatively, the instrument was displayed relative to segmented organs in real time. The target registration error (TRE) of the navigation system was defined as the distance between the target and the navigation instrument tip. The TRE was measured on skin targets with the animal in the 0° supine and 25° anti-Trendelenburg position and on the esophagus during laparoscopic transhiatal preparation. On skin targets, the TRE was significantly higher in the 25° position, at 14.6 ± 2.7 mm, compared with the 0° position, at 3.2 ± 1.3 mm. The TRE on the esophagus was 11.2 ± 2.4 mm. The main source of error was soft tissue deformation caused by intraoperative positioning, pneumoperitoneum, surgical manipulation, and tissue dissection. The navigation system obtained acceptable accuracy with a minimally invasive transhiatal approach to the esophagus in a realistic experimental model. Thus the system has the potential to improve intraoperative orientation, identification of lymph nodes and adequate resection margins, and visualization of risk structures. Compensation methods for soft tissue deformation may lead to an even more accurate navigation system in the future.

  5. Registration of liver images to minimally invasive intraoperative surface and subsurface data

    NASA Astrophysics Data System (ADS)

    Wu, Yifei; Rucker, D. C.; Conley, Rebekah H.; Pheiffer, Thomas S.; Simpson, Amber L.; Geevarghese, Sunil K.; Miga, Michael I.

    2014-03-01

    Laparoscopic liver resection is increasingly being performed with results comparable to open cases while incurring less trauma and reducing recovery time. The tradeoff is increased difficulty due to limited visibility and restricted freedom of movement. Image-guided surgical navigation systems have the potential to help localize anatomical features to improve procedural safety and achieve better surgical resection outcome. Previous research has demonstrated that intraoperative surface data can be used to drive a finite element tissue mechanics organ model such that high resolution preoperative scans are registered and visualized in the context of the current surgical pose. In this paper we present an investigation of using sparse data as imposed by laparoscopic limitations to drive a registration model. Non-contact laparoscopicallyacquired surface swabbing and mock-ultrasound subsurface data were used within the context of a nonrigid registration methodology to align mock deformed intraoperative surface data to the corresponding preoperative liver model as derived from pre-operative image segmentations. The mock testing setup to validate the potential of this approach used a tissue-mimicking liver phantom with a realistic abdomen-port patient configuration. Experimental results demonstrates a range of target registration errors (TRE) on the order of 5mm were achieving using only surface swab data, while use of only subsurface data yielded errors on the order of 6mm. Registrations using a combination of both datasets achieved TRE on the order of 2.5mm and represent a sizeable improvement over either dataset alone.

  6. Elastic registration of prostate MR images based on state estimation of dynamical systems

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Ghoul, Suha; Sirouspour, Shahin; Capson, David W.; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Magnetic resonance imaging (MRI) is being increasingly used for image-guided biopsy and focal therapy of prostate cancer. A combined rigid and deformable registration technique is proposed to register pre-treatment diagnostic 3T magnetic resonance (MR) images, with the identified target tumor(s), to the intra-treatment 1.5T MR images. The pre-treatment 3T images are acquired with patients in strictly supine position using an endorectal coil, while 1.5T images are obtained intra-operatively just before insertion of the ablation needle with patients in the lithotomy position. An intensity-based registration routine rigidly aligns two images in which the transformation parameters is initialized using three pairs of manually selected approximate corresponding points. The rigid registration is followed by a deformable registration algorithm employing a generic dynamic linear elastic deformation model discretized by the finite element method (FEM). The model is used in a classical state estimation framework to estimate the deformation of the prostate based on a similarity metric between pre- and intra-treatment images. Registration results using 10 sets of prostate MR images showed that the proposed method can significantly improve registration accuracy in terms of target registration error (TRE) for all prostate substructures. The root mean square (RMS) TRE of 46 manually identified fiducial points was found to be 2.40+/-1.20 mm, 2.51+/-1.20 mm, and 2.28+/-1.22mm for the whole gland (WG), central gland (CG), and peripheral zone (PZ), respectively after deformable registration. These values are improved from 3.15+/-1.60 mm, 3.09+/-1.50 mm, and 3.20+/-1.73mm in the WG, CG and PZ, respectively resulted from rigid registration. Registration results are also evaluated based on the Dice similarity coefficient (DSC), mean absolute surface distances (MAD) and maximum absolute surface distances (MAXD) of the WG and CG in the prostate images.

  7. TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhbardeh, A; Parekth, VS; Jacobs, MA

    2015-06-15

    Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were usedmore » in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was 63%(0.13 to 0.04;p<0.05). The Dice similarity was in breast 8%(0.91 to 0.99) and for prostate was 89%(0.01 to 0.90;p<0.05) Conclusion: Our 3D wavelet hybrid registration approach registered diverse breast and prostate data of different radiological images(MR/PET/CT) with a high accuracy.« less

  8. Adaptive marker-free registration using a multiple point strategy for real-time and robust endoscope electromagnetic navigation.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-02-01

    Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Motion tracking in the liver: Validation of a method based on 4D ultrasound using a nonrigid registration technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, Sinara, E-mail: sinara.vijayan@ntnu.no; Klein, Stefan; Hofstad, Erlend Fagertun

    Purpose: Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. Methods: The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequencemore » in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. Results: The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. Conclusions: The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe that the method has potential in interventions on moving abdominal organs such as MR or ultrasound guided focused ultrasound therapy and radiotherapy, pending the method is enabled to run in real-time. The data and the annotations used for this study are made publicly available for those who would like to test other methods on 4D liver ultrasound data.« less

  10. Surface-based prostate registration with biomechanical regularization

    NASA Astrophysics Data System (ADS)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  11. Real-time automatic registration in optical surgical navigation

    NASA Astrophysics Data System (ADS)

    Lin, Qinyong; Yang, Rongqian; Cai, Ken; Si, Xuan; Chen, Xiuwen; Wu, Xiaoming

    2016-05-01

    An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.

  12. A Finite Element Method to Correct Deformable Image Registration Errors in Low-Contrast Regions

    PubMed Central

    Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.

    2012-01-01

    Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the “demons” registration. For each voxel in the registration’s target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the “demons” algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the “demons” algorithm on the CT images of lung and prostate patients. The performance of the FEM correction relating to the “demons” registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the “demons” registration has the maximum error of 1.2 cm, which can be corrected by the FEM method to 0.4 cm, and the average error of the “demons” registration is reduced from 0.17 cm to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the “demons” algorithm were found unrealistic at several places. In these places, the displacement differences between the “demons” registrations and their FEM corrections were found in the range of 0.4 cm and 1.1cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 minutes of computation time on a 2.6 GH computer. This study has demonstrated that the finite element method can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions. PMID:22581269

  13. Marker-free registration for the accurate integration of CT images and the subject's anatomy during navigation surgery of the maxillary sinus

    PubMed Central

    Kang, S-H; Kim, M-K; Kim, J-H; Park, H-K; Park, W

    2012-01-01

    Objective This study compared three marker-free registration methods that are applicable to a navigation system that can be used for maxillary sinus surgery, and evaluated the associated errors, with the aim of determining which registration method is the most applicable for operations that require accurate navigation. Methods The CT digital imaging and communications in medicine (DICOM) data of ten maxillary models in DICOM files were converted into stereolithography file format. All of the ten maxillofacial models were scanned three dimensionally using a light-based three-dimensional scanner. The methods applied for registration of the maxillofacial models utilized the tooth cusp, bony landmarks and maxillary sinus anterior wall area. The errors during registration were compared between the groups. Results There were differences between the three registration methods in the zygoma, sinus posterior wall, molar alveolar, premolar alveolar, lateral nasal aperture and the infraorbital areas. The error was smallest using the overlay method for the anterior wall of the maxillary sinus, and the difference was statistically significant. Conclusion The navigation error can be minimized by conducting registration using the anterior wall of the maxillary sinus during image-guided surgery of the maxillary sinus. PMID:22499127

  14. Biomechanical deformable image registration of longitudinal lung CT images using vessel information

    NASA Astrophysics Data System (ADS)

    Cazoulat, Guillaume; Owen, Dawn; Matuszak, Martha M.; Balter, James M.; Brock, Kristy K.

    2016-07-01

    Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Six lung cancer patients previously treated with conventionally fractionated radiotherapy were retrospectively evaluated. Exhale CT scans were obtained at treatment planning and following three weeks of treatment. For each patient, the planning CT was registered to the follow-up CT using Morfeus, a biomechanical model-based deformable registration algorithm. To model the complex response of the lung, an extension to Morfeus has been developed: an initial deformation was estimated with Morfeus consisting of boundary conditions on the chest wall and incorporating a sliding interface with the lungs. It was hypothesized that the addition of boundary conditions based on vessel tree matching would provide a robust reduction of the residual registration error. To achieve this, the vessel trees were segmented on the two images by thresholding a vesselness image based on the Hessian matrix’s eigenvalues. For each point on the reference vessel tree centerline, the displacement vector was estimated by applying a variant of the Demons registration algorithm between the planning CT and the deformed follow-up CT. An expert independently identified corresponding landmarks well distributed in the lung to compute target registration errors (TRE). The TRE was: 5.8+/- 2.9 , 3.4+/- 2.3 and 1.6+/- 1.3 mm after rigid registration, Morfeus and Morfeus with boundary conditions on the vessel tree, respectively. In conclusion, the addition of boundary conditions on the vessels significantly improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical uncertainties will enable future plan adaptation strategies.

  15. Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization

    NASA Astrophysics Data System (ADS)

    Aksoy, T.; Špiclin, Ž.; Pernuš, F.; Unal, G.

    2017-12-01

    Registration of 3D pre-interventional to 2D intra-interventional medical images has an increasingly important role in surgical planning, navigation and treatment, because it enables the physician to co-locate depth information given by pre-interventional 3D images with the live information in intra-interventional 2D images such as x-ray. Most tasks during image-guided interventions are carried out under a monoplane x-ray, which is a highly ill-posed problem for state-of-the-art 3D to 2D registration methods. To address the problem of rigid 3D-2D monoplane registration we propose a novel multi-objective stratified parameter optimization, wherein a small set of high-magnitude intensity gradients are matched between the 3D and 2D images. The stratified parameter optimization matches rotation templates to depth templates, first sampled from projected 3D gradients and second from the 2D image gradients, so as to recover 3D rigid-body rotations and out-of-plane translation. The objective for matching was the gradient magnitude correlation coefficient, which is invariant to in-plane translation. The in-plane translations are then found by locating the maximum of the gradient phase correlation between the best matching pair of rotation and depth templates. On twenty pairs of 3D and 2D images of ten patients undergoing cerebral endovascular image-guided intervention the 3D to monoplane 2D registration experiments were setup with a rather high range of initial mean target registration error from 0 to 100 mm. The proposed method effectively reduced the registration error to below 2 mm, which was further refined by a fast iterative method and resulted in a high final registration accuracy (0.40 mm) and high success rate (> 96%). Taking into account a fast execution time below 10 s, the observed performance of the proposed method shows a high potential for application into clinical image-guidance systems.

  16. Distance-preserving rigidity penalty on deformable image registration of multiple skeletal components in the neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihun, E-mail: jihun@umich.edu; Saitou, Kazuhiro; Matuszak, Martha M.

    Purpose: This study aims at developing and testing a novel rigidity penalty suitable for the deformable registration of tightly located skeletal components in the head and neck from planning computed tomography (CT) and daily cone-beam CT (CBCT) scans of patients undergoing radiotherapy. Methods: The proposed rigidity penalty is designed to preserve intervoxel distances within each bony structure. This penalty was tested in the intensity-based B-spline deformable registration of five cervical vertebral bodies (C1–C5). The displacement vector fields (DVFs) from the registrations were compared to the DVFs generated by using rigid body motions of the cervical vertebrae, measured by the surfacemore » registration of vertebrae delineated on CT and CBCT images. Twenty five pairs of planning CT (reference) and treatment CBCTs (target) from five patients were aligned without and with the penalty. An existing penalty based on the orthonormality of the deformation gradient tensor was also tested and the effects of the penalties compared. Results: The mean magnitude of the maximum registration error with the proposed distance-preserving penalty was (0.86, 1.12, 1.33) mm compared to (2.11, 2.49, 2.46) without penalty and (1.53, 1.64, 1.64) with the existing orthonormality-based penalty. The improvement in the accuracy of the deformable image registration was also verified by comparing the Procrustes distance between the DVFs. With the proposed penalty, the average distance was 0.11 (σ 0.03 mm) which is smaller than 0.53 (0.1 mm) without penalty and 0.28 (0.04 mm) with the orthonormality-based penalty. Conclusions: The accuracy of aligning multiple bony elements was improved by using the proposed distance-preserving rigidity penalty. The voxel-based statistical analysis of the registration error shows that the proposed penalty improved the integrity of the DVFs within the vertebral bodies.« less

  17. Distance-preserving rigidity penalty on deformable image registration of multiple skeletal components in the neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihun, E-mail: jihun@umich.edu; Saitou, Kazuhiro; Matuszak, Martha M.

    2013-12-15

    Purpose: This study aims at developing and testing a novel rigidity penalty suitable for the deformable registration of tightly located skeletal components in the head and neck from planning computed tomography (CT) and daily cone-beam CT (CBCT) scans of patients undergoing radiotherapy. Methods: The proposed rigidity penalty is designed to preserve intervoxel distances within each bony structure. This penalty was tested in the intensity-based B-spline deformable registration of five cervical vertebral bodies (C1–C5). The displacement vector fields (DVFs) from the registrations were compared to the DVFs generated by using rigid body motions of the cervical vertebrae, measured by the surfacemore » registration of vertebrae delineated on CT and CBCT images. Twenty five pairs of planning CT (reference) and treatment CBCTs (target) from five patients were aligned without and with the penalty. An existing penalty based on the orthonormality of the deformation gradient tensor was also tested and the effects of the penalties compared. Results: The mean magnitude of the maximum registration error with the proposed distance-preserving penalty was (0.86, 1.12, 1.33) mm compared to (2.11, 2.49, 2.46) without penalty and (1.53, 1.64, 1.64) with the existing orthonormality-based penalty. The improvement in the accuracy of the deformable image registration was also verified by comparing the Procrustes distance between the DVFs. With the proposed penalty, the average distance was 0.11 (σ 0.03 mm) which is smaller than 0.53 (0.1 mm) without penalty and 0.28 (0.04 mm) with the orthonormality-based penalty. Conclusions: The accuracy of aligning multiple bony elements was improved by using the proposed distance-preserving rigidity penalty. The voxel-based statistical analysis of the registration error shows that the proposed penalty improved the integrity of the DVFs within the vertebral bodies.« less

  18. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Purpose Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation. PMID:27330239

  19. MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.

  20. Deformable Image Registration for Cone-Beam CT Guided Transoral Robotic Base of Tongue Surgery

    PubMed Central

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base of tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam CT (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e., volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC), and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid, and Demons steps was 4.6, 2.1, and 1.7 mm, respectively. The respective ECC was 0.57, 0.70, and 0.73 and NPMI was 0.46, 0.57, and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support safer, high-precision base of tongue robotic surgery. PMID:23807549

  1. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery.

    PubMed

    Reaungamornrat, S; De Silva, T; Uneri, A; Wolinsky, J-P; Khanna, A J; Kleinszig, G; Vogt, S; Prince, J L; Siewerdsen, J H

    2016-02-27

    Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.

  2. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-07-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support safer, high-precision base-of-tongue robotic surgery.

  3. Design of an Image Fusion Phantom for a Small Animal microPET/CT Scanner Prototype

    NASA Astrophysics Data System (ADS)

    Nava-García, Dante; Alva-Sánchez, Héctor; Murrieta-Rodríguez, Tirso; Martínez-Dávalos, Arnulfo; Rodríguez-Villafuerte, Mercedes

    2010-12-01

    Two separate microtomography systems recently developed at Instituto de Física, UNAM, produce anatomical (microCT) and physiological images (microPET) of small animals. In this work, the development and initial tests of an image fusion method based on fiducial markers for image registration between the two modalities are presented. A modular Helix/Line-Sources phantom was designed and constructed; this phantom contains fiducial markers that can be visualized in both imaging systems. The registration was carried out by solving the rigid body alignment problem of Procrustes to obtain rotation and translation matrices required to align the two sets of images. The microCT/microPET image fusion of the Helix/Line-Sources phantom shows excellent visual coincidence between different structures, showing a calculated target-registration-error of 0.32 mm.

  4. Multi-Objective Memetic Search for Robust Motion and Distortion Correction in Diffusion MRI.

    PubMed

    Hering, Jan; Wolf, Ivo; Maier-Hein, Klaus H

    2016-10-01

    Effective image-based artifact correction is an essential step in the analysis of diffusion MR images. Many current approaches are based on retrospective registration, which becomes challenging in the realm of high b -values and low signal-to-noise ratio, rendering the corresponding correction schemes more and more ineffective. We propose a novel registration scheme based on memetic search optimization that allows for simultaneous exploitation of different signal intensity relationships between the images, leading to more robust registration results. We demonstrate the increased robustness and efficacy of our method on simulated as well as in vivo datasets. In contrast to the state-of-art methods, the median target registration error (TRE) stayed below the voxel size even for high b -values (3000 s ·mm -2 and higher) and low SNR conditions. We also demonstrate the increased precision in diffusion-derived quantities by evaluating Neurite Orientation Dispersion and Density Imaging (NODDI) derived measures on a in vivo dataset with severe motion artifacts. These promising results will potentially inspire further studies on metaheuristic optimization in diffusion MRI artifact correction and image registration in general.

  5. Technical Note: Error metrics for estimating the accuracy of needle/instrument placement during transperineal magnetic resonance/ultrasound-guided prostate interventions.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Villarini, Barbara; Rodell, Rachael; Martin, Paul; Han, Lianghao; Donaldson, Ian; Ahmed, Hashim U; Moore, Caroline M; Emberton, Mark; Barratt, Dean C

    2018-04-01

    Image-guided systems that fuse magnetic resonance imaging (MRI) with three-dimensional (3D) ultrasound (US) images for performing targeted prostate needle biopsy and minimally invasive treatments for prostate cancer are of increasing clinical interest. To date, a wide range of different accuracy estimation procedures and error metrics have been reported, which makes comparing the performance of different systems difficult. A set of nine measures are presented to assess the accuracy of MRI-US image registration, needle positioning, needle guidance, and overall system error, with the aim of providing a methodology for estimating the accuracy of instrument placement using a MR/US-guided transperineal approach. Using the SmartTarget fusion system, an MRI-US image alignment error was determined to be 2.0 ± 1.0 mm (mean ± SD), and an overall system instrument targeting error of 3.0 ± 1.2 mm. Three needle deployments for each target phantom lesion was found to result in a 100% lesion hit rate and a median predicted cancer core length of 5.2 mm. The application of a comprehensive, unbiased validation assessment for MR/US guided systems can provide useful information on system performance for quality assurance and system comparison. Furthermore, such an analysis can be helpful in identifying relationships between these errors, providing insight into the technical behavior of these systems. © 2018 American Association of Physicists in Medicine.

  6. Impact of survey workflow on precision and accuracy of terrestrial LiDAR datasets

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Cowgill, E.; Kreylos, O.

    2009-12-01

    Ground-based LiDAR (Light Detection and Ranging) survey techniques are enabling remote visualization and quantitative analysis of geologic features at unprecedented levels of detail. For example, digital terrain models computed from LiDAR data have been used to measure displaced landforms along active faults and to quantify fault-surface roughness. But how accurately do terrestrial LiDAR data represent the true ground surface, and in particular, how internally consistent and precise are the mosaiced LiDAR datasets from which surface models are constructed? Addressing this question is essential for designing survey workflows that capture the necessary level of accuracy for a given project while minimizing survey time and equipment, which is essential for effective surveying of remote sites. To address this problem, we seek to define a metric that quantifies how scan registration error changes as a function of survey workflow. Specifically, we are using a Trimble GX3D laser scanner to conduct a series of experimental surveys to quantify how common variables in field workflows impact the precision of scan registration. Primary variables we are testing include 1) use of an independently measured network of control points to locate scanner and target positions, 2) the number of known-point locations used to place the scanner and point clouds in 3-D space, 3) the type of target used to measure distances between the scanner and the known points, and 4) setting up the scanner over a known point as opposed to resectioning of known points. Precision of the registered point cloud is quantified using Trimble Realworks software by automatic calculation of registration errors (errors between locations of the same known points in different scans). Accuracy of the registered cloud (i.e., its ground-truth) will be measured in subsequent experiments. To obtain an independent measure of scan-registration errors and to better visualize the effects of these errors on a registered point cloud, we scan from multiple locations an object of known geometry (a cylinder mounted above a square box). Preliminary results show that even in a controlled experimental scan of an object of known dimensions, there is significant variability in the precision of the registered point cloud. For example, when 3 scans of the central object are registered using 4 known points (maximum time, maximum equipment), the point clouds align to within ~1 cm (normal to the object surface). However, when the same point clouds are registered with only 1 known point (minimum time, minimum equipment), misalignment of the point clouds can range from 2.5 to 5 cm, depending on target type. The greater misalignment of the 3 point clouds when registered with fewer known points stems from the field method employed in acquiring the dataset and demonstrates the impact of field workflow on LiDAR dataset precision. By quantifying the degree of scan mismatch in results such as this, we can provide users with the information needed to maximize efficiency in remote field surveys.

  7. Dual-projection 3D-2D registration for surgical guidance: preclinical evaluation of performance and minimum angular separation

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Gallia, G. L.; Rigamonti, D.; Wolinsky, J.-P.; Gokaslan, Ziya L.; Khanna, A. J.; Siewerdsen, J. H.

    2014-03-01

    An algorithm for 3D-2D registration of CT and x-ray projections has been developed using dual projection views to provide 3D localization with accuracy exceeding that of conventional tracking systems. The registration framework employs a normalized gradient information (NGI) similarity metric and covariance matrix adaptation evolution strategy (CMAES) to solve for the patient pose in 6 degrees of freedom. Registration performance was evaluated in anthropomorphic head and chest phantoms, as well as a human torso cadaver, using C-arm projection views acquired at angular separations (Δ𝜃) ranging 0-178°. Registration accuracy was assessed in terms target registration error (TRE) and compared to that of an electromagnetic tracker. Studies evaluated the influence of C-arm magnification, x-ray dose, and preoperative CT slice thickness on registration accuracy and the minimum angular separation required to achieve TRE ~2 mm. The results indicate that Δ𝜃 as small as 10-20° is adequate to achieve TRE <2 mm with 95% confidence, comparable or superior to that of commercial trackers. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers, and manual registration. The studies support potential application to percutaneous spine procedures and intracranial neurosurgery.

  8. SU-E-J-248: Comparative Study of Two Image Registration for Image-Guided Radiation Therapy in Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, K; Wang, J; Liu, D

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Fourmore » hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is −5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.« less

  9. Video see-through augmented reality for oral and maxillofacial surgery.

    PubMed

    Wang, Junchen; Suenaga, Hideyuki; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro

    2017-06-01

    Oral and maxillofacial surgery has not been benefitting from image guidance techniques owing to the limitations in image registration. A real-time markerless image registration method is proposed by integrating a shape matching method into a 2D tracking framework. The image registration is performed by matching the patient's teeth model with intraoperative video to obtain its pose. The resulting pose is used to overlay relevant models from the same CT space on the camera video for augmented reality. The proposed system was evaluated on mandible/maxilla phantoms, a volunteer and clinical data. Experimental results show that the target overlay error is about 1 mm, and the frame rate of registration update yields 3-5 frames per second with a 4 K camera. The significance of this work lies in its simplicity in clinical setting and the seamless integration into the current medical procedure with satisfactory response time and overlay accuracy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Speeding up Coarse Point Cloud Registration by Threshold-Independent Baysac Match Selection

    NASA Astrophysics Data System (ADS)

    Kang, Z.; Lindenbergh, R.; Pu, S.

    2016-06-01

    This paper presents an algorithm for the automatic registration of terrestrial point clouds by match selection using an efficiently conditional sampling method -- threshold-independent BaySAC (BAYes SAmpling Consensus) and employs the error metric of average point-to-surface residual to reduce the random measurement error and then approach the real registration error. BaySAC and other basic sampling algorithms usually need to artificially determine a threshold by which inlier points are identified, which leads to a threshold-dependent verification process. Therefore, we applied the LMedS method to construct the cost function that is used to determine the optimum model to reduce the influence of human factors and improve the robustness of the model estimate. Point-to-point and point-to-surface error metrics are most commonly used. However, point-to-point error in general consists of at least two components, random measurement error and systematic error as a result of a remaining error in the found rigid body transformation. Thus we employ the measure of the average point-to-surface residual to evaluate the registration accuracy. The proposed approaches, together with a traditional RANSAC approach, are tested on four data sets acquired by three different scanners in terms of their computational efficiency and quality of the final registration. The registration results show the st.dev of the average point-to-surface residuals is reduced from 1.4 cm (plain RANSAC) to 0.5 cm (threshold-independent BaySAC). The results also show that, compared to the performance of RANSAC, our BaySAC strategies lead to less iterations and cheaper computational cost when the hypothesis set is contaminated with more outliers.

  11. Registration of in vivo MR to histology of rodent brains using blockface imaging

    NASA Astrophysics Data System (ADS)

    Uberti, Mariano; Liu, Yutong; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael

    2009-02-01

    Registration of MRI to histopathological sections can enhance bioimaging validation for use in pathobiologic, diagnostic, and therapeutic evaluations. However, commonly used registration methods fall short of this goal due to tissue shrinkage and tearing after brain extraction and preparation. In attempts to overcome these limitations we developed a software toolbox using 3D blockface imaging as the common space of reference. This toolbox includes a semi-automatic brain extraction technique using constraint level sets (CLS), 3D reconstruction methods for the blockface and MR volume, and a 2D warping technique using thin-plate splines with landmark optimization. Using this toolbox, the rodent brain volume is first extracted from the whole head MRI using CLS. The blockface volume is reconstructed followed by 3D brain MRI registration to the blockface volume to correct the global deformations due to brain extraction and fixation. Finally, registered MRI and histological slices are warped to corresponding blockface images to correct slice specific deformations. The CLS brain extraction technique was validated by comparing manual results showing 94% overlap. The image warping technique was validated by calculating target registration error (TRE). Results showed a registration accuracy of a TRE < 1 pixel. Lastly, the registration method and the software tools developed were used to validate cell migration in murine human immunodeficiency virus type one encephalitis.

  12. Motion compensation for MRI-compatible patient-mounted needle guide device: estimation of targeting accuracy in MRI-guided kidney cryoablations

    NASA Astrophysics Data System (ADS)

    Tokuda, Junichi; Chauvin, Laurent; Ninni, Brian; Kato, Takahisa; King, Franklin; Tuncali, Kemal; Hata, Nobuhiko

    2018-04-01

    Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were mm, mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p  <  0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm () in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.

  13. Automated brainstem co-registration (ABC) for MRI.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Kennedy, David; Hui, Kathleen K S; Makris, Nikos

    2006-09-01

    Group data analysis in brainstem neuroimaging is predicated on accurate co-registration of anatomy. As the brainstem is comprised of many functionally heterogeneous nuclei densely situated adjacent to one another, relatively small errors in co-registration can manifest in increased variance or decreased sensitivity (or significance) in detecting activations. We have devised a 2-stage automated, reference mask guided registration technique (Automated Brainstem Co-registration, or ABC) for improved brainstem co-registration. Our approach utilized a brainstem mask dataset to weight an automated co-registration cost function. Our method was validated through measurement of RMS error at 12 manually defined landmarks. These landmarks were also used as guides for a secondary manual co-registration option, intended for outlier individuals that may not adequately co-register with our automated method. Our methodology was tested on 10 healthy human subjects and compared to traditional co-registration techniques (Talairach transform and automated affine transform to the MNI-152 template). We found that ABC had a significantly lower mean RMS error (1.22 +/- 0.39 mm) than Talairach transform (2.88 +/- 1.22 mm, mu +/- sigma) and the global affine (3.26 +/- 0.81 mm) method. Improved accuracy was also found for our manual-landmark-guided option (1.51 +/- 0.43 mm). Visualizing individual brainstem borders demonstrated more consistent and uniform overlap for ABC compared to traditional global co-registration techniques. Improved robustness (lower susceptibility to outliers) was demonstrated with ABC through lower inter-subject RMS error variance compared with traditional co-registration methods. The use of easily available and validated tools (AFNI and FSL) for this method should ease adoption by other investigators interested in brainstem data group analysis.

  14. Stereotactic mammography imaging combined with 3D US imaging for image guided breast biopsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surry, K. J. M.; Mills, G. R.; Bevan, K.

    2007-11-15

    Stereotactic X-ray mammography (SM) and ultrasound (US) guidance are both commonly used for breast biopsy. While SM provides three-dimensional (3D) targeting information and US provides real-time guidance, both have limitations. SM is a long and uncomfortable procedure and the US guided procedure is inherently two dimensional (2D), requiring a skilled physician for both safety and accuracy. The authors developed a 3D US-guided biopsy system to be integrated with, and to supplement SM imaging. Their goal is to be able to biopsy a larger percentage of suspicious masses using US, by clarifying ambiguous structures with SM imaging. Features from SM andmore » US guided biopsy were combined, including breast stabilization, a confined needle trajectory, and dual modality imaging. The 3D US guided biopsy system uses a 7.5 MHz breast probe and is mounted on an upright SM machine for preprocedural imaging. Intraprocedural targeting and guidance was achieved with real-time 2D and near real-time 3D US imaging. Postbiopsy 3D US imaging allowed for confirmation that the needle was penetrating the target. The authors evaluated 3D US-guided biopsy accuracy of their system using test phantoms. To use mammographic imaging information, they registered the SM and 3D US coordinate systems. The 3D positions of targets identified in the SM images were determined with a target localization error (TLE) of 0.49 mm. The z component (x-ray tube to image) of the TLE dominated with a TLE{sub z} of 0.47 mm. The SM system was then registered to 3D US, with a fiducial registration error (FRE) and target registration error (TRE) of 0.82 and 0.92 mm, respectively. Analysis of the FRE and TRE components showed that these errors were dominated by inaccuracies in the z component with a FRE{sub z} of 0.76 mm and a TRE{sub z} of 0.85 mm. A stereotactic mammography and 3D US guided breast biopsy system should include breast compression for stability and safety and dual modality imaging for target localization. The system will provide preprocedural x-ray mammography information in the form of SM imaging along with real-time US imaging for needle guidance to a target. 3D US imaging will also be available for targeting, guidance, and biopsy verification immediately postbiopsy.« less

  15. 2D-3D registration for cranial radiation therapy using a 3D kV CBCT and a single limited field-of-view 2D kV radiograph.

    PubMed

    Munbodh, Reshma; Knisely, Jonathan Ps; Jaffray, David A; Moseley, Douglas J

    2018-05-01

    We present and evaluate a fully automated 2D-3D intensity-based registration framework using a single limited field-of-view (FOV) 2D kV radiograph and a 3D kV CBCT for 3D estimation of patient setup errors during brain radiotherapy. We evaluated two similarity measures, the Pearson correlation coefficient on image intensity values (ICC) and maximum likelihood measure with Gaussian noise (MLG), derived from the statistics of transmission images. Pose determination experiments were conducted on 2D kV radiographs in the anterior-posterior (AP) and left lateral (LL) views and 3D kV CBCTs of an anthropomorphic head phantom. In order to minimize radiation exposure and exclude nonrigid structures from the registration, limited FOV 2D kV radiographs were employed. A spatial frequency band useful for the 2D-3D registration was identified from the bone-to-no-bone spectral ratio (BNBSR) of digitally reconstructed radiographs (DRRs) computed from the 3D kV planning CT of the phantom. The images being registered were filtered accordingly prior to computation of the similarity measures. We evaluated the registration accuracy achievable with a single 2D kV radiograph and with the registration results from the AP and LL views combined. We also compared the performance of the 2D-3D registration solutions proposed to that of a commercial 3D-3D registration algorithm, which used the entire skull for the registration. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The accuracy of the 2D-3D registration solutions, as quantified by the root mean squared value of the target registration error (TRE) calculated over a radius of 3 cm for all poses tested, was ICC AP : 0.56 mm, MLG AP : 0.74 mm, ICC LL : 0.57 mm, MLG LL : 0.54 mm, ICC (AP and LL combined): 0.19 mm, and MLG (AP and LL combined): 0.21 mm. The accuracy of the 3D-3D registration algorithm was 0.27 mm. There was no significant difference in mean TRE for the 2D-3D registration algorithms using a single 2D kV radiograph with similarity measure and image view point. There was no significant difference in mean TRE between ICC LL , MLG LL , ICC (AP and LL combined), MLG (AP and LL combined), and the 3D-3D registration algorithm despite the smaller FOV used for the 2D-3D registration. While submillimeter registration accuracy was obtained with both ICC and MLG using a single 2D kV radiograph, combining the results from the two projection views resulted in a significantly smaller (P≤0.05) mean TRE. Our results indicate that it is possible to achieve submillimeter registration accuracy with both ICC and MLG using either single or dual limited FOV 2D kV radiographs of the head in the AP and LL views. The registration accuracy suggests that the 2D-3D registration solutions presented are suitable for the estimation of patient setup errors not only during conventional brain radiation therapy, but also during stereotactic procedures and proton radiation therapy where tighter setup margins are required. © 2018 American Association of Physicists in Medicine.

  16. SU-E-T-291: Dosimetric Accuracy of Multitarget Single Isocenter Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannazi, F; Huang, M; Thomas, E

    2015-06-15

    Purpose: To evaluate the accuracy of single-isocenter multiple-target VMAT radiosurgery (SIMT-VMAT-SRS) by analysis of pre-treatment verification measurements. Methods: Our QA procedure used a phantom having a coronal plane for EDR2 film and a 0.125 cm3 ionization chamber. Film measurements were obtained for the largest and smallest targets for each plan. An ionization chamber measurement (ICM) was obtained for sufficiently large targets. Films were converted to dose using a patient-specific calibration curve and compared to treatment planning system calculations. Alignment error was estimated using image registration. The gamma index was calculated for 3%/3 and 3%/1 mm criteria. The median dose inmore » the target region and, for plans having an ICM, the average dose in the central 5 mm was calculated. Results: The average equivalent target diameter of the 48 targets was 15 mm (3–43 mm). Twenty of the 24 plans had an ICM for the plan corresponding to the largest target (diameter 11–43 mm) with a mean ratio of chamber reading to expected dose (ED) and the mean ratio of film to ED (averaged over the central 5 mm) was 1.001 (0.025 SD) and 1.000 (0.029 SD), respectively. For all plans, the mean film to ED (from the median dose in the target region) was 0.997 (0.027 SD). The mean registration vector was (0.15,0.29) mm, with an average magnitude of 0.96 mm. Before (after) registration, the average fraction of pixels having gamma < 1 was 99.3% (99.6%) and 89.1% (97.6%) for 3%/3mm and 3%/1mm, respectively. Conclusion: Our results demonstrate dosimetric accuracy of SIMT-VMAT-SRS for targets as small as 3 mm. Film dosimetry provides accurate assessment of the absolute dose delivered to targets too small for an ionization chamber measurement; however, the relatively large registration vector indicates that image-guidance should replace laser-based setup for patient-specific evaluation of geometric accuracy.« less

  17. Design and validation of an open-source library of dynamic reference frames for research and education in optical tracking.

    PubMed

    Brown, Alisa; Uneri, Ali; Silva, Tharindu De; Manbachi, Amir; Siewerdsen, Jeffrey H

    2018-04-01

    Dynamic reference frames (DRFs) are a common component of modern surgical tracking systems; however, the limited number of commercially available DRFs poses a constraint in developing systems, especially for research and education. This work presents the design and validation of a large, open-source library of DRFs compatible with passive, single-face tracking systems, such as Polaris stereoscopic infrared trackers (NDI, Waterloo, Ontario). An algorithm was developed to create new DRF designs consistent with intra- and intertool design constraints and convert to computer-aided design (CAD) files suitable for three-dimensional printing. A library of 10 such groups, each with 6 to 10 DRFs, was produced and tracking performance was validated in comparison to a standard commercially available reference, including pivot calibration, fiducial registration error (FRE), and target registration error (TRE). Pivot tests showed calibration error [Formula: see text], indistinguishable from the reference. FRE was [Formula: see text], and TRE in a CT head phantom was [Formula: see text], both equivalent to the reference. The library of DRFs offers a useful resource for surgical navigation research and could be extended to other tracking systems and alternative design constraints.

  18. Registration of MRI to Intraoperative Radiographs for Target Localization in Spinal Interventions

    PubMed Central

    De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Goerres, J; Jacobson, M W; Vogt, S; Kleinszig, G; Khanna, A J; Wolinsky, J-P; Siewerdsen, J H

    2017-01-01

    Purpose Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Methods Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (Covariance-Matrix-Adaptation Evolutionary-Strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. Results The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median ± iqr) = 4.3 ± 2.6 mm (median ± iqr) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded Dice coefficient = 88.1 ± 5.2, Accuracy = 90.6 ± 5.7, RMSE = 1.8 ± 0.6 mm, and contour affinity ratio (CAR) = 0.82 ± 0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE < 3 mm and CAR > 0.50. Conclusion The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness. PMID:28050972

  19. DIRBoost-an algorithm for boosting deformable image registration: application to lung CT intra-subject registration.

    PubMed

    Muenzing, Sascha E A; van Ginneken, Bram; Viergever, Max A; Pluim, Josien P W

    2014-04-01

    We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5-34% depending on the dataset and the registration algorithm employed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Estimation of motion fields by non-linear registration for local lung motion analysis in 4D CT image data.

    PubMed

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz

    2010-11-01

    Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.

  1. SU-C-207B-06: Comparison of Registration Methods for Modeling Pathologic Response of Esophageal Cancer to Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riyahi, S; Choi, W; Bhooshan, N

    2016-06-15

    Purpose: To compare linear and deformable registration methods for evaluation of tumor response to Chemoradiation therapy (CRT) in patients with esophageal cancer. Methods: Linear and multi-resolution BSpline deformable registration were performed on Pre-Post-CRT CT/PET images of 20 patients with esophageal cancer. For both registration methods, we registered CT using Mean Square Error (MSE) metric, however to register PET we used transformation obtained using Mutual Information (MI) from the same CT due to being multi-modality. Similarity of Warped-CT/PET was quantitatively evaluated using Normalized Mutual Information and plausibility of DF was assessed using inverse consistency Error. To evaluate tumor response four groupsmore » of tumor features were examined: (1) Conventional PET/CT e.g. SUV, diameter (2) Clinical parameters e.g. TNM stage, histology (3)spatial-temporal PET features that describe intensity, texture and geometry of tumor (4)all features combined. Dominant features were identified using 10-fold cross-validation and Support Vector Machine (SVM) was deployed for tumor response prediction while the accuracy was evaluated by ROC Area Under Curve (AUC). Results: Average and standard deviation of Normalized mutual information for deformable registration using MSE was 0.2±0.054 and for linear registration was 0.1±0.026, showing higher NMI for deformable registration. Likewise for MI metric, deformable registration had 0.13±0.035 comparing to linear counterpart with 0.12±0.037. Inverse consistency error for deformable registration for MSE metric was 4.65±2.49 and for linear was 1.32±2.3 showing smaller value for linear registration. The same conclusion was obtained for MI in terms of inverse consistency error. AUC for both linear and deformable registration was 1 showing no absolute difference in terms of response evaluation. Conclusion: Deformable registration showed better NMI comparing to linear registration, however inverse consistency of transformation was lower in linear registration. We do not expect to see significant difference when warping PET images using deformable or linear registration. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  2. Intraoperative Image-based Multiview 2D/3D Registration for Image-Guided Orthopaedic Surgery: Incorporation of Fiducial-Based C-Arm Tracking and GPU-Acceleration

    PubMed Central

    Armand, Mehran; Armiger, Robert S.; Kutzer, Michael D.; Basafa, Ehsan; Kazanzides, Peter; Taylor, Russell H.

    2012-01-01

    Intraoperative patient registration may significantly affect the outcome of image-guided surgery (IGS). Image-based registration approaches have several advantages over the currently dominant point-based direct contact methods and are used in some industry solutions in image-guided radiation therapy with fixed X-ray gantries. However, technical challenges including geometric calibration and computational cost have precluded their use with mobile C-arms for IGS. We propose a 2D/3D registration framework for intraoperative patient registration using a conventional mobile X-ray imager combining fiducial-based C-arm tracking and graphics processing unit (GPU)-acceleration. The two-stage framework 1) acquires X-ray images and estimates relative pose between the images using a custom-made in-image fiducial, and 2) estimates the patient pose using intensity-based 2D/3D registration. Experimental validations using a publicly available gold standard dataset, a plastic bone phantom and cadaveric specimens have been conducted. The mean target registration error (mTRE) was 0.34 ± 0.04 mm (success rate: 100%, registration time: 14.2 s) for the phantom with two images 90° apart, and 0.99 ± 0.41 mm (81%, 16.3 s) for the cadaveric specimen with images 58.5° apart. The experimental results showed the feasibility of the proposed registration framework as a practical alternative for IGS routines. PMID:22113773

  3. Analysis of deformable image registration accuracy using computational modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.

    2010-03-15

    Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results showmore » that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter selection for optimal accuracy is closely related to the intensity gradients of the underlying images. Also, the result that the DIR algorithms produce much lower errors in heterogeneous lung regions relative to homogeneous (low intensity gradient) regions, suggests that feature-based evaluation of deformable image registration accuracy must be viewed cautiously.« less

  4. Registration of an on-axis see-through head-mounted display and camera system

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Rensing, Noa M.; Weststrate, Evan; Peli, Eli

    2005-02-01

    An optical see-through head-mounted display (HMD) system integrating a miniature camera that is aligned with the user's pupil is developed and tested. Such an HMD system has a potential value in many augmented reality applications, in which registration of the virtual display to the real scene is one of the critical aspects. The camera alignment to the user's pupil results in a simple yet accurate calibration and a low registration error across a wide range of depth. In reality, a small camera-eye misalignment may still occur in such a system due to the inevitable variations of HMD wearing position with respect to the eye. The effects of such errors are measured. Calculation further shows that the registration error as a function of viewing distance behaves nearly the same for different virtual image distances, except for a shift. The impact of prismatic effect of the display lens on registration is also discussed.

  5. Robust 3D-2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Wang, Adam S.; Webster Stayman, J.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Khanna, A. Jay; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2013-12-01

    We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14 400 random trials (200 trials on the 72 registration scenarios) with initialization error up to ±200 mm and ±10°. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with ‘success’ defined as PDE <5 mm) using 1,718 664 ± 96 582 function evaluations computed in 54.0 ± 3.5 s on a mid-range GPU (nVidia, GeForce GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under conditions of large deformation and poor initialization (99.535% success for the same data registered in 13.1 s), but given good initialization (e.g., ±5 mm, assuming a robust initial run) the same registration could be solved with 99.993% success in 6.3 s. The ability to register CT to fluoroscopy in a manner robust to patient deformation could be valuable in applications such as radiation therapy, interventional radiology, and an assistant to target localization (e.g., vertebral labeling) in image-guided spine surgery.

  6. Supervoxels for graph cuts-based deformable image registration using guided image filtering

    NASA Astrophysics Data System (ADS)

    Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.

    2017-11-01

    We propose combining a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for three-dimensional (3-D) deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to two-dimensional (2-D) applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation combined with graph cuts-based optimization can be applied to 3-D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model "sliding motion." Applying this method to lung image registration results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available computed tomography lung image dataset leads to the observation that our approach compares very favorably with state of the art methods in continuous and discrete image registration, achieving target registration error of 1.16 mm on average per landmark.

  7. Robust registration of sparsely sectioned histology to ex-vivo MRI of temporal lobe resections

    NASA Astrophysics Data System (ADS)

    Goubran, Maged; Khan, Ali R.; Crukley, Cathie; Buchanan, Susan; Santyr, Brendan; deRibaupierre, Sandrine; Peters, Terry M.

    2012-02-01

    Surgical resection of epileptic foci is a typical treatment for drug-resistant epilepsy, however, accurate preoperative localization is challenging and often requires invasive sub-dural or intra-cranial electrode placement. The presence of cellular abnormalities in the resected tissue can be used to validate the effectiveness of multispectralMagnetic Resonance Imaging (MRI) in pre-operative foci localization and surgical planning. If successful, these techniques can lead to improved surgical outcomes and less invasive procedures. Towards this goal, a novel pipeline is presented here for post-operative imaging of temporal lobe specimens involving MRI and digital histology, and present and evaluate methods for bringing these images into spatial correspondence. The sparsely-sectioned histology images of resected tissue represents a challenge for 3D reconstruction which we address with a combined 3D and 2D rigid registration algorithm that alternates between slice-based and volume-based registration with the ex-vivo MRI. We also evaluate four methods for non-rigid within-plane registration using both images and fiducials, with the top performing method resulting in a target registration error of 0.87 mm. This work allows for the spatially-local comparison of histology with post-operative MRI and paves the way for eventual registration with pre-operative MRI images.

  8. Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering.

    PubMed

    Szmul, Adam; Papież, Bartłomiej W; Hallack, Andre; Grau, Vicente; Schnabel, Julia A

    2017-10-04

    In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model 'sliding motion'. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark.

  9. Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering

    PubMed Central

    Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.

    2017-01-01

    In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model ‘sliding motion’. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark. PMID:29225433

  10. Automated geographic registration and radiometric correction for UAV-based mosaics

    NASA Astrophysics Data System (ADS)

    Thomasson, J. Alex; Shi, Yeyin; Sima, Chao; Yang, Chenghai; Cope, Dale A.

    2017-05-01

    Texas A and M University has been operating a large-scale, UAV-based, agricultural remote-sensing research project since 2015. To use UAV-based images in agricultural production, many high-resolution images must be mosaicked together to create an image of an agricultural field. Two key difficulties to science-based utilization of such mosaics are geographic registration and radiometric calibration. In our current research project, image files are taken to the computer laboratory after the flight, and semi-manual pre-processing is implemented on the raw image data, including ortho-mosaicking and radiometric calibration. Ground control points (GCPs) are critical for high-quality geographic registration of images during mosaicking. Applications requiring accurate reflectance data also require radiometric-calibration references so that reflectance values of image objects can be calculated. We have developed a method for automated geographic registration and radiometric correction with targets that are installed semi-permanently at distributed locations around fields. The targets are a combination of black (≍5% reflectance), dark gray (≍20% reflectance), and light gray (≍40% reflectance) sections that provide for a transformation of pixel-value to reflectance in the dynamic range of crop fields. The exact spectral reflectance of each target is known, having been measured with a spectrophotometer. At the time of installation, each target is measured for position with a real-time kinematic GPS receiver to give its precise latitude and longitude. Automated location of the reference targets in the images is required for precise, automated, geographic registration; and automated calculation of the digital-number to reflectance transformation is required for automated radiometric calibration. To validate the system for radiometric calibration, a calibrated UAV-based image mosaic of a field was compared to a calibrated single image from a manned aircraft. Reflectance values in selected zones of each image were strongly linearly related, and the average error of UAV-mosaic reflectances was 3.4% in the red band, 1.9% in the green band, and 1.5% in the blue band. Based on these results, the proposed physical system and automated software for calibrating UAV mosaics show excellent promise.

  11. Calculation of the confidence intervals for transformation parameters in the registration of medical images

    PubMed Central

    Bansal, Ravi; Staib, Lawrence H.; Laine, Andrew F.; Xu, Dongrong; Liu, Jun; Posecion, Lainie F.; Peterson, Bradley S.

    2010-01-01

    Images from different individuals typically cannot be registered precisely because anatomical features within the images differ across the people imaged and because the current methods for image registration have inherent technological limitations that interfere with perfect registration. Quantifying the inevitable error in image registration is therefore of crucial importance in assessing the effects that image misregistration may have on subsequent analyses in an imaging study. We have developed a mathematical framework for quantifying errors in registration by computing the confidence intervals of the estimated parameters (3 translations, 3 rotations, and 1 global scale) for the similarity transformation. The presence of noise in images and the variability in anatomy across individuals ensures that estimated registration parameters are always random variables. We assume a functional relation among intensities across voxels in the images, and we use the theory of nonlinear, least-squares estimation to show that the parameters are multivariate Gaussian distributed. We then use the covariance matrix of this distribution to compute the confidence intervals of the transformation parameters. These confidence intervals provide a quantitative assessment of the registration error across the images. Because transformation parameters are nonlinearly related to the coordinates of landmark points in the brain, we subsequently show that the coordinates of those landmark points are also multivariate Gaussian distributed. Using these distributions, we then compute the confidence intervals of the coordinates for landmark points in the image. Each of these confidence intervals in turn provides a quantitative assessment of the registration error at a particular landmark point. Because our method is computationally intensive, however, its current implementation is limited to assessing the error of the parameters in the similarity transformation across images. We assessed the performance of our method in computing the error in estimated similarity parameters by applying that method to real world dataset. Our results showed that the size of the confidence intervals computed using our method decreased – i.e. our confidence in the registration of images from different individuals increased – for increasing amounts of blur in the images. Moreover, the size of the confidence intervals increased for increasing amounts of noise, misregistration, and differing anatomy. Thus, our method precisely quantified confidence in the registration of images that contain varying amounts of misregistration and varying anatomy across individuals. PMID:19138877

  12. Voxel-based statistical analysis of uncertainties associated with deformable image registration

    NASA Astrophysics Data System (ADS)

    Li, Shunshan; Glide-Hurst, Carri; Lu, Mei; Kim, Jinkoo; Wen, Ning; Adams, Jeffrey N.; Gordon, James; Chetty, Indrin J.; Zhong, Hualiang

    2013-09-01

    Deformable image registration (DIR) algorithms have inherent uncertainties in their displacement vector fields (DVFs).The purpose of this study is to develop an optimal metric to estimate DIR uncertainties. Six computational phantoms have been developed from the CT images of lung cancer patients using a finite element method (FEM). The FEM generated DVFs were used as a standard for registrations performed on each of these phantoms. A mechanics-based metric, unbalanced energy (UE), was developed to evaluate these registration DVFs. The potential correlation between UE and DIR errors was explored using multivariate analysis, and the results were validated by landmark approach and compared with two other error metrics: DVF inverse consistency (IC) and image intensity difference (ID). Landmark-based validation was performed using the POPI-model. The results show that the Pearson correlation coefficient between UE and DIR error is rUE-error = 0.50. This is higher than rIC-error = 0.29 for IC and DIR error and rID-error = 0.37 for ID and DIR error. The Pearson correlation coefficient between UE and the product of the DIR displacements and errors is rUE-error × DVF = 0.62 for the six patients and rUE-error × DVF = 0.73 for the POPI-model data. It has been demonstrated that UE has a strong correlation with DIR errors, and the UE metric outperforms the IC and ID metrics in estimating DIR uncertainties. The quantified UE metric can be a useful tool for adaptive treatment strategies, including probability-based adaptive treatment planning.

  13. Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude

    NASA Astrophysics Data System (ADS)

    Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.

    2018-05-01

    One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.

  14. Deformable registration for image-guided spine surgery: preserving rigid body vertebral morphology in free-form transformations

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Zhao, Z.; Khanna, A. J.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Deformable registration of preoperative and intraoperative images facilitates accurate localization of target and critical anatomy in image-guided spine surgery. However, conventional deformable registration fails to preserve the morphology of rigid bone anatomy and can impart distortions that confound high-precision intervention. We propose a constrained registration method that preserves rigid morphology while allowing deformation of surrounding soft tissues. Method: The registration method aligns preoperative 3D CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with penalties on rigid body motion imposed according to a simple intensity threshold. The penalties enforced 3 properties of a rigid transformation - namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments (involving phantoms, an ovine spine, and a human cadaver) as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (denoted uFFD) and Demons registration. Result: FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively). Target registration error (TRE) was similarly improved for FFD+OC+IC (0.7 mm), compared to 1.4 and 1.8 mm for uFFD and Demons. Results were validated in human cadaver studies using CT and CBCT images, with FFD+OC+IC providing excellent preservation of rigid morphology and equivalent or improved TRE. Conclusions: A promising method for deformable registration in CBCT-guided spine surgery has been identified incorporating a constrained FFD to preserve bone morphology. The approach overcomes distortions intrinsic to unconstrained FFD and could better facilitate high-precision image-guided spine surgery.

  15. Accuracy assessment of fluoroscopy-transesophageal echocardiography registration

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.

    2011-03-01

    This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.

  16. Accuracy of image-guided surgical navigation using near infrared (NIR) optical tracking

    NASA Astrophysics Data System (ADS)

    Jakubovic, Raphael; Farooq, Hamza; Alarcon, Joseph; Yang, Victor X. D.

    2015-03-01

    Spinal surgery is particularly challenging for surgeons, requiring a high level of expertise and precision without being able to see beyond the surface of the bone. Accurate insertion of pedicle screws is critical considering perforation of the pedicle can result in profound clinical consequences including spinal cord, nerve root, arterial injury, neurological deficits, chronic pain, and/or failed back syndrome. Various navigation systems have been designed to guide pedicle screw fixation. Computed tomography (CT)-based image guided navigation systems increase the accuracy of screw placement allowing for 3- dimensional visualization of the spinal anatomy. Current localization techniques require extensive preparation and introduce spatial deviations. Use of near infrared (NIR) optical tracking allows for realtime navigation of the surgery by utilizing spectral domain multiplexing of light, greatly enhancing the surgeon's situation awareness in the operating room. While the incidence of pedicle screw perforation and complications have been significantly reduced with the introduction of modern navigational technologies, some error exists. Several parameters have been suggested including fiducial localization and registration error, target registration error, and angular deviation. However, many of these techniques quantify error using the pre-operative CT and an intra-operative screenshot without assessing the true screw trajectory. In this study we quantified in-vivo error by comparing the true screw trajectory to the intra-operative trajectory. Pre- and post- operative CT as well as intra-operative screenshots were obtained for a cohort of patients undergoing spinal surgery. We quantified entry point error and angular deviation in the axial and sagittal planes.

  17. Automatic Extraction of Small Spatial Plots from Geo-Registered UAS Imagery

    NASA Astrophysics Data System (ADS)

    Cherkauer, Keith; Hearst, Anthony

    2015-04-01

    Accurate extraction of spatial plots from high-resolution imagery acquired by Unmanned Aircraft Systems (UAS), is a prerequisite for accurate assessment of experimental plots in many geoscience fields. If the imagery is correctly geo-registered, then it may be possible to accurately extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. The methods developed are suitable for work in many fields where replicates across time and space are necessary to quantify variability.

  18. Development of a surgical navigation system based on 3D Slicer for intraoperative implant placement surgery

    PubMed Central

    Chen, Xiaojun; Xu, Lu; Wang, Huixiang; Wang, Fang; Wang, Qiugen; Kikinis, Ron

    2017-01-01

    Implant placement has been widely used in various kinds of surgery. However, accurate intraoperative drilling performance is essential to avoid injury to adjacent structures. Although some commercially-available surgical navigation systems have been approved for clinical applications, these systems are expensive and the source code is not available to researchers. 3D Slicer is a free, open source software platform for the research community of computer-aided surgery. In this study, a loadable module based on Slicer has been developed and validated to support surgical navigation. This research module allows reliable calibration of the surgical drill, point-based registration and surface matching registration, so that the position and orientation of the surgical drill can be tracked and displayed on the computer screen in real time, aiming at reducing risks. In accuracy verification experiments, the mean target registration error (TRE) for point-based and surface-based registration were 0.31±0.06mm and 1.01±0.06mm respectively, which should meet clinical requirements. Both phantom and cadaver experiments demonstrated the feasibility of our surgical navigation software module. PMID:28109564

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Suh, T; Cho, W

    Purpose: A potential validation tool for compensating patient positioning error was developed using 2D/3D and 3D/3D image registration. Methods: For 2D/3D registration, digitally reconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR. We adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-Knife system from the anterior-posterior (AP)more » and right lateral (RL) views. The 3D-CT and two orthogonal images of an anthropomorphic phantom and head and neck cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT image were applied. After registration, the translation and rotation factors were calculated to position a couch to be movable in six dimensions. Results: Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23° ± 0.40° for rotations were acquired by 2D/3D registration using an anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00° ± 0.2° for rotations were acquired using CT image sets. Conclusion: We demonstrated that this validation tool could compensate for patient positioning error. In addition, this research could be the fundamental step for compensating patient positioning error at the first Korea heavy-ion medical accelerator treatment center.« less

  20. Image Registration: A Necessary Evil

    NASA Technical Reports Server (NTRS)

    Bell, James; McLachlan, Blair; Hermstad, Dexter; Trosin, Jeff; George, Michael W. (Technical Monitor)

    1995-01-01

    Registration of test and reference images is a key component of nearly all PSP data reduction techniques. This is done to ensure that a test image pixel viewing a particular point on the model is ratioed by the reference image pixel which views the same point. Typically registration is needed to account for model motion due to differing airloads when the wind-off and wind-on images are taken. Registration is also necessary when two cameras are used for simultaneous acquisition of data from a dual-frequency paint. This presentation will discuss the advantages and disadvantages of several different image registration techniques. In order to do so, it is necessary to propose both an accuracy requirement for image registration and a means for measuring the accuracy of a particular technique. High contrast regions in the unregistered images are most sensitive to registration errors, and it is proposed that these regions be used to establish the error limits for registration. Once this is done, the actual registration error can be determined by locating corresponding points on the test and reference images, and determining how well a particular registration technique matches them. An example of this procedure is shown for three transforms used to register images of a semispan model. Thirty control points were located on the model. A subset of the points were used to determine the coefficients of each registration transform, and the error with which each transform aligned the remaining points was determined. The results indicate the general superiority of a third-order polynomial over other candidate transforms, as well as showing how registration accuracy varies with number of control points. Finally, it is proposed that image registration may eventually be done away with completely. As more accurate image resection techniques and more detailed model surface grids become available, it will be possible to map raw image data onto the model surface accurately. Intensity ratio data can then be obtained by a "model surface ratio," rather than an image ratio. The problems and advantages of this technique will be discussed.

  1. Group-wise feature-based registration of CT and ultrasound images of spine

    NASA Astrophysics Data System (ADS)

    Rasoulian, Abtin; Mousavi, Parvin; Hedjazi Moghari, Mehdi; Foroughi, Pezhman; Abolmaesumi, Purang

    2010-02-01

    Registration of pre-operative CT and freehand intra-operative ultrasound of lumbar spine could aid surgeons in the spinal needle injection which is a common procedure for pain management. Patients are always in a supine position during the CT scan, and in the prone or sitting position during the intervention. This leads to a difference in the spinal curvature between the two imaging modalities, which means a single rigid registration cannot be used for all of the lumbar vertebrae. In this work, a method for group-wise registration of pre-operative CT and intra-operative freehand 2-D ultrasound images of the lumbar spine is presented. The approach utilizes a pointbased registration technique based on the unscented Kalman filter, taking as input segmented vertebrae surfaces in both CT and ultrasound data. Ultrasound images are automatically segmented using a dynamic programming approach, while the CT images are semi-automatically segmented using thresholding. Since the curvature of the spine is different between the pre-operative and the intra-operative data, the registration approach is designed to simultaneously align individual groups of points segmented from each vertebra in the two imaging modalities. A biomechanical model is used to constrain the vertebrae transformation parameters during the registration and to ensure convergence. The mean target registration error achieved for individual vertebrae on five spine phantoms generated from CT data of patients, is 2.47 mm with standard deviation of 1.14 mm.

  2. [Accurate 3D free-form registration between fan-beam CT and cone-beam CT].

    PubMed

    Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun

    2012-06-01

    Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.

  3. Integration of optical imaging with a small animal irradiator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weersink, Robert A., E-mail: robert.weersink@rmp.uhn.on.ca; Ansell, Steve; Wang, An

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mountedmore » on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two-dimensional targeting of a light source in the mouse phantom based on optical imaging along the anterior/posterior direction was accurate to 0.55 mm. The mean square residual error in the normalized measured projected surface intensities versus the calculated normalized intensities ranged between 0.0016 and 0.006. Optimizing the position reduced this error from 0.00016 to 0.0004 with distances ranging between 0.7 and 1 mm between the actual and calculated position source positions. Conclusions: The integration of optical imaging on an existing small animal irradiation platform has been accomplished. A targeting accuracy of 1 mm can be achieved in rigid, homogeneous phantoms. The combination of optical imaging with a CBCT image-guided small animal irradiator offers the potential to deliver functionally targeted dose distributions, as well as monitor spatial and temporal functional changes that occur with radiation therapy.« less

  4. Development of a patient positioning error compensation tool for Korea Heavy-Ion Medical Accelerator Treatment Center

    NASA Astrophysics Data System (ADS)

    Kim, Min-Joo; Suh, Tae-Suk; Cho, Woong; Jung, Won-Gyun

    2015-07-01

    In this study, a potential validation tool for compensating for the patient positioning error was developed by using 2D/3D and 3D/3D image registration. For 2D/3D registration, digitallyreconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR, so we adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and the orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-knife system from the anterior-posterior (AP) and right lateral (RL) views. The 3D-CT and the two orthogonal images of an anthropomorphic phantom and of the head and neck of a cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT images were applied. After registration, the translation and the rotation factors were calculated to position a couch to be movable in six dimensions. Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23 ° ± 0.40 ° for rotations were acquired by using 2D/3D registration with the anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00 ° ± 0.2 ° for rotations were acquired by using CT image sets. We demonstrated that this validation tool could compensate for patient positioning errors. In addition, this research could be a fundamental step in compensating for patient positioning errors at the Korea Heavy-ion Medical Accelerator Treatment Center.

  5. Improving registration accuracy.

    PubMed

    Murphy, J Patrick; Shorrosh, Paul

    2008-04-01

    A registration quality assurance initiative--whether manual or automated--can result in benefits such as: Cleaner claims, Reduced cost to collect, Enhanced revenue, Decreased registration, error rates, Improved staff morale, Fewer customer complaints

  6. A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy.

    PubMed

    Anas, Emran Mohammad Abu; Mousavi, Parvin; Abolmaesumi, Purang

    2018-06-01

    Targeted prostate biopsy, incorporating multi-parametric magnetic resonance imaging (mp-MRI) and its registration with ultrasound, is currently the state-of-the-art in prostate cancer diagnosis. The registration process in most targeted biopsy systems today relies heavily on accurate segmentation of ultrasound images. Automatic or semi-automatic segmentation is typically performed offline prior to the start of the biopsy procedure. In this paper, we present a deep neural network based real-time prostate segmentation technique during the biopsy procedure, hence paving the way for dynamic registration of mp-MRI and ultrasound data. In addition to using convolutional networks for extracting spatial features, the proposed approach employs recurrent networks to exploit the temporal information among a series of ultrasound images. One of the key contributions in the architecture is to use residual convolution in the recurrent networks to improve optimization. We also exploit recurrent connections within and across different layers of the deep networks to maximize the utilization of the temporal information. Furthermore, we perform dense and sparse sampling of the input ultrasound sequence to make the network robust to ultrasound artifacts. Our architecture is trained on 2,238 labeled transrectal ultrasound images, with an additional 637 and 1,017 unseen images used for validation and testing, respectively. We obtain a mean Dice similarity coefficient of 93%, a mean surface distance error of 1.10 mm and a mean Hausdorff distance error of 3.0 mm. A comparison of the reported results with those of a state-of-the-art technique indicates statistically significant improvement achieved by the proposed approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A minimalist approach to bias estimation for passive sensor measurements with targets of opportunity

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov

    2013-09-01

    In order to carry out data fusion, registration error correction is crucial in multisensor systems. This requires estimation of the sensor measurement biases. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. This paper provides a solution for bias estimation for the minimum number of passive sensors (two), when only targets of opportunity are available. The sensor measurements are assumed time-coincident (synchronous) and perfectly associated. Since these sensors provide only line of sight (LOS) measurements, the formation of a single composite Cartesian measurement obtained from fusing the LOS measurements from different sensors is needed to avoid the need for nonlinear filtering. We evaluate the Cramer-Rao Lower Bound (CRLB) on the covariance of the bias estimate, i.e., the quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.

  8. Image Processing Of Images From Peripheral-Artery Digital Subtraction Angiography (DSA) Studies

    NASA Astrophysics Data System (ADS)

    Wilson, David L.; Tarbox, Lawrence R.; Cist, David B.; Faul, David D.

    1988-06-01

    A system is being developed to test the possibility of doing peripheral, digital subtraction angiography (DSA) with a single contrast injection using a moving gantry system. Given repositioning errors that occur between the mask and contrast-containing images, factors affecting the success of subtractions following image registration have been investigated theoretically and experimentally. For a 1 mm gantry displacement, parallax and geometric image distortion (pin-cushion) both give subtraction errors following registration that are approximately 25% of the error resulting from no registration. Image processing techniques improve the subtractions. The geometric distortion effect is reduced using a piece-wise, 8 parameter unwarping method. Plots of image similarity measures versus pixel shift are well behaved and well fit by a parabola, leading to the development of an iterative, automatic registration algorithm that uses parabolic prediction of the new minimum. The registration algorithm converges quickly (less than 1 second on a MicroVAX) and is relatively immune to the region of interest (ROI) selected.

  9. WE-AB-BRA-12: Post-Implant Dosimetry in Prostate Brachytherapy by X-Ray and MRI Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Song, D; Lee, J

    Purpose: For post-implant dosimetric assessment after prostate brachytherapy, CT-MR fusion approach has been advocated due to the superior accuracy on both seeds localization and soft tissue delineation. However, CT deposits additional radiation to the patient, and seed identification in CT requires manual review and correction. In this study, we propose an accurate, low-dose, and cost-effective post-implant dosimetry approach based on X-ray and MRI. Methods: Implanted seeds are reconstructed using only three X-ray fluoroscopy images by solving a combinatorial optimization problem. The reconstructed seeds are then registered to MR images using an intensity-based points-to-volume registration. MR images are first pre-processed bymore » geometric and Gaussian filtering, yielding smooth candidate seed-only images. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine followed by local deformable registrations. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. Results: We tested our algorithm on twenty patient data sets. For quantitative evaluation, we obtained ground truth seed positions by fusing the post-implant CT-MR images. Seeds were semi-automatically extracted from CT and manually corrected and then registered to the MR images. Target registration error (TRE) was computed by measuring the Euclidean distances from the ground truth to the closest registered X-ray seeds. The overall TREs (mean±standard deviation in mm) are 1.6±1.1 (affine) and 1.3±0.8 (affine+deformable). The overall computation takes less than 1 minute. Conclusion: It has been reported that the CT-based seed localization error is ∼1.6mm and the seed localization uncertainty of 2mm results in less than 5% deviation of prostate D90. The average error of 1.3mm with our system outperforms the CT-based approach and is considered well within the clinically acceptable limit. Supported in part by NIH/NCI grant 5R01CA151395. The X-ray-based implant reconstruction method (US patent No. 8,233,686) was licensed to Acoustic MedSystems Inc.« less

  10. A statistical motion model based on biomechanical simulations for data fusion during image-guided prostate interventions.

    PubMed

    Hu, Yipeng; Morgan, Dominic; Ahmed, Hashim Uddin; Pendsé, Doug; Sahu, Mahua; Allen, Clare; Emberton, Mark; Hawkes, David; Barratt, Dean

    2008-01-01

    A method is described for generating a patient-specific, statistical motion model (SMM) of the prostate gland. Finite element analysis (FEA) is used to simulate the motion of the gland using an ultrasound-based 3D FE model over a range of plausible boundary conditions and soft-tissue properties. By applying principal component analysis to the displacements of the FE mesh node points inside the gland, the simulated deformations are then used as training data to construct the SMM. The SMM is used to both predict the displacement field over the whole gland and constrain a deformable surface registration algorithm, given only a small number of target points on the surface of the deformed gland. Using 3D transrectal ultrasound images of the prostates of five patients, acquired before and after imposing a physical deformation, to evaluate the accuracy of predicted landmark displacements, the mean target registration error was found to be less than 1.9 mm.

  11. Cost-effective surgical registration using consumer depth cameras

    NASA Astrophysics Data System (ADS)

    Potter, Michael; Yaniv, Ziv

    2016-03-01

    The high costs associated with technological innovation have been previously identified as both a major contributor to the rise of health care expenses, and as a limitation for widespread adoption of new technologies. In this work we evaluate the use of two consumer grade depth cameras, the Microsoft Kinect v1 and 3DSystems Sense, as a means for acquiring point clouds for registration. These devices have the potential to replace professional grade laser range scanning devices in medical interventions that do not require sub-millimetric registration accuracy, and may do so at a significantly reduced cost. To facilitate the use of these devices we have developed a near real-time (1-4 sec/frame) rigid registration framework combining several alignment heuristics with the Iterative Closest Point (ICP) algorithm. Using nearest neighbor registration error as our evaluation criterion we found the optimal scanning distances for the Sense and Kinect to be 50-60cm and 70-80cm respectively. When imaging a skull phantom at these distances, RMS error values of 1.35mm and 1.14mm were obtained. The registration framework was then evaluated using cranial MR scans of two subjects. For the first subject, the RMS error using the Sense was 1.28 +/- 0.01 mm. Using the Kinect this error was 1.24 +/- 0.03 mm. For the second subject, whose MR scan was significantly corrupted by metal implants, the errors increased to 1.44 +/- 0.03 mm and 1.74 +/- 0.06 mm but the system nonetheless performed within acceptable bounds.

  12. Performance Evaluation of MIND Demons Deformable Registration of MR and CT Images in Spinal Interventions

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation [1.3 ± 0.8 mm (median ± interquartile)] outperformed the asymmetric form [3.6 ± 4.4 mm]. The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3 – 2.9 mm for MR slice thickness ranging 0.9 – 9.9 mm, compared to TRE = 3.2 – 4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (< 2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery. PMID:27811396

  13. Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions.

    PubMed

    Reaungamornrat, S; De Silva, T; Uneri, A; Goerres, J; Jacobson, M; Ketcha, M; Vogt, S; Kleinszig, G; Khanna, A J; Wolinsky, J-P; Prince, J L; Siewerdsen, J H

    2016-12-07

    Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation (1.3  ±  0.8 mm (median  ±  interquartile)) outperformed the asymmetric form (3.6  ±  4.4 mm). The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3-2.9 mm for MR slice thickness ranging 0.9-9.9 mm, compared to TRE  =  3.2-4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (<2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery.

  14. Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Prince, J. L.; Siewerdsen, J. H.

    2016-12-01

    Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation (1.3  ±  0.8 mm (median  ±  interquartile)) outperformed the asymmetric form (3.6  ±  4.4 mm). The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3-2.9 mm for MR slice thickness ranging 0.9-9.9 mm, compared to TRE  =  3.2-4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (<2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery.

  15. Depth-resolved registration of transesophageal echo to x-ray fluoroscopy using an inverse geometry fluoroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.

    2015-12-15

    Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using amore » 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on real-time implementation and application-specific analysis.« less

  16. Intrinsic coincident linear polarimetry using stacked organic photovoltaics.

    PubMed

    Roy, S Gupta; Awartani, O M; Sen, P; O'Connor, B T; Kudenov, M W

    2016-06-27

    Polarimetry has widespread applications within atmospheric sensing, telecommunications, biomedical imaging, and target detection. Several existing methods of imaging polarimetry trade off the sensor's spatial resolution for polarimetric resolution, and often have some form of spatial registration error. To mitigate these issues, we have developed a system using oriented polymer-based organic photovoltaics (OPVs) that can preferentially absorb linearly polarized light. Additionally, the OPV cells can be made semitransparent, enabling multiple detectors to be cascaded along the same optical axis. Since each device performs a partial polarization measurement of the same incident beam, high temporal resolution is maintained with the potential for inherent spatial registration. In this paper, a Mueller matrix model of the stacked OPV design is provided. Based on this model, a calibration technique is developed and presented. This calibration technique and model are validated with experimental data, taken with a cascaded three cell OPV Stokes polarimeter, capable of measuring incident linear polarization states. Our results indicate polarization measurement error of 1.2% RMS and an average absolute radiometric accuracy of 2.2% for the demonstrated polarimeter.

  17. Three-dimensional registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation.

    PubMed

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Brandt, Eric; Wen, Di; van Ditzhuijzen, Nienke S; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Alian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G; Wilson, David L

    2016-04-01

    Evidence suggests high-resolution, high-contrast, [Formula: see text] intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and three-dimensional (3-D) registration methods to provide validation of IVOCT pullback volumes using microscopic, color, and fluorescent cryo-image volumes with optional registered cryo-histology. A specialized registration method matched IVOCT pullback images acquired in the catheter reference frame to a true 3-D cryo-image volume. Briefly, an 11-parameter registration model including a polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Multiple assessments suggested that the registration error was better than the [Formula: see text] spacing between IVOCT image frames. Tests on a digital synthetic phantom gave a registration error of only [Formula: see text] (signed distance). Visual assessment of randomly presented nearby frames suggested registration accuracy within 1 IVOCT frame interval ([Formula: see text]). This would eliminate potential misinterpretations confronted by the typical histological approaches to validation, with estimated 1-mm errors. The method can be used to create annotated datasets and automated plaque classification methods and can be extended to other intravascular imaging modalities.

  18. Deformable registration of CT and cone-beam CT with local intensity matching.

    PubMed

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-07

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  19. Deformable registration of CT and cone-beam CT with local intensity matching

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-01

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  20. Effects of minute misregistrations of prefabricated markers for image-guided dental implant surgery: an analytical evaluation.

    PubMed

    Rußig, Lorenz L; Schulze, Ralf K W

    2013-12-01

    The goal of the present study was to develop a theoretical analysis of errors in implant position, which can occur owing to minute registration errors of a reference marker in a cone beam computed tomography volume when inserting an implant with a surgical stent. A virtual dental-arch model was created using anatomic data derived from the literature. Basic trigonometry was used to compute effects of defined minute registration errors of only voxel size. The errors occurring at the implant's neck and apex both in horizontal as in vertical direction were computed for mean ±95%-confidence intervals of jaw width and length and typical implant lengths (8, 10 and 12 mm). Largest errors occur in vertical direction for larger voxel sizes and for greater arch dimensions. For a 10 mm implant in the frontal region, these can amount to a mean of 0.716 mm (range: 0.201-1.533 mm). Horizontal errors at the neck are negligible, with a mean overall deviation of 0.009 mm (range: 0.001-0.034 mm). Errors increase with distance to the registration marker and voxel size and are affected by implant length. Our study shows that minute and realistic errors occurring in the automated registration of a reference object have an impact on the implant's position and angulation. These errors occur in the fundamental initial step in the long planning chain; thus, they are critical and should be made aware to users of these systems. © 2012 John Wiley & Sons A/S.

  1. The hidden KPI registration accuracy.

    PubMed

    Shorrosh, Paul

    2011-09-01

    Determining the registration accuracy rate is fundamental to improving revenue cycle key performance indicators. A registration quality assurance (QA) process allows errors to be corrected before bills are sent and helps registrars learn from their mistakes. Tools are available to help patient access staff who perform registration QA manually.

  2. Image navigation and registration performance assessment tool set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Astrophysics Data System (ADS)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-05-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99. 73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  3. Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  4. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  5. A hybrid patient-specific biomechanical model based image registration method for the motion estimation of lungs.

    PubMed

    Han, Lianghao; Dong, Hua; McClelland, Jamie R; Han, Liangxiu; Hawkes, David J; Barratt, Dean C

    2017-07-01

    This paper presents a new hybrid biomechanical model-based non-rigid image registration method for lung motion estimation. In the proposed method, a patient-specific biomechanical modelling process captures major physically realistic deformations with explicit physical modelling of sliding motion, whilst a subsequent non-rigid image registration process compensates for small residuals. The proposed algorithm was evaluated with 10 4D CT datasets of lung cancer patients. The target registration error (TRE), defined as the Euclidean distance of landmark pairs, was significantly lower with the proposed method (TRE = 1.37 mm) than with biomechanical modelling (TRE = 3.81 mm) and intensity-based image registration without specific considerations for sliding motion (TRE = 4.57 mm). The proposed method achieved a comparable accuracy as several recently developed intensity-based registration algorithms with sliding handling on the same datasets. A detailed comparison on the distributions of TREs with three non-rigid intensity-based algorithms showed that the proposed method performed especially well on estimating the displacement field of lung surface regions (mean TRE = 1.33 mm, maximum TRE = 5.3 mm). The effects of biomechanical model parameters (such as Poisson's ratio, friction and tissue heterogeneity) on displacement estimation were investigated. The potential of the algorithm in optimising biomechanical models of lungs through analysing the pattern of displacement compensation from the image registration process has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. 3D/2D model-to-image registration by imitation learning for cardiac procedures.

    PubMed

    Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter

    2018-05-12

    In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.

  7. MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system

    NASA Astrophysics Data System (ADS)

    Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.

  8. Validation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound: preliminary method and results

    NASA Astrophysics Data System (ADS)

    Clements, Logan W.; Collins, Jarrod A.; Wu, Yifei; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2015-03-01

    Soft tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface based metrics and sub-surface validation has largely been performed via phantom experiments. Tracked intraoperative ultrasound (iUS) provides a means to digitize sub-surface anatomical landmarks during clinical procedures. The proposed method involves the validation of a deformation correction algorithm for open hepatic image-guided surgery systems via sub-surface targets digitized with tracked iUS. Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for the purposes of computing the physical-to-image space registration within the guidance system and for use in retrospective deformation correction. Upon completion of surface digitization, the organ was interrogated with a tracked iUS transducer where the iUS images and corresponding tracked locations were recorded. After the procedure, the clinician reviewed the iUS images to delineate contours of anatomical target features for use in the validation procedure. Mean closest point distances between the feature contours delineated in the iUS images and corresponding 3-D anatomical model generated from the preoperative tomograms were computed to quantify the extent to which the deformation correction algorithm improved registration accuracy. The preliminary results for two patients indicate that the deformation correction method resulted in a reduction in target error of approximately 50%.

  9. Simultaneous Nonrigid Registration, Segmentation, and Tumor Detection in MRI Guided Cervical Cancer Radiation Therapy

    PubMed Central

    Lu, Chao; Chelikani, Sudhakar; Jaffray, David A.; Milosevic, Michael F.; Staib, Lawrence H.; Duncan, James S.

    2013-01-01

    External beam radiation therapy (EBRT) for the treatment of cancer enables accurate placement of radiation dose on the cancerous region. However, the deformation of soft tissue during the course of treatment, such as in cervical cancer, presents significant challenges for the delineation of the target volume and other structures of interest. Furthermore, the presence and regression of pathologies such as tumors may violate registration constraints and cause registration errors. In this paper, automatic segmentation, nonrigid registration and tumor detection in cervical magnetic resonance (MR) data are addressed simultaneously using a unified Bayesian framework. The proposed novel method can generate a tumor probability map while progressively identifying the boundary of an organ of interest based on the achieved nonrigid transformation. The method is able to handle the challenges of significant tumor regression and its effect on surrounding tissues. The new method was compared to various currently existing algorithms on a set of 36 MR data from six patients, each patient has six T2-weighted MR cervical images. The results show that the proposed approach achieves an accuracy comparable to manual segmentation and it significantly outperforms the existing registration algorithms. In addition, the tumor detection result generated by the proposed method has a high agreement with manual delineation by a qualified clinician. PMID:22328178

  10. Non-rigid registration for fusion of carotid vascular ultrasound and MRI volumetric datasets

    NASA Astrophysics Data System (ADS)

    Chan, R. C.; Sokka, S.; Hinton, D.; Houser, S.; Manzke, R.; Hanekamp, A.; Reddy, V. Y.; Kaazempur-Mofrad, M. R.; Rasche, V.

    2006-03-01

    In carotid plaque imaging, MRI provides exquisite soft-tissue characterization, but lacks the temporal resolution for tissue strain imaging that real-time 3D ultrasound (3DUS) can provide. On the other hand, real-time 3DUS currently lacks the spatial resolution of carotid MRI. Non-rigid alignment of ultrasound and MRI data is essential for integrating complementary morphology and biomechanical information for carotid vascular assessment. We assessed non-rigid registration for fusion of 3DUS and MRI carotid data based on deformable models which are warped to maximize voxel similarity. We performed validation in vitro using isolated carotid artery imaging. These samples were subjected to soft-tissue deformations during 3DUS and were imaged in a static configuration with standard MR carotid pulse sequences. Registration of the source ultrasound sequences to the target MR volume was performed and the mean absolute distance between fiducials within the ultrasound and MR datasets was measured to determine inter-modality alignment quality. Our results indicate that registration errors on the order of 1mm are possible in vitro despite the low-resolution of current generation 3DUS transducers. Registration performance should be further improved with the use of higher frequency 3DUS prototypes and efforts are underway to test those probes for in vivo 3DUS carotid imaging.

  11. TU-F-BRF-03: Effect of Radiation Therapy Planning Scan Registration On the Dose in Lung Cancer Patient CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunliffe, A; Contee, C; White, B

    Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps)more » using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used, spatial registration errors were larger, and dose gradient was higher (i.e., higher SD-dose). To our knowledge, this is the first study to directly compute dose errors following deformable registration of lung CT scans.« less

  12. Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein

    2009-09-15

    Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less

  13. Computed tomography lung iodine contrast mapping by image registration and subtraction

    NASA Astrophysics Data System (ADS)

    Goatman, Keith; Plakas, Costas; Schuijf, Joanne; Beveridge, Erin; Prokop, Mathias

    2014-03-01

    Pulmonary embolism (PE) is a relatively common and potentially life threatening disease, affecting around 600,000 people annually in the United States alone. Prompt treatment using anticoagulants is effective and saves lives, but unnecessary treatment risks life threatening haemorrhage. The specificity of any diagnostic test for PE is therefore as important as its sensitivity. Computed tomography (CT) angiography is routinely used to diagnose PE. However, there are concerns it may over-report the condition. Additional information about the severity of an occlusion can be obtained from an iodine contrast map that represents tissue perfusion. Such maps tend to be derived from dual-energy CT acquisitions. However, they may also be calculated by subtracting pre- and post-contrast CT scans. Indeed, there are technical advantages to such a subtraction approach, including better contrast-to-noise ratio for the same radiation dose, and bone suppression. However, subtraction relies on accurate image registration. This paper presents a framework for the automatic alignment of pre- and post-contrast lung volumes prior to subtraction. The registration accuracy is evaluated for seven subjects for whom pre- and post-contrast helical CT scans were acquired using a Toshiba Aquilion ONE scanner. One hundred corresponding points were annotated on the pre- and post-contrast scans, distributed throughout the lung volume. Surface-to-surface error distances were also calculated from lung segmentations. Prior to registration the mean Euclidean landmark alignment error was 2.57mm (range 1.43-4.34 mm), and following registration the mean error was 0.54mm (range 0.44-0.64 mm). The mean surface error distance was 1.89mm before registration and 0.47mm after registration. There was a commensurate reduction in visual artefacts following registration. In conclusion, a framework for pre- and post-contrast lung registration has been developed that is sufficiently accurate for lung subtraction iodine mapping.

  14. Correlation and registration of ERTS multispectral imagery. [by a digital processing technique

    NASA Technical Reports Server (NTRS)

    Bonrud, L. O.; Henrikson, P. J.

    1974-01-01

    Examples of automatic digital processing demonstrate the feasibility of registering one ERTS multispectral scanner (MSS) image with another obtained on a subsequent orbit, and automatic matching, correlation, and registration of MSS imagery with aerial photography (multisensor correlation) is demonstrated. Excellent correlation was obtained with patch sizes exceeding 16 pixels square. Qualities which lead to effective control point selection are distinctive features, good contrast, and constant feature characteristics. Results of the study indicate that more than 300 degrees of freedom are required to register two standard ERTS-1 MSS frames covering 100 by 100 nautical miles to an accuracy of 0.6 pixel mean radial displacement error. An automatic strip processing technique demonstrates 600 to 1200 degrees of freedom over a quater frame of ERTS imagery. Registration accuracies in the range of 0.3 pixel to 0.5 pixel mean radial error were confirmed by independent error analysis. Accuracies in the range of 0.5 pixel to 1.4 pixel mean radial error were demonstrated by semi-automatic registration over small geographic areas.

  15. A comparative study between evaluation methods for quality control procedures for determining the accuracy of PET/CT registration

    NASA Astrophysics Data System (ADS)

    Cha, Min Kyoung; Ko, Hyun Soo; Jung, Woo Young; Ryu, Jae Kwang; Choe, Bo-Young

    2015-08-01

    The Accuracy of registration between positron emission tomography (PET) and computed tomography (CT) images is one of the important factors for reliable diagnosis in PET/CT examinations. Although quality control (QC) for checking alignment of PET and CT images should be performed periodically, the procedures have not been fully established. The aim of this study is to determine optimal quality control (QC) procedures that can be performed at the user level to ensure the accuracy of PET/CT registration. Two phantoms were used to carry out this study: the American college of Radiology (ACR)-approved PET phantom and National Electrical Manufacturers Association (NEMA) International Electrotechnical Commission (IEC) body phantom, containing fillable spheres. All PET/CT images were acquired on a Biograph TruePoint 40 PET/CT scanner using routine protocols. To measure registration error, the spatial coordinates of the estimated centers of the target slice (spheres) was calculated independently for the PET and the CT images in two ways. We compared the images from the ACR-approved PET phantom to that from the NEMA IEC body phantom. Also, we measured the total time required from phantom preparation to image analysis. The first analysis method showed a total difference of 0.636 ± 0.11 mm for the largest hot sphere and 0.198 ± 0.09 mm for the largest cold sphere in the case of the ACR-approved PET phantom. In the NEMA IEC body phantom, the total difference was 3.720 ± 0.97 mm for the largest hot sphere and 4.800 ± 0.85 mm for the largest cold sphere. The second analysis method showed that the differences in the x location at the line profile of the lesion on PET and CT were (1.33, 1.33) mm for a bone lesion, (-1.26, -1.33) mm for an air lesion and (-1.67, -1.60) mm for a hot sphere lesion for the ACR-approved PET phantom. For the NEMA IEC body phantom, the differences in the x location at the line profile of the lesion on PET and CT were (-1.33, 4.00) mm for the air lesion and (1.33, -1.29) mm for a hot sphere lesion. These registration errors from this study were reasonable compared to the errors reported in previous studies. Meanwhile, the total time required from phantom preparation was 67.72 ± 4.50 min for the ACR-approved PET phantom and 96.78 ± 8.50 min for the NEMA IEC body phantom. When the registration errors and the lead times are considered, the method using the ACR-approved PET phantom was more practical and useful than the method using the NEMA IEC body phantom.

  16. Preliminary GOES-R ABI navigation and registration assessment results

    NASA Astrophysics Data System (ADS)

    Tan, B.; Dellomo, J.; Wolfe, R. E.; Reth, A. D.

    2017-12-01

    The US Geostationary Operational Environmental Satellite - R Series (GOES-R) was launched on November 19, 2016, and was designated GOESR-16 upon reaching geostationary orbit ten days later. The Advanced Baseline Imager (ABI) is the primary instrument on the GOES-R series for imaging Earth's surface and atmosphere to aid in weather prediction and climate monitoring. We developed algorithms and software for independent verification of the ABI Image Navigation and Registration (INR). Since late January 2017, four INR metrics have been continuously generated to monitor the ABI INR performance: navigation (NAV) error, channel-to-channel registration (CCR) error, frame-to-frame registration (FFR) error, and within-frame registration (WIFR) error. In this paper, we will describe the fundamental algorithm used for the image registration and briefly discuss the processing flow of INR Performance Assessment Tool Set (IPATS) developed for ABI INR. The assessment of the accuracy shows that IPATS measurements error is about 1/20 of the size of a pixel. Then the GOES-16 NAV assessments results, the primary metric, from January to August 2017, will be presented. The INR has improved over time as post-launch tests were performed and corrections were applied. The mean NAV error of the visible and near infrared (VNIR) channels dropped from 20 μrad in January to around 5 μrad (+/-4 μrad, 1 σ) in June, while the mean NAV error of long wave infrared (LWIR) channels dropped from around 70 μrad in January to around 5 μrad (+/-15 μrad, 1 σ) in June. A full global ABI image is composed with 22 east-west direction swaths. The swath-wise NAV error analysis shows that there was some variation in the mean swath-wise NAV errors. The variations are about as much as 20% of the scene NAV mean errors. As expected, the swaths over the tropical area have far fewer valid assessments (matchups) than those in mid-latitude region due to cloud coverage. It was also found that there was a rotation (clocking) of the focal plane of LWIR that was seen in both the NAV and CCR results. The rotation was corrected by an INR update in June 2017. Through deep-dive examinations of the scenes with large mean and/or variation in INR errors, we validated that IPATS is an excellent tool for assessing and improving the GOES-16 ABI INR and is also useful in INR long-term monitoring.

  17. Automatic image fusion of real-time ultrasound with computed tomography images: a prospective comparison between two auto-registration methods.

    PubMed

    Cha, Dong Ik; Lee, Min Woo; Kim, Ah Yeong; Kang, Tae Wook; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-11-01

    Background A major drawback of conventional manual image fusion is that the process may be complex, especially for less-experienced operators. Recently, two automatic image fusion techniques called Positioning and Sweeping auto-registration have been developed. Purpose To compare the accuracy and required time for image fusion of real-time ultrasonography (US) and computed tomography (CT) images between Positioning and Sweeping auto-registration. Material and Methods Eighteen consecutive patients referred for planning US for radiofrequency ablation or biopsy for focal hepatic lesions were enrolled. Image fusion using both auto-registration methods was performed for each patient. Registration error, time required for image fusion, and number of point locks used were compared using the Wilcoxon signed rank test. Results Image fusion was successful in all patients. Positioning auto-registration was significantly faster than Sweeping auto-registration for both initial (median, 11 s [range, 3-16 s] vs. 32 s [range, 21-38 s]; P < 0.001] and complete (median, 34.0 s [range, 26-66 s] vs. 47.5 s [range, 32-90]; P = 0.001] image fusion. Registration error of Positioning auto-registration was significantly higher for initial image fusion (median, 38.8 mm [range, 16.0-84.6 mm] vs. 18.2 mm [6.7-73.4 mm]; P = 0.029), but not for complete image fusion (median, 4.75 mm [range, 1.7-9.9 mm] vs. 5.8 mm [range, 2.0-13.0 mm]; P = 0.338]. Number of point locks required to refine the initially fused images was significantly higher with Positioning auto-registration (median, 2 [range, 2-3] vs. 1 [range, 1-2]; P = 0.012]. Conclusion Positioning auto-registration offers faster image fusion between real-time US and pre-procedural CT images than Sweeping auto-registration. The final registration error is similar between the two methods.

  18. Optimal full motion video registration with rigorous error propagation

    NASA Astrophysics Data System (ADS)

    Dolloff, John; Hottel, Bryant; Doucette, Peter; Theiss, Henry; Jocher, Glenn

    2014-06-01

    Optimal full motion video (FMV) registration is a crucial need for the Geospatial community. It is required for subsequent and optimal geopositioning with simultaneous and reliable accuracy prediction. An overall approach being developed for such registration is presented that models relevant error sources in terms of the expected magnitude and correlation of sensor errors. The corresponding estimator is selected based on the level of accuracy of the a priori information of the sensor's trajectory and attitude (pointing) information, in order to best deal with non-linearity effects. Estimator choices include near real-time Kalman Filters and batch Weighted Least Squares. Registration solves for corrections to the sensor a priori information for each frame. It also computes and makes available a posteriori accuracy information, i.e., the expected magnitude and correlation of sensor registration errors. Both the registered sensor data and its a posteriori accuracy information are then made available to "down-stream" Multi-Image Geopositioning (MIG) processes. An object of interest is then measured on the registered frames and a multi-image optimal solution, including reliable predicted solution accuracy, is then performed for the object's 3D coordinates. This paper also describes a robust approach to registration when a priori information of sensor attitude is unavailable. It makes use of structure-from-motion principles, but does not use standard Computer Vision techniques, such as estimation of the Essential Matrix which can be very sensitive to noise. The approach used instead is a novel, robust, direct search-based technique.

  19. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.

    PubMed

    Yan, Hui; Dai, Jian-Rong

    2016-03-08

    Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two-dimensional kV projections covering a narrow scan angles. Comparing with conventional cone-beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic process-ing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone-beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU-based algorithm and CPU-based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU-based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU-based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU-based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy.

  20. Deformable registration of the inflated and deflated lung in cone-beam CT-guided thoracic surgery: Initial investigation of a combined model- and image-driven approach

    PubMed Central

    Uneri, Ali; Nithiananthan, Sajendra; Schafer, Sebastian; Otake, Yoshito; Stayman, J. Webster; Kleinszig, Gerhard; Sussman, Marc S.; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2013-01-01

    Purpose: Surgical resection is the preferred modality for curative treatment of early stage lung cancer, but localization of small tumors (<10 mm diameter) during surgery presents a major challenge that is likely to increase as more early-stage disease is detected incidentally and in low-dose CT screening. To overcome the difficulty of manual localization (fingers inserted through intercostal ports) and the cost, logistics, and morbidity of preoperative tagging (coil or dye placement under CT-fluoroscopy), the authors propose the use of intraoperative cone-beam CT (CBCT) and deformable image registration to guide targeting of small tumors in video-assisted thoracic surgery (VATS). A novel algorithm is reported for registration of the lung from its inflated state (prior to pleural breach) to the deflated state (during resection) to localize surgical targets and adjacent critical anatomy. Methods: The registration approach geometrically resolves images of the inflated and deflated lung using a coarse model-driven stage followed by a finer image-driven stage. The model-driven stage uses image features derived from the lung surfaces and airways: triangular surface meshes are morphed to capture bulk motion; concurrently, the airways generate graph structures from which corresponding nodes are identified. Interpolation of the sparse motion fields computed from the bounding surface and interior airways provides a 3D motion field that coarsely registers the lung and initializes the subsequent image-driven stage. The image-driven stage employs an intensity-corrected, symmetric form of the Demons method. The algorithm was validated over 12 datasets, obtained from porcine specimen experiments emulating CBCT-guided VATS. Geometric accuracy was quantified in terms of target registration error (TRE) in anatomical targets throughout the lung, and normalized cross-correlation. Variations of the algorithm were investigated to study the behavior of the model- and image-driven stages by modifying individual algorithmic steps and examining the effect in comparison to the nominal process. Results: The combined model- and image-driven registration process demonstrated accuracy consistent with the requirements of minimally invasive VATS in both target localization (∼3–5 mm within the target wedge) and critical structure avoidance (∼1–2 mm). The model-driven stage initialized the registration to within a median TRE of 1.9 mm (95% confidence interval (CI) maximum = 5.0 mm), while the subsequent image-driven stage yielded higher accuracy localization with 0.6 mm median TRE (95% CI maximum = 4.1 mm). The variations assessing the individual algorithmic steps elucidated the role of each step and in some cases identified opportunities for further simplification and improvement in computational speed. Conclusions: The initial studies show the proposed registration method to successfully register CBCT images of the inflated and deflated lung. Accuracy appears sufficient to localize the target and adjacent critical anatomy within ∼1–2 mm and guide localization under conditions in which the target cannot be discerned directly in CBCT (e.g., subtle, nonsolid tumors). The ability to directly localize tumors in the operating room could provide a valuable addition to the VATS arsenal, obviate the cost, logistics, and morbidity of preoperative tagging, and improve patient safety. Future work includes in vivo testing, optimization of workflow, and integration with a CBCT image guidance system. PMID:23298134

  1. Deformable registration of the inflated and deflated lung in cone-beam CT-guided thoracic surgery: initial investigation of a combined model- and image-driven approach.

    PubMed

    Uneri, Ali; Nithiananthan, Sajendra; Schafer, Sebastian; Otake, Yoshito; Stayman, J Webster; Kleinszig, Gerhard; Sussman, Marc S; Prince, Jerry L; Siewerdsen, Jeffrey H

    2013-01-01

    Surgical resection is the preferred modality for curative treatment of early stage lung cancer, but localization of small tumors (<10 mm diameter) during surgery presents a major challenge that is likely to increase as more early-stage disease is detected incidentally and in low-dose CT screening. To overcome the difficulty of manual localization (fingers inserted through intercostal ports) and the cost, logistics, and morbidity of preoperative tagging (coil or dye placement under CT-fluoroscopy), the authors propose the use of intraoperative cone-beam CT (CBCT) and deformable image registration to guide targeting of small tumors in video-assisted thoracic surgery (VATS). A novel algorithm is reported for registration of the lung from its inflated state (prior to pleural breach) to the deflated state (during resection) to localize surgical targets and adjacent critical anatomy. The registration approach geometrically resolves images of the inflated and deflated lung using a coarse model-driven stage followed by a finer image-driven stage. The model-driven stage uses image features derived from the lung surfaces and airways: triangular surface meshes are morphed to capture bulk motion; concurrently, the airways generate graph structures from which corresponding nodes are identified. Interpolation of the sparse motion fields computed from the bounding surface and interior airways provides a 3D motion field that coarsely registers the lung and initializes the subsequent image-driven stage. The image-driven stage employs an intensity-corrected, symmetric form of the Demons method. The algorithm was validated over 12 datasets, obtained from porcine specimen experiments emulating CBCT-guided VATS. Geometric accuracy was quantified in terms of target registration error (TRE) in anatomical targets throughout the lung, and normalized cross-correlation. Variations of the algorithm were investigated to study the behavior of the model- and image-driven stages by modifying individual algorithmic steps and examining the effect in comparison to the nominal process. The combined model- and image-driven registration process demonstrated accuracy consistent with the requirements of minimally invasive VATS in both target localization (∼3-5 mm within the target wedge) and critical structure avoidance (∼1-2 mm). The model-driven stage initialized the registration to within a median TRE of 1.9 mm (95% confidence interval (CI) maximum = 5.0 mm), while the subsequent image-driven stage yielded higher accuracy localization with 0.6 mm median TRE (95% CI maximum = 4.1 mm). The variations assessing the individual algorithmic steps elucidated the role of each step and in some cases identified opportunities for further simplification and improvement in computational speed. The initial studies show the proposed registration method to successfully register CBCT images of the inflated and deflated lung. Accuracy appears sufficient to localize the target and adjacent critical anatomy within ∼1-2 mm and guide localization under conditions in which the target cannot be discerned directly in CBCT (e.g., subtle, nonsolid tumors). The ability to directly localize tumors in the operating room could provide a valuable addition to the VATS arsenal, obviate the cost, logistics, and morbidity of preoperative tagging, and improve patient safety. Future work includes in vivo testing, optimization of workflow, and integration with a CBCT image guidance system.

  2. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Khanna, A. J.; Siewerdsen, J. H.

    2014-07-01

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation—namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation ({ D} = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear ({ S} = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively). Target registration error (TRE) was similarly improved for FFD+OC+IC (0.7 mm), compared to 1.4 and 1.8 mm for uFFD and Demons. Results were validated in human cadaver studies using CT and CBCT images, with FFD+OC+IC providing excellent preservation of rigid morphology and equivalent or improved TRE. The approach therefore overcomes distortions intrinsic to uFFD and could better facilitate high-precision IGSS.

  3. Patient identification using a near-infrared laser scanner

    NASA Astrophysics Data System (ADS)

    Manit, Jirapong; Bremer, Christina; Schweikard, Achim; Ernst, Floris

    2017-03-01

    We propose a new biometric approach where the tissue thickness of a person's forehead is used as a biometric feature. Given that the spatial registration of two 3D laser scans of the same human face usually produces a low error value, the principle of point cloud registration and its error metric can be applied to human classification techniques. However, by only considering the spatial error, it is not possible to reliably verify a person's identity. We propose to use a novel near-infrared laser-based head tracking system to determine an additional feature, the tissue thickness, and include this in the error metric. Using MRI as a ground truth, data from the foreheads of 30 subjects was collected from which a 4D reference point cloud was created for each subject. The measurements from the near-infrared system were registered with all reference point clouds using the ICP algorithm. Afterwards, the spatial and tissue thickness errors were extracted, forming a 2D feature space. For all subjects, the lowest feature distance resulted from the registration of a measurement and the reference point cloud of the same person. The combined registration error features yielded two clusters in the feature space, one from the same subject and another from the other subjects. When only the tissue thickness error was considered, these clusters were less distinct but still present. These findings could help to raise safety standards for head and neck cancer patients and lays the foundation for a future human identification technique.

  4. Phantom study and accuracy evaluation of an image-to-world registration approach used with electro-magnetic tracking system for neurosurgery

    NASA Astrophysics Data System (ADS)

    Li, Senhu; Sarment, David

    2015-12-01

    Minimally invasive neurosurgery needs intraoperative imaging updates and high efficient image guide system to facilitate the procedure. An automatic image guided system utilized with a compact and mobile intraoperative CT imager was introduced in this work. A tracking frame that can be easily attached onto the commercially available skull clamp was designed. With known geometry of fiducial and tracking sensor arranged on this rigid frame that was fabricated through high precision 3D printing, not only was an accurate, fully automatic registration method developed in a simple and less-costly approach, but also it helped in estimating the errors from fiducial localization in image space through image processing, and in patient space through the calibration of tracking frame. Our phantom study shows the fiducial registration error as 0.348+/-0.028mm, comparing the manual registration error as 1.976+/-0.778mm. The system in this study provided a robust and accurate image-to-patient registration without interruption of routine surgical workflow and any user interactions involved through the neurosurgery.

  5. Discriminative confidence estimation for probabilistic multi-atlas label fusion.

    PubMed

    Benkarim, Oualid M; Piella, Gemma; González Ballester, Miguel Angel; Sanroma, Gerard

    2017-12-01

    Quantitative neuroimaging analyses often rely on the accurate segmentation of anatomical brain structures. In contrast to manual segmentation, automatic methods offer reproducible outputs and provide scalability to study large databases. Among existing approaches, multi-atlas segmentation has recently shown to yield state-of-the-art performance in automatic segmentation of brain images. It consists in propagating the labelmaps from a set of atlases to the anatomy of a target image using image registration, and then fusing these multiple warped labelmaps into a consensus segmentation on the target image. Accurately estimating the contribution of each atlas labelmap to the final segmentation is a critical step for the success of multi-atlas segmentation. Common approaches to label fusion either rely on local patch similarity, probabilistic statistical frameworks or a combination of both. In this work, we propose a probabilistic label fusion framework based on atlas label confidences computed at each voxel of the structure of interest. Maximum likelihood atlas confidences are estimated using a supervised approach, explicitly modeling the relationship between local image appearances and segmentation errors produced by each of the atlases. We evaluate different spatial pooling strategies for modeling local segmentation errors. We also present a novel type of label-dependent appearance features based on atlas labelmaps that are used during confidence estimation to increase the accuracy of our label fusion. Our approach is evaluated on the segmentation of seven subcortical brain structures from the MICCAI 2013 SATA Challenge dataset and the hippocampi from the ADNI dataset. Overall, our results indicate that the proposed label fusion framework achieves superior performance to state-of-the-art approaches in the majority of the evaluated brain structures and shows more robustness to registration errors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bilateral filter regularized accelerated Demons for improved discontinuity preserving registration.

    PubMed

    Demirović, D; Šerifović-Trbalić, A; Prljača, N; Cattin, Ph C

    2015-03-01

    The classical accelerated Demons algorithm uses Gaussian smoothing to penalize oscillatory motion in the displacement fields during registration. This well known method uses the L2 norm for regularization. Whereas the L2 norm is known for producing well behaving smooth deformation fields it cannot properly deal with discontinuities often seen in the deformation field as the regularizer cannot differentiate between discontinuities and smooth part of motion field. In this paper we propose replacement the Gaussian filter of the accelerated Demons with a bilateral filter. In contrast the bilateral filter not only uses information from displacement field but also from the image intensities. In this way we can smooth the motion field depending on image content as opposed to the classical Gaussian filtering. By proper adjustment of two tunable parameters one can obtain more realistic deformations in a case of discontinuity. The proposed approach was tested on 2D and 3D datasets and showed significant improvements in the Target Registration Error (TRE) for the well known POPI dataset. Despite the increased computational complexity, the improved registration result is justified in particular abdominal data sets where discontinuities often appear due to sliding organ motion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Direction-dependent regularization for improved estimation of liver and lung motion in 4D image data

    NASA Astrophysics Data System (ADS)

    Schmidt-Richberg, Alexander; Ehrhardt, Jan; Werner, René; Handels, Heinz

    2010-03-01

    The estimation of respiratory motion is a fundamental requisite for many applications in the field of 4D medical imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done using non-linear registration of time frames of the sequence without further modelling of physiological motion properties. In this context, the accurate calculation of liver und lung motion is especially challenging because the organs are slipping along the surrounding tissue (i.e. the rib cage) during the respiratory cycle, which leads to discontinuities in the motion field. Without incorporating this specific physiological characteristic, common smoothing mechanisms cause an incorrect estimation along the object borders. In this paper, we present an extended diffusion-based model for incorporating physiological knowledge in image registration. By decoupling normal- and tangential-directed smoothing, we are able to estimate slipping motion at the organ borders while preventing gaps and ensuring smooth motion fields inside. We evaluate our model for the estimation of lung and liver motion on the basis of publicly accessible 4D CT and 4D MRI data. The results show a considerable increase of registration accuracy with respect to the target registration error and a more plausible motion estimation.

  8. Stopping Criteria for Log-Domain Diffeomorphic Demons Registration: An Experimental Survey for Radiotherapy Application.

    PubMed

    Peroni, M; Golland, P; Sharp, G C; Baroni, G

    2016-02-01

    A crucial issue in deformable image registration is achieving a robust registration algorithm at a reasonable computational cost. Given the iterative nature of the optimization procedure an algorithm must automatically detect convergence, and stop the iterative process when most appropriate. This paper ranks the performances of three stopping criteria and six stopping value computation strategies for a Log-Domain Demons Deformable registration method simulating both a coarse and a fine registration. The analyzed stopping criteria are: (a) velocity field update magnitude, (b) mean squared error, and (c) harmonic energy. Each stoping condition is formulated so that the user defines a threshold ∊, which quantifies the residual error that is acceptable for the particular problem and calculation strategy. In this work, we did not aim at assigning a value to e, but to give insights in how to evaluate and to set the threshold on a given exit strategy in a very popular registration scheme. Experiments on phantom and patient data demonstrate that comparing the optimization metric minimum over the most recent three iterations with the minimum over the fourth to sixth most recent iterations can be an appropriate algorithm stopping strategy. The harmonic energy was found to provide best trade-off between robustness and speed of convergence for the analyzed registration method at coarse registration, but was outperformed by mean squared error when all the original pixel information is used. This suggests the need of developing mathematically sound new convergence criteria in which both image and vector field information could be used to detect the actual convergence, which could be especially useful when considering multi-resolution registrations. Further work should be also dedicated to study same strategies performances in other deformable registration methods and body districts. © The Author(s) 2014.

  9. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  10. Accuracy of surface registration compared to conventional volumetric registration in patient positioning for head-and-neck radiotherapy: A simulation study using patient data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjun; Li, Ruijiang; Na, Yong Hum

    2014-12-15

    Purpose: 3D optical surface imaging has been applied to patient positioning in radiation therapy (RT). The optical patient positioning system is advantageous over conventional method using cone-beam computed tomography (CBCT) in that it is radiation free, frameless, and is capable of real-time monitoring. While the conventional radiographic method uses volumetric registration, the optical system uses surface matching for patient alignment. The relative accuracy of these two methods has not yet been sufficiently investigated. This study aims to investigate the theoretical accuracy of the surface registration based on a simulation study using patient data. Methods: This study compares the relative accuracymore » of surface and volumetric registration in head-and-neck RT. The authors examined 26 patient data sets, each consisting of planning CT data acquired before treatment and patient setup CBCT data acquired at the time of treatment. As input data of surface registration, patient’s skin surfaces were created by contouring patient skin from planning CT and treatment CBCT. Surface registration was performed using the iterative closest points algorithm by point–plane closest, which minimizes the normal distance between source points and target surfaces. Six degrees of freedom (three translations and three rotations) were used in both surface and volumetric registrations and the results were compared. The accuracy of each method was estimated by digital phantom tests. Results: Based on the results of 26 patients, the authors found that the average and maximum root-mean-square translation deviation between the surface and volumetric registrations were 2.7 and 5.2 mm, respectively. The residual error of the surface registration was calculated to have an average of 0.9 mm and a maximum of 1.7 mm. Conclusions: Surface registration may lead to results different from those of the conventional volumetric registration. Only limited accuracy can be achieved for patient positioning with an approach based solely on surface information.« less

  11. Automatic Localization of Vertebral Levels in X-Ray Fluoroscopy Using 3D-2D Registration: A Tool to Reduce Wrong-Site Surgery

    PubMed Central

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-01-01

    Surgical targeting of the incorrect vertebral level (“wrong-level” surgery) is among the more common wrong-site surgical errors, attributed primarily to a lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. Conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error, and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (viz., CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved 10 patient CT datasets from which 50,000 simulated fluoroscopic images were generated from C-arm poses selected to approximate C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (viz., mPD < 5mm). Simulation studies showed a success rate of 99.998% (1 failure in 50,000 trials) and computation time of 4.7 sec on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond the specific case of vertebral labeling, since any structure defined in pre-operative (or intra-operative) CT or cone-beam CT can be automatically registered to the fluoroscopic scene. PMID:22864366

  12. MRI - 3D Ultrasound - X-ray Image Fusion with Electromagnetic Tracking for Transendocardial Therapeutic Injections: In-vitro Validation and In-vivo Feasibility

    PubMed Central

    Hatt, Charles R.; Jain, Ameet K.; Parthasarathy, Vijay; Lang, Andrew; Raval, Amish N.

    2014-01-01

    Myocardial infarction (MI) is one of the leading causes of death in the world. Small animal studies have shown that stem-cell therapy offers dramatic functional improvement post-MI. An endomyocardial catheter injection approach to therapeutic agent delivery has been proposed to improve efficacy through increased cell retention. Accurate targeting is critical for reaching areas of greatest therapeutic potential while avoiding a life-threatening myocardial perforation. Multimodal image fusion has been proposed as a way to improve these procedures by augmenting traditional intra-operative imaging modalities with high resolution pre-procedural images. Previous approaches have suffered from a lack of real-time tissue imaging and dependence on X-ray imaging to track devices, leading to increased ionizing radiation dose. In this paper, we present a new image fusion system for catheter-based targeted delivery of therapeutic agents. The system registers real-time 3D echocardiography, magnetic resonance, X-ray, and electromagnetic sensor tracking within a single flexible framework. All system calibrations and registrations were validated and found to have target registration errors less than 5 mm in the worst case. Injection accuracy was validated in a motion enabled cardiac injection phantom, where targeting accuracy ranged from 0.57 to 3.81 mm. Clinical feasibility was demonstrated with in-vivo swine experiments, where injections were successfully made into targeted regions of the heart. PMID:23561056

  13. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Ting; Kim, Sung; Goyal, Sharad

    2010-01-15

    Purpose: High-speed nonrigid registration between the planning CT and the treatment CBCT data is critical for real time image guided radiotherapy (IGRT) to improve the dose distribution and to reduce the toxicity to adjacent organs. The authors propose a new fully automatic 3D registration framework that integrates object-based global and seed constraints with the grayscale-based ''demons'' algorithm. Methods: Clinical objects were segmented on the planning CT images and were utilized as meshless deformable models during the nonrigid registration process. The meshless models reinforced a global constraint in addition to the grayscale difference between CT and CBCT in order to maintainmore » the shape and the volume of geometrically complex 3D objects during the registration. To expedite the registration process, the framework was stratified into hierarchies, and the authors used a frequency domain formulation to diffuse the displacement between the reference and the target in each hierarchy. Also during the registration of pelvis images, they replaced the air region inside the rectum with estimated pixel values from the surrounding rectal wall and introduced an additional seed constraint to robustly track and match the seeds implanted into the prostate. The proposed registration framework and algorithm were evaluated on 15 real prostate cancer patients. For each patient, prostate gland, seminal vesicle, bladder, and rectum were first segmented by a radiation oncologist on planning CT images for radiotherapy planning purpose. The same radiation oncologist also manually delineated the tumor volumes and critical anatomical structures in the corresponding CBCT images acquired at treatment. These delineated structures on the CBCT were only used as the ground truth for the quantitative validation, while structures on the planning CT were used both as the input to the registration method and the ground truth in validation. By registering the planning CT to the CBCT, a displacement map was generated. Segmented volumes in the CT images deformed using the displacement field were compared against the manual segmentations in the CBCT images to quantitatively measure the convergence of the shape and the volume. Other image features were also used to evaluate the overall performance of the registration. Results: The algorithm was able to complete the segmentation and registration process within 1 min, and the superimposed clinical objects achieved a volumetric similarity measure of over 90% between the reference and the registered data. Validation results also showed that the proposed registration could accurately trace the deformation inside the target volume with average errors of less than 1 mm. The method had a solid performance in registering the simulated images with up to 20 Hounsfield unit white noise added. Also, the side by side comparison with the original demons algorithm demonstrated its improved registration performance over the local pixel-based registration approaches. Conclusions: Given the strength and efficiency of the algorithm, the proposed method has significant clinical potential to accelerate and to improve the CBCT delineation and targets tracking in online IGRT applications.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rüegsegger, Michael B.; Steiner, Patrick; Kowal, Jens H., E-mail: jens.kowal@artorg.unibe.ch

    Purpose: External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). Methods: A prototype of a head-mounted device has been developedmore » for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. Results: Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. Conclusions: The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.« less

  15. A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damato, Antonio L., E-mail: adamato@lroc.harvard.edu; Viswanathan, Akila N.; Don, Sarah M.

    2014-10-15

    Purpose: To investigate the use of a system using electromagnetic tracking (EMT), post-processing and an error-detection algorithm for detecting errors and resolving uncertainties in high-dose-rate brachytherapy catheter digitization for treatment planning. Methods: EMT was used to localize 15 catheters inserted into a phantom using a stepwise acquisition technique. Five distinct acquisition experiments were performed. Noise associated with the acquisition was calculated. The dwell location configuration was extracted from the EMT data. A CT scan of the phantom was performed, and five distinct catheter digitization sessions were performed. No a priori registration of the CT scan coordinate system with the EMTmore » coordinate system was performed. CT-based digitization was automatically extracted from the brachytherapy plan DICOM files (CT), and rigid registration was performed between EMT and CT dwell positions. EMT registration error was characterized in terms of the mean and maximum distance between corresponding EMT and CT dwell positions per catheter. An algorithm for error detection and identification was presented. Three types of errors were systematically simulated: swap of two catheter numbers, partial swap of catheter number identification for parts of the catheters (mix), and catheter-tip shift. Error-detection sensitivity (number of simulated scenarios correctly identified as containing an error/number of simulated scenarios containing an error) and specificity (number of scenarios correctly identified as not containing errors/number of correct scenarios) were calculated. Catheter identification sensitivity (number of catheters correctly identified as erroneous across all scenarios/number of erroneous catheters across all scenarios) and specificity (number of catheters correctly identified as correct across all scenarios/number of correct catheters across all scenarios) were calculated. The mean detected and identified shift was calculated. Results: The maximum noise ±1 standard deviation associated with the EMT acquisitions was 1.0 ± 0.1 mm, and the mean noise was 0.6 ± 0.1 mm. Registration of all the EMT and CT dwell positions was associated with a mean catheter error of 0.6 ± 0.2 mm, a maximum catheter error of 0.9 ± 0.4 mm, a mean dwell error of 1.0 ± 0.3 mm, and a maximum dwell error of 1.3 ± 0.7 mm. Error detection and catheter identification sensitivity and specificity of 100% were observed for swap, mix and shift (≥2.6 mm for error detection; ≥2.7 mm for catheter identification) errors. A mean detected shift of 1.8 ± 0.4 mm and a mean identified shift of 1.9 ± 0.4 mm were observed. Conclusions: Registration of the EMT dwell positions to the CT dwell positions was possible with a residual mean error per catheter of 0.6 ± 0.2 mm and a maximum error for any dwell of 1.3 ± 0.7 mm. These low residual registration errors show that quality assurance of the general characteristics of the catheters and of possible errors affecting one specific dwell position is possible. The sensitivity and specificity of the catheter digitization verification algorithm was 100% for swap and mix errors and for shifts ≥2.6 mm. On average, shifts ≥1.8 mm were detected, and shifts ≥1.9 mm were detected and identified.« less

  16. SU-F-BRA-01: A Procedure for the Fast Semi-Automatic Localization of Catheters Using An Electromagnetic Tracker (EMT) for Image-Guided Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damato, A; Viswanathan, A; Cormack, R

    2015-06-15

    Purpose: To evaluate the feasibility of brachytherapy catheter localization through use of an EMT and 3D image set. Methods: A 15-catheter phantom mimicking an interstitial implantation was built and CT-scanned. Baseline catheter reconstruction was performed manually. An EMT was used to acquire the catheter coordinates in the EMT frame of reference. N user-identified catheter tips, without catheter number associations, were used to establish registration with the CT frame of reference. Two algorithms were investigated: brute-force registration (BFR), in which all possible permutation of N identified tips with the EMT tips were evaluated; and signature-based registration (SBR), in which a distancemore » matrix was used to generate a list of matching signatures describing possible N-point matches with the registration points. Digitization error (average of the distance between corresponding EMT and baseline dwell positions; average, standard deviation, and worst-case scenario over all possible registration-point selections) and algorithm inefficiency (maximum number of rigid registrations required to find the matching fusion for all possible selections of registration points) were calculated. Results: Digitization errors on average <2 mm were observed for N ≥5, with standard deviation <2 mm for N ≥6, and worst-case scenario error <2 mm for N ≥11. Algorithm inefficiencies were: N = 5, 32,760 (BFR) and 9900 (SBR); N = 6, 360,360 (BFR) and 21,660 (SBR); N = 11, 5.45*1010 (BFR) and 12 (SBR). Conclusion: A procedure was proposed for catheter reconstruction using EMT and only requiring user identification of catheter tips without catheter localization. Digitization errors <2 mm were observed on average with 5 or more registration points, and in any scenario with 11 or more points. Inefficiency for N = 11 was 9 orders of magnitude lower for SBR than for BFR. Funding: Kaye Family Award.« less

  17. Influence of the number of elongated fiducial markers on the localization accuracy of the prostate

    NASA Astrophysics Data System (ADS)

    de Boer, Johan; de Bois, Josien; van Herk, Marcel; Sonke, Jan-Jakob

    2012-10-01

    Implanting fiducial markers for localization purposes has become an accepted practice in radiotherapy for prostate cancer. While many correction strategies correct for translations only, advanced correction protocols also require knowledge of the rotation of the prostate. For this purpose, typically, three or more markers are implanted. Elongated fiducial markers provide more information about their orientation than traditional round or cylindrical markers. Potentially, fewer markers are required. In this study, we evaluate the effect of the number of elongated markers on the localization accuracy of the prostate. To quantify the localization error, we developed a model that estimates, at arbitrary locations in the prostate, the registration error caused by translational and rotational uncertainties of the marker registration. Every combination of one, two and three markers was analysed for a group of 24 patients. The average registration errors at the prostate surface were 0.3-0.8 mm and 0.4-1 mm for registrations on, respectively, three markers and two markers located on different sides of the prostate. Substantial registration errors (2.0-2.2 mm) occurred at the prostate surface contralateral to the markers when two markers were implanted on the same side of the prostate or only one marker was used. In conclusion, there is no benefit in using three elongated markers: two markers accurately localize the prostate if they are implanted at some distance from each other.

  18. Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Presles, Benoît, E-mail: benoit.presles@creatis.insa-lyon.fr; Rit, Simon; Sarrut, David

    2014-12-15

    Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computedmore » from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively. The latter are inferior to the interoperator registration variabilities which are of 2.5, 2.5, and 3.5 mm in LR, SI, and AP directions, respectively. Failures occur in 5%, 18%, and 10% of cases in LR, SI, and AP directions, respectively. 69% of the sessions have no failure. Conclusions: Results of the best proposed registration algorithm of 3D-TA-US images for postprostatectomy treatment have no bias and are in the same variability range as manual registration. As the algorithm requires a short computation time, it could be used in clinical practice provided that a visual review is performed.« less

  19. Evaluation of an Automatic Registration-Based Algorithm for Direct Measurement of Volume Change in Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Saradwata; Johnson, Timothy D.; Ma, Bing

    2012-07-01

    Purpose: Assuming that early tumor volume change is a biomarker for response to therapy, accurate quantification of early volume changes could aid in adapting an individual patient's therapy and lead to shorter clinical trials. We investigated an image registration-based approach for tumor volume change quantification that may more reliably detect smaller changes that occur in shorter intervals than can be detected by existing algorithms. Methods and Materials: Variance and bias of the registration-based approach were evaluated using retrospective, in vivo, very-short-interval diffusion magnetic resonance imaging scans where true zero tumor volume change is unequivocally known and synthetic data, respectively. Themore » interval scans were nonlinearly registered using two similarity measures: mutual information (MI) and normalized cross-correlation (NCC). Results: The 95% confidence interval of the percentage volume change error was (-8.93% to 10.49%) for MI-based and (-7.69%, 8.83%) for NCC-based registrations. Linear mixed-effects models demonstrated that error in measuring volume change increased with increase in tumor volume and decreased with the increase in the tumor's normalized mutual information, even when NCC was the similarity measure being optimized during registration. The 95% confidence interval of the relative volume change error for the synthetic examinations with known changes over {+-}80% of reference tumor volume was (-3.02% to 3.86%). Statistically significant bias was not demonstrated. Conclusion: A low-noise, low-bias tumor volume change measurement algorithm using nonlinear registration is described. Errors in change measurement were a function of tumor volume and the normalized mutual information content of the tumor.« less

  20. Registration of Laser Scanning Point Clouds and Aerial Images Using either Artificial or Natural Tie Features

    NASA Astrophysics Data System (ADS)

    Rönnholm, P.; Haggrén, H.

    2012-07-01

    Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was difficult causing also some tilt errors. The planimetric registration was accurate.

  1. Fast time-of-flight camera based surface registration for radiotherapy patient positioning.

    PubMed

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an "ICP only" strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07° ± 0.05°, respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the usage of a cost-effective off-the-shelf technology for surface acquisition. Further strategies to improve the registration accuracy are under development.

  2. Skull registration for prone patient position using tracked ultrasound

    NASA Astrophysics Data System (ADS)

    Underwood, Grace; Ungi, Tamas; Baum, Zachary; Lasso, Andras; Kronreif, Gernot; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Tracked navigation has become prevalent in neurosurgery. Problems with registration of a patient and a preoperative image arise when the patient is in a prone position. Surfaces accessible to optical tracking on the back of the head are unreliable for registration. We investigated the accuracy of surface-based registration using points accessible through tracked ultrasound. Using ultrasound allows access to bone surfaces that are not available through optical tracking. Tracked ultrasound could eliminate the need to work (i) under the table for registration and (ii) adjust the tracker between surgery and registration. In addition, tracked ultrasound could provide a non-invasive method in comparison to an alternative method of registration involving screw implantation. METHODS: A phantom study was performed to test the feasibility of tracked ultrasound for registration. An initial registration was performed to partially align the pre-operative computer tomography data and skull phantom. The initial registration was performed by an anatomical landmark registration. Surface points accessible by tracked ultrasound were collected and used to perform an Iterative Closest Point Algorithm. RESULTS: When the surface registration was compared to a ground truth landmark registration, the average TRE was found to be 1.6+/-0.1mm and the average distance of points off the skull surface was 0.6+/-0.1mm. CONCLUSION: The use of tracked ultrasound is feasible for registration of patients in prone position and eliminates the need to perform registration under the table. The translational component of error found was minimal. Therefore, the amount of TRE in registration is due to a rotational component of error.

  3. 40 CFR 68.160 - Registration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... purposes of correcting minor clerical errors, updating administrative information, providing missing data... substances handled in covered processes. (b) The registration shall include the following data: (1...

  4. 40 CFR 68.160 - Registration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... purposes of correcting minor clerical errors, updating administrative information, providing missing data... substances handled in covered processes. (b) The registration shall include the following data: (1...

  5. 40 CFR 68.160 - Registration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... purposes of correcting minor clerical errors, updating administrative information, providing missing data... substances handled in covered processes. (b) The registration shall include the following data: (1...

  6. Estimation of slipping organ motion by registration with direction-dependent regularization.

    PubMed

    Schmidt-Richberg, Alexander; Werner, René; Handels, Heinz; Ehrhardt, Jan

    2012-01-01

    Accurate estimation of respiratory motion is essential for many applications in medical 4D imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done by non-linear registration of image scans at different states of the breathing cycle but without further modeling of specific physiological motion properties. In this context, the accurate computation of respiration-driven lung motion is especially challenging because this organ is sliding along the surrounding tissue during the breathing cycle, leading to discontinuities in the motion field. Without considering this property in the registration model, common intensity-based algorithms cause incorrect estimation along the object boundaries. In this paper, we present a model for incorporating slipping motion in image registration. Extending the common diffusion registration by distinguishing between normal- and tangential-directed motion, we are able to estimate slipping motion at the organ boundaries while preventing gaps and ensuring smooth motion fields inside and outside. We further present an algorithm for a fully automatic detection of discontinuities in the motion field, which does not rely on a prior segmentation of the organ. We evaluate the approach for the estimation of lung motion based on 23 inspiration/expiration pairs of thoracic CT images. The results show a visually more plausible motion estimation. Moreover, the target registration error is quantified using manually defined landmarks and a significant improvement over the standard diffusion regularization is shown. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. An augmented parametric response map with consideration of image registration error: towards guidance of locally adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Lausch, Anthony; Chen, Jeff; Ward, Aaron D.; Gaede, Stewart; Lee, Ting-Yim; Wong, Eugene

    2014-11-01

    Parametric response map (PRM) analysis is a voxel-wise technique for predicting overall treatment outcome, which shows promise as a tool for guiding personalized locally adaptive radiotherapy (RT). However, image registration error (IRE) introduces uncertainty into this analysis which may limit its use for guiding RT. Here we extend the PRM method to include an IRE-related PRM analysis confidence interval and also incorporate multiple graded classification thresholds to facilitate visualization. A Gaussian IRE model was used to compute an expected value and confidence interval for PRM analysis. The augmented PRM (A-PRM) was evaluated using CT-perfusion functional image data from patients treated with RT for glioma and hepatocellular carcinoma. Known rigid IREs were simulated by applying one thousand different rigid transformations to each image set. PRM and A-PRM analyses of the transformed images were then compared to analyses of the original images (ground truth) in order to investigate the two methods in the presence of controlled IRE. The A-PRM was shown to help visualize and quantify IRE-related analysis uncertainty. The use of multiple graded classification thresholds also provided additional contextual information which could be useful for visually identifying adaptive RT targets (e.g. sub-volume boosts). The A-PRM should facilitate reliable PRM guided adaptive RT by allowing the user to identify if a patient’s unique IRE-related PRM analysis uncertainty has the potential to influence target delineation.

  8. Clinical determination of target registration error of an image-guided otologic surgical system using patients with bone-anchored hearing aids

    NASA Astrophysics Data System (ADS)

    Balachandran, Ramya; Labadie, Robert F.; Fitzpatrick, J. Michael

    2007-03-01

    Image guidance in otologic surgery has been thwarted by the need for a non-invasive fiducial system with target registration error (TRE) at the inner ear below 1.5mm. We previously presented a fiducial frame for this purpose that attaches to the upper dentition via patient-specific bite blocks and demonstrated a TRE of 0.73mm (+/-0.23mm) on cadaveric skulls. In that study, TRE measurement depended upon placement of bone-implanted, intracranial target fiducials-clearly impossible to repeat clinically. Using cadaveric specimens, we recently presented a validation method based on an auditory implant system (BAHA System® Cochlear Corp., Denver, CO). That system requires a skull-implanted titanium screw behind the ear upon which a bone-anchored hearing aid (BAHA) is mounted. In our validation, we replace the BAHA with a fiducial marker to permit measurement of TRE. That TRE is then used to estimate TRE at an internal point. While the method can be used to determine accuracy at any point within the head, we focus in this study on the inner ear, in particular the cochlea, and we apply the method to patients (N=5). Physical localizations were performed after varying elapsed times since bite-block fabrication, and TRE at the cochlea was estimated. We found TRE to be 0.97mm at the cochlea within one month and 2.5mm after seven months. Thus, while accuracy deteriorates considerably with delays of seven months or more, if this frame is used within one month of the fabrication of the bite-block, it achieves the goal and in fact exhibits submillimetric accuracy.

  9. Voxel-based modeling and quantification of the proximal femur using inter-subject registration of quantitative CT images.

    PubMed

    Li, Wenjun; Kezele, Irina; Collins, D Louis; Zijdenbos, Alex; Keyak, Joyce; Kornak, John; Koyama, Alain; Saeed, Isra; Leblanc, Adrian; Harris, Tamara; Lu, Ying; Lang, Thomas

    2007-11-01

    We have developed a general framework which employs quantitative computed tomography (QCT) imaging and inter-subject image registration to model the three-dimensional structure of the hip, with the goal of quantifying changes in the spatial distribution of bone as it is affected by aging, drug treatment or mechanical unloading. We have adapted rigid and non-rigid inter-subject registration techniques to transform groups of hip QCT scans into a common reference space and to construct composite proximal femoral models. We have applied this technique to a longitudinal study of 16 astronauts who on average, incurred high losses of hip bone density during spaceflights of 4-6 months on the International Space Station (ISS). We compared the pre-flight and post-flight composite hip models, and observed the gradients of the bone loss distribution. We performed paired t-tests, on a voxel by voxel basis, corrected for multiple comparisons using false discovery rate (FDR), and observed regions inside the proximal femur that showed the most significant bone loss. To validate our registration algorithm, we selected the 16 pre-flight scans and manually marked 4 landmarks for each scan. After registration, the average distance between the mapped landmarks and the corresponding landmarks in the target scan was 2.56 mm. The average error due to manual landmark identification was 1.70 mm.

  10. A concept for holistic whole body MRI data analysis, Imiomics

    PubMed Central

    Malmberg, Filip; Johansson, Lars; Lind, Lars; Sundbom, Magnus; Ahlström, Håkan; Kullberg, Joel

    2017-01-01

    Purpose To present and evaluate a whole-body image analysis concept, Imiomics (imaging–omics) and an image registration method that enables Imiomics analyses by deforming all image data to a common coordinate system, so that the information in each voxel can be compared between persons or within a person over time and integrated with non-imaging data. Methods The presented image registration method utilizes relative elasticity constraints of different tissue obtained from whole-body water-fat MRI. The registration method is evaluated by inverse consistency and Dice coefficients and the Imiomics concept is evaluated by example analyses of importance for metabolic research using non-imaging parameters where we know what to expect. The example analyses include whole body imaging atlas creation, anomaly detection, and cross-sectional and longitudinal analysis. Results The image registration method evaluation on 128 subjects shows low inverse consistency errors and high Dice coefficients. Also, the statistical atlas with fat content intensity values shows low standard deviation values, indicating successful deformations to the common coordinate system. The example analyses show expected associations and correlations which agree with explicit measurements, and thereby illustrate the usefulness of the proposed Imiomics concept. Conclusions The registration method is well-suited for Imiomics analyses, which enable analyses of relationships to non-imaging data, e.g. clinical data, in new types of holistic targeted and untargeted big-data analysis. PMID:28241015

  11. Improved multimodality data fusion of late gadolinium enhancement MRI to left ventricular voltage maps in ventricular tachycardia ablation.

    PubMed

    Roujol, Sebastien; Basha, Tamer A; Tan, Alex; Khanna, Varun; Chan, Raymond H; Moghari, Mehdi H; Rayatzadeh, Hussein; Shaw, Jaime L; Josephson, Mark E; Nezafat, Reza

    2013-05-01

    Electroanatomical voltage mapping (EAVM) is commonly performed prior to catheter ablation of scar-related ventricular tachycardia (VT) to locate the arrhythmic substrate and to guide the ablation procedure. EAVM is used to locate the position of the ablation catheter and to provide a 3-D reconstruction of left-ventricular anatomy and scar. However, EAVM measurements only represent the endocardial scar with no transmural or epicardial information. Furthermore, EAVM is a time-consuming procedure, with a high operator dependence and has low sampling density, i.e., spatial resolution. Late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) allows noninvasive assessment of scar morphology that can depict 3-D scar architecture. Despite the potential use of LGE as a roadmap for VT ablation for identification of arrhythmogenic substrate, its utility has been very limited. To allow for identification of VT substrate, a correlation is needed between the substrates identified by EAVM as the gold standard and LGE-MRI scar characteristics. To do so, a system must be developed to fuse the datasets from these modalities. In this study, a registration pipeline for the fusion of LGE-MRI and EAVM data is presented. A novel surface registration algorithm is proposed, integrating the matching of global scar areas as an additional constraint in the registration process. A preparatory landmark registration is initially performed to expedite the convergence of the algorithm. Numerical simulations were performed to evaluate the accuracy of the registration in the presence of errors in identifying landmarks in EAVM or LGE-MRI datasets as well as additional errors due to respiratory or cardiac motion. Subsequently, the accuracy of the proposed fusion system was evaluated in a cohort of ten patients undergoing VT ablation where both EAVM and LGE-MRI data were available. Compared to landmark registration and surface registration, the presented method achieved significant improvement in registration error. The proposed data fusion system allows the fusion of EAVM and LGE-MRI data in VT ablation with registration errors less than 3.5  mm.

  12. Estimation bias from using nonlinear Fourier plane correlators for sub-pixel image shift measurement and implications for the binary joint transform correlator

    NASA Astrophysics Data System (ADS)

    Grycewicz, Thomas J.; Florio, Christopher J.; Franz, Geoffrey A.; Robinson, Ross E.

    2007-09-01

    When using Fourier plane digital algorithms or an optical correlator to measure the correlation between digital images, interpolation by center-of-mass or quadratic estimation techniques can be used to estimate image displacement to the sub-pixel level. However, this can lead to a bias in the correlation measurement. This bias shifts the sub-pixel output measurement to be closer to the nearest pixel center than the actual location. The paper investigates the bias in the outputs of both digital and optical correlators, and proposes methods to minimize this effect. We use digital studies and optical implementations of the joint transform correlator to demonstrate optical registration with accuracies better than 0.1 pixels. We use both simulations of image shift and movies of a moving target as inputs. We demonstrate bias error for both center-of-mass and quadratic interpolation, and discuss the reasons that this bias is present. Finally, we suggest measures to reduce or eliminate the bias effects. We show that when sub-pixel bias is present, it can be eliminated by modifying the interpolation method. By removing the bias error, we improve registration accuracy by thirty percent.

  13. An analysis of Landsat-4 Thematic Mapper geometric properties

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Zobrist, A. L.; Bryant, N. A.; Gohkman, B.; Friedman, S. Z.; Logan, T. L.

    1984-01-01

    Landsat-4 Thematic Mapper data of Washington, DC, Harrisburg, PA, and Salton Sea, CA were analyzed to determine geometric integrity and conformity of the data to known earth surface geometry. Several tests were performed. Intraband correlation and interband registration were investigated. No problems were observed in the intraband analysis, and aside from indications of slight misregistration between bands of the primary versus bands of the secondary focal planes, interband registration was well within the specified tolerances. A substantial number of ground control points were found and used to check the images' conformity to the Space Oblique Mercator (SOM) projection of their respective areas. The means of the residual offsets, which included nonprocessing related measurement errors, were close to the one pixel level in the two scenes examined. The Harrisburg scene residual mean was 28.38 m (0.95 pixels) with a standard deviation of 19.82 m (0.66 pixels), while the mean and standard deviation for the Salton Sea scene were 40.46 (1.35 pixels) and 30.57 m (1.02 pixels), respectively. Overall, the data were judged to be a high geometric quality with errors close to those targeted by the TM sensor design specifications.

  14. Positioning accuracy in a registration-free CT-based navigation system

    NASA Astrophysics Data System (ADS)

    Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.

    2007-12-01

    In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.

  15. Evaluating diffraction based overlay metrology for double patterning technologies

    NASA Astrophysics Data System (ADS)

    Saravanan, Chandra Saru; Liu, Yongdong; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Acheta, Alden; La Fontaine, Bruno

    2008-03-01

    Demanding sub-45 nm node lithographic methodologies such as double patterning (DPT) pose significant challenges for overlay metrology. In this paper, we investigate scatterometry methods as an alternative approach to meet these stringent new metrology requirements. We used a spectroscopic diffraction-based overlay (DBO) measurement technique in which registration errors are extracted from specially designed diffraction targets for double patterning. The results of overlay measurements are compared to traditional bar-in-bar targets. A comparison between DBO measurements and CD-SEM measurements is done to show the correlation between the two approaches. We discuss the total measurement uncertainty (TMU) requirements for sub-45 nm nodes and compare TMU from the different overlay approaches.

  16. Comparison of Online 6 Degree-of-Freedom Image Registration of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Intracranial Radiosurgery.

    PubMed

    Li, Jun; Shi, Wenyin; Andrews, David; Werner-Wasik, Maria; Lu, Bo; Yu, Yan; Dicker, Adam; Liu, Haisong

    2017-06-01

    The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The phantom study was based on a Rando head phantom and was designed to evaluate isocenter location dependence of the image registrations. Ten isocenters at various locations representing clinical treatment sites were selected in the phantom. Cone-beam computed tomography and ExacTrac X-ray images were taken when the phantom was located at each isocenter. The patient study included 34 patients. Cone-beam computed tomography and ExacTrac X-ray images were taken at each patient's treatment position. The 6 degree-of-freedom image registrations were performed on cone-beam computed tomography and ExacTrac, and residual errors calculated from cone-beam computed tomography and ExacTrac were compared. In the phantom study, the average residual error differences (absolute values) between cone-beam computed tomography and ExacTrac image registrations were 0.17 ± 0.11 mm, 0.36 ± 0.20 mm, and 0.25 ± 0.11 mm in the vertical, longitudinal, and lateral directions, respectively. The average residual error differences in the rotation, roll, and pitch were 0.34° ± 0.08°, 0.13° ± 0.09°, and 0.12° ± 0.10°, respectively. In the patient study, the average residual error differences in the vertical, longitudinal, and lateral directions were 0.20 ± 0.16 mm, 0.30 ± 0.18 mm, 0.21 ± 0.18 mm, respectively. The average residual error differences in the rotation, roll, and pitch were 0.40°± 0.16°, 0.17° ± 0.13°, and 0.20° ± 0.14°, respectively. Overall, the average residual error differences were <0.4 mm in the translational directions and <0.5° in the rotational directions. ExacTrac X-ray image registration is comparable to TrueBeam cone-beam computed tomography image registration in intracranial treatments.

  17. SU-E-J-30: Benchmark Image-Based TCP Calculation for Evaluation of PTV Margins for Lung SBRT Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M; Chetty, I; Zhong, H

    2014-06-01

    Purpose: Tumor control probability (TCP) calculated with accumulated radiation doses may help design appropriate treatment margins. Image registration errors, however, may compromise the calculated TCP. The purpose of this study is to develop benchmark CT images to quantify registration-induced errors in the accumulated doses and their corresponding TCP. Methods: 4DCT images were registered from end-inhale (EI) to end-exhale (EE) using a “demons” algorithm. The demons DVFs were corrected by an FEM model to get realistic deformation fields. The FEM DVFs were used to warp the EI images to create the FEM-simulated images. The two images combined with the FEM DVFmore » formed a benchmark model. Maximum intensity projection (MIP) images, created from the EI and simulated images, were used to develop IMRT plans. Two plans with 3 and 5 mm margins were developed for each patient. With these plans, radiation doses were recalculated on the simulated images and warped back to the EI images using the FEM DVFs to get the accumulated doses. The Elastix software was used to register the FEM-simulated images to the EI images. TCPs calculated with the Elastix-accumulated doses were compared with those generated by the FEM to get the TCP error of the Elastix registrations. Results: For six lung patients, the mean Elastix registration error ranged from 0.93 to 1.98 mm. Their relative dose errors in PTV were between 0.28% and 6.8% for 3mm margin plans, and between 0.29% and 6.3% for 5mm-margin plans. As the PTV margin reduced from 5 to 3 mm, the mean TCP error of the Elastix-reconstructed doses increased from 2.0% to 2.9%, and the mean NTCP errors decreased from 1.2% to 1.1%. Conclusion: Patient-specific benchmark images can be used to evaluate the impact of registration errors on the computed TCPs, and may help select appropriate PTV margins for lung SBRT patients.« less

  18. Preliminary Studies for a CBCT Imaging Protocol for Offline Organ Motion Analysis: Registration Software Validation and CTDI Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falco, Maria Daniela, E-mail: mdanielafalco@hotmail.co; Fontanarosa, Davide; Miceli, Roberto

    2011-04-01

    Cone-beam X-ray volumetric imaging in the treatment room, allows online correction of set-up errors and offline assessment of residual set-up errors and organ motion. In this study the registration algorithm of the X-ray volume imaging software (XVI, Elekta, Crawley, United Kingdom), which manages a commercial cone-beam computed tomography (CBCT)-based positioning system, has been tested using a homemade and an anthropomorphic phantom to: (1) assess its performance in detecting known translational and rotational set-up errors and (2) transfer the transformation matrix of its registrations into a commercial treatment planning system (TPS) for offline organ motion analysis. Furthermore, CBCT dose index hasmore » been measured for a particular site (prostate: 120 kV, 1028.8 mAs, approximately 640 frames) using a standard Perspex cylindrical body phantom (diameter 32 cm, length 15 cm) and a 10-cm-long pencil ionization chamber. We have found that known displacements were correctly calculated by the registration software to within 1.3 mm and 0.4{sup o}. For the anthropomorphic phantom, only translational displacements have been considered. Both studies have shown errors within the intrinsic uncertainty of our system for translational displacements (estimated as 0.87 mm) and rotational displacements (estimated as 0.22{sup o}). The resulting table translations proposed by the system to correct the displacements were also checked with portal images and found to place the isocenter of the plan on the linac isocenter within an error of 1 mm, which is the dimension of the spherical lead marker inserted at the center of the homemade phantom. The registration matrix translated into the TPS image fusion module correctly reproduced the alignment between planning CT scans and CBCT scans. Finally, measurements on the CBCT dose index indicate that CBCT acquisition delivers less dose than conventional CT scans and electronic portal imaging device portals. The registration software was found to be accurate, and its registration matrix can be easily translated into the TPS and a low dose is delivered to the patient during image acquisition. These results can help in designing imaging protocols for offline evaluations.« less

  19. A Locally Adaptive Regularization Based on Anisotropic Diffusion for Deformable Image Registration of Sliding Organs

    PubMed Central

    Pace, Danielle F.; Aylward, Stephen R.; Niethammer, Marc

    2014-01-01

    We propose a deformable image registration algorithm that uses anisotropic smoothing for regularization to find correspondences between images of sliding organs. In particular, we apply the method for respiratory motion estimation in longitudinal thoracic and abdominal computed tomography scans. The algorithm uses locally adaptive diffusion tensors to determine the direction and magnitude with which to smooth the components of the displacement field that are normal and tangential to an expected sliding boundary. Validation was performed using synthetic, phantom, and 14 clinical datasets, including the publicly available DIR-Lab dataset. We show that motion discontinuities caused by sliding can be effectively recovered, unlike conventional regularizations that enforce globally smooth motion. In the clinical datasets, target registration error showed improved accuracy for lung landmarks compared to the diffusive regularization. We also present a generalization of our algorithm to other sliding geometries, including sliding tubes (e.g., needles sliding through tissue, or contrast agent flowing through a vessel). Potential clinical applications of this method include longitudinal change detection and radiotherapy for lung or abdominal tumours, especially those near the chest or abdominal wall. PMID:23899632

  20. A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs.

    PubMed

    Pace, Danielle F; Aylward, Stephen R; Niethammer, Marc

    2013-11-01

    We propose a deformable image registration algorithm that uses anisotropic smoothing for regularization to find correspondences between images of sliding organs. In particular, we apply the method for respiratory motion estimation in longitudinal thoracic and abdominal computed tomography scans. The algorithm uses locally adaptive diffusion tensors to determine the direction and magnitude with which to smooth the components of the displacement field that are normal and tangential to an expected sliding boundary. Validation was performed using synthetic, phantom, and 14 clinical datasets, including the publicly available DIR-Lab dataset. We show that motion discontinuities caused by sliding can be effectively recovered, unlike conventional regularizations that enforce globally smooth motion. In the clinical datasets, target registration error showed improved accuracy for lung landmarks compared to the diffusive regularization. We also present a generalization of our algorithm to other sliding geometries, including sliding tubes (e.g., needles sliding through tissue, or contrast agent flowing through a vessel). Potential clinical applications of this method include longitudinal change detection and radiotherapy for lung or abdominal tumours, especially those near the chest or abdominal wall.

  1. WE-AB-BRA-04: Evaluation of the Tumor Registration Error in Biopsy Procedures Performed Under Real Time PET/CT Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanchon, L; INSERM U1101, Brest; Apte, A

    2015-06-15

    Purpose: PET/CT guidance is used for biopsies of metabolically active lesions, which are not well seen on CT alone or to target the metabolically active tissue in tumor ablations. It has also been shown that PET/CT guided biopsies provide an opportunity to verify the location of the lesion border at the place of needle insertion. However the error in needle placement with respect to the metabolically active region may be affected by motion between the PET/CT scan performed at the start of the procedure and the CT scan performed with the needle in place and this error has not beenmore » previously quantified. Methods: Specimens from 31 PET/CT guided biopsies were investigated and correlated to the intraoperative PET scan under an IRB approved HIPAA compliant protocol. For 4 of the cases in which larger motion was suspected a second PET scan was obtained with the needle in place. The CT and the PET images obtained before and after the needle insertion were used to calculate the displacement of the voxels along the needle path. CTpost was registered to CTpre using a free form deformable registration and then fused with PETpre. The shifts between the PET image contours (42% of SUVmax) for PETpre and PETpost were obtained at the needle position. Results: For these extreme cases the displacement of the CT voxels along the needle path ranged from 2.9 to 8 mm with a mean of 5 mm. The shift of the PET image segmentation contours (42% of SUVmax) at the needle position ranged from 2.3 to 7 mm between the two scans. Conclusion: Evaluation of the mis-registration between the CT with the needle in place and the pre-biopsy PET can be obtained using deformable registration of the respective CT scans and can be used to indicate the need of a second PET in real-time. This work is supported in part by a grant from Biospace Lab, S.A.« less

  2. A review of setup error in supine breast radiotherapy using cone-beam computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batumalai, Vikneswary, E-mail: Vikneswary.batumalai@sswahs.nsw.gov.au; Liverpool and Macarthur Cancer Therapy Centres, New South Wales; Ingham Institute of Applied Medical Research, Sydney, New South Wales

    2016-10-01

    Setup error in breast radiotherapy (RT) measured with 3-dimensional cone-beam computed tomography (CBCT) is becoming more common. The purpose of this study is to review the literature relating to the magnitude of setup error in breast RT measured with CBCT. The different methods of image registration between CBCT and planning computed tomography (CT) scan were also explored. A literature search, not limited by date, was conducted using Medline and Google Scholar with the following key words: breast cancer, RT, setup error, and CBCT. This review includes studies that reported on systematic and random errors, and the methods used when registeringmore » CBCT scans with planning CT scan. A total of 11 relevant studies were identified for inclusion in this review. The average magnitude of error is generally less than 5 mm across a number of studies reviewed. The common registration methods used when registering CBCT scans with planning CT scan are based on bony anatomy, soft tissue, and surgical clips. No clear relationships between the setup errors detected and methods of registration were observed from this review. Further studies are needed to assess the benefit of CBCT over electronic portal image, as CBCT remains unproven to be of wide benefit in breast RT.« less

  3. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    PubMed

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.

  4. [Optimization of end-tool parameters based on robot hand-eye calibration].

    PubMed

    Zhang, Lilong; Cao, Tong; Liu, Da

    2017-04-01

    A new one-time registration method was developed in this research for hand-eye calibration of a surgical robot to simplify the operation process and reduce the preparation time. And a new and practical method is introduced in this research to optimize the end-tool parameters of the surgical robot based on analysis of the error sources in this registration method. In the process with one-time registration method, firstly a marker on the end-tool of the robot was recognized by a fixed binocular camera, and then the orientation and position of the marker were calculated based on the joint parameters of the robot. Secondly the relationship between the camera coordinate system and the robot base coordinate system could be established to complete the hand-eye calibration. Because of manufacturing and assembly errors of robot end-tool, an error equation was established with the transformation matrix between the robot end coordinate system and the robot end-tool coordinate system as the variable. Numerical optimization was employed to optimize end-tool parameters of the robot. The experimental results showed that the one-time registration method could significantly improve the efficiency of the robot hand-eye calibration compared with the existing methods. The parameter optimization method could significantly improve the absolute positioning accuracy of the one-time registration method. The absolute positioning accuracy of the one-time registration method can meet the requirements of the clinical surgery.

  5. TU-AB-202-07: A Novel Method for Registration of Mid-Treatment PET/CT Images Under Conditions of Tumor Regression for Patients with Locally Advanced Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharifi, Hoda; Department of Physics, Oakland University, Rochester, MI; Zhang, Hong

    Purpose: In PET-guided adaptive radiotherapy (RT), changes in the metabolic activity at individual voxels cannot be derived until the duringtreatment CT images are appropriately registered to pre-treatment CT images. However, deformable image registration (DIR) usually does not preserve tumor volume. This may induce errors when comparing to the target. The aim of this study was to develop a DIR-integrated mechanical modeling technique to track radiation-induced metabolic changes on PET images. Methods: Three patients with non-small cell lung cancer (NSCLC) were treated with adaptive radiotherapy under RTOG 1106. Two PET/CT image sets were acquired 2 weeks before RT and 18 fractionsmore » after the start of treatment. DIR was performed to register the during-RT CT to the pre-RT CT using a B-spline algorithm and the resultant displacements in the region of tumor were remodeled using a hybrid finite element method (FEM). Gross tumor volume (GTV) was delineated on the during-RT PET/CT image sets and deformed using the 3D deformation vector fields generated by the CT-based registrations. Metabolic tumor volume (MTV) was calculated using the pre- and during–RT image set. The quality of the PET mapping was evaluated based on the constancy of the mapped MTV and landmark comparison. Results: The B-spline-based registrations changed MTVs by 7.3%, 4.6% and −5.9% for the 3 patients and the correspondent changes for the hybrid FEM method −2.9%, 1% and 6.3%, respectively. Landmark comparisons were used to evaluate the Rigid, B-Spline, and hybrid FEM registrations with the mean errors of 10.1 ± 1.6 mm, 4.4 ± 0.4 mm, and 3.6 ± 0.4 mm for three patients. The hybrid FEM method outperforms the B-Spline-only registration for patients with tumor regression Conclusion: The hybrid FEM modeling technique improves the B-Spline registrations in tumor regions. This technique may help compare metabolic activities between two PET/CT images with regressing tumors. The author gratefully acknowledges the financial support from the National Institutes of Health Grant.« less

  6. Registration of MRI to intraoperative radiographs for target localization in spinal interventions

    NASA Astrophysics Data System (ADS)

    De Silva, T.; Uneri, A.; Ketcha, M. D.; Reaungamornrat, S.; Goerres, J.; Jacobson, M. W.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2017-01-01

    Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (covariance-matrix-adaptation evolutionary-strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median  ±  IQR)  =  4.3  ±  2.6 mm (median  ±  IQR) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded dice coefficient  =  88.1  ±  5.2, accuracy  =  90.6  ±  5.7, RMSE  =  1.8  ±  0.6 mm, and contour affinity ratio (CAR)  =  0.82  ±  0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE  <3 mm and CAR  >0.50. The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness.

  7. Automated replication of cone beam CT-guided treatments in the Pinnacle(3) treatment planning system for adaptive radiotherapy.

    PubMed

    Hargrave, Catriona; Mason, Nicole; Guidi, Robyn; Miller, Julie-Anne; Becker, Jillian; Moores, Matthew; Mengersen, Kerrie; Poulsen, Michael; Harden, Fiona

    2016-03-01

    Time-consuming manual methods have been required to register cone-beam computed tomography (CBCT) images with plans in the Pinnacle(3) treatment planning system in order to replicate delivered treatments for adaptive radiotherapy. These methods rely on fiducial marker (FM) placement during CBCT acquisition or the image mid-point to localise the image isocentre. A quality assurance study was conducted to validate an automated CBCT-plan registration method utilising the Digital Imaging and Communications in Medicine (DICOM) Structure Set (RS) and Spatial Registration (RE) files created during online image-guided radiotherapy (IGRT). CBCTs of a phantom were acquired with FMs and predetermined setup errors using various online IGRT workflows. The CBCTs, DICOM RS and RE files were imported into Pinnacle(3) plans of the phantom and the resulting automated CBCT-plan registrations were compared to existing manual methods. A clinical protocol for the automated method was subsequently developed and tested retrospectively using CBCTs and plans for six bladder patients. The automated CBCT-plan registration method was successfully applied to thirty-four phantom CBCT images acquired with an online 0 mm action level workflow. Ten CBCTs acquired with other IGRT workflows required manual workarounds. This was addressed during the development and testing of the clinical protocol using twenty-eight patient CBCTs. The automated CBCT-plan registrations were instantaneous, replicating delivered treatments in Pinnacle(3) with errors of ±0.5 mm. These errors were comparable to mid-point-dependant manual registrations but superior to FM-dependant manual registrations. The automated CBCT-plan registration method quickly and reliably replicates delivered treatments in Pinnacle(3) for adaptive radiotherapy.

  8. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-01-01

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272

  9. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shijun; Yao Jianhua; Liu Jiamin

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less

  10. A prospective comparison between auto-registration and manual registration of real-time ultrasound with MR images for percutaneous ablation or biopsy of hepatic lesions.

    PubMed

    Cha, Dong Ik; Lee, Min Woo; Song, Kyoung Doo; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-06-01

    To compare the accuracy and required time for image fusion of real-time ultrasound (US) with pre-procedural magnetic resonance (MR) images between positioning auto-registration and manual registration for percutaneous radiofrequency ablation or biopsy of hepatic lesions. This prospective study was approved by the institutional review board, and all patients gave written informed consent. Twenty-two patients (male/female, n = 18/n = 4; age, 61.0 ± 7.7 years) who were referred for planning US to assess the feasibility of radiofrequency ablation (n = 21) or biopsy (n = 1) for focal hepatic lesions were included. One experienced radiologist performed the two types of image fusion methods in each patient. The performance of auto-registration and manual registration was evaluated. The accuracy of the two methods, based on measuring registration error, and the time required for image fusion for both methods were recorded using in-house software and respectively compared using the Wilcoxon signed rank test. Image fusion was successful in all patients. The registration error was not significantly different between the two methods (auto-registration: median, 3.75 mm; range, 1.0-15.8 mm vs. manual registration: median, 2.95 mm; range, 1.2-12.5 mm, p = 0.242). The time required for image fusion was significantly shorter with auto-registration than with manual registration (median, 28.5 s; range, 18-47 s, vs. median, 36.5 s; range, 14-105 s, p = 0.026). Positioning auto-registration showed promising results compared with manual registration, with similar accuracy and even shorter registration time.

  11. A software tool of digital tomosynthesis application for patient positioning in radiotherapy

    PubMed Central

    Dai, Jian‐Rong

    2016-01-01

    Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two‐dimensional kV projections covering a narrow scan angles. Comparing with conventional cone‐beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic processing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone‐beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU‐based algorithm and CPU‐based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU‐based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU‐based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU‐based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy. PACS number(s): 87.57.nf PMID:27074482

  12. Influence of erroneous patient records on population pharmacokinetic modeling and individual bayesian estimation.

    PubMed

    van der Meer, Aize Franciscus; Touw, Daniël J; Marcus, Marco A E; Neef, Cornelis; Proost, Johannes H

    2012-10-01

    Observational data sets can be used for population pharmacokinetic (PK) modeling. However, these data sets are generally less precisely recorded than experimental data sets. This article aims to investigate the influence of erroneous records on population PK modeling and individual maximum a posteriori Bayesian (MAPB) estimation. A total of 1123 patient records of neonates who were administered vancomycin were used for population PK modeling by iterative 2-stage Bayesian (ITSB) analysis. Cut-off values for weighted residuals were tested for exclusion of records from the analysis. A simulation study was performed to assess the influence of erroneous records on population modeling and individual MAPB estimation. Also the cut-off values for weighted residuals were tested in the simulation study. Errors in registration have limited the influence on outcomes of population PK modeling but can have detrimental effects on individual MAPB estimation. A population PK model created from a data set with many registration errors has little influence on subsequent MAPB estimates for precisely recorded data. A weighted residual value of 2 for concentration measurements has good discriminative power for identification of erroneous records. ITSB analysis and its individual estimates are hardly affected by most registration errors. Large registration errors can be detected by weighted residuals of concentration.

  13. Symposium Registration | The Metastatic Niche: Models, Mechanisms and Targeting Targets into Therapeutics

    Cancer.gov

    Symposium Registration Register for the meeting and abstract submission. Registration for the meeting is required and registration is free. ONLINE REGISTRATION IS CLOSED. Please contact Julia E. Lam (Julia.Lam@nih.gov) if you want to register to attend this event. Abstracts should be submitted at the time of registration and a limited number will be selected for oral presentation and the remainder for poster presentation.   Abstract Submission Deadline is February 21st 2017.

  14. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery.

    PubMed

    Ketcha, M D; De Silva, T; Uneri, A; Kleinszig, G; Vogt, S; Wolinsky, J-P; Siewerdsen, J H

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  15. Automatic masking for robust 3D-2D image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-03-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  16. Deformable registration of x-ray to MRI for post-implant dosimetry in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Song, Danny Y.; Lee, Junghoon

    2016-03-01

    Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations. However, seed segmentation in CT requires manual review, and the accuracy is limited by the reconstructed voxel resolution. In addition, CT deposits considerable amount of radiation to the patient. In this paper, we propose an X-ray and MRI based post-implant dosimetry approach. Implanted seeds are localized using three X-ray images by solving a combinatorial optimization problem, and the identified seeds are registered to MR images by an intensity-based points-to-volume registration. We pre-process the MR images using geometric and Gaussian filtering. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine transformation and local deformable registration. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. We tested our algorithm on six patient data sets, achieving registration error of (1.2+/-0.8) mm in < 30 sec. Our proposed approach has the potential to be a fast and cost-effective solution for post-implant dosimetry with equivalent accuracy as the CT-MR fusion-based approach.

  17. Assessment of Thematic Mapper band-to-band registration by the block correlation method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1983-01-01

    Rectangular blocks of pixels from one band image were statistically correlated against blocks centered on identical pixels from a second band image. The block pairs were shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient to the maximum correlation was taken as the best estimate of registration error for each block pair. For the band combinations of the Arkansas scene studied, the misregistration of TM spectral bands within the noncooled focal plane lie well within the 0.2 pixel target specification. Misregistration between the middle IR bands is well within this specification also. The thermal IR band has an apparent misregistration with TM band 7 of approximately 3 pixels in each direction. The TM band 3 has a misregistration of approximately 0.2 pixel in the across-scan direction and 0.5 pixel in the along-scan direction, with both TM bands 5 and 7.

  18. Assessment of Thematic Mapper Band-to-band Registration by the Block Correlation Method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1985-01-01

    Rectangular blocks of pixels from one band image were statistically correlated against blocks centered on identical pixels from a second band image. The block pairs were shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient to the maximum correlation was taken as the best estimate of registration error for each block pair. For the band combinations of the Arkansas scene studied, the misregistration of TM spectral bands within the noncooled focal plane lie well within the 0.2 pixel target specification. Misregistration between the middle IR bands is well within this specification also. The thermal IR band has an apparent misregistration with TM band 7 of approximately 3 pixels in each direction. The TM band 3 has a misregistration of approximately 0.2 pixel in the across-scan direction and 0.5 pixel in the along-scan direction, with both TM bands 5 and 7.

  19. A navigation system for flexible endoscopes using abdominal 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Kaar, M.; Bathia, Amon; Bathia, Amar; Lampret, A.; Birkfellner, W.; Hummel, J.; Figl, M.

    2014-09-01

    A navigation system for flexible endoscopes equipped with ultrasound (US) scan heads is presented. In contrast to similar systems, abdominal 3D-US is used for image fusion of the pre-interventional computed tomography (CT) to the endoscopic US. A 3D-US scan, tracked with an optical tracking system (OTS), is taken pre-operatively together with the CT scan. The CT is calibrated using the OTS, providing the transformation from CT to 3D-US. Immediately before intervention a 3D-US tracked with an electromagnetic tracking system (EMTS) is acquired and registered intra-modal to the preoperative 3D-US. The endoscopic US is calibrated using the EMTS and registered to the pre-operative CT by an intra-modal 3D-US/3D-US registration. Phantom studies showed a registration error for the US to CT registration of 5.1 mm ± 2.8 mm. 3D-US/3D-US registration of patient data gave an error of 4.1 mm compared to 2.8 mm with the phantom. From this we estimate an error on patient experiments of 5.6 mm.

  20. 37 CFR 201.7 - Cancellation of completed registrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or omissions which would generally have been rectified before registration, the Copyright Office will attempt to rectify the error through correspondence with the remitter. Except in those cases enumerated in...

  1. Mammogram registration: a phantom-based evaluation of compressed breast thickness variation effects.

    PubMed

    Richard, Frédéric J P; Bakić, Predrag R; Maidment, Andrew D A

    2006-02-01

    The temporal comparison of mammograms is complex; a wide variety of factors can cause changes in image appearance. Mammogram registration is proposed as a method to reduce the effects of these changes and potentially to emphasize genuine alterations in breast tissue. Evaluation of such registration techniques is difficult since ground truth regarding breast deformations is not available in clinical mammograms. In this paper, we propose a systematic approach to evaluate sensitivity of registration methods to various types of changes in mammograms using synthetic breast images with known deformations. As a first step, images of the same simulated breasts with various amounts of simulated physical compression have been used to evaluate a previously described nonrigid mammogram registration technique. Registration performance is measured by calculating the average displacement error over a set of evaluation points identified in mammogram pairs. Applying appropriate thickness compensation and using a preferred order of the registered images, we obtained an average displacement error of 1.6 mm for mammograms with compression differences of 1-3 cm. The proposed methodology is applicable to analysis of other sources of mammogram differences and can be extended to the registration of multimodality breast data.

  2. A Kinect™ camera based navigation system for percutaneous abdominal puncture

    NASA Astrophysics Data System (ADS)

    Xiao, Deqiang; Luo, Huoling; Jia, Fucang; Zhang, Yanfang; Li, Yong; Guo, Xuejun; Cai, Wei; Fang, Chihua; Fan, Yingfang; Zheng, Huimin; Hu, Qingmao

    2016-08-01

    Percutaneous abdominal puncture is a popular interventional method for the management of abdominal tumors. Image-guided puncture can help interventional radiologists improve targeting accuracy. The second generation of Kinect™ was released recently, we developed an optical navigation system to investigate its feasibility for guiding percutaneous abdominal puncture, and compare its performance on needle insertion guidance with that of the first-generation Kinect™. For physical-to-image registration in this system, two surfaces extracted from preoperative CT and intraoperative Kinect™ depth images were matched using an iterative closest point (ICP) algorithm. A 2D shape image-based correspondence searching algorithm was proposed for generating a close initial position before ICP matching. Evaluation experiments were conducted on an abdominal phantom and six beagles in vivo. For phantom study, a two-factor experiment was designed to evaluate the effect of the operator’s skill and trajectory on target positioning error (TPE). A total of 36 needle punctures were tested on a Kinect™ for Windows version 2 (Kinect™ V2). The target registration error (TRE), user error, and TPE are 4.26  ±  1.94 mm, 2.92  ±  1.67 mm, and 5.23  ±  2.29 mm, respectively. No statistically significant differences in TPE regarding operator’s skill and trajectory are observed. Additionally, a Kinect™ for Windows version 1 (Kinect™ V1) was tested with 12 insertions, and the TRE evaluated with the Kinect™ V1 is statistically significantly larger than that with the Kinect™ V2. For the animal experiment, fifteen artificial liver tumors were inserted guided by the navigation system. The TPE was evaluated as 6.40  ±  2.72 mm, and its lateral and longitudinal component were 4.30  ±  2.51 mm and 3.80  ±  3.11 mm, respectively. This study demonstrates that the navigation accuracy of the proposed system is acceptable, and that the second generation Kinect™-based navigation is superior to the first-generation Kinect™, and has potential of clinical application in percutaneous abdominal puncture.

  3. An Automatic Multi-Target Independent Analysis Framework for Non-Planar Infrared-Visible Registration.

    PubMed

    Sun, Xinglong; Xu, Tingfa; Zhang, Jizhou; Zhao, Zishu; Li, Yuankun

    2017-07-26

    In this paper, we propose a novel automatic multi-target registration framework for non-planar infrared-visible videos. Previous approaches usually analyzed multiple targets together and then estimated a global homography for the whole scene, however, these cannot achieve precise multi-target registration when the scenes are non-planar. Our framework is devoted to solving the problem using feature matching and multi-target tracking. The key idea is to analyze and register each target independently. We present a fast and robust feature matching strategy, where only the features on the corresponding foreground pairs are matched. Besides, new reservoirs based on the Gaussian criterion are created for all targets, and a multi-target tracking method is adopted to determine the relationships between the reservoirs and foreground blobs. With the matches in the corresponding reservoir, the homography of each target is computed according to its moving state. We tested our framework on both public near-planar and non-planar datasets. The results demonstrate that the proposed framework outperforms the state-of-the-art global registration method and the manual global registration matrix in all tested datasets.

  4. Geometric modeling of hepatic arteries in 3D ultrasound with unsupervised MRA fusion during liver interventions.

    PubMed

    Gérard, Maxime; Michaud, François; Bigot, Alexandre; Tang, An; Soulez, Gilles; Kadoury, Samuel

    2017-06-01

    Modulating the chemotherapy injection rate with regard to blood flow velocities in the tumor-feeding arteries during intra-arterial therapies may help improve liver tumor targeting while decreasing systemic exposure. These velocities can be obtained noninvasively using Doppler ultrasound (US). However, small vessels situated in the liver are difficult to identify and follow in US. We propose a multimodal fusion approach that non-rigidly registers a 3D geometric mesh model of the hepatic arteries obtained from preoperative MR angiography (MRA) acquisitions with intra-operative 3D US imaging. The proposed fusion tool integrates 3 imaging modalities: an arterial MRA, a portal phase MRA and an intra-operative 3D US. Preoperatively, the arterial phase MRA is used to generate a 3D model of the hepatic arteries, which is then non-rigidly co-registered with the portal phase MRA. Once the intra-operative 3D US is acquired, we register it with the portal MRA using a vessel-based rigid initialization followed by a non-rigid registration using an image-based metric based on linear correlation of linear combination. Using the combined non-rigid transformation matrices, the 3D mesh model is fused with the 3D US. 3D US and multi-phase MRA images acquired from 10 porcine models were used to test the performance of the proposed fusion tool. Unimodal registration of the MRA phases yielded a target registration error (TRE) of [Formula: see text] mm. Initial rigid alignment of the portal MRA and 3D US yielded a mean TRE of [Formula: see text] mm, which was significantly reduced to [Formula: see text] mm ([Formula: see text]) after affine image-based registration. The following deformable registration step allowed for further decrease of the mean TRE to [Formula: see text] mm. The proposed tool could facilitate visualization and localization of these vessels when using 3D US intra-operatively for either intravascular or percutaneous interventions to avoid vessel perforation.

  5. Multimodal registration of three-dimensional maxillodental cone beam CT and photogrammetry data over time.

    PubMed

    Bolandzadeh, N; Bischof, W; Flores-Mir, C; Boulanger, P

    2013-01-01

    In recent years, one of the foci of orthodontics has been on systems for the evaluation of treatment results and the tracking of tissue variations over time. This can be accomplished through analysing three-dimensional orthodontic images obtained before and after the treatments. Since complementary information is achieved by integrating multiple imaging modalities, cone beam CT (CBCT) and stereophotogrammetry technologies are used in this study to develop a method for tracking bone, teeth and facial soft-tissue variations over time. We propose a two-phase procedure of multimodal (Phase 1) and multitemporal (Phase 2) registration which aligns images taken from the same patient by different imaging modalities and at different times. Extrinsic (for Phase 1) and intrinsic (for Phase 2) landmark-based registration methods are employed as an initiation for a robust iterative closest points algorithm. Since the mandible moves independently of the upper skull, the registration procedure is applied separately on the mandible and the upper skull. The results show that the signed error distributions of both mandible and skull registrations follow a mixture of two Gaussian distributions, corresponding to alignment errors (due to our method) and temporal change over time. We suggest that the large values among the total registration errors correspond to the temporal change resulting from (1) the effect of treatment (i.e. the orthodontic changes of teeth positions); (2) the biological changes such as teeth growth over time, especially for teenagers; and (3) the segmentation procedure and CBCT precision change over time.

  6. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumormore » and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.« less

  7. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach.

    PubMed

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Brock, Kristy K; Daly, Michael J; Chan, Harley; Irish, Jonathan C; Siewerdsen, Jeffrey H

    2011-04-01

    A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values ("intensity"). A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5 +/- 2.8) mm compared to (3.5 +/- 3.0) mm with rigid registration. A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.

  8. A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox.

    PubMed

    Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J; Dierckx, Rudi A J O; Koole, Michel; Doorduin, Janine

    2015-01-01

    High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25), 0.23 ± 0.10mm for [11C]flumazenil (n = 13), 0.88 ± 0.20 mm for [11C]MeDAS (n = 15), 0.64 ± 0.28 mm for [11C]PK11195 (n = 19), 0.34 ± 0.15 mm for [11C]raclopride (n = 6), and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p<0.001). Additionally, registration errors were smallest with strain-specific templates (p<0.05), and when images and templates had the same size (p ≤ 0.001). Moreover, highest registration errors were found for the focal lesion group (p<0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community [corrected].

  9. A Standardized Method for the Construction of Tracer Specific PET and SPECT Rat Brain Templates: Validation and Implementation of a Toolbox

    PubMed Central

    Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J.; Dierckx, Rudi A. J. O.; Koole, Michel; Doorduin, Janine

    2015-01-01

    High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70±0.32mm for [18F]FDG (n = 25), 0.23±0.10mm for [11C]flumazenil (n = 13), 0.88±0.20 mm for [11C]MeDAS (n = 15), 0.64±0.28mm for [11C]PK11195 (n = 19), 0.34±0.15mm for [11C]raclopride (n = 6), and 0.40±0.13mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p&0.001). Additionally, registration errors were smallest with strain-specific templates (p&0.05), and when images and templates had the same size (p≤0.001). Moreover, highest registration errors were found for the focal lesion group (p&0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community. PMID:25823005

  10. Three-Dimensional Registration for Handheld Profiling Systems Based on Multiple Shot Structured Light

    PubMed Central

    Ayaz, Shirazi Muhammad; Kim, Min Young

    2018-01-01

    In this article, a multi-view registration approach for the 3D handheld profiling system based on the multiple shot structured light technique is proposed. The multi-view registration approach is categorized into coarse registration and point cloud refinement using the iterative closest point (ICP) algorithm. Coarse registration of multiple point clouds was performed using relative orientation and translation parameters estimated via homography-based visual navigation. The proposed system was evaluated using an artificial human skull and a paper box object. For the quantitative evaluation of the accuracy of a single 3D scan, a paper box was reconstructed, and the mean errors in its height and breadth were found to be 9.4 μm and 23 μm, respectively. A comprehensive quantitative evaluation and comparison of proposed algorithm was performed with other variants of ICP. The root mean square error for the ICP algorithm to register a pair of point clouds of the skull object was also found to be less than 1 mm. PMID:29642552

  11. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  12. Multimodal Image Registration through Simultaneous Segmentation.

    PubMed

    Aganj, Iman; Fischl, Bruce

    2017-11-01

    Multimodal image registration facilitates the combination of complementary information from images acquired with different modalities. Most existing methods require computation of the joint histogram of the images, while some perform joint segmentation and registration in alternate iterations. In this work, we introduce a new non-information-theoretical method for pairwise multimodal image registration, in which the error of segmentation - using both images - is considered as the registration cost function. We empirically evaluate our method via rigid registration of multi-contrast brain magnetic resonance images, and demonstrate an often higher registration accuracy in the results produced by the proposed technique, compared to those by several existing methods.

  13. Registration of multiple video images to preoperative CT for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Clarkson, Matthew J.; Rueckert, Daniel; Hill, Derek L.; Hawkes, David J.

    1999-05-01

    In this paper we propose a method which uses multiple video images to establish the pose of a CT volume with respect to video camera coordinates for use in image guided surgery. The majority of neurosurgical procedures require the neurosurgeon to relate the pre-operative MR/CT data to the intra-operative scene. Registration of 2D video images to the pre-operative 3D image enables a perspective projection of the pre-operative data to be overlaid onto the video image. Our registration method is based on image intensity and uses a simple iterative optimization scheme to maximize the mutual information between a video image and a rendering from the pre-operative data. Video images are obtained from a stereo operating microscope, with a field of view of approximately 110 X 80 mm. We have extended an existing information theoretical framework for 2D-3D registration, so that multiple video images can be registered simultaneously to the pre-operative data. Experiments were performed on video and CT images of a skull phantom. We took three video images, and our algorithm registered these individually to the 3D image. The mean projection error varied between 4.33 and 9.81 millimeters (mm), and the mean 3D error varied between 4.47 and 11.92 mm. Using our novel techniques we then registered five video views simultaneously to the 3D model. This produced an accurate and robust registration with a mean projection error of 0.68 mm and a mean 3D error of 1.05 mm.

  14. Generating classes of 3D virtual mandibles for AR-based medical simulation.

    PubMed

    Hippalgaonkar, Neha R; Sider, Alexa D; Hamza-Lup, Felix G; Santhanam, Anand P; Jaganathan, Bala; Imielinska, Celina; Rolland, Jannick P

    2008-01-01

    Simulation and modeling represent promising tools for several application domains from engineering to forensic science and medicine. Advances in 3D imaging technology convey paradigms such as augmented reality (AR) and mixed reality inside promising simulation tools for the training industry. Motivated by the requirement for superimposing anatomically correct 3D models on a human patient simulator (HPS) and visualizing them in an AR environment, the purpose of this research effort was to develop and validate a method for scaling a source human mandible to a target human mandible within a 2 mm root mean square (RMS) error. Results show that, given a distance between 2 same landmarks on 2 different mandibles, a relative scaling factor may be computed. Using this scaling factor, results show that a 3D virtual mandible model can be made morphometrically equivalent to a real target-specific mandible within a 1.30 mm RMS error. The virtual mandible may be further used as a reference target for registering other anatomic models, such as the lungs, on the HPS. Such registration will be made possible by physical constraints among the mandible and the spinal column in the horizontal normal rest position.

  15. Optimization of real-time rigid registration motion compensation for prostate biopsies using 2D/3D ultrasound

    NASA Astrophysics Data System (ADS)

    Gillies, Derek J.; Gardi, Lori; Zhao, Ren; Fenster, Aaron

    2017-03-01

    During image-guided prostate biopsy, needles are targeted at suspicious tissues to obtain specimens that are later examined histologically for cancer. Patient motion causes inaccuracies when using MR-transrectal ultrasound (TRUS) image fusion approaches used to augment the conventional biopsy procedure. Motion compensation using a single, user initiated correction can be performed to temporarily compensate for prostate motion, but a real-time continuous registration offers an improvement to clinical workflow by reducing user interaction and procedure time. An automatic motion compensation method, approaching the frame rate of a TRUS-guided system, has been developed for use during fusion-based prostate biopsy to improve image guidance. 2D and 3D TRUS images of a prostate phantom were registered using an intensity based algorithm utilizing normalized cross-correlation and Powell's method for optimization with user initiated and continuous registration techniques. The user initiated correction performed with observed computation times of 78 ± 35 ms, 74 ± 28 ms, and 113 ± 49 ms for in-plane, out-of-plane, and roll motions, respectively, corresponding to errors of 0.5 ± 0.5 mm, 1.5 ± 1.4 mm, and 1.5 ± 1.6°. The continuous correction performed significantly faster (p < 0.05) than the user initiated method, with observed computation times of 31 ± 4 ms, 32 ± 4 ms, and 31 ± 6 ms for in-plane, out-of-plane, and roll motions, respectively, corresponding to errors of 0.2 ± 0.2 mm, 0.6 ± 0.5 mm, and 0.8 ± 0.4°.

  16. SU-F-J-88: Comparison of Two Deformable Image Registration Algorithms for CT-To-CT Contour Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, A; Xu, H; Chen, S

    Purpose: To compare the contour propagation accuracy of two deformable image registration (DIR) algorithms in the Raystation treatment planning system – the “Hybrid” algorithm based on image intensities and anatomical information; and the “Biomechanical” algorithm based on linear anatomical elasticity and finite element modeling. Methods: Both DIR algorithms were used for CT-to-CT deformation for 20 lung radiation therapy patients that underwent treatment plan revisions. Deformation accuracy was evaluated using landmark tracking to measure the target registration error (TRE) and inverse consistency error (ICE). The deformed contours were also evaluated against physician drawn contours using Dice similarity coefficients (DSC). Contour propagationmore » was qualitatively assessed using a visual quality score assigned by physicians, and a refinement quality score (0 0.9 for lungs, > 0.85 for heart, > 0.8 for liver) and similar qualitative assessments (VQS < 0.35, RQS > 0.75 for lungs). When anatomical structures were used to control the deformation, the DSC improved more significantly for the biomechanical DIR compared to the hybrid DIR, while the VQS and RQS improved only for the controlling structures. However, while the inclusion of controlling structures improved the TRE for the hybrid DIR, it increased the TRE for the biomechanical DIR. Conclusion: The hybrid DIR was found to perform slightly better than the biomechanical DIR based on lower TRE while the DSC, VQS, and RQS studies yielded comparable results for both. The use of controlling structures showed considerable improvement in the hybrid DIR results and is recommended for clinical use in contour propagation.« less

  17. Microsurgical and Endoscopic Anatomy for Intradural Temporal Bone Drilling and Applications of the Electromagnetic Navigation System: Various Extensions of the Retrosigmoid Approach.

    PubMed

    Matsushima, Ken; Komune, Noritaka; Matsuo, Satoshi; Kohno, Michihiro

    2017-07-01

    The use of the retrosigmoid approach has recently been expanded by several modifications, including the suprameatal, transmeatal, suprajugular, and inframeatal extensions. Intradural temporal bone drilling without damaging vital structures inside or beside the bone, such as the internal carotid artery and jugular bulb, is a key step for these extensions. This study aimed to examine the microsurgical and endoscopic anatomy of the extensions of the retrosigmoid approach and to evaluate the clinical feasibility of an electromagnetic navigation system during intradural temporal bone drilling. Five temporal bones and 8 cadaveric cerebellopontine angles were examined to clarify the anatomy of retrosigmoid intradural temporal bone drilling. Twenty additional cerebellopontine angles were dissected in a clinical setting with an electromagnetic navigation system while measuring the target registration errors at 8 surgical landmarks on and inside the temporal bone. Retrosigmoid intradural temporal bone drilling expanded the surgical exposure to allow access to the petroclival and parasellar regions (suprameatal), internal acoustic meatus (transmeatal), upper jugular foramen (suprajugular), and petrous apex (inframeatal). The electromagnetic navigation continuously guided the drilling without line of sight limitation, and its small devices were easily manipulated in the deep and narrow surgical field in the posterior fossa. Mean target registration error was less than 0.50 mm during these procedures. The combination of endoscopic and microsurgical techniques aids in achieving optimal exposure for retrosigmoid intradural temporal bone drilling. The electromagnetic navigation system had clear advantages with acceptable accuracy including the usability of small devices without line of sight limitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. SU-E-J-87: Building Deformation Error Histogram and Quality Assurance of Deformable Image Registration.

    PubMed

    Park, S B; Kim, H; Yao, M; Ellis, R; Machtay, M; Sohn, J W

    2012-06-01

    To quantify the systematic error of a Deformable Image Registration (DIR) system and establish Quality Assurance (QA) procedure. To address the shortfall of landmark approach which it is only available at the significant visible feature points, we adapted a Deformation Vector Map (DVM) comparison approach. We used two CT image sets (R and T image sets) taken for the same patient at different time and generated a DVM, which includes the DIR systematic error. The DVM was calculated using fine-tuned B-Spline DIR and L-BFGS optimizer. By utilizing this DVM we generated R' image set to eliminate the systematic error in DVM,. Thus, we have truth data set, R' and T image sets, and the truth DVM. To test a DIR system, we use R' and T image sets to a DIR system. We compare the test DVM to the truth DVM. If there is no systematic error, they should be identical. We built Deformation Error Histogram (DEH) for quantitative analysis. The test registration was performed with an in-house B-Spline DIR system using a stochastic gradient descent optimizer. Our example data set was generated with a head and neck patient case. We also tested CT to CBCT deformable registration. We found skin regions which interface with the air has relatively larger errors. Also mobile joints such as shoulders had larger errors. Average error for ROIs were as follows; CTV: 0.4mm, Brain stem: 1.4mm, Shoulders: 1.6mm, and Normal tissues: 0.7mm. We succeeded to build DEH approach to quantify the DVM uncertainty. Our data sets are available for testing other systems in our web page. Utilizing DEH, users can decide how much systematic error they would accept. DEH and our data can be a tool for an AAPM task group to compose a DIR system QA guideline. This project is partially supported by the Agency for Healthcare Research and Quality (AHRQ) grant 1R18HS017424-01A2. © 2012 American Association of Physicists in Medicine.

  19. Demons deformable registration for CBCT-guided procedures in the head and neck: Convergence and accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nithiananthan, S.; Brock, K. K.; Daly, M. J.

    2009-10-15

    Purpose: The accuracy and convergence behavior of a variant of the Demons deformable registration algorithm were investigated for use in cone-beam CT (CBCT)-guided procedures of the head and neck. Online use of deformable registration for guidance of therapeutic procedures such as image-guided surgery or radiation therapy places trade-offs on accuracy and computational expense. This work describes a convergence criterion for Demons registration developed to balance these demands; the accuracy of a multiscale Demons implementation using this convergence criterion is quantified in CBCT images of the head and neck. Methods: Using an open-source ''symmetric'' Demons registration algorithm, a convergence criterion basedmore » on the change in the deformation field between iterations was developed to advance among multiple levels of a multiscale image pyramid in a manner that optimized accuracy and computation time. The convergence criterion was optimized in cadaver studies involving CBCT images acquired using a surgical C-arm prototype modified for 3D intraoperative imaging. CBCT-to-CBCT registration was performed and accuracy was quantified in terms of the normalized cross-correlation (NCC) and target registration error (TRE). The accuracy and robustness of the algorithm were then tested in clinical CBCT images of ten patients undergoing radiation therapy of the head and neck. Results: The cadaver model allowed optimization of the convergence factor and initial measurements of registration accuracy: Demons registration exhibited TRE=(0.8{+-}0.3) mm and NCC=0.99 in the cadaveric head compared to TRE=(2.6{+-}1.0) mm and NCC=0.93 with rigid registration. Similarly for the patient data, Demons registration gave mean TRE=(1.6{+-}0.9) mm compared to rigid registration TRE=(3.6{+-}1.9) mm, suggesting registration accuracy at or near the voxel size of the patient images (1x1x2 mm{sup 3}). The multiscale implementation based on optimal convergence criteria completed registration in 52 s for the cadaveric head and in an average time of 270 s for the larger FOV patient images. Conclusions: Appropriate selection of convergence and multiscale parameters in Demons registration was shown to reduce computational expense without sacrificing registration performance. For intraoperative CBCT imaging with deformable registration, the ability to perform accurate registration within the stringent time requirements of the operating environment could offer a useful clinical tool allowing integration of preoperative information while accurately reflecting changes in the patient anatomy. Similarly for CBCT-guided radiation therapy, fast accurate deformable registration could further augment high-precision treatment strategies.« less

  20. Demons deformable registration for CBCT-guided procedures in the head and neck: convergence and accuracy.

    PubMed

    Nithiananthan, S; Brock, K K; Daly, M J; Chan, H; Irish, J C; Siewerdsen, J H

    2009-10-01

    The accuracy and convergence behavior of a variant of the Demons deformable registration algorithm were investigated for use in cone-beam CT (CBCT)-guided procedures of the head and neck. Online use of deformable registration for guidance of therapeutic procedures such as image-guided surgery or radiation therapy places trade-offs on accuracy and computational expense. This work describes a convergence criterion for Demons registration developed to balance these demands; the accuracy of a multiscale Demons implementation using this convergence criterion is quantified in CBCT images of the head and neck. Using an open-source "symmetric" Demons registration algorithm, a convergence criterion based on the change in the deformation field between iterations was developed to advance among multiple levels of a multiscale image pyramid in a manner that optimized accuracy and computation time. The convergence criterion was optimized in cadaver studies involving CBCT images acquired using a surgical C-arm prototype modified for 3D intraoperative imaging. CBCT-to-CBCT registration was performed and accuracy was quantified in terms of the normalized cross-correlation (NCC) and target registration error (TRE). The accuracy and robustness of the algorithm were then tested in clinical CBCT images of ten patients undergoing radiation therapy of the head and neck. The cadaver model allowed optimization of the convergence factor and initial measurements of registration accuracy: Demons registration exhibited TRE=(0.8+/-0.3) mm and NCC =0.99 in the cadaveric head compared to TRE=(2.6+/-1.0) mm and NCC=0.93 with rigid registration. Similarly for the patient data, Demons registration gave mean TRE=(1.6+/-0.9) mm compared to rigid registration TRE=(3.6+/-1.9) mm, suggesting registration accuracy at or near the voxel size of the patient images (1 x 1 x 2 mm3). The multiscale implementation based on optimal convergence criteria completed registration in 52 s for the cadaveric head and in an average time of 270 s for the larger FOV patient images. Appropriate selection of convergence and multiscale parameters in Demons registration was shown to reduce computational expense without sacrificing registration performance. For intraoperative CBCT imaging with deformable registration, the ability to perform accurate registration within the stringent time requirements of the operating environment could offer a useful clinical tool allowing integration of preoperative information while accurately reflecting changes in the patient anatomy. Similarly for CBCT-guided radiation therapy, fast accurate deformable registration could further augment high-precision treatment strategies.

  1. Demons deformable registration for CBCT-guided procedures in the head and neck: Convergence and accuracy

    PubMed Central

    Nithiananthan, S.; Brock, K. K.; Daly, M. J.; Chan, H.; Irish, J. C.; Siewerdsen, J. H.

    2009-01-01

    Purpose: The accuracy and convergence behavior of a variant of the Demons deformable registration algorithm were investigated for use in cone-beam CT (CBCT)-guided procedures of the head and neck. Online use of deformable registration for guidance of therapeutic procedures such as image-guided surgery or radiation therapy places trade-offs on accuracy and computational expense. This work describes a convergence criterion for Demons registration developed to balance these demands; the accuracy of a multiscale Demons implementation using this convergence criterion is quantified in CBCT images of the head and neck. Methods: Using an open-source “symmetric” Demons registration algorithm, a convergence criterion based on the change in the deformation field between iterations was developed to advance among multiple levels of a multiscale image pyramid in a manner that optimized accuracy and computation time. The convergence criterion was optimized in cadaver studies involving CBCT images acquired using a surgical C-arm prototype modified for 3D intraoperative imaging. CBCT-to-CBCT registration was performed and accuracy was quantified in terms of the normalized cross-correlation (NCC) and target registration error (TRE). The accuracy and robustness of the algorithm were then tested in clinical CBCT images of ten patients undergoing radiation therapy of the head and neck. Results: The cadaver model allowed optimization of the convergence factor and initial measurements of registration accuracy: Demons registration exhibited TRE=(0.8±0.3) mm and NCC=0.99 in the cadaveric head compared to TRE=(2.6±1.0) mm and NCC=0.93 with rigid registration. Similarly for the patient data, Demons registration gave mean TRE=(1.6±0.9) mm compared to rigid registration TRE=(3.6±1.9) mm, suggesting registration accuracy at or near the voxel size of the patient images (1×1×2 mm3). The multiscale implementation based on optimal convergence criteria completed registration in 52 s for the cadaveric head and in an average time of 270 s for the larger FOV patient images. Conclusions: Appropriate selection of convergence and multiscale parameters in Demons registration was shown to reduce computational expense without sacrificing registration performance. For intraoperative CBCT imaging with deformable registration, the ability to perform accurate registration within the stringent time requirements of the operating environment could offer a useful clinical tool allowing integration of preoperative information while accurately reflecting changes in the patient anatomy. Similarly for CBCT-guided radiation therapy, fast accurate deformable registration could further augment high-precision treatment strategies. PMID:19928106

  2. SU-E-J-42: Motion Adaptive Image Filter for Low Dose X-Ray Fluoroscopy in the Real-Time Tumor-Tracking Radiotherapy System.

    PubMed

    Miyamoto, N; Ishikawa, M; Sutherland, K; Suzuki, R; Matsuura, T; Takao, S; Toramatsu, C; Nihongi, H; Shimizu, S; Onimaru, R; Umegaki, K; Shirato, H

    2012-06-01

    In the real-time tumor-tracking radiotherapy system, fiducial markers are detected by X-ray fluoroscopy. The fluoroscopic parameters should be optimized as low as possible in order to reduce unnecessary imaging dose. However, the fiducial markers could not be recognized due to effect of statistical noise in low dose imaging. Image processing is envisioned to be a solution to improve image quality and to maintain tracking accuracy. In this study, a recursive image filter adapted to target motion is proposed. A fluoroscopy system was used for the experiment. A spherical gold marker was used as a fiducial marker. About 450 fluoroscopic images of the marker were recorded. In order to mimic respiratory motion of the marker, the images were shifted sequentially. The tube voltage, current and exposure duration were fixed at 65 kV, 50 mA and 2.5 msec as low dose imaging condition, respectively. The tube current was 100 mA as high dose imaging. A pattern recognition score (PRS) ranging from 0 to 100 and image registration error were investigated by performing template pattern matching to each sequential image. The results with and without image processing were compared. In low dose imaging, theimage registration error and the PRS without the image processing were 2.15±1.21 pixel and 46.67±6.40, respectively. Those with the image processing were 1.48±0.82 pixel and 67.80±4.51, respectively. There was nosignificant difference in the image registration error and the PRS between the results of low dose imaging with the image processing and that of high dose imaging without the image processing. The results showed that the recursive filter was effective in order to maintain marker tracking stability and accuracy in low dose fluoroscopy. © 2012 American Association of Physicists in Medicine.

  3. TU-AB-202-03: Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chen, J; Phillips, J

    2016-06-15

    Purpose: Deformable image registration (DIR) is a powerful tool, but DIR errors can adversely affect its clinical applications. To estimate voxel-specific DIR uncertainty, a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), has been developed and validated. This work tests the ability of this software to predict uncertainty for the transfer of standard uptake values (SUV) from positron-emission tomography (PET) with DIR. Methods: Virtual phantoms are used for this study. Each phantom has a planning computed tomography (CT) image and a diagnostic PET-CT image set. A deformation was digitally applied to the diagnostic CT to create the planningmore » CT image and establish a known deformation between the images. One lung and three rectum patient datasets were employed to create the virtual phantoms. Both of these sites have difficult deformation scenarios associated with them, which can affect DIR accuracy (lung tissue sliding and changes in rectal filling). The virtual phantoms were created to simulate these scenarios by introducing discontinuities in the deformation field at the lung rectum border. The DIR algorithm from Plastimatch software was applied to these phantoms. The SUV mapping errors from the DIR were then compared to that predicted by AUTODIRECT. Results: The SUV error distributions closely followed the AUTODIRECT predicted error distribution for the 4 test cases. The minimum and maximum PET SUVs were produced from AUTODIRECT at 95% confidence interval before applying gradient-based SUV segmentation for each of these volumes. Notably, 93.5% of the target volume warped by the true deformation was included within the AUTODIRECT-predicted maximum SUV volume after the segmentation, while 78.9% of the target volume was within the target volume warped by Plastimatch. Conclusion: The AUTODIRECT framework is able to predict PET transfer uncertainty caused by DIR, which enables an understanding of the associated target volume uncertainty.« less

  4. Registration of pencil beam proton radiography data with X-ray CT.

    PubMed

    Deffet, Sylvain; Macq, Benoît; Righetto, Roberto; Vander Stappen, François; Farace, Paolo

    2017-10-01

    Proton radiography seems to be a promising tool for assessing the quality of the stopping power computation in proton therapy. However, range error maps obtained on the basis of proton radiographs are very sensitive to small misalignment between the planning CT and the proton radiography acquisitions. In order to be able to mitigate misalignment in postprocessing, the authors implemented a fast method for registration between pencil proton radiography data obtained with a multilayer ionization chamber (MLIC) and an X-ray CT acquired on a head phantom. The registration was performed by optimizing a cost function which performs a comparison between the acquired data and simulated integral depth-dose curves. Two methodologies were considered, one based on dual orthogonal projections and the other one on a single projection. For each methodology, the robustness of the registration algorithm with respect to three confounding factors (measurement noise, CT calibration errors, and spot spacing) was investigated by testing the accuracy of the method through simulations based on a CT scan of a head phantom. The present registration method showed robust convergence towards the optimal solution. For the level of measurement noise and the uncertainty in the stopping power computation expected in proton radiography using a MLIC, the accuracy appeared to be better than 0.3° for angles and 0.3 mm for translations by use of the appropriate cost function. The spot spacing analysis showed that a spacing larger than the 5 mm used by other authors for the investigation of a MLIC for proton radiography led to results with absolute accuracy better than 0.3° for angles and 1 mm for translations when orthogonal proton radiographs were fed into the algorithm. In the case of a single projection, 6 mm was the largest spot spacing presenting an acceptable registration accuracy. For registration of proton radiography data with X-ray CT, the use of a direct ray-tracing algorithm to compute sums of squared differences and corrections of range errors showed very good accuracy and robustness with respect to three confounding factors: measurement noise, calibration error, and spot spacing. It is therefore a suitable algorithm to use in the in vivo range verification framework, allowing to separate in postprocessing the proton range uncertainty due to setup errors from the other sources of uncertainty. © 2017 American Association of Physicists in Medicine.

  5. Automatic extraction of plots from geo-registered UAS imagery of crop fields with complex planting schemes

    NASA Astrophysics Data System (ADS)

    Hearst, Anthony A.

    Complex planting schemes are common in experimental crop fields and can make it difficult to extract plots of interest from high-resolution imagery of the fields gathered by Unmanned Aircraft Systems (UAS). This prevents UAS imagery from being applied in High-Throughput Precision Phenotyping and other areas of agricultural research. If the imagery is accurately geo-registered, then it may be possible to extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. Future work will focus on further enhancing the plot extraction accuracy through additional image processing techniques so that it becomes sufficiently accurate for all practical purposes in agricultural research and potentially other areas of research.

  6. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study

    NASA Astrophysics Data System (ADS)

    Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang

    2013-11-01

    Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally <1 mm and the rotational setup errors from 5° to <1°. Compared with the PICCS algorithm alone, the integration of rigid registration significantly improved the reconstructed image quality, with a reduction of mostly 2-3 folds (up to 100) in root mean square image error. The proposed algorithm provides a remedy for solving the problem of non-coplanar CBCT reconstruction from limited angle of projections by combining the PICCS technique and rigid image registration in an iterative framework. In this proof of concept study, non-coplanar beams with couch rotations of 45° can be effectively verified with the CBCT technique.

  7. Quantitative Analysis Tools and Digital Phantoms for Deformable Image Registration Quality Assurance.

    PubMed

    Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W

    2015-08-01

    This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.

  8. Toward magnetic resonance-guided electroanatomical voltage mapping for catheter ablation of scar-related ventricular tachycardia: a comparison of registration methods.

    PubMed

    Tao, Qian; Milles, Julien; VAN Huls VAN Taxis, Carine; Lamb, Hildo J; Reiber, Johan H C; Zeppenfeld, Katja; VAN DER Geest, Rob J

    2012-01-01

    Integration of preprocedural delayed enhanced magnetic resonance imaging (DE-MRI) with electroanatomical voltage mapping (EAVM) may provide additional high-resolution substrate information for catheter ablation of scar-related ventricular tachycardias (VT). Accurate and fast image integration of DE-MRI with EAVM is desirable for MR-guided ablation. Twenty-six VT patients with large transmural scar underwent catheter ablation and preprocedural DE-MRI. With different registration models and EAVM input, 3 image integration methods were evaluated and compared to the commercial registration module CartoMerge. The performance was evaluated both in terms of distance measure that describes surface matching, and correlation measure that describes actual scar correspondence. Compared to CartoMerge, the method that uses the translation-and-rotation model and high-density EAVM input resulted in a registration error of 4.32±0.69 mm as compared to 4.84 ± 1.07 (P <0.05); the method that uses the translation model and high-density EAVM input resulted in a registration error of 4.60 ± 0.65 mm (P = NS); and the method that uses the translation model and a single anatomical landmark input resulted in a registration error of 6.58 ± 1.63 mm (P < 0.05). No significant difference in scar correlation was observed between all 3 methods and CartoMerge (P = NS). During VT ablation procedures, accurate integration of EAVM and DE-MRI can be achieved using a translation registration model and a single anatomical landmark. This model allows for image integration in minimal mapping time and is likely to reduce fluoroscopy time and increase procedure efficacy. © 2011 Wiley Periodicals, Inc.

  9. Effects of megavoltage computed tomographic scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy.

    PubMed

    Zhu, Jian; Bai, Tong; Gu, Jiabing; Sun, Ziwen; Wei, Yumei; Li, Baosheng; Yin, Yong

    2018-04-27

    To evaluate the effect of pretreatment megavoltage computed tomographic (MVCT) scan methodology on setup verification and adaptive dose calculation in helical TomoTherapy. Both anthropomorphic heterogeneous chest and pelvic phantoms were planned with virtual targets by TomoTherapy Physicist Station and were scanned with TomoTherapy megavoltage image-guided radiotherapy (IGRT) system consisted of six groups of options: three different acquisition pitches (APs) of 'fine', 'normal' and 'coarse' were implemented by multiplying 2 different corresponding reconstruction intervals (RIs). In order to mimic patient setup variations, each phantom was shifted 5 mm away manually in three orthogonal directions respectively. The effect of MVCT scan options was analyzed in image quality (CT number and noise), adaptive dose calculation deviations and positional correction variations. MVCT scanning time with pitch of 'fine' was approximately twice of 'normal' and 3 times more than 'coarse' setting, all which will not be affected by different RIs. MVCT with different APs delivered almost identical CT numbers and image noise inside 7 selected regions with various densities. DVH curves from adaptive dose calculation with serial MVCT images acquired by varied pitches overlapped together, where as there are no significant difference in all p values of intercept & slope of emulational spinal cord (p = 0.761 & 0.277), heart (p = 0.984 & 0.978), lungs (p = 0.992 & 0.980), soft tissue (p = 0.319 & 0.951) and bony structures (p = 0.960 & 0.929) between the most elaborated and the roughest serials of MVCT. Furthermore, gamma index analysis shown that, compared to the dose distribution calculated on MVCT of 'fine', only 0.2% or 1.1% of the points analyzed on MVCT of 'normal' or 'coarse' do not meet the defined gamma criterion. On chest phantom, all registration errors larger than 1 mm appeared at superior-inferior axis, which cannot be avoided with the smallest AP and RI. On pelvic phantom, craniocaudal errors are much smaller than chest, however, AP of 'coarse' presents larger registration errors which can be reduced from 2.90 mm to 0.22 mm by registration technique of 'full image'. AP of 'coarse' with RI of 6 mm is recommended in adaptive radiotherapy (ART) planning to provide craniocaudal longer and faster MVCT scan, while registration technique of 'full image' should be used to avoid large residual error. Considering the trade-off between IGRT and ART, AP of 'normal' with RI of 2 mm was highly recommended in daily practice.

  10. SU-E-J-97: Evaluation of Multi-Modality (CT/MR/PET) Image Registration Accuracy in Radiotherapy Planning.

    PubMed

    Sethi, A; Rusu, I; Surucu, M; Halama, J

    2012-06-01

    Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.

  11. Non-rigid point set registration of curves: registration of the superficial vessel centerlines of the brain

    NASA Astrophysics Data System (ADS)

    Marreiros, Filipe M. M.; Wang, Chunliang; Rossitti, Sandro; Smedby, Örjan

    2016-03-01

    In this study we present a non-rigid point set registration for 3D curves (composed by 3D set of points). The method was evaluated in the task of registration of 3D superficial vessels of the brain where it was used to match vessel centerline points. It consists of a combination of the Coherent Point Drift (CPD) and the Thin-Plate Spline (TPS) semilandmarks. The CPD is used to perform the initial matching of centerline 3D points, while the semilandmark method iteratively relaxes/slides the points. For the evaluation, a Magnetic Resonance Angiography (MRA) dataset was used. Deformations were applied to the extracted vessels centerlines to simulate brain bulging and sinking, using a TPS deformation where a few control points were manipulated to obtain the desired transformation (T1). Once the correspondences are known, the corresponding points are used to define a new TPS deformation(T2). The errors are measured in the deformed space, by transforming the original points using T1 and T2 and measuring the distance between them. To simulate cases where the deformed vessel data is incomplete, parts of the reference vessels were cut and then deformed. Furthermore, anisotropic normally distributed noise was added. The results show that the error estimates (root mean square error and mean error) are below 1 mm, even in the presence of noise and incomplete data.

  12. SU-E-J-89: Comparative Analysis of MIM and Velocity’s Image Deformation Algorithm Using Simulated KV-CBCT Images for Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, K; Narayanasamy, G; Obediat, M

    Purpose: Deformable image registration (DIR) is used routinely in the clinic without a formalized quality assurance (QA) process. Using simulated deformations to digitally deform images in a known way and comparing to DIR algorithm predictions is a powerful technique for DIR QA. This technique must also simulate realistic image noise and artifacts, especially between modalities. This study developed an algorithm to create simulated daily kV cone-beam computed-tomography (CBCT) images from CT images for DIR QA between these modalities. Methods: A Catphan and physical head-and-neck phantom, with known deformations, were used. CT and kV-CBCT images of the Catphan were utilized tomore » characterize the changes in Hounsfield units, noise, and image cupping that occur between these imaging modalities. The algorithm then imprinted these changes onto a CT image of the deformed head-and-neck phantom, thereby creating a simulated-CBCT image. CT and kV-CBCT images of the undeformed and deformed head-and-neck phantom were also acquired. The Velocity and MIM DIR algorithms were applied between the undeformed CT image and each of the deformed CT, CBCT, and simulated-CBCT images to obtain predicted deformations. The error between the known and predicted deformations was used as a metric to evaluate the quality of the simulated-CBCT image. Ideally, the simulated-CBCT image registration would produce the same accuracy as the deformed CBCT image registration. Results: For Velocity, the mean error was 1.4 mm for the CT-CT registration, 1.7 mm for the CT-CBCT registration, and 1.4 mm for the CT-simulated-CBCT registration. These same numbers were 1.5, 4.5, and 5.9 mm, respectively, for MIM. Conclusion: All cases produced similar accuracy for Velocity. MIM produced similar values of accuracy for CT-CT registration, but was not as accurate for CT-CBCT registrations. The MIM simulated-CBCT registration followed this same trend, but overestimated MIM DIR errors relative to the CT-CBCT registration.« less

  13. Automatic co-registration of 3D multi-sensor point clouds

    NASA Astrophysics Data System (ADS)

    Persad, Ravi Ancil; Armenakis, Costas

    2017-08-01

    We propose an approach for the automatic coarse alignment of 3D point clouds which have been acquired from various platforms. The method is based on 2D keypoint matching performed on height map images of the point clouds. Initially, a multi-scale wavelet keypoint detector is applied, followed by adaptive non-maxima suppression. A scale, rotation and translation-invariant descriptor is then computed for all keypoints. The descriptor is built using the log-polar mapping of Gabor filter derivatives in combination with the so-called Rapid Transform. In the final step, source and target height map keypoint correspondences are determined using a bi-directional nearest neighbour similarity check, together with a threshold-free modified-RANSAC. Experiments with urban and non-urban scenes are presented and results show scale errors ranging from 0.01 to 0.03, 3D rotation errors in the order of 0.2° to 0.3° and 3D translation errors from 0.09 m to 1.1 m.

  14. Three-dimensional analysis of the surface registration accuracy of electromagnetic navigation systems in live endoscopic sinus surgery.

    PubMed

    Chang, C M; Fang, K M; Huang, T W; Wang, C T; Cheng, P W

    2013-12-01

    Studies on the performance of surface registration with electromagnetic tracking systems are lacking in both live surgery and the laboratory setting. This study presents the efficiency in time of the system preparation as well as the navigational accuracy of surface registration using electromagnetic tracking systems. Forty patients with bilateral chronic paranasal pansinusitis underwent endoscopic sinus surgery after undergoing sinus computed tomography scans. The surgeries were performed under electromagnetic navigation guidance after the surface registration had been carried out on all of the patients. The intraoperative measurements indicate the time taken for equipment set-up, surface registration and surgical procedure, as well as the degree of navigation error along 3 axes. The time taken for equipment set-up, surface registration and the surgical procedure was 179 +- 23 seconds, 39 +- 4.8 seconds and 114 +- 36 minutes, respectively. A comparison of the navigation error along the 3 axes showed that the deviation in the medial-lateral direction was significantly less than that in the anterior-posterior and cranial-caudal directions. The procedures of equipment set-up and surface registration in electromagnetic navigation tracking are efficient, convenient and easy to manipulate. The system accuracy is within the acceptable ranges, especially on the medial-lateral axis.

  15. Prostate multimodality image registration based on B-splines and quadrature local energy.

    PubMed

    Mitra, Jhimli; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C; Meriaudeau, Fabrice

    2012-05-01

    Needle biopsy of the prostate is guided by Transrectal Ultrasound (TRUS) imaging. The TRUS images do not provide proper spatial localization of malignant tissues due to the poor sensitivity of TRUS to visualize early malignancy. Magnetic Resonance Imaging (MRI) has been shown to be sensitive for the detection of early stage malignancy, and therefore, a novel 2D deformable registration method that overlays pre-biopsy MRI onto TRUS images has been proposed. The registration method involves B-spline deformations with Normalized Mutual Information (NMI) as the similarity measure computed from the texture images obtained from the amplitude responses of the directional quadrature filter pairs. Registration accuracy of the proposed method is evaluated by computing the Dice Similarity coefficient (DSC) and 95% Hausdorff Distance (HD) values for 20 patients prostate mid-gland slices and Target Registration Error (TRE) for 18 patients only where homologous structures are visible in both the TRUS and transformed MR images. The proposed method and B-splines using NMI computed from intensities provide average TRE values of 2.64 ± 1.37 and 4.43 ± 2.77 mm respectively. Our method shows statistically significant improvement in TRE when compared with B-spline using NMI computed from intensities with Student's t test p = 0.02. The proposed method shows 1.18 times improvement over thin-plate splines registration with average TRE of 3.11 ± 2.18 mm. The mean DSC and the mean 95% HD values obtained with the proposed method of B-spline with NMI computed from texture are 0.943 ± 0.039 and 4.75 ± 2.40 mm respectively. The texture energy computed from the quadrature filter pairs provides better registration accuracy for multimodal images than raw intensities. Low TRE values of the proposed registration method add to the feasibility of it being used during TRUS-guided biopsy.

  16. Navigation surgery using an augmented reality for pancreatectomy.

    PubMed

    Okamoto, Tomoyoshi; Onda, Shinji; Yasuda, Jungo; Yanaga, Katsuhiko; Suzuki, Naoki; Hattori, Asaki

    2015-01-01

    The aim of this study was to evaluate the utility of navigation surgery using augmented reality technology (AR-based NS) for pancreatectomy. The 3D reconstructed images from CT were created by segmentation. The initial registration was performed by using the optical location sensor. The reconstructed images were superimposed onto the real organs in the monitor display. Of the 19 patients who had undergone hepatobiliary and pancreatic surgery using AR-based NS, the accuracy, visualization ability, and utility of our system were assessed in five cases with pancreatectomy. The position of each organ in the surface-rendering image corresponded almost to that of the actual organ. Reference to the display image allowed for safe dissection while preserving the adjacent vessels or organs. The locations of the lesions and resection line on the targeted organ were overlaid on the operating field. The initial mean registration error was improved to approximately 5 mm by our refinements. However, several problems such as registration accuracy, portability and cost still remain. AR-based NS contributed to accurate and effective surgical resection in pancreatectomy. The pancreas appears to be a suitable organ for further investigations. This technology is promising to improve surgical quality, training, and education. © 2015 S. Karger AG, Basel.

  17. Automated robust registration of grossly misregistered whole-slide images with varying stains

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Safferling, K.; Grabe, N.

    2016-03-01

    Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.

  18. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J.; Zhong, Hualiang

    2014-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline–based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient-dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PMID:24257278

  19. Using patient‐specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide‐Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J

    2013-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B‐spline‐based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast‐Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM‐DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0~3.1mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B‐spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient‐specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient‐dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PACS numbers: 87.10.Kn, 87.55.km, 87.55.Qr, 87.57.nj

  20. Evaluation of image registration in PET/CT of the liver and recommendations for optimized imaging.

    PubMed

    Vogel, Wouter V; van Dalen, Jorn A; Wiering, Bas; Huisman, Henkjan; Corstens, Frans H M; Ruers, Theo J M; Oyen, Wim J G

    2007-06-01

    Multimodality PET/CT of the liver can be performed with an integrated (hybrid) PET/CT scanner or with software fusion of dedicated PET and CT. Accurate anatomic correlation and good image quality of both modalities are important prerequisites, regardless of the applied method. Registration accuracy is influenced by breathing motion differences on PET and CT, which may also have impact on (attenuation correction-related) artifacts, especially in the upper abdomen. The impact of these issues was evaluated for both hybrid PET/CT and software fusion, focused on imaging of the liver. Thirty patients underwent hybrid PET/CT, 20 with CT during expiration breath-hold (EB) and 10 with CT during free breathing (FB). Ten additional patients underwent software fusion of dedicated PET and dedicated expiration breath-hold CT (SF). The image registration accuracy was evaluated at the location of liver borders on CT and uncorrected PET images and at the location of liver lesions. Attenuation-correction artifacts were evaluated by comparison of liver borders on uncorrected and attenuation-corrected PET images. CT images were evaluated for the presence of breathing artifacts. In EB, 40% of patients had an absolute registration error of the diaphragm in the craniocaudal direction of >1 cm (range, -16 to 44 mm), and 45% of lesions were mispositioned >1 cm. In 50% of cases, attenuation-correction artifacts caused a deformation of the liver dome on PET of >1 cm. Poor compliance to breath-hold instructions caused CT artifacts in 55% of cases. In FB, 30% had registration errors of >1 cm (range, -4 to 16 mm) and PET artifacts were less extensive, but all CT images had breathing artifacts. As SF allows independent alignment of PET and CT, no registration errors or artifacts of >1 cm of the diaphragm occurred. Hybrid PET/CT of the liver may have significant registration errors and artifacts related to breathing motion. The extent of these issues depends on the selected breathing protocol and the speed of the CT scanner. No protocol or scanner can guarantee perfect image fusion. On the basis of these findings, recommendations were formulated with regard to scanner requirements, breathing protocols, and reporting.

  1. Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game

    NASA Astrophysics Data System (ADS)

    Zai, Dawei; Li, Jonathan; Guo, Yulan; Cheng, Ming; Huang, Pengdi; Cao, Xiaofei; Wang, Cheng

    2017-12-01

    It is challenging to automatically register TLS point clouds with noise, outliers and varying overlap. In this paper, we propose a new method for pairwise registration of TLS point clouds. We first generate covariance matrix descriptors with an adaptive neighborhood size from point clouds to find candidate correspondences, we then construct a non-cooperative game to isolate mutual compatible correspondences, which are considered as true positives. The method was tested on three models acquired by two different TLS systems. Experimental results demonstrate that our proposed adaptive covariance (ACOV) descriptor is invariant to rigid transformation and robust to noise and varying resolutions. The average registration errors achieved on three models are 0.46 cm, 0.32 cm and 1.73 cm, respectively. The computational times cost on these models are about 288 s, 184 s and 903 s, respectively. Besides, our registration framework using ACOV descriptors and a game theoretic method is superior to the state-of-the-art methods in terms of both registration error and computational time. The experiment on a large outdoor scene further demonstrates the feasibility and effectiveness of our proposed pairwise registration framework.

  2. Manual limbal markings versus iris-registration software for correction of myopic astigmatism by laser in situ keratomileusis.

    PubMed

    Shen, Elizabeth P; Chen, Wei-Li; Hu, Fung-Rong

    2010-03-01

    To compare the efficacy and safety of manual limbal markings and wavefront-guided treatment with iris-registration software in laser in situ keratomileusis (LASIK) for myopic astigmatism. National Taiwan University Hospital, Taipei, Taiwan. Eyes with myopic astigmatism had LASIK with a Technolas 217z laser. Eyes in the limbal-marking group had conventional LASIK (PlanoScan or Zyoptix tissue-saving algorithm) with manual cyclotorsional-error adjustments according to 2 limbal marks. Eyes in the iris-registration group had wavefront-guided ablation (Zyoptix) in which cyclotorsional errors were automatically detected and adjusted. Refraction, corneal topography, and visual acuity data were compared between groups. Vector analysis was by the Alpins method. The mean preoperative spherical equivalent (SE) was -6.64 diopters (D) +/- 1.99 (SD) in the limbal-marking group and -6.72 +/- 1.86 D in the iris-registration group (P = .92). At 6 months, the mean SE was -0.42 +/- 0.63 D and -0.47 +/- 0.62 D, respectively (P = .08). There was no statistically significant difference between groups in the astigmatism correction, success, or flattening index values using 6-month postoperative refractive data. The angle of error was within +/-10 degrees in 73% of eyes in the limbal-marking group and 75% of eyes in the iris-registration group. Manual limbal markings and iris-registration software were equally effective and safe in LASIK for myopic astigmatism, showing that checking cyclotorsion by manual limbal markings is a safe alternative when automated systems are not available. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. SU-E-J-119: What Effect Have the Volume Defined in the Alignment Clipbox for Cervical Cancer Using Automatic Registration Methods for Cone- Beam CT Verification?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W; Yang, H; Wang, Y

    2014-06-01

    Purpose: To investigate the impact of different clipbox volumes with automated registration techniques using commercially available software with on board volumetric imaging(OBI) for treatment verification in cervical cancer patients. Methods: Fifty cervical cancer patients received daily CBCT scans(on-board imaging v1.5 system, Varian Medical Systems) during the first treatment week and weekly thereafter were included this analysis. A total of 450 CBCT scans were registered to the planning CTscan using pelvic clipbox(clipbox-Pelvic) and around PTV clip box(clipbox- PTV). The translations(anterior-posterior, left-right, superior-inferior) and the rotations(yaw, pitch and roll) errors for each matches were recorded. The setup errors and the systematic andmore » random errors for both of the clip-boxes were calculated. Paired Samples t test was used to analysis the differences between clipbox-Pelvic and clipbox-PTV. Results: . The SD of systematic error(σ) was 1.0mm, 2.0mm,3.2mm and 1.9mm,2.3mm, 3.0mm in the AP, LR and SI directions for clipbox-Pelvic and clipbox-PTV, respectively. The average random error(Σ)was 1.7mm, 2.0mm,4.2mm and 1.7mm,3.4mm, 4.4mm in the AP, LR and SI directions for clipbox-Pelvic and clipbox-PTV, respectively. But, only the SI direction was acquired significantly differences between two image registration volumes(p=0.002,p=0.01 for mean and SD). For rotations, the yaw mean/SD and the pitch SD were acquired significantly differences between clipbox-Pelvic and clipbox-PTV. Conclusion: The defined volume for Image registration is important for cervical cancer when 3D/3D match was used. The alignment clipbox can effect the setup errors obtained. Further analysis is need to determine the optimal defined volume to use the image registration in cervical cancer. Conflict of interest: none.« less

  4. Comparison of the performance of tracer kinetic model-driven registration for dynamic contrast enhanced MRI using different models of contrast enhancement.

    PubMed

    Buonaccorsi, Giovanni A; Roberts, Caleb; Cheung, Sue; Watson, Yvonne; O'Connor, James P B; Davies, Karen; Jackson, Alan; Jayson, Gordon C; Parker, Geoff J M

    2006-09-01

    The quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) data is subject to model fitting errors caused by motion during the time-series data acquisition. However, the time-varying features that occur as a result of contrast enhancement can confound motion correction techniques based on conventional registration similarity measures. We have therefore developed a heuristic, locally controlled tracer kinetic model-driven registration procedure, in which the model accounts for contrast enhancement, and applied it to the registration of abdominal DCE-MRI data at high temporal resolution. Using severely motion-corrupted data sets that had been excluded from analysis in a clinical trial of an antiangiogenic agent, we compared the results obtained when using different models to drive the tracer kinetic model-driven registration with those obtained when using a conventional registration against the time series mean image volume. Using tracer kinetic model-driven registration, it was possible to improve model fitting by reducing the sum of squared errors but the improvement was only realized when using a model that adequately described the features of the time series data. The registration against the time series mean significantly distorted the time series data, as did tracer kinetic model-driven registration using a simpler model of contrast enhancement. When an appropriate model is used, tracer kinetic model-driven registration influences motion-corrupted model fit parameter estimates and provides significant improvements in localization in three-dimensional parameter maps. This has positive implications for the use of quantitative DCE-MRI for example in clinical trials of antiangiogenic or antivascular agents.

  5. Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching.

    PubMed

    Machado, Inês; Toews, Matthew; Luo, Jie; Unadkat, Prashin; Essayed, Walid; George, Elizabeth; Teodoro, Pedro; Carvalho, Herculano; Martins, Jorge; Golland, Polina; Pieper, Steve; Frisken, Sarah; Golby, Alexandra; Wells, William

    2018-06-04

    The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.

  6. Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2014-09-01

    An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).

  7. The impact of registration accuracy on imaging validation study design: A novel statistical power calculation.

    PubMed

    Gibson, Eli; Fenster, Aaron; Ward, Aaron D

    2013-10-01

    Novel imaging modalities are pushing the boundaries of what is possible in medical imaging, but their signal properties are not always well understood. The evaluation of these novel imaging modalities is critical to achieving their research and clinical potential. Image registration of novel modalities to accepted reference standard modalities is an important part of characterizing the modalities and elucidating the effect of underlying focal disease on the imaging signal. The strengths of the conclusions drawn from these analyses are limited by statistical power. Based on the observation that in this context, statistical power depends in part on uncertainty arising from registration error, we derive a power calculation formula relating registration error, number of subjects, and the minimum detectable difference between normal and pathologic regions on imaging, for an imaging validation study design that accommodates signal correlations within image regions. Monte Carlo simulations were used to evaluate the derived models and test the strength of their assumptions, showing that the model yielded predictions of the power, the number of subjects, and the minimum detectable difference of simulated experiments accurate to within a maximum error of 1% when the assumptions of the derivation were met, and characterizing sensitivities of the model to violations of the assumptions. The use of these formulae is illustrated through a calculation of the number of subjects required for a case study, modeled closely after a prostate cancer imaging validation study currently taking place at our institution. The power calculation formulae address three central questions in the design of imaging validation studies: (1) What is the maximum acceptable registration error? (2) How many subjects are needed? (3) What is the minimum detectable difference between normal and pathologic image regions? Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging.

    PubMed

    Kenngott, Hannes G; Wagner, Martin; Gondan, Matthias; Nickel, Felix; Nolden, Marco; Fetzer, Andreas; Weitz, Jürgen; Fischer, Lars; Speidel, Stefanie; Meinzer, Hans-Peter; Böckler, Dittmar; Büchler, Markus W; Müller-Stich, Beat P

    2014-03-01

    Laparoscopic liver surgery is particularly challenging owing to restricted access, risk of bleeding, and lack of haptic feedback. Navigation systems have the potential to improve information on the exact position of intrahepatic tumors, and thus facilitate oncological resection. This study aims to evaluate the feasibility of a commercially available augmented reality (AR) guidance system employing intraoperative robotic C-arm cone-beam computed tomography (CBCT) for laparoscopic liver surgery. A human liver-like phantom with 16 target fiducials was used to evaluate the Syngo iPilot(®) AR system. Subsequently, the system was used for the laparoscopic resection of a hepatocellular carcinoma in segment 7 of a 50-year-old male patient. In the phantom experiment, the AR system showed a mean target registration error of 0.96 ± 0.52 mm, with a maximum error of 2.49 mm. The patient successfully underwent the operation and showed no postoperative complications. The use of intraoperative CBCT and AR for laparoscopic liver resection is feasible and could be considered an option for future liver surgery in complex cases.

  9. Targeted endomyocardial injections of therapeutic cells using x-ray fused with MRI guidance

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Luis F.; de Silva, Ranil; McVeigh, Elliot R.; Ozturk, Cengizhan; Lederman, Robert J.

    2006-03-01

    The utility of X-ray fused with MRI (XFM) using external fiducial markers to perform targeted endomyocardial injections in infarcted hearts of swine was tested. Endomyocardial injections of feridex-labeled mesenchymal stromal cells (Fe-MSC) were performed in the previously infarcted hearts of 12 Yucatan miniswine (33-67 kg). Animals had pre-injection cardiac MRI, XFM-guided endomyocardial injection of Fe-MSC suspension spiked with tissue dye, and post-injection MRI. 24 hours later, after euthanasia, the hearts were excised, sliced and stained with TTC. During the injection procedure, operators were provided with 3D surfaces of endocardium, epicardium, myocardial wall thickness and infarct registered with live XF images to facilitate device navigation and choice of injection location. 130 injections were performed in hearts where diastolic wall thickness ranged from 2.6 to 17.7 mm. Visual inspection of the pattern of dye staining on TTC stained heart slices correlated (r=0.98) with XFM-derived injection locations mapped onto delayed hyperenhancement MRI and the susceptibility artifacts seen on the post-injection T2*-weighted gradient echo MRI. The in vivo target registration error was 3.17+/-2.61 mm (n=64) and 75% of injections were within 4 mm of the predicted location. 3D to 2D registration of XF and MR images using external fiducial markers enables accurate targeted endomyocardial injection in a swine model of myocardial infarction. The present data suggest that the safety and efficacy of this approach for performing targeted endomyocardial delivery should be evaluated further clinically.

  10. An automated, quantitative, and case-specific evaluation of deformable image registration in computed tomography images

    NASA Astrophysics Data System (ADS)

    Kierkels, R. G. J.; den Otter, L. A.; Korevaar, E. W.; Langendijk, J. A.; van der Schaaf, A.; Knopf, A. C.; Sijtsema, N. M.

    2018-02-01

    A prerequisite for adaptive dose-tracking in radiotherapy is the assessment of the deformable image registration (DIR) quality. In this work, various metrics that quantify DIR uncertainties are investigated using realistic deformation fields of 26 head and neck and 12 lung cancer patients. Metrics related to the physiologically feasibility (the Jacobian determinant, harmonic energy (HE), and octahedral shear strain (OSS)) and numerically robustness of the deformation (the inverse consistency error (ICE), transitivity error (TE), and distance discordance metric (DDM)) were investigated. The deformable registrations were performed using a B-spline transformation model. The DIR error metrics were log-transformed and correlated (Pearson) against the log-transformed ground-truth error on a voxel level. Correlations of r  ⩾  0.5 were found for the DDM and HE. Given a DIR tolerance threshold of 2.0 mm and a negative predictive value of 0.90, the DDM and HE thresholds were 0.49 mm and 0.014, respectively. In conclusion, the log-transformed DDM and HE can be used to identify voxels at risk for large DIR errors with a large negative predictive value. The HE and/or DDM can therefore be used to perform automated quality assurance of each CT-based DIR for head and neck and lung cancer patients.

  11. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations.

    PubMed

    Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L

    1997-04-01

    This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.

  12. A global CT to US registration of the lumbar spine

    NASA Astrophysics Data System (ADS)

    Nagpal, Simrin; Hacihaliloglu, Ilker; Ungi, Tamas; Rasoulian, Abtin; Osborn, Jill; Lessoway, Victoria A.; Rohling, Robert N.; Borschneck, Daniel P.; Abolmaesumi, Purang; Mousavi, Parvin

    2014-03-01

    During percutaneous lumbar spine needle interventions, alignment of the preoperative computed tomography (CT) with intraoperative ultrasound (US) can augment anatomical visualization for the clinician. We propose an approach to rigidly align CT and US data of the lumbar spine. The approach involves an intensity-based volume registration step, followed by a surface segmentation and a point-based registration of the entire lumbar spine volume. A clinical feasibility study resulted in mean registration error of approximately 3 mm between CT and US data.

  13. Sensitivity of geographic information system outputs to errors in remotely sensed data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; Boyd, R. K.; Gunther, F. J.; Lu, Y. C.

    1981-01-01

    The sensitivity of the outputs of a geographic information system (GIS) to errors in inputs derived from remotely sensed data (RSD) is investigated using a suitability model with per-cell decisions and a gridded geographic data base whose cells are larger than the RSD pixels. The process of preparing RSD as input to a GIS is analyzed, and the errors associated with classification and registration are examined. In the case of the model considered, it is found that the errors caused during classification and registration are partially compensated by the aggregation of pixels. The compensation is quantified by means of an analytical model, a Monte Carlo simulation, and experiments with Landsat data. The results show that error reductions of the order of 50% occur because of aggregation when 25 pixels of RSD are used per cell in the geographic data base.

  14. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    PubMed Central

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Brock, Kristy K.; Daly, Michael J.; Chan, Harley; Irish, Jonathan C.; Siewerdsen, Jeffrey H.

    2011-01-01

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (“intensity”). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and∕or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5±2.8) mm compared to (3.5±3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance. PMID:21626913

  15. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specificmore » intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.« less

  16. Differential Motion Between Mediastinal Lymph Nodes and Primary Tumor in Radically Irradiated Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaake, Eva E.; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam; Rossi, Maddalena M.G.

    2014-11-15

    Purpose/Objective: In patients with locally advanced lung cancer, planning target volume margins for mediastinal lymph nodes and tumor after a correction protocol based on bony anatomy registration typically range from 1 to 1.5 cm. Detailed information about lymph node motion variability and differential motion with the primary tumor, however, is lacking from large series. In this study, lymph node and tumor position variability were analyzed in detail and correlated to the main carina to evaluate possible margin reduction. Methods and Materials: Small gold fiducial markers (0.35 × 5 mm) were placed in the mediastinal lymph nodes of 51 patients with non-small cell lung cancermore » during routine diagnostic esophageal or bronchial endoscopic ultrasonography. Four-dimensional (4D) planning computed tomographic (CT) and daily 4D cone beam (CB) CT scans were acquired before and during radical radiation therapy (66 Gy in 24 fractions). Each CBCT was registered in 3-dimensions (bony anatomy) and 4D (tumor, marker, and carina) to the planning CT scan. Subsequently, systematic and random residual misalignments of the time-averaged lymph node and tumor position relative to the bony anatomy and carina were determined. Additionally, tumor and lymph node respiratory amplitude variability was quantified. Finally, required margins were quantified by use of a recipe for dual targets. Results: Relative to the bony anatomy, systematic and random errors ranged from 0.16 to 0.32 cm for the markers and from 0.15 to 0.33 cm for the tumor, but despite similar ranges there was limited correlation (0.17-0.71) owing to differential motion. A large variability in lymph node amplitude between patients was observed, with an average motion of 0.56 cm in the cranial-caudal direction. Margins could be reduced by 10% (left-right), 27% (cranial-caudal), and 10% (anteroposterior) for the lymph nodes and −2%, 15%, and 7% for the tumor if an online carina registration protocol replaced a protocol based on bony anatomy registration. Conclusions: Detailed analysis revealed considerable lymph node position variability, differential motion, and respiratory motion. Planning target volume margins can be reduced up to 27% in lung cancer patients when the carina registration replaces bony anatomy registration.« less

  17. Comparison between skin-mounted fiducials and bone-implanted fiducials for image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Rost, Jennifer; Harris, Steven S.; Stefansic, James D.; Sillay, Karl; Galloway, Robert L., Jr.

    2004-05-01

    Point-based registration for image-guided neurosurgery has become the industry standard. While the use of intrinsic points is appealing because of its retrospective nature, affixing extrinsic objects to the head prior to scanning has been demonstrated to provide much more accurate registrations. Points of reference between image space and physical space are called fiducials. The extrinsic objects which generate those points are fiducial markers. The markers can be broken down into two classifications: skin-mounted and bone-implanted. Each has distinct advantages and disadvantages. Skin-mounted fiducials require simply sticking them on the patient in locations suggested by the manufacturer, however, they can move with tractions placed on the skin, fall off and perhaps the most dangerous problem, they can be replaced by the patient. Bone implanted markers being rigidly affixed to the skull do not present such problems. However, a minor surgical intervention (analogous to dental work) must be performed to implant the markers prior to surgery. Therefore marker type and use has become a decision point for image-guided surgery. We have performed a series of experiments in an attempt to better quantify aspects of the two types of markers so that better informed decisions can be made. We have created a phantom composed of a full-size plastic skull [Wards Scientific Supply] with a 500 ml bag of saline placed in the brain cavity. The skull was then sealed. A skin mimicking material, DragonSkinTM [SmoothOn Company] was painted onto the surface and allowed to dry. Skin mounted fiducials [Medtronic-SNT] and bone-implanted markers [Z-Kat]were placed on the phantom. In addition, three additional bone-implanted markers were placed (two on the base of the skull and one in the eye socket for use as targets). The markers were imaged in CT and 4 MRI sequences (T1-weighted, T2 weighted, SPGR, and a functional series.) The markers were also located in physical space using an Optotrak 3020 [Northern Digital Inc]. Registrations between image space and physical space were performed and fiducial and target registration errors were determined. Finally the 5 bone-implanted makers which penetrated the skin were removed and a traction equivalent to 25% of the weight of the average human head was applied to the "skin" surface. Target and fiducial registrations were again performed.

  18. Effect of endorectal balloon positioning errors on target deformation and dosimetric quality during prostate SBRT

    NASA Astrophysics Data System (ADS)

    Jones, Bernard L.; Gan, Gregory; Kavanagh, Brian; Miften, Moyed

    2013-11-01

    An inflatable endorectal balloon (ERB) is often used during stereotactic body radiation therapy (SBRT) for treatment of prostate cancer in order to reduce both intrafraction motion of the target and risk of rectal toxicity. However, the ERB can exert significant force on the prostate, and this work assessed the impact of ERB position errors on deformation of the prostate and treatment dose metrics. Seventy-one cone-beam computed tomography (CBCT) image datasets of nine patients with clinical stage T1cN0M0 prostate cancer were studied. An ERB (Flexi-Cuff, EZ-EM, Westbury, NY) inflated with 60 cm3 of air was used during simulation and treatment, and daily kilovoltage (kV) CBCT imaging was performed to localize the prostate. The shape of the ERB in each CBCT was analyzed to determine errors in position, size, and shape. A deformable registration algorithm was used to track the dose received by (and deformation of) the prostate, and dosimetric values such as D95, PTV coverage, and Dice coefficient for the prostate were calculated. The average balloon position error was 0.5 cm in the inferior direction, with errors ranging from 2 cm inferiorly to 1 cm superiorly. The prostate was deformed primarily in the AP direction, and tilted primarily in the anterior-posterior/superior-inferior plane. A significant correlation was seen between errors in depth of ERB insertion (DOI) and mean voxel-wise deformation, prostate tilt, Dice coefficient, and planning-to-treatment prostate inter-surface distance (p < 0.001). Dosimetrically, DOI is negatively correlated with prostate D95 and PTV coverage (p < 0.001). For the model of ERB studied, error in ERB position can cause deformations in the prostate that negatively affect treatment, and this additional aspect of setup error should be considered when ERBs are used for prostate SBRT. Before treatment, the ERB position should be verified, and the ERB should be adjusted if the error is observed to exceed tolerable values.

  19. Complex background suppression using global-local registration strategy for the detection of small-moving target on moving platform

    NASA Astrophysics Data System (ADS)

    Zou, Tianhao; Zuo, Zhengrong

    2018-02-01

    Target detection is a very important and basic problem of computer vision and image processing. The most often case we meet in real world is a detection task for a moving-small target on moving platform. The commonly used methods, such as Registration-based suppression, can hardly achieve a desired result. To crack this hard nut, we introduce a Global-local registration based suppression method. Differ from the traditional ones, the proposed Global-local Registration Strategy consider both the global consistency and the local diversity of the background, obtain a better performance than normal background suppression methods. In this paper, we first discussed the features about the small-moving target detection on unstable platform. Then we introduced a new strategy and conducted an experiment to confirm its noisy stability. In the end, we confirmed the background suppression method based on global-local registration strategy has a better perform in moving target detection on moving platform.

  20. An image-guided radiotherapy decision support framework incorporating a Bayesian network and visualization tool.

    PubMed

    Hargrave, Catriona; Deegan, Timothy; Bednarz, Tomasz; Poulsen, Michael; Harden, Fiona; Mengersen, Kerrie

    2018-05-17

    To describe a Bayesian network (BN) and complementary visualization tool that aim to support decision-making during online cone-beam computed tomography (CBCT)-based image-guided radiotherapy (IGRT) for prostate cancer patients. The BN was created to represent relationships between observed prostate, proximal seminal vesicle (PSV), bladder and rectum volume variations, an image feature alignment score (FAS TV _ OAR ), delivered dose, and treatment plan compliance (TPC). Variables influencing tumor volume (TV) targeting accuracy such as intrafraction motion, and contouring and couch shift errors were also represented. A score of overall TPC (FAS global ) and factors such as image quality were used to inform the BN output node providing advice about proceeding with treatment. The BN was quantified using conditional probabilities generated from published studies, FAS TV _ OAR /global modeling, and a survey of IGRT decision-making practices. A new IGRT visualization tool (IGRT REV ), in the form of Mollweide projection plots, was developed to provide a global summary of residual errors after online CBCT-planning CT registration. Sensitivity and scenario analyses were undertaken to evaluate the performance of the BN and the relative influence of the network variables on TPC and the decision to proceed with treatment. The IGRT REV plots were evaluated in conjunction with the BN scenario testing, using additional test data generated from retrospective CBCT-planning CT soft-tissue registrations for 13/36 patients whose data were used in the FAS TV _ OAR /global modeling. Modeling of the TV targeting errors resulted in a very low probability of corrected distances between the CBCT and planning CT prostate or PSV volumes being within their thresholds. Strength of influence evaluation with and without the BN TV targeting error nodes indicated that rectum- and bladder-related network variables had the highest relative importance. When the TV targeting error nodes were excluded from the BN, TPC was sensitive to observed PSV and rectum variations while the decision to treat was sensitive to observed prostate and PSV variations. When root nodes were set so the PSV and rectum variations exceeded thresholds, the probability of low TPC increased to 40%. Prostate and PSV variations exceeding thresholds increased the likelihood of repositioning or repeating patient preparation to 43%. Scenario testing using the test data from 13 patients, demonstrated two cases where the BN provided increased high TPC probabilities, despite some of the prostate and PSV volume variation metrics not being within tolerance. The IGRT REV tool was effective in highlighting and quantifying where TV and OAR variations occurred, supporting the BN recommendation to reposition the patient or repeat their bladder and bowel preparation. In another case, the IGRT REV tool was also effective in highlighting where PSV volume variation significantly exceeded tolerance when the BN had indicated to proceed with treatment. This study has demonstrated that both the BN and IGRT REV plots are effective tools for inclusion in a decision support system for online CBCT-based IGRT for prostate cancer patients. Alternate approaches to modeling TV targeting errors need to be explored as well as extension of the BN to support offline IGRT decisions related to adaptive radiotherapy. © 2018 American Association of Physicists in Medicine.

  1. SU-E-J-114: A Practical Hybrid Method for Improving the Quality of CT-CBCT Deformable Image Registration for Head and Neck Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C; Kumarasiri, A; Chetvertkov, M

    2015-06-15

    Purpose: Accurate deformable image registration (DIR) between CT and CBCT in H&N is challenging. In this study, we propose a practical hybrid method that uses not only the pixel intensities but also organ physical properties, structure volume of interest (VOI), and interactive local registrations. Methods: Five oropharyngeal cancer patients were selected retrospectively. For each patient, the planning CT was registered to the last fraction CBCT, where the anatomy difference was largest. A three step registration strategy was tested; Step1) DIR using pixel intensity only, Step2) DIR with additional use of structure VOI and rigidity penalty, and Step3) interactive local correction.more » For Step1, a public-domain open-source DIR algorithm was used (cubic B-spline, mutual information, steepest gradient optimization, and 4-level multi-resolution). For Step2, rigidity penalty was applied on bony anatomies and brain, and a structure VOI was used to handle the body truncation such as the shoulder cut-off on CBCT. Finally, in Step3, the registrations were reviewed on our in-house developed software and the erroneous areas were corrected via a local registration using level-set motion algorithm. Results: After Step1, there were considerable amount of registration errors in soft tissues and unrealistic stretching in the posterior to the neck and near the shoulder due to body truncation. The brain was also found deformed to a measurable extent near the superior border of CBCT. Such errors could be effectively removed by using a structure VOI and rigidity penalty. The rest of the local soft tissue error could be corrected using the interactive software tool. The estimated interactive correction time was approximately 5 minutes. Conclusion: The DIR using only the image pixel intensity was vulnerable to noise and body truncation. A corrective action was inevitable to achieve good quality of registrations. We found the proposed three-step hybrid method efficient and practical for CT/CBCT registrations in H&N. My department receives grant support from Industrial partners: (a) Varian Medical Systems, Palo Alto, CA, and (b) Philips HealthCare, Best, Netherlands.« less

  2. Patient-Specific Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery.

    PubMed

    Plantefève, Rosalie; Peterlik, Igor; Haouchine, Nazim; Cotin, Stéphane

    2016-01-01

    During the minimally-invasive liver surgery, only the partial surface view of the liver is usually provided to the surgeon via the laparoscopic camera. Therefore, it is necessary to estimate the actual position of the internal structures such as tumors and vessels from the pre-operative images. Nevertheless, such task can be highly challenging since during the intervention, the abdominal organs undergo important deformations due to the pneumoperitoneum, respiratory and cardiac motion and the interaction with the surgical tools. Therefore, a reliable automatic system for intra-operative guidance requires fast and reliable registration of the pre- and intra-operative data. In this paper we present a complete pipeline for the registration of pre-operative patient-specific image data to the sparse and incomplete intra-operative data. While the intra-operative data is represented by a point cloud extracted from the stereo-endoscopic images, the pre-operative data is used to reconstruct a biomechanical model which is necessary for accurate estimation of the position of the internal structures, considering the actual deformations. This model takes into account the patient-specific liver anatomy composed of parenchyma, vascularization and capsule, and is enriched with anatomical boundary conditions transferred from an atlas. The registration process employs the iterative closest point technique together with a penalty-based method. We perform a quantitative assessment based on the evaluation of the target registration error on synthetic data as well as a qualitative assessment on real patient data. We demonstrate that the proposed registration method provides good results in terms of both accuracy and robustness w.r.t. the quality of the intra-operative data.

  3. Beating-heart registration for organ-mounted robots.

    PubMed

    Wood, Nathan A; Schwartzman, David; Passineau, Michael J; Moraca, Robert J; Zenati, Marco A; Riviere, Cameron N

    2018-03-06

    Organ-mounted robots address the problem of beating-heart surgery by adhering to the heart, passively providing a platform that approaches zero relative motion. Because of the quasi-periodic deformation of the heart due to heartbeat and respiration, registration must address not only spatial registration but also temporal registration. Motion data were collected in the porcine model in vivo (N = 6). Fourier series models of heart motion were developed. By comparing registrations generated using an iterative closest-point approach at different phases of respiration, the phase corresponding to minimum registration distance is identified. The spatiotemporal registration technique presented here reduces registration error by an average of 4.2 mm over the 6 trials, in comparison with a more simplistic static registration that merely averages out the physiological motion. An empirical metric for spatiotemporal registration of organ-mounted robots is defined and demonstrated using data from animal models in vivo. Copyright © 2018 John Wiley & Sons, Ltd.

  4. An accuracy assessment of different rigid body image registration methods and robotic couch positional corrections using a novel phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Sankar; Xing Aitang; Jameson, Michael G.

    2013-03-15

    Purpose: Image guided radiotherapy (IGRT) using cone beam computed tomography (CBCT) images greatly reduces interfractional patient positional uncertainties. An understanding of uncertainties in the IGRT process itself is essential to ensure appropriate use of this technology. The purpose of this study was to develop a phantom capable of assessing the accuracy of IGRT hardware and software including a 6 degrees of freedom patient positioning system and to investigate the accuracy of the Elekta XVI system in combination with the HexaPOD robotic treatment couch top. Methods: The constructed phantom enabled verification of the three automatic rigid body registrations (gray value, bone,more » seed) available in the Elekta XVI software and includes an adjustable mount that introduces known rotational offsets to the phantom from its reference position. Repeated positioning of the phantom was undertaken to assess phantom rotational accuracy. Using this phantom the accuracy of the XVI registration algorithms was assessed considering CBCT hardware factors and image resolution together with the residual error in the overall image guidance process when positional corrections were performed through the HexaPOD couch system. Results: The phantom positioning was found to be within 0.04 ({sigma}= 0.12) Degree-Sign , 0.02 ({sigma}= 0.13) Degree-Sign , and -0.03 ({sigma}= 0.06) Degree-Sign in X, Y, and Z directions, respectively, enabling assessment of IGRT with a 6 degrees of freedom patient positioning system. The gray value registration algorithm showed the least error in calculated offsets with maximum mean difference of -0.2({sigma}= 0.4) mm in translational and -0.1({sigma}= 0.1) Degree-Sign in rotational directions for all image resolutions. Bone and seed registration were found to be sensitive to CBCT image resolution. Seed registration was found to be most sensitive demonstrating a maximum mean error of -0.3({sigma}= 0.9) mm and -1.4({sigma}= 1.7) Degree-Sign in translational and rotational directions over low resolution images, and this is reduced to -0.1({sigma}= 0.2) mm and -0.1({sigma}= 0.79) Degree-Sign using high resolution images. Conclusions: The phantom, capable of rotating independently about three orthogonal axes was successfully used to assess the accuracy of an IGRT system considering 6 degrees of freedom. The overall residual error in the image guidance process of XVI in combination with the HexaPOD couch was demonstrated to be less than 0.3 mm and 0.3 Degree-Sign in translational and rotational directions when using the gray value registration with high resolution CBCT images. However, the residual error, especially in rotational directions, may increase when the seed registration is used with low resolution images.« less

  5. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps)more » using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An average error of <4 Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration, with the majority of points yielding dose-mapping error <2 Gy (approximately 3% of the total prescribed dose). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, resulting in the smallest errors in mapped dose. Dose differences following registration increased significantly with increasing spatial registration errors, dose, and dose gradient (i.e., SD{sub dose}). This model provides a measurement of the uncertainty in the radiation dose when points are mapped between serial CT scans through deformable registration.« less

  6. First clinical experience in carbon ion scanning beam therapy: retrospective analysis of patient positional accuracy.

    PubMed

    Mori, Shinichiro; Shibayama, Kouichi; Tanimoto, Katsuyuki; Kumagai, Motoki; Matsuzaki, Yuka; Furukawa, Takuji; Inaniwa, Taku; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi

    2012-09-01

    Our institute has constructed a new treatment facility for carbon ion scanning beam therapy. The first clinical trials were successfully completed at the end of November 2011. To evaluate patient setup accuracy, positional errors between the reference Computed Tomography (CT) scan and final patient setup images were calculated using 2D-3D registration software. Eleven patients with tumors of the head and neck, prostate and pelvis receiving carbon ion scanning beam treatment participated. The patient setup process takes orthogonal X-ray flat panel detector (FPD) images and the therapists adjust the patient table position in six degrees of freedom to register the reference position by manual or auto- (or both) registration functions. We calculated residual positional errors with the 2D-3D auto-registration function using the final patient setup orthogonal FPD images and treatment planning CT data. Residual error averaged over all patients in each fraction decreased from the initial to the last treatment fraction [1.09 mm/0.76° (averaged in the 1st and 2nd fractions) to 0.77 mm/0.61° (averaged in the 15th and 16th fractions)]. 2D-3D registration calculation time was 8.0 s on average throughout the treatment course. Residual errors in translation and rotation averaged over all patients as a function of date decreased with the passage of time (1.6 mm/1.2° in May 2011 to 0.4 mm/0.2° in December 2011). This retrospective residual positional error analysis shows that the accuracy of patient setup during the first clinical trials of carbon ion beam scanning therapy was good and improved with increasing therapist experience.

  7. Navigation with Electromagnetic Tracking for Interventional Radiology Procedures

    PubMed Central

    Wood, Bradford J.; Zhang, Hui; Durrani, Amir; Glossop, Neil; Ranjan, Sohan; Lindisch, David; Levy, Eliott; Banovac, Filip; Borgert, Joern; Krueger, Sascha; Kruecker, Jochen; Viswanathan, Anand; Cleary, Kevin

    2008-01-01

    PURPOSE To assess the feasibility of the use of preprocedural imaging for guide wire, catheter, and needle navigation with electromagnetic tracking in phantom and animal models. MATERIALS AND METHODS An image-guided intervention software system was developed based on open-source software components. Catheters, needles, and guide wires were constructed with small position and orientation sensors in the tips. A tetrahedral-shaped weak electromagnetic field generator was placed in proximity to an abdominal vascular phantom or three pigs on the angiography table. Preprocedural computed tomographic (CT) images of the phantom or pig were loaded into custom-developed tracking, registration, navigation, and rendering software. Devices were manipulated within the phantom or pig with guidance from the previously acquired CT scan and simultaneous real-time angiography. Navigation within positron emission tomography (PET) and magnetic resonance (MR) volumetric datasets was also performed. External and endovascular fiducials were used for registration in the phantom, and registration error and tracking error were estimated. RESULTS The CT scan position of the devices within phantoms and pigs was accurately determined during angiography and biopsy procedures, with manageable error for some applications. Preprocedural CT depicted the anatomy in the region of the devices with real-time position updating and minimal registration error and tracking error (<5 mm). PET can also be used with this system to guide percutaneous biopsies to the most metabolically active region of a tumor. CONCLUSIONS Previously acquired CT, MR, or PET data can be accurately codisplayed during procedures with reconstructed imaging based on the position and orientation of catheters, guide wires, or needles. Multimodality interventions are feasible by allowing the real-time updated display of previously acquired functional or morphologic imaging during angiography, biopsy, and ablation. PMID:15802449

  8. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Le; Zhang, Dengrong; Holden, Eun-Jung

    2008-07-01

    Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.

  9. Validation of 3D multimodality roadmapping in interventional neuroradiology

    NASA Astrophysics Data System (ADS)

    Ruijters, Daniel; Homan, Robert; Mielekamp, Peter; van de Haar, Peter; Babic, Drazenko

    2011-08-01

    Three-dimensional multimodality roadmapping is entering clinical routine utilization for neuro-vascular treatment. Its purpose is to navigate intra-arterial and intra-venous endovascular devices through complex vascular anatomy by fusing pre-operative computed tomography (CT) or magnetic resonance (MR) with the live fluoroscopy image. The fused image presents the real-time position of the intra-vascular devices together with the patient's 3D vascular morphology and its soft-tissue context. This paper investigates the effectiveness, accuracy, robustness and computation times of the described methods in order to assess their suitability for the intended clinical purpose: accurate interventional navigation. The mutual information-based 3D-3D registration proved to be of sub-voxel accuracy and yielded an average registration error of 0.515 mm and the live machine-based 2D-3D registration delivered an average error of less than 0.2 mm. The capture range of the image-based 3D-3D registration was investigated to characterize its robustness, and yielded an extent of 35 mm and 25° for >80% of the datasets for registration of 3D rotational angiography (3DRA) with CT, and 15 mm and 20° for >80% of the datasets for registration of 3DRA with MR data. The image-based 3D-3D registration could be computed within 8 s, while applying the machine-based 2D-3D registration only took 1.5 µs, which makes them very suitable for interventional use.

  10. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    PubMed Central

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  11. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    PubMed

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  12. BEM-based simulation of lung respiratory deformation for CT-guided biopsy.

    PubMed

    Chen, Dong; Chen, Weisheng; Huang, Lipeng; Feng, Xuegang; Peters, Terry; Gu, Lixu

    2017-09-01

    Accurate and real-time prediction of the lung and lung tumor deformation during respiration are important considerations when performing a peripheral biopsy procedure. However, most existing work focused on offline whole lung simulation using 4D image data, which is not applicable in real-time image-guided biopsy with limited image resources. In this paper, we propose a patient-specific biomechanical model based on the boundary element method (BEM) computed from CT images to estimate the respiration motion of local target lesion region, vessel tree and lung surface for the real-time biopsy guidance. This approach applies pre-computation of various BEM parameters to facilitate the requirement for real-time lung motion simulation. The resulting boundary condition at end inspiratory phase is obtained using a nonparametric discrete registration with convex optimization, and the simulation of the internal tissue is achieved by applying a tetrahedron-based interpolation method depend on expert-determined feature points on the vessel tree model. A reference needle is tracked to update the simulated lung motion during biopsy guidance. We evaluate the model by applying it for respiratory motion estimations of ten patients. The average symmetric surface distance (ASSD) and the mean target registration error (TRE) are employed to evaluate the proposed model. Results reveal that it is possible to predict the lung motion with ASSD of [Formula: see text] mm and a mean TRE of [Formula: see text] mm at largest over the entire respiratory cycle. In the CT-/electromagnetic-guided biopsy experiment, the whole process was assisted by our BEM model and final puncture errors in two studies were 3.1 and 2.0 mm, respectively. The experiment results reveal that both the accuracy of simulation and real-time performance meet the demands of clinical biopsy guidance.

  13. Non-rigid registration between 3D ultrasound and CT images of the liver based on intensity and gradient information

    NASA Astrophysics Data System (ADS)

    Lee, Duhgoon; Nam, Woo Hyun; Lee, Jae Young; Ra, Jong Beom

    2011-01-01

    In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.

  14. Proceedings of the NASA Workshop on Registration and Rectification

    NASA Technical Reports Server (NTRS)

    Bryant, N. A. (Editor)

    1982-01-01

    Issues associated with the registration and rectification of remotely sensed data. Near and long range applications research tasks and some medium range technology augmentation research areas are recommended. Image sharpness, feature extraction, inter-image mapping, error analysis, and verification methods are addressed.

  15. Estimation of the uncertainty of elastic image registration with the demons algorithm.

    PubMed

    Hub, M; Karger, C P

    2013-05-07

    The accuracy of elastic image registration is limited. We propose an approach to detect voxels where registration based on the demons algorithm is likely to perform inaccurately, compared to other locations of the same image. The approach is based on the assumption that the local reproducibility of the registration can be regarded as a measure of uncertainty of the image registration. The reproducibility is determined as the standard deviation of the displacement vector components obtained from multiple registrations. These registrations differ in predefined initial deformations. The proposed approach was tested with artificially deformed lung images, where the ground truth on the deformation is known. In voxels where the result of the registration was less reproducible, the registration turned out to have larger average registration errors as compared to locations of the same image, where the registration was more reproducible. The proposed method can show a clinician in which area of the image the elastic registration with the demons algorithm cannot be expected to be accurate.

  16. Spectral embedding-based registration (SERg) for multimodal fusion of prostate histology and MRI

    NASA Astrophysics Data System (ADS)

    Hwuang, Eileen; Rusu, Mirabela; Karthigeyan, Sudha; Agner, Shannon C.; Sparks, Rachel; Shih, Natalie; Tomaszewski, John E.; Rosen, Mark; Feldman, Michael; Madabhushi, Anant

    2014-03-01

    Multi-modal image registration is needed to align medical images collected from different protocols or imaging sources, thereby allowing the mapping of complementary information between images. One challenge of multimodal image registration is that typical similarity measures rely on statistical correlations between image intensities to determine anatomical alignment. The use of alternate image representations could allow for mapping of intensities into a space or representation such that the multimodal images appear more similar, thus facilitating their co-registration. In this work, we present a spectral embedding based registration (SERg) method that uses non-linearly embedded representations obtained from independent components of statistical texture maps of the original images to facilitate multimodal image registration. Our methodology comprises the following main steps: 1) image-derived textural representation of the original images, 2) dimensionality reduction using independent component analysis (ICA), 3) spectral embedding to generate the alternate representations, and 4) image registration. The rationale behind our approach is that SERg yields embedded representations that can allow for very different looking images to appear more similar, thereby facilitating improved co-registration. Statistical texture features are derived from the image intensities and then reduced to a smaller set by using independent component analysis to remove redundant information. Spectral embedding generates a new representation by eigendecomposition from which only the most important eigenvectors are selected. This helps to accentuate areas of salience based on modality-invariant structural information and therefore better identifies corresponding regions in both the template and target images. The spirit behind SERg is that image registration driven by these areas of salience and correspondence should improve alignment accuracy. In this work, SERg is implemented using Demons to allow the algorithm to more effectively register multimodal images. SERg is also tested within the free-form deformation framework driven by mutual information. Nine pairs of synthetic T1-weighted to T2-weighted brain MRI were registered under the following conditions: five levels of noise (0%, 1%, 3%, 5%, and 7%) and two levels of bias field (20% and 40%) each with and without noise. We demonstrate that across all of these conditions, SERg yields a mean squared error that is 81.51% lower than that of Demons driven by MRI intensity alone. We also spatially align twenty-six ex vivo histology sections and in vivo prostate MRI in order to map the spatial extent of prostate cancer onto corresponding radiologic imaging. SERg performs better than intensity registration by decreasing the root mean squared distance of annotated landmarks in the prostate gland via both Demons algorithm and mutual information-driven free-form deformation. In both synthetic and clinical experiments, the observed improvement in alignment of the template and target images suggest the utility of parametric eigenvector representations and hence SERg for multimodal image registration.

  17. Magnetic navigation for thoracic aortic stent-graft deployment using ultrasound image guidance.

    PubMed

    Luo, Zhe; Cai, Junfeng; Wang, Su; Zhao, Qiang; Peters, Terry M; Gu, Lixu

    2013-03-01

    We propose a system for thoracic aortic stent-graft deployment that employs a magnetic tracking system (MTS) and intraoperative ultrasound (US). A preoperative plan is first performed using a general public utilities-accelerated cardiac modeling method to determine the target position of the stent-graft. During the surgery, an MTS is employed to track sensors embedded in the catheter, cannula, and the US probe, while a fiducial landmark based registration is used to map the patient's coordinate to the image coordinate. The surgical target is tracked in real time via a calibrated intraoperative US image. Under the guidance of the MTS integrated with the real-time US images, the stent-graft can be deployed to the target position without the use of ionizing radiation. This navigation approach was validated using both phantom and animal studies. In the phantom study, we demonstrate a US calibration accuracy of 1.5 ± 0.47 mm, and a deployment error of 1.4 ± 0.16 mm. In the animal study, we performed experiments on five porcine subjects and recorded fiducial, target, and deployment errors of 2.5 ± 0.32, 4.2 ± 0.78, and 2.43 ± 0.69 mm, respectively. These results demonstrate that delivery and deployment of thoracic stent-graft under MTS-guided navigation using US imaging is feasible and appropriate for clinical application.

  18. Acceptance test of a commercially available software for automatic image registration of computed tomography (CT), magnetic resonance imaging (MRI) and 99mTc-methoxyisobutylisonitrile (MIBI) single-photon emission computed tomography (SPECT) brain images.

    PubMed

    Loi, Gianfranco; Dominietto, Marco; Manfredda, Irene; Mones, Eleonora; Carriero, Alessandro; Inglese, Eugenio; Krengli, Marco; Brambilla, Marco

    2008-09-01

    This note describes a method to characterize the performances of image fusion software (Syntegra) with respect to accuracy and robustness. Computed tomography (CT), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) studies were acquired from two phantoms and 10 patients. Image registration was performed independently by two couples composed of one radiotherapist and one physicist by means of superposition of anatomic landmarks. Each couple performed jointly and saved the registration. The two solutions were averaged to obtain the gold standard registration. A new set of estimators was defined to identify translation and rotation errors in the coordinate axes, independently from point position in image field of view (FOV). Algorithms evaluated were local correlation (LC) for CT-MRI, normalized mutual information (MI) for CT-MRI, and CT-SPECT registrations. To evaluate accuracy, estimator values were compared to limiting values for the algorithms employed, both in phantoms and in patients. To evaluate robustness, different alignments between images taken from a sample patient were produced and registration errors determined. LC algorithm resulted accurate in CT-MRI registrations in phantoms, but exceeded limiting values in 3 of 10 patients. MI algorithm resulted accurate in CT-MRI and CT-SPECT registrations in phantoms; limiting values were exceeded in one case in CT-MRI and never reached in CT-SPECT registrations. Thus, the evaluation of robustness was restricted to the algorithm of MI both for CT-MRI and CT-SPECT registrations. The algorithm of MI proved to be robust: limiting values were not exceeded with translation perturbations up to 2.5 cm, rotation perturbations up to 10 degrees and roto-translational perturbation up to 3 cm and 5 degrees.

  19. Automatic patient alignment system using 3D ultrasound.

    PubMed

    Kaar, Marcus; Figl, Michael; Hoffmann, Rainer; Birkfellner, Wolfgang; Stock, Markus; Georg, Dietmar; Goldner, Gregor; Hummel, Johann

    2013-04-01

    Recent developments in radiation therapy such as intensity modulated radiotherapy (IMRT) or dose painting promise to provide better dose distribution on the tumor. For effective application of these methods the exact positioning of the patient and the localization of the irradiated organ and surrounding structures is crucial. Especially with respect to the treatment of the prostate, ultrasound (US) allows for differentiation between soft tissue and was therefore applied by various repositioning systems, such as BAT or Clarity. The authors built a new system which uses 3D US at both sites, the CT room and the intervention room and applied a 3D/3D US/US registration for automatic repositioning. In a first step the authors applied image preprocessing methods to prepare the US images for an optimal registration process. For the 3D/3D registration procedure five different metrics were evaluated. To find the image metric which fits best for a particular patient three 3D US images were taken at the CT site and registered to each other. From these results an US registration error was calculated. The most successful image metric was then applied for the US/US registration process. The success of the whole repositioning method was assessed by taking the results of an ExacTrac system as golden standard. The US/US registration error was found to be 2.99 ± 1.54 mm with respect to the mutual information metric by Mattes (eleven patients) which revealed to be the most suitable of the assessed metrics. For complete repositioning chain the error amounted to 4.15 ± 1.20 mm (ten patients). The authors developed a system for patient repositioning which works automatically without the necessity of user interaction with an accuracy which seems to be suitable for clinical application.

  20. Augmented Reality Using Transurethral Ultrasound for Laparoscopic Radical Prostatectomy: Preclinical Evaluation.

    PubMed

    Lanchon, Cecilia; Custillon, Guillaume; Moreau-Gaudry, Alexandre; Descotes, Jean-Luc; Long, Jean-Alexandre; Fiard, Gaelle; Voros, Sandrine

    2016-07-01

    To guide the surgeon during laparoscopic or robot-assisted radical prostatectomy an innovative laparoscopic/ultrasound fusion platform was developed using a motorized 3-dimensional transurethral ultrasound probe. We present what is to our knowledge the first preclinical evaluation of 3-dimensional prostate visualization using transurethral ultrasound and the preliminary results of this new augmented reality. The transurethral probe and laparoscopic/ultrasound registration were tested on realistic prostate phantoms made of standard polyvinyl chloride. The quality of transurethral ultrasound images and the detection of passive markers placed on the prostate surface were evaluated on 2-dimensional dynamic views and 3-dimensional reconstructions. The feasibility, precision and reproducibility of laparoscopic/transurethral ultrasound registration was then determined using 4, 5, 6 and 7 markers to assess the optimal amount needed. The root mean square error was calculated for each registration and the median root mean square error and IQR were calculated according to the number of markers. The transurethral ultrasound probe was easy to manipulate and the prostatic capsule was well visualized in 2 and 3 dimensions. Passive markers could precisely be localized in the volume. Laparoscopic/transurethral ultrasound registration procedures were performed on 74 phantoms of various sizes and shapes. All were successful. The median root mean square error of 1.1 mm (IQR 0.8-1.4) was significantly associated with the number of landmarks (p = 0.001). The highest accuracy was achieved using 6 markers. However, prostate volume did not affect registration precision. Transurethral ultrasound provided high quality prostate reconstruction and easy marker detection. Laparoscopic/ultrasound registration was successful with acceptable mm precision. Further investigations are necessary to achieve sub mm accuracy and assess feasibility in a human model. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Automatic three-dimensional registration of intravascular optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Ughi, Giovanni J.; Adriaenssens, Tom; Larsson, Matilda; Dubois, Christophe; Sinnaeve, Peter R.; Coosemans, Mark; Desmet, Walter; D'hooge, Jan

    2012-02-01

    Intravascular optical coherence tomography (IV-OCT) is a catheter-based high-resolution imaging technique able to visualize the inner wall of the coronary arteries and implanted devices in vivo with an axial resolution below 20 μm. IV-OCT is being used in several clinical trials aiming to quantify the vessel response to stent implantation over time. However, stent analysis is currently performed manually and corresponding images taken at different time points are matched through a very labor-intensive and subjective procedure. We present an automated method for the spatial registration of IV-OCT datasets. Stent struts are segmented through consecutive images and three-dimensional models of the stents are created for both datasets to be registered. The two models are initially roughly registered through an automatic initialization procedure and an iterative closest point algorithm is subsequently applied for a more precise registration. To correct for nonuniform rotational distortions (NURDs) and other potential acquisition artifacts, the registration is consecutively refined on a local level. The algorithm was first validated by using an in vitro experimental setup based on a polyvinyl-alcohol gel tubular phantom. Subsequently, an in vivo validation was obtained by exploiting stable vessel landmarks. The mean registration error in vitro was quantified to be 0.14 mm in the longitudinal axis and 7.3-deg mean rotation error. In vivo validation resulted in 0.23 mm in the longitudinal axis and 10.1-deg rotation error. These results indicate that the proposed methodology can be used for automatic registration of in vivo IV-OCT datasets. Such a tool will be indispensable for larger studies on vessel healing pathophysiology and reaction to stent implantation. As such, it will be valuable in testing the performance of new generations of intracoronary devices and new therapeutic drugs.

  2. SU-E-J-90: 2D/3D Registration Using KV-MV Image Pairs for Higher Accuracy Image Guided Radiotherapy.

    PubMed

    Furtado, H; Figl, M; Stock, M; Georg, D; Birkfellner, W

    2012-06-01

    In this work, we investigate the impact of using paired portal mega-voltage (MV) and kilo-voltage (kV) images, on 2D/3D registration accuracy with the purpose of improving tumor motion tracking during radiotherapy. Tumor motion tracking is important as motion remains one of the biggest sources of uncertainty in dose application. 2D/3D registration is successfully used in online tumor motion tracking, nevertheless, one limitation of this technique is the inability to resolve movement along the imaging beam axis using only one projection image. Our evaluation consisted in comparing the accuracy of registration using different 2D image combinations: only one 2D image (1-kV), one kV and one MV image (1kV-1MV) and two kV images (2-kV). For each of the image combinations we evaluated the registration results using 250 starting points as initial displacements from the gold standard. We measured the final mean target registration error (mTRE) and the success rate for each registration. Each of the combinations was evaluated using four different merit functions. When using the MI merit function (a popular choice for this application) the RMS mTRE drops from 6.4 mm when using only one image to 2.1 mm when using image pairs. The success rate increases from 62% to 99.6%. A similar trend was observed for all four merit functions. Typically, the results are slightly better with 2-kV images than with 1kV-1MV. We evaluated the impact of using different image combinations on accuracy of 2D/3D registration for tumor motion monitoring. Our results show that using a kV-MV image pair, leads to improved results as motion can be accurately resolved in six degrees of freedom. Given the possibility to acquire these two images simultaneously, this is not only very workflow efficient but is also shown to be a good approach to improve registration accuracy. © 2012 American Association of Physicists in Medicine.

  3. A multi-object statistical atlas adaptive for deformable registration errors in anomalous medical image segmentation

    NASA Astrophysics Data System (ADS)

    Botter Martins, Samuel; Vallin Spina, Thiago; Yasuda, Clarissa; Falcão, Alexandre X.

    2017-02-01

    Statistical Atlases have played an important role towards automated medical image segmentation. However, a challenge has been to make the atlas more adaptable to possible errors in deformable registration of anomalous images, given that the body structures of interest for segmentation might present significant differences in shape and texture. Recently, deformable registration errors have been accounted by a method that locally translates the statistical atlas over the test image, after registration, and evaluates candidate objects from a delineation algorithm in order to choose the best one as final segmentation. In this paper, we improve its delineation algorithm and extend the model to be a multi-object statistical atlas, built from control images and adaptable to anomalous images, by incorporating a texture classifier. In order to provide a first proof of concept, we instantiate the new method for segmenting, object-by-object and all objects simultaneously, the left and right brain hemispheres, and the cerebellum, without the brainstem, and evaluate it on MRT1-images of epilepsy patients before and after brain surgery, which removed portions of the temporal lobe. The results show efficiency gain with statistically significant higher accuracy, using the mean Average Symmetric Surface Distance, with respect to the original approach.

  4. Persistent aerial video registration and fast multi-view mosaicing.

    PubMed

    Molina, Edgardo; Zhu, Zhigang

    2014-05-01

    Capturing aerial imagery at high resolutions often leads to very low frame rate video streams, well under full motion video standards, due to bandwidth, storage, and cost constraints. Low frame rates make registration difficult when an aircraft is moving at high speeds or when global positioning system (GPS) contains large errors or it fails. We present a method that takes advantage of persistent cyclic video data collections to perform an online registration with drift correction. We split the persistent aerial imagery collection into individual cycles of the scene, identify and correct the registration errors on the first cycle in a batch operation, and then use the corrected base cycle as a reference pass to register and correct subsequent passes online. A set of multi-view panoramic mosaics is then constructed for each aerial pass for representation, presentation and exploitation of the 3D dynamic scene. These sets of mosaics are all in alignment to the reference cycle allowing their direct use in change detection, tracking, and 3D reconstruction/visualization algorithms. Stereo viewing with adaptive baselines and varying view angles is realized by choosing a pair of mosaics from a set of multi-view mosaics. Further, the mosaics for the second pass and later can be generated and visualized online as their is no further batch error correction.

  5. Orthogonal Rings, Fiducial Markers, and Overlay Accuracy When Image Fusion is Used for EVAR Guidance.

    PubMed

    Koutouzi, G; Sandström, C; Roos, H; Henrikson, O; Leonhardt, H; Falkenberg, M

    2016-11-01

    Evaluation of orthogonal rings, fiducial markers, and overlay accuracy when image fusion is used for endovascular aortic repair (EVAR). This was a prospective single centre study. In 19 patients undergoing standard EVAR, 3D image fusion was used for intra-operative guidance. Renal arteries and targeted stent graft positions were marked with rings orthogonal to the respective centre lines from pre-operative computed tomography (CT). Radiopaque reference objects attached to the back of the patient were used as fiducial markers to detect patient movement intra-operatively. Automatic 3D-3D registration of the pre-operative CT with an intra-operative cone beam computed tomography (CBCT) as well as 3D-3D registration after manual alignment of nearby vertebrae were evaluated. Registration was defined as being sufficient for EVAR guidance if the deviation of the origin of the lower renal artery was less than 3 mm. For final overlay registration, the renal arteries were manually aligned using aortic calcification and vessel outlines. The accuracy of the overlay before stent graft deployment was evaluated using digital subtraction angiography (DSA) as direct comparison. Fiducial markers helped in detecting misalignment caused by patient movement during the procedure. Use of automatic intensity based registration alone was insufficient for EVAR guidance. Manual registration based on vertebrae L1-L2 was sufficient in 7/19 patients (37%). Using the final adjusted registration as overlay, the median alignment error of the lower renal artery marking at pre-deployment DSA was 2 mm (0-5) sideways and 2 mm (0-9) longitudinally, mostly in a caudal direction. 3D image fusion can facilitate intra-operative guidance during EVAR. Orthogonal rings and fiducial markers are useful for visualization and overlay correction. However, the accuracy of the overlaid 3D image is not always ideal and further technical development is needed. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  6. In-die mask registration measurement on 28nm-node and beyond

    NASA Astrophysics Data System (ADS)

    Chen, Shen Hung; Cheng, Yung Feng; Chen, Ming Jui

    2013-09-01

    As semiconductor go to smaller node, the critical dimension (CD) of process become more and more small. For lithography, RET (Resolution Enhancement Technology) applications can be used for wafer printing of smaller CD/pitch on 28nm node and beyond. SMO (Source Mask Optimization), DPT (Double Patterning Technology) and SADP (Self-Align Double Patterning) can provide lower k1 value for lithography. In another way, image placement error and overlay control also become more and more important for smaller chip size (advanced node). Mask registration (image placement error) and mask overlay are important factors to affect wafer overlay control/performance especially for DPT or SADP. In traditional method, the designed registration marks (cross type, square type) with larger CD were put into scribe-line of mask frame for registration and overlay measurement. However, these patterns are far way from real patterns. It does not show the registration of real pattern directly and is not a convincing method. In this study, the in-die (in-chip) registration measurement is introduced. We extract the dummy patterns that are close to main pattern from post-OPC (Optical Proximity Correction) gds by our desired rule and choose the patterns that distribute over whole mask uniformly. The convergence test shows 100 points measurement has a reliable result.

  7. Intra-operative Localization of Brachytherapy Implants Using Intensity-based Registration

    PubMed Central

    KarimAghaloo, Z.; Abolmaesumi, P.; Ahmidi, N.; Chen, T.K.; Gobbi, D. G.; Fichtinger, G.

    2010-01-01

    In prostate brachytherapy, a transrectal ultrasound (TRUS) will show the prostate boundary but not all the implanted seeds, while fluoroscopy will show all the seeds clearly but not the boundary. We propose an intensity-based registration between TRUS images and the implant reconstructed from uoroscopy as a means of achieving accurate intra-operative dosimetry. The TRUS images are first filtered and compounded, and then registered to the uoroscopy model via mutual information. A training phantom was implanted with 48 seeds and imaged. Various ultrasound filtering techniques were analyzed, and the best results were achieved with the Bayesian combination of adaptive thresholding, phase congruency, and compensation for the non-uniform ultrasound beam profile in the elevation and lateral directions. The average registration error between corresponding seeds relative to the ground truth was 0.78 mm. The effect of false positives and false negatives in ultrasound were investigated by masking true seeds in the uoroscopy volume or adding false seeds. The registration error remained below 1.01 mm when the false positive rate was 31%, and 0.96 mm when the false negative rate was 31%. This fully automated method delivers excellent registration accuracy and robustness in phantom studies, and promises to demonstrate clinically adequate performance on human data as well. Keywords: Prostate brachytherapy, Ultrasound, Fluoroscopy, Registration. PMID:21152376

  8. Automatic lung nodule matching for the follow-up in temporal chest CT scans

    NASA Astrophysics Data System (ADS)

    Hong, Helen; Lee, Jeongjin; Shin, Yeong Gil

    2006-03-01

    We propose a fast and robust registration method for matching lung nodules of temporal chest CT scans. Our method is composed of four stages. First, the lungs are extracted from chest CT scans by the automatic segmentation method. Second, the gross translational mismatch is corrected by the optimal cube registration. This initial registration does not require extracting any anatomical landmarks. Third, initial alignment is step by step refined by the iterative surface registration. To evaluate the distance measure between surface boundary points, a 3D distance map is generated by the narrow-band distance propagation, which drives fast and robust convergence to the optimal location. Fourth, nodule correspondences are established by the pairs with the smallest Euclidean distances. The results of pulmonary nodule alignment of twenty patients are reported on a per-center-of mass point basis using the average Euclidean distance (AED) error between corresponding nodules of initial and follow-up scans. The average AED error of twenty patients is significantly reduced to 4.7mm from 30.0mm by our registration. Experimental results show that our registration method aligns the lung nodules much faster than the conventional ones using a distance measure. Accurate and fast result of our method would be more useful for the radiologist's evaluation of pulmonary nodules on chest CT scans.

  9. A Bayesian nonrigid registration method to enhance intraoperative target definition in image-guided prostate procedures through uncertainty characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pursley, Jennifer; Risholm, Petter; Fedorov, Andriy

    2012-11-15

    Purpose: This study introduces a probabilistic nonrigid registration method for use in image-guided prostate brachytherapy. Intraoperative imaging for prostate procedures, usually transrectal ultrasound (TRUS), is typically inferior to diagnostic-quality imaging of the pelvis such as endorectal magnetic resonance imaging (MRI). MR images contain superior detail of the prostate boundaries and provide substructure features not otherwise visible. Previous efforts to register diagnostic prostate images with the intraoperative coordinate system have been deterministic and did not offer a measure of the registration uncertainty. The authors developed a Bayesian registration method to estimate the posterior distribution on deformations and provide a case-specific measuremore » of the associated registration uncertainty. Methods: The authors adapted a biomechanical-based probabilistic nonrigid method to register diagnostic to intraoperative images by aligning a physician's segmentations of the prostate in the two images. The posterior distribution was characterized with a Markov Chain Monte Carlo method; the maximum a posteriori deformation and the associated uncertainty were estimated from the collection of deformation samples drawn from the posterior distribution. The authors validated the registration method using a dataset created from ten patients with MRI-guided prostate biopsies who had both diagnostic and intraprocedural 3 Tesla MRI scans. The accuracy and precision of the estimated posterior distribution on deformations were evaluated from two predictive distance distributions: between the deformed central zone-peripheral zone (CZ-PZ) interface and the physician-labeled interface, and based on physician-defined landmarks. Geometric margins on the registration of the prostate's peripheral zone were determined from the posterior predictive distance to the CZ-PZ interface separately for the base, mid-gland, and apical regions of the prostate. Results: The authors observed variation in the shape and volume of the segmented prostate in diagnostic and intraprocedural images. The probabilistic method allowed us to convey registration results in terms of posterior distributions, with the dispersion providing a patient-specific estimate of the registration uncertainty. The median of the predictive distance distribution between the deformed prostate boundary and the segmented boundary was Less-Than-Or-Slanted-Equal-To 3 mm (95th percentiles within {+-}4 mm) for all ten patients. The accuracy and precision of the internal deformation was evaluated by comparing the posterior predictive distance distribution for the CZ-PZ interface for each patient, with the median distance ranging from -0.6 to 2.4 mm. Posterior predictive distances between naturally occurring landmarks showed registration errors of Less-Than-Or-Slanted-Equal-To 5 mm in any direction. The uncertainty was not a global measure, but instead was local and varied throughout the registration region. Registration uncertainties were largest in the apical region of the prostate. Conclusions: Using a Bayesian nonrigid registration method, the authors determined the posterior distribution on deformations between diagnostic and intraprocedural MR images and quantified the uncertainty in the registration results. The feasibility of this approach was tested and results were positive. The probabilistic framework allows us to evaluate both patient-specific and location-specific estimates of the uncertainty in the registration result. Although the framework was tested on MR-guided procedures, the preliminary results suggest that it may be applied to TRUS-guided procedures as well, where the addition of diagnostic MR information may have a larger impact on target definition and clinical guidance.« less

  10. A Bayesian nonrigid registration method to enhance intraoperative target definition in image-guided prostate procedures through uncertainty characterization

    PubMed Central

    Pursley, Jennifer; Risholm, Petter; Fedorov, Andriy; Tuncali, Kemal; Fennessy, Fiona M.; Wells, William M.; Tempany, Clare M.; Cormack, Robert A.

    2012-01-01

    Purpose: This study introduces a probabilistic nonrigid registration method for use in image-guided prostate brachytherapy. Intraoperative imaging for prostate procedures, usually transrectal ultrasound (TRUS), is typically inferior to diagnostic-quality imaging of the pelvis such as endorectal magnetic resonance imaging (MRI). MR images contain superior detail of the prostate boundaries and provide substructure features not otherwise visible. Previous efforts to register diagnostic prostate images with the intraoperative coordinate system have been deterministic and did not offer a measure of the registration uncertainty. The authors developed a Bayesian registration method to estimate the posterior distribution on deformations and provide a case-specific measure of the associated registration uncertainty. Methods: The authors adapted a biomechanical-based probabilistic nonrigid method to register diagnostic to intraoperative images by aligning a physician's segmentations of the prostate in the two images. The posterior distribution was characterized with a Markov Chain Monte Carlo method; the maximum a posteriori deformation and the associated uncertainty were estimated from the collection of deformation samples drawn from the posterior distribution. The authors validated the registration method using a dataset created from ten patients with MRI-guided prostate biopsies who had both diagnostic and intraprocedural 3 Tesla MRI scans. The accuracy and precision of the estimated posterior distribution on deformations were evaluated from two predictive distance distributions: between the deformed central zone-peripheral zone (CZ-PZ) interface and the physician-labeled interface, and based on physician-defined landmarks. Geometric margins on the registration of the prostate's peripheral zone were determined from the posterior predictive distance to the CZ-PZ interface separately for the base, mid-gland, and apical regions of the prostate. Results: The authors observed variation in the shape and volume of the segmented prostate in diagnostic and intraprocedural images. The probabilistic method allowed us to convey registration results in terms of posterior distributions, with the dispersion providing a patient-specific estimate of the registration uncertainty. The median of the predictive distance distribution between the deformed prostate boundary and the segmented boundary was ⩽3 mm (95th percentiles within ±4 mm) for all ten patients. The accuracy and precision of the internal deformation was evaluated by comparing the posterior predictive distance distribution for the CZ-PZ interface for each patient, with the median distance ranging from −0.6 to 2.4 mm. Posterior predictive distances between naturally occurring landmarks showed registration errors of ⩽5 mm in any direction. The uncertainty was not a global measure, but instead was local and varied throughout the registration region. Registration uncertainties were largest in the apical region of the prostate. Conclusions: Using a Bayesian nonrigid registration method, the authors determined the posterior distribution on deformations between diagnostic and intraprocedural MR images and quantified the uncertainty in the registration results. The feasibility of this approach was tested and results were positive. The probabilistic framework allows us to evaluate both patient-specific and location-specific estimates of the uncertainty in the registration result. Although the framework was tested on MR-guided procedures, the preliminary results suggest that it may be applied to TRUS-guided procedures as well, where the addition of diagnostic MR information may have a larger impact on target definition and clinical guidance. PMID:23127078

  11. Motion and positional error correction for cone beam 3D-reconstruction with mobile C-arms.

    PubMed

    Bodensteiner, C; Darolti, C; Schumacher, H; Matthäus, L; Schweikard, A

    2007-01-01

    CT-images acquired by mobile C-arm devices can contain artefacts caused by positioning errors. We propose a data driven method based on iterative 3D-reconstruction and 2D/3D-registration to correct projection data inconsistencies. With a 2D/3D-registration algorithm, transformations are computed to align the acquired projection images to a previously reconstructed volume. In an iterative procedure, the reconstruction algorithm uses the results of the registration step. This algorithm also reduces small motion artefacts within 3D-reconstructions. Experiments with simulated projections from real patient data show the feasibility of the proposed method. In addition, experiments with real projection data acquired with an experimental robotised C-arm device have been performed with promising results.

  12. Closing the loop of the medication use process using electronic medication administration registration.

    PubMed

    Lenderink, Bertil W; Egberts, Toine C G

    2004-08-01

    Recent reports and studies of errors in the medication process have raised the awareness of the threat to public health. An essential step in this multi-stage process is the actual administration of a medicine to the patient. The closed loop system is thought to be a way of preventing medication errors. Current information technology can facilitate this process. This article describes the way barcode technology is being used to facilitate medication administration registration on several wards in our hospital and nursing home.

  13. LANDSAT-4 MSS Geometric Correction: Methods and Results

    NASA Technical Reports Server (NTRS)

    Brooks, J.; Kimmer, E.; Su, J.

    1984-01-01

    An automated image registration system such as that developed for LANDSAT-4 can produce all of the information needed to verify and calibrate the software and to evaluate system performance. The on-line MSS archive generation process which upgrades systematic correction data to geodetic correction data is described as well as the control point library build subsystem which generates control point chips and support data for on-line upgrade of correction data. The system performance was evaluated for both temporal and geodetic registration. For temporal registration, 90% errors were computed to be .36 IFOV (instantaneous field of view) = 82.7 meters) cross track, and .29 IFOV along track. Also, for actual production runs monitored, the 90% errors were .29 IFOV cross track and .25 IFOV along track. The system specification is .3 IFOV, 90% of the time, both cross and along track. For geodetic registration performance, the model bias was measured by designating control points in the geodetically corrected imagery.

  14. SU-E-J-218: Novel Validation Paradigm of MRI to CT Deformation of Prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K; University of Miami School of Medicine - Radiology, Miami, FL; Pirozzi, S

    2015-06-15

    Purpose: Deformable registration algorithms are inherently difficult to characterize in the multi-modality setting due to a significant differences in the characteristics of the different modalities (CT and MRI) as well as tissue deformations. We present a unique paradigm where this is overcome by utilizing a planning-MRI acquired within an hour of the planning-CT serving as a surrogate for quantifying MRI to CT deformation by eliminating the issues of multi-modality comparisons. Methods: For nine subjects, T2 fast-spin-echo images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day asmore » the planning-CT (planning-MRI). Significant effort in patient positioning and bowel/bladder preparation was undertaken to minimize distortion of the prostate in all datasets. The diagnostic-MRI was rigidly and deformably aligned to the planning-CT utilizing a commercially available deformable registration algorithm synthesized from local registrations. Additionally, the quality of rigid alignment was ranked by an imaging physicist. The distances between corresponding anatomical landmarks on rigid and deformed registrations (diagnostic-MR to planning-CT) were evaluated. Results: It was discovered that in cases where the rigid registration was of acceptable quality the deformable registration didn’t improve the alignment, this was true of all metrics employed. If the analysis is separated into cases where the rigid alignment was ranked as unacceptable the deformable registration significantly improved the alignment, 4.62mm residual error in landmarks as compared to 5.72mm residual error in rigid alignments with a p-value of 0.0008. Conclusion: This paradigm provides an ideal testing ground for MR to CT deformable registration algorithms by allowing for inter-modality comparisons of multi-modality registrations. Consistent positioning, bowel and bladder preparation may Result in higher quality rigid registrations than typically achieved which limits the impact of deformable registrations. In this study cases where significant differences exist, deformable registrations provide significant value.« less

  15. [Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].

    PubMed

    Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing

    2003-12-01

    Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.

  16. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  17. A Kinect(™) camera based navigation system for percutaneous abdominal puncture.

    PubMed

    Xiao, Deqiang; Luo, Huoling; Jia, Fucang; Zhang, Yanfang; Li, Yong; Guo, Xuejun; Cai, Wei; Fang, Chihua; Fan, Yingfang; Zheng, Huimin; Hu, Qingmao

    2016-08-07

    Percutaneous abdominal puncture is a popular interventional method for the management of abdominal tumors. Image-guided puncture can help interventional radiologists improve targeting accuracy. The second generation of Kinect(™) was released recently, we developed an optical navigation system to investigate its feasibility for guiding percutaneous abdominal puncture, and compare its performance on needle insertion guidance with that of the first-generation Kinect(™). For physical-to-image registration in this system, two surfaces extracted from preoperative CT and intraoperative Kinect(™) depth images were matched using an iterative closest point (ICP) algorithm. A 2D shape image-based correspondence searching algorithm was proposed for generating a close initial position before ICP matching. Evaluation experiments were conducted on an abdominal phantom and six beagles in vivo. For phantom study, a two-factor experiment was designed to evaluate the effect of the operator's skill and trajectory on target positioning error (TPE). A total of 36 needle punctures were tested on a Kinect(™) for Windows version 2 (Kinect(™) V2). The target registration error (TRE), user error, and TPE are 4.26  ±  1.94 mm, 2.92  ±  1.67 mm, and 5.23  ±  2.29 mm, respectively. No statistically significant differences in TPE regarding operator's skill and trajectory are observed. Additionally, a Kinect(™) for Windows version 1 (Kinect(™) V1) was tested with 12 insertions, and the TRE evaluated with the Kinect(™) V1 is statistically significantly larger than that with the Kinect(™) V2. For the animal experiment, fifteen artificial liver tumors were inserted guided by the navigation system. The TPE was evaluated as 6.40  ±  2.72 mm, and its lateral and longitudinal component were 4.30  ±  2.51 mm and 3.80  ±  3.11 mm, respectively. This study demonstrates that the navigation accuracy of the proposed system is acceptable, and that the second generation Kinect(™)-based navigation is superior to the first-generation Kinect(™), and has potential of clinical application in percutaneous abdominal puncture.

  18. WE-AB-BRA-09: Registration of Preoperative MRI to Intraoperative Radiographs for Automatic Vertebral Target Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Silva, T; Uneri, A; Ketcha, M

    Purpose: Accurate localization of target vertebrae is essential to safe, effective spine surgery, but wrong-level surgery occurs with surprisingly high frequency. Recent research yielded the “LevelCheck” method for 3D-2D registration of preoperative CT to intraoperative radiographs, providing decision support for level localization. We report a new method (MR-LevelCheck) to perform 3D-2D registration based on preoperative MRI, presenting a solution for the increasingly common scenario in which MRI (not CT) is used for preoperative planning. Methods: Direct extension of LevelCheck is confounded by large mismatch in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simplemore » vertebrae segmentation. Using seed points at centroids, vertebrae are segmented using continuous max-flow method and dilated by 1.8 mm to include surrounding cortical bone (inconspicuous in T2w-MRI). MRI projections are computed (analogous to DRR) using segmentation and registered to intraoperative radiographs. The method was tested in a retrospective IRB-approved study involving 11 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. Registration accuracy was evaluated in terms of projection-distance-error (PDE) between the true and estimated location of vertebrae in each radiograph. Results: The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch, and large capture range. Segmentation achieved Dice coefficient = 89.2 ± 2.3 and mean-absolute-distance (MAD) = 1.5 ± 0.3 mm. Registration demonstrated robust performance under realistic patient variations, with PDE = 4.0 ± 1.9 mm (median ± iqr) and converged with run-time = 23.3 ± 1.7 s. Conclusion: The MR-LevelCheck algorithm provides an important extension to a previously validated decision support tool in spine surgery by extending its utility to preoperative MRI. With initial studies demonstrating PDE <5 mm and 0% failure rate, the method is now in translation to larger scale prospective clinical studies. S. Vogt and G. Kleinszig are employees of Siemens Healthcare.« less

  19. Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation.

    PubMed

    Chen, Hsin-Chen; Jou, I-Ming; Wang, Chien-Kuo; Su, Fong-Chin; Sun, Yung-Nien

    2010-06-01

    The quantitative measurements of hand bones, including volume, surface, orientation, and position are essential in investigating hand kinematics. Moreover, within the measurement stage, bone segmentation is the most important step due to its certain influences on measuring accuracy. Since hand bones are small and tubular in shape, magnetic resonance (MR) imaging is prone to artifacts such as nonuniform intensity and fuzzy boundaries. Thus, greater detail is required for improving segmentation accuracy. The authors then propose using a novel registration-based method on an articulated hand model to segment hand bones from multipostural MR images. The proposed method consists of the model construction and registration-based segmentation stages. Given a reference postural image, the first stage requires construction of a drivable reference model characterized by hand bone shapes, intensity patterns, and articulated joint mechanism. By applying the reference model to the second stage, the authors initially design a model-based registration pursuant to intensity distribution similarity, MR bone intensity properties, and constraints of model geometry to align the reference model to target bone regions of the given postural image. The authors then refine the resulting surface to improve the superimposition between the registered reference model and target bone boundaries. For each subject, given a reference postural image, the proposed method can automatically segment all hand bones from all other postural images. Compared to the ground truth from two experts, the resulting surface image had an average margin of error within 1 mm (mm) only. In addition, the proposed method showed good agreement on the overlap of bone segmentations by dice similarity coefficient and also demonstrated better segmentation results than conventional methods. The proposed registration-based segmentation method can successfully overcome drawbacks caused by inherent artifacts in MR images and obtain more accurate segmentation results automatically. Moreover, realistic hand motion animations can be generated based on the bone segmentation results. The proposed method is found helpful for understanding hand bone geometries in dynamic postures that can be used in simulating 3D hand motion through multipostural MR images.

  20. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jinghao; Kim, Sung; Jabbour, Salma

    2010-03-15

    Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CTmore » (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to 6.54 mm for ASM. The volume overlap ratio ranged from 79% to 91% for ACRASM and from 44% to 80% for ASM. These data demonstrated that the segmentation results of ACRASM were in better agreement with the corresponding benchmarks than those of ASM. The developed registration algorithm was quantitatively evaluated by comparing the registered target volumes from the pCT to the benchmarks on the CBCT. The mean distance and the root mean square error ranged from 0.38 to 2.2 mm and from 0.45 to 2.36 mm, respectively, between the CBCT images and the registered pCT. The mean overlap ratio of the prostate volumes ranged from 85.2% to 95% after registration. The average time of the ACRASM-based segmentation was under 1 min. The average time of the global transformation was from 2 to 4 min on two 3D volumes and the average time of the local transformation was from 20 to 34 s on two deformable superquadrics mesh models. Conclusions: A novel and fast segmentation and deformable registration method was developed to capture the transformation between the planning and treatment images for external beam radiotherapy of prostate cancers. This method increases the computational efficiency and may provide foundation to achieve real time adaptive radiotherapy.« less

  1. Automatic pose correction for image-guided nonhuman primate brain surgery planning

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2016-03-01

    Intracranial delivery of recombinant DNA and neurochemical analysis in nonhuman primate (NHP) requires precise targeting of various brain structures via imaging derived coordinates in stereotactic surgeries. To attain targeting precision, the surgical planning needs to be done on preoperative three dimensional (3D) CT and/or MR images, in which the animals head is fixed in a pose identical to the pose during the stereotactic surgery. The matching of the image to the pose in the stereotactic frame can be done manually by detecting key anatomical landmarks on the 3D MR and CT images such as ear canal and ear bar zero position. This is not only time intensive but also prone to error due to the varying initial poses in the images which affects both the landmark detection and rotation estimation. We have introduced a fast, reproducible, and semi-automatic method to detect the stereotactic coordinate system in the image and correct the pose. The method begins with a rigid registration of the subject images to an atlas and proceeds to detect the anatomical landmarks through a sequence of optimization, deformable and multimodal registration algorithms. The results showed similar precision (maximum difference of 1.71 in average in-plane rotation) to a manual pose correction.

  2. TU-G-BRA-05: Predicting Volume Change of the Tumor and Critical Structures Throughout Radiation Therapy by CT-CBCT Registration with Local Intensity Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Robinson, A; Kiess, A

    2015-06-15

    Purpose: The purpose of this study is to develop an accurate and effective technique to predict and monitor volume changes of the tumor and organs at risk (OARs) from daily cone-beam CTs (CBCTs). Methods: While CBCT is typically used to minimize the patient setup error, its poor image quality impedes accurate monitoring of daily anatomical changes in radiotherapy. Reconstruction artifacts in CBCT often cause undesirable errors in registration-based contour propagation from the planning CT, a conventional way to estimate anatomical changes. To improve the registration and segmentation accuracy, we developed a new deformable image registration (DIR) that iteratively corrects CBCTmore » intensities using slice-based histogram matching during the registration process. Three popular DIR algorithms (hierarchical B-spline, demons, optical flow) augmented by the intensity correction were implemented on a graphics processing unit for efficient computation, and their performances were evaluated on six head and neck (HN) cancer cases. Four trained scientists manually contoured nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs for each case, to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial software, VelocityAI (Varian Medical Systems Inc.). Results: Manual contouring showed significant variations, [-76, +141]% from the mean of all four sets of contours. The volume differences (mean±std in cc) between the average manual segmentation and four automatic segmentations are 3.70±2.30(B-spline), 1.25±1.78(demons), 0.93±1.14(optical flow), and 4.39±3.86 (VelocityAI). In comparison to the average volume of the manual segmentations, the proposed approach significantly reduced the estimation error by 9%(B-spline), 38%(demons), and 51%(optical flow) over the conventional mutual information based method (VelocityAI). Conclusion: The proposed CT-CBCT registration with local CBCT intensity correction can accurately predict the tumor volume change with reduced errors. Although demonstrated only on HN nodal GTVs, the results imply improved accuracy for other critical structures. This work was supported by NIH/NCI under grant R42CA137886.« less

  3. Validation of Imaging With Pathology in Laryngeal Cancer: Accuracy of the Registration Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldas-Magalhaes, Joana, E-mail: J.CaldasMagalhaes@umcutrecht.nl; Kasperts, Nicolien; Kooij, Nina

    2012-02-01

    Purpose: To investigate the feasibility and accuracy of an automated method to validate gross tumor volume (GTV) delineations with pathology in laryngeal and hypopharyngeal cancer. Methods and Materials: High-resolution computed tomography (CT{sub HR}), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans were obtained from 10 patients before total laryngectomy. The GTV was delineated separately in each imaging modality. The laryngectomy specimen was sliced transversely in 3-mm-thick slices, and whole-mount hematoxylin-eosin stained (H and E) sections were obtained. A pathologist delineated tumor tissue in the H and E sections (GTV{sub PATH}). An automatic three-dimensional (3D) reconstruction of the specimenmore » was performed, and the CT{sub HR}, MRI, and PET were semiautomatically and rigidly registered to the 3D specimen. The accuracy of the pathology-imaging registration and the specimen deformation and shrinkage were assessed. The tumor delineation inaccuracies were compared with the registration errors. Results: Good agreement was observed between anatomical landmarks in the 3D specimen and in the in vivo images. Limited deformations and shrinkage (3% {+-} 1%) were found inside the cartilage skeleton. The root mean squared error of the registration between the 3D specimen and the CT, MRI, and PET was on average 1.5, 3.0, and 3.3 mm, respectively, in the cartilage skeleton. The GTV{sub PATH} volume was 7.2 mL, on average. The GTVs based on CT, MRI, and PET generated a mean volume of 14.9, 18.3, and 9.8 mL and covered the GTV{sub PATH} by 85%, 88%, and 77%, respectively. The tumor delineation inaccuracies exceeded the registration error in all the imaging modalities. Conclusions: Validation of GTV delineations with pathology is feasible with an average overall accuracy below 3.5 mm inside the laryngeal skeleton. The tumor delineation inaccuracies were larger than the registration error. Therefore, an accurate histological validation of anatomical and functional imaging techniques for GTV delineation is possible in laryngeal cancer patients.« less

  4. Registration of parametric dynamic F-18-FDG PET/CT breast images with parametric dynamic Gd-DTPA breast images

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David

    2009-02-01

    This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

  5. Self calibrating autoTRAC

    NASA Technical Reports Server (NTRS)

    Everett, Louis J.

    1994-01-01

    The work reported here demonstrates how to automatically compute the position and attitude of a targeting reflective alignment concept (TRAC) camera relative to the robot end effector. In the robotics literature this is known as the sensor registration problem. The registration problem is important to solve if TRAC images need to be related to robot position. Previously, when TRAC operated on the end of a robot arm, the camera had to be precisely located at the correct orientation and position. If this location is in error, then the robot may not be able to grapple an object even though the TRAC sensor indicates it should. In addition, if the camera is significantly far from the alignment it is expected to be at, TRAC may give incorrect feedback for the control of the robot. A simple example is if the robot operator thinks the camera is right side up but the camera is actually upside down, the camera feedback will tell the operator to move in an incorrect direction. The automatic calibration algorithm requires the operator to translate and rotate the robot arbitrary amounts along (about) two coordinate directions. After the motion, the algorithm determines the transformation matrix from the robot end effector to the camera image plane. This report discusses the TRAC sensor registration problem.

  6. A novel registration-based methodology for prediction of trabecular bone fabric from clinical QCT: A comprehensive analysis

    PubMed Central

    Reyes, Mauricio; Zysset, Philippe

    2017-01-01

    Osteoporosis leads to hip fractures in aging populations and is diagnosed by modern medical imaging techniques such as quantitative computed tomography (QCT). Hip fracture sites involve trabecular bone, whose strength is determined by volume fraction and orientation, known as fabric. However, bone fabric cannot be reliably assessed in clinical QCT images of proximal femur. Accordingly, we propose a novel registration-based estimation of bone fabric designed to preserve tensor properties of bone fabric and to map bone fabric by a global and local decomposition of the gradient of a non-rigid image registration transformation. Furthermore, no comprehensive analysis on the critical components of this methodology has been previously conducted. Hence, the aim of this work was to identify the best registration-based strategy to assign bone fabric to the QCT image of a patient’s proximal femur. The normalized correlation coefficient and curvature-based regularization were used for image-based registration and the Frobenius norm of the stretch tensor of the local gradient was selected to quantify the distance among the proximal femora in the population. Based on this distance, closest, farthest and mean femora with a distinction of sex were chosen as alternative atlases to evaluate their influence on bone fabric prediction. Second, we analyzed different tensor mapping schemes for bone fabric prediction: identity, rotation-only, rotation and stretch tensor. Third, we investigated the use of a population average fabric atlas. A leave one out (LOO) evaluation study was performed with a dual QCT and HR-pQCT database of 36 pairs of human femora. The quality of the fabric prediction was assessed with three metrics, the tensor norm (TN) error, the degree of anisotropy (DA) error and the angular deviation of the principal tensor direction (PTD). The closest femur atlas (CTP) with a full rotation (CR) for fabric mapping delivered the best results with a TN error of 7.3 ± 0.9%, a DA error of 6.6 ± 1.3% and a PTD error of 25 ± 2°. The closest to the population mean femur atlas (MTP) using the same mapping scheme yielded only slightly higher errors than CTP for substantially less computing efforts. The population average fabric atlas yielded substantially higher errors than the MTP with the CR mapping scheme. Accounting for sex did not bring any significant improvements. The identified fabric mapping methodology will be exploited in patient-specific QCT-based finite element analysis of the proximal femur to improve the prediction of hip fracture risk. PMID:29176881

  7. Flip-avoiding interpolating surface registration for skull reconstruction.

    PubMed

    Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

    2018-03-30

    Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Adaptive radiotherapy for NSCLC patients: utilizing the principle of energy conservation to evaluate dose mapping operations

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Chetty, Indrin J.

    2017-06-01

    Tumor regression during the course of fractionated radiotherapy confounds the ability to accurately estimate the total dose delivered to tumor targets. Here we present a new criterion to improve the accuracy of image intensity-based dose mapping operations for adaptive radiotherapy for patients with non-small cell lung cancer (NSCLC). Six NSCLC patients were retrospectively investigated in this study. An image intensity-based B-spline registration algorithm was used for deformable image registration (DIR) of weekly CBCT images to a reference image. The resultant displacement vector fields were employed to map the doses calculated on weekly images to the reference image. The concept of energy conservation was introduced as a criterion to evaluate the accuracy of the dose mapping operations. A finite element method (FEM)-based mechanical model was implemented to improve the performance of the B-Spline-based registration algorithm in regions involving tumor regression. For the six patients, deformed tumor volumes changed by 21.2  ±  15.0% and 4.1  ±  3.7% on average for the B-Spline and the FEM-based registrations performed from fraction 1 to fraction 21, respectively. The energy deposited in the gross tumor volume (GTV) was 0.66 Joules (J) per fraction on average. The energy derived from the fractional dose reconstructed by the B-spline and FEM-based DIR algorithms in the deformed GTV’s was 0.51 J and 0.64 J, respectively. Based on landmark comparisons for the 6 patients, mean error for the FEM-based DIR algorithm was 2.5  ±  1.9 mm. The cross-correlation coefficient between the landmark-measured displacement error and the loss of radiation energy was  -0.16 for the FEM-based algorithm. To avoid uncertainties in measuring distorted landmarks, the B-Spline-based registrations were compared to the FEM registrations, and their displacement differences equal 4.2  ±  4.7 mm on average. The displacement differences were correlated to their relative loss of radiation energy with a cross-correlation coefficient equal to 0.68. Based on the principle of energy conservation, the FEM-based mechanical model has a better performance than the B-Spline-based DIR algorithm. It is recommended that the principle of energy conservation be incorporated into a comprehensive QA protocol for adaptive radiotherapy.

  9. Investigation of several aspects of LANDSAT-4 data quality

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C. (Principal Investigator)

    1983-01-01

    No insurmountable problems in change detection analysis were found when portions of scenes collected simultaneously by LANDSAT 4 MSS and either LANDSAT 2 or 3. The cause of the periodic noise in LANDSAT 4 MSS images which had a RMS value of approximately 2DN should be corrected in the LANDSAT D instrument before its launch. Analysis of the P-tape of the Arkansas scene shows bands within the same focal plane very well registered except for the thermal band which was misregistered by approximately three 28.5 meter pixels in both directions. It is possible to derive tight confidence bounds for the registration errors. Preliminary analyses of the Sacramento and Arkansas scenes reveals a very high degree of consistency with earlier results for bands 3 vs 1, 3 vs 4, and 3 vs 5. Results are presented in table form. It is suggested that attention be given to the standard deviations of registrations errors to judge whether or not they will be within specification once any known mean registration errors are corrected. Techniques used for MTF analysis of a Washington scene produced noisy results.

  10. Altitude Registration of Limb-Scattered Radiation

    NASA Technical Reports Server (NTRS)

    Moy, Leslie; Bhartia, Pawan K.; Jaross, Glen; Loughman, Robert; Kramarova, Natalya; Chen, Zhong; Taha, Ghassan; Chen, Grace; Xu, Philippe

    2017-01-01

    One of the largest constraints to the retrieval of accurate ozone profiles from UV backscatter limb sounding sensors is altitude registration. Two methods, the Rayleigh scattering attitude sensing (RSAS) and absolute radiance residual method (ARRM), are able to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors, but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique introduced in this paper, can be applied across all seasons and altitudes. However, it is only appropriate for relative altitude error estimates. The application of RSAS to Limb Profiler (LP) measurements from the Ozone Mapping and Profiler Suite (OMPS) on board the Suomi NPP (SNPP) satellite indicates tangent height (TH) errors greater than 1 km with an absolute accuracy of +/-200 m. Results using ARRM indicate a approx. 300 to 400m intra-orbital TH change varying seasonally +/-100 m, likely due to either errors in the spacecraft pointing or in the geopotential height (GPH) data that we use in our analysis. ARRM shows a change of approx. 200m over 5 years with a relative accuracy (a long-term accuracy) of 100m outside the polar regions.

  11. Design and Error Analysis of a Vehicular AR System with Auto-Harmonization.

    PubMed

    Foxlin, Eric; Calloway, Thomas; Zhang, Hongsheng

    2015-12-01

    This paper describes the design, development and testing of an AR system that was developed for aerospace and ground vehicles to meet stringent accuracy and robustness requirements. The system uses an optical see-through HMD, and thus requires extremely low latency, high tracking accuracy and precision alignment and calibration of all subsystems in order to avoid mis-registration and "swim". The paper focuses on the optical/inertial hybrid tracking system and describes novel solutions to the challenges with the optics, algorithms, synchronization, and alignment with the vehicle and HMD systems. Tracker accuracy is presented with simulation results to predict the registration accuracy. A car test is used to create a through-the-eyepiece video demonstrating well-registered augmentations of the road and nearby structures while driving. Finally, a detailed covariance analysis of AR registration error is derived.

  12. Automatic localization of the da Vinci surgical instrument tips in 3-D transrectal ultrasound.

    PubMed

    Mohareri, Omid; Ramezani, Mahdi; Adebar, Troy K; Abolmaesumi, Purang; Salcudean, Septimiu E

    2013-09-01

    Robot-assisted laparoscopic radical prostatectomy (RALRP) using the da Vinci surgical system is the current state-of-the-art treatment option for clinically confined prostate cancer. Given the limited field of view of the surgical site in RALRP, several groups have proposed the integration of transrectal ultrasound (TRUS) imaging in the surgical workflow to assist with accurate resection of the prostate and the sparing of the neurovascular bundles (NVBs). We previously introduced a robotic TRUS manipulator and a method for automatically tracking da Vinci surgical instruments with the TRUS imaging plane, in order to facilitate the integration of intraoperative TRUS in RALRP. Rapid and automatic registration of the kinematic frames of the da Vinci surgical system and the robotic TRUS probe manipulator is a critical component of the instrument tracking system. In this paper, we propose a fully automatic registration technique based on automatic 3-D TRUS localization of robot instrument tips pressed against the air-tissue boundary anterior to the prostate. The detection approach uses a multiscale filtering technique to identify and localize surgical instrument tips in the TRUS volume, and could also be used to detect other surface fiducials in 3-D ultrasound. Experiments have been performed using a tissue phantom and two ex vivo tissue samples to show the feasibility of the proposed methods. Also, an initial in vivo evaluation of the system has been carried out on a live anaesthetized dog with a da Vinci Si surgical system and a target registration error (defined as the root mean square distance of corresponding points after registration) of 2.68 mm has been achieved. Results show this method's accuracy and consistency for automatic registration of TRUS images to the da Vinci surgical system.

  13. TH-CD-206-09: Learning-Based MRI-CT Prostate Registration Using Spare Patch-Deformation Dictionary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Jani, A; Rossi, P

    Purpose: To enable MRI-guided prostate radiotherapy, MRI-CT deformable registration is required to map the MRI-defined tumor and key organ contours onto the CT images. Due to the intrinsic differences in grey-level intensity characteristics between MRI and CT images, the integration of MRI into CT-based radiotherapy is very challenging. We are developing a learning-based registration approach to address this technical challenge. Methods: We propose to estimate the deformation between MRI and CT images in a patch-wise fashion by using the sparse representation technique. Specifically, we assume that two image patches should follow the same deformation if their patch-wise appearance patterns aremore » similar. We first extract a set of key points in the new CT image. Then, for each key point, we adaptively construct a coupled dictionary from the training MRI-CT images, where each coupled element includes both appearance and deformation of the same image patch. After calculating the sparse coefficients in representing the patch appearance of each key point based on the constructed dictionary, we can predict the deformation for this point by applying the same sparse coefficients to the respective deformations in the dictionary. Results: This registration technique was validated with 10 prostate-cancer patients’ data and its performance was compared with the commonly used free-form-deformation-based registration. Several landmarks in both images were identified to evaluate the accuracy of our approach. Overall, the averaged target registration error of the intensity-based registration and the proposed method was 3.8±0.4 mm and 1.9±0.3 mm, respectively. Conclusion: We have developed a novel prostate MR-CT registration approach based on patch-deformation dictionary, demonstrated its clinical feasibility, and validated its accuracy. This technique will either reduce or compensate for the effect of patient-specific treatment variation measured during the course of radiotherapy, is therefore well-suited for a number of MRI-guided adaptive radiotherapy, and potentially enhance prostate radiotherapy treatment outcome.« less

  14. Fast and robust multimodal image registration using a local derivative pattern.

    PubMed

    Jiang, Dongsheng; Shi, Yonghong; Chen, Xinrong; Wang, Manning; Song, Zhijian

    2017-02-01

    Deformable multimodal image registration, which can benefit radiotherapy and image guided surgery by providing complementary information, remains a challenging task in the medical image analysis field due to the difficulty of defining a proper similarity measure. This article presents a novel, robust and fast binary descriptor, the discriminative local derivative pattern (dLDP), which is able to encode images of different modalities into similar image representations. dLDP calculates a binary string for each voxel according to the pattern of intensity derivatives in its neighborhood. The descriptor similarity is evaluated using the Hamming distance, which can be efficiently computed, instead of conventional L1 or L2 norms. For the first time, we validated the effectiveness and feasibility of the local derivative pattern for multimodal deformable image registration with several multi-modal registration applications. dLDP was compared with three state-of-the-art methods in artificial image and clinical settings. In the experiments of deformable registration between different magnetic resonance imaging (MRI) modalities from BrainWeb, between computed tomography and MRI images from patient data, and between MRI and ultrasound images from BITE database, we show our method outperforms localized mutual information and entropy images in terms of both accuracy and time efficiency. We have further validated dLDP for the deformable registration of preoperative MRI and three-dimensional intraoperative ultrasound images. Our results indicate that dLDP reduces the average mean target registration error from 4.12 mm to 2.30 mm. This accuracy is statistically equivalent to the accuracy of the state-of-the-art methods in the study; however, in terms of computational complexity, our method significantly outperforms other methods and is even comparable to the sum of the absolute difference. The results reveal that dLDP can achieve superior performance regarding both accuracy and time efficiency in general multimodal image registration. In addition, dLDP also indicates the potential for clinical ultrasound guided intervention. © 2016 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. The distance discordance metric - A novel approach to quantifying spatial uncertainties in intra- and inter-patient deformable image registration

    PubMed Central

    Saleh, Ziad H.; Apte, Aditya P.; Sharp, Gregory C.; Shusharina, Nadezhda P.; Wang, Ya; Veeraraghavan, Harini; Thor, Maria; Muren, Ludvig P.; Rao, Shyam S.; Lee, Nancy Y.; Deasy, Joseph O.

    2014-01-01

    Previous methods to estimate the inherent accuracy of deformable image registration (DIR) have typically been performed relative to a known ground truth, such as tracking of anatomic landmarks or known deformations in a physical or virtual phantom. In this study, we propose a new approach to estimate the spatial geometric uncertainty of DIR using statistical sampling techniques that can be applied to the resulting deformation vector fields (DVFs) for a given registration. The proposed DIR performance metric, the distance discordance metric (DDM), is based on the variability in the distance between corresponding voxels from different images, which are co-registered to the same voxel at location (X) in an arbitrarily chosen “reference” image. The DDM value, at location (X) in the reference image, represents the mean dispersion between voxels, when these images are registered to other images in the image set. The method requires at least four registered images to estimate the uncertainty of the DIRs, both for inter-and intra-patient DIR. To validate the proposed method, we generated an image set by deforming a software phantom with known DVFs. The registration error was computed at each voxel in the “reference” phantom and then compared to DDM, inverse consistency error (ICE), and transitivity error (TE) over the entire phantom. The DDM showed a higher Pearson correlation (Rp) with the actual error (Rp ranged from 0.6 to 0.9) in comparison with ICE and TE (Rp ranged from 0.2 to 0.8). In the resulting spatial DDM map, regions with distinct intensity gradients had a lower discordance and therefore, less variability relative to regions with uniform intensity. Subsequently, we applied DDM for intra-patient DIR in an image set of 10 longitudinal computed tomography (CT) scans of one prostate cancer patient and for inter-patient DIR in an image set of 10 planning CT scans of different head and neck cancer patients. For both intra- and inter-patient DIR, the spatial DDM map showed large variation over the volume of interest (the pelvis for the prostate patient and the head for the head and neck patients). The highest discordance was observed in the soft tissues, such as the brain, bladder, and rectum, due to higher variability in the registration. The smallest DDM values were observed in the bony structures in the pelvis and the base of the skull. The proposed metric, DDM, provides a quantitative tool to evaluate the performance of DIR when a set of images is available. Therefore, DDM can be used to estimate and visualize the uncertainty of intra- and/or inter-patient DIR based on the variability of the registration rather than the absolute registration error. PMID:24440838

  16. Comparison Between CT and MR Images as More Favorable Reference Data Sets for Fusion Imaging-Guided Radiofrequency Ablation or Biopsy of Hepatic Lesions: A Prospective Study with Focus on Patient's Respiration.

    PubMed

    Cha, Dong Ik; Lee, Min Woo; Kang, Tae Wook; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Kim, Kyunga

    2017-10-01

    To identify the more accurate reference data sets for fusion imaging-guided radiofrequency ablation or biopsy of hepatic lesions between computed tomography (CT) and magnetic resonance (MR) images. This study was approved by the institutional review board, and written informed consent was received from all patients. Twelve consecutive patients who were referred to assess the feasibility of radiofrequency ablation or biopsy were enrolled. Automatic registration using CT and MR images was performed in each patient. Registration errors during optimal and opposite respiratory phases, time required for image fusion and number of point locks used were compared using the Wilcoxon signed-rank test. The registration errors during optimal respiratory phase were not significantly different between image fusion using CT and MR images as reference data sets (p = 0.969). During opposite respiratory phase, the registration error was smaller with MR images than CT (p = 0.028). The time and the number of points locks needed for complete image fusion were not significantly different between CT and MR images (p = 0.328 and p = 0.317, respectively). MR images would be more suitable as the reference data set for fusion imaging-guided procedures of focal hepatic lesions than CT images.

  17. Line fiducial material and thickness considerations for ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; McLeod, A. J.; Baxter, John S. H.; Chen, Elvis C. S.; Peters, Terry M.

    2015-03-01

    Ultrasound calibration is a necessary procedure in many image-guided interventions, relating the position of tools and anatomical structures in the ultrasound image to a common coordinate system. This is a necessary component of augmented reality environments in image-guided interventions as it allows for a 3D visualization where other surgical tools outside the imaging plane can be found. Accuracy of ultrasound calibration fundamentally affects the total accuracy of this interventional guidance system. Many ultrasound calibration procedures have been proposed based on a variety of phantom materials and geometries. These differences lead to differences in representation of the phantom on the ultrasound image which subsequently affect the ability to accurately and automatically segment the phantom. For example, taut wires are commonly used as line fiducials in ultrasound calibration. However, at large depths or oblique angles, the fiducials appear blurred and smeared in ultrasound images making it hard to localize their cross-section with the ultrasound image plane. Intuitively, larger diameter phantoms with lower echogenicity are more accurately segmented in ultrasound images in comparison to highly reflective thin phantoms. In this work, an evaluation of a variety of calibration phantoms with different geometrical and material properties for the phantomless calibration procedure was performed. The phantoms used in this study include braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. Conventional B-mode and synthetic aperture images of the phantoms at different positions were obtained. The phantoms were automatically segmented from the ultrasound images using an ellipse fitting algorithm, the centroid of which is subsequently used as a fiducial for calibration. Calibration accuracy was evaluated for these procedures based on the leave-one-out target registration error. It was shown that larger diameter phantoms with lower echogenicity are more accurately segmented in comparison to highly reflective thin phantoms. This improvement in segmentation accuracy leads to a lower fiducial localization error, which ultimately results in low target registration error. This would have a profound effect on calibration procedures and the feasibility of different calibration procedures in the context of image-guided procedures.

  18. Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy.

    PubMed

    McLaughlin, Patrick W; Evans, Cheryl; Feng, Mary; Narayana, Vrinda

    2010-02-01

    Use of highly conformal radiation for prostate cancer can lead to both overtreatment of surrounding normal tissues and undertreatment of the prostate itself. In this retrospective study we analyzed the radiographic and anatomic basis of common errors in computed tomography (CT) contouring and suggest methods to correct them. Three hundred patients with prostate cancer underwent CT and magnetic resonance imaging (MRI). The prostate was delineated independently on the data sets. CT and MRI contours were compared by use of deformable registration. Errors in target delineation were analyzed and methods to avoid such errors detailed. Contouring errors were identified at the prostatic apex, mid gland, and base on CT. At the apex, the genitourinary diaphragm, rectum, and anterior fascia contribute to overestimation. At the mid prostate, the anterior and lateral fasciae contribute to overestimation. At the base, the bladder and anterior fascia contribute to anterior overestimation. Transition zone hypertrophy and bladder neck variability contribute to errors of overestimation and underestimation at the superior base, whereas variable prostate-to-seminal vesicle relationships with prostate hypertrophy contribute to contouring errors at the posterior base. Most CT contouring errors can be detected by (1) inspection of a lateral view of prostate contours to detect projection from the expected globular form and (2) recognition of anatomic structures (genitourinary diaphragm) on the CT scans that are clearly visible on MRI. This study shows that many CT prostate contouring errors can be improved without direct incorporation of MRI data. Copyright 2010 Elsevier Inc. All rights reserved.

  19. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection

    PubMed Central

    Chen, Yucong; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate. PMID:28982117

  20. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    PubMed

    Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  1. An automated A-value measurement tool for accurate cochlear duct length estimation.

    PubMed

    Iyaniwura, John E; Elfarnawany, Mai; Ladak, Hanif M; Agrawal, Sumit K

    2018-01-22

    There has been renewed interest in the cochlear duct length (CDL) for preoperative cochlear implant electrode selection and postoperative generation of patient-specific frequency maps. The CDL can be estimated by measuring the A-value, which is defined as the length between the round window and the furthest point on the basal turn. Unfortunately, there is significant intra- and inter-observer variability when these measurements are made clinically. The objective of this study was to develop an automated A-value measurement algorithm to improve accuracy and eliminate observer variability. Clinical and micro-CT images of 20 cadaveric cochleae specimens were acquired. The micro-CT of one sample was chosen as the atlas, and A-value fiducials were placed onto that image. Image registration (rigid affine and non-rigid B-spline) was applied between the atlas and the 19 remaining clinical CT images. The registration transform was applied to the A-value fiducials, and the A-value was then automatically calculated for each specimen. High resolution micro-CT images of the same 19 specimens were used to measure the gold standard A-values for comparison against the manual and automated methods. The registration algorithm had excellent qualitative overlap between the atlas and target images. The automated method eliminated the observer variability and the systematic underestimation by experts. Manual measurement of the A-value on clinical CT had a mean error of 9.5 ± 4.3% compared to micro-CT, and this improved to an error of 2.7 ± 2.1% using the automated algorithm. Both the automated and manual methods correlated significantly with the gold standard micro-CT A-values (r = 0.70, p < 0.01 and r = 0.69, p < 0.01, respectively). An automated A-value measurement tool using atlas-based registration methods was successfully developed and validated. The automated method eliminated the observer variability and improved accuracy as compared to manual measurements by experts. This open-source tool has the potential to benefit cochlear implant recipients in the future.

  2. An integrated platform for image-guided cardiac resynchronization therapy

    NASA Astrophysics Data System (ADS)

    Ma, Ying Liang; Shetty, Anoop K.; Duckett, Simon; Etyngier, Patrick; Gijsbers, Geert; Bullens, Roland; Schaeffter, Tobias; Razavi, Reza; Rinaldi, Christopher A.; Rhode, Kawal S.

    2012-05-01

    Cardiac resynchronization therapy (CRT) is an effective procedure for patients with heart failure but 30% of patients do not respond. This may be due to sub-optimal placement of the left ventricular (LV) lead. It is hypothesized that the use of cardiac anatomy, myocardial scar distribution and dyssynchrony information, derived from cardiac magnetic resonance imaging (MRI), may improve outcome by guiding the physician for optimal LV lead positioning. Whole heart MR data can be processed to yield detailed anatomical models including the coronary veins. Cine MR data can be used to measure the motion of the LV to determine which regions are late-activating. Finally, delayed Gadolinium enhancement imaging can be used to detect regions of scarring. This paper presents a complete platform for the guidance of CRT using pre-procedural MR data combined with live x-ray fluoroscopy. The platform was used for 21 patients undergoing CRT in a standard catheterization laboratory. The patients underwent cardiac MRI prior to their procedure. For each patient, a MRI-derived cardiac model, showing the LV lead targets, was registered to x-ray fluoroscopy using multiple views of a catheter looped in the right atrium. Registration was maintained throughout the procedure by a combination of C-arm/x-ray table tracking and respiratory motion compensation. Validation of the registration between the three-dimensional (3D) roadmap and the 2D x-ray images was performed using balloon occlusion coronary venograms. A 2D registration error of 1.2 ± 0.7 mm was achieved. In addition, a novel navigation technique was developed, called Cardiac Unfold, where an entire cardiac chamber is unfolded from 3D to 2D along with all relevant anatomical and functional information and coupled to real-time device detection. This allowed more intuitive navigation as the entire 3D scene was displayed simultaneously on a 2D plot. The accuracy of the unfold navigation was assessed off-line using 13 patient data sets by computing the registration error of the LV pacing lead electrodes which was found to be 2.2 ± 0.9 mm. Furthermore, the use of Unfold Navigation was demonstrated in real-time for four clinical cases.

  3. Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease

    PubMed Central

    Koikkalainen, Juha; Lötjönen, Jyrki; Thurfjell, Lennart; Rueckert, Daniel; Waldemar, Gunhild; Soininen, Hilkka

    2012-01-01

    In this paper methods for using multiple templates in tensor-based morphometry (TBM) are presented and comparedtothe conventional single-template approach. TBM analysis requires non-rigid registrations which are often subject to registration errors. When using multiple templates and, therefore, multiple registrations, it can be assumed that the registration errors are averaged and eventually compensated. Four different methods are proposed for multi-template TBM. The methods were evaluated using magnetic resonance (MR) images of healthy controls, patients with stable or progressive mild cognitive impairment (MCI), and patients with Alzheimer's disease (AD) from the ADNI database (N=772). The performance of TBM features in classifying images was evaluated both quantitatively and qualitatively. Classification results show that the multi-template methods are statistically significantly better than the single-template method. The overall classification accuracy was 86.0% for the classification of control and AD subjects, and 72.1%for the classification of stable and progressive MCI subjects. The statistical group-level difference maps produced using multi-template TBM were smoother, formed larger continuous regions, and had larger t-values than the maps obtained with single-template TBM. PMID:21419228

  4. Atlas-based identification of targets for functional radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancanello, Joseph; Romanelli, Pantaleo; Modugno, Nicola

    2006-06-15

    Functional disorders of the brain, such as Parkinson's disease, dystonia, epilepsy, and neuropathic pain, may exhibit poor response to medical therapy. In such cases, surgical intervention may become necessary. Modern surgical approaches to such disorders include radio-frequency lesioning and deep brain stimulation (DBS). The subthalamic nucleus (STN) is one of the most useful stereotactic targets available: STN DBS is known to induce substantial improvement in patients with end-stage Parkinson's disease. Other targets include the Globus Pallidus pars interna (GPi) for dystonia and Parkinson's disease, and the centromedian nucleus of the thalamus (CMN) for neuropathic pain. Radiosurgery is an attractive noninvasivemore » alternative to treat some functional brain disorders. The main technical limitation to radiosurgery is that the target can be selected only on the basis of magnetic resonance anatomy without electrophysiological confirmation. The aim of this work is to provide a method for the correct atlas-based identification of the target to be used in functional neurosurgery treatment planning. The coordinates of STN, CMN, and GPi were identified in the Talairach and Tournoux atlas and transformed to the corresponding regions of the Montreal Neurological Institute (MNI) electronic atlas. Binary masks describing the target nuclei were created. The MNI electronic atlas was deformed onto the patient magnetic resonance imaging-T1 scan by applying an affine transformation followed by a local nonrigid registration. The first transformation was based on normalized cross correlation and the second on optimization of a two-part objective function consisting of similarity criteria and weighted regularization. The obtained deformation field was then applied to the target masks. The minimum distance between the surface of an implanted electrode and the surface of the deformed mask was calculated. The validation of the method consisted of comparing the electrode-mask distance to the clinical outcome of the treatments in ten cases of bilateral DBS implants. Electrode placement may have an effect within a radius of stimulation equal to 2 mm, therefore the registration process is considered successful if error is less than 2 mm. The registrations of the MNI atlas onto the patient space succeeded in all cases. The comparison of the distance to the clinical outcome revealed good agreement: where the distance was high (at least in one implant), the clinical outcome was poor; where there was a close correlation between the structures, clinical outcome revealed an improvement of the pathological condition. In conclusion, the proposed method seems to provide a useful tool for the identification of the target nuclei for functional radiosurgery. Also, the method is applicable to other types of functional treatment.« less

  5. Multiple window spatial registration error of a gamma camera: 133Ba point source as a replacement of the NEMA procedure.

    PubMed

    Bergmann, Helmar; Minear, Gregory; Raith, Maria; Schaffarich, Peter M

    2008-12-09

    The accuracy of multiple window spatial resolution characterises the performance of a gamma camera for dual isotope imaging. In the present study we investigate an alternative method to the standard NEMA procedure for measuring this performance parameter. A long-lived 133Ba point source with gamma energies close to 67Ga and a single bore lead collimator were used to measure the multiple window spatial registration error. Calculation of the positions of the point source in the images used the NEMA algorithm. The results were validated against the values obtained by the standard NEMA procedure which uses a liquid 67Ga source with collimation. Of the source-collimator configurations under investigation an optimum collimator geometry, consisting of a 5 mm thick lead disk with a diameter of 46 mm and a 5 mm central bore, was selected. The multiple window spatial registration errors obtained by the 133Ba method showed excellent reproducibility (standard deviation < 0.07 mm). The values were compared with the results from the NEMA procedure obtained at the same locations and showed small differences with a correlation coefficient of 0.51 (p < 0.05). In addition, the 133Ba point source method proved to be much easier to use. A Bland-Altman analysis showed that the 133Ba and the 67Ga Method can be used interchangeably. The 133Ba point source method measures the multiple window spatial registration error with essentially the same accuracy as the NEMA-recommended procedure, but is easier and safer to use and has the potential to replace the current standard procedure.

  6. Scene-based nonuniformity correction algorithm based on interframe registration.

    PubMed

    Zuo, Chao; Chen, Qian; Gu, Guohua; Sui, Xiubao

    2011-06-01

    In this paper, we present a simple and effective scene-based nonuniformity correction (NUC) method for infrared focal plane arrays based on interframe registration. This method estimates the global translation between two adjacent frames and minimizes the mean square error between the two properly registered images to make any two detectors with the same scene produce the same output value. In this way, the accumulation of the registration error can be avoided and the NUC can be achieved. The advantages of the proposed algorithm lie in its low computational complexity and storage requirements and ability to capture temporal drifts in the nonuniformity parameters. The performance of the proposed technique is thoroughly studied with infrared image sequences with simulated nonuniformity and infrared imagery with real nonuniformity. It shows a significantly fast and reliable fixed-pattern noise reduction and obtains an effective frame-by-frame adaptive estimation of each detector's gain and offset.

  7. Motion correction for radiation therapy of prostate using B-mode ultrasound

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Figl, Michael; Schmidbauer, Jörg; Tinzl, Martina; Bergmann, Helmar; Birkfellner, Wolfgang

    2007-03-01

    The use of intensity modulated radiation therapy promises to spare organs at risk by applying better dose distribution on the tumor. The specific challenge of this methods is the exact positioning of the patient and the localization of the exposured organ. With respect to the filling of rectum and bladder the prostate can move several millimeters up to centimeters. Therefore, the position of the prostate should be determinated and corrected daily before irradiation. We used a B-mode US machine (Ultramark 9, advanced Technology Laboratories, USA) which was calibrated using an optical tracking system (Polaris, NDI, Can). After correct positioning of the patient in the simulation room three anatomical markers (apex prostate, prostate lateral sinister/dexter) were identified and their positions calculated with respect to the coordinate system of the simulator. The same situation is given in the treatment room. Both, simulator and accelerator are registered by a simple point-to-point registration using a block with five drilled holes with known coordinates in the block coordinate system. The block is aligned by means of laser markers. When the patient is placed on the treatment table, the three anatomical landmarks are located on the US images and their positions are calculated with respect to the coordinate system of the treatment room. Applying a point-to-point registration results in a rotation matrix and a translation vector in the desired coordinate system which can be used for repositioning by translating and rotating the patient table. Additionally, a fiducial registration error (FRE) is calculated which gives a dimension of the accuracy the three points were identified. We found an fiducial registration error (FRE) of 2.4 mm +/- 1.2 mm for the point-to-point registration of the anatomical landmarks. The FRE for the point-to-point registration between the block and the optical tracking system was 0.5 mm +/- 0.2 mm. According to the US calibration we found an error of 0.8 mm +/- 0.2 mm.

  8. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neyman, G

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002more » vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.« less

  9. Accurate tracking of tumor volume change during radiotherapy by CT-CBCT registration with intensity correction

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Robinson, Adam; Quon, Harry; Kiess, Ana P.; Shen, Colette; Wong, John; Plishker, William; Shekhar, Raj; Lee, Junghoon

    2016-03-01

    In this paper, we propose a CT-CBCT registration method to accurately predict the tumor volume change based on daily cone-beam CTs (CBCTs) during radiotherapy. CBCT is commonly used to reduce patient setup error during radiotherapy, but its poor image quality impedes accurate monitoring of anatomical changes. Although physician's contours drawn on the planning CT can be automatically propagated to daily CBCTs by deformable image registration (DIR), artifacts in CBCT often cause undesirable errors. To improve the accuracy of the registration-based segmentation, we developed a DIR method that iteratively corrects CBCT intensities by local histogram matching. Three popular DIR algorithms (B-spline, demons, and optical flow) with the intensity correction were implemented on a graphics processing unit for efficient computation. We evaluated their performances on six head and neck (HN) cancer cases. For each case, four trained scientists manually contoured the nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial image registration software based on conventional mutual information (MI), VelocityAI (Varian Medical Systems Inc.). The volume differences (mean±std in cc) between the average of the manual segmentations and automatic segmentations are 3.70+/-2.30 (B-spline), 1.25+/-1.78 (demons), 0.93+/-1.14 (optical flow), and 4.39+/-3.86 (VelocityAI). The proposed method significantly reduced the estimation error by 9% (B-spline), 38% (demons), and 51% (optical flow) over the results using VelocityAI. Although demonstrated only on HN nodal GTVs, the results imply that the proposed method can produce improved segmentation of other critical structures over conventional methods.

  10. Optimal slice thickness for cone-beam CT with on-board imager

    PubMed Central

    Seet, KYT; Barghi, A; Yartsev, S; Van Dyk, J

    2010-01-01

    Purpose: To find the optimal slice thickness (Δτ) setting for patient registration with kilovoltage cone-beam CT (kVCBCT) on the Varian On Board Imager (OBI) system by investigating the relationship of slice thickness to automatic registration accuracy and contrast-to-noise ratio. Materials and method: Automatic registration was performed on kVCBCT studies of the head and pelvis of a RANDO anthropomorphic phantom. Images were reconstructed with 1.0 ≤ Δτ (mm) ≤ 5.0 at 1.0 mm increments. The phantoms were offset by a known amount, and the suggested shifts were compared to the known shifts by calculating the residual error. A uniform cylindrical phantom with cylindrical inserts of various known CT numbers was scanned with kVCBCT at 1.0 ≤ Δτ (mm) ≤ 5.0 at increments of 0.5 mm. The contrast-to-noise ratios for the inserts were measured at each Δτ. Results: For the planning CT slice thickness used in this study, there was no significant difference in residual error below a threshold equal to the planning CT slice thickness. For Δτ > 3.0 mm, residual error increased for both the head and pelvis phantom studies. The contrast-to-noise ratio is proportional to slice thickness until Δτ = 2.5 mm. Beyond this point, the contrast-to-noise ratio was not affected by Δτ. Conclusion: Automatic registration accuracy is greatest when 1.0 ≤ Δτ (mm) ≤ 3.0 is used. Contrast-to-noise ratio is optimal for the 2.5 ≤ Δτ (mm) ≤ 5.0 range. Therefore 2.5 ≤ Δτ (mm) ≤ 3.0 is recommended for kVCBCT patient registration where the planning CT is 3.0 mm. PMID:21611047

  11. Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin

    Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less

  12. Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics

    DOE PAGES

    Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; ...

    2016-04-04

    Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less

  13. 3D surface-based registration of ultrasound and histology in prostate cancer imaging.

    PubMed

    Schalk, Stefan G; Postema, Arnoud; Saidov, Tamerlan A; Demi, Libertario; Smeenge, Martijn; de la Rosette, Jean J M C H; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    Several transrectal ultrasound (TRUS)-based techniques aiming at accurate localization of prostate cancer are emerging to improve diagnostics or to assist with focal therapy. However, precise validation prior to introduction into clinical practice is required. Histopathology after radical prostatectomy provides an excellent ground truth, but needs accurate registration with imaging. In this work, a 3D, surface-based, elastic registration method was developed to fuse TRUS images with histopathologic results. To maximize the applicability in clinical practice, no auxiliary sensors or dedicated hardware were used for the registration. The mean registration errors, measured in vitro and in vivo, were 1.5±0.2 and 2.1±0.5mm, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Diffraction based overlay metrology for α-carbon applications

    NASA Astrophysics Data System (ADS)

    Saravanan, Chandra Saru; Tan, Asher; Dasari, Prasad; Goelzer, Gary; Smith, Nigel; Woo, Seouk-Hoon; Shin, Jang Ho; Kang, Hyun Jae; Kim, Ho Chul

    2008-03-01

    Applications that require overlay measurement between layers separated by absorbing interlayer films (such as α- carbon) pose significant challenges for sub-50nm processes. In this paper scatterometry methods are investigated as an alternative to meet these stringent overlay metrology requirements. In this article, a spectroscopic Diffraction Based Overlay (DBO) measurement technique is used where registration errors are extracted from specially designed diffraction targets. DBO measurements are performed on detailed set of wafers with varying α-carbon (ACL) thicknesses. The correlation in overlay values between wafers with varying ACL thicknesses will be discussed. The total measurement uncertainty (TMU) requirements for these layers are discussed and the DBO TMU results from sub-50nm samples are reviewed.

  15. Altitude registration of limb-scattered radiation

    NASA Astrophysics Data System (ADS)

    Moy, Leslie; Bhartia, Pawan K.; Jaross, Glen; Loughman, Robert; Kramarova, Natalya; Chen, Zhong; Taha, Ghassan; Chen, Grace; Xu, Philippe

    2017-01-01

    One of the largest constraints to the retrieval of accurate ozone profiles from UV backscatter limb sounding sensors is altitude registration. Two methods, the Rayleigh scattering attitude sensing (RSAS) and absolute radiance residual method (ARRM), are able to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors, but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique introduced in this paper, can be applied across all seasons and altitudes. However, it is only appropriate for relative altitude error estimates. The application of RSAS to Limb Profiler (LP) measurements from the Ozone Mapping and Profiler Suite (OMPS) on board the Suomi NPP (SNPP) satellite indicates tangent height (TH) errors greater than 1 km with an absolute accuracy of ±200 m. Results using ARRM indicate a ˜ 300 to 400 m intra-orbital TH change varying seasonally ±100 m, likely due to either errors in the spacecraft pointing or in the geopotential height (GPH) data that we use in our analysis. ARRM shows a change of ˜ 200 m over ˜ 5 years with a relative accuracy (a long-term accuracy) of ±100 m outside the polar regions.

  16. A framework for automatic creation of gold-standard rigid 3D-2D registration datasets.

    PubMed

    Madan, Hennadii; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2017-02-01

    Advanced image-guided medical procedures incorporate 2D intra-interventional information into pre-interventional 3D image and plan of the procedure through 3D/2D image registration (32R). To enter clinical use, and even for publication purposes, novel and existing 32R methods have to be rigorously validated. The performance of a 32R method can be estimated by comparing it to an accurate reference or gold standard method (usually based on fiducial markers) on the same set of images (gold standard dataset). Objective validation and comparison of methods are possible only if evaluation methodology is standardized, and the gold standard  dataset is made publicly available. Currently, very few such datasets exist and only one contains images of multiple patients acquired during a procedure. To encourage the creation of gold standard 32R datasets, we propose an automatic framework. The framework is based on rigid registration of fiducial markers. The main novelty is spatial grouping of fiducial markers on the carrier device, which enables automatic marker localization and identification across the 3D and 2D images. The proposed framework was demonstrated on clinical angiograms of 20 patients. Rigid 32R computed by the framework was more accurate than that obtained manually, with the respective target registration error below 0.027 mm compared to 0.040 mm. The framework is applicable for gold standard setup on any rigid anatomy, provided that the acquired images contain spatially grouped fiducial markers. The gold standard datasets and software will be made publicly available.

  17. Automated pulmonary lobar ventilation measurements using volume-matched thoracic CT and MRI

    NASA Astrophysics Data System (ADS)

    Guo, F.; Svenningsen, S.; Bluemke, E.; Rajchl, M.; Yuan, J.; Fenster, A.; Parraga, G.

    2015-03-01

    Objectives: To develop and evaluate an automated registration and segmentation pipeline for regional lobar pulmonary structure-function measurements, using volume-matched thoracic CT and MRI in order to guide therapy. Methods: Ten subjects underwent pulmonary function tests and volume-matched 1H and 3He MRI and thoracic CT during a single 2-hr visit. CT was registered to 1H MRI using an affine method that incorporated block-matching and this was followed by a deformable step using free-form deformation. The resultant deformation field was used to deform the associated CT lobe mask that was generated using commercial software. 3He-1H image registration used the same two-step registration method and 3He ventilation was segmented using hierarchical k-means clustering. Whole lung and lobar 3He ventilation and ventilation defect percent (VDP) were generated by mapping ventilation defects to CT-defined whole lung and lobe volumes. Target CT-3He registration accuracy was evaluated using region- , surface distance- and volume-based metrics. Automated whole lung and lobar VDP was compared with semi-automated and manual results using paired t-tests. Results: The proposed pipeline yielded regional spatial agreement of 88.0+/-0.9% and surface distance error of 3.9+/-0.5 mm. Automated and manual whole lung and lobar ventilation and VDP were not significantly different and they were significantly correlated (r = 0.77, p < 0.0001). Conclusion: The proposed automated pipeline can be used to generate regional pulmonary structural-functional maps with high accuracy and robustness, providing an important tool for image-guided pulmonary interventions.

  18. Deformable 3D-2D registration for guiding K-wire placement in pelvic trauma surgery

    NASA Astrophysics Data System (ADS)

    Goerres, J.; Jacobson, M.; Uneri, A.; de Silva, T.; Ketcha, M.; Reaungamornrat, S.; Vogt, S.; Kleinszig, G.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.

    2017-03-01

    Pelvic Kirschner wire (K-wire) insertion is a challenging surgical task requiring interpretation of complex 3D anatomical shape from 2D projections (fluoroscopy) and delivery of device trajectories within fairly narrow bone corridors in proximity to adjacent nerves and vessels. Over long trajectories ( 10-25 cm), K-wires tend to curve (deform), making conventional rigid navigation inaccurate at the tip location. A system is presented that provides accurate 3D localization and guidance of rigid or deformable surgical devices ("components" - e.g., K-wires) based on 3D-2D registration. The patient is registered to a preoperative CT image by virtually projecting digitally reconstructed radiographs (DRRs) and matching to two or more intraoperative x-ray projections. The K-wire is localized using an analogous procedure matching DRRs of a deformably parametrized model for the device component (deformable known-component registration, or dKC-Reg). A cadaver study was performed in which a K-wire trajectory was delivered in the pelvis. The system demonstrated target registration error (TRE) of 2.1 ± 0.3 mm in location of the K-wire tip (median ± interquartile range, IQR) and 0.8 ± 1.4º in orientation at the tip (median ± IQR), providing functionality analogous to surgical tracking / navigation using imaging systems already in the surgical arsenal without reliance on a surgical tracker. The method offers quantitative 3D guidance using images (e.g., inlet / outlet views) already acquired in the standard of care, potentially extending the advantages of navigation to broader utilization in trauma surgery to improve surgical precision and safety.

  19. Geometric error characterization and error budgets. [thematic mapper

    NASA Technical Reports Server (NTRS)

    Beyer, E.

    1982-01-01

    Procedures used in characterizing geometric error sources for a spaceborne imaging system are described using the LANDSAT D thematic mapper ground segment processing as the prototype. Software was tested through simulation and is undergoing tests with the operational hardware as part of the prelaunch system evaluation. Geometric accuracy specifications, geometric correction, and control point processing are discussed. Cross track and along track errors are tabulated for the thematic mapper, the spacecraft, and ground processing to show the temporal registration error budget in pixel (42.5 microrad) 90%.

  20. Fast automated segmentation of multiple objects via spatially weighted shape learning

    NASA Astrophysics Data System (ADS)

    Chandra, Shekhar S.; Dowling, Jason A.; Greer, Peter B.; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-01

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice’s similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  1. Fast automated segmentation of multiple objects via spatially weighted shape learning.

    PubMed

    Chandra, Shekhar S; Dowling, Jason A; Greer, Peter B; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-21

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice's similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  2. SU-F-J-42: Comparison of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Cranial Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J; Shi, W; Andrews, D

    2016-06-15

    Purpose: To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac x-ray imaging systems for cranial radiotherapy. Method: Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (Version 2.5), which is integrated with a BrainLab ExacTrac imaging system (Version 6.1.1). The phantom study was based on a Rando head phantom, which was designed to evaluate isocenter-location dependence of the image registrations. Ten isocenters were selected at various locations in the phantom, which represented clinical treatment sites. CBCT and ExacTrac x-ray images were taken when the phantom was located at each isocenter. The patientmore » study included thirteen patients. CBCT and ExacTrac x-ray images were taken at each patient’s treatment position. Six-dimensional image registrations were performed on CBCT and ExacTrac, and residual errors calculated from CBCT and ExacTrac were compared. Results: In the phantom study, the average residual-error differences between CBCT and ExacTrac image registrations were: 0.16±0.10 mm, 0.35±0.20 mm, and 0.21±0.15 mm, in the vertical, longitudinal, and lateral directions, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.36±0.11 degree, 0.14±0.10 degree, and 0.12±0.10 degree, respectively. In the patient study, the average residual-error differences in the vertical, longitudinal, and lateral directions were: 0.13±0.13 mm, 0.37±0.21 mm, 0.22±0.17 mm, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.30±0.10 degree, 0.18±0.11 degree, and 0.22±0.13 degree, respectively. Larger residual-error differences (up to 0.79 mm) were observed in the longitudinal direction in the phantom and patient studies where isocenters were located in or close to frontal lobes, i.e., located superficially. Conclusion: Overall, the average residual-error differences were within 0.4 mm in the translational directions and were within 0.4 degree in the rotational directions.« less

  3. LiDAR Point Cloud and Stereo Image Point Cloud Fusion

    DTIC Science & Technology

    2013-09-01

    LiDAR point cloud (right) highlighting linear edge features ideal for automatic registration...point cloud (right) highlighting linear edge features ideal for automatic registration. Areas where topography is being derived, unfortunately, do...with the least amount of automatic correlation errors was used. The following graphic (Figure 12) shows the coverage of the WV1 stereo triplet as

  4. CAT & MAUS: A novel system for true dynamic motion measurement of underlying bony structures with compensation for soft tissue movement.

    PubMed

    Jia, Rui; Monk, Paul; Murray, David; Noble, J Alison; Mellon, Stephen

    2017-09-06

    Optoelectronic motion capture systems are widely employed to measure the movement of human joints. However, there can be a significant discrepancy between the data obtained by a motion capture system (MCS) and the actual movement of underlying bony structures, which is attributed to soft tissue artefact. In this paper, a computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system with an augmented globally optimal registration algorithm is presented to dynamically track the underlying bony structure during movement. The augmented registration part of CAT & MAUS was validated with a high system accuracy of 80%. The Euclidean distance between the marker-based bony landmark and the bony landmark tracked by CAT & MAUS was calculated to quantify the measurement error of an MCS caused by soft tissue artefact during movement. The average Euclidean distance between the target bony landmark measured by each of the CAT & MAUS system and the MCS alone varied from 8.32mm to 16.87mm in gait. This indicates the discrepancy between the MCS measured bony landmark and the actual underlying bony landmark. Moreover, Procrustes analysis was applied to demonstrate that CAT & MAUS reduces the deformation of the body segment shape modeled by markers during motion. The augmented CAT & MAUS system shows its potential to dynamically detect and locate actual underlying bony landmarks, which reduces the MCS measurement error caused by soft tissue artefact during movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Semi-automatic registration of 3D orthodontics models from photographs

    NASA Astrophysics Data System (ADS)

    Destrez, Raphaël.; Treuillet, Sylvie; Lucas, Yves; Albouy-Kissi, Benjamin

    2013-03-01

    In orthodontics, a common practice used to diagnose and plan the treatment is the dental cast. After digitization by a CT-scan or a laser scanner, the obtained 3D surface models can feed orthodontics numerical tools for computer-aided diagnosis and treatment planning. One of the pre-processing critical steps is the 3D registration of dental arches to obtain the occlusion of these numerical models. For this task, we propose a vision based method to automatically compute the registration based on photos of patient mouth. From a set of matched singular points between two photos and the dental 3D models, the rigid transformation to apply to the mandible to be in contact with the maxillary may be computed by minimizing the reprojection errors. During a precedent study, we established the feasibility of this visual registration approach with a manual selection of singular points. This paper addresses the issue of automatic point detection. Based on a priori knowledge, histogram thresholding and edge detection are used to extract specific points in 2D images. Concurrently, curvatures information detects 3D corresponding points. To improve the quality of the final registration, we also introduce a combined optimization of the projection matrix with the 2D/3D point positions. These new developments are evaluated on real data by considering the reprojection errors and the deviation angles after registration in respect to the manual reference occlusion realized by a specialist.

  6. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression algorithm. The best-fit parameters were used to create 3D parametric images. Compartmental modeling evaluation was based on the ability of parameter values to differentiate between tissue types. This evaluation was used on registered and unregistered image series and found that registration improved results. (5) PET and MR parametric images were registered through FEM- and FFD-based registration. Parametric image registration was evaluated using similarity measurements, target registration error, and qualitative comparison. Comparing FFD and FEM-based registration results showed that the FEM method is superior. This five-step process constitutes a novel multifaceted approach to a nonsurgical breast biopsy that successfully executes each step. Comparison of this method to biopsy still needs to be done with a larger set of subject data.

  7. Background suppression of infrared small target image based on inter-frame registration

    NASA Astrophysics Data System (ADS)

    Ye, Xiubo; Xue, Bindang

    2018-04-01

    We propose a multi-frame background suppression method for remote infrared small target detection. Inter-frame information is necessary when the heavy background clutters make it difficult to distinguish real targets and false alarms. A registration procedure based on points matching in image patches is used to compensate the local deformation of background. Then the target can be separated by background subtraction. Experiments show our method serves as an effective preliminary of target detection.

  8. Error analysis on squareness of multi-sensor integrated CMM for the multistep registration method

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Wang, Yiwen; Ye, Xiuling; Wang, Zhong; Fu, Luhua

    2018-01-01

    The multistep registration(MSR) method in [1] is to register two different classes of sensors deployed on z-arm of CMM(coordinate measuring machine): a video camera and a tactile probe sensor. In general, it is difficult to obtain a very precise registration result with a single common standard, instead, this method is achieved by measuring two different standards with a constant distance between them two which are fixed on a steel plate. Although many factors have been considered such as the measuring ability of sensors, the uncertainty of the machine and the number of data pairs, there is no exact analysis on the squareness between the x-axis and the y-axis on the xy plane. For this sake, error analysis on the squareness of multi-sensor integrated CMM for the multistep registration method will be made to examine the validation of the MSR method. Synthetic experiments on the squareness on the xy plane for the simplified MSR with an inclination rotation are simulated, which will lead to a regular result. Experiments have been carried out with the multi-standard device designed also in [1], meanwhile, inspections with the help of a laser interferometer on the xy plane have been carried out. The final results are conformed to the simulations, and the squareness errors of the MSR method are also similar to the results of interferometer. In other word, the MSR can also adopted/utilized to verify the squareness of a CMM.

  9. On Statistical Analysis of Neuroimages with Imperfect Registration

    PubMed Central

    Kim, Won Hwa; Ravi, Sathya N.; Johnson, Sterling C.; Okonkwo, Ozioma C.; Singh, Vikas

    2016-01-01

    A variety of studies in neuroscience/neuroimaging seek to perform statistical inference on the acquired brain image scans for diagnosis as well as understanding the pathological manifestation of diseases. To do so, an important first step is to register (or co-register) all of the image data into a common coordinate system. This permits meaningful comparison of the intensities at each voxel across groups (e.g., diseased versus healthy) to evaluate the effects of the disease and/or use machine learning algorithms in a subsequent step. But errors in the underlying registration make this problematic, they either decrease the statistical power or make the follow-up inference tasks less effective/accurate. In this paper, we derive a novel algorithm which offers immunity to local errors in the underlying deformation field obtained from registration procedures. By deriving a deformation invariant representation of the image, the downstream analysis can be made more robust as if one had access to a (hypothetical) far superior registration procedure. Our algorithm is based on recent work on scattering transform. Using this as a starting point, we show how results from harmonic analysis (especially, non-Euclidean wavelets) yields strategies for designing deformation and additive noise invariant representations of large 3-D brain image volumes. We present a set of results on synthetic and real brain images where we achieve robust statistical analysis even in the presence of substantial deformation errors; here, standard analysis procedures significantly under-perform and fail to identify the true signal. PMID:27042168

  10. Registration of Laser Scanning Point Clouds: A Review.

    PubMed

    Cheng, Liang; Chen, Song; Liu, Xiaoqiang; Xu, Hao; Wu, Yang; Li, Manchun; Chen, Yanming

    2018-05-21

    The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles.

  11. Registration of Laser Scanning Point Clouds: A Review

    PubMed Central

    Cheng, Liang; Chen, Song; Xu, Hao; Wu, Yang; Li, Manchun

    2018-01-01

    The integration of multi-platform, multi-angle, and multi-temporal LiDAR data has become important for geospatial data applications. This paper presents a comprehensive review of LiDAR data registration in the fields of photogrammetry and remote sensing. At present, a coarse-to-fine registration strategy is commonly used for LiDAR point clouds registration. The coarse registration method is first used to achieve a good initial position, based on which registration is then refined utilizing the fine registration method. According to the coarse-to-fine framework, this paper reviews current registration methods and their methodologies, and identifies important differences between them. The lack of standard data and unified evaluation systems is identified as a factor limiting objective comparison of different methods. The paper also describes the most commonly-used point cloud registration error analysis methods. Finally, avenues for future work on LiDAR data registration in terms of applications, data, and technology are discussed. In particular, there is a need to address registration of multi-angle and multi-scale data from various newly available types of LiDAR hardware, which will play an important role in diverse applications such as forest resource surveys, urban energy use, cultural heritage protection, and unmanned vehicles. PMID:29883397

  12. SU-E-J-74: Impact of Respiration-Correlated Image Quality On Tumor Motion Reconstruction in 4D-CBCT: A Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Lu, B; Samant, S

    2014-06-01

    Purpose: To investigate the effects of scanning parameters and respiratory patterns on the image quality for 4-dimensional cone-beam computed tomography(4D-CBCT) imaging, and assess the accuracy of computed tumor trajectory for lung imaging using registration of phased 4D-CBCT imaging with treatment planning-CT. Methods: We simulated a periodic and non-sinusoidal respirations with various breathing periods and amplitudes using a respiratory phantom(Quasar, Modus Medical Devices Inc) to acquire respiration-correlated 4D-CBCT images. 4D-CBCT scans(Elekta Oncology Systems Ltd) were performed with different scanning parameters for collimation size(e.g., small and medium field-of-views) and scanning speed(e.g., slow 50°·min{sup −1}, fast 100°·min{sup −1}). Using a standard CBCT-QA phantom(Catphan500,more » The Phantom Laboratory), the image qualities of all phases in 4D-CBCT were evaluated with contrast-to-noise ratio(CNR) for lung tissue and uniformity in each module. Using a respiratory phantom, the target imaging in 4D-CBCT was compared to 3D-CBCT target image. The target trajectory from 10-respiratory phases in 4D-CBCT was extracted using an automatic image registration and subsequently assessed the accuracy by comparing with actual motion of the target. Results: Image analysis indicated that a short respiration with a small amplitude resulted in superior CNR and uniformity. Smaller variation of CNR and uniformity was present amongst different respiratory phases. The small field-of-view with a partial scan using slow scan can improve CNR, but degraded uniformity. Large amplitude of respiration can degrade image quality. RMS of voxel densities in tumor area of 4D-CBCT images between sinusoidal and non-sinusoidal motion exhibited no significant difference. The maximum displacement errors of motion trajectories were less than 1.0 mm and 13.5 mm, for sinusoidal and non-sinusoidal breathings, respectively. The accuracy of motion reconstruction showed good overall agreement with the 4D-CBCT image quality results only using sinusoidal breathings. Conclusion: This information can be used to determine the appropriate acquisition parameters of 4D-CBCT imaging for registration accuracy and target trajectory measurements in a clinical setting.« less

  13. Simultaneous overlay and CD measurement for double patterning: scatterometry and RCWA approach

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Zhuan; Rabello, Silvio; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Park, Jungchul; Singh, Lovejeet

    2009-03-01

    As optical lithography advances to 32 nm technology node and beyond, double patterning technology (DPT) has emerged as an attractive solution to circumvent the fundamental optical limitations. DPT poses unique demands on critical dimension (CD) uniformity and overlay control, making the tolerance decrease much faster than the rate at which critical dimension shrinks. This, in turn, makes metrology even more challenging. In the past, multi-pad diffractionbased overlay (DBO) using empirical approach has been shown to be an effective approach to measure overlay error associated with double patterning [1]. In this method, registration errors for double patterning were extracted from specially designed diffraction targets (three or four pads for each direction); CD variation is assumed negligible within each group of adjacent pads and not addressed in the measurement. In another paper, encouraging results were reported with a first attempt at simultaneously extracting overlay and CD parameters using scatterometry [2]. In this work, we apply scatterometry with a rigorous coupled wave analysis (RCWA) approach to characterize two double-patterning processes: litho-etch-litho-etch (LELE) and litho-freeze-litho-etch (LFLE). The advantage of performing rigorous modeling is to reduce the number of pads within each measurement target, thus reducing space requirement and improving throughput, and simultaneously extract CD and overlay information. This method measures overlay errors and CDs by fitting the optical signals with spectra calculated from a model of the targets. Good correlation is obtained between the results from this method and that of several reference techniques, including empirical multi-pad DBO, CD-SEM, and IBO. We also perform total measurement uncertainty (TMU) analysis to evaluate the overall performance. We demonstrate that scatterometry provides a promising solution to meet the challenging overlay metrology requirement in DPT.

  14. Towards clinical translation of augmented orthopedic surgery: from pre-op CT to intra-op x-ray via RGBD sensing

    NASA Astrophysics Data System (ADS)

    Tucker, Emerson; Fotouhi, Javad; Unberath, Mathias; Lee, Sing Chun; Fuerst, Bernhard; Johnson, Alex; Armand, Mehran; Osgood, Greg M.; Navab, Nassir

    2018-03-01

    Pre-operative CT data is available for several orthopedic and trauma interventions, and is mainly used to identify injuries and plan the surgical procedure. In this work we propose an intuitive augmented reality environment allowing visualization of pre-operative data during the intervention, with an overlay of the optical information from the surgical site. The pre-operative CT volume is first registered to the patient by acquiring a single C-arm X-ray image and using 3D/2D intensity-based registration. Next, we use an RGBD sensor on the C-arm to fuse the optical information of the surgical site with patient pre-operative medical data and provide an augmented reality environment. The 3D/2D registration of the pre- and intra-operative data allows us to maintain a correct visualization each time the C-arm is repositioned or the patient moves. An overall mean target registration error (mTRE) and standard deviation of 5.24 +/- 3.09 mm was measured averaged over 19 C-arm poses. The proposed solution enables the surgeon to visualize pre-operative data overlaid with information from the surgical site (e.g. surgeon's hands, surgical tools, etc.) for any C-arm pose, and negates issues of line-of-sight and long setup times, which are present in commercially available systems.

  15. A long-term follow-up evaluation of electronic health record prescribing safety

    PubMed Central

    Abramson, Erika L; Malhotra, Sameer; Osorio, S Nena; Edwards, Alison; Cheriff, Adam; Cole, Curtis; Kaushal, Rainu

    2013-01-01

    Objective To be eligible for incentives through the Electronic Health Record (EHR) Incentive Program, many providers using older or locally developed EHRs will be transitioning to new, commercial EHRs. We previously evaluated prescribing errors made by providers in the first year following transition from a locally developed EHR with minimal prescribing clinical decision support (CDS) to a commercial EHR with robust CDS. Following system refinements, we conducted this study to assess the rates and types of errors 2 years after transition and determine the evolution of errors. Materials and methods We conducted a mixed methods cross-sectional case study of 16 physicians at an academic-affiliated ambulatory clinic from April to June 2010. We utilized standardized prescription and chart review to identify errors. Fourteen providers also participated in interviews. Results We analyzed 1905 prescriptions. The overall prescribing error rate was 3.8 per 100 prescriptions (95% CI 2.8 to 5.1). Error rates were significantly lower 2 years after transition (p<0.001 compared to pre-implementation, 12 weeks and 1 year after transition). Rates of near misses remained unchanged. Providers positively appreciated most system refinements, particularly reduced alert firing. Discussion Our study suggests that over time and with system refinements, use of a commercial EHR with advanced CDS can lead to low prescribing error rates, although more serious errors may require targeted interventions to eliminate them. Reducing alert firing frequency appears particularly important. Our results provide support for federal efforts promoting meaningful use of EHRs. Conclusions Ongoing error monitoring can allow CDS to be optimally tailored and help achieve maximal safety benefits. Clinical Trials Registration ClinicalTrials.gov, Identifier: NCT00603070. PMID:23578816

  16. Fully Automated Prostate Magnetic Resonance Imaging and Transrectal Ultrasound Fusion via a Probabilistic Registration Metric.

    PubMed

    Sparks, Rachel; Bloch, B Nicolas; Feleppa, Ernest; Barratt, Dean; Madabhushi, Anant

    2013-03-08

    In this work, we present a novel, automated, registration method to fuse magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS) images of the prostate. Our methodology consists of: (1) delineating the prostate on MRI, (2) building a probabilistic model of prostate location on TRUS, and (3) aligning the MRI prostate segmentation to the TRUS probabilistic model. TRUS-guided needle biopsy is the current gold standard for prostate cancer (CaP) diagnosis. Up to 40% of CaP lesions appear isoechoic on TRUS, hence TRUS-guided biopsy cannot reliably target CaP lesions and is associated with a high false negative rate. MRI is better able to distinguish CaP from benign prostatic tissue, but requires special equipment and training. MRI-TRUS fusion, whereby MRI is acquired pre-operatively and aligned to TRUS during the biopsy procedure, allows for information from both modalities to be used to help guide the biopsy. The use of MRI and TRUS in combination to guide biopsy at least doubles the yield of positive biopsies. Previous work on MRI-TRUS fusion has involved aligning manually determined fiducials or prostate surfaces to achieve image registration. The accuracy of these methods is dependent on the reader's ability to determine fiducials or prostate surfaces with minimal error, which is a difficult and time-consuming task. Our novel, fully automated MRI-TRUS fusion method represents a significant advance over the current state-of-the-art because it does not require manual intervention after TRUS acquisition. All necessary preprocessing steps (i.e. delineation of the prostate on MRI) can be performed offline prior to the biopsy procedure. We evaluated our method on seven patient studies, with B-mode TRUS and a 1.5 T surface coil MRI. Our method has a root mean square error (RMSE) for expertly selected fiducials (consisting of the urethra, calcifications, and the centroids of CaP nodules) of 3.39 ± 0.85 mm.

  17. Smart Stylet: The development and use of a bedside external ventricular drain image-guidance system

    PubMed Central

    Patil, Vaibhav; Gupta, Rajiv; Estépar, Raúl San José; Lacson, Ronilda; Cheung, Arnold; Wong, Judith M.; Popp, A. John; Golby, Alexandra; Ogilvy, Christopher; Vosburgh, Kirby G.

    2015-01-01

    Background Placement accuracy of ventriculostomy catheters is reported in a wide and variable range. Development of an efficient image-guidance system may improve physician performance and patient safety. Objective We evaluate the prototype of Smart Stylet, a new electromagnetic image-guidance system for use during bedside ventriculostomy. Methods Accuracy of the Smart Stylet system was assessed. System operators were evaluated for their ability to successfully target the ipsilateral frontal horn in a phantom model. Results Target registration error across 15 intracranial targets ranged from 1.3 – 4.6 mm (mean 3.1 mm). Using Smart Stylet guidance, a test operator successfully passed a ventriculostomy catheter to a shifted ipsilateral frontal horn 20/20 (100%) times from the frontal approach in a skull phantom. Without Smart Stylet guidance, the operator was successful 4/10 (40 %) from the right frontal approach and 6/10 (60 %) from the left frontal approach. In a separate experiment, resident operators were successful 2/4 (50%) when targeting the shifted ipsilateral frontal horn with Smart Stylet guidance and 0/4 (0 %) without image-guidance using a skull phantom. Conclusions Smart Stylet may improve the ability to successfully target the ventricles during frontal ventriculostomy. PMID:25662506

  18. Restoration of the Patient-Specific Anatomy of the Proximal and Distal Parts of the Humerus: Statistical Shape Modeling Versus Contralateral Registration Method.

    PubMed

    Vlachopoulos, Lazaros; Lüthi, Marcel; Carrillo, Fabio; Gerber, Christian; Székely, Gábor; Fürnstahl, Philipp

    2018-04-18

    In computer-assisted reconstructive surgeries, the contralateral anatomy is established as the best available reconstruction template. However, existing intra-individual bilateral differences or a pathological, contralateral humerus may limit the applicability of the method. The aim of the study was to evaluate whether a statistical shape model (SSM) has the potential to predict accurately the pretraumatic anatomy of the humerus from the posttraumatic condition. Three-dimensional (3D) triangular surface models were extracted from the computed tomographic data of 100 paired cadaveric humeri without a pathological condition. An SSM was constructed, encoding the characteristic shape variations among the individuals. To predict the patient-specific anatomy of the proximal (or distal) part of the humerus with the SSM, we generated segments of the humerus of predefined length excluding the part to predict. The proximal and distal humeral prediction (p-HP and d-HP) errors, defined as the deviation of the predicted (bone) model from the original (bone) model, were evaluated. For comparison with the state-of-the-art technique, i.e., the contralateral registration method, we used the same segments of the humerus to evaluate whether the SSM or the contralateral anatomy yields a more accurate reconstruction template. The p-HP error (mean and standard deviation, 3.8° ± 1.9°) using 85% of the distal end of the humerus to predict the proximal humeral anatomy was significantly smaller (p = 0.001) compared with the contralateral registration method. The difference between the d-HP error (mean, 5.5° ± 2.9°), using 85% of the proximal part of the humerus to predict the distal humeral anatomy, and the contralateral registration method was not significant (p = 0.61). The restoration of the humeral length was not significantly different between the SSM and the contralateral registration method. SSMs accurately predict the patient-specific anatomy of the proximal and distal aspects of the humerus. The prediction errors of the SSM depend on the size of the healthy part of the humerus. The prediction of the patient-specific anatomy of the humerus is of fundamental importance for computer-assisted reconstructive surgeries.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, W.T.; Siebers, J.V.; Bzdusek, K.

    Purpose: To introduce methods to analyze Deformable Image Registration (DIR) and identify regions of potential DIR errors. Methods: DIR Deformable Vector Fields (DVFs) quantifying patient anatomic changes were evaluated using the Jacobian determinant and the magnitude of DVF curl as functions of tissue density and tissue type. These quantities represent local relative deformation and rotation, respectively. Large values in dense tissues can potentially identify non-physical DVF errors. For multiple DVFs per patient, histograms and visualization of DVF differences were also considered. To demonstrate the capabilities of methods, we computed multiple DVFs for each of five Head and Neck (H'N) patientsmore » (P1–P5) via a Fast-symmetric Demons (FSD) algorithm and via a Diffeomorphic Demons (DFD) algorithm, and show the potential to identify DVF errors. Results: Quantitative comparisons of the FSD and DFD registrations revealed <0.3 cm DVF differences in >99% of all voxels for P1, >96% for P2, and >90% of voxels for P3. While the FSD and DFD registrations were very similar for these patients, the Jacobian determinant was >50% in 9–15% of soft tissue and in 3–17% of bony tissue in each of these cases. The volumes of large soft tissue deformation were consistent for all five patients using the FSD algorithm (mean 15%±4% volume), whereas DFD reduced regions of large deformation by 10% volume (785 cm{sup 3}) for P4 and by 14% volume (1775 cm{sup 3}) for P5. The DFD registrations resulted in fewer regions of large DVF-curl; 50% rotations in FSD registrations averaged 209±136 cm{sup 3} in soft tissue and 10±11 cm{sup 3} in bony tissue, but using DFD these values were reduced to 42±53 cm{sup 3} and 1.1±1.5 cm{sup 3}, respectively. Conclusion: Analysis of Jacobian determinant and curl as functions of tissue density can identify regions of potential DVF errors by identifying non-physical deformations and rotations. Collaboration with Phillips Healthcare, as indicated in authorship.« less

  20. Experimental study of digital image processing techniques for LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rifman, S. S. (Principal Investigator); Allendoerfer, W. B.; Caron, R. H.; Pemberton, L. J.; Mckinnon, D. M.; Polanski, G.; Simon, K. W.

    1976-01-01

    The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections.

  1. Video registration of trauma team performance in the emergency department: the results of a 2-year analysis in a Level 1 trauma center.

    PubMed

    Lubbert, Pieter H W; Kaasschieter, Edgar G; Hoorntje, Lidewij E; Leenen, Loek P H

    2009-12-01

    Trauma teams responsible for the first response to patients with multiple injuries upon arrival in a hospital consist of medical specialists or resident physicians. We hypothesized that 24-hour video registration in the trauma room would allow for precise evaluation of team functioning and deviations from Advanced Trauma Life Support (ATLS) protocols. We analyzed all video registrations of trauma patients who visited the emergency room of a Level I trauma center in the Netherlands between September 1, 2000, and September 1, 2002. Analysis was performed with a score list based on ATLS protocols. From a total of 1,256 trauma room presentations, we found a total of 387 video registrations suitable for analysis. The majority of patients had an injury severity score lower than 17 (264 patients), whereas 123 patients were classified as multiple injuries (injury severity score >or=17). Errors in team organization (omission of prehospital report, no evident leadership, unorganized resuscitation, not working according to protocol, and no continued supervision of the patient) lead to significantly more deviations in the treatment than when team organization was uncomplicated. Video registration of diagnostic and therapeutic procedures by a multidisciplinary trauma team facilitates an accurate analysis of possible deviations from protocol. In addition to identifying technical errors, the role of the team leader can clearly be analyzed and related to team actions. Registration strongly depends on availability of video tapes, timely started registration, and hardware functioning. The results from this study were used to develop a training program for trauma teams in our hospital that specifically focuses on the team leader's functioning.

  2. Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention.

    PubMed

    Kim, Dongkue; Park, Sangsoo; Jeong, Myung Ho; Ryu, Jeha

    2018-02-01

    In percutaneous coronary intervention (PCI), cardiologists must study two different X-ray image sources: a fluoroscopic image and an angiogram. Manipulating a guidewire while alternately monitoring the two separate images on separate screens requires a deep understanding of the anatomy of coronary vessels and substantial training. We propose 2D/2D spatiotemporal image registration of the two images in a single image in order to provide cardiologists with enhanced visual guidance in PCI. The proposed 2D/2D spatiotemporal registration method uses a cross-correlation of two ECG series in each image to temporally synchronize two separate images and register an angiographic image onto the fluoroscopic image. A guidewire centerline is then extracted from the fluoroscopic image in real time, and the alignment of the centerline with vessel outlines of the chosen angiographic image is optimized using the iterative closest point algorithm for spatial registration. A proof-of-concept evaluation with a phantom coronary vessel model with engineering students showed an error reduction rate greater than 74% on wrong insertion to nontarget branches compared to the non-registration method and more than 47% reduction in the task completion time in performing guidewire manipulation for very difficult tasks. Evaluation with a small number of experienced doctors shows a potentially significant reduction in both task completion time and error rate for difficult tasks. The total registration time with real procedure X-ray (angiographic and fluoroscopic) images takes [Formula: see text] 60 ms, which is within the fluoroscopic image acquisition rate of 15 Hz. By providing cardiologists with better visual guidance in PCI, the proposed spatiotemporal image registration method is shown to be useful in advancing the guidewire to the coronary vessel branches, especially those difficult to insert into.

  3. 9 CFR 205.208 - Distribution of portions of master list-registration-information to non-registrants on request.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and selling agents,” “regular” distribution of “portions” of the master list, furnishing of “oral... receive portions of the master list only for oranges, and thus take cattle free and clear of security... buyers, commission merchants, and selling agents are not intended to be liable for errors or other...

  4. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    PubMed Central

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Booth, Jeremy T.; Keall, Paul J.

    2014-01-01

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the Au+Ao was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the Au+Ao reductions were all above 75% and the total Au+Ao improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time. PMID:24877798

  5. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real timemore » tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the A{sub u}+A{sub o} was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the A{sub u}+A{sub o} reductions were all above 75% and the total A{sub u}+A{sub o} improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time.« less

  6. TH-A-9A-03: Dosimetric Effect of Rotational Errors for Lung Stereotactic Body Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Kim, H; Park, J

    2014-06-15

    Purpose: To evaluate the dosimetric effects on target volume and organs at risk (OARs) due to roll rotational errors in treatment setup of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: There were a total of 23 volumetric modulated arc therapy (VMAT) plans for lung SBRT examined in this retrospective study. Each CT image of VMAT plans was intentionally rotated by ±1°, ±2°, and ±3° to simulate roll rotational setup errors. The axis of rotation was set at the center of T-spine. The target volume and OARs in the rotated CT images were re-defined by deformable registration of originalmore » contours. The dose distributions on each set of rotated images were re-calculated to cover the planning target volume (PTV) with the prescription dose before and after the couch translational correction. The dose-volumetric changes of PTVs and spinal cords were analyzed. Results: The differences in D95% of PTVs by −3°, −2°, −1°, 1°, 2°, and 3° roll rotations before the couch translational correction were on average −11.3±11.4%, −5.46±7.24%, −1.11±1.38% −3.34±3.97%, −9.64±10.3%, and −16.3±14.7%, respectively. After the couch translational correction, those values were −0.195±0.544%, −0.159±0.391%, −0.188±0.262%, −0.310±0.270%, −0.407±0.331%, and −0.433±0.401%, respectively. The maximum dose difference of spinal cord among the 23 plans even after the couch translational correction was 25.9% at −3° rotation. Conclusions: Roll rotational setup errors in lung SBRT significantly influenced the coverage of target volume using VMAT technique. This could be in part compensated by the translational couch correction. However, in spite of the translational correction, the delivered doses to the spinal cord could be more than the calculated doses. Therefore if rotational setup errors exist during lung SBRT using VMAT technique, the rotational correction would rather be considered to prevent over-irradiation of normal tissues than the translational correction.« less

  7. Geodesic active fields--a geometric framework for image registration.

    PubMed

    Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2011-05-01

    In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to the best of our knowledge, the first reparametrization invariant registration method introduced in the literature. Thirdly, the multiplicative coupling between the registration term, i.e. local image discrepancy, and the regularization term naturally results in a data-dependent tuning of the regularization strength. Finally, by choosing the metric on the deformation field one can freely interpolate between classic Gaussian and more interesting anisotropic, TV-like regularization.

  8. Patient identification errors: the detective in the laboratory.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Lillo, Rosa; Gutiérrez, Mercedes; Lugo, Javier; Leiva-Salinas, Carlos

    2013-11-01

    The eradication of errors regarding patients' identification is one of the main goals for safety improvement. As clinical laboratory intervenes in 70% of clinical decisions, laboratory safety is crucial in patient safety. We studied the number of Laboratory Information System (LIS) demographic data errors registered in our laboratory during one year. The laboratory attends a variety of inpatients and outpatients. The demographic data of outpatients is registered in the LIS, when they present to the laboratory front desk. The requests from the primary care centers (PCC) are made electronically by the general practitioner. A manual step is always done at the PCC to conciliate the patient identification number in the electronic request with the one in the LIS. Manual registration is done through hospital information system demographic data capture when patient's medical record number is registered in LIS. Laboratory report is always sent out electronically to the patient's electronic medical record. Daily, every demographic data in LIS is manually compared to the request form to detect potential errors. Fewer errors were committed when electronic order was used. There was great error variability between PCC when using the electronic order. LIS demographic data manual registration errors depended on patient origin and test requesting method. Even when using the electronic approach, errors were detected. There was a great variability between PCC even when using this electronic modality; this suggests that the number of errors is still dependent on the personnel in charge of the technology. © 2013.

  9. Architecture of a high-performance surgical guidance system based on C-arm cone-beam CT: software platform for technical integration and clinical translation

    NASA Astrophysics Data System (ADS)

    Uneri, Ali; Schafer, Sebastian; Mirota, Daniel; Nithiananthan, Sajendra; Otake, Yoshito; Reaungamornrat, Sureerat; Yoo, Jongheun; Stayman, J. Webster; Reh, Douglas; Gallia, Gary L.; Khanna, A. Jay; Hager, Gregory; Taylor, Russell H.; Kleinszig, Gerhard; Siewerdsen, Jeffrey H.

    2011-03-01

    Intraoperative imaging modalities are becoming more prevalent in recent years, and the need for integration of these modalities with surgical guidance is rising, creating new possibilities as well as challenges. In the context of such emerging technologies and new clinical applications, a software architecture for cone-beam CT (CBCT) guided surgery has been developed with emphasis on binding open-source surgical navigation libraries and integrating intraoperative CBCT with novel, application-specific registration and guidance technologies. The architecture design is focused on accelerating translation of task-specific technical development in a wide range of applications, including orthopaedic, head-and-neck, and thoracic surgeries. The surgical guidance system is interfaced with a prototype mobile C-arm for high-quality CBCT and through a modular software architecture, integration of different tools and devices consistent with surgical workflow in each of these applications is realized. Specific modules are developed according to the surgical task, such as: 3D-3D rigid or deformable registration of preoperative images, surgical planning data, and up-to-date CBCT images; 3D-2D registration of planning and image data in real-time fluoroscopy and/or digitally reconstructed radiographs (DRRs); compatibility with infrared, electromagnetic, and video-based trackers used individually or in hybrid arrangements; augmented overlay of image and planning data in endoscopic or in-room video; real-time "virtual fluoroscopy" computed from GPU-accelerated DRRs; and multi-modality image display. The platform aims to minimize offline data processing by exposing quantitative tools that analyze and communicate factors of geometric precision. The system was translated to preclinical phantom and cadaver studies for assessment of fiducial (FRE) and target registration error (TRE) showing sub-mm accuracy in targeting and video overlay within intraoperative CBCT. The work culminates in the development of a CBCT guidance system (reported here for the first time) that leverages the technical developments in Carm CBCT and associated technologies for realizing a high-performance system for translation to clinical studies.

  10. Evaluation of non-rigid registration parameters for atlas-based segmentation of CT images of human cochlea

    NASA Astrophysics Data System (ADS)

    Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.

    2017-02-01

    Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.

  11. Automatic segmentation and co-registration of gated CT angiography datasets: measuring abdominal aortic pulsatility

    NASA Astrophysics Data System (ADS)

    Wentz, Robert; Manduca, Armando; Fletcher, J. G.; Siddiki, Hassan; Shields, Raymond C.; Vrtiska, Terri; Spencer, Garrett; Primak, Andrew N.; Zhang, Jie; Nielson, Theresa; McCollough, Cynthia; Yu, Lifeng

    2007-03-01

    Purpose: To develop robust, novel segmentation and co-registration software to analyze temporally overlapping CT angiography datasets, with an aim to permit automated measurement of regional aortic pulsatility in patients with abdominal aortic aneurysms. Methods: We perform retrospective gated CT angiography in patients with abdominal aortic aneurysms. Multiple, temporally overlapping, time-resolved CT angiography datasets are reconstructed over the cardiac cycle, with aortic segmentation performed using a priori anatomic assumptions for the aorta and heart. Visual quality assessment is performed following automatic segmentation with manual editing. Following subsequent centerline generation, centerlines are cross-registered across phases, with internal validation of co-registration performed by examining registration at the regions of greatest diameter change (i.e. when the second derivative is maximal). Results: We have performed gated CT angiography in 60 patients. Automatic seed placement is successful in 79% of datasets, requiring either no editing (70%) or minimal editing (less than 1 minute; 12%). Causes of error include segmentation into adjacent, high-attenuating, nonvascular tissues; small segmentation errors associated with calcified plaque; and segmentation of non-renal, small paralumbar arteries. Internal validation of cross-registration demonstrates appropriate registration in our patient population. In general, we observed that aortic pulsatility can vary along the course of the abdominal aorta. Pulsation can also vary within an aneurysm as well as between aneurysms, but the clinical significance of these findings remain unknown. Conclusions: Visualization of large vessel pulsatility is possible using ECG-gated CT angiography, partial scan reconstruction, automatic segmentation, centerline generation, and coregistration of temporally resolved datasets.

  12. Assessment of Thematic Mapper Band-to-band Registration by the Block Correlation Method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1984-01-01

    The design of the Thematic Mapper (TM) multispectral radiometer makes it susceptible to band-to-band misregistration. To estimate band-to-band misregistration a block correlation method is employed. This method is chosen over other possible techniques (band differencing and flickering) because quantitative results are produced. The method correlates rectangular blocks of pixels from one band against blocks centered on identical pixels from a second band. The block pairs are shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient for each shift position is computed. The displacement corresponding to the maximum correlation is taken as the best estimate of registration error for each block pair. Subpixel shifts are estimated by a bi-quadratic interpolation of the correlation values surrounding the maximum correlation. To obtain statistical summaries for each band combination post processing of the block correlation results performed. The method results in estimates of registration error that are consistent with expectations.

  13. SU-E-J-58: Comparison of Conformal Tracking Methods Using Initial, Adaptive and Preceding Image Frames for Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teo, P; Guo, K; Alayoubi, N

    Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions ofmore » a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for making the Cyberknife dataset available to us. Scholarship funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and CancerCare Manitoba Foundation is acknowledged.« less

  14. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Eldib, Mootaz; Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Faul, David D.; Tsoumpas, Charalampos; Fayad, Zahi A.

    2015-06-01

    The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use.

  15. Multi-institutional Validation Study of Commercially Available Deformable Image Registration Software for Thoracic Images.

    PubMed

    Kadoya, Noriyuki; Nakajima, Yujiro; Saito, Masahide; Miyabe, Yuki; Kurooka, Masahiko; Kito, Satoshi; Fujita, Yukio; Sasaki, Motoharu; Arai, Kazuhiro; Tani, Kensuke; Yagi, Masashi; Wakita, Akihisa; Tohyama, Naoki; Jingu, Keiichi

    2016-10-01

    To assess the accuracy of the commercially available deformable image registration (DIR) software for thoracic images at multiple institutions. Thoracic 4-dimensional (4D) CT images of 10 patients with esophageal or lung cancer were used. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomic landmarks (300 bronchial bifurcations) that had been manually identified. Deformable image registration was performed between the peak-inhale and -exhale images. Deformable image registration error was determined by calculating the difference at each landmark point between the displacement calculated by DIR software and that calculated by the landmark. Eleven institutions participated in this study: 4 used RayStation (RaySearch Laboratories, Stockholm, Sweden), 5 used MIM Software (Cleveland, OH), and 3 used Velocity (Varian Medical Systems, Palo Alto, CA). The ranges of the average absolute registration errors over all cases were as follows: 0.48 to 1.51 mm (right-left), 0.53 to 2.86 mm (anterior-posterior), 0.85 to 4.46 mm (superior-inferior), and 1.26 to 6.20 mm (3-dimensional). For each DIR software package, the average 3-dimensional registration error (range) was as follows: RayStation, 3.28 mm (1.26-3.91 mm); MIM Software, 3.29 mm (2.17-3.61 mm); and Velocity, 5.01 mm (4.02-6.20 mm). These results demonstrate that there was moderate variation among institutions, although the DIR software was the same. We evaluated the commercially available DIR software using thoracic 4D-CT images from multiple centers. Our results demonstrated that DIR accuracy differed among institutions because it was dependent on both the DIR software and procedure. Our results could be helpful for establishing prospective clinical trials and for the widespread use of DIR software. In addition, for clinical care, we should try to find the optimal DIR procedure using thoracic 4D-CT data. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Multi-institutional Validation Study of Commercially Available Deformable Image Registration Software for Thoracic Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadoya, Noriyuki, E-mail: kadoya.n@rad.med.tohoku.ac.jp; Nakajima, Yujiro; Saito, Masahide

    Purpose: To assess the accuracy of the commercially available deformable image registration (DIR) software for thoracic images at multiple institutions. Methods and Materials: Thoracic 4-dimensional (4D) CT images of 10 patients with esophageal or lung cancer were used. Datasets for these patients were provided by DIR-lab ( (dir-lab.com)) and included a coordinate list of anatomic landmarks (300 bronchial bifurcations) that had been manually identified. Deformable image registration was performed between the peak-inhale and -exhale images. Deformable image registration error was determined by calculating the difference at each landmark point between the displacement calculated by DIR software and that calculated bymore » the landmark. Results: Eleven institutions participated in this study: 4 used RayStation (RaySearch Laboratories, Stockholm, Sweden), 5 used MIM Software (Cleveland, OH), and 3 used Velocity (Varian Medical Systems, Palo Alto, CA). The ranges of the average absolute registration errors over all cases were as follows: 0.48 to 1.51 mm (right-left), 0.53 to 2.86 mm (anterior-posterior), 0.85 to 4.46 mm (superior-inferior), and 1.26 to 6.20 mm (3-dimensional). For each DIR software package, the average 3-dimensional registration error (range) was as follows: RayStation, 3.28 mm (1.26-3.91 mm); MIM Software, 3.29 mm (2.17-3.61 mm); and Velocity, 5.01 mm (4.02-6.20 mm). These results demonstrate that there was moderate variation among institutions, although the DIR software was the same. Conclusions: We evaluated the commercially available DIR software using thoracic 4D-CT images from multiple centers. Our results demonstrated that DIR accuracy differed among institutions because it was dependent on both the DIR software and procedure. Our results could be helpful for establishing prospective clinical trials and for the widespread use of DIR software. In addition, for clinical care, we should try to find the optimal DIR procedure using thoracic 4D-CT data.« less

  17. WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, W; Rao, A; Wendt, R

    Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded asmore » it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration framework that is clinically valuable and requires no specialized equipment.« less

  18. Intervertebral anticollision constraints improve out-of-plane translation accuracy of a single-plane fluoroscopy-to-CT registration method for measuring spinal motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Cheng-Chung; Tsai, Tsung-Yuan; Hsu, Shih-Jung

    2013-03-15

    Purpose: The study aimed to propose a new single-plane fluoroscopy-to-CT registration method integrated with intervertebral anticollision constraints for measuring three-dimensional (3D) intervertebral kinematics of the spine; and to evaluate the performance of the method without anticollision and with three variations of the anticollision constraints via an in vitro experiment. Methods: The proposed fluoroscopy-to-CT registration approach, called the weighted edge-matching with anticollision (WEMAC) method, was based on the integration of geometrical anticollision constraints for adjacent vertebrae and the weighted edge-matching score (WEMS) method that matched the digitally reconstructed radiographs of the CT models of the vertebrae and the measured single-plane fluoroscopymore » images. Three variations of the anticollision constraints, namely, T-DOF, R-DOF, and A-DOF methods, were proposed. An in vitro experiment using four porcine cervical spines in different postures was performed to evaluate the performance of the WEMS and the WEMAC methods. Results: The WEMS method gave high precision and small bias in all components for both vertebral pose and intervertebral pose measurements, except for relatively large errors for the out-of-plane translation component. The WEMAC method successfully reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five degrees of freedom (DOF) more or less unaltered. The means (standard deviations) of the out-of-plane translational errors were less than -0.5 (0.6) and -0.3 (0.8) mm for the T-DOF method and the R-DOF method, respectively. Conclusions: The proposed single-plane fluoroscopy-to-CT registration method reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five DOF more or less unaltered. With the submillimeter and subdegree accuracy, the WEMAC method was considered accurate for measuring 3D intervertebral kinematics during various functional activities for research and clinical applications.« less

  19. Automated patient identification and localization error detection using 2-dimensional to 3-dimensional registration of kilovoltage x-ray setup images.

    PubMed

    Lamb, James M; Agazaryan, Nzhde; Low, Daniel A

    2013-10-01

    To determine whether kilovoltage x-ray projection radiation therapy setup images could be used to perform patient identification and detect gross errors in patient setup using a computer algorithm. Three patient cohorts treated using a commercially available image guided radiation therapy (IGRT) system that uses 2-dimensional to 3-dimensional (2D-3D) image registration were retrospectively analyzed: a group of 100 cranial radiation therapy patients, a group of 100 prostate cancer patients, and a group of 83 patients treated for spinal lesions. The setup images were acquired using fixed in-room kilovoltage imaging systems. In the prostate and cranial patient groups, localizations using image registration were performed between computed tomography (CT) simulation images from radiation therapy planning and setup x-ray images corresponding both to the same patient and to different patients. For the spinal patients, localizations were performed to the correct vertebral body, and to an adjacent vertebral body, using planning CTs and setup x-ray images from the same patient. An image similarity measure used by the IGRT system image registration algorithm was extracted from the IGRT system log files and evaluated as a discriminant for error detection. A threshold value of the similarity measure could be chosen to separate correct and incorrect patient matches and correct and incorrect vertebral body localizations with excellent accuracy for these patient cohorts. A 10-fold cross-validation using linear discriminant analysis yielded misclassification probabilities of 0.000, 0.0045, and 0.014 for the cranial, prostate, and spinal cases, respectively. An automated measure of the image similarity between x-ray setup images and corresponding planning CT images could be used to perform automated patient identification and detection of localization errors in radiation therapy treatments. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Joint image registration and fusion method with a gradient strength regularization

    NASA Astrophysics Data System (ADS)

    Lidong, Huang; Wei, Zhao; Jun, Wang

    2015-05-01

    Image registration is an essential process for image fusion, and fusion performance can be used to evaluate registration accuracy. We propose a maximum likelihood (ML) approach to joint image registration and fusion instead of treating them as two independent processes in the conventional way. To improve the visual quality of a fused image, a gradient strength (GS) regularization is introduced in the cost function of ML. The GS of the fused image is controllable by setting the target GS value in the regularization term. This is useful because a larger target GS brings a clearer fused image and a smaller target GS makes the fused image smoother and thus restrains noise. Hence, the subjective quality of the fused image can be improved whether the source images are polluted by noise or not. We can obtain the fused image and registration parameters successively by minimizing the cost function using an iterative optimization method. Experimental results show that our method is effective with transformation, rotation, and scale parameters in the range of [-2.0, 2.0] pixel, [-1.1 deg, 1.1 deg], and [0.95, 1.05], respectively, and variances of noise smaller than 300. It also demonstrated that our method yields a more visual pleasing fused image and higher registration accuracy compared with a state-of-the-art algorithm.

  1. SU-F-T-394: Impact of PTV Margins With Taking Into Account Shape Variation On IMRT Plans For Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, T; Arimura, H; Oga, S

    2016-06-15

    Purpose: The purpose of this study was to investigate the impact of planning target volume (PTV) margins with taking into consideration clinical target volume (CTV) shape variations on treatment plans of intensity modulated radiation therapy (IMRT) for prostate cancer. Methods: The systematic errors and the random errors for patient setup errors in right-left (RL), anterior-posterior (AP), and superior-inferior (SI) directions were obtained from data of 20 patients, and those for CTV shape variations were calculated from 10 patients, who were weekly scanned using cone beam computed tomography (CBCT). The setup error was defined as the difference in prostate centers betweenmore » planning CT and CBCT images after bone-based registrations. CTV shape variations of high, intermediate and low risk CTVs were calculated for each patient from variances of interfractional shape variations on each vertex of three-dimensional CTV point distributions, which were manually obtained from CTV contours on the CBCT images. PTV margins were calculated using the setup errors with and without CTV shape variations for each risk CTV. Six treatment plans were retrospectively made by using the PTV margins with and without CTV shape variations for the three risk CTVs of 5 test patients. Furthermore, the treatment plans were applied to CBCT images for investigating the impact of shape variations on PTV margins. Results: The percentages of population to cover with the PTV, which satisfies the CTV D98 of 95%, with and without the shape variations were 89.7% and 74.4% for high risk, 89.7% and 76.9% for intermediate risk, 84.6% and 76.9% for low risk, respectively. Conclusion: PTV margins taking into account CTV shape variation provide significant improvement of applicable percentage of population (P < 0.05). This study suggested that CTV shape variation should be taken consideration into determination of the PTV margins.« less

  2. WE-E-213CD-01: Best in Physics (Joint Imaging-Therapy) - Evaluation of Deformation Algorithm Accuracy with a Two-Dimensional Anatomical Pelvic Phantom.

    PubMed

    Kirby, N; Chuang, C; Pouliot, J

    2012-06-01

    To objectively evaluate the accuracy of 11 different deformable registration techniques for bladder filling. The phantom represents an axial plane of the pelvic anatomy. Urethane plastic serves as the bony anatomy and urethane rubber with three levels of Hounsfield units (HU) is used to represent fat and organs, including the prostate. A plastic insert is placed into the phantom to simulate bladder filling. Nonradiopaque markers reside on the phantom surface. Optical camera images of these markers are used to measure the positions and determine the deformation from the bladder insert. Eleven different deformable registration techniques are applied to the full- and empty-bladder computed tomography images of the phantom to calculate the deformation. The applied algorithms include those from MIMVista Software and Velocity Medical Solutions and 9 different implementations from the Deformable Image Registration and Adaptive Radiotherapy Toolbox for Matlab. The distance to agreement between the measured and calculated deformations is used to evaluate algorithm error. Deformable registration warps one image to make it similar to another. The root-mean-square (RMS) difference between the HUs at the marker locations on the empty-bladder phantom and those at the calculated marker locations on the full-bladder phantom is used as a metric for image similarity. The percentage of the markers with an error larger than 3 mm ranges from 3.1% to 28.2% with the different registration techniques. This range is 1.1% to 3.7% for a 7 mm error. The least accurate algorithm at 3 mm is also the most accurate at 7 mm. Also, the least accurate algorithm at 7 mm produces the lowest RMS difference. Different deformation algorithms generate very different results and the outcome of any one algorithm can be misleading. Thus, these algorithms require quality assurance. The two-dimensional phantom is an objective tool for this purpose. © 2012 American Association of Physicists in Medicine.

  3. Techniques in Altitude Registration for Limb Scatter Instruments

    NASA Astrophysics Data System (ADS)

    Moy, L.; Jaross, G.; Bhartia, P. K.; Kramarova, N. A.

    2017-12-01

    One of the largest constraints to the retrieval of accurate ozone profiles from limb sounding sensors is altitude registration. As described in Moy et al. (2017) two methods applicable to UV limb scattering, the Rayleigh Scattering Attitude Sensing (RSAS) and Absolute Radiance Residual Method (ARRM), have been used to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique using wavelengths near 300 nm, can be applied across all seasons and altitudes, but its sensitivity to accurate instrument calibration means it may be inappropriate for anything but monitoring change. These characteristics make the two techniques complementary. Both methods have been applied to Limb Profiler instrument measurements from the Ozone Mapping and Profiler Suite (OMPS) onboard the Suomi NPP (SNPP) satellite. The results from RSAS and ARRM differ by as much as 500 m over orbital and seasonal time scales, but long-term pointing trends derived from the two indicate changes within 100 m over the 5 year data record. In this paper we further discuss what these methods are revealing about the stability of LP's altitude registration. An independent evaluation of pointing errors using VIIRS, another sensor onboard the Suomi NPP satellite, indicates changes of as much as 80 m over the course of the mission. The correlations between VIIRS and the ARRM time series suggest a high degree of precision in this limb technique. We have therefore relied upon ARRM to evaluate error sources in more widespread altitude registration techniques such as RSAS and lunar observations. These techniques can be more readily applied to other limb scatter missions such as SAGE III and ALTIUS

  4. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    NASA Astrophysics Data System (ADS)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  5. MRI signal intensity based B-spline nonrigid registration for pre- and intraoperative imaging during prostate brachytherapy.

    PubMed

    Oguro, Sota; Tokuda, Junichi; Elhawary, Haytham; Haker, Steven; Kikinis, Ron; Tempany, Clare M C; Hata, Nobuhiko

    2009-11-01

    To apply an intensity-based nonrigid registration algorithm to MRI-guided prostate brachytherapy clinical data and to assess its accuracy. A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis-Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts' visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method. All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was -0.19 +/- 0.07 and FRE presented a value of 2.3 +/- 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one-sided t-tests. The intensity-based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre- and intraoperative images for brachytherapy.

  6. 3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef

    2010-03-01

    Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).

  7. SU-E-J-91: Biomechanical Deformable Image Registration of Longitudinal Lung CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cazoulat, G; Owen, D; Matuszak, M

    2015-06-15

    Purpose: Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Methods: Four lung cancer patients previously treated with conventionally fractionated radiotherapy that exhibited notable tumor shrinkage during treatment were retrospectively evaluated. Exhale breathhold CT scans were obtained at treatment planning (PCT) and following three weeks (W3CT) of treatment. For each patient, the PCT was registered to the W3CT using Morfeus, a biomechanicalmore » model-based deformable registration algorithm, consisting of boundary conditions on the lungs and incorporating a sliding interface between the lung and chest wall. To model the complex response of the lung, an extension to Morfeus has been developed: (i) The vessel tree was segmented by thresholding a vesselness image based on the Hessian matrix’s eigenvalues and the centerline was extracted; (ii) A 3D shape context method was used to find correspondences between the trees of the two images; (ii) Correspondences were used as additional boundary conditions (Morfeus+vBC). An expert independently identified corresponding landmarks well distributed in the lung to compute Target Registration Errors (TRE). Results: The TRE within 15mm of the tumor boundaries (on average 11 landmarks) is: 6.1±1.8, 4.6±1.1 and 3.8±2.3 mm after rigid registration, Morfeus and Morfeus+vBC, respectively. The TRE in the rest of the lung (on average 13 landmarks) is: 6.4±3.9, 4.7±2.2 and 3.6±1.9 mm, which is on the order of the 2mm isotropic dose grid vector (3.5mm). Conclusion: The addition of boundary conditions on the vessels improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical uncertainties will enable future plan adaptation strategies. This work was funded in part by NIH 2P01CA059827-16.« less

  8. Intraoperative evaluation of device placement in spine surgery using known-component 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Uneri, A.; De Silva, T.; Goerres, J.; Jacobson, M. W.; Ketcha, M. D.; Reaungamornrat, S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Osgood, G. M.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2017-04-01

    Intraoperative x-ray radiography/fluoroscopy is commonly used to assess the placement of surgical devices in the operating room (e.g. spine pedicle screws), but qualitative interpretation can fail to reliably detect suboptimal delivery and/or breach of adjacent critical structures. We present a 3D-2D image registration method wherein intraoperative radiographs are leveraged in combination with prior knowledge of the patient and surgical components for quantitative assessment of device placement and more rigorous quality assurance (QA) of the surgical product. The algorithm is based on known-component registration (KC-Reg) in which patient-specific preoperative CT and parametric component models are used. The registration performs optimization of gradient similarity, removes the need for offline geometric calibration of the C-arm, and simultaneously solves for multiple component bodies, thereby allowing QA in a single step (e.g. spinal construct with 4-20 screws). Performance was tested in a spine phantom, and first clinical results are reported for QA of transpedicle screws delivered in a patient undergoing thoracolumbar spine surgery. Simultaneous registration of ten pedicle screws (five contralateral pairs) demonstrated mean target registration error (TRE) of 1.1  ±  0.1 mm at the screw tip and 0.7  ±  0.4° in angulation when a prior geometric calibration was used. The calibration-free formulation, with the aid of component collision constraints, achieved TRE of 1.4  ±  0.6 mm. In all cases, a statistically significant improvement (p  <  0.05) was observed for the simultaneous solutions in comparison to previously reported sequential solution of individual components. Initial application in clinical data in spine surgery demonstrated TRE of 2.7  ±  2.6 mm and 1.5  ±  0.8°. The KC-Reg algorithm offers an independent check and quantitative QA of the surgical product using radiographic/fluoroscopic views acquired within standard OR workflow. Such intraoperative assessment could improve quality and safety, provide the opportunity to revise suboptimal constructs in the OR, and reduce the frequency of revision surgery.

  9. Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration.

    PubMed

    Ehrhardt, Jan; Werner, René; Schmidt-Richberg, Alexander; Handels, Heinz

    2011-02-01

    Modeling of respiratory motion has become increasingly important in various applications of medical imaging (e.g., radiation therapy of lung cancer). Current modeling approaches are usually confined to intra-patient registration of 3D image data representing the individual patient's anatomy at different breathing phases. We propose an approach to generate a mean motion model of the lung based on thoracic 4D computed tomography (CT) data of different patients to extend the motion modeling capabilities. Our modeling process consists of three steps: an intra-subject registration to generate subject-specific motion models, the generation of an average shape and intensity atlas of the lung as anatomical reference frame, and the registration of the subject-specific motion models to the atlas in order to build a statistical 4D mean motion model (4D-MMM). Furthermore, we present methods to adapt the 4D mean motion model to a patient-specific lung geometry. In all steps, a symmetric diffeomorphic nonlinear intensity-based registration method was employed. The Log-Euclidean framework was used to compute statistics on the diffeomorphic transformations. The presented methods are then used to build a mean motion model of respiratory lung motion using thoracic 4D CT data sets of 17 patients. We evaluate the model by applying it for estimating respiratory motion of ten lung cancer patients. The prediction is evaluated with respect to landmark and tumor motion, and the quantitative analysis results in a mean target registration error (TRE) of 3.3 ±1.6 mm if lung dynamics are not impaired by large lung tumors or other lung disorders (e.g., emphysema). With regard to lung tumor motion, we show that prediction accuracy is independent of tumor size and tumor motion amplitude in the considered data set. However, tumors adhering to non-lung structures degrade local lung dynamics significantly and the model-based prediction accuracy is lower in these cases. The statistical respiratory motion model is capable of providing valuable prior knowledge in many fields of applications. We present two examples of possible applications in radiation therapy and image guided diagnosis.

  10. TU-AB-202-06: Quantitative Evaluation of Deformable Image Registration in MRI-Guided Adaptive Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, K; Zhao, T; Green, O

    Purpose: To assess the performance of the deformable image registration algorithm used for MRI-guided adaptive radiation therapy using image feature analysis. Methods: MR images were collected from five patients treated on the MRIdian (ViewRay, Inc., Oakwood Village, OH), a three head Cobalt-60 therapy machine with an 0.35 T MR system. The images were acquired immediately prior to treatment with a uniform 1.5 mm resolution. Treatment sites were as follows: head/neck, lung, breast, stomach, and bladder. Deformable image registration was performed using the ViewRay software between the first fraction MRI and the final fraction MRI, and the DICE similarity coefficient (DSC)more » for the skin contours was reported. The SIFT and Harris feature detection and matching algorithms identified point features in each image separately, then found matching features in the other image. The target registration error (TRE) was defined as the vector distance between matched features on the two image sets. Each deformation was evaluated based on comparison of average TRE and DSC. Results: Image feature analysis produced between 2000–9500 points for evaluation on the patient images. The average (± standard deviation) TRE for all patients was 3.3 mm (±3.1 mm), and the passing rate of TRE<3 mm was 60% on the images. The head/neck patient had the best average TRE (1.9 mm±2.3 mm) and the best passing rate (80%). The lung patient had the worst average TRE (4.8 mm±3.3 mm) and the worst passing rate (37.2%). DSC was not significantly correlated with either TRE (p=0.63) or passing rate (p=0.55). Conclusions: Feature matching provides a quantitative assessment of deformable image registration, with a large number of data points for analysis. The TRE of matched features can be used to evaluate the registration of many objects throughout the volume, whereas DSC mainly provides a measure of gross overlap. We have a research agreement with ViewRay Inc.« less

  11. Optimization of an on-board imaging system for extremely rapid radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He

    2015-11-15

    Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors aremore » proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration deformation fields was computed. Results: By most global metrics (e.g., mean, median, and maximum pointwise distance), the high-resolution detector had the best performance but the medium-resolution detector was comparable. For all medium- and high-resolution detector registrations, mean error between the realistic and gold standard deformation fields was less than 4 mm. By pointwise metrics (e.g., tracking a small lesion), the high- and medium-resolution detectors performed similarly. For these detectors, the smallest error between the realistic and gold standard registrations was 0.6 mm and the largest error was 3.6 mm. Conclusions: The medium-resolution CT detector was selected as the best for an extremely rapid radiation therapy system. In essentially all test cases, data from this detector produced a significantly better registration than data from the low-resolution detector and a comparable registration to data from the high-resolution detector. The medium-resolution detector provides an appropriate compromise between registration accuracy and system cost.« less

  12. Third molar development: evaluation of nine tooth development registration techniques for age estimations.

    PubMed

    Thevissen, Patrick W; Fieuws, Steffen; Willems, Guy

    2013-03-01

    Multiple third molar development registration techniques exist. Therefore the aim of this study was to detect which third molar development registration technique was most promising to use as a tool for subadult age estimation. On a collection of 1199 panoramic radiographs the development of all present third molars was registered following nine different registration techniques [Gleiser, Hunt (GH); Haavikko (HV); Demirjian (DM); Raungpaka (RA); Gustafson, Koch (GK); Harris, Nortje (HN); Kullman (KU); Moorrees (MO); Cameriere (CA)]. Regression models with age as response and the third molar registration as predictor were developed for each registration technique separately. The MO technique disclosed highest R(2) (F 51%, M 45%) and lowest root mean squared error (F 3.42 years; M 3.67 years) values, but differences with other techniques were small in magnitude. The amount of stages utilized in the explored staging techniques slightly influenced the age predictions. © 2013 American Academy of Forensic Sciences.

  13. Optimal marker placement in hadrontherapy: intelligent optimization strategies with augmented Lagrangian pattern search.

    PubMed

    Altomare, Cristina; Guglielmann, Raffaella; Riboldi, Marco; Bellazzi, Riccardo; Baroni, Guido

    2015-02-01

    In high precision photon radiotherapy and in hadrontherapy, it is crucial to minimize the occurrence of geometrical deviations with respect to the treatment plan in each treatment session. To this end, point-based infrared (IR) optical tracking for patient set-up quality assessment is performed. Such tracking depends on external fiducial points placement. The main purpose of our work is to propose a new algorithm based on simulated annealing and augmented Lagrangian pattern search (SAPS), which is able to take into account prior knowledge, such as spatial constraints, during the optimization process. The SAPS algorithm was tested on data related to head and neck and pelvic cancer patients, and that were fitted with external surface markers for IR optical tracking applied for patient set-up preliminary correction. The integrated algorithm was tested considering optimality measures obtained with Computed Tomography (CT) images (i.e. the ratio between the so-called target registration error and fiducial registration error, TRE/FRE) and assessing the marker spatial distribution. Comparison has been performed with randomly selected marker configuration and with the GETS algorithm (Genetic Evolutionary Taboo Search), also taking into account the presence of organs at risk. The results obtained with SAPS highlight improvements with respect to the other approaches: (i) TRE/FRE ratio decreases; (ii) marker distribution satisfies both marker visibility and spatial constraints. We have also investigated how the TRE/FRE ratio is influenced by the number of markers, obtaining significant TRE/FRE reduction with respect to the random configurations, when a high number of markers is used. The SAPS algorithm is a valuable strategy for fiducial configuration optimization in IR optical tracking applied for patient set-up error detection and correction in radiation therapy, showing that taking into account prior knowledge is valuable in this optimization process. Further work will be focused on the computational optimization of the SAPS algorithm toward fast point-of-care applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Sci—Fri AM: Mountain — 06: Optimizing planning target volume in lung radiotherapy using deformable registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, P; Wierzbicki, M; Juravinski Cancer Centre, Medical Physics Department, Hamilton, Ontario

    A four dimensional computed tomography (4DCT) image is acquired for all radically treated, lung cancer patients to define the internal target volume (ITV), which encompasses tumour motion due to breathing and subclinical disease. Patient set-up error and anatomical motion that is not due to breathing is addressed through an additional 1 cm margin around the ITV to obtain the planning target volume (PTV). The objective of this retrospective study is to find the minimum PTV margin that provides an acceptable probability of delivering the prescribed dose to the ITV. Acquisition of a kV cone beam computed tomography (CBCT) image atmore » each fraction was used to shift the treatment couch to accurately align the spinal cord and carina. Our method utilized deformable image registration to automatically position the planning ITV on each CBCT. We evaluated the percentage of the ITV surface that fell within various PTVs for 79 fractions across 18 patients. Treatment success was defined as a situation where at least 99% of the ITV is covered by the PTV. Overall, this is to be achieved in at least 90% of the treatment fractions. The current approach with a 1cm PTV margin was successful ∼96% of the time. This analysis revealed that the current margin can be reduced to 0.8cm isotropic or 0.6×0.6×1 cm{sup 3} non-isotropic, which were successful 92 and 91 percent of the time respectively. Moreover, we have shown that these margins maintain accuracy, despite intrafractional variation, and maximize CBCT image guidance capabilities.« less

  15. Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.

    PubMed

    Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis

    2006-01-01

    This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.

  16. Automatic Marker-free Longitudinal Infrared Image Registration by Shape Context Based Matching and Competitive Winner-guided Optimal Corresponding

    PubMed Central

    Lee, Chia-Yen; Wang, Hao-Jen; Lai, Jhih-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng

    2017-01-01

    Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images. PMID:28145474

  17. larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.

    PubMed

    Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit

    2018-01-01

    The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.

  18. [Application of elastic registration based on Demons algorithm in cone beam CT].

    PubMed

    Pang, Haowen; Sun, Xiaoyang

    2014-02-01

    We applied Demons and accelerated Demons elastic registration algorithm in radiotherapy cone beam CT (CBCT) images, We provided software support for real-time understanding of organ changes during radiotherapy. We wrote a 3D CBCT image elastic registration program using Matlab software, and we tested and verified the images of two patients with cervical cancer 3D CBCT images for elastic registration, based on the classic Demons algorithm, minimum mean square error (MSE) decreased 59.7%, correlation coefficient (CC) increased 11.0%. While for the accelerated Demons algorithm, MSE decreased 40.1%, CC increased 7.2%. The experimental verification with two methods of Demons algorithm obtained the desired results, but the small difference appeared to be lack of precision, and the total registration time was a little long. All these problems need to be further improved for accuracy and reducing of time.

  19. Image registration assessment in radiotherapy image guidance based on control chart monitoring.

    PubMed

    Xia, Wenyao; Breen, Stephen L

    2018-04-01

    Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.

  20. Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization.

    PubMed

    Lee, Sing Chun; Fuerst, Bernhard; Fotouhi, Javad; Fischer, Marius; Osgood, Greg; Navab, Nassir

    2016-06-01

    This work proposes a novel algorithm to register cone-beam computed tomography (CBCT) volumes and 3D optical (RGBD) camera views. The co-registered real-time RGBD camera and CBCT imaging enable a novel augmented reality solution for orthopedic surgeries, which allows arbitrary views using digitally reconstructed radiographs overlaid on the reconstructed patient's surface without the need to move the C-arm. An RGBD camera is rigidly mounted on the C-arm near the detector. We introduce a calibration method based on the simultaneous reconstruction of the surface and the CBCT scan of an object. The transformation between the two coordinate spaces is recovered using Fast Point Feature Histogram descriptors and the Iterative Closest Point algorithm. Several experiments are performed to assess the repeatability and the accuracy of this method. Target registration error is measured on multiple visual and radio-opaque landmarks to evaluate the accuracy of the registration. Mixed reality visualizations from arbitrary angles are also presented for simulated orthopedic surgeries. To the best of our knowledge, this is the first calibration method which uses only tomographic and RGBD reconstructions. This means that the method does not impose a particular shape of the phantom. We demonstrate a marker-less calibration of CBCT volumes and 3D depth cameras, achieving reasonable registration accuracy. This design requires a one-time factory calibration, is self-contained, and could be integrated into existing mobile C-arms to provide real-time augmented reality views from arbitrary angles.

Top