Sample records for target response due

  1. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    DOE PAGES

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-07-23

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we proposemore » a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.« less

  2. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery.

    PubMed

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers.

  3. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Lou, Shaofeng; Gao, Shan; Wang, Weiwei; Zhang, Mingming; Zhang, Ju; Wang, Chun; Li, Chen; Kong, Deling; Zhao, Qiang

    2015-02-01

    We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-d-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using

  4. Reaching Hard-to-Reach Individuals: Nonselective Versus Targeted Outbreak Response Vaccination for Measles

    PubMed Central

    Minetti, Andrea; Hurtado, Northan; Grais, Rebecca F.; Ferrari, Matthew

    2014-01-01

    Current mass vaccination campaigns in measles outbreak response are nonselective with respect to the immune status of individuals. However, the heterogeneity in immunity, due to previous vaccination coverage or infection, may lead to potential bias of such campaigns toward those with previous high access to vaccination and may result in a lower-than-expected effective impact. During the 2010 measles outbreak in Malawi, only 3 of the 8 districts where vaccination occurred achieved a measureable effective campaign impact (i.e., a reduction in measles cases in the targeted age groups greater than that observed in nonvaccinated districts). Simulation models suggest that selective campaigns targeting hard-to-reach individuals are of greater benefit, particularly in highly vaccinated populations, even for low target coverage and with late implementation. However, the choice between targeted and nonselective campaigns should be context specific, achieving a reasonable balance of feasibility, cost, and expected impact. In addition, it is critical to develop operational strategies to identify and target hard-to-reach individuals. PMID:24131555

  5. Landing response of Aedes (Stegomyia) polynesiensis mosquitoes to coloured targets.

    PubMed

    Chambers, E W; Bossin, H C; Ritchie, S A; Russell, R C; Dobson, S L

    2013-09-01

    Aedes polynesiensis Marks (Diptera: Culicidae) is the primary vector of lymphatic filariasis (LF) in the island countries and territories of the South Pacific. In the development of a novel control tool, the response of Ae. polynesiensis to six different colours (three solid fabrics, two patterned fabrics and a plastic tarp) was measured using a digital photographic system. Adult mosquitoes were placed into an environmental chamber and allowed to choose between a white target and one of six experimental targets. Mosquito landing frequency and landing duration were calculated. Adult female Ae. polynesiensis preferred all of the experimental targets to the white control target. Mosquito landing frequency was highest for the solid targets (black, navy blue and red) followed in turn by the two colour pattern targets and the polyethylene target. Mosquito landing duration was greater for experimental targets when compared with white control targets. Mosquito landing frequencies did not change over time during the course of the assay. The response of male Ae. polynesiensis was also measured when exposed to a 100% cotton black target. Male mosquitoes preferred the black target to the white control target, although at levels lower than that observed in female mosquitoes. The results suggest that future investigations evaluating the visual responses of Ae. polynesiensis mosquitoes are warranted, with a special emphasis on semi-field and field-based experiments. © 2013 The Royal Entomological Society.

  6. Computational Hydrocode Study of Target Damage due to Fragment-Blast Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch-Aguilar, T; Najjar, F; Szymanski, E

    2011-03-24

    A target's terminal ballistic effects involving explosively generated fragments, along with the original blast, are of critical importance for many different security and safety related applications. Personnel safety and protective building design are but a few of the practical disciplines that can gain from improved understanding combined loading effects. Traditionally, any engineering level analysis or design effort involving explosions would divide the target damage analysis into two correspondingly critical areas: blast wave and fragment related impact effects. The hypothesis of this paper lies in the supposition that a linear combination of a blast-fragment loading, coupled with an accurate target responsemore » description, can lead to a non-linear target damage effect. This non-linear target response could then stand as the basis of defining what a synergistic or combined frag-blast loading might actually look like. The table below, taken from Walters, et. al. categorizes some of the critical parameters driving any combined target damage effect and drives the evaluation of results. Based on table 1 it becomes clear that any combined frag-blast analysis would need to account for the target response matching similar ranges for the mechanics described above. Of interest are the critical times upon which a blast event or fragment impact loading occurs relative to the target's modal response. A blast, for the purposes of this paper is defined as the sudden release of chemical energy from a given material (henceforth referred to as an energetic material) onto its surrounding medium. During the coupling mechanism a discrete or discontinuous shockwave is generated. This shockwave travels outward from the source transferring energy and momentum to any surrounding objects including personnel and engineering structures. From an engineering perspective blast effects are typically characterized by way of physical characteristics such as Peak Pressure (PP), Time of

  7. Dose response of bone-targeted enzyme replacement for murine hypophosphatasia.

    PubMed

    Yadav, Manisha C; Lemire, Isabelle; Leonard, Pierre; Boileau, Guy; Blond, Laurent; Beliveau, Martin; Cory, Esther; Sah, Robert L; Whyte, Michael P; Crine, Philippe; Millán, José Luis

    2011-08-01

    Hypophosphatasia (HPP) features rickets or osteomalacia from tissue-nonspecific alkaline phosphatase (TNSALP) deficiency due to deactivating mutations within the ALPL gene. Enzyme replacement therapy with a bone-targeted, recombinant TNSALP (sALP-FcD(10), renamed ENB-0040) prevents manifestations of HPP when initiated at birth in TNSALP knockout (Akp2(-/-)) mice. Here, we evaluated the dose-response relationship of ENB-0040 to various phenotypic traits of Akp2(-/-) mice receiving daily subcutaneous (SC) injections of ENB-0040 from birth at 0.5, 2.0, or 8.2mg/kg for 43days. Radiographs, μCT, and histomorphometric analyses documented better bone mineralization with increasing doses of ENB-0040. We found a clear, positive correlation between ENB-0040 dose and prevention of mineralization defects of the feet, rib cage, lower limbs, and jaw bones. According to a dose-response model, the ED(80) (the dose that prevents bone defects in 80% of mice) was 3.2, 2.8 and 2.9mg/kg/day for these sites, respectively. Long bones seemed to respond to lower daily doses of ENB-0040. There was also a positive relationship between ENB-0040 dose and survival. Median survival, body weight, and bone length all improved with increasing doses of ENB-0040. Urinary PP(i) concentrations remained elevated in all treatment groups, indicating that while this parameter is a good biochemical marker for diagnosing HPP in patients, it may not be a good follow up marker for evaluating response to treatment when administering bone-targeted TNSALP to mice. These dose-response relationships strongly support the pharmacological efficacy of ENB-0040 for HPP, and provide the experimental basis for the therapeutic range of ENB-0040 chosen for clinical trials. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Dose response of bone-targeted enzyme replacement for murine hypophosphatasia

    PubMed Central

    Yadav, Manisha C.; Lemire, Isabelle; Leonard, Pierre; Boileau, Guy; Blond, Laurent; Beliveau, Martin; Cory, Esther; Sah, Robert L.; Whyte, Michael P.; Crine, Philippe; Millán, José Luis

    2011-01-01

    Hypophosphatasia (HPP) features rickets or osteomalacia from tissue-nonspecific alkaline phosphatase (TNSALP) deficiency due to deactivating mutations within the ALPL gene. Enzyme replacement therapy with a bone-targeted, recombinant TNSALP (sALP-FcD10, renamed ENB-0040) prevents manifestations of HPP when initiated at birth in TNSALP knockout (Akp2−/−) mice. Here, we evaluated the dose-response relationship of ENB-0040 to various phenotypic traits of Akp2−/− mice receiving daily subcutaneous (SC) injections of ENB-0040 from birth at 0.5, 2.0, or 8.2 mg/kg for 43 days. Radiographs, μCT, and histomorphometric analyses documented better bone mineralization with increasing doses of ENB-0040. We found a clear, positive correlation between ENB-0040 dose and prevention of mineralization defects of the feet, rib cage, lower limbs, and jaw bones. According to a dose-response model, the ED80 (the dose prevents the bone defects in 80% of mice) was 3.2, 2.8 and 2.9 mg/kg/day for these sites, respectively. Long bones seemed to respond to lower daily doses of ENB-0040. There was also a positive relationship between ENB-0040 dose and survival. Median survival, body weight, and bone length all improved with increasing doses of ENB-0040. Urinary PPi concentrations remained elevated in all treatment groups, indicating that while this parameter is a good biochemical marker for diagnosing HPP, it may not be a good follow up marker for evaluating response to treatment when administering bone-targeted TNSALP. These dose-response relationships strongly support the pharmacological efficacy of ENB-0040 for HPP, and provide the experimental basis for the therapeutic range of ENB-0040 chosen for clinical trials. PMID:21458605

  9. Decomposition of the Multistatic Response Matrix and Target Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, D H

    2008-02-14

    Decomposition of the time-reversal operator for an array, or equivalently the singular value decomposition of the multistatic response matrix, has been used to improve imaging and localization of targets in complicated media. Typically, each singular value is associated with one scatterer even though it has been shown in several cases that a single scatterer can generate several singular values. In this paper we review the analysis of the time-reversal operator (TRO), or equivalently the multistatic response matrix (MRM), of an array system and a small target. We begin with two-dimensional scattering from a small cylinder then show the results formore » a small non-spherical target in three dimensions. We show that the number and magnitudes of the singular values contain information about target composition, shape, and orientation.« less

  10. Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery.

    PubMed

    Niedermayer, Stefan; Weiss, Veronika; Herrmann, Annika; Schmidt, Alexandra; Datz, Stefan; Müller, Katharina; Wagner, Ernst; Bein, Thomas; Bräuchle, Christoph

    2015-05-07

    A highly stable modular platform, based on the sequential covalent attachment of different functionalities to the surface of core-shell mesoporous silica nanoparticles (MSNs) for targeted drug delivery is presented. A reversible pH-responsive cap system based on covalently attached poly(2-vinylpyridine) (PVP) was developed as drug release mechanism. Our platform offers (i) tuneable interactions and release kinetics with the cargo drug in the mesopores based on chemically orthogonal core-shell design, (ii) an extremely robust and reversible closure and release mechanism based on endosomal acidification of the covalently attached PVP polymer block, (iii) high colloidal stability due to a covalently coupled PEG shell, and (iv) the ability to covalently attach a wide variety of dyes, targeting ligands and other functionalities at the outer periphery of the PEG shell. The functionality of the system was demonstrated in several cell studies, showing pH-triggered release in the endosome, light-triggered endosomal escape with an on-board photosensitizer, and efficient folic acid-based cell targeting.

  11. Stimuli-responsive Smart Liposomes in Cancer Targeting.

    PubMed

    Jain, Ankit; Jain, Sanjay K

    2018-02-08

    Liposomes are vesicular carriers which possess aqueous core entrapped within the lipid bilayer. These are carriers of choice because of biocompatible and biodegradable features in addition to flexibility of surface modifications at surface and lipid compositions of lipid bilayers. Liposomes have been reported well for cancer treatment using both passive and active targeting approaches however tumor microenvironment is still the biggest hurdle for safe and effective delivery of anticancer agents. To overcome this problem, stimuli-responsive smart liposomes have emerged as promising cargoes pioneered to anomalous tumor milieu in response to pH, temperature, and enzymes etc. as internal triggers, and magnetic field, ultrasound, and redox potential as external guides for enhancement of drug delivery to tumors. This review focuses on all such stimuli-responsive approaches using fabrication potentiality of liposomes in combination to various ligands, linkers, and PEGylation etc. Scientists engaged in cancer targeting approaches can get benefited greatly with this knowledgeable assemblage of advances in liposomal nanovectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Do Young and Old Preschoolers Exhibit Response Bias Due to Different Mechanisms? Investigating Children's Response Time

    ERIC Educational Resources Information Center

    Okanda, Mako; Itakura, Shoji

    2011-01-01

    Previous studies have suggested that younger preschoolers exhibit a yes bias due to underdeveloped cognitive abilities, whereas older preschoolers exhibit a response bias due to other factors. To test this hypothesis, we investigated the response latency to yes-no questions pertaining to familiar and unfamiliar objects in 3- to 6-year-olds. The…

  13. Boron Stress Responsive MicroRNAs and Their Targets in Barley

    PubMed Central

    Ozhuner, Esma; Eldem, Vahap; Ipek, Arif; Okay, Sezer; Sakcali, Serdal; Zhang, Baohong; Boke, Hatice; Unver, Turgay

    2013-01-01

    Boron stress is an environmental factor affecting plant development and production. Recently, microRNAs (miRNAs) have been found to be involved in several plant processes such as growth regulation and stress responses. In this study, miRNAs associated with boron stress were identified and characterized in barley. miRNA profiles were also comparatively analyzed between root and leave samples. A total of 31 known and 3 new miRNAs were identified in barley; 25 of them were found to respond to boron treatment. Several miRNAs were expressed in a tissue specific manner; for example, miR156d, miR171a, miR397, and miR444a were only detected in leaves. Additionally, a total of 934 barley transcripts were found to be specifically targeted and degraded by miRNAs. In silico analysis of miRNA target genes demonstrated that many miRNA targets are conserved transcription factors such as Squamosa promoter-binding protein, Auxin response factor (ARF), and the MYB transcription factor family. A majority of these targets were responsible for plant growth and response to environmental changes. We also propose that some of the miRNAs in barley such as miRNA408 might play critical roles against boron exposure. In conclusion, barley may use several pathways and cellular processes targeted by miRNAs to cope with boron stress. PMID:23555702

  14. Log-polar mapping-based scale space tracking with adaptive target response

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Wen, Gongjian; Kuai, Yangliu; Zhang, Ximing

    2017-05-01

    Correlation filter-based tracking has exhibited impressive robustness and accuracy in recent years. Standard correlation filter-based trackers are restricted to translation estimation and equipped with fixed target response. These trackers produce an inferior performance when encountered with a significant scale variation or appearance change. We propose a log-polar mapping-based scale space tracker with an adaptive target response. This tracker transforms the scale variation of the target in the Cartesian space into a shift along the logarithmic axis in the log-polar space. A one-dimensional scale correlation filter is learned online to estimate the shift along the logarithmic axis. With the log-polar representation, scale estimation is achieved accurately without a multiresolution pyramid. To achieve an adaptive target response, a variance of the Gaussian function is computed from the response map and updated online with a learning rate parameter. Our log-polar mapping-based scale correlation filter and adaptive target response can be combined with any correlation filter-based trackers. In addition, the scale correlation filter can be extended to a two-dimensional correlation filter to achieve joint estimation of the scale variation and in-plane rotation. Experiments performed on an OTB50 benchmark demonstrate that our tracker achieves superior performance against state-of-the-art trackers.

  15. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.

    PubMed

    Ng, Oi-Wing; Chia, Adeline; Tan, Anthony T; Jadi, Ramesh S; Leong, Hoe Nam; Bertoletti, Antonio; Tan, Yee-Joo

    2016-04-12

    Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8(+) T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8(+) T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Everyday stress response targets in the science of behavior change.

    PubMed

    Smyth, Joshua M; Sliwinski, Martin J; Zawadzki, Matthew J; Scott, Stacey B; Conroy, David E; Lanza, Stephanie T; Marcusson-Clavertz, David; Kim, Jinhyuk; Stawski, Robert S; Stoney, Catherine M; Buxton, Orfeu M; Sciamanna, Christopher N; Green, Paige M; Almeida, David M

    2018-02-01

    Stress is an established risk factor for negative health outcomes, and responses to everyday stress can interfere with health behaviors such as exercise and sleep. In accordance with the Science of Behavior Change (SOBC) program, we apply an experimental medicine approach to identifying stress response targets, developing stress response assays, intervening upon these targets, and testing intervention effectiveness. We evaluate an ecologically valid, within-person approach to measuring the deleterious effects of everyday stress on physical activity and sleep patterns, examining multiple stress response components (i.e., stress reactivity, stress recovery, and stress pile-up) as indexed by two key response indicators (negative affect and perseverative cognition). Our everyday stress response assay thus measures multiple malleable stress response targets that putatively shape daily health behaviors (physical activity and sleep). We hypothesize that larger reactivity, incomplete recovery, and more frequent stress responses (pile-up) will negatively impact health behavior enactment in daily life. We will identify stress-related reactivity, recovery, and response in the indicators using coordinated analyses across multiple naturalistic studies. These results are the basis for developing a new stress assay and replicating the initial findings in a new sample. This approach will advance our understanding of how specific aspects of everyday stress responses influence health behaviors, and can be used to develop and test an innovative ambulatory intervention for stress reduction in daily life to enhance health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Zhao, Qinfu; Geng, Hongjian; Wang, Ying; Gao, Yikun; Huang, Jiahao; Wang, Yan; Zhang, Jinghai; Wang, Siling

    2014-11-26

    A redox-responsive delivery system based on colloidal mesoporous silica (CMS) has been developed, in which 6-mercaptopurine (6-MP) was conjugated to vehicles by cleavable disulfide bonds. The oligosaccharide of hyaluronic acid (oHA) was modified on the surface of CMS by disulfide bonds as a targeting ligand and was able to increase the stability and biocompatibility of CMS under physiological conditions. In vitro release studies indicated that the cumulative release of 6-MP was less than 3% in the absence of glutathione (GSH), and reached nearly 80% within 2 h in the presence of 3 mM GSH. Confocal microscopy and fluorescence-activated cell sorter (FACS) methods were used to evaluate the cellular uptake performance of fluorescein isothiocyanate (FITC) labeled CMS, with and without oHA modification. The CMS-SS-oHA exhibited a higher cellular uptake performance via CD44 receptor-mediated endocytosis in HCT-116 (CD44 receptor-positive) cells than in NIH-3T3 (CD44 receptor-negative) cells. 6-MP loaded CMS-SS-oHA exhibited greater cytotoxicity against HCT-116 cells than NIH-3T3 cells due to the enhanced cell uptake behavior of CMS-SS-oHA. This study provides a novel strategy to covalently link bioactive drug and targeting ligand to the interiors and exteriors of mesoporous silica to construct a stimulus-responsive targeted drug delivery system.

  18. Harmonic Phase Response of Nonlinear Radar Targets

    DTIC Science & Technology

    2015-10-01

    while allowing its harmonics to pass through. The weak harmonic responses are then amplified to allow for easier detection and measurement . 4...where the phase of the 2nd and 3rd harmonic of the received electromagnetic wave from nonlinear targets was measured and plotted against the frequency

  19. Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves.

    PubMed

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Guo, Peng; Li, Yan; Chen, Li-Song

    2015-11-04

    MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Most research, however, has focused on nitrogen (N), phosphorus (P), sulfur (S), copper (Cu) and iron (Fe) deficiencies, limited data are available on the differential expression of miRNAs and their target genes in response to deficiencies of other nutrient elements. In this study, we identified the known and novel miRNAs as well as the boron (B)-deficiency-responsive miRNAs from citrus leaves in order to obtain the potential miRNAs related to the tolerance of citrus to B-deficiency. Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were supplied every other day with B-deficient (0 μM H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. Thereafter, we sequenced two small RNA libraries from B-deficient and -sufficient (control) citrus leaves, respectively, using Illumina sequencing. Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) down-regulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing

  20. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses

    PubMed Central

    Siafaka, Panoraia I.; Üstündağ Okur, Neslihan; Karavas, Evangelos; Bikiaris, Dimitrios N.

    2016-01-01

    Nanocarriers, due to their unique features, are of increased interest among researchers working with pharmaceutical formulations. Polymeric nanoparticles and nanocapsules, involving non-toxic biodegradable polymers, liposomes, solid lipid nanoparticles, and inorganic–organic nanomaterials, are among the most used carriers for drugs for a broad spectrum of targeted diseases. In fact, oral, injectable, transdermal-dermal and ocular formulations mainly consist of the aforementioned nanomaterials demonstrating promising characteristics such as long circulation, specific targeting, high drug loading capacity, enhanced intracellular penetration, and so on. Over the last decade, huge advances in the development of novel, safer and less toxic nanocarriers with amended properties have been made. In addition, multifunctional nanocarriers combining chemical substances, vitamins and peptides via coupling chemistry, inorganic particles coated by biocompatible materials seem to play a key role considering that functionalization can enhance characteristics such as biocompatibility, targetability, environmental friendliness, and intracellular penetration while also have limited side effects. This review aims to summarize the “state of the art” of drug delivery carriers in nanosize, paying attention to their surface functionalization with ligands and other small or polymeric compounds so as to upgrade active and passive targeting, different release patterns as well as cell targeting and stimuli responsibility. Lastly, future aspects and potential uses of nanoparticulated drug systems are outlined. PMID:27589733

  1. The Target Selective Neural Response — Similarity, Ambiguity, and Learning Effects

    PubMed Central

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M.

    2008-01-01

    A network of frontal and parietal brain regions is commonly recruited during tasks that require the deliberate ‘top-down’ control of thought and action. Previously, using simple target detection, we have demonstrated that within this frontoparietal network, the right ventrolateral prefrontal cortex (VLPFC) in particular is sensitive to the presentation of target objects. Here, we use a range of target/non-target morphs to plot the target selective response within distinct frontoparietal sub-regions in greater detail. The increased resolution allows us to examine the extent to which different cognitive factors can predict the blood oxygenation level dependent (BOLD) response to targets. Our results reveal that both probability of positive identification (similarity to target) and proximity to the 50% decision boundary (ambiguity) are significant predictors of BOLD signal change, particularly in the right VLPFC. Furthermore, the profile of target related signal change is not static, with the degree of selectivity increasing as the task becomes familiar. These findings demonstrate that frontoparietal sub-regions are recruited under increased cognitive demand and that when recruited, they adapt, using both fast and slow mechanisms, to selectively respond to those items that are of the most relevance to current intentions. PMID:18575585

  2. Glyphosate resistance in Ambrosia trifida: Part 2. Rapid response physiology and non-target-site resistance.

    PubMed

    Moretti, Marcelo L; Van Horn, Christopher R; Robertson, Renae; Segobye, Kabelo; Weller, Stephen C; Young, Bryan G; Johnson, William G; Douglas Sammons, R; Wang, Dafu; Ge, Xia; d' Avignon, André; Gaines, Todd A; Westra, Philip; Green, Amanda C; Jeffery, Taylor; Lespérance, Mackenzie A; Tardif, François J; Sikkema, Peter H; Christopher Hall, J; McLean, Michael D; Lawton, Mark B; Schulz, Burkhard

    2018-05-01

    The glyphosate-resistant rapid response (GR RR) resistance mechanism in Ambrosia trifida is not due to target-site resistance (TSR) mechanisms. This study explores the physiology of the rapid response and the possibility of reduced translocation and vacuolar sequestration as non-target-site resistance (NTSR) mechanisms. GR RR leaf discs accumulated hydrogen peroxide within minutes of glyphosate exposure, but only in mature leaf tissue. The rapid response required energy either as light or exogenous sucrose. The combination of phenylalanine and tyrosine inhibited the rapid response in a dose-dependent manner. Reduced glyphosate translocation was observed in GR RR, but only when associated with tissue death caused by the rapid response. Nuclear magnetic resonance studies indicated that glyphosate enters the cytoplasm and reaches chloroplasts, and it is not moved into the vacuole of GR RR, GR non-rapid response or glyphosate-susceptible A. trifida. The GR RR mechanism of resistance is not associated with vacuole sequestration of glyphosate, and the observed reduced translocation is likely a consequence of rapid tissue death. Rapid cell death was inhibited by exogenous application of aromatic amino acids phenylalanine and tyrosine. The mechanism by which these amino acids inhibit rapid cell death in the GR RR phenotype remains unknown, and it could involve glyphosate phytotoxicity or other agents generating reactive oxygen species. Implications of these findings are discussed. The GR RR mechanism is distinct from the currently described glyphosate TSR or NTSR mechanisms in other species. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. An Action Learning Approach to the Question: Are Ambulance Response Time Targets Achievable?

    ERIC Educational Resources Information Center

    Slater, Alan

    2017-01-01

    In recent years, NHS Ambulance Trusts throughout the UK have consistently failed to achieve their response time targets for both actual and potential life-threatening calls. To avoid a media and public outcry, the NHS response has been to change the basic parameters upon which the response time targets are calculated. An action learning study,…

  4. Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release.

    PubMed

    Zhang, Yang; Xu, Juan

    2018-01-01

    This paper proposes a novel type of multifunctional envelope-type mesoporous silica nanoparticle (MSN) to achieve cancer cell targeting and drug-controlled release. In this system, MSNs were first modified by active targeting moiety hyaluronic acid (HA) for breast cancer cell targeting and hyaluronidases (Hyal)-induced intracellular drug release. Then gelatin, a proteinaceous biopolymer, was grafted onto the MSNs to form a capping layer via glutaraldehyde-mediated cross-linking. To shield against unspecific uptake of cells and prolong circulation time, the nanoparticles were further decorated with poly(ethylene glycol) polymers (PEG) to obtain MSN@HA-gelatin-PEG (MHGP). Doxorubicin (DOX), as a model drug, was loaded into PEMSN to assess the breast cancer cell targeting and drug release behaviours. In vitro study revealed that PEG chains protect the targeting ligand and shield against normal cells. After reaching the breast cancer cells, MMP-2 overpressed by cells hydrolyses gelatin layer to deshield PEG and switch on the function of HA. As a result, DOX-loaded MHGP was selectively trapped by cancer cells through HA receptor-mediated endocytosis and subsequently release DOX due to Hyal-catalysed degradation of HA. This system presents successful bienzyme-responsive targeting drug delivery in an optimal fashion and provides potential applications for targeted cancer therapy.

  5. Target Identification of Grape Seed Extract in Colorectal Cancer using Drug Affinity Responsive Target Stability (DARTS) Technique: Role of Endoplasmic Reticulum Stress Response Proteins

    PubMed Central

    Derry, Molly M.; Somasagara, Ranganatha; Raina, Komal; Kumar, Sushil; Gomez, Joe; Patel, Manisha; Agarwal, Rajesh; Agarwal, Chapla

    2014-01-01

    Various natural agents, including grape seed extract (GSE), have shown considerable chemopreventive and anti-cancer efficacy against different cancers in pre-clinical studies; however, their specific protein targets are largely unknown and thus, their clinical usefulness is marred by limited scientific evidences about their direct cellular targets. Accordingly, herein, employing, for the first time, the recently developed drug affinity responsive target stability (DARTS) technique, we aimed to profile the potential protein targets of GSE in human colorectal cancer (CRC) cells. Unlike other methods, which can cause chemical alteration of the drug components to allow for detection, this approach relies on the fact that a drug bound protein may become less susceptible to proteolysis and hence the enriched proteins can be detected by Mass Spectroscopy methods. Our results, utilizing the DARTS technique followed by examination of the spectral output by LC/MS and the MASCOT data, revealed that GSE targets endoplasmic reticulum (ER) stress response proteins resulting in overall down regulation of proteins involved in translation and that GSE also causes oxidative protein modifications, specifically on methionine amino acids residues on its protein targets. Corroborating these findings, mechanistic studies revealed that GSE indeed caused ER stress and strongly inhibited PI3k-Akt–mTOR pathway for its biological effects in CRC cells. Furthermore, bioenergetics studies indicated that GSE also interferes with glycolysis and mitochondrial metabolism in CRC cells. Together, the present study identifying GSE molecular targets in CRC cells, combined with its efficacy in vast pre-clinical CRC models, further supports its usefulness for CRC prevention and treatment. PMID:24724981

  6. Margin selection to compensate for loss of target dose coverage due to target motion during external‐beam radiation therapy of the lung

    PubMed Central

    Osei, Ernest; Barnett, Rob

    2015-01-01

    The aim of this study is to provide guidelines for the selection of external‐beam radiation therapy target margins to compensate for target motion in the lung during treatment planning. A convolution model was employed to predict the effect of target motion on the delivered dose distribution. The accuracy of the model was confirmed with radiochromic film measurements in both static and dynamic phantom modes. 502 unique patient breathing traces were recorded and used to simulate the effect of target motion on a dose distribution. A 1D probability density function (PDF) representing the position of the target throughout the breathing cycle was generated from each breathing trace obtained during 4D CT. Changes in the target D95 (the minimum dose received by 95% of the treatment target) due to target motion were analyzed and shown to correlate with the standard deviation of the PDF. Furthermore, the amount of target D95 recovered per millimeter of increased field width was also shown to correlate with the standard deviation of the PDF. The sensitivity of changes in dose coverage with respect to target size was also determined. Margin selection recommendations that can be used to compensate for loss of target D95 were generated based on the simulation results. These results are discussed in the context of clinical plans. We conclude that, for PDF standard deviations less than 0.4 cm with target sizes greater than 5 cm, little or no additional margins are required. Targets which are smaller than 5 cm with PDF standard deviations larger than 0.4 cm are most susceptible to loss of coverage. The largest additional required margin in this study was determined to be 8 mm. PACS numbers: 87.53.Bn, 87.53.Kn, 87.55.D‐, 87.55.Gh

  7. Increase in Speech Recognition Due to Linguistic Mismatch between Target and Masker Speech: Monolingual and Simultaneous Bilingual Performance

    ERIC Educational Resources Information Center

    Calandruccio, Lauren; Zhou, Haibo

    2014-01-01

    Purpose: To examine whether improved speech recognition during linguistically mismatched target-masker experiments is due to linguistic unfamiliarity of the masker speech or linguistic dissimilarity between the target and masker speech. Method: Monolingual English speakers (n = 20) and English-Greek simultaneous bilinguals (n = 20) listened to…

  8. Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium.

    PubMed

    Rajeev, Lara; Luning, Eric G; Dehal, Paramvir S; Price, Morgan N; Arkin, Adam P; Mukhopadhyay, Aindrila

    2011-10-12

    Two component regulatory systems are the primary form of signal transduction in bacteria. Although genomic binding sites have been determined for several eukaryotic and bacterial transcription factors, comprehensive identification of gene targets of two component response regulators remains challenging due to the lack of knowledge of the signals required for their activation. We focused our study on Desulfovibrio vulgaris Hildenborough, a sulfate reducing bacterium that encodes unusually diverse and largely uncharacterized two component signal transduction systems. We report the first systematic mapping of the genes regulated by all transcriptionally acting response regulators in a single bacterium. Our results enabled functional predictions for several response regulators and include key processes of carbon, nitrogen and energy metabolism, cell motility and biofilm formation, and responses to stresses such as nitrite, low potassium and phosphate starvation. Our study also led to the prediction of new genes and regulatory networks, which found corroboration in a compendium of transcriptome data available for D. vulgaris. For several regulators we predicted and experimentally verified the binding site motifs, most of which were discovered as part of this study. The gene targets identified for the response regulators allowed strong functional predictions to be made for the corresponding two component systems. By tracking the D. vulgaris regulators and their motifs outside the Desulfovibrio spp. we provide testable hypotheses regarding the functions of orthologous regulators in other organisms. The in vitro array based method optimized here is generally applicable for the study of such systems in all organisms.

  9. Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis.

    PubMed

    Dou, Yin; Chen, Yue; Zhang, Xiangjun; Xu, Xiaoqiu; Chen, Yidan; Guo, Jiawei; Zhang, Dinglin; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2017-10-01

    Atherosclerosis is the leading cause of many fatal cardiovascular and cerebrovascular diseases. Whereas nanomedicines are promising for targeted therapy of atherosclerosis, great challenges remain in development of effective, safe, and translational nanotherapies for its treatment. Herein we hypothesize that non-proinflammatory nanomaterials sensitive to low pH or high reactive oxygen species (ROS) may serve as effective platforms for triggerable delivery of anti-atherosclerotic therapeutics in cellular and tissue microenvironments of inflammation. To demonstrate this hypothesis, an acid-labile material of acetalated β-cyclodextrin (β-CD) (Ac-bCD) and a ROS-sensitive β-CD material (Ox-bCD) were separately synthesized by chemical modification of β-CD, which were formed into responsive nanoparticles (NPs). Ac-bCD NP was rapidly hydrolyzed in mildly acidic buffers, while hydrolysis of Ox-bCD NP was selectively accelerated by H 2 O 2 . Using an anti-atherosclerotic drug rapamycin (RAP), we found stimuli-responsive release of therapeutic molecules from Ac-bCD and Ox-bCD nanotherapies. Compared with non-responsive poly(lactide-co-glycolide) (PLGA)-based NP, Ac-bCD and Ox-bCD NPs showed negligible inflammatory responses in vitro and in vivo. By endocytosis in cells and intracellularly releasing cargo molecules in macrophages, responsive nanotherapies effectively inhibited macrophage proliferation and suppressed foam cell formation. After intraperitoneal (i.p.) delivery in apolipoprotein E-deficient (ApoE -/- ) mice, fluorescence imaging showed accumulation of NPs in atherosclerotic plaques. Flow cytometry analysis indicated that the lymphatic translocation mediated by neutrophils and monocytes/macrophages may contribute to atherosclerosis targeting of i.p. administered NPs, in addition to targeting via the leaky blood vessels. Correspondingly, i.p. treatment with different nanotherapies afforded desirable efficacies. Particularly, both pH and ROS-responsive

  10. Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium

    PubMed Central

    2011-01-01

    Background Two component regulatory systems are the primary form of signal transduction in bacteria. Although genomic binding sites have been determined for several eukaryotic and bacterial transcription factors, comprehensive identification of gene targets of two component response regulators remains challenging due to the lack of knowledge of the signals required for their activation. We focused our study on Desulfovibrio vulgaris Hildenborough, a sulfate reducing bacterium that encodes unusually diverse and largely uncharacterized two component signal transduction systems. Results We report the first systematic mapping of the genes regulated by all transcriptionally acting response regulators in a single bacterium. Our results enabled functional predictions for several response regulators and include key processes of carbon, nitrogen and energy metabolism, cell motility and biofilm formation, and responses to stresses such as nitrite, low potassium and phosphate starvation. Our study also led to the prediction of new genes and regulatory networks, which found corroboration in a compendium of transcriptome data available for D. vulgaris. For several regulators we predicted and experimentally verified the binding site motifs, most of which were discovered as part of this study. Conclusions The gene targets identified for the response regulators allowed strong functional predictions to be made for the corresponding two component systems. By tracking the D. vulgaris regulators and their motifs outside the Desulfovibrio spp. we provide testable hypotheses regarding the functions of orthologous regulators in other organisms. The in vitro array based method optimized here is generally applicable for the study of such systems in all organisms. PMID:21992415

  11. Acoustical imaging of high-frequency elastic responses of targets

    NASA Astrophysics Data System (ADS)

    Morse, Scot F.; Hefner, Brian T.; Marston, Philip L.

    2002-05-01

    Acoustical imaging was used to investigate high-frequency elastic responses to sound of two targets in water. The backscattering of broadband bipolar acoustic pulses by a truncated cylindrical shell was recorded over a wide range of tilt angles [S. F. Morse and P. L. Marston, ``Backscattering of transients by tilted truncated cylindrical shells: time-frequency identification of ray contributions from measurements,'' J. Acoust. Soc. Am. (in press)]. This data set was used to form synthetic aperture images of the target based on the data within different angular apertures. Over a range of viewing angles, the visibility of the cylinder's closest rear corner was significantly enhanced by the meridional flexural wave contribution to the backscattering. In another experiment, the time evolution of acoustic holographic images was used to explore the response of tilted elastic circular disks to tone bursts having frequencies of 250 and 300 kHz. For different tilt angles, specific responses that enhance the backscattering were identified from the time evolution of the images [B. T. Hefner and P. L. Marston, Acoust. Res. Lett. Online 2, 55-60 (2001)]. [Work supported by ONR.

  12. Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.; Zhang, J.

    2017-07-01

    We investigate how next-generation laser pulses at 10 -200 PW interact with a solid target in the presence of a relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boring and relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ -ray photons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasma density is formed, counteracting the electron-free channel produced by hole boring. This pair-dominated plasma can block laser transport and trigger an avalanchelike QED cascade, efficiently transferring the laser energy to the photons. This renders a 1 -μ m scale-length, underdense preplasma completely opaque to laser pulses at this power level. The QED-induced opacity therefore sets much higher contrast requirements for such a pulse in solid-target experiments than expected by classical plasma physics. Our simulations show, for example, that proton acceleration from the rear of a solid with a preplasma would be strongly impaired.

  13. Quinolone Resistance Reversion by Targeting the SOS Response.

    PubMed

    Recacha, E; Machuca, J; Díaz de Alba, P; Ramos-Güelfo, M; Docobo-Pérez, F; Rodriguez-Beltrán, J; Blázquez, J; Pascual, A; Rodríguez-Martínez, J M

    2017-10-10

    Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs) and dynamic (killing curves or flow cytometry) methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs). Killing curve assays showed a clear disadvantage for survival (Δlog 10 CFU per milliliter [CFU/ml] of 8 log units after 24 h), and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog 10 CFU/g of 1.76 log units) in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min) of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy. IMPORTANCE The rapid rise of antibiotic resistance in bacterial pathogens is now considered a major global health crisis. New strategies are needed to block the development of resistance and to extend the life of antibiotics. The SOS response is a promising target for developing therapeutics to reduce the acquisition of antibiotic resistance and enhance the bactericidal activity of antimicrobial agents such as quinolones. Significant questions remain regarding its impact as a strategy for the reversion or resensitization of antibiotic-resistant bacteria. To address this

  14. Characterizing and Targeting Replication Stress Response Defects in Breast Cancer

    DTIC Science & Technology

    2015-08-01

    1 AD_________________ Award Number: W81XWH-10-1-0558 TITLE: Characterizing and Targeting Replication Stress Response Defects in Breast Cancer ...PRINCIPAL INVESTIGATOR: Shiaw-Yih Lin, Ph.D. CONTRACTING ORGANIZATION: University of Texas M. D. Anderson Cancer Center Houston, TX 77030 REPORT...Response Defects in Breast Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Betty Diamond 5d. PROJECT NUMBER Chun-Jen Lin, Hui Dai

  15. Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications

    NASA Astrophysics Data System (ADS)

    Hervault, Aziliz; Dunn, Alexander E.; Lim, May; Boyer, Cyrille; Mott, Derrick; Maenosono, Shinya; Thanh, Nguyen T. K.

    2016-06-01

    Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxorubicin (DOX) to the pH- and thermo-responsive MNCs via acid-cleavable imine linker provides advanced features for the targeted delivery of DOX molecules via the combination of magnetic targeting, and dual pH- and thermo-responsive behaviour which offers spatial and temporal control over the release of DOX. The iron oxide cores exhibit a superparamagnetic behaviour with a saturation magnetization around 70 emu g-1. The MNCs contained 8.1 wt% of polymer and exhibit good heating properties in an alternating magnetic field. The drug release experiments confirmed that only a small amount of DOX was released at room temperature and physiological pH, while the highest drug release of 85.2% was obtained after 48 h at acidic tumour pH under hyperthermia conditions (50 °C). The drug release kinetic followed Korsmeyer-Peppas model and displayed Fickian diffusion mechanism. From the results obtained it can be concluded that this smart magnetic nanocarrier is promising for applications in multi-modal cancer therapy, to target and efficiently deliver heat and drug specifically to the tumour.Magnetic nanocarriers have attracted increasing attention for multimodal cancer therapy due to the possibility to deliver heat and drugs locally. The present study reports the development of magnetic nanocomposites (MNCs) made of an iron oxide core and a pH- and thermo-responsive polymer shell, that can be used as both hyperthermic agent and drug carrier. The conjugation of anticancer drug doxorubicin (DOX) to the pH- and thermo-responsive MNCs via acid-cleavable imine linker provides advanced

  16. Circular revisit orbits design for responsive mission over a single target

    NASA Astrophysics Data System (ADS)

    Li, Taibo; Xiang, Junhua; Wang, Zhaokui; Zhang, Yulin

    2016-10-01

    The responsive orbits play a key role in addressing the mission of Operationally Responsive Space (ORS) because of their capabilities. These capabilities are usually focused on supporting specific targets as opposed to providing global coverage. One subtype of responsive orbits is repeat coverage orbit which is nearly circular in most remote sensing applications. This paper deals with a special kind of repeating ground track orbit, referred to as circular revisit orbit. Different from traditional repeat coverage orbits, a satellite on circular revisit orbit can visit a target site at both the ascending and descending stages in one revisit cycle. This typology of trajectory allows a halving of the traditional revisit time and does a favor to get useful information for responsive applications. However the previous reported numerical methods in some references often cost lots of computation or fail to obtain such orbits. To overcome this difficulty, an analytical method to determine the existence conditions of the solutions to revisit orbits is presented in this paper. To this end, the mathematical model of circular revisit orbit is established under the central gravity model and the J2 perturbation. A constraint function of the circular revisit orbit is introduced, and the monotonicity of that function has been studied. The existent conditions and the number of such orbits are naturally worked out. Taking the launch cost into consideration, optimal design model of circular revisit orbit is established to achieve a best orbit which visits a target twice a day in the morning and in the afternoon respectively for several days. The result shows that it is effective to apply circular revisit orbits in responsive application such as reconnoiter of natural disaster.

  17. PIRATE: pediatric imaging response assessment and targeting environment

    NASA Astrophysics Data System (ADS)

    Glenn, Russell; Zhang, Yong; Krasin, Matthew; Hua, Chiaho

    2010-02-01

    By combining the strengths of various imaging modalities, the multimodality imaging approach has potential to improve tumor staging, delineation of tumor boundaries, chemo-radiotherapy regime design, and treatment response assessment in cancer management. To address the urgent needs for efficient tools to analyze large-scale clinical trial data, we have developed an integrated multimodality, functional and anatomical imaging analysis software package for target definition and therapy response assessment in pediatric radiotherapy (RT) patients. Our software provides quantitative tools for automated image segmentation, region-of-interest (ROI) histogram analysis, spatial volume-of-interest (VOI) analysis, and voxel-wise correlation across modalities. To demonstrate the clinical applicability of this software, histogram analyses were performed on baseline and follow-up 18F-fluorodeoxyglucose (18F-FDG) PET images of nine patients with rhabdomyosarcoma enrolled in an institutional clinical trial at St. Jude Children's Research Hospital. In addition, we combined 18F-FDG PET, dynamic-contrast-enhanced (DCE) MR, and anatomical MR data to visualize the heterogeneity in tumor pathophysiology with the ultimate goal of adaptive targeting of regions with high tumor burden. Our software is able to simultaneously analyze multimodality images across multiple time points, which could greatly speed up the analysis of large-scale clinical trial data and validation of potential imaging biomarkers.

  18. Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets.

    PubMed

    Wei, Xiaofeng; Tian, Tian; Jia, Shasha; Zhu, Zhi; Ma, Yanli; Sun, Jianjun; Lin, Zhenyu; Yang, Chaoyong James

    2015-04-21

    A versatile point-of-care assay platform was developed for simultaneous detection of multiple targets based on a microfluidic paper-based analytic device (μPAD) using a target-responsive hydrogel to mediate fluidic flow and signal readout. An aptamer-cross-linked hydrogel was used as a target-responsive flow regulator in the μPAD. In the absence of a target, the hydrogel is formed in the flow channel, stopping the flow in the μPAD and preventing the colored indicator from traveling to the final observation spot, thus yielding a "signal off" readout. In contrast, in the presence of a target, no hydrogel is formed because of the preferential interaction of target and aptamer. This allows free fluidic flow in the μPAD, carrying the indicator to the observation spot and producing a "signal on" readout. The device is inexpensive to fabricate, easy to use, and disposable after detection. Testing results can be obtained within 6 min by the naked eye via a simple loading operation without the need for any auxiliary equipment. Multiple targets, including cocaine, adenosine, and Pb(2+), can be detected simultaneously, even in complex biological matrices such as urine. The reported method offers simple, low cost, rapid, user-friendly, point-of-care testing, which will be useful in many applications.

  19. Integrated Stress Response as a Therapeutic Target for CNS Injuries.

    PubMed

    Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Barreda-Manso, M Asunción

    2017-01-01

    Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.

  20. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer.

    PubMed

    Eritja, Núria; Chen, Bo-Juen; Rodríguez-Barrueco, Ruth; Santacana, Maria; Gatius, Sònia; Vidal, August; Martí, Maria Dolores; Ponce, Jordi; Bergadà, Laura; Yeramian, Andree; Encinas, Mario; Ribera, Joan; Reventós, Jaume; Boyd, Jeff; Villanueva, Alberto; Matias-Guiu, Xavier; Dolcet, Xavier; Llobet-Navàs, David

    2017-03-04

    Targeted therapies in endometrial cancer (EC) using kinase inhibitors rarely result in complete tumor remission and are frequently challenged by the appearance of refractory cell clones, eventually resulting in disease relapse. Dissecting adaptive mechanisms is of vital importance to circumvent clinical drug resistance and improve the efficacy of targeted agents in EC. Sorafenib is an FDA-approved multitarget tyrosine and serine/threonine kinase inhibitor currently used to treat hepatocellular carcinoma, advanced renal carcinoma and radioactive iodine-resistant thyroid carcinoma. Unfortunately, sorafenib showed very modest effects in a multi-institutional phase II trial in advanced uterine carcinoma patients. Here, by leveraging RNA-sequencing data from the Cancer Cell Line Encyclopedia and cell survival studies from compound-based high-throughput screenings we have identified the lysosomal pathway as a potential compartment involved in the resistance to sorafenib. By performing additional functional biology studies we have demonstrated that this resistance could be related to macroautophagy/autophagy. Specifically, our results indicate that sorafenib triggers a mechanistic MAPK/JNK-dependent early protective autophagic response in EC cells, providing an adaptive response to therapeutic stress. By generating in vivo subcutaneous EC cell line tumors, lung metastatic assays and primary EC orthoxenografts experiments, we demonstrate that targeting autophagy enhances sorafenib cytotoxicity and suppresses tumor growth and pulmonary metastasis progression. In conclusion, sorafenib induces the activation of a protective autophagic response in EC cells. These results provide insights into the unopposed resistance of advanced EC to sorafenib and highlight a new strategy for therapeutic intervention in recurrent EC.

  1. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets.

    PubMed

    Kim, J Y; Kawabori, M; Yenari, M A

    2014-01-01

    Stroke is a frequent cause of long-term disability and death worldwide. Ischemic stroke is more commonly encountered compared to hemorrhagic stroke, and leads to tissue death by ischemia due to occlusion of a cerebral artery. Inflammation is known to result as a result of ischemic injury, long thought to be involved in initiating the recovery and repair process. However, work over the past few decades indicates that aspects of this inflammatory response may in fact be detrimental to stroke outcome. Acutely, inflammation appears to have a detrimental effect, and anti-inflammatory treatments have been been studied as a potential therapeutic target. Chronically, reports suggest that post-ischemic inflammation is also essential for the tissue repairing and remodeling. The majority of the work in this area has centered around innate immune mechanisms, which will be the focus of this review. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. A better understanding of the roles of the different immune cells and their temporal profile of damage versus repair will help to clarify more effective modulation of inflammation post stroke.

  2. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy.

    PubMed

    Wu, Xiang Lan; Kim, Jong Ho; Koo, Heebeom; Bae, Sang Mun; Shin, Hyeri; Kim, Min Sang; Lee, Byung-Heon; Park, Rang-Woon; Kim, In-San; Choi, Kuiwon; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Doo Sung

    2010-02-17

    Herein, we prepared tumor-targeting peptide (AP peptide; CRKRLDRN) conjugated pH-responsive polymeric micelles (pH-PMs) in cancer therapy by active and pH-responsive tumor targeting delivery systems, simultaneously. The active tumor targeting and tumoral pH-responsive polymeric micelles were prepared by mixing AP peptide conjugated PEG-poly(d,l-lactic acid) block copolymer (AP-PEG-PLA) into the pH-responsive micelles of methyl ether poly(ethylene glycol) (MPEG)-poly(beta-amino ester) (PAE) block copolymer (MPEG-PAE). These mixed amphiphilic block copolymers were self-assembled to form stable AP peptide-conjugated and pH-responsive AP-PEG-PLA/MPEG-PAE micelles (AP-pH-PMs) with an average size of 150 nm. The AP-pH-PMs containing 10 wt % of AP-PEG-PLA showed a sharp pH-dependent micellization/demicellization transition at the tumoral acid pH. Also, they presented the pH-dependent drug release profile at the acidic pH of 6.4. The fluorescence dye, TRITC, encapsulated AP-pH-PMs (TRITC-AP-pH-PMs) presented the higher tumor-specific targeting ability in vitro cancer cell culture system and in vivo tumor-bearing mice, compared to control pH-responsive micelles of MPEG-PAE. For the cancer therapy, the anticancer drug, doxorubicin (DOX), was efficiently encapsulated into the AP-pH-PMs (DOX-AP-pH-PMs) with a higher loading efficiency. DOX-AP-pH-PMs efficiently deliver anticancer drugs in MDA-MB231 human breast tumor-bearing mice, resulted in excellent anticancer therapeutic efficacy, compared to free DOX and DOX encapsulated MEG-PAE micelles, indicating the excellent tumor targeting ability of AP-pH-PMs. Therefore, these tumor-targeting peptide-conjugated and pH-responsive polymeric micelles have great potential application in cancer therapy.

  3. Advances in Targeted Pesticides with Environmentally Responsive Controlled Release by Nanotechnology

    PubMed Central

    Huang, Bingna; Chen, Feifei; Shen, Yue; Wang, Yan; Sun, Changjiao; Zhao, Xiang; Cui, Bo; Gao, Fei; Zeng, Zhanghua; Cui, Haixin

    2018-01-01

    Pesticides are the basis for defending against major biological disasters and important for ensuring national food security. Biocompatible, biodegradable, intelligent, and responsive materials are currently an emerging area of interest in the field of efficient, safe, and green pesticide formulation. Using nanotechnology to design and prepare targeted pesticides with environmentally responsive controlled release via compound and chemical modifications has also shown great potential in creating novel formulations. In this review, special attention has been paid to intelligent pesticides with precise controlled release modes that can respond to micro-ecological environment changes such as light-sensitivity, thermo-sensitivity, humidity sensitivity, soil pH, and enzyme activity. Moreover, establishing intelligent and controlled pesticide release technologies using nanomaterials are reported. These technologies could increase pesticide-loading, improve the dispersibility and stability of active ingredients, and promote target ability. PMID:29439498

  4. Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis

    PubMed Central

    Chen, Zhen; Lai, Tsung-Ching; Jan, Yi-Hua; Lin, Feng-Mao; Wang, Wei-Chi; Xiao, Han; Wang, Yun-Ting; Sun, Wei; Cui, Xiaopei; Li, Ying-Shiuan; Fang, Tzan; Zhao, Hongwei; Padmanabhan, Chellappan; Sun, Ruobai; Wang, Danny Ling; Jin, Hailing; Chau, Gar-Yang; Huang, Hsien-Da; Hsiao, Michael; Shyy, John Y-J.

    2013-01-01

    Despite a general repression of translation under hypoxia, cells selectively upregulate a set of hypoxia-inducible genes. Results from deep sequencing revealed that Let-7 and miR-103/107 are hypoxia-responsive microRNAs (HRMs) that are strongly induced in vascular endothelial cells. In silico bioinformatics and in vitro validation showed that these HRMs are induced by HIF1α and target argonaute 1 (AGO1), which anchors the microRNA-induced silencing complex (miRISC). HRM targeting of AGO1 resulted in the translational desuppression of VEGF mRNA. Inhibition of HRM or overexpression of AGO1 without the 3′ untranslated region decreased hypoxia-induced angiogenesis. Conversely, AGO1 knockdown increased angiogenesis under normoxia in vivo. In addition, data from tumor xenografts and human cancer specimens indicate that AGO1-mediated translational desuppression of VEGF may be associated with tumor angiogenesis and poor prognosis. These findings provide evidence for an angiogenic pathway involving HRMs that target AGO1 and suggest that this pathway may be a suitable target for anti- or proangiogenesis strategies. PMID:23426184

  5. Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes.

    PubMed

    Li, Xiang; Yang, Weijing; Zou, Yan; Meng, Fenghua; Deng, Chao; Zhong, Zhiyuan

    2015-12-28

    Protein drugs as one of the most potent biotherapeutics have a tremendous potential in cancer therapy. Their application is, nevertheless, restricted by absence of efficacious, biocompatible, and cancer-targeting nanosystems. In this paper, we report that 2-[3-[5-amino-1-carboxypentyl]-ureido]-pentanedioic acid (Acupa)-decorated pH-responsive chimaeric polymersomes (Acupa-CPs) efficiently deliver therapeutic proteins into prostate cancer cells. Acupa-CPs had a unimodal distribution with average sizes ranging from 157-175 nm depending on amounts of Acupa. They displayed highly efficient loading of both model proteins, bovine serum albumin (BSA) and cytochrome C (CC), affording high protein loading contents of 9.1-24.5 wt.%. The in vitro release results showed that protein release was markedly accelerated at mildly acidic pH due to the hydrolysis of acetal bonds in the vesicular membrane. CLSM and MTT studies demonstrated that CC-loaded Acupa10-CPs mediated efficient delivery of protein drugs into PSMA positive LNCaP cells leading to pronounced antitumor effect, in contrast to their non-targeting counterparts and free CC. Remarkably, granzyme B (GrB)-loaded Acupa10-CPs caused effective apoptosis of LNCaP cells with a low half-maximal inhibitory concentration (IC50) of 1.6 nM. Flow cytometry and CLSM studies using MitoCapture™ revealed obvious depletion of mitochondria membrane potential in LNCaP cells treated with GrB-loaded Acupa10-CPs. The preliminary in vivo experiments showed that Acupa-CPs had a long circulation time with an elimination phase half-life of 3.3h in nude mice. PSMA-targeted, pH-responsive, and chimaeric polymersomes have appeared as efficient protein nanocarriers for targeted prostate cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. From Agents to Objects: Sexist Attitudes and Neural Responses to Sexualized Targets

    PubMed Central

    Cikara, Mina; Eberhardt, Jennifer L.; Fiske, Susan T.

    2013-01-01

    Agency attribution is a hallmark of mind perception; thus, diminished attributions of agency may disrupt social-cognition processes typically elicited by human targets. The current studies examine the effect of perceivers’ sexist attitudes on associations of agency with, and neural responses to, images of sexualized and clothed men and women. In study 1, male (but not female) participants with higher hostile sexism scores more quickly associated sexualized women with first-person action verbs (“handle”) and clothed women with third-person action verbs (“handles”) than the inverse, as compared to their less sexist peers. In study 2, hostile sexism correlated negatively with activation of regions associated with mental state attribution—mPFC, posterior cingulate, temporal poles—but only when viewing sexualized women. Heterosexual men best recognized images of sexualized female bodies (but not faces), as compared with other targets’ bodies; however, neither face nor body recognition were related to hostile sexism, suggesting the fMRI findings are not explained by more or less attention to sexualized female targets. Diminished mental-state attribution is not unique to targets that people prefer to avoid, as in dehumanization of stigmatized people. The current studies demonstrate that appetitive social targets may elicit a similar response depending on perceivers’ attitudes toward them. PMID:20350187

  7. Responses to Targets in the Visual Periphery in Deaf and Normal-Hearing Adults

    ERIC Educational Resources Information Center

    Rothpletz, Ann M.; Ashmead, Daniel H.; Tharpe, Anne Marie

    2003-01-01

    The purpose of this study was to compare the response times of deaf and normal-hearing individuals to the onset of target events in the visual periphery in distracting and nondistracting conditions. Visual reaction times to peripheral targets placed at 3 eccentricities to the left and right of a center fixation point were measured in prelingually…

  8. A unique role of endogenous visual-spatial attention in rapid processing of multiple targets

    PubMed Central

    Guzman, Emmanuel; Grabowecky, Marcia; Palafox, German; Suzuki, Satoru

    2012-01-01

    Visual spatial attention can be exogenously captured by a salient stimulus or can be endogenously allocated by voluntary effort. Whether these two attention modes serve distinctive functions is debated, but for processing of single targets the literature suggests superiority of exogenous attention (it is faster acting and serves more functions). We report that endogenous attention uniquely contributes to processing of multiple targets. For speeded visual discrimination, response times are faster for multiple redundant targets than for single targets due to probability summation and/or signal integration. This redundancy gain was unaffected when attention was exogenously diverted from the targets, but was completely eliminated when attention was endogenously diverted. This was not due to weaker manipulation of exogenous attention because our exogenous and endogenous cues similarly affected overall response times. Thus, whereas exogenous attention is superior for processing single targets, endogenous attention plays a unique role in allocating resources crucial for rapid concurrent processing of multiple targets. PMID:21517209

  9. Shock effects in particle beam fusion targets

    NASA Astrophysics Data System (ADS)

    Sweeney, M. A.; Perry, F. C.; Asay, J. R.; Widner, M. M.

    1982-04-01

    At Sandia National Laboratorics we are assessing the response of fusion target materials to shock loading with the particle beam accelerators HYDRA and PROTO I and the gas gun facility. Nonlinear shock-accelerated unstable growth of fabriction irregularities has been demonstrated, and jetting is found to occur in imploding targets because of asymmetric beam deposition. Cylindrical ion targets display an instability due either to beam or target nonuniformity. However, the data suggest targets with aspect ratios of 30 may implode stably. The first time- and space-resolved measurements of shock-induced vaporization have been made. A homogeneous mixed phase EOS model cannot adequately explain the results because of the kinetic effects of vapor formation and expansion.

  10. Effect of a viscoelastic target on the impact response of a flat-nosed projectile

    NASA Astrophysics Data System (ADS)

    Liu, Hu; Yang, Jialing; Liu, Hua

    2018-02-01

    Taylor impact is a widely used strategy in which a flat-nosed projectile is fired onto a rigid anvil directly to determine the dynamic strength of rod specimens. Nowadays, the rigid anvil is often replaced by an output target bar to ensure the accuracy of measurement via recording strain signals in the output bar. For testing the dynamic strength of low-density materials, a low-impedance target bar, which exhibits viscoelastic characteristics is often employed. In this paper, an extended Taylor model is proposed to improve the idealization of treating the target bar as perfectly rigid material in the classic Taylor model, and the viscoelastic effect of the target bar is incorporated. The viscoelastic target bar is depicted by two elastic springs and one dashpot. Based on the plastic shock wave theory in the flat-nosed projectile associated with the viscoelastic wave analysis in the target bar, the viscoelastic effect of the target bar on the impact response of the flat-nosed projectile is investigated. The finite element simulation is also carried out to verify the theoretical model, and good agreement is found. The present theoretical model is also called the Taylor-cylinder Hopkinson impact, which provides a more accurate way to identify the dynamic material parameters. The dynamic responses of the present model are further compared with previous elastic and rigid target bar models. It is found that the viscoelastic effect of the target bar should be taken into consideration in the Taylor-cylinder Hopkinson impact test for low-impedance materials.

  11. Vibrio elicits targeted transcriptional responses from copepod hosts.

    PubMed

    Almada, Amalia A; Tarrant, Ann M

    2016-06-01

    Copepods are abundant crustaceans that harbor diverse bacterial communities, yet the nature of their interactions with microbiota are poorly understood. Here, we report that Vibrio elicits targeted transcriptional responses in the estuarine copepod Eurytemora affinis We pre-treated E. affinis with an antibiotic cocktail and exposed them to either a zooplankton specialist (Vibrio sp. F10 9ZB36) or a free-living species (Vibrio ordalii 12B09) for 24 h. We then identified via RNA-Seq a total of 78 genes that were differentially expressed following Vibrio exposure, including homologs of C-type lectins, chitin-binding proteins and saposins. The response differed between the two Vibrio treatments, with the greatest changes elicited upon inoculation with V. sp. F10 We suggest that these differentially regulated genes play important roles in cuticle integrity, the innate immune response, and general stress response, and that their expression may enable E. affinis to recognize and regulate symbiotic vibrios. We further report that V. sp. F10 culturability is specifically altered upon colonization of E. affinis These findings suggest that rather than acting as passive environmental vectors, copepods discriminately interact with vibrios, which may ultimately impact the abundance and activity of copepod-associated bacteria. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The effect of monocular and binocular viewing on the accommodation response to real targets in emmetropia and myopia.

    PubMed

    Seidel, Dirk; Gray, Lyle S; Heron, Gordon

    2005-04-01

    Decreased blur-sensitivity found in myopia has been linked with reduced accommodation responses and myopigenesis. Although the mechanism for myopia progression remains unclear, it is commonly known that myopic patients rarely report near visual symptoms and are generally very sensitive to small changes in their distance prescription. This experiment investigated the effect of monocular and binocular viewing on static and dynamic accommodation in emmetropes and myopes for real targets to monitor whether inaccuracies in the myopic accommodation response are maintained when a full set of visual cues, including size and disparity, is available. Monocular and binocular steady-state accommodation responses were measured with a Canon R1 autorefractor for target vergences ranging from 0-5 D in emmetropes (EMM), late-onset myopes (LOM), and early-onset myopes (EOM). Dynamic closed-loop accommodation responses for a stationary target at 0.25 m and step stimuli of two different magnitudes were recorded for both monocular and binocular viewing. All refractive groups showed similar accommodation stimulus response curves consistent with previously published data. Viewing a stationary near target monocularly, LOMs demonstrated slightly larger accommodation microfluctuations compared with EMMs and EOMs; however, this difference was absent under binocular viewing conditions. Dynamic accommodation step responses revealed significantly (p < 0.05) longer response times for the myopic subject groups for a number of step stimuli. No significant difference in either reaction time or the number of correct responses for a given number of step-vergence changes was found between the myopic groups and EMMs. When viewing real targets with size and disparity cues available, no significant differences in the accuracy of static and dynamic accommodation responses were found among EMM, EOM, and LOM. The results suggest that corrected myopes do not experience dioptric blur levels that are

  13. Targeting Peripheral-Derived Regulatory T Cells as a Means of Enhancing Immune Responses Directed against Prostate Cancer

    DTIC Science & Technology

    2017-08-01

    Award Number: W81XWH-15-1-0328 TITLE: Targeting Peripheral-Derived Regulatory T Cells as a Means of Enhancing Immune Responses Directed against...1 August 2016 - 31 July 2017 4. TITLE AND SUBTITLE Targeting Peripheral-Derived Regulatory T Cells as a Means of Enhancing Immune Responses Directed...discovered that a subset of regulatory T cells (Tregs), termed peripheral-derived Tregs (pTregs), impair immune responses directed against tumor

  14. Unsteady penetration of a target by a liquid jet

    PubMed Central

    Uth, Tobias; Deshpande, Vikram S.

    2013-01-01

    It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet–target interface––this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet. PMID:24277818

  15. Growth Attenuation and Due Process: "A Response to Gunther and Diekema (2006)"

    ERIC Educational Resources Information Center

    Turnbull, Rud; Wehmeyer, Michael; Turnbull, Ann; Stowe, Matt

    2006-01-01

    This article presents the authors' response to Gunther and Diekema's argument about growth attenuation and due process. As a case study, growth attenuation raises complicated issues. The authors address some issues that have not been sufficiently addressed. Those involve family support, assistive technology, constitutional rights to "self," the…

  16. Molecular Targets in Advanced Therapeutics of Cancers: The Role of Pharmacogenetics.

    PubMed

    Abubakar, Murtala B; Gan, Siew Hua

    2016-01-01

    The advent of advanced molecular targeted therapy has resulted in improved prognoses for patients with advanced malignancies. However, despite the significant success and specificity of this advocated targeted therapy, significant on- and off-target adverse effects and inter-individual variability in treatment responses have been reported. The interpatient variability in drug response has been suggested to be partly due to variations in patient genomes. Therefore, the identification of genetic biomarkers by conducting pharmacogenetics studies can help predict patient responses to targeted therapy and may serve as a basis for individualized treatment. In this review, both clinically established and potential molecular targets are highlighted. Overall, current literature suggests that individualization of targeted therapy is promising; however, integrating the clinical benefits of identified biomarkers into clinical practice for personalized medicine remains a major challenge, and further studies to validate these markers and identify novel therapeutic approaches are needed. © 2016 S. Karger AG, Basel.

  17. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets

    PubMed Central

    Kim, Jong Youl; Kawabori, Masahito; Yenari, Midori A.

    2014-01-01

    Stroke is a frequent cause of long-term disability and death worldwide. Ischemic stroke is more commonly encountered compared to hemorrhagic stroke, and leads to tissue death by ischemia due to occlusion of a cerebral artery. Inflammation is known to result as a result of ischemic injury, long thought to be involved in initiating the recovery and repair process. However, work over the past few decades indicates that aspects of this inflammatory response may in fact be detrimental to stroke outcome. Acutely, inflammation appears to have a detrimental effect, and anti-inflammatory treatments have been been studied as a potential therapeutic target. Chronically, reports suggest that post-ischemic inflammation is also essential for the tissue repairing and remodeling. The majority of the work in this area has centered around innate immune mechanisms, which will be the focus of this review. This review describes the different key players in neuroinflammation and their possible detrimental and protective effects in stroke. A better understanding of the roles of the different immune cells and their temporal profile of damage versus repair will help to clarify more effective modulation of inflammation post stroke. Introduction Stroke refers to conditions caused by occlusion and/or rupture of blood vessels in the brain, and is a leading cause of death and disability in the industrialized world. PMID:24372209

  18. Maximize, minimize or target - optimization for a fitted response from a designed experiment

    DOE PAGES

    Anderson-Cook, Christine Michaela; Cao, Yongtao; Lu, Lu

    2016-04-01

    One of the common goals of running and analyzing a designed experiment is to find a location in the design space that optimizes the response of interest. Depending on the goal of the experiment, we may seek to maximize or minimize the response, or set the process to hit a particular target value. After the designed experiment, a response model is fitted and the optimal settings of the input factors are obtained based on the estimated response model. Furthermore, the suggested optimal settings of the input factors are then used in the production environment.

  19. MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha

    PubMed Central

    Li, Yingke; Fan, Xiaohua; He, Xingying; Sun, Haijing; Zou, Zui; Yuan, Hongbin; Xu, Haitao; Wang, Chengcai; Shi, Xueyin

    2012-01-01

    Effective recognition of viral infections and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs (miRNAs). A previous study showed that miR-466l upregulates IL-10 expression in macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. However, the ability of miR-466l to regulate antiviral immune responses remains unknown. Here, we found that interferon-alpha (IFN-α) expression was repressed in Sendai virus (SeV)- and vesicular stomatitis virus (VSV)-infected macrophages and in dendritic cells transfected with miR-466l expression. Moreover, multiple IFN-α species can be directly targeted by miR-466l through their 3′ untranslated region (3′UTR). This study has demonstrated that miR-466l could directly target IFN-α expression to inhibit host antiviral innate immune response. PMID:23042536

  20. Assessing the response to targeted therapies in renal cell carcinoma: technical insights and practical considerations.

    PubMed

    Bex, Axel; Fournier, Laure; Lassau, Nathalie; Mulders, Peter; Nathan, Paul; Oyen, Wim J G; Powles, Thomas

    2014-04-01

    The introduction of targeted agents for the treatment of renal cell carcinoma (RCC) has resulted in new challenges for assessing response to therapy, and conventional response criteria using computed tomography (CT) are limited. It is widely recognised that targeted therapies may lead to significant necrosis without significant reduction in tumour size. In addition, the vascular effects of antiangiogenic therapy may occur long before there is any reduction in tumour size. To perform a systematic review of conventional and novel imaging methods for the assessment of response to targeted agents in RCC and to discuss their use from a clinical perspective. Relevant databases covering the period January 2006 to April 2013 were searched for studies reporting on the use of anatomic and functional imaging techniques to predict response to targeted therapy in RCC. Inclusion criteria were randomised trials, nonrandomised controlled studies, retrospective case series, and cohort studies. Reviews, animal and preclinical studies, case reports, and commentaries were excluded. A narrative synthesis of the evidence is presented. A total of 331 abstracts and 76 full-text articles were assessed; 34 studies met the inclusion criteria. Current methods of response assessment in RCC include anatomic methods--based on various criteria including Choi, size and attenuation CT, and morphology, attenuation, size, and structure--and functional techniques including dynamic contrast-enhanced (DCE) CT, DCE-magnetic resonance imaging, DCE-ultrasonography, positron emission tomography, and approaches utilising radiolabelled monoclonal antibodies. Functional imaging techniques are promising surrogate biomarkers of response in RCC and may be more appropriate than anatomic CT-based methods. By enabling quantification of tumour vascularisation, functional techniques can directly and rapidly detect the biologic effects of antiangiogenic therapies compared with the indirect detection of belated effects

  1. Targeting the DNA damage response in oncology: past, present and future perspectives.

    PubMed

    Basu, Bristi; Yap, Timothy A; Molife, L Rhoda; de Bono, Johann S

    2012-05-01

    The success of poly(ADP-ribose) polymerase inhibition in BRCA1 or BRCA2 deficient tumors as an anticancer strategy provided proof-of-concept for a synthetic lethality approach in oncology. There is therefore now active interest in expanding this approach to include other agents targeting the DNA damage response (DDR). We review lessons learnt from the development of inhibitors against DNA damage response mechanisms and envision the future of DNA repair inhibition in oncology. Preclinical synthetic lethality screens may potentially identify the best combinations of DNA-damaging drugs with inhibitors of DNA repair and the DDR or two agents acting within the DDR. Efforts are currently being made to establish robust and cost-effective assays that may be implemented within appropriate time-scales in parallel with future clinical studies. Detection of relevant mutations in a high-throughput manner, such as with next-generation sequencing for genes implicated in homologous recombination, including BRCA1, BRCA2, and ataxia telangiectasia mutated is anticipated. Novel approaches targeting the DDR are currently being evaluated and inhibitors of ATM, RAD51 and DNA-dependent protein kinase are now in early drug discovery and development. There remains great enthusiasm in oncology practice for pursuing the strategy of synthetic lethality. The future development of antitumor agents targeting the DDR should include detailed correlative biomarker work within early phase clinical studies wherever possible, with clear attempts to identify doses at which robust target modulation is observed.

  2. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria

    PubMed Central

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K.; Rangarajan, Pundi N.; Padmanaban, Govindarajan

    2015-01-01

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15–20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8+ T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM. PMID:26227888

  3. Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress.

    PubMed

    Medina, Matías H; Correa, Juan A; Barata, Carlos

    2007-05-01

    Polluting events can change community structure and ecosystem functioning. Selection of genetically inherited tolerance on exposed populations, here referred as micro-evolution due to pollution, has been recognized as one of the causes of these changes. However, there is a gap between studies addressing this process and those assessing effects at higher levels of biological organization. In this review we attempt to address these evolutionary considerations into the ecological risk assessment (ERA) of polluting events and to trigger the discussion about the consequences of this process for the ecosystem response to toxic stress. We provide clear evidence that pollution drives micro-evolutionary processes in several species. When this process occurs, populations inhabiting environments that become polluted may persist. However, due to the existence of ecological costs derived from the loss of genetic variability, negative pleiotropy with fitness traits and/or from physiological alterations, micro-evolution due to pollution may alter different properties of the affected populations. Despite the existence of empirical evidence showing that safety margins currently applied in the ERA process may account for pollution-induced genetic changes in tolerance, information regarding long-term ecological consequences at higher levels of biological organization due to ecological costs is not explicitly considered in these procedures. In relation to this, we present four testable hypotheses considering that micro-evolution due to pollution acts upon the variability of functional response traits of the exposed populations and generates changes on their functional effect traits, therefore, modifying the way species exploit their ecological niches and participate in the overall ecosystem functioning.

  4. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

    PubMed

    Kumar, Dhananjay; Dutta, Summi; Singh, Dharmendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-01-01

    Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust

  5. Bleaching response of coral species in the context of assemblage response

    NASA Astrophysics Data System (ADS)

    Swain, Timothy D.; DuBois, Emily; Goldberg, Scott J.; Backman, Vadim; Marcelino, Luisa A.

    2017-06-01

    Caribbean coral reefs are declining due to a mosaic of local and global stresses, including climate change-induced thermal stress. Species and assemblage responses differ due to factors that are not easily identifiable or quantifiable. We calculated a novel species-specific metric of coral bleaching response, taxon- α and - β, which relates the response of a species to that of its assemblages for 16 species over 18 assemblages. By contextualizing species responses within the response of their assemblages, the effects of environmental factors are removed and intrinsic differences among taxa are revealed. Most corals experience either a saturation response, overly sensitive to weak stress ( α > 0) but under-responsive compared to assemblage bleaching ( β < 1), or a threshold response, insensitive to weak stress ( α < 0) but over-responsive compared to assemblage bleaching ( β > 1). This metric may help reveal key factors of bleaching susceptibility and identify species as targets for conservation.

  6. Bleaching response of coral species in the context of assemblage response.

    PubMed

    Swain, Timothy D; DuBois, Emily; Goldberg, Scott J; Backman, Vadim; Marcelino, Luisa A

    2017-06-01

    Caribbean coral reefs are declining due to a mosaic of local and global stresses, including climate change-induced thermal stress. Species and assemblage responses differ due to factors that are not easily identifiable or quantifiable. We calculated a novel species-specific metric of coral bleaching response, taxon-α and -β, which relates the response of a species to that of its assemblages for 16 species over 18 assemblages. By contextualizing species responses within the response of their assemblages, the effects of environmental factors are removed and intrinsic differences among taxa are revealed. Most corals experience either a saturation response, overly-sensitive to weak stress (α > 0) but under-responsive compared to assemblage bleaching (β < 1), or a threshold response, insensitive to weak stress (α < 0) but over-responsive compared to assemblage bleaching (β > 1). This metric may help reveal key factors of bleaching susceptibility and identify species as targets for conservation.

  7. In situ crosslinked smart polypeptide nanoparticles for multistage responsive tumor-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yi, Huqiang; Liu, Peng; Sheng, Nan; Gong, Ping; Ma, Yifan; Cai, Lintao

    2016-03-01

    Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR+) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR+ HeLa and FR- A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy.Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible

  8. Quantitation without Calibration: Response Profile as an Indicator of Target Amount.

    PubMed

    Debnath, Mrittika; Farace, Jessica M; Johnson, Kristopher D; Nesterova, Irina V

    2018-06-21

    Quantitative assessment of biomarkers is essential in numerous contexts from decision-making in clinical situations to food quality monitoring to interpretation of life-science research findings. However, appropriate quantitation techniques are not as widely addressed as detection methods. One of the major challenges in biomarker's quantitation is the need to have a calibration for correlating a measured signal to a target amount. The step complicates the methodologies and makes them less sustainable. In this work we address the issue via a new strategy: relying on position of response profile rather than on an absolute signal value for assessment of a target's amount. In order to enable the capability we develop a target-probe binding mechanism based on a negative cooperativity effect. A proof-of-concept example demonstrates that the model is suitable for quantitative analysis of nucleic acids over a wide concentration range. The general principles of the platform will be applicable toward a variety of biomarkers such as nucleic acids, proteins, peptides, and others.

  9. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy.

    PubMed

    Parida, Sheetal; Maiti, Chiranjit; Rajesh, Y; Dey, Kaushik K; Pal, Ipsita; Parekh, Aditya; Patra, Rusha; Dhara, Dibakar; Dutta, Pranab Kumar; Mandal, Mahitosh

    2017-01-01

    Gold nanorods, by virtue of surface plasmon resonance, convert incident light energy (NIR) into heat energy which induces hyperthermia. We designed unique, multifunctional, gold nanorod embedded block copolymer micelle loaded with GW627368X for targeted drug delivery and photothermal therapy. Glutathione responsive diblock co-polymer was synthesized by RAFT process forming self-assembled micelle on gold nanorods prepared by seed mediated method and GW627368X was loaded on to the reduction responsive gold nanorod embedded micelle. Photothermal therapy was administered using cwNIR laser (808nm; 4W/cm 2 ). Efficacy of nanoformulated GW627368X, photothermal therapy and combination of both were evaluated in vitro and in vivo. In response to photothermal treatment, cells undergo regulated, patterned cell death by necroptosis. Combining GW627368X with photothermal treatment using single nanoparticle enhanced therapeutic outcome. In addition, these nanoparticles are effective X-ray CT contrast agents, thus, can help in monitoring treatment. Reduction responsive nanorod embedded micelle containing folic acid and lipoic acid when treated on cervical cancer cells or tumour bearing mice, aggregate in and around cancer cells. Due to high glutathione concentration, micelles degrade releasing drug which binds surface receptors inducing apoptosis. When incident with 808nm cwNIR lasers, gold nanorods bring about photothermal effect leading to hyperthermic cell death by necroptosis. Combination of the two modalities enhances therapeutic efficacy by inducing both forms of cell death. Our proposed treatment strategy achieves photothermal therapy and targeted drug delivery simultaneously. It can prove useful in overcoming general toxicities associated with chemotherapeutics and intrinsic/acquired resistance to chemo and radiotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Response of the Left Ventral Attentional System to Invalid Targets and its Implication for the Spatial Neglect Syndrome: a Multivariate fMRI Investigation.

    PubMed

    Silvetti, Massimo; Lasaponara, Stefano; Lecce, Francesca; Dragone, Alessio; Macaluso, Emiliano; Doricchi, Fabrizio

    2016-12-01

    In humans, invalid visual targets that mismatch spatial expectations induced by attentional cues are considered to selectively engage a right hemispheric "reorienting" network that includes the temporal parietal junction (TPJ), the inferior frontal gyrus (IFG), and the medial frontal gyrus (MFG). However, recent findings suggest that this hemispheric dominance is not absolute and that it is rather observed because the TPJ and IFG areas in the left hemisphere are engaged both by invalid and valid cued targets. Because of this, the BOLD response of the left hemisphere to invalid targets is usually cancelled out by the standard "invalid versus valid" contrast used in functional magnetic resonance imaging investigations of spatial attention. Here, we used multivariate pattern recognition analysis (MVPA) to gain finer insight into the role played by the left TPJ and IFG in reorienting to invalid targets. We found that in left TPJ and IFG blood oxygen level-dependent (BOLD) responses to invalid and valid targets were associated to different patterns of neural activity, possibly reflecting the presence of functionally distinct neuronal populations. Pattern segregation was significant at group level, it was present in almost all of the participants to the study and was observed both for targets in the left and right side of space. A control whole-brain MVPA ("Searchlight" analysis) confirmed the results obtained in predefined regions of interest and highlighted that also other areas, that is, superior parietal and frontal-polar cortex, show different patterns of BOLD response to valid and invalid targets. These results confirm and expand previous evidence highlighting the involvement of the left hemisphere in reorienting of visual attention (Doricchi et al. 2010; Dragone et al. 2015). These findings suggest that asymmetrical reorienting deficits suffered by right brain damaged patients with left spatial neglect, who have severe impairments in contralesional reorienting and

  11. Smooth Pursuit Eye Movement Deficits in Patients With Whiplash and Neck Pain are Modulated by Target Predictability.

    PubMed

    Janssen, Malou; Ischebeck, Britta K; de Vries, Jurryt; Kleinrensink, Gert-Jan; Frens, Maarten A; van der Geest, Jos N

    2015-10-01

    This is a cross-sectional study. The purpose of this study is to support and extend previous observations on oculomotor disturbances in patients with neck pain and whiplash-associated disorders (WADs) by systematically investigating the effect of static neck torsion on smooth pursuit in response to both predictably and unpredictably moving targets using video-oculography. Previous studies showed that in patients with neck complaints, for instance due to WAD, extreme static neck torsion deteriorates smooth pursuit eye movements in response to predictably moving targets compared with healthy controls. Eye movements in response to a smoothly moving target were recorded with video-oculography in a heterogeneous group of 55 patients with neck pain (including 11 patients with WAD) and 20 healthy controls. Smooth pursuit performance was determined while the trunk was fixed in 7 static rotations relative to the head (from 45° to the left to 45° to right), using both predictably and unpredictably moving stimuli. Patients had reduced smooth pursuit gains and smooth pursuit gain decreased due to neck torsion. Healthy controls showed higher gains for predictably moving targets compared with unpredictably moving targets, whereas patients with neck pain had similar gains in response to both types of target movements. In 11 patients with WAD, increased neck torsion decreased smooth pursuit performance, but only for predictably moving targets. Smooth pursuit of patients with neck pain is affected. The previously reported WAD-specific decline in smooth pursuit due to increased neck torsion seems to be modulated by the predictability of the movement of the target. The observed oculomotor disturbances in patients with WAD are therefore unlikely to be induced by impaired neck proprioception alone. 3.

  12. BLISTER Regulates Polycomb-Target Genes, Represses Stress-Regulated Genes and Promotes Stress Responses in Arabidopsis thaliana.

    PubMed

    Kleinmanns, Julia A; Schatlowski, Nicole; Heckmann, David; Schubert, Daniel

    2017-01-01

    HIGHLIGHTS The PRC2 interacting protein BLISTER likely acts downstream of PRC2 to silence Polycomb target genes and is a key regulator of specific stress responses in Arabidopsis . Polycomb group (PcG) proteins are key epigenetic regulators of development. The highly conserved Polycomb repressive complex 2 (PRC2) represses thousands of target genes by trimethylating H3K27 (H3K27me3). Plant specific PcG components and functions are largely unknown, however, we previously identified the plant-specific protein BLISTER (BLI) as a PRC2 interactor. BLI regulates PcG target genes and promotes cold stress resistance. To further understand the function of BLI , we analyzed the transcriptional profile of bli-1 mutants. Approximately 40% of the up-regulated genes in bli are PcG target genes, however, bli-1 mutants did not show changes in H3K27me3 levels at all tested genes, indicating that BLI regulates PcG target genes downstream of or in parallel to PRC2. Interestingly, a significant number of BLI regulated H3K27me3 target genes is regulated by the stress hormone absciscic acid (ABA). We further reveal an overrepresentation of genes responding to abiotic stresses such as drought, high salinity, or heat stress among the up-regulated genes in bli mutants. Consistently, bli mutants showed reduced desiccation stress tolerance. We conclude that the PRC2 associated protein BLI is a key regulator of stress-responsive genes in Arabidopsis : it represses ABA-responsive PcG target genes, likely downstream of PRC2, and promotes resistance to several stresses such as cold and drought.

  13. Imaging Caspase-3 Activation as a Marker of Apoptosis-Targeted Treatment Response in Cancer

    PubMed Central

    Chen, Delphine L.; Engle, Jacquelyn T.; Griffin, Elizabeth A.; Miller, J. Philip; Chu, Wenhua; Zhou, Dong; Mach, Robert H.

    2016-01-01

    Purpose We tested whether positron emission tomography (PET) with the caspase-3 targeted isatin analog [18F]WC-4-116 could image caspase-3 activation in response to an apoptosis-inducing anticancer therapy. Procedures [18F]WC-4-116 uptake was determined in etoposide-treated EL4 cells. Biodistribution studies with [18F]WC-4-116 and [18F]ICMT-18, a non-caspase-3-targeted tracer, as well as [18F]WC-4-116 microPET imaging assessed responses in Colo205 tumor bearing mice treated with death receptor 5 (DR5) targeted agonist antibodies. Immunohistochemical staining and enzyme assays confirmed caspase-3 activation. Two-way analysis of variance or Student’s t-test assessed for treatment-related changes in tracer uptake. Results [18F]WC-4-116 increased 8 ± 2-fold in etoposide-treated cells. The [18F]WC-4-116 %ID/g also increased significantly in tumors with high caspase-3 enzyme activity (p < 0.05). [18F]ICMT-18 tumor uptake did not differ in tumors with high or low caspase-3 enzyme activity. Conclusions [18F]WC-4-116 uptake in vivo reflects increased caspase-3 activation and may be useful for detecting caspase-3 mediated apoptosis treatment responses in cancer. PMID:25344147

  14. Spatial negative priming: Location or response?

    PubMed

    Neill, W Trammell; Kleinsmith, Abigail L

    2016-11-01

    In tasks requiring a response to the location of a target stimulus (for example, reaching), responses often are slower to a location that was recently occupied by an irrelevant distractor stimulus. In most demonstrations of this "spatial negative priming" (SNP), there is a 1-to-1 correspondence between possible stimulus locations and possible responses. As such, it is ambiguous whether the effect is due to a location-specific processing delay or to inhibition of a response. In the present experiment, subjects were required to press a key corresponding to the ordinal position of a target O in one of four locations, ignoring a distractor X appearing in another location. Location markers were widely or narrowly spaced, such that the inner two locations of wide displays corresponded to the outer two locations of narrow displays (hence, requiring different responses). SNP occurred when a target appeared at the location of a recent distractor, regardless of whether the response was associated with the distractor. In contrast, no SNP occurred for a target sharing the same response as a distractor, but in a different location. The results strongly support a location-specific, rather than response-specific, locus of SNP.

  15. Exposure-response relationships for annoyance due to freight and passenger railway vibration exposure in residential environments.

    PubMed

    Sharp, Calum; Woodcock, James; Sica, Gennaro; Peris, Eulalia; Moorhouse, Andrew T; Waddington, David C

    2014-01-01

    In this work, exposure-response relationships for annoyance due to freight and passenger railway vibration exposure in residential environments are developed, so as to better understand the differences in human response to these two sources of environmental vibration. Data for this research come from a field study comprising interviews with respondents and measurements of their vibration exposure (N = 752). A logistic regression model is able to accurately classify 96% of these measured railway vibration signals as freight or passenger based on two signal properties that quantify the duration and low frequency content of each signal. Exposure-response relationships are then determined using ordinal probit modeling with fixed thresholds. The results indicate that people are able to distinguish between freight and passenger railway vibration, and that the annoyance response due to freight railway vibration is significantly higher than that due to passenger railway vibration, even for equal levels of exposure. In terms of a community tolerance level, the population studied is 15 dB (re 10(-6) m s(-2)) more tolerant to passenger railway vibration than freight railway vibration. These results have implications for the expansion of freight traffic on rail, or for policies to promote passenger railway.

  16. ErbB polymorphisms: insights and implications for response to targeted cancer therapeutics.

    PubMed

    Alaoui-Jamali, Moulay A; Morand, Grégoire B; da Silva, Sabrina Daniela

    2015-01-01

    Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs), polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3, and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary) and to acquired (secondary) resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.

  17. Evaluative priming of naming and semantic categorization responses revisited: a mutual facilitation explanation.

    PubMed

    Schmitz, Melanie; Wentura, Dirk

    2012-07-01

    The evaluative priming effect (i.e., faster target responses following evaluatively congruent compared with evaluatively incongruent primes) in nonevaluative priming tasks (such as naming or semantic categorization tasks) is considered important for the question of how evaluative connotations are represented in memory. However, the empirical evidence is rather ambiguous: Positive effects as well as null results and negatively signed effects have been found. We tested the assumption that different processes are responsible for these results. In particular, we argue that positive effects are due to target-encoding facilitation (caused by a congruent prime), while negative effects are due to prime-activation maintenance (caused by a congruent target) and subsequent response conflict. In 4 experiments, we used a negative prime-target stimulus-onset asynchrony (SOA) to minimize target-encoding facilitation and maximize prime maintenance. In a naming task (Experiment 1), we found a negatively signed evaluative priming effect if prime and target competed for naming responses. In a semantic categorization task (i.e., person vs. animal; Experiments 2 and 3), response conflicts between prime and target were significantly larger in case of evaluative congruence compared with incongruence. These results corroborate the theory that a prime has more potential to interfere with the target response if its activation is maintained by an evaluatively congruent target. Experiment 4a/b indicated valence specificity of the effect. Implications for the memory representation of valence are discussed. 2012 APA, all rights reserved

  18. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer.

    PubMed

    Corcoran, Claire; Rani, Sweta; Breslin, Susan; Gogarty, Martina; Ghobrial, Irene M; Crown, John; O'Driscoll, Lorraine

    2014-03-24

    While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630's regulation of mRNA, proteins and their phosphorylated forms. We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630's regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells

  19. Contrast media enhancement reduction predicts tumor response to presurgical molecular-targeting therapy in patients with advanced renal cell carcinoma.

    PubMed

    Hosogoe, Shogo; Hatakeyama, Shingo; Kusaka, Ayumu; Hamano, Itsuto; Tanaka, Yoshimi; Hagiwara, Kazuhisa; Hirai, Hideaki; Morohashi, Satoko; Kijima, Hiroshi; Yamamoto, Hayato; Tobisawa, Yuki; Yoneyama, Tohru; Yoneyama, Takahiro; Hashimoto, Yasuhiro; Koie, Takuya; Ohyama, Chikara

    2017-07-25

    A quantitative tumor response evaluation to molecular-targeting agents in advanced renal cell carcinoma (RCC) is debatable. We aimed to evaluate the relationship between radiologic tumor response and pathological response in patients with advanced RCC who underwent presurgical therapy. Of 34 patients, 31 underwent scheduled radical nephrectomy. Presurgical therapy agents included axitinib (n = 26), everolimus (n = 3), sunitinib (n = 1), and axitinib followed by temsirolimus (n = 1). The major presurgical treatment-related adverse event was grade 2 or 3 hypertension (44%). The median radiologic tumor response by RECIST, Choi, and CMER were -19%, -24%, and -49%, respectively. Among the radiologic tumor response tests, CMER showed a higher association with tumor necrosis in surgical specimens than others. Ki67/MIB1 status was significantly decreased in surgical specimens than in biopsy specimens. The magnitude of the slope of the regression line associated with the tumor necrosis percentage was greater in CMER than in Choi and RECIST. Between March 2012 and December 2016, we prospectively enrolled 34 locally advanced and/or metastatic RCC who underwent presurgical molecular-targeting therapy followed by radical nephrectomy. Primary endpoint was comparison of radiologic tumor response among Response Evaluation Criteria in Solid Tumors (RECIST), Choi, and contrast media enhancement reduction (CMER). Secondary endpoint included pathological downstaging, treatment related adverse events, postoperative complications, Ki67/MIB1 status, and tumor necrosis. CMER may predict tumor response after presurgical molecular-targeting therapy. Larger prospective studies are needed to develop an optimal tumor response evaluation for molecular-targeting therapy.

  20. Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer.

    PubMed

    Angus, Steven P; Zawistowski, Jon S; Johnson, Gary L

    2018-01-06

    Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.

  1. Development of a stress response therapy targeting aggressive prostate cancer.

    PubMed

    Nguyen, Hao G; Conn, Crystal S; Kye, Yae; Xue, Lingru; Forester, Craig M; Cowan, Janet E; Hsieh, Andrew C; Cunningham, John T; Truillet, Charles; Tameire, Feven; Evans, Michael J; Evans, Christopher P; Yang, Joy C; Hann, Byron; Koumenis, Constantinos; Walter, Peter; Carroll, Peter R; Ruggero, Davide

    2018-05-02

    Oncogenic lesions up-regulate bioenergetically demanding cellular processes, such as protein synthesis, to drive cancer cell growth and continued proliferation. However, the hijacking of these key processes by oncogenic pathways imposes onerous cell stress that must be mitigated by adaptive responses for cell survival. The mechanism by which these adaptive responses are established, their functional consequences for tumor development, and their implications for therapeutic interventions remain largely unknown. Using murine and humanized models of prostate cancer (PCa), we show that one of the three branches of the unfolded protein response is selectively activated in advanced PCa. This adaptive response activates the phosphorylation of the eukaryotic initiation factor 2-α (P-eIF2α) to reset global protein synthesis to a level that fosters aggressive tumor development and is a marker of poor patient survival upon the acquisition of multiple oncogenic lesions. Using patient-derived xenograft models and an inhibitor of P-eIF2α activity, ISRIB, our data show that targeting this adaptive brake for protein synthesis selectively triggers cytotoxicity against aggressive metastatic PCa, a disease for which presently there is no cure. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Neuronal responses to target onset in oculomotor and somatomotor parietal circuits differ markedly in a choice task.

    PubMed

    Kubanek, J; Wang, C; Snyder, L H

    2013-11-01

    We often look at and sometimes reach for visible targets. Looking at a target is fast and relatively easy. By comparison, reaching for an object is slower and is associated with a larger cost. We hypothesized that, as a result of these differences, abrupt visual onsets may drive the circuits involved in saccade planning more directly and with less intermediate regulation than the circuits involved in reach planning. To test this hypothesis, we recorded discharge activity of neurons in the parietal oculomotor system (area LIP) and in the parietal somatomotor system (area PRR) while monkeys performed a visually guided movement task and a choice task. We found that in the visually guided movement task LIP neurons show a prominent transient response to target onset. PRR neurons also show a transient response, although this response is reduced in amplitude, is delayed, and has a slower rise time compared with LIP. A more striking difference is observed in the choice task. The transient response of PRR neurons is almost completely abolished and replaced with a slow buildup of activity, while the LIP response is merely delayed and reduced in amplitude. Our findings suggest that the oculomotor system is more closely and obligatorily coupled to the visual system, whereas the somatomotor system operates in a more discriminating manner.

  3. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs

    PubMed Central

    Fouladi, Farnaz; Steffen, Kristine J.; Mallik, Sanku

    2017-01-01

    Liposomes are nanocarriers that deliver the payloads at the target site, leading to therapeutic drug concentrations at the diseased site and reduced toxic effects in healthy tissues. Several approaches have been used to enhance the ability of the nanocarrier to target the specific tissues, including ligand-targeted liposomes and stimuli-responsive liposomes. Ligand-targeted liposomes exhibit higher uptake by the target tissue due to the targeting ligand attached to the surface, while, the stimuli-responsive liposomes do not release their cargo unless they expose to an endogenous or exogenous stimulant at the target site. In this review, we mainly focus on the liposomes that are responsive to pathologically increased levels of enzymes at the target site. Enzyme-responsive liposomes release their cargo upon contact with the enzyme through several destabilization mechanisms: a) structural perturbation in the lipid bilayer, b) removal of a shielding polymer from the surface and increased cellular uptake, c) cleavage of a lipopeptide or lipopolymer incorporated in the bilayer, and d) activation of a prodrug in the liposomes. PMID:28201868

  5. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs.

    PubMed

    Fouladi, Farnaz; Steffen, Kristine J; Mallik, Sanku

    2017-04-19

    Liposomes are nanocarriers that deliver the payloads at the target site, leading to therapeutic drug concentrations at the diseased site and reduced toxic effects in healthy tissues. Several approaches have been used to enhance the ability of the nanocarrier to target the specific tissues, including ligand-targeted liposomes and stimuli-responsive liposomes. Ligand-targeted liposomes exhibit higher uptake by the target tissue due to the targeting ligand attached to the surface, while the stimuli-responsive liposomes do not release their cargo unless they expose to an endogenous or exogenous stimulant at the target site. In this review, we mainly focus on the liposomes that are responsive to pathologically increased levels of enzymes at the target site. Enzyme-responsive liposomes release their cargo upon contact with the enzyme through several destabilization mechanisms: (1) structural perturbation in the lipid bilayer, (2) removal of a shielding polymer from the surface and increased cellular uptake, (3) cleavage of a lipopeptide or lipopolymer incorporated in the bilayer, and (4) activation of a prodrug in the liposomes.

  6. An active target for the accelerator-based transmutation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebyonkin, K.F.

    1995-10-01

    Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket-the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the protonmore » beam and, hence considerably improve economic characteristics of the electronuclear reactor.« less

  7. Testing of the European Union exposure-response relationships and annoyance equivalents model for annoyance due to transportation noises: The need of revised exposure-response relationships and annoyance equivalents model.

    PubMed

    Gille, Laure-Anne; Marquis-Favre, Catherine; Morel, Julien

    2016-09-01

    An in situ survey was performed in 8 French cities in 2012 to study the annoyance due to combined transportation noises. As the European Commission recommends to use the exposure-response relationships suggested by Miedema and Oudshoorn [Environmental Health Perspective, 2001] to predict annoyance due to single transportation noise, these exposure-response relationships were tested using the annoyance due to each transportation noise measured during the French survey. These relationships only enabled a good prediction in terms of the percentages of people highly annoyed by road traffic noise. For the percentages of people annoyed and a little annoyed by road traffic noise, the quality of prediction is weak. For aircraft and railway noises, prediction of annoyance is not satisfactory either. As a consequence, the annoyance equivalents model of Miedema [The Journal of the Acoustical Society of America, 2004], based on these exposure-response relationships did not enable a good prediction of annoyance due to combined transportation noises. Local exposure-response relationships were derived, following the whole computation suggested by Miedema and Oudshoorn [Environmental Health Perspective, 2001]. They led to a better calculation of annoyance due to each transportation noise in the French cities. A new version of the annoyance equivalents model was proposed using these new exposure-response relationships. This model enabled a better prediction of the total annoyance due to the combined transportation noises. These results encourage therefore to improve the annoyance prediction for noise in isolation with local or revised exposure-response relationships, which will also contribute to improve annoyance modeling for combined noises. With this aim in mind, a methodology is proposed to consider noise sensitivity in exposure-response relationships and in the annoyance equivalents model. The results showed that taking into account such variable did not enable to enhance both

  8. Targeting modulates audiences' brain and behavioral responses to safe sex video ads.

    PubMed

    Wang, An-Li; Lowen, Steven B; Shi, Zhenhao; Bissey, Bryn; Metzger, David S; Langleben, Daniel D

    2016-10-01

    Video ads promoting condom use are a key component of media campaigns to stem the HIV epidemic. Recent neuroimaging studies in the context of smoking cessation, point to personal relevance as one of the key variables that determine the effectiveness of public health messages. While minority men who have sex with men (MSM) are at the highest risk of HIV infection, most safe-sex ads feature predominantly Caucasian actors in heterosexual scenarios. We compared brain respons of 45 African American MSM to safe sex ads that were matched (i.e. 'Targeted') to participants' sexual orientation and race, and 'Untargeted' ads that were un matched for these characteristics. Ad recall, perceived 'convincingness' and attitudes towards condom use were also assessed. We found that Targeted ads were better remembered than the Untargeted ads but perceived as equally convincing. Targeted ads engaged brain regions involved in self-referential processing and memory, including the amygdala, hippocampus, temporal and medial prefrontal cortices (MPFC) and the precuneus. Connectivity between MPFC and precuneus and middle temporal gyrus was stronger when viewing Targeted ads. Our results suggest that targeting may increase cognitive processing of safe sex ads and justify further prospective studies linking brain response to media public health interventions and clinical outcomes. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Targeting HSP90 dimerization via the C-terminus is effective in imatinib resistant CML and lacks heat shock response.

    PubMed

    Bhatia, Sanil; Diedrich, Daniela; Frieg, Benedikt; Ahlert, Heinz; Stein, Stefan; Bopp, Bertan; Lang, Franziska; Zang, Tao; Kröger, Tobias; Ernst, Thomas; Kögler, Gesine; Krieg, Andreas; Lüdeke, Steffen; Kunkel, Hana; Rodrigues Moita, Ana J; Kassack, Matthias U; Marquardt, Viktoria; Opitz, Friederike V; Oldenburg, Marina; Remke, Marc; Babor, Florian; Grez, Manuel; Hochhaus, Andreas; Borkhardt, Arndt; Groth, Georg; Nagel-Steger, Luitgard; Jose, Joachim; Kurz, Thomas; Gohlke, Holger; Hansen, Finn K; Hauer, Julia

    2018-05-03

    Heat shock protein 90 (HSP90) stabilizes many client proteins including BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of CML in which treatment-free remission (TFR) is limited with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics, which synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain (NTD) of HSP90 are under investigation; however, side effects such as induction of heat shock response (HSR) and toxicity have so far precluded their FDA approval. We have developed a novel inhibitor (referred to as aminoxyrone) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain (CTD). This was achieved by structure-based molecular design, chemical synthesis, and functional pre-clinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. Aminoxyrone (AX) is a promising potential candidate, which induces apoptosis in leukemic stem cells (LSCs) fraction (CD34 + CD38 - ) as well as the leukemic bulk (CD34 + CD38 + ) of primary CML and in TKI-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated and targeting HSP90 C-terminus by AX does not induce HSR in vitro and in vivo. We also probed the potential of AX in other therapy refractory leukemia such as BCR-ABL1+ BCP-ALL, FLT3-ITD+ AML and Ph-like BCP-ALL. Therefore, AX is the first peptidometic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other therapy-refractory leukemia, due to its low toxicity profile and lack of HSR. Copyright © 2018 American Society of Hematology.

  10. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer

    PubMed Central

    2014-01-01

    Background While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. Methods We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630’s regulation of mRNA, proteins and their phosphorylated forms. Results We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630’s regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby

  11. Vibration-response due to thickness loss on steel plate excited by resonance frequency

    NASA Astrophysics Data System (ADS)

    Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.

    2018-04-01

    The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.

  12. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  13. Differences between naïve and expert observers’ vergence and accommodative responses to a range of targets

    PubMed Central

    Horwood, Anna M; Riddell, Patricia M

    2015-01-01

    Purpose Vergence and accommodation studies often use adult participants with experience of vision science. Reports of infant and clinical responses are generally more variable and of lower gain, with the implication that differences lie in immaturity or sub-optimal clinical characteristics but expert /naïve differences are rarely considered or quantified. Methods Sixteen undergraduates, naïve to vision science were individually matched by age, visual acuity, refractive error, heterophoria, stereoacuity and near point of accommodation to 2nd & 3rd year orthoptics and optometry undergraduates (“experts”). Accommodation and vergence responses were assessed to targets moving between 33cm, 50 cm, 1m and 2m using a haploscopic device incorporating a PlusoptiX SO4 autorefractor. Disparity, blur and looming cues were separately available or minimised in all combinations. Instruction set was minimal. Results In all cases, vergence and accommodation response slopes (gain) were steeper and closer to 1.0 in the expert group (p=0.001), with the largest expert /naïve differences for both vergence and accommodation being for near targets (p=0.012). For vergence, the differences between expert and naïve response slopes increased with increasingly open-loop targets (linear trend p=0.025). Although we predicted that proximal cues would drive additional response in the experts, the proximity-only cue was the only condition that showed no statistical effect of experience. Conclusions Expert observers provide more accurate responses to near target demand than closely matched naïve observers. We suggest that attention, practice, voluntary and proprioceptive effects may enhance responses in experienced participants when compared to a more typical general population. Differences between adult reports and the developmental and clinical literature may partially reflect expert / naïve effects, as well as developmental change. If developmental and clinical studies are to be compared

  14. Changes in predictive cuing modulate the hemispheric distribution of the P1 inhibitory response to attentional targets.

    PubMed

    Lasaponara, Stefano; D' Onofrio, Marianna; Dragone, Alessio; Pinto, Mario; Caratelli, Ludovica; Doricchi, Fabrizio

    2017-05-01

    Brain activity related to orienting of attention with spatial cues and brain responses to attentional targets are influenced the probabilistic contingency between cues and targets. Compared to predictive cues, cues predicting at chance the location of targets reduce the filtering out of uncued locations and the costs in reorienting attention to targets presented at these locations. Slagter et al. (2016) have recently suggested that the larger target related P1 component that is found in the hemisphere ipsilateral to validly cued targets reflects stimulus-driven inhibition in the processing of the unstimulated side of space contralateral to the same hemisphere. Here we verified whether the strength of this inhibition and the amplitude of the corresponding P1 wave are modulated by the probabilistic link between cues and targets. Healthy participants performed a task of endogenous orienting once with predictive and once with non-predictive directional cues. In the non-predictive condition we observed a drop in the amplitude of the P1 ipsilateral to the target and in the costs of reorienting. No change in the inter-hemispheric latencies of the P1 was found between the two predictive conditions. The N1 facilitatory component was unaffected by predictive cuing. These results show that the predictive context modulates the strength of the inhibitory P1 response and that this modulation is not matched with changes in the inter-hemispheric interaction between the P1 generators of the two hemispheres. Copyright © 2017. Published by Elsevier Ltd.

  15. A gene expression profile indicative of early stage HER2 targeted therapy response.

    PubMed

    O'Neill, Fiona; Madden, Stephen F; Clynes, Martin; Crown, John; Doolan, Padraig; Aherne, Sinéad T; O'Connor, Robert

    2013-07-01

    Efficacious application of HER2-targetting agents requires the identification of novel predictive biomarkers. Lapatinib, afatinib and neratinib are tyrosine kinase inhibitors (TKIs) of HER2 and EGFR growth factor receptors. A panel of breast cancer cell lines was treated with these agents, trastuzumab, gefitinib and cytotoxic therapies and the expression pattern of a specific panel of genes using RT-PCR was investigated as a potential marker of early drug response to HER2-targeting therapies. Treatment of HER2 TKI-sensitive SKBR3 and BT474 cell lines with lapatinib, afatinib and neratinib induced an increase in the expression of RB1CC1, ERBB3, FOXO3a and NR3C1. The response directly correlated with the degree of sensitivity. This expression pattern switched from up-regulated to down-regulated in the HER2 expressing, HER2-TKI insensitive cell line MDAMB453. Expression of the CCND1 gene demonstrated an inversely proportional response to drug exposure. A similar expression pattern was observed following the treatment with both neratinib and afatinib. These patterns were retained following exposure to traztuzumab and lapatinib plus capecitabine. In contrast, gefitinib, dasatinib and epirubicin treatment resulted in a completely different expression pattern change. In these HER2-expressing cell line models, lapatinib, neratinib, afatinib and trastuzumab treatment generated a characteristic and specific gene expression response, proportionate to the sensitivity of the cell lines to the HER2 inhibitor.Characterisation of the induced changes in expression levels of these genes may therefore give a valuable, very early predictor of the likely extent and specificity of tumour HER2 inhibitor response in patients, potentially guiding more specific use of these agents.

  16. pH-Responsive Wormlike Micelles with Sequential Metastasis Targeting Inhibit Lung Metastasis of Breast Cancer.

    PubMed

    He, Xinyu; Yu, Haijun; Bao, Xiaoyue; Cao, Haiqiang; Yin, Qi; Zhang, Zhiwen; Li, Yaping

    2016-02-18

    Cancer metastasis is the main cause for the high mortality in breast cancer patients. Herein, we first report succinobucol-loaded pH-responsive wormlike micelles (PWMs) with sequential targeting capability to inhibit lung metastasis of breast cancer. PWMs can in a first step be delivered specifically to the sites of metastases in the lungs and then enable the intracellular pH-stimulus responsive drug release in cancer cells to improve the anti-metastatic effect. PWMs are identified as nanofibrillar assemblies with a diameter of 19.9 ± 1.9 nm and a length within the 50-200 nm range, and exhibited pH-sensitive drug release behavior in response to acidic intracellular environments. Moreover, PWMs can obviously inhibit the migration and invasion abilities of metastatic 4T1 breast cancer cells, and reduce the expression of the metastasis-associated vascular cell adhesion molecule-1 (VCAM-1) at 400 ng mL(-1) of succinobucol. In particular, PWMs can induce a higher specific accumulation in lung and be specifically delivered to the sites of metastases in lung, thereby leading to an 86.6% inhibition on lung metastasis of breast cancer. Therefore, the use of sequentially targeting PWMs can become an encouraging strategy for specific targeting and effective treatment of cancer metastasis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Targeting modulates audiences’ brain and behavioral responses to safe sex video ads

    PubMed Central

    Lowen, Steven B; Shi, Zhenhao; Bissey, Bryn; Metzger, David S.; Langleben, Daniel D.

    2016-01-01

    Video ads promoting condom use are a key component of media campaigns to stem the HIV epidemic. Recent neuroimaging studies in the context of smoking cessation, point to personal relevance as one of the key variables that determine the effectiveness of public health messages. While minority men who have sex with men (MSM) are at the highest risk of HIV infection, most safe-sex ads feature predominantly Caucasian actors in heterosexual scenarios. We compared brain respons of 45 African American MSM to safe sex ads that were matched (i.e. ‘Targeted’) to participants’ sexual orientation and race, and ‘Untargeted’ ads that were un matched for these characteristics. Ad recall, perceived ‘convincingness’ and attitudes towards condom use were also assessed. We found that Targeted ads were better remembered than the Untargeted ads but perceived as equally convincing. Targeted ads engaged brain regions involved in self-referential processing and memory, including the amygdala, hippocampus, temporal and medial prefrontal cortices (MPFC) and the precuneus. Connectivity between MPFC and precuneus and middle temporal gyrus was stronger when viewing Targeted ads. Our results suggest that targeting may increase cognitive processing of safe sex ads and justify further prospective studies linking brain response to media public health interventions and clinical outcomes. PMID:27217112

  18. Modulation of Target Recollection and Recollection Rejection Networks Due to Retrieval Facilitation and Interference

    ERIC Educational Resources Information Center

    Bowman, Caitlin R.; Sine, Shalome L.; Dennis, Nancy A.

    2017-01-01

    To better understand neural recollection processing, we induced interference in target recollection by presenting related lures before their respective targets and facilitated recollection rejection of lures by presenting targets before their related lures. Target recollection following interference recruited visual and prefrontal cortices,…

  19. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs.

    PubMed

    Zhong, Dongzhou; Xu, Geliang; Luo, Wei; Xiao, Zhenzhen

    2017-09-04

    According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.

  20. High throughput deep degradome sequencing reveals microRNAs and their targets in response to drought stress in mulberry (Morus alba).

    PubMed

    Li, Ruixue; Chen, Dandan; Wang, Taichu; Wan, Yizhen; Li, Rongfang; Fang, Rongjun; Wang, Yuting; Hu, Fei; Zhou, Hong; Li, Long; Zhao, Weiguo

    2017-01-01

    MicroRNAs (miRNAs) play important regulatory roles by targeting mRNAs for cleavage or translational repression. Identification of miRNA targets is essential to better understanding the roles of miRNAs. miRNA targets have not been well characterized in mulberry (Morus alba). To anatomize miRNA guided gene regulation under drought stress, transcriptome-wide high throughput degradome sequencing was used in this study to directly detect drought stress responsive miRNA targets in mulberry. A drought library (DL) and a contrast library (CL) were constructed to capture the cleaved mRNAs for sequencing. In CL, 409 target genes of 30 conserved miRNA families and 990 target genes of 199 novel miRNAs were identified. In DL, 373 target genes of 30 conserved miRNA families and 950 target genes of 195 novel miRNAs were identified. Of the conserved miRNA families in DL, mno-miR156, mno-miR172, and mno-miR396 had the highest number of targets with 54, 52 and 41 transcripts, respectively, indicating that these three miRNA families and their target genes might play important functions in response to drought stress in mulberry. Additionally, we found that many of the target genes were transcription factors. By analyzing the miRNA-target molecular network, we found that the DL independent networks consisted of 838 miRNA-mRNA pairs (63.34%). The expression patterns of 11 target genes and 12 correspondent miRNAs were detected using qRT-PCR. Six miRNA targets were further verified by RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-5' RACE). Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these target transcripts were implicated in a broad range of biological processes and various metabolic pathways. This is the first study to comprehensively characterize target genes and their associated miRNAs in response to drought stress by degradome sequencing in mulberry. This study provides a framework for understanding

  1. Attentional Control via Parallel Target-Templates in Dual-Target Search

    PubMed Central

    Barrett, Doug J. K.; Zobay, Oliver

    2014-01-01

    Simultaneous search for two targets has been shown to be slower and less accurate than independent searches for the same two targets. Recent research suggests this ‘dual-target cost’ may be attributable to a limit in the number of target-templates than can guide search at any one time. The current study investigated this possibility by comparing behavioural responses during single- and dual-target searches for targets defined by their orientation. The results revealed an increase in reaction times for dual- compared to single-target searches that was largely independent of the number of items in the display. Response accuracy also decreased on dual- compared to single-target searches: dual-target accuracy was higher than predicted by a model restricting search guidance to a single target-template and lower than predicted by a model simulating two independent single-target searches. These results are consistent with a parallel model of dual-target search in which attentional control is exerted by more than one target-template at a time. The requirement to maintain two target-templates simultaneously, however, appears to impose a reduction in the specificity of the memory representation that guides search for each target. PMID:24489793

  2. High need patients receiving targeted entitlements: what responsibilities do they have in primary health care?

    PubMed

    Buetow, S

    2005-05-01

    Patient responsibilities in primary health care are controversial and, by comparison, the responsibilities of high need patients are less clear. This paper aims to suggest why high need patients receiving targeted entitlements in primary health care are free to have prima facie special responsibilities; why, given this freedom, these patients morally have special responsibilities; what these responsibilities are, and how publicly funded health systems ought to be able to respond when these remain unmet. It is suggested that the special responsibilities and their place in public policy acquire moral significance as a means to discharge a moral debt, share special knowledge, and produce desirable consequences in regard to personal and collective interests. Special responsibilities magnify ordinary patient responsibilities and require patients not to hesitate regarding attendance for primary health care. Persistent patient disregard of special responsibilities may necessitate limiting the scope of these responsibilities, removing system barriers, or respecifying special rights.

  3. Frequency specificity in intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness.

    PubMed Central

    Li, Y; Goldbeter, A

    1989-01-01

    Cells often communicate by means of periodic signals, as exemplified by a large number of hormones and by the aggregation of Dictyostelium discoideum amebas in response to periodic pulses of cyclic AMP. Periodic signaling allows bypassing the phenomenon of desensitization brought about by constant stimuli. To gain further insight into the efficiency of pulsatile signaling, we analyze the effect of periodic stimulation on the dynamic behavior of a receptor system capable of desensitization toward its ligand. We first show that the receptor system adapts to square-wave stimuli, i.e., the response eventually reaches a steady, periodic pattern after a transient phase. By analyzing the dependence of the response on the characteristics of the square-wave stimulation, we show that there exist a waveform and a period of that signal that result in maximum responsiveness of the target system. Similar results are obtained when the signal takes the more realistic form of a periodically repeated stimulation followed by exponential decay of the ligand. The results are discussed with respect to the role of pulsatile secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus and of periodic signaling by cyclic AMP pulses in Dictyostelium. The analysis accounts for the existence, in both cases, of an optimal frequency and waveform of the periodic stimulus that correspond to maximum target cell responsiveness. PMID:2930817

  4. A gene expression profile indicative of early stage HER2 targeted therapy response

    PubMed Central

    2013-01-01

    Background Efficacious application of HER2-targetting agents requires the identification of novel predictive biomarkers. Lapatinib, afatinib and neratinib are tyrosine kinase inhibitors (TKIs) of HER2 and EGFR growth factor receptors. A panel of breast cancer cell lines was treated with these agents, trastuzumab, gefitinib and cytotoxic therapies and the expression pattern of a specific panel of genes using RT-PCR was investigated as a potential marker of early drug response to HER2-targeting therapies. Results Treatment of HER2 TKI-sensitive SKBR3 and BT474 cell lines with lapatinib, afatinib and neratinib induced an increase in the expression of RB1CC1, ERBB3, FOXO3a and NR3C1. The response directly correlated with the degree of sensitivity. This expression pattern switched from up-regulated to down-regulated in the HER2 expressing, HER2-TKI insensitive cell line MDAMB453. Expression of the CCND1 gene demonstrated an inversely proportional response to drug exposure. A similar expression pattern was observed following the treatment with both neratinib and afatinib. These patterns were retained following exposure to traztuzumab and lapatinib plus capecitabine. In contrast, gefitinib, dasatinib and epirubicin treatment resulted in a completely different expression pattern change. Conclusions In these HER2-expressing cell line models, lapatinib, neratinib, afatinib and trastuzumab treatment generated a characteristic and specific gene expression response, proportionate to the sensitivity of the cell lines to the HER2 inhibitor. Characterisation of the induced changes in expression levels of these genes may therefore give a valuable, very early predictor of the likely extent and specificity of tumour HER2 inhibitor response in patients, potentially guiding more specific use of these agents. PMID:23816254

  5. Action-perception dissociation in response to target acceleration.

    PubMed

    Dubrowski, Adam; Carnahan, Heather

    2002-05-01

    The purpose of this study was to investigate whether information about the acceleration characteristics of a moving target can be used for both action and perception. Also of interest was whether prior movement experience altered perceptual judgements. Participants manually intercepted targets moving with various acceleration, velocity and movement time characteristics. They also made perceptual judgements about the acceleration characteristics of these targets either with or without prior manual interception experience. Results showed that while aiming kinematics were sensitive to the acceleration characteristics of the target, participants were only able to perceptually discriminate the velocity characteristics of target motion, even after performing interceptive actions to the same targets. These results are discussed in terms of a two channel (action-perception) model of visuomotor control.

  6. Contact force history and dynamic response due to the impact of a soft projectile

    NASA Technical Reports Server (NTRS)

    Grady, J. E.

    1988-01-01

    A series of ballistic impact tests on several different instrumented targets was performed to characterize the dynamic contact force history resulting from the impact of a compliant projectile. The results show that the variation of contact force history with impact velocity does not follow the trends predicted by classical impact models. An empirical model was therefore developed to describe this behavior. This model was then used in a finite-element analysis to estimate the force history and calculate the resulting dynamic strain response in a transversely impacted composite laminate.

  7. Non-Targeted Effects and the Dose Response for Heavy Ion Tumorigenesis

    NASA Technical Reports Server (NTRS)

    Chappelli, Lori J.; Cucinotta, Francis A.

    2010-01-01

    BACKGROUND: There is no human epidemiology data available to estimate the heavy ion cancer risks experienced by astronauts in space. Studies of tumor induction in mice are a necessary step to estimate risks to astronauts. Previous experimental data can be better utilized to model dose response for heavy ion tumorigenesis and plan future low dose studies. DOSE RESPONSE MODELS: The Harderian Gland data of Alpen et al.[1-3] was re-analyzed [4] using non-linear least square regression. The data set measured the induction of Harderian gland tumors in mice by high-energy protons, helium, neon, iron, niobium and lanthanum with LET s ranging from 0.4 to 950 keV/micron. We were able to strengthen the individual ion models by combining data for all ions into a model that relates both radiation dose and LET for the ion to tumor prevalence. We compared models based on Targeted Effects (TE) to one motivated by Non-targeted Effects (NTE) that included a bystander term that increased tumor induction at low doses non-linearly. When comparing fitted models to the experimental data, we considered the adjusted R2, the Akaike Information Criteria (AIC), and the Bayesian Information Criteria (BIC) to test for Goodness of fit.In the adjusted R2test, the model with the highest R2values provides a better fit to the available data. In the AIC and BIC tests, the model with the smaller values of the summary value provides the better fit. The non-linear NTE models fit the combined data better than the TE models that are linear at low doses. We evaluated the differences in the relative biological effectiveness (RBE) and found the NTE model provides a higher RBE at low dose compared to the TE model. POWER ANALYSIS: The final NTE model estimates were used to simulate example data to consider the design of new experiments to detect NTE at low dose for validation. Power and sample sizes were calculated for a variety of radiation qualities including some not considered in the Harderian Gland data

  8. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles.

    PubMed

    Wu, Bo; Lu, Shu-Ting; Deng, Kai; Yu, Hui; Cui, Can; Zhang, Yang; Wu, Ming; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP) for tumor-targeted magnetic resonance imaging and therapy. Gd-FLPNPs can simultaneously accomplish diagnostic imaging, and specific targeting and controlled release of doxorubicin (DOX). They exhibit good monodispersity, excellent size stability, and a well-defined core-shell structure. Paramagnetic nanoparticles based on gadolinium-diethylenetriaminepentaacetic acid-bis-cetylamine have paramagnetic properties with an approximately two-fold enhancement in the longitudinal relaxivity compared to clinical used Magnevist. For targeted and reduction-sensitive drug delivery, Gd-FLPNPs released DOX faster and enhanced cell uptake in vitro, and exhibited better antitumor effect both in vitro and in vivo.

  9. Dual-Targeting Lactoferrin-Conjugated Polymerized Magnetic Polydiacetylene-Assembled Nanocarriers with Self-Responsive Fluorescence/Magnetic Resonance Imaging for In Vivo Brain Tumor Therapy.

    PubMed

    Fang, Jen-Hung; Chiu, Tsung-Lang; Huang, Wei-Chen; Lai, Yen-Ho; Hu, Shang-Hsiu; Chen, You-Yin; Chen, San-Yuan

    2016-03-01

    Maintaining a high concentration of therapeutic agents in the brain is difficult due to the restrictions of the blood-brain barrier (BBB) and rapid removal from blood circulation. To enable controlled drug release and enhance the blood-brain barrier (BBB)-crossing efficiency for brain tumor therapy, a new dual-targeting magnetic polydiacetylene nanocarriers (PDNCs) delivery system modified with lactoferrin (Lf) is developed. The PDNCs are synthesized using the ultraviolet (UV) cross-linkable 10,12-pentacosadiynoic acid (PCDA) monomers through spontaneous assembling onto the surface of superparamagnetic iron oxide (SPIO) nanoparticles to form micelles-polymerized structures. The results demonstrate that PDNCs will reduce the drug leakage and further control the drug release, and display self-responsive fluorescence upon intracellular uptake for cell trafficking and imaging-guided tumor treatment. The magnetic Lf-modified PDNCs with magnetic resonance imaging (MRI) and dual-targeting ability can enhance the transportation of the PDNCs across the BBB for tracking and targeting gliomas. An enhanced therapeutic efficiency can be obtained using Lf-Cur (Curcumin)-PDNCs by improving the retention time of the encapsulated Cur and producing fourfold higher Cur amounts in the brain compared to free Cur. Animal studies also confirm that Lf targeting and controlled release act synergistically to significantly suppress tumors in orthotopic brain-bearing rats. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting.

    PubMed

    Aguirre, Andrew J; Meyers, Robin M; Weir, Barbara A; Vazquez, Francisca; Zhang, Cheng-Zhong; Ben-David, Uri; Cook, April; Ha, Gavin; Harrington, William F; Doshi, Mihir B; Kost-Alimova, Maria; Gill, Stanley; Xu, Han; Ali, Levi D; Jiang, Guozhi; Pantel, Sasha; Lee, Yenarae; Goodale, Amy; Cherniack, Andrew D; Oh, Coyin; Kryukov, Gregory; Cowley, Glenn S; Garraway, Levi A; Stegmaier, Kimberly; Roberts, Charles W; Golub, Todd R; Meyerson, Matthew; Root, David E; Tsherniak, Aviad; Hahn, William C

    2016-08-01

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803. 2016 American Association for Cancer Research.

  11. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Heidegger, Simon; Gößl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole

    2015-12-01

    Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized

  12. Dynamic Nucleolar Targeting of Dengue Virus Polymerase NS5 in Response to Extracellular pH

    PubMed Central

    Fraser, Johanna E.; Rawlinson, Stephen M.; Heaton, Steven M.

    2016-01-01

    ABSTRACT The nucleolar subcompartment of the nucleus is increasingly recognized as an important target of RNA viruses. Here we document for the first time the ability of dengue virus (DENV) polymerase, nonstructural protein 5 (NS5), to accumulate within the nucleolus of infected cells and to target green fluorescent protein (GFP) to the nucleolus of live transfected cells. Intriguingly, NS5 exchange between the nucleus and nucleolus is dynamically modulated by extracellular pH, responding rapidly and reversibly to pH change, in contrast to GFP alone or other nucleolar and non-nucleolar targeted protein controls. The minimal pH-sensitive nucleolar targeting region (pHNTR), sufficient to target GFP to the nucleolus in a pH-sensitive fashion, was mapped to NS5 residues 1 to 244, with mutation of key hydrophobic residues, Leu-165, Leu-167, and Val-168, abolishing pHNTR function in NS5-transfected cells, and severely attenuating DENV growth in infected cells. This is the first report of a viral protein whose nucleolar targeting ability is rapidly modulated by extracellular stimuli, suggesting that DENV has the ability to detect and respond dynamically to the extracellular environment. IMPORTANCE Infections by dengue virus (DENV) threaten 40% of the world's population yet there is no approved vaccine or antiviral therapeutic to treat infections. Understanding the molecular details that govern effective viral replication is key for the development of novel antiviral strategies. Here, we describe for the first time dynamic trafficking of DENV nonstructural protein 5 (NS5) to the subnuclear compartment, the nucleolus. We demonstrate that NS5's targeting to the nucleolus occurs in response to acidic pH, identify the key amino acid residues within NS5 that are responsible, and demonstrate that their mutation severely impairs production of infectious DENV. Overall, this study identifies a unique subcellular trafficking event and suggests that DENV is able to detect and respond

  13. Tobacco drought stress responses reveal new targets for Solanaceae crop improvement.

    PubMed

    Rabara, Roel C; Tripathi, Prateek; Reese, R Neil; Rushton, Deena L; Alexander, Danny; Timko, Michael P; Shen, Qingxi J; Rushton, Paul J

    2015-06-30

    activity. We also present a list of potential targets for the improvement of Solanaceae drought responses.

  14. Low Voltage Activated Calcium Channels - Their Role in HER2 Driven Breast Cancer and Potential as a New Therapeutic Target

    DTIC Science & Technology

    2016-10-01

    combined with chemotherapy , but chemotherapy causes undesirable side effects due to off-target effects on normal tissue, which diminishes quality of life...highest response rates when combined with chemotherapy , but chemotherapy causes undesirable side effects due to off-target effects on normal...patients. Therefore, the overall goal of this proposal is to develop a tumor-specific, safe and effective therapy for breast cancer. We concentrate on

  15. Does estrogen play a role in response to adjuvant bone-targeted therapies?

    PubMed Central

    Russell, Kent; Amir, Eitan; Paterson, Alexander; Josse, Robert; Addison, Christina; Kuchuk, Iryna; Clemons, Mark

    2013-01-01

    Bone remains the most common site of breast cancer recurrence. The results of population studies, pre-clinical research and clinical studies in patients with metastatic disease provided a rationale for testing bone-targeted agents in the adjuvant setting. Despite the initial optimism, results from eight prospectively designed, randomized control studies powered to assess the value of adjuvant bone-targeted therapy in early breast cancer are conflicting. Data have shown that, where benefit exists, it tends to be in women with a “low estrogen environment”, either through menopause or suppression of ovarian function. In this manuscript, we review clinical data supporting the hypothesis that estrogen levels may play a part in explaining the response of patients to bone-targeted agents in the adjuvant setting. The results presented to date suggest that there may be data supporting a unifying role for estrogen in adjuvant trials. However, in the absence of any prospective randomized trials in which estrogen data has been systematically collected we cannot specifically answer this question. We await the results of the Oxford overview analysis of individual patient data with interest. PMID:26909288

  16. Training motor responses to food: A novel treatment for obesity targeting implicit processes.

    PubMed

    Stice, Eric; Lawrence, Natalia S; Kemps, Eva; Veling, Harm

    2016-11-01

    The present review first summarizes results from prospective brain imaging studies focused on identifying neural vulnerability factors that predict excessive weight gain. Next, findings from cognitive psychology experiments evaluating various interventions involving food response inhibition training or food response facilitation training are reviewed that appear to target these neural vulnerability factors and that have produced encouraging weight loss effects. Findings from both of these reviewed research fields suggest that interventions that reduce reward and attention region responses to high calorie food cues and increase inhibitory region responses to high calorie food cues could prove useful in the treatment of obesity. Based on this review, a new conceptual model is presented to describe how different cognitive training procedures may contribute to modifying eating behavior and important directions for future research are offered. It is concluded that there is a need for evaluating the effectiveness of more intensive food response training interventions and testing whether adding such training to extant weight loss interventions increases their efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Age-related changes in gait adaptability in response to unpredictable obstacles and stepping targets.

    PubMed

    Caetano, Maria Joana D; Lord, Stephen R; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Menant, Jasmine C

    2016-05-01

    A large proportion of falls in older people occur when walking. Limitations in gait adaptability might contribute to tripping; a frequently reported cause of falls in this group. To evaluate age-related changes in gait adaptability in response to obstacles or stepping targets presented at short notice, i.e.: approximately two steps ahead. Fifty older adults (aged 74±7 years; 34 females) and 21 young adults (aged 26±4 years; 12 females) completed 3 usual gait speed (baseline) trials. They then completed the following randomly presented gait adaptability trials: obstacle avoidance, short stepping target, long stepping target and no target/obstacle (3 trials of each). Compared with the young, the older adults slowed significantly in no target/obstacle trials compared with the baseline trials. They took more steps and spent more time in double support while approaching the obstacle and stepping targets, demonstrated poorer stepping accuracy and made more stepping errors (failed to hit the stepping targets/avoid the obstacle). The older adults also reduced velocity of the two preceding steps and shortened the previous step in the long stepping target condition and in the obstacle avoidance condition. Compared with their younger counterparts, the older adults exhibited a more conservative adaptation strategy characterised by slow, short and multiple steps with longer time in double support. Even so, they demonstrated poorer stepping accuracy and made more stepping errors. This reduced gait adaptability may place older adults at increased risk of falling when negotiating unexpected hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Identification of Submergence-Responsive MicroRNAs and Their Targets Reveals Complex MiRNA-Mediated Regulatory Networks in Lotus (Nelumbo nucifera Gaertn)

    PubMed Central

    Jin, Qijiang; Xu, Yingchun; Mattson, Neil; Li, Xin; Wang, Bei; Zhang, Xiao; Jiang, Hongwei; Liu, Xiaojing; Wang, Yanjie; Yao, Dongrui

    2017-01-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs with important regulatory functions in plant development and stress responses. However, their population abundance in lotus (Nelumbo nucifera Gaertn) has so far been poorly described, particularly in response to stresses. In this work, submergence-related miRNAs and their target genes were systematically identified, compared, and validated at the transcriptome-wide level using high-throughput sequencing data of small RNA, Mrna, and the degradome. A total of 128 known and 20 novel miRNAs were differentially expressed upon submergence. We identified 629 target transcripts for these submergence-responsive miRNAs. Based on the miRNA expression profiles and GO and KEGG annotation of miRNA target genes, we suggest possible molecular responses and physiological changes of lotus in response to submergence. Several metabolic, physiological and morphological adaptations-related miRNAs, i.e., NNU_far-miR159, NNU_gma-miR393h, and NNU_aly-miR319c-3p, were found to play important regulatory roles in lotus response to submergence. This work will contribute to a better understanding of miRNA-regulated adaption responses of lotus to submergence stress. PMID:28149304

  19. Target lesion response predicts survival of patients with hepatocellular carcinoma retreated with transarterial chemoembolization.

    PubMed

    Zhang, Yong-Fa; Guo, Rong-Ping; OuYang, Han-Yue; Shen, Jing-Xian; Zhao, Jing; Tan, Guo-Sheng; Le, Yong; Wei, Wei; Shi, Ming

    2016-10-01

    The discontinuation rules of transarterial chemoembolization (TACE) for patients who were assessed as progressive disease (PD) but stage progression-free (SP-free: still belongs to Barcelona Clinic Liver Cancer B) after TACE are unclear. We aimed to evaluate the impact of the PD-pattern on the survival of these patients retreated with TACE. In total, 115 consecutive patients who were assessed as PD but SP-free after TACE and then underwent at least one subsequent TACE session were included. Sixty patients were assessed as PD with target lesion progression (TP), and 55 patients were assessed as PD with target lesion non-progression (TNP). Survival and treatment-related adverse events were compared between the two groups. Additional external validation was performed using a data set (n = 103) from another institution. Patients with TNP had significantly longer median post-progression survival (PPS) than those with TP (21.0 vs. 11.9 months, P = 0.004). After TACE retreatment, the incidence of liver dysfunction was significantly higher for patients with TP than for patients with TNP (45% vs. 20%, P = 0.031). In the multivariate analysis, the target lesion response was one of the most significant prognostic factors for PPS (HR = 2.01; 95% confidence interval: 1.23-3.27; P = 0.005). The findings were supported by an independent external cohort. Compared to patients with TNP, patients with TP might exhibit no improvement in survival and even present damaged liver function after retreatment with TACE. Target lesion response is useful as a clinical decision for repeated TACE in these patients. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Deimmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins

    PubMed Central

    Grinberg, Yehudit; Benhar, Itai

    2017-01-01

    Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called “human cytotoxic fusion proteins”, in which antibodies are used to target human effector proteins. Here, we present three relevant approaches for reducing the immunogenicity of antibody-targeted protein therapeutics: (1) reducing the immunogenicity of the bacterial toxin, (2) fusing human cytokines to antibodies to generate immunocytokines and (3) addressing the immunogenicity of the targeting antibodies. PMID:28574434

  1. Due diligence responsibilities of the professional geologist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, G.W.

    1991-03-01

    Whether in the role of independent consultant or company employee, a geologist has certain professional obligations in the evaluation of an oil and gas submittal from a third party. 'Due diligence' is the term used to describe the analysis of an investment opportunity. Due diligence involves a multidisciplinary examination of both the technical and business aspects of a submittal. In addition to the obvious geological considerations, prospect evaluations should include relevant details about the specific technical documentation reviewed, information sources, and how the data were verified. Full disclosure of ownership, technical risks, and negative aspects of the prospect should bemore » included along with the positive elements. After the geological analysis is completed, the economic merits of the prospect should be analyzed, incorporating all lease burdens and terms of participation into the calculations. Estimated exploration, development, and operating costs, together with projected annual production, cash flow, and reserves must be examined as to their reasonableness. Finally, the due diligence review should include a thorough check on the reputation, financial condition, technical and managerial expertise, and prior track record of the operator. Bank, trade, legal, and prior partner references should be contacted. The successful professional geologist in today's competitive world must have multidisciplinary skills. A solid background in geology and geophysics, a basic understanding of the principles of petroleum engineering and economics, and the wits of a private eye are needed for good due diligence work.« less

  2. Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease.

    PubMed

    Pinweha, Nattaya; Asvarak, Thipa; Viboonjun, Unchera; Narangajavana, Jarunya

    2015-02-01

    Cassava is a starchy root crop for food and industrial applications in many countries around the world. Among the factors that affect cassava production, diseases remain the major cause of yield loss. Cassava anthracnose disease is caused by the fungus Colletotrichum gloeosporioides. Severe anthracnose attacks can cause tip die-backs and stem cankers, which can affect the availability of planting materials especially in large-scale production systems. Recent studies indicate that plants over- or under-express certain microRNAs (miRNAs) to cope with various stresses. Understanding how a disease-resistant plant protects itself from pathogens should help to uncover the role of miRNAs in the plant immune system. In this study, the disease severity assay revealed different response to C. gloeosporioides infection in two cassava cultivars. Quantitative RT-PCR analysis uncovered the differential expression of the two miRNAs and their target genes in the two cassava cultivars that were subjected to fungal infection. The more resistant cultivar revealed the up-regulation of miR160 and miR393, and consequently led to low transcript levels in their targets, ARF10 and TIR1, respectively. The more susceptible cultivar exhibited the opposite pattern. The cis-regulatory elements relevant to defense and stress responsiveness, fungal elicitor responsiveness and hormonal responses were the most prevalent present in the miRNAs gene promoter regions. The possible dual role of these specific miRNAs and their target genes associated with cassava responses to C. gloeosporioides is discussed. This is the first study to address the molecular events by which miRNAs which might play a role in fungal-infected cassava. A better understanding of the functions of miRNAs target genes should greatly increase our knowledge of the mechanism underlying susceptibility and lead to new strategies to enhance disease tolerance in this economically important crop. Copyright © 2014 Elsevier GmbH. All

  3. Texture-based measurement of spatial frequency response using the dead leaves target: extensions, and application to real camera systems

    NASA Astrophysics Data System (ADS)

    McElvain, Jon; Campbell, Scott P.; Miller, Jonathan; Jin, Elaine W.

    2010-01-01

    The dead leaves model was recently introduced as a method for measuring the spatial frequency response (SFR) of camera systems. The target consists of a series of overlapping opaque circles with a uniform gray level distribution and radii distributed as r-3. Unlike the traditional knife-edge target, the SFR derived from the dead leaves target will be penalized for systems that employ aggressive noise reduction. Initial studies have shown that the dead leaves SFR correlates well with sharpness/texture blur preference, and thus the target can potentially be used as a surrogate for more expensive subjective image quality evaluations. In this paper, the dead leaves target is analyzed for measurement of camera system spatial frequency response. It was determined that the power spectral density (PSD) of the ideal dead leaves target does not exhibit simple power law dependence, and scale invariance is only loosely obeyed. An extension to the ideal dead leaves PSD model is proposed, including a correction term to account for system noise. With this extended model, the SFR of several camera systems with a variety of formats was measured, ranging from 3 to 10 megapixels; the effects of handshake motion blur are also analyzed via the dead leaves target.

  4. Impaired airway mucociliary function reduces antigen-specific IgA immune response to immunization with a claudin-4-targeting nasal vaccine in mice.

    PubMed

    Suzuki, Hidehiko; Nagatake, Takahiro; Nasu, Ayaka; Lan, Huangwenxian; Ikegami, Koji; Setou, Mitsutoshi; Hamazaki, Yoko; Kiyono, Hiroshi; Yagi, Kiyohito; Kondoh, Masuo; Kunisawa, Jun

    2018-02-13

    Vaccine delivery is an essential element for the development of mucosal vaccine, but it remains to be investigated how physical barriers such as mucus and cilia affect vaccine delivery efficacy. Previously, we reported that C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) targeted claudin-4, which is expressed by the epithelium associated with nasopharynx-associated lymphoid tissue (NALT), and could be effective as a nasal vaccine delivery. Mice lacking tubulin tyrosine ligase-like family, member 1 (Ttll1-KO mice) showed mucus accumulation in nasal cavity due to the impaired motility of respiratory cilia. Ttll1-KO mice nasally immunized with C-CPE fused to pneumococcal surface protein A (PspA-C-CPE) showed reduced PspA-specific nasal IgA responses, impaired germinal center formation, and decreased germinal center B-cells and follicular helper T cells in the NALT. Although there was no change in the expression of claudin-4 in the NALT epithelium in Ttll1-KO mice, the epithelium was covered by a dense mucus that prevented the binding of PspA-C-CPE to NALT. However, administration of expectorant N-acetylcysteine removed the mucus and rescued the PspA-specific nasal IgA response. These results show that the accumulation of mucus caused by impaired respiratory cilia function is an interfering factor in the C-CPE-based claudin-4-targeting nasal vaccine.

  5. [Analysis of efficacy of radiofrequency obliteration with due regard for the target vein's diameter].

    PubMed

    Shaĭdakov, E V; Grigorian, A G; Iliukhin, E A; Bulatov, V L; Gal'chenko, M I

    2014-01-01

    Data concerning the effect of the target vein's diameter on efficacy of radiofrequency obliteration (RFO) in the current literature are limited. To assess efficacy of RFO and stripping, peculiarities of the postoperative period course with due regard for the diameter of the target veins, to compare the outcomes of RFO and classical phlebectomy in treatment of varicose disease during 1-year follow up by a composite end point. A multicenter prospective non-randomized study based on analysing therapeutic outcomes in a total of 218 patients presenting with varicose disease (C2-C3 according to the CEAP). RFO was performed in 108 patients and phlebectomy in 110 subjects. The results were assessed by means of a composite end point including four components: technical outcome at 1-year follow-up, pain, subcutaneous haemorrhage, and paresthesias. The groups of patients who endured RFO and phlebectomy were subdivided into two subgroups according to the target vein's diameter with a border of 14 mm. Statistical analysis. We used the methods of non-parametric statistics (contingency tables, chi squared test), calculating the odds ratio (OR) for a favourable outcome with a 95% confidential interval. Pain dynamics was assessed by means of intellectual data analysis (cluster analysis). «Phelbectomy ≥ 14 mm» and «RFO ≥ 14 mm». The incidence rate of a good outcome in the subgroups amounted to 20 (30.8%) and 61 (95.3%), respectively. The odds ratio for favourable outcome between the subgroups of RFA and phlebectomy amounted to 45.8; 95% CI (44.5-47.0). "RFA ≥ 14 mm" and "RFA < 14 mm". Favourable outcome rate in the subgroups amounted to 25 (39.1%) and 17 (38.6%), respectively. The differences were not statistically significant, p=0.24. The odds ratio for a good outcome between the RFO subgroups amounted to: OR=0.98; 95% CI (0.18-1.77). Comparative analysis of RFO outcomes between the clinics. Favourable outcome rate in the first clinic was 50 (92.6%), in the second 34 (87

  6. Liver - guardian, modifier and target of sepsis.

    PubMed

    Strnad, Pavel; Tacke, Frank; Koch, Alexander; Trautwein, Christian

    2017-01-01

    Sepsis and septic shock are characterized by life-threatening organ dysfunction caused by a dysregulated host response to infection. The liver has a central role during sepsis, and is essential to the regulation of immune defence during systemic infections by mechanisms such as bacterial clearance, acute-phase protein or cytokine production and metabolic adaptation to inflammation. However, the liver is also a target for sepsis-related injury, including hypoxic hepatitis due to ischaemia and shock, cholestasis due to altered bile metabolism, hepatocellular injury due to drug toxicity or overwhelming inflammation, as well as distinct pathologies such as secondary sclerosing cholangitis in critically ill patients. Hence, hepatic dysfunction substantially impairs the prognosis of sepsis and serves as a powerful independent predictor of mortality in the intensive care unit. Sepsis is particularly problematic in patients with liver cirrhosis (who experience increased bacterial translocation from the gut and impaired microbial defence) as it can trigger acute-on-chronic liver failure - a syndrome with high short-term mortality. Here, we review the importance of the liver as a guardian, modifier and target of sepsis, the factors that contribute to sepsis in patients with liver cirrhosis and new therapeutic strategies.

  7. Dual responsive PNIPAM-chitosan targeted magnetic nanopolymers for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yadavalli, Tejabhiram; Ramasamy, Shivaraman; Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal; Chennakesavulu, Ramasamy

    2015-04-01

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation.

  8. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM).

    PubMed

    Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P

    2016-02-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future

  9. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM)*

    PubMed Central

    Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P.

    2016-01-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future

  10. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching.

    PubMed

    Brydges, Christopher R; Barceló, Francisco

    2018-01-01

    Cognitive control warrants efficient task performance in dynamic and changing environments through adjustments in executive attention, stimulus and response selection. The well-known P300 component of the human event-related potential (ERP) has long been proposed to index "context-updating"-critical for cognitive control-in simple target detection tasks. However, task switching ERP studies have revealed both target P3 (300-350 ms) and later sustained P3-like potentials (400-1,200 ms) to first targets ensuing transition cues, although it remains unclear whether these target P3-like potentials also reflect context updating operations. To address this question, we applied novel single-trial EEG analyses-residue iteration decomposition (RIDE)-in order to disentangle target P3 sub-components in a sample of 22 young adults while they either repeated or switched (updated) task rules. The rationale was to revise the context updating hypothesis of P300 elicitation in the light of new evidence suggesting that "the context" consists of not only the sensory units of stimulation, but also associated motor units, and intermediate low- and high-order sensorimotor units, all of which may need to be dynamically updated on a trial by trial basis. The results showed functionally distinct target P3-like potentials in stimulus-locked, response-locked, and intermediate RIDE component clusters overlying parietal and frontal regions, implying multiple functionally distinct, though temporarily overlapping context updating operations. These findings support a reformulated version of the context updating hypothesis, and reveal a rich family of distinct target P3-like sub-components during the reactive control of target detection in task-switching, plausibly indexing the complex and dynamic workings of frontoparietal cortical networks subserving cognitive control.

  11. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching

    PubMed Central

    Brydges, Christopher R.; Barceló, Francisco

    2018-01-01

    Cognitive control warrants efficient task performance in dynamic and changing environments through adjustments in executive attention, stimulus and response selection. The well-known P300 component of the human event-related potential (ERP) has long been proposed to index “context-updating”—critical for cognitive control—in simple target detection tasks. However, task switching ERP studies have revealed both target P3 (300–350 ms) and later sustained P3-like potentials (400–1,200 ms) to first targets ensuing transition cues, although it remains unclear whether these target P3-like potentials also reflect context updating operations. To address this question, we applied novel single-trial EEG analyses—residue iteration decomposition (RIDE)—in order to disentangle target P3 sub-components in a sample of 22 young adults while they either repeated or switched (updated) task rules. The rationale was to revise the context updating hypothesis of P300 elicitation in the light of new evidence suggesting that “the context” consists of not only the sensory units of stimulation, but also associated motor units, and intermediate low- and high-order sensorimotor units, all of which may need to be dynamically updated on a trial by trial basis. The results showed functionally distinct target P3-like potentials in stimulus-locked, response-locked, and intermediate RIDE component clusters overlying parietal and frontal regions, implying multiple functionally distinct, though temporarily overlapping context updating operations. These findings support a reformulated version of the context updating hypothesis, and reveal a rich family of distinct target P3-like sub-components during the reactive control of target detection in task-switching, plausibly indexing the complex and dynamic workings of frontoparietal cortical networks subserving cognitive control. PMID:29515383

  12. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands.

    PubMed

    Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir

    2017-01-01

    Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Reversal of alcohol-induced effects on response control due to changes in proprioceptive information processing.

    PubMed

    Stock, Ann-Kathrin; Mückschel, Moritz; Beste, Christian

    2017-01-01

    Recent research has drawn interest to the effects of binge drinking on response selection. However, choosing an appropriate response is a complex endeavor that usually requires us to process and integrate several streams of information. One of them is proprioceptive information about the position of limbs. As to now, it has however remained elusive how binge drinking affects the processing of proprioceptive information during response selection and control in healthy individuals. We investigated this question using neurophysiological (EEG) techniques in a response selection task, where we manipulated proprioceptive information. The results show a reversal of alcohol-induced effects on response control due to changes in proprioceptive information processing. The most likely explanation for this finding is that proprioceptive information does not seem to be properly integrated in response selection processes during acute alcohol intoxication as found in binge drinking. The neurophysiological data suggest that processes related to the preparation and execution of the motor response, but not upstream processes related to conflict monitoring and spatial attentional orienting, underlie these binge drinking-dependent modulations. Taken together, the results show that even high doses of alcohol have very specific effects within the cascade of neurophysiological processes underlying response control and the integration of proprioceptive information during this process. © 2015 Society for the Study of Addiction.

  14. Epitope characterization of the ADA response directed against a targeted immunocytokine.

    PubMed

    Stubenrauch, Kay; Künzel, Christian; Vogel, Rudolf; Tuerck, Dietrich; Schick, Eginhard; Heinrich, Julia

    2015-10-10

    Targeted immunocytokines (TICs) display potent activity in selective tumor suppression. This class of multi domain biotherapeutics (MDBs) is composed of the three major domains Fab, Fc, and a cytokine which may induce a complex polyclonal anti-drug antibody (ADA) response. However, classical ADA assays usually are not suitable to specify ADAs and to identify the immunogenic domains of a TIC. The purpose of the present study was to establish epitope characterization of ADA responses in order to specify immunogenic responses against a TIC and their direct impact on the pharmacokinetic profile, safety, and efficacy. Based on standard ADA screening and confirmation assays, respectively, domain detection assays (DDAs) and domain competition assays (DCAs) were established and compared by the use of 12 ADA-positive samples obtained from a cynomolgus monkey study in early development. Both domain-specific assays were sensitive enough to preserve the positive screening assay result and revealed an overall accordance for the evaluation of domain-specific ADA responses. About half of the samples displayed one ADA specificity, either for the Fab or for the cytokine (Cy) domain, and the remaining samples showed a combination of Fab-specific and Cy-specific ADA fractions. Fc-specific ADAs occurred in only one sample. In-depth comparison of DCAs and DDAs showed that both assays appeared to be appropriate to assess multi-specific ADA responses as well as minor ADA fractions. An advantage of DCAs is typically a fast and easy assay establishment, whereas, DDAs in some cases may be superior to assess low abundant ADAs in multi-specific responses. Our results reveal that both approaches benefit from thorough reagent development as an essential precondition for reliable epitope characterization of ADA responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. External motivation to avoid prejudice alters neural responses to targets varying in race and status

    PubMed Central

    Mattan, Bradley D; Kubota, Jennifer T; Dang, Tzipporah P

    2018-01-01

    Abstract Those who are high in external motivation to respond without prejudice (EMS) tend to focus on non-racial attributes when describing others. This fMRI study examined the neural processing of race and an alternative yet stereotypically relevant attribute (viz., socioeconomic status: SES) as a function of the perceiver’s EMS. Sixty-one White participants privately formed impressions of Black and White faces ascribed with high or low SES. Analyses focused on regions supporting race- and status-based reward/salience (NAcc), evaluation (VMPFC) and threat/relevance (amygdala). Consistent with previous findings from the literature on status-based evaluation, we observed greater neural responses to high-status (vs low-status) targets in all regions of interest when participants were relatively low in EMS. In contrast, we observed the opposite pattern when participants were relatively high in EMS. Notably, all effects were independent of target race. In summary, White perceivers’ race-related motivations similarly altered their neural responses to the SES of Black and White targets. Specifically, the findings suggest that EMS may attenuate the positive value and/or salience of high status in a mixed-race context. Findings are discussed in the context of the stereotypic relationship between race and SES. PMID:29077925

  16. Extending the impulse response in order to reduce errors due to impulse noise and signal fading

    NASA Technical Reports Server (NTRS)

    Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.

    1988-01-01

    A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.

  17. The costs and benefits of temporal predictability: impaired inhibition of prepotent responses accompanies increased activation of task-relevant responses.

    PubMed

    Korolczuk, Inga; Burle, Boris; Coull, Jennifer T

    2018-06-20

    While the benefit of temporal predictability on sensorimotor processing is well established, it is still unknown whether this is due to efficient execution of an appropriate response and/or inhibition of an inappropriate one. To answer this question, we examined the effects of temporal predictability in tasks that required selective (Simon task) or global (Stop-signal task) inhibitory control of prepotent responses. We manipulated temporal expectation by presenting cues that either predicted (temporal cues) or not (neutral cues) when the target would appear. In the Simon task, performance was better when target location (left/right) was compatible with the hand of response and performance was improved further still if targets were temporally cued. However, Conditional Accuracy Functions revealed that temporal predictability selectively increased the number of fast, impulsive errors. Temporal cueing had no effect on selective response inhibition, as measured by the dynamics of the interference effect (delta plots) in the Simon task. By contrast, in the Stop-signal task, Stop-signal reaction time, a covert measure of a more global form of response inhibition, was significantly longer in temporally predictive trials. Therefore, when the time of target onset could be predicted in advance, it was harder to stop the impulse to respond to the target. Collectively, our results indicate that temporal cueing compounded the interfering effects of a prepotent response on task performance. We suggest that although temporal predictability enhances activation of task-relevant responses, it impairs inhibition of prepotent responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Why do we miss rare targets? Exploring the boundaries of the low prevalence effect

    PubMed Central

    Rich, Anina N.; Kunar, Melina A.; Van Wert, Michael J.; Hidalgo-Sotelo, Barbara; Horowitz, Todd S.; Wolfe, Jeremy M.

    2011-01-01

    Observers tend to miss a disproportionate number of targets in visual search tasks with rare targets. This ‘prevalence effect’ may have practical significance since many screening tasks (e.g., airport security, medical screening) are low prevalence searches. It may also shed light on the rules used to terminate search when a target is not found. Here, we use perceptually simple stimuli to explore the sources of this effect. Experiment 1 shows a prevalence effect in inefficient spatial configuration search. Experiment 2 demonstrates this effect occurs even in a highly efficient feature search. However, the two prevalence effects differ. In spatial configuration search, misses seem to result from ending the search prematurely, while in feature search, they seem due to response errors. In Experiment 3, a minimum delay before response eliminated the prevalence effect for feature but not spatial configuration search. In Experiment 4, a target was present on each trial in either two (2AFC) or four (4AFC) orientations. With only two response alternatives, low prevalence produced elevated errors. Providing four response alternatives eliminated this effect. Low target prevalence puts searchers under pressure that tends to increase miss errors. We conclude that the specific source of those errors depends on the nature of the search. PMID:19146299

  19. Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy

    PubMed Central

    2017-01-01

    Intercellular communications play a major role in tissue homeostasis and responses to external cues. Novel structures for this communication have recently been described. These tunneling nanotubes (TNTs) consist of thin-extended membrane protrusions that connect cells together. TNTs allow the cell-to-cell transfer of various cellular components, including proteins, RNAs, viruses, and organelles, such as mitochondria. Mesenchymal stem cells (MSCs) are both naturally present and recruited to many different tissues where their interaction with resident cells via secreted factors has been largely documented. Their immunosuppressive and repairing capacities constitute the basis for many current clinical trials. MSCs recruited to the tumor microenvironment also play an important role in tumor progression and resistance to therapy. MSCs are now the focus of intense scrutiny due to their capacity to form TNTs and transfer mitochondria to target cells, either in normal physiological or in pathological conditions, leading to changes in cell energy metabolism and functions, as described in this review. PMID:28659978

  20. In vivo space radiation-induced non-targeted responses: late effects on molecular signaling in mitochondria.

    PubMed

    Jain, Mohit R; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M; Pandey, Badri N; Li, Hong; Rabin, Bernard M; Azzam, Edouard I

    2011-06-01

    The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that 'network analyses' is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation.

  1. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Yang, Cheng-Xiong; Chen, Li-Gong; Yan, Xiu-Ping

    2017-05-01

    The integrated functions of diagnostics and therapeutics make theranostics great potential for personalized medicine. Stimulus-responsive therapy allows spatial control of therapeutic effect only in the site of interest, and offers promising opportunities for imaging-guided precision therapy. However, the imaging strategies in previous stimulus-responsive therapies are `always on' or irreversible `turn on' modality, resulting in poor signal-to-noise ratios or even `false positive' results. Here we show the design of dual-stimuli-responsive and reversibly activatable nanoprobe for precision tumour-targeting and fluorescence-guided photothermal therapy. We fabricate the nanoprobe from asymmetric cyanine and glycosyl-functionalized gold nanorods (AuNRs) with matrix metalloproteinases (MMPs)-specific peptide as a linker to achieve MMPs/pH synergistic and pH reversible activation. The unique activation and glycosyl targetibility makes the nanoprobe bright only in tumour sites with negligible background, while AuNRs and asymmetric cyanine give synergistic photothermal effect. This work paves the way to designing efficient nanoprobes for precision theranostics.

  2. A Smart Responsive Dual Aptamers-Targeted Bubble-Generating Nanosystem for Cancer Triplex Therapy and Ultrasound Imaging.

    PubMed

    Zhao, Feifei; Zhou, Jie; Su, Xiangjie; Wang, Yuhui; Yan, Xiaosa; Jia, Shaona; Du, Bin

    2017-05-01

    The absence of targeted, single treatment methods produces low therapeutic value for treating cancers. To increase the accumulation of drugs in tumors and improve the treatment effectiveness, near-infrared 808 nm photothermal responsive dual aptamers-targeted docetaxel (DTX)-containing nanoparticles is proposed. In this system, DTX and NH 4 HCO 3 are loaded in thermosensitive liposomes. The surface of liposomes is coated with gold nanoshells and connected with sulfydryl (SH) modified AS1411 and S2.2 aptamers. The nanosystem has good biocompatibility and uniform size (diameter about 200 nm). The drug is rapidly released, reaching a maximum amount (84%) at 4 h under 808 nm laser irradiation. The experiments conducted in vitro and in vivo demonstrate the nanosystem can synergistically inhibit tumor growth by combination of chemotherapy, photothermal therapy, and biological therapy. Dual ligand functionalization significantly increases cellular uptake on breast cancer cell line (MCF-7) cells and achieves ultrasound imaging (USI) at tumor site. The results indicate that this drug delivery system is a promising theranostic agent involving light-thermal response at tumor sites, dual ligand targeted triplex therapy, and USI. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cathepsin B-degradable, NIR-responsive nanoparticulate platform for target-specific cancer therapy

    NASA Astrophysics Data System (ADS)

    Tarassoli, Sam P.; Martinez de Pinillos Bayona, Alejandra; Pye, Hayley; Mosse, C. Alexander; Callan, John F.; MacRobert, Alexander; McHale, Anthony P.; Nomikou, Nikolitsa

    2017-02-01

    Stimuli-responsive anticancer formulations can promote drug release and activation within the target tumour, facilitate cellular uptake, as well as improve the therapeutic efficacy of drugs and reduce off-target effects. In the present work, indocyanine green (ICG)-containing polyglutamate (PGA) nanoparticles were developed and characterized. Digestion of nanoparticles with cathepsin B, a matrix metalloproteinase overexpressed in the microenvironment of advanced tumours, decreased particle size and increased ICG cellular uptake. Incorporation of ICG in PGA nanoparticles provided the NIR-absorbing agent with time-dependent altered optical properties in the presence of cathepsin B. Having minimal dark toxicity, the formulation exhibited significant cytotoxicity upon NIR exposure. Combined use of the formulation with saporin, a ribosome-inactivating protein, resulted in synergistically enhanced cytotoxicity attributed to the photo-induced release of saporin from endo/lysosomes. The results suggest that this therapeutic approach can offer significant therapeutic benefit in the treatment of superficial malignancies, such as head and neck tumours.

  4. Meeting national response time targets for priority 1 incidents in an urban emergency medical services system in South Africa: More ambulances won't help.

    PubMed

    Stein, Christopher; Wallis, Lee; Adetunji, Olufemi

    2015-09-19

    Response time is viewed as a key performance indicator in most emergency medical services (EMS) systems. To determine the effect of increased emergency vehicle numbers on response time performance for priority 1 incidents in an urban EMS system in Cape Town, South Africa, using discrete-event computer simulation. A simulation model was created, based on input data from part of the EMS operations. Two different versions of the model were used, one with primary response vehicles and ambulances and one with only ambulances. In both cases the models were run in seven different scenarios. The first scenario used the actual number of emergency vehicles in the real system, and in each subsequent scenario vehicle numbers were increased by adding the baseline number to the cumulative total. The model using only ambulances had shorter response times and a greater number of responses meeting national response time targets than models using primary response vehicles and ambulances. In both cases an improvement in response times and the number of responses meeting national response time targets was observed with the first incremental addition of vehicles. After this the improvements rapidly diminished and eventually became negligible with each successive increase in vehicle numbers. The national response time target for urban areas was never met, even with a seven-fold increase in vehicle numbers. The addition of emergency vehicles to an urban EMS system improves response times in priority 1 incidents, but alone is not capable of the magnitude of response time improvement needed to meet the national response time targets.

  5. Relativistic effects on galaxy redshift samples due to target selection

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Zhu, Hongyu; Giusarma, Elena

    2017-10-01

    In a galaxy redshift survey, the objects to be targeted for spectra are selected from a photometrically observed sample. The observed magnitudes and colours of galaxies in this parent sample will be affected by their peculiar velocities, through relativistic Doppler and relativistic beaming effects. In this paper, we compute the resulting expected changes in galaxy photometry. The magnitudes of the relativistic effects are a function of redshift, stellar mass, galaxy velocity and velocity direction. We focus on the CMASS sample from the Sloan Digital Sky Survey (SDSS) and Baryon Oscillation Spectroscopic Survey (BOSS), which is selected on the basis of colour and magnitude. We find that 0.10 per cent of the sample (∼585 galaxies) has been scattered into the targeted region of colour-magnitude space by relativistic effects, and conversely 0.09 per cent of the sample (∼532 galaxies) has been scattered out. Observational consequences of these effects include an asymmetry in clustering statistics, which we explore in a companion paper. Here, we compute a set of weights that can be used to remove the effect of modulations introduced into the density field inferred from a galaxy sample. We conclude by investigating the possible effects of these relativistic modulation on large-scale clustering of the galaxy sample.

  6. MiR-137 inhibited inflammatory response and apoptosis after spinal cord injury via targeting of MK2.

    PubMed

    Gao, Lin; Dai, Chenfei; Feng, Zhiping; Zhang, Lixin; Zhang, Zhiqiang

    2018-04-01

    Spinal cord injuries are common and troublesome disorder, which is mediated by various signal pathways and mechanisms. MK2 is also involved in numerous inflammatory diseases including spinal cord injury. The role of microRNA-137 (miR-137) and its detailed working mechanism in spinal cord injuries remain unclear. In the present study, we found that an elevated MK2 but a decreased miR-137 was expressed in serum specimens of patients with spinal cord injury and in hydrogen peroxide-treated C8-D1A and C8-B4 cells. Meanwhile, we suggested that upregulation of miR-137 could inhibit the expression of TNF-α and IL-6, two markers of inflammatory response after SCI, and apoptosis in hydrogen peroxide-treated C8-D1A and C8-B4 cells. Furthermore, we verified that MK2 was a direct target of miR-137 thorough a constructed luciferase assay. Even further, we elucidated that miR-137 could suppress the inflammatory response and apoptosis via negative regulation of MK2. Finally, through an animal model trial performed using mice, we demonstrated the protective effect of how miR-137 works on inflammatory response and apoptosis after spinal cord injury. Considering all the forementioned, our findings revealed that miR-137 inhibited inflammatory response and apoptosis after spinal cord injury via the targeting of MK2. The outcomes of the present study might indicate a new target in molecular treatment of SCI. © 2017 Wiley Periodicals, Inc.

  7. Variability of annoyance response due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Cawthorn, J. M.

    1979-01-01

    An investigation was conducted to study the variability in the response of subjects participating in noise experiments. This paper presents a description of a model developed to include this variability which incorporates an aircraft-noise adaptation level or an annoyance calibration for each individual. The results indicate that the use of an aircraft-noise adaption level improved prediction accuracy of annoyance responses (and simultaneously reduced response variation).

  8. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.

    PubMed

    Bursomanno, Sara; Beli, Petra; Khan, Asif M; Minocherhomji, Sheroy; Wagner, Sebastian A; Bekker-Jensen, Simon; Mailand, Niels; Choudhary, Chunaram; Hickson, Ian D; Liu, Ying

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Dissecting cellular responses to irradiation via targeted disruptions of the ATM-CHK1-PP2A circuit

    PubMed Central

    Palii, Stela S.; Cui, Yuxia; Innes, Cynthia L.; Paules, Richard S.

    2013-01-01

    Exposure of proliferating cells to genotoxic stresses activates a cascade of signaling events termed the DNA damage response (DDR). The DDR preserves genetic stability by detecting DNA lesions, activating cell cycle checkpoints and promoting DNA damage repair. The phosphoinositide 3-kinase-related kinases (PIKKs) ataxia telangiectasia-mutated (ATM), ATM and Rad 3-related kinase (ATR) and DNA-dependent protein kinase (DNA-PK) are crucial for sensing lesions and signal transduction. The checkpoint kinase 1 (CHK1) is a traditional ATR target involved in DDR and normal cell cycle progression and represents a pharmacological target for anticancer regimens. This study employed cell lines stably depleted for CHK1, ATM or both for dissecting cross-talk and compensatory effects on G₂/M checkpoint in response to ionizing radiation (IR). We show that a 90% depletion of CHK1 renders cells radiosensitive without abrogating their IR-mediated G₂/M checkpoint arrest. ATM phosphorylation is enhanced in CHK1-deficient cells compared with their wild-type counterparts. This correlates with lower nuclear abundance of the PP2A catalytic subunit in CHK1-depleted cells. Stable depletion of CHK1 in an ATM-deficient background showed only a 50% reduction from wild-type CHK1 protein expression levels and resulted in an additive attenuation of the G₂/M checkpoint response compared with the individual knockdowns. ATM inhibition and 90% CHK1 depletion abrogated the early G₂/M checkpoint and precluded the cells from mounting an efficient compensatory response to IR at later time points. Our data indicates that dual targeting of ATM and CHK1 functionalities disrupts the compensatory response to DNA damage and could be exploited for developing efficient anti-neoplastic treatments. PMID:23462183

  10. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma

    PubMed Central

    Li, Min; Zhang, Weiyue; Wang, Birong; Gao, Yang; Song, Zifang; Zheng, Qi Chang

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality worldwide. Chemotherapy is recommended to patients with intermediate or advanced stage cancer. However, the conventional chemotherapy yields low desired response rates due to multidrug resistance, fast clearance rate, nonspecific delivery, severe side effects, low drug concentration in cancer cells, and so on. Nanoparticle-mediated targeted drug delivery system can surmount the aforementioned obstacles through enhanced permeability and retention effect and active targeting as a novel approach of therapeutics for HCC in recent years. The active targeting is triggered by ligands on the delivery system, which recognize with and internalize into hepatoma cells with high specificity and efficiency. This review focuses on the latest targeted delivery systems for HCC and summarizes the ligands that can enhance the capacity of active targeting, to provide some insight into future research in nanomedicine for HCC. PMID:27920520

  11. Targeting targeted agents: open issues for clinical trial design.

    PubMed

    Bria, Emilio; Di Maio, Massimo; Carlini, Paolo; Cuppone, Federica; Giannarelli, Diana; Cognetti, Francesco; Milella, Michele

    2009-05-22

    Molecularly targeted agents for the treatment of solid tumors had entered the market in the last 5 years, with a great impact upon both the scientific community and the society. Many randomized phase III trials conducted in recent years with new targeted agents, despite previous data coming from preclinical research and from phase II trials were often promising, have produced disappointingly negative results. Some other trials have actually met their primary endpoint, demonstrating a statistically significant result favouring the experimental treatment. Unfortunately, with a few relevant exceptions, this advantage is often small, if not negligible, in absolute terms. The difference between statistical significance and clinical relevance should always be considered when translating clinical trials' results in the practice. The reason why this 'revolution' did not significantly impact on cancer treatment to displace chemotherapy from the patient' bedside is in part due to complicated, and in many cases, unknown, mechanisms of action of such drugs; indeed, the traditional way the clinical investigators were used to test the efficacy of 'older' chemotherapeutics, has become 'out of date' from the methodological perspective. As these drugs should be theoretically tailored upon featured bio-markers expressed by the patients, the clinical trial design should follow new rules based upon stronger hypotheses than those developed so far. Indeed, the early phases of basic and clinical drug development are crucial in the correct process which is able to correctly identify the target (when present). Targeted trial designs can result in easier studies, with less, better selected, and supported by stronger proofs of response evidences, patients, in order to not waste time and resources.

  12. New targeted therapies in pancreatic cancer.

    PubMed

    Seicean, Andrada; Petrusel, Livia; Seicean, Radu

    2015-05-28

    Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.

  13. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection.

    PubMed

    Holst, Peter J; Jensen, Benjamin A H; Ragonnaud, Emeline; Thomsen, Allan R; Christensen, Jan P

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilitates potent virus-induced T-cell responses against immunodominant epitopes during subsequent challenge with highly invasive virus. In contrast, when an immunodominant epitope was included in the vaccine, the T-cell response associated with viral challenge remained focussed on that epitope. Early after challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.

  14. Intramuscular Therapeutic Vaccination Targeting HPV16 Induces T Cell Responses That Localize in Mucosal Lesions

    PubMed Central

    Jotova, Iveta; Wu, T. C.; Wang, Chenguang; Desmarais, Cindy; Boyer, Jean D.; Tycko, Benjamin; Robins, Harlan S.; Clark, Rachael A.; Trimble, Cornelia L.

    2014-01-01

    About 25% of high-grade cervical intraepithelial neoplasias (CIN2/3) caused by human papillomavirus serotype 16 (HPV16) undergo complete spontaneous regression. However, to date, therapeutic vaccination strategies for HPV disease have yielded limited success when measured by their ability to induce robust peripheral blood T cell responses to vaccine antigen. We report marked immunologic changes in the target lesion microenvironment after intramuscular therapeutic vaccination targeting HPV16 E6/E7 antigens, in subjects with CIN2/3 who had modest detectable responses in circulating T lymphocytes. Histologic and molecular changes, including markedly (average threefold) increased intensity of CD8+ T cell infiltrates in both the stromal and epithelial compartments, suggest an effector response to vaccination. Postvaccination cervical tissue immune infiltrates included organized tertiary lymphoid-like structures in the stroma subjacent to residual intraepithelial lesions and, unlike infiltrates in unvaccinated lesions, showed evidence of proliferation induced by recognition of cognate antigen. At a molecular level, these histologic changes in the stroma were characterized by increased expression of genes associated with immune activation (CXCR3) and effector function (Tbet and IFNβ), and were also associated with an immunologic signature in the overlying dysplastic epithelium. High-throughput T cell receptor sequencing of unmanipulated specimens identified clonal expansions in the tissue that were not readily detectable in peripheral blood. Together, these findings indicate that peripheral therapeutic vaccination to HPV antigens can induce a robust tissue-localized effector immune response, and that analyses of immune responses at sites of antigen are likely to be much more informative than analyses of cells that remain in the circulation. PMID:24477000

  15. Evidence Report: Risk of Crew Adverse Health Event Due to Altered Immune Response

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Sams, Clarence F.

    2013-01-01

    The Risk of Crew Adverse Health Event Due to Altered Immune Response is identified by the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to human health and performance in space. The HRP Program Requirements Document (PRD) defines these risks. This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. It is known that human immune function is altered in- and post-flight, but it is unclear at present if such alterations lead to increased susceptibility to disease. Reactivation of latent viruses has been documented in crewmembers, although this reactivation has not been directly correlated with immune changes or with observed diseases. As described in this report, further research is required to better characterize the relationships between altered immune response and susceptibility to disease during and after spaceflight. This is particularly important for future deep-space exploration missions.

  16. (−)-Epigallocatechin Gallate Targets Notch to Attenuate the Inflammatory Response in the Immediate Early Stage in Human Macrophages

    PubMed Central

    Wang, Tengfei; Xiang, Zemin; Wang, Ya; Li, Xi; Fang, Chongye; Song, Shuang; Li, Chunlei; Yu, Haishuang; Wang, Han; Yan, Liang; Hao, Shumei; Wang, Xuanjun; Sheng, Jun

    2017-01-01

    Inflammation plays important roles at different stages of diabetes mellitus, tumorigenesis, and cardiovascular diseases. (−)-Epigallocatechin gallate (EGCG) can attenuate inflammatory responses effectively. However, the immediate early mechanism of EGCG in inflammation remains unclear. Here, we showed that EGCG attenuated the inflammatory response in the immediate early stage of EGCG treatment by shutting off Notch signaling and that the effect did not involve the 67-kDa laminin receptor, the common receptor for EGCG. EGCG eliminated mature Notch from the cell membrane and the nuclear Notch intercellular domain, the active form of Notch, within 2 min by rapid degradation via the proteasome pathway. Transcription of the Notch target gene was downregulated simultaneously. Knockdown of Notch 1/2 expression by RNA interference impaired the downregulation of the inflammatory response elicited by EGCG. Further study showed that EGCG inhibited lipopolysaccharide-induced inflammation and turned off Notch signaling in human primary macrophages. Taken together, our results show that EGCG targets Notch to regulate the inflammatory response in the immediate early stage. PMID:28443100

  17. Heat-Treatment-Responsive Proteins in Different Developmental Stages of Tomato Pollen Detected by Targeted Mass Accuracy Precursor Alignment (tMAPA).

    PubMed

    Chaturvedi, Palak; Doerfler, Hannes; Jegadeesan, Sridharan; Ghatak, Arindam; Pressman, Etan; Castillejo, Maria Angeles; Wienkoop, Stefanie; Egelhofer, Volker; Firon, Nurit; Weckwerth, Wolfram

    2015-11-06

    Recently, we have developed a quantitative shotgun proteomics strategy called mass accuracy precursor alignment (MAPA). The MAPA algorithm uses high mass accuracy to bin mass-to-charge (m/z) ratios of precursor ions from LC-MS analyses, determines their intensities, and extracts a quantitative sample versus m/z ratio data alignment matrix from a multitude of samples. Here, we introduce a novel feature of this algorithm that allows the extraction and alignment of proteotypic peptide precursor ions or any other target peptide from complex shotgun proteomics data for accurate quantification of unique proteins. This strategy circumvents the problem of confusing the quantification of proteins due to indistinguishable protein isoforms by a typical shotgun proteomics approach. We applied this strategy to a comparison of control and heat-treated tomato pollen grains at two developmental stages, post-meiotic and mature. Pollen is a temperature-sensitive tissue involved in the reproductive cycle of plants and plays a major role in fruit setting and yield. By LC-MS-based shotgun proteomics, we identified more than 2000 proteins in total for all different tissues. By applying the targeted MAPA data-processing strategy, 51 unique proteins were identified as heat-treatment-responsive protein candidates. The potential function of the identified candidates in a specific developmental stage is discussed.

  18. Encoding of Target Detection during Visual Search by Single Neurons in the Human Brain.

    PubMed

    Wang, Shuo; Mamelak, Adam N; Adolphs, Ralph; Rutishauser, Ueli

    2018-06-08

    Neurons in the primate medial temporal lobe (MTL) respond selectively to visual categories such as faces, contributing to how the brain represents stimulus meaning. However, it remains unknown whether MTL neurons continue to encode stimulus meaning when it changes flexibly as a function of variable task demands imposed by goal-directed behavior. While classically associated with long-term memory, recent lesion and neuroimaging studies show that the MTL also contributes critically to the online guidance of goal-directed behaviors such as visual search. Do such tasks modulate responses of neurons in the MTL, and if so, do their responses mirror bottom-up input from visual cortices or do they reflect more abstract goal-directed properties? To answer these questions, we performed concurrent recordings of eye movements and single neurons in the MTL and medial frontal cortex (MFC) in human neurosurgical patients performing a memory-guided visual search task. We identified a distinct population of target-selective neurons in both the MTL and MFC whose response signaled whether the currently fixated stimulus was a target or distractor. This target-selective response was invariant to visual category and predicted whether a target was detected or missed behaviorally during a given fixation. The response latencies, relative to fixation onset, of MFC target-selective neurons preceded those in the MTL by ∼200 ms, suggesting a frontal origin for the target signal. The human MTL thus represents not only fixed stimulus identity, but also task-specified stimulus relevance due to top-down goal relevance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Cellular Immune Responses against Simian T-Lymphotropic Virus Type 1 Target Tax in Infected Baboons

    PubMed Central

    Castro, Iris; Giret, Teresa M.; Magnani, Diogo M.; Maxwell, Helen S.; Umland, Oliver; Perry, Jessica K.; Pecotte, Jerilyn K.; Brasky, Kathleen M.; Barber, Glen N.; Desrosiers, Ronald C.

    2016-01-01

    ABSTRACT There are currently 5 million to 10 million human T-lymphotropic virus type 1 (HTLV-1)-infected people, and many of them will develop severe complications resulting from this infection. A vaccine is urgently needed in areas where HTLV-1 is endemic. Many vaccines are best tested in nonhuman primate animal models. As a first step in designing an effective HTLV-1 vaccine, we defined the CD8+ and CD4+ T cell response against simian T-lymphotropic virus type 1 (STLV-1), a virus closely related to HTLV-1, in olive baboons (Papio anubis). Consistent with persistent antigenic exposure, we observed that STLV-1-specific CD8+ T cells displayed an effector memory phenotype and usually expressed CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α). To assess the viral targets of the cellular immune response in STLV-1-infected animals, we used intracellular cytokine staining to detect responses against overlapping peptides covering the entire STLV-1 proteome. Our results show that, similarly to humans, the baboon CD8+ T cell response narrowly targeted the Tax protein. Our findings suggest that the STLV-1-infected baboon model may recapitulate some of the important aspects of the human response against HTLV-1 and could be an important tool for the development of immune-based therapy and prophylaxis. IMPORTANCE HTLV-1 infection can lead to many different and often fatal conditions. A vaccine deployed in areas of high prevalence might reduce the incidence of HTLV-1-induced disease. Unfortunately, there are very few animal models of HTLV-1 infection useful for testing vaccine approaches. Here we describe cellular immune responses in baboons against a closely related virus, STLV-1. We show for the first time that the immune response against STLV-1 in naturally infected baboons is largely directed against the Tax protein. Similar findings in humans and the sequence similarity between the human and baboon viruses suggest that the STLV-1-infected baboon

  20. Target-to-Target Repetition Cost and Location Negative Priming Are Dissociable: Evidence for Different Mechanisms

    ERIC Educational Resources Information Center

    Chao, Hsuan-Fu

    2011-01-01

    In a location-selection task, the repetition of a prior distractor location as the target location would slow down the response. This effect is termed the location negative priming (NP) effect. Recently, it has been demonstrated that repetition of a prior target location as the current target location would also slow down response. Because such…

  1. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-07

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  2. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana.

    PubMed

    Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S

    2005-07-15

    A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.

  3. Invariance of evoked-potential echo-responses to target strength and distance in an echolocating false killer whale

    NASA Astrophysics Data System (ADS)

    Supin, Alexander Ya.; Nachtigall, Paul E.; Au, Whitlow W. L.; Breese, Marlee

    2005-06-01

    Brain auditory evoked potentials (AEPs) were recorded in a false killer whale Pseudorca crassidens trained to accept suction-cup EEG electrodes and to detect targets by echolocation. AEP collection was triggered by echolocation pulses transmitted by the animal. The target strength varied from -22 to -40 dB the distance varied from 1.5 to 6 m. All the records contained two AEP sets: the first one of a constant latency (transmission-related AEP) and a second one with a delay proportional to the distance (echo-related AEP). The amplitude of echo-related AEPs was almost independent of both target strength and distance, though combined variation of these two parameters resulted in echo intensity variation within a range of 42 dB. The amplitude of transmission-related AEPs was independent of distance but dependent on target strength: the less the target strength, the higher the amplitude. Recording of transmitted pulses has not shown their intensity dependence on target strength. It is supposed that the constancy of echo-related AEP results from variation of hearing sensitivity depending on the target strength and release of echo-related responses from masking by transmitted pulses depending on the distance. .

  4. Invariance of evoked-potential echo-responses to target strength and distance in an echolocating false killer whale.

    PubMed

    Supin, Alexander Ya; Nachtigall, Paul E; Au, Whitlow W L; Breese, Marlee

    2005-06-01

    Brain auditory evoked potentials (AEPs) were recorded in a false killer whale Pseudorca crassidens trained to accept suction-cup EEG electrodes and to detect targets by echolocation. AEP collection was triggered by echolocation pulses transmitted by the animal. The target strength varied from -22 to -40 dB; the distance varied from 1.5 to 6 m. All the records contained two AEP sets: the first one of a constant latency (transmission-related AEP) and a second one with a delay proportional to the distance (echo-related AEP). The amplitude of echo-related AEPs was almost independent of both target strength and distance, though combined variation of these two parameters resulted in echo intensity variation within a range of 42 dB. The amplitude of transmission-related AEPs was independent of distance but dependent on target strength: the less the target strength, the higher the amplitude. Recording of transmitted pulses has not shown their intensity dependence on target strength. It is supposed that the constancy of echo-related AEP results from variation of hearing sensitivity depending on the target strength and release of echo-related responses from masking by transmitted pulses depending on the distance.

  5. RuBisCO depletion improved proteome coverage of cold responsive S-nitrosylated targets in Brassica juncea

    PubMed Central

    Sehrawat, Ankita; Abat, Jasmeet K.; Deswal, Renu

    2013-01-01

    Although in the last few years good number of S-nitrosylated proteins are identified but information on endogenous targets is still limiting. Therefore, an attempt is made to decipher NO signaling in cold treated Brassica juncea seedlings. Treatment of seedlings with substrate, cofactor and inhibitor of Nitric-oxide synthase and nitrate reductase (NR), indicated NR mediated NO biosynthesis in cold. Analysis of the in vivo thiols showed depletion of low molecular weight thiols and enhancement of available protein thiols, suggesting redox changes. To have a detailed view, S-nitrosylation analysis was done using biotin switch technique (BST) and avidin-affinity chromatography. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is S-nitrosylated and therefore, is identified as target repeatedly due to its abundance. It also competes out low abundant proteins which are important NO signaling components. Therefore, RuBisCO was removed (over 80%) using immunoaffinity purification. Purified S-nitrosylated RuBisCO depleted proteins were resolved on 2-D gel as 110 spots, including 13 new, which were absent in the crude S-nitrosoproteome. These were identified by nLC-MS/MS as thioredoxin, fructose biphosphate aldolase class I, myrosinase, salt responsive proteins, peptidyl-prolyl cis-trans isomerase and malate dehydrogenase. Cold showed differential S-nitrosylation of 15 spots, enhanced superoxide dismutase activity (via S-nitrosylation) and promoted the detoxification of superoxide radicals. Increased S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase sedoheptulose-biphosphatase, and fructose biphosphate aldolase, indicated regulation of Calvin cycle by S-nitrosylation. The results showed that RuBisCO depletion improved proteome coverage and provided clues for NO signaling in cold. PMID:24032038

  6. Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Jiang, Daqing; Alsaedi, Ahmed; Hayat, Tasawar

    2018-07-01

    A stochastic HIV viral model with both logistic target cell growth and nonlinear immune response function is formulated to investigate the effect of white noise on each population. The existence of the global solution is verified. By employing a novel combination of Lyapunov functions, we obtain the existence of the unique stationary distribution for small white noises. We also derive the extinction of the virus for large white noises. Numerical simulations are performed to highlight the effect of white noises on model dynamic behaviour under the realistic parameters. It is found that the small intensities of white noises can keep the irregular blips of HIV virus and CTL immune response, while the larger ones force the virus infection and immune response to lose efficacy.

  7. Seeing the hand while reaching speeds up on-line responses to a sudden change in target position

    PubMed Central

    Reichenbach, Alexandra; Thielscher, Axel; Peer, Angelika; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2009-01-01

    Goal-directed movements are executed under the permanent supervision of the central nervous system, which continuously processes sensory afferents and triggers on-line corrections if movement accuracy seems to be compromised. For arm reaching movements, visual information about the hand plays an important role in this supervision, notably improving reaching accuracy. Here, we tested whether visual feedback of the hand affects the latency of on-line responses to an external perturbation when reaching for a visual target. Two types of perturbation were used: visual perturbation consisted in changing the spatial location of the target and kinesthetic perturbation in applying a force step to the reaching arm. For both types of perturbation, the hand trajectory and the electromyographic (EMG) activity of shoulder muscles were analysed to assess whether visual feedback of the hand speeds up on-line corrections. Without visual feedback of the hand, on-line responses to visual perturbation exhibited the longest latency. This latency was reduced by about 10% when visual feedback of the hand was provided. On the other hand, the latency of on-line responses to kinesthetic perturbation was independent of the availability of visual feedback of the hand. In a control experiment, we tested the effect of visual feedback of the hand on visual and kinesthetic two-choice reaction times – for which coordinate transformation is not critical. Two-choice reaction times were never facilitated by visual feedback of the hand. Taken together, our results suggest that visual feedback of the hand speeds up on-line corrections when the position of the visual target with respect to the body must be re-computed during movement execution. This facilitation probably results from the possibility to map hand- and target-related information in a common visual reference frame. PMID:19675067

  8. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug.

    PubMed

    Sahoo, Banalata; Devi, K Sanjana P; Banerjee, Rakesh; Maiti, Tapas K; Pramanik, Panchanan; Dhara, Dibakar

    2013-05-01

    Targeted and efficient delivery of therapeutics to tumor cells is one of the key issues in cancer therapy. In the present work, we report a temperature and pH dual responsive core-shell nanoparticles comprising smart polymer shell coated on magnetic nanoparticles as an anticancer drug carrier and cancer cell-specific targeting agent. Magnetite nanoparticles (MNPs), prepared by a simple coprecipitation method, was surface modified by introducing amine groups using 3-aminopropyltriethoxysilane. Dual-responsive poly(N-isopropylacrylamide)-block-poly(acrylic acid) copolymer, synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, was then attached to the amine-functionalized MNPs via EDC/NHS method. Further, to accomplish cancer-specific targeting properties, folic acid was tethered to the surface of the nanoparticles. Thereafter, rhodamine B isothiocyanate was conjugated to endow fluorescent property to the MNPs required for cellular imaging applications. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), zeta potential, vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) measurements, and FTIR, UV-vis spectral analysis. Doxorubicin (DOX), an anticancer drug used for the present study, was loaded into the nanoparticles and its release behavior was subsequently studied. Result showed a sustained release of DOX preferentially at the desired lysosomal pH and temperature condition. The biological activity of the DOX-loaded MNPs was studied by MTT assay, fluorescence microscopy, and apoptosis. Intracellular-uptake studies revealed preferential uptake of these nanoparticles into cancer cells (HeLa cells) compared to normal fibroblast cells (L929 cells). The in vitro apoptosis study revealed that

  9. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.)

    PubMed Central

    Asha, Srinivasan; Soniya, Eppurath V.

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5′tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5′tRFs in the infected leaf and root. The abundance of 5′tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5′AlaCGC tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5′Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper. PMID:27313593

  10. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.).

    PubMed

    Asha, Srinivasan; Soniya, Eppurath V

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5'tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5'tRFs in the infected leaf and root. The abundance of 5'tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5'Ala(CGC) tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5'Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper.

  11. A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Ao, Lijiao; Wang, Bi; Liu, Peng; Huang, Liang; Yue, Caixia; Gao, Duyang; Wu, Chunlei; Su, Wu

    2014-08-01

    This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content, considerable drug loading and sustained in vitro drug release. These clustered SPIONs exhibited high r2 relaxivity (243.65 mM-1 s-1) and further served as efficient probes for MR imaging. Notably, the transport efficiency of these micelles could be significantly improved under an external magnetic field, owing to their quick magnetic response. As a result, the as-proposed micelle shows great potential in multimodal theranostics, including active targeting, MRI diagnosis and drug delivery.This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content

  12. The Leishmania infantum PUF proteins are targets of the humoral response during visceral leishmaniasis

    PubMed Central

    2010-01-01

    Background RNA-binding proteins of the PUF family share a conserved domain consisting of tandemly repeated 36-40 amino acid motifs (typically eight) known as Puf repeats. Proteins containing tandem repeats are often dominant targets of humoral responses during infectious diseases. Thus, we considered of interest to analyze whether Leishmania PUF proteins result antigenic during visceral leishmaniasis (VL). Findings Here, employing whole-genome databases, we report the composition, and structural features, of the PUF family in Leishmania infantum. Additionally, the 10 genes of the L. infantum PUF family were cloned and used to express the Leishmania PUFs in bacteria as recombinant proteins. Finally, the antigenicity of these PUF proteins was evaluated by determining levels of specific antibodies in sera from experimentally infected hamsters. The Leishmania PUFs were all recognized by the sera, even though with different degree of reactivity and/or frequency of recognition. The reactivity of hamster sera against recombinant LiPUF1 and LiPUF2 was particularly prominent, and these proteins were subsequently assayed against sera from human patients. High antibody responses against rLiPUF1 and rLiPUF2 were found in sera from VL patients, but these proteins resulted also recognized by sera from Chagas' disease patients. Conclusion Our results suggest that Leishmania PUFs are targets of the humoral response during L. infantum infection and may represent candidates for serodiagnosis and/or vaccine reagents; however, it should be kept in mind the cross-reactivity of LiPUFs with antibodies induced against other trypanosomatids such as Trypanosoma cruzi. PMID:20180988

  13. 41 CFR 301-76.101 - Who is responsible for ensuring that all due process and legal requirements have been met?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ensuring that all due process and legal requirements have been met? 301-76.101 Section 301-76.101 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... that all due process and legal requirements have been met? You are responsible for ensuring that all...

  14. Finding the sweet spots of inhibition: understanding the targets of a functional antibody against Plasmodium vivax Duffy binding protein

    PubMed Central

    Ntumngia, Francis B.; King, Christopher L.; Adams, John H.

    2014-01-01

    Plasmodium vivax Duffy binding protein region II (DBPII) is an essential ligand for reticulocyte invasion, thereby making this molecule an attractive vaccine candidate against asexual blood-stage P. vivax. Similar to other Plasmodium blood-stage vaccine candidates, strain-specific immunity due to DBPII allelic variation may complicate vaccine efficacy. Targeting immune responses to more conserved epitopes that are potential targets of strain-transcending neutralizing immunity is necessary to avoid induction of strain-specific responses to dominant variant epitopes. In this article, we focus on different approaches to optimize the design of DBP immunogenicity to target conserved epitopes, which is important for developing a broadly effective vaccine against P. vivax. PMID:23068913

  15. Proteomic Identification of Non-Gal Antibody Targets After Pig-to-Primate Cardiac Xenotransplantation

    PubMed Central

    Byrne, Guerard W.; Stalboerger, Paul G.; Davila, Eduardo; Heppelmann, Carrie J.; Gazi, Mozammel H.; McGregor, Hugh C. J.; LaBreche, Peter T.; Davies, William R.; Rao, Vinay P.; Oi, Keiji; Tazelaar, Henry D.; Logan, John S.; McGregor, Christopher G. A.

    2008-01-01

    Background Experience with non-antigenic galactose α1,3 galactose (αGal) polymers and development of αGal deficient pigs has reduced or eliminated the significance of this antigen in xenograft rejection. Despite these advances, delayed xenograft rejection (DXR) continues to occur most likely due to antibody responses to non-Gal endothelial cell (EC) antigens. Methods To gauge the diversity of the non-Gal antibody response we used antibody derived from CD46 transgenic heterotopic cardiac xenografts performed without T-cell immunosuppression, Group A (n = 4) and Gal knockout (GT-KO) heart transplants under tacrolimus and sirolimus immunosuppression, Group B (n = 8). Non-Gal antibody was measured by flow cytometry and by Western blots using GT-KO EC membrane antigens. A nanoLC/MS/MS analysis of proteins recovered from 2D gels was used to identify target antigens. Results Group A recipients exhibited a mixed cellular and humoral rejection. Group B recipients mainly exhibited classical DXR. Western blot analysis showed a non-Gal antibody response induced by GT+ and GT-KO hearts to an overlapping set of pig aortic EC membrane antigens. Proteomic analysis identified 14 potential target antigens but failed to define several immunodominant targets. Conclusions These experiments indicate that the non-Gal antibody response is directed to a number of stress response and inflammation related pig EC antigens and a few undefined targets. Further analysis of these antibody specificities using alternative methods is required to more fully define the repertoire of non-Gal antibody responses. PMID:18957049

  16. Speech-evoked brainstem frequency-following responses during verbal transformations due to word repetition.

    PubMed

    Galbraith, G C; Jhaveri, S P; Kuo, J

    1997-01-01

    Speech-evoked brainstem frequency-following responses (FFRs) were recorded to repeated presentations of the same stimulus word. Word repetition results in illusory verbal transformations (VTs) in which word perceptions can differ markedly from the actual stimulus. Previous behavioral studies support an explanation of VTs based on changes in arousal or attention. Horizontal and vertical dipole FFRs were recorded to assess responses with putative origins in the auditory nerve and central brainstem, respectively. FFRs were recorded from 18 subjects when they correctly heard the stimulus and when they reported VTs. Although horizontal and vertical dipole FFRs showed different frequency response patterns, dipoles did not differentiate between perceptual conditions. However, when subjects were divided into low- and high-VT groups (based on percentage of VT trials), a significant Condition x Group interaction resulted. This interaction showed the largest difference in FFR amplitudes during VT trials, with the low-VT group showing increased amplitudes, and the high-VT group showing decreased amplitudes, relative to trials in which the stimulus was correctly perceived. These results demonstrate measurable subject differences in the early processing of complex signals, due to possible effects of attention on the brainstem FFR. The present research shows that the FFR is useful in understanding human language as it is coded and processed in the brainstem auditory pathway.

  17. Targeting the Oxidative Stress Response System of Fungi with Redox-Potent Chemosensitizing Agents

    PubMed Central

    Kim, Jong H.; Chan, Kathleen L.; Faria, Natália C. G.; Martins, M. de L.; Campbell, Bruce C.

    2012-01-01

    The cellular antioxidant system is a target in the antifungal action of amphotericin B (AMB) and itraconazole (ITZ), in filamentous fungi. The sakAΔ mutant of Aspergillus fumigatus, a mitogen-activated protein kinase (MAPK) gene deletion mutant in the antioxidant system, was found to be more sensitive to AMB or ITZ than other A. fumigatus strains, a wild type and a mpkCΔ mutant (a MAPK gene deletion mutant in the polyalcohol sugar utilization system). Complete fungal kill (≥99.9%) by ITZ or AMB was also achieved by much lower dosages for the sakAΔ mutant than for the other strains. It appears msnA, an Aspergillus ortholog to Saccharomyces cerevisiae MSN2 (encoding a stress-responsive C2H2-type zinc-finger regulator) and sakA and/or mpkC (upstream MAPKs) are in the same stress response network under tert-butyl hydroperoxide (t-BuOOH)-, hydrogen peroxide (H2O2)- or AMB-triggered toxicity. Of note is that ITZ-sensitive yeast pathogens were also sensitive to t-BuOOH, showing a connection between ITZ sensitivity and antioxidant capacity of fungi. Enhanced antifungal activity of AMB or ITZ was achieved when these drugs were co-applied with redox-potent natural compounds, 2,3-dihydroxybenzaldehyde, thymol or salicylaldehyde, as chemosensitizing agents. We concluded that redox-potent compounds, which target the antioxidant system in fungi, possess a chemosensitizing capacity to enhance efficacy of conventional drugs. PMID:22438852

  18. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy.

    PubMed

    Machado, Yoan; Duinkerken, Sanne; Hoepflinger, Veronika; Mayr, Melissa; Korotchenko, Evgeniia; Kurtaj, Almedina; Pablos, Isabel; Steiner, Markus; Stoecklinger, Angelika; Lübbers, Joyce; Schmid, Maximillian; Ritter, Uwe; Scheiblhofer, Sandra; Ablinger, Michael; Wally, Verena; Hochmann, Sarah; Raninger, Anna M; Strunk, Dirk; van Kooyk, Yvette; Thalhamer, Josef; Weiss, Richard

    2017-11-28

    Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14 + dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Tinea capitis and tinea corporis with a severe inflammatory response due to Trichophyton tonsurans.

    PubMed

    Hryncewicz-Gwóźdź, Anita; Beck-Jendroschek, Vera; Brasch, Jochen; Kalinowska, Katarzyna; Jagielski, Tomasz

    2011-10-01

    Trichophyton tonsurans is an anthropophilic dermatophyte, with a worldwide distribution, although its prevalence varies considerably between different geographical regions. Whereas in North America infections due to this fungus are exceptionally common, on the European continent they appear relatively seldom. Although T. tonsurans is primarily associated with tinea capitis, it can also be the cause of tinea corporis and tinea unguium. The course of infection is usually only mildly symptomatic. We describe here two cases of urease-positive T. tonsurans infections with atypically extensive cutaneous lesions and severe inflammatory responses. .

  20. Targeting with bovine CD154 enhances humoral immune responses induced by a DNA vaccine in sheep.

    PubMed

    Manoj, Sharmila; Griebel, Philip J; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia

    2003-01-15

    CD40-CD154 interactions play an important role in regulating humoral and cell-mediated immune responses. Recently, these interactions have been exploited for the development of therapeutic and preventive treatments. The objective of this study was to test the ability of bovine CD154 to target a plasmid-encoded Ag to CD40-expressing APCs. To achieve this, a plasmid coding for bovine CD154 fused to a truncated secreted form of bovine herpesvirus 1 glycoprotein D (tgD), pSLIAtgD-CD154, was constructed. The chimeric tgD-CD154 was expressed in vitro in COS-7 cells and reacted with both glycoprotein D- and CD154-specific Abs. Both tgD and tgD-CD154 were capable of binding to epithelial cells, whereas only tgD-CD154 bound to B cells. Furthermore, dual-labeling of ovine PBMCs revealed that tgD-CD154 was bound by primarily B cells. The functional integrity of the tgD-CD154 chimera was confirmed by the induction of both IL-4-dependent B cell proliferation and tgD-specific lymphoproliferative responses in vitro. Finally, sheep immunized with pSLIAtgD-CD154 developed a more rapid primary tgD-specific Ab response and a significantly stronger tgD-specific secondary response when compared with animals immunized with pSLIAtgD and control animals. Similarly, virus-neutralizing Ab titers were significantly higher after secondary immunization with pSLIAtgD-CD154. These results demonstrate that using CD154 to target plasmid-expressed Ag can significantly enhance immune responses induced by a DNA vaccine.

  1. Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus.

    PubMed

    Gentsch, George E; Spruce, Thomas; Monteiro, Rita S; Owens, Nick D L; Martin, Stephen R; Smith, James C

    2018-03-12

    Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects. Copyright © 2018 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  2. P3 amplitude attenuation secondary to increases in target-to-target interval (TTI) during spatial serial order recall: Implications for EEG models of working memory function.

    PubMed

    Hochberger, William C; Axelrod, Jenna L; Sarapas, Casey; Shankman, Stewart A; Hill, S Kristian

    2018-06-08

    Research suggests that increasing delays in stimulus read-out can trigger declines in serial order recall accuracy due to increases in cognitive demand imposed by the delay; however, the exact neural mechanisms associated with this decline are unclear. Changes in neural resource allocation present as the ideal target and can easily be monitored by examining changes in the amplitude of an ERP component known as the P3. Changes in P3 amplitude secondary to exogenous pacing of stimulus read-out via increased target-to-target intervals (TTI) during recall could reflect decreased neural resource allocation due to increased cognitive demand. This shift in resource allocation could result in working memory storage decay and the declines in serial order accuracy described by prior research. In order to examine this potential effect, participants were administered a spatial serial order processing task, with the recall series consisting of a series of correct ("match") or incorrect ("non-match" or "oddball") stimuli. Moreover, the recall series included either a brief (500ms) or extended (2000ms) delay between stimuli. Results were significant for the presence of a P3 response to non-match stimuli for both experimental conditions, and attenuation of P3 amplitude secondary to the increase in target-to-target interval (TTI). These findings suggest that extending the delay between target recognition could increase cognitive demand and trigger a decrease in neural resource allocation that results in a decay of working memory stores.

  3. Addressing Loss of Efficiency Due to Misclassification Error in Enriched Clinical Trials for the Evaluation of Targeted Therapies Based on the Cox Proportional Hazards Model.

    PubMed

    Tsai, Chen-An; Lee, Kuan-Ting; Liu, Jen-Pei

    2016-01-01

    A key feature of precision medicine is that it takes individual variability at the genetic or molecular level into account in determining the best treatment for patients diagnosed with diseases detected by recently developed novel biotechnologies. The enrichment design is an efficient design that enrolls only the patients testing positive for specific molecular targets and randomly assigns them for the targeted treatment or the concurrent control. However there is no diagnostic device with perfect accuracy and precision for detecting molecular targets. In particular, the positive predictive value (PPV) can be quite low for rare diseases with low prevalence. Under the enrichment design, some patients testing positive for specific molecular targets may not have the molecular targets. The efficacy of the targeted therapy may be underestimated in the patients that actually do have the molecular targets. To address the loss of efficiency due to misclassification error, we apply the discrete mixture modeling for time-to-event data proposed by Eng and Hanlon [8] to develop an inferential procedure, based on the Cox proportional hazard model, for treatment effects of the targeted treatment effect for the true-positive patients with the molecular targets. Our proposed procedure incorporates both inaccuracy of diagnostic devices and uncertainty of estimated accuracy measures. We employed the expectation-maximization algorithm in conjunction with the bootstrap technique for estimation of the hazard ratio and its estimated variance. We report the results of simulation studies which empirically investigated the performance of the proposed method. Our proposed method is illustrated by a numerical example.

  4. IDENTIFYING AND TARGETING TUMOR-INITIATING CELLS IN THE TREATMENT OF BREAST CANCER

    PubMed Central

    Wei, Wei; Lewis, Michael T.

    2015-01-01

    Breast cancer is the most common cancer in women (exclusive of skin cancer), and is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - due to traits that tumor cells possess prior to treatment, or acquired, - due to traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSC). TICs have the capacity to self-renew and regenerate new tumors that consist of all clonally-derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies, and survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow resulting in disease relapse. It is also hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative to achieve cure. In this review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy, as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear important for TIC function that may represent promising therapeutic targets. PMID:25876646

  5. Two-photon targeted recording of GFP-expressing neurons for light responses and live cell imaging in the mouse retina

    PubMed Central

    Wei, Wei; Elstrott, Justin; Feller, Marla B.

    2015-01-01

    Cell type-specific GFP expression in the retina has been achieved in an expanding repertoire of transgenic mouse lines, which are valuable tools for dissecting the retinal circuitry. However, measuring light responses from GFP-labeled cells is challenging because single-photon excitation of GFP easily bleaches the photoreceptors. To circumvent this problem, we used two-photon excitation at 920 nm to target GFP-expressing cells, followed by electrophysiological recording of light responses using conventional infrared optics. This protocol offers fast and sensitive detection of GFP while preserving the light sensitivity of the retina, and can be used to obtain the light responses as well as the detailed morphology of a GFP-expressing cell. Targeting of a GFP-expressing neuron takes less than 3 minutes, and the retina preparation remains light sensitive and suitable for recording for at least 8 hours. This protocol can also be applied to study retinal neurons labeled with other two-photon-excitable fluorophores. PMID:20595962

  6. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review.

    PubMed

    Kanamala, Manju; Wilson, William R; Yang, Mimi; Palmer, Brian D; Wu, Zimei

    2016-04-01

    As the mainstay in the treatment of various cancers, chemotherapy plays a vital role, but still faces many challenges, such as poor tumour selectivity and multidrug resistance (MDR). Targeted drug delivery using nanotechnology has provided a new strategy for addressing the limitations of the conventional chemotherapy. In the last decade, the volume of research published in this area has increased tremendously, especially with functional nano drug delivery systems (nanocarriers). Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for improving therapeutic outcomes. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumours. In this review, we discuss recent advances in the development of pH-sensitive nanocarriers for tumour-targeted drug delivery. The review focuses on the chemical design of pH-sensitive biomaterials, which are used to fabricate nanocarriers for extracellular and/or intracellular tumour site-specific drug release. The pH-responsive biomaterials bring forth conformational changes in these nanocarriers through various mechanisms such as protonation, charge reversal or cleavage of a chemical bond, facilitating tumour specific cell uptake or drug release. A greater understanding of these mechanisms will help to design more efficient drug delivery systems to address the challenges encountered in conventional chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Target-present guessing as a function of target prevalence and accumulated information in visual search.

    PubMed

    Peltier, Chad; Becker, Mark W

    2017-05-01

    Target prevalence influences visual search behavior. At low target prevalence, miss rates are high and false alarms are low, while the opposite is true at high prevalence. Several models of search aim to describe search behavior, one of which has been specifically intended to model search at varying prevalence levels. The multiple decision model (Wolfe & Van Wert, Current Biology, 20(2), 121--124, 2010) posits that all searches that end before the observer detects a target result in a target-absent response. However, researchers have found very high false alarms in high-prevalence searches, suggesting that prevalence rates may be used as a source of information to make "educated guesses" after search termination. Here, we further examine the ability for prevalence level and knowledge gained during visual search to influence guessing rates. We manipulate target prevalence and the amount of information that an observer accumulates about a search display prior to making a response to test if these sources of evidence are used to inform target present guess rates. We find that observers use both information about target prevalence rates and information about the proportion of the array inspected prior to making a response allowing them to make an informed and statistically driven guess about the target's presence.

  8. Specific Nongluten Proteins of Wheat Are Novel Target Antigens in Celiac Disease Humoral Response

    PubMed Central

    2014-01-01

    While the antigenic specificity and pathogenic relevance of immunologic reactivity to gluten in celiac disease have been extensively researched, the immune response to nongluten proteins of wheat has not been characterized. We aimed to investigate the level and molecular specificity of antibody response to wheat nongluten proteins in celiac disease. Serum samples from patients and controls were screened for IgG and IgA antibody reactivity to a nongluten protein extract from the wheat cultivar Triticum aestivum Butte 86. Antibodies were further analyzed for reactivity to specific nongluten proteins by two-dimensional gel electrophoresis and immunoblotting. Immunoreactive molecules were identified by tandem mass spectrometry. Compared with healthy controls, patients exhibited significantly higher levels of antibody reactivity to nongluten proteins. The main immunoreactive nongluten antibody target proteins were identified as serpins, purinins, α-amylase/protease inhibitors, globulins, and farinins. Assessment of reactivity toward purified recombinant proteins further confirmed the presence of antibody response to specific antigens. The results demonstrate that, in addition to the well-recognized immune reaction to gluten, celiac disease is associated with a robust humoral response directed at a specific subset of the nongluten proteins of wheat. PMID:25329597

  9. Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead.

    PubMed

    Huang, Yishun; Ma, Yanli; Chen, Yahong; Wu, Xuemeng; Fang, Luting; Zhu, Zhi; Yang, Chaoyong James

    2014-11-18

    Because of the severe health risks associated with lead pollution, rapid, sensitive, and portable detection of low levels of Pb(2+) in biological and environmental samples is of great importance. In this work, a Pb(2+)-responsive hydrogel was prepared using a DNAzyme and its substrate as cross-linker for rapid, sensitive, portable, and quantitative detection of Pb(2+). Gold nanoparticles (AuNPs) were first encapsulated in the hydrogel as an indicator for colorimetric analysis. In the absence of lead, the DNAzyme is inactive, and the substrate cross-linker maintains the hydrogel in the gel form. In contrast, the presence of lead activates the DNAzyme to cleave the substrate, decreasing the cross-linking density of the hydrogel and resulting in dissolution of the hydrogel and release of AuNPs for visual detection. As low as 10 nM Pb(2+) can be detected by the naked eye. Furthermore, to realize quantitative visual detection, a volumetric bar-chart chip (V-chip) was used for quantitative readout of the hydrogel system by replacing AuNPs with gold-platinum core-shell nanoparticles (Au@PtNPs). The Au@PtNPs released from the hydrogel upon target activation can efficiently catalyze the decomposition of H2O2 to generate a large volume of O2. The gas pressure moves an ink bar in the V-chip for portable visual quantitative detection of lead with a detection limit less than 5 nM. The device was able to detect lead in digested blood with excellent accuracy. The method developed can be used for portable lead quantitation in many applications. Furthermore, the method can be further extended to portable visual quantitative detection of a variety of targets by replacing the lead-responsive DNAzyme with other DNAzymes.

  10. Prostate Cancer Relevant Antigens and Enzymes for Targeted Drug Delivery

    PubMed Central

    Barve, Ashutosh; Jin, Wei; Cheng, Kun

    2014-01-01

    Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to lack of specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-specific antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency. PMID:24878184

  11. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems

    PubMed Central

    Wen, Ru; Umeano, Afoma C.; Francis, Lily; Sharma, Nivita; Tundup, Smanla; Dhar, Shanta

    2016-01-01

    Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease. PMID:27258316

  12. [Event-related synchronization/desynhronization during processing of target, no target and unknown visually presented words].

    PubMed

    Rebreikina, A B; Larionova, E B; Varlamov, A A

    2015-01-01

    The aim of this investigation is to study neurophysiologic mechanisms of processing of relevant words and unknown words. Event-related synchronization/desynchronization during categorization of three types of stimuli (known targets, known no targets and unknown words) was examined. The main difference between known targets and unknown stimuli was revealed in the thetal and theta2 bands at the early stage after stimuli onset (150-300 ms) and in the delta band (400-700 ms). In the late time window at about 800-1500 ms thetal ERS in response to the target stimuli was smaller than to other stimuli, but theta2 and alpha ERD in response to the target stimuli was larger than to known nontarget words.

  13. Biomechanical responses of PMHS in moderate-speed rear impacts and development of response targets for evaluating the internal and external biofidelity of ATDS.

    PubMed

    Kang, Yun-Seok; Bolte, John H; Moorhouse, Kevin; Donnelly, Bruce; Herriott, Rodney; Mallory, Ann

    2012-10-01

    The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies. Instrumentation used to measure biomechanical responses of the PMHS included both accelerometers and angular rate sensors (ARS). A total of fourteen sled tests using eight PMHS (males 175.8 ± 6.2 cm of stature and 78.4 ± 7.2 kg of weight) provided data sets of seven PMHS for both test conditions. The biomechanical responses are described at both speeds, and cervical spine injuries are documented. Biomechanical targets are also created for internal and external biofidelity evaluation of rear impact anthropomorphic test devices (ATDs).

  14. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates.

    PubMed

    Hou, X; Tanguay, J; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2016-01-21

    In response to the recognized fragility of reactor-produced (99)Mo supply, direct production of (99m)Tc via (100)Mo(p,2n)(99m)Tc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with (99m)Tc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical (99m)Tc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.

  15. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates

    NASA Astrophysics Data System (ADS)

    Hou, X.; Tanguay, J.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2016-01-01

    In response to the recognized fragility of reactor-produced 99Mo supply, direct production of 99mTc via 100Mo(p,2n)99mTc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with 99mTc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical 99mTc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.

  16. Ribosomal RNA gene detection and targeted culture of novel nitrogen-responsive fungal taxa from temperate pine forest soil.

    PubMed

    Hesse, Cedar N; Torres-Cruz, Terry J; Tobias, Terri Billingsley; Al-Matruk, Maryam; Porras-Alfaro, Andrea; Kuske, Cheryl R

    Soil fungal communities are responsible for carbon and nitrogen (N) cycling. The high complexity of the soil fungal community and the high proportion of taxonomically unidentifiable sequences confound ecological interpretations in field studies because physiological information is lacking for many organisms known only by their rRNA sequences. This situation forces experimental comparisons to be made at broader taxonomic racks where functions become difficult to infer. The objective of this study was to determine OTU (operational taxonomic units) level responses of the soil fungal community to N enrichment in a temperate pine forest experiment and to use the sequencing data to guide culture efforts of novel N-responsive fungal taxa. Replicate samples from four soil horizons (up to 10 cm depth) were obtained from ambient, enriched CO 2 and N-fertilization plots. Through a fungal large subunit rRNA gene (LSU) sequencing survey, we identified two novel fungal clades that were abundant in our soil sampling (representing up to 27% of the sequences in some samples) and responsive to changes in soil N. The two N-responsive taxa with no predicted taxonomic association were targeted for isolation and culturing from specific soil samples where their sequences were abundant. Representatives of both OTUs were successfully cultured using a filtration approach. One taxon (OTU6) was most closely related to Saccharomycotina; the second taxon (OTU69) was most closely related to Mucoromycotina. Both taxa likely represent novel species. This study shows how observation of specific OTUs level responses to altered N status in a large rRNA gene field survey provided the impetus to design targeted culture approaches for isolation of novel N-responsive fungal taxa.

  17. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    PubMed

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.

  18. Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature.

    PubMed

    Slemc, Lucija; Kunej, Tanja

    2016-11-01

    Hypoxia-inducible factor-1α (HIF-1α) has crucial role in adapting cells to hypoxia through expression regulation of many genes. Identification of HIF-1α target genes (HIF-1α-TGs) is important for understanding the adapting mechanism. The aim of the present study was to collect known HIF-1α-TGs and identify their associated pathways. Targets and associated genomics data were retrieved using PubMed, WoS ( http://apps.webofknowledge.com/ ), HGNC ( http://www.genenames.org/ ), NCBI ( http://www.ncbi.nlm.nih.gov/ ), Ensemblv.84 ( http://www.ensembl.org/index.html ), DAVID Bioinformatics Resources ( https://david.ncifcrf.gov /), and Disease Ontology database ( http://disease-ontology.org/ ). From 51 papers, we collected 98 HIF-1α TGs found to be associated with 20 pathways, including metabolism of carbohydrates and pathways in cancer. Reanalysis of genomic coordinates of published HREs (hypoxia response elements) revealed six polymorphisms within HRE sites (HRE-SNPs): ABCG2, ACE, CA9, and CP. Due to large heterogeneity of results presentation in scientific literature, we also propose a first step towards reporting standardization of HIF-1α-target interactions consisting of ten relevant data types. Suggested minimal checklist for reporting will enable faster development of a complete catalog of HIF-1α-TGs, data sharing, bioinformatics analyses, and setting novel more targeted hypotheses. The proposed format for data standardization is not yet complete but presents a baseline for further optimization of the protocol with additional details, for example, regarding the experimental validation.

  19. Targeting dendritic cells--why bother?

    PubMed

    Kreutz, Martin; Tacken, Paul J; Figdor, Carl G

    2013-04-11

    Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.

  20. Targeting the Cell Stress Response of Plasmodium falciparum to Overcome Artemisinin Resistance

    PubMed Central

    Dogovski, Con; Xie, Stanley C.; Burgio, Gaetan; Bridgford, Jess; Mok, Sachel; McCaw, James M.; Chotivanich, Kesinee; Kenny, Shannon; Gnädig, Nina; Straimer, Judith; Bozdech, Zbynek; Fidock, David A.; Simpson, Julie A.; Dondorp, Arjen M.; Foote, Simon; Klonis, Nectarios; Tilley, Leann

    2015-01-01

    Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs) has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin). We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance) is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas with ART

  1. Administration of Menadione, Vitamin K3, Ameliorates Off-Target Effects on Corneal Epithelial Wound Healing Due to Receptor Tyrosine Kinase Inhibition.

    PubMed

    Rush, Jamie S; Bingaman, David P; Chaney, Paul G; Wax, Martin B; Ceresa, Brian P

    2016-11-01

    The antiangiogenic receptor tyrosine kinase inhibitor (RTKi), 3-[(4-bromo-2,6-difluorophenyl)methoxy]-5-[[[[4-(1-pyrrolidinyl) butyl] amino] carbonyl]amino]-4-isothiazolecarboxamide hydrochloride, targets VEGFR2 (half maximal inhibitory concentration [IC50] = 11 nM); however, off-target inhibition of epidermal growth factor receptor (EGFR) occurs at higher concentrations. (IC50 = 5.8 μM). This study was designed to determine the effect of topical RTKi treatment on EGF-mediated corneal epithelial wound healing and to develop new strategies to minimize off-target EGFR inhibition. In vitro corneal epithelial wound healing was measured in response to EGF using a transformed human cell line (hTCEpi cells). In vivo corneal wound healing was assessed using a murine model. In these complementary assays, wound healing was measured in the presence of varying RTKi concentrations. Immunoblot analysis was used to examine EGFR and VEGFR2 phosphorylation and the kinetics of EGFR degradation. An Alamar Blue assay measured VEGFR2-mediated cell biology. Receptor tyrosine kinase inhibitor exposure caused dose-dependent inhibition of EGFR-mediated corneal epithelial wound healing in vitro and in vivo. Nanomolar concentrations of menadione, a vitamin K3 analog, when coadministered with the RTKi, slowed EGFR degradation and ameliorated the inhibitory effects on epithelial wound healing both in vitro and in vivo. Menadione did not alter the RTKi's IC50 against VEGFR2 phosphorylation or its inhibition of VEGF-induced retinal endothelial cell proliferation. An antiangiogenic RTKi exhibited off-target effects on the corneal epithelium that can be minimized by menadione without deleteriously affecting its on-target VEGFR2 blockade. These data indicate that menadione has potential as a topical supplement for individuals suffering from perturbations in corneal epithelial homeostasis, especially as an untoward side effect of kinase inhibitors.

  2. Heavy Ion Fusion Science Virtual National Laboratory 4th Quarter 2009 Milestone Report: Measure and simulate target temperature and dynamic response in optimized NDCX-I configurations with initial diagnostics suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniosek, F.M.; Barnard, J.J.; Henestroza, E.

    2009-09-30

    This milestone has been met. The effort contains two main components: (1) Experimental results of warm dense matter target experiments on optimized NDCX-I configurations that include measurements of target temperature and transient target behavior. (2) A theoretical model of the target response to beam heating that includes an equilibrium heating model of the target foil and a model for droplet formation in the target for comparison with experimental results. The experiments on ion-beam target heating use a 300-350-keV K{sup +} pulsed beam from the Neutralized Compression Drift Experiment (NDCX-I) accelerator at LBNL. The NDCX-I accelerator delivers an uncompressed pulse beammore » of several microseconds with a typical power density of >100 kW/cm{sup 2} over a final focus spot size of about 1 mm. An induction bunching module the NDCX-I compresses a portion of the beam pulse to reach a much higher power density over 2 nanoseconds. Under these conditions the free-standing foil targets are rapidly heated to temperatures to over 4000 K. We model the target thermal dynamics using the equation of heat conduction for the temperature T(x,t) as a function of time (t) and spatial dimension along the beam direction (x). The competing cooling processes release energy from the surface of the foil due to evaporation, radiation, and thermionic (Richardson) emission. A description of the experimental configuration of the target chamber and results from initial beam-target experiments are reported in our FY08 4th Quarter and FY09 2nd Quarter Milestone Reports. The WDM target diagnostics include a high-speed multichannel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. The fast optical pyrometer is a unique and significant new diagnostic which provides valuable information on the temperature evolution of the heated target.« less

  3. Target attribute-based false alarm rejection in small infrared target detection

    NASA Astrophysics Data System (ADS)

    Kim, Sungho

    2012-11-01

    Infrared search and track is an important research area in military applications. Although there are a lot of works on small infrared target detection methods, we cannot apply them in real field due to high false alarm rate caused by clutters. This paper presents a novel target attribute extraction and machine learning-based target discrimination method. Eight kinds of target features are extracted and analyzed statistically. Learning-based classifiers such as SVM and Adaboost are developed and compared with conventional classifiers for real infrared images. In addition, the generalization capability is also inspected for various infrared clutters.

  4. Genome-wide dynamics of a bacterial response to antibiotics that target the cell envelope

    PubMed Central

    2011-01-01

    Background A decline in the discovery of new antibacterial drugs, coupled with a persistent rise in the occurrence of drug-resistant bacteria, has highlighted antibiotics as a diminishing resource. The future development of new drugs with novel antibacterial activities requires a detailed understanding of adaptive responses to existing compounds. This study uses Streptomyces coelicolor A3(2) as a model system to determine the genome-wide transcriptional response following exposure to three antibiotics (vancomycin, moenomycin A and bacitracin) that target distinct stages of cell wall biosynthesis. Results A generalised response to all three antibiotics was identified which involves activation of transcription of the cell envelope stress sigma factor σE, together with elements of the stringent response, and of the heat, osmotic and oxidative stress regulons. Attenuation of this system by deletion of genes encoding the osmotic stress sigma factor σB or the ppGpp synthetase RelA reduced resistance to both vancomycin and bacitracin. Many antibiotic-specific transcriptional changes were identified, representing cellular processes potentially important for tolerance to each antibiotic. Sensitivity studies using mutants constructed on the basis of the transcriptome profiling confirmed a role for several such genes in antibiotic resistance, validating the usefulness of the approach. Conclusions Antibiotic inhibition of bacterial cell wall biosynthesis induces both common and compound-specific transcriptional responses. Both can be exploited to increase antibiotic susceptibility. Regulatory networks known to govern responses to environmental and nutritional stresses are also at the core of the common antibiotic response, and likely help cells survive until any specific resistance mechanisms are fully functional. PMID:21569315

  5. Smurf2 negatively modulates RIG-I-dependent antiviral response by targeting VISA/MAVS for ubiquitination and degradation.

    PubMed

    Pan, Yu; Li, Rui; Meng, Jun-Ling; Mao, He-Ting; Zhang, Yu; Zhang, Jun

    2014-05-15

    VISA (also known as MAVS, Cardif, IPS-1) is the essential adaptor protein for virus-induced activation of IFN regulatory factors 3 and 7 and production of type I IFNs. Understanding the regulatory mechanisms for VISA will provide detailed insights into the positive or negative regulation of innate immune responses. In this study, we identified Smad ubiquitin regulatory factor (Smurf) 2, one of the Smad ubiquitin regulator factor proteins, as an important negative regulator of virus-triggered type I IFN signaling, which targets at the VISA level. Overexpression of Smurf2 inhibits virus-induced IFN-β and IFN-stimulated response element activation. The E3 ligase defective mutant Smurf2/C716A loses the ability to suppress virus-induced type I IFN signaling, suggesting that the negative regulation is dependent on the ubiquitin E3 ligase activity of Smurf2. Further studies demonstrated that Smurf2 interacted with VISA and targeted VISA for K48-linked ubiquitination, which promoted the degradation of VISA. Consistently, knockout or knockdown of Smurf2 expression therefore promoted antiviral signaling, which was correlated with the increase in protein stability of VISA. Our findings suggest that Smurf2 is an important nonredundant negative regulator of virus-triggered type I IFN signaling by targeting VISA for K48-linked ubiquitination and degradation.

  6. National responses to global health targets: exploring policy transfer in the context of the UNAIDS '90-90-90' treatment targets in Ghana and Uganda.

    PubMed

    McRobie, Ellen; Matovu, Fred; Nanyiti, Aisha; Nonvignon, Justice; Abankwah, Daniel Nana Yaw; Case, Kelsey K; Hallett, Timothy B; Hanefeld, Johanna; Conteh, Lesong

    2018-01-01

    Global health organizations frequently set disease-specific targets with the goal of eliciting adoption at the national-level; consideration of the influence of target setting on national policies, programme and health budgets is of benefit to those setting targets and those intended to respond. In 2014, the Joint United Nations Programme on HIV/AIDS set 'ambitious' treatment targets for country adoption: 90% of HIV-positive persons should know their status; 90% of those on treatment; 90% of those achieving viral suppression. Using case studies from Ghana and Uganda, we explore how the target and its associated policy content have been adopted at the national level. That is whether adoption is in rhetoric only or supported by programme, policy or budgetary changes. We review 23 (14 from Ghana, 9 from Uganda) national policy, operational and strategic documents for the HIV response and assess commitments to '90-90-90'. In-person semi-structured interviews were conducted with purposively sampled key informants (17 in Ghana, 20 in Uganda) involved in programme-planning and resource allocation within HIV to gain insight into factors facilitating adoption of 90-90-90. Interviews were transcribed and analysed thematically, inductively and deductively, guided by pre-existing policy theories, including Dolowitz and Marsh's policy transfer framework to describe features of the transfer and the Global Health Advocacy and Policy Project framework to explain observations. Regardless of notable resource constraints, transfer of the 90-90-90 targets was evident beyond rhetoric with substantial shifts in policy and programme activities. In both countries, there was evidence of attempts to minimize resource constraints by seeking programme efficiencies, prioritization of programme activities and devising domestic financing mechanisms; however, significant resource gaps persist. An effective health network, comprised of global and local actors, mediated the adoption and adaptation

  7. High or Low Target Prevalence Increases the Dual-Target Cost in Visual Search

    ERIC Educational Resources Information Center

    Menneer, Tamaryn; Donnelly, Nick; Godwin, Hayward J.; Cave, Kyle R.

    2010-01-01

    Previous studies have demonstrated a dual-target cost in visual search. In the current study, the relationship between search for one and search for two targets was investigated to examine the effects of target prevalence and practice. Color-shape conjunction stimuli were used with response time, accuracy and signal detection measures. Performance…

  8. Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment

    PubMed Central

    Lodhia, Kunal Amratlal; Tienchaiananda, Piyawan; Haluska, Paul

    2015-01-01

    Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success. PMID:26217584

  9. Description of the EuroTARGET cohort: A European collaborative project on TArgeted therapy in renal cell cancer-GEnetic- and tumor-related biomarkers for response and toxicity.

    PubMed

    van der Zanden, Loes F M; Vermeulen, Sita H; Oskarsdottir, Arna; Maurits, Jake S F; Diekstra, Meta H M; Ambert, Valentin; Cambon-Thomsen, Anne; Castellano, Daniel; Fritsch, Achim; Garcia Donas, Jesus; Guarch Troyas, Rosa; Guchelaar, Henk-Jan; Hartmann, Arndt; Hulsbergen-van de Kaa, Christina; Jaehde, Ulrich; Junker, Kerstin; Martinez-Cardus, Anna; Masson, Gisli; Oosterwijk-Wakka, Jeannette; Radu, Marius T; Rafnar, Thorunn; Rodriguez-Antona, Cristina; Roessler, Max; Ruijtenbeek, Rob; Stefansson, Kari; Warren, Anne; Wessels, Lodewyk; Eisen, Tim; Kiemeney, Lambertus A L M; Oosterwijk, Egbert

    2017-08-01

    For patients with metastatic renal cell cancer (mRCC), treatment choice is mainly based on clinical parameters. With many treatments available and the limited response to treatment and associated toxicities, there is much interest in identifying better biomarkers for personalized treatment. EuroTARGET aims to identify and characterize host- and tumor-related biomarkers for prediction of response to tyrosine kinase inhibitor therapy in mRCC. Here, we describe the EuroTARGET mRCC patient cohort. EuroTARGET is a European collaborative project designed as an observational study for which patients with mRCC were recruited prospectively in 62 centers. In addition, 462 patients with mRCC from previous studies were included. Detailed clinical information (baseline and follow-up) from all patients was entered in web-based case record forms. Blood was collected for germline DNA and pharmacokinetic/pharmacodynamic analyses and, where available, fresh-frozen tumor material was collected to perform tumor DNA, RNA, kinome, and methylome analyses. In total, 1,210 patients with mRCC were included. Of these, 920 received a tyrosine kinase inhibitor as first-line targeted treatment (sunitinib [N = 713, 78%], sorafenib [N = 41, 4%], or pazopanib [N = 166, 18%]) and had at least 6 months of outcome assessment (median follow-up 15.3 months [interquartile range: 8.5-30.2 months]). Germline DNA samples were available from 824 of these patients, fresh-frozen tumor material from 142 patients, fresh-frozen normal kidney tissue from 95 patients, and tissue microarrays created from formalin-fixed paraffin-embedded tumor material from 247 patients. Of the 920 patients, germline DNA variant chip data were successfully generated for 811 patients (Illumina HumanOmniExpress BeadChip). For 80 patients, next-generation exome sequencing of germline and tumor DNA was performed, tumor RNA sequencing was performed for 124 patients, kinome activity measured and processed for 121 patients (PamChip), and

  10. Mitochondria: Targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants.

    PubMed

    Teixeira, José; Deus, Cláudia M; Borges, Fernanda; Oliveira, Paulo J

    2018-04-01

    Mitochondrial function and regulation of redox balance is fundamental in controlling cellular life and death pathways. Antioxidants have been used to counteract disruption of redox networks, normally associated with progressive loss of cell homeostasis and disease pathophysiology, although therapeutic success is limited mainly due to pharmacokinetic drawbacks. Attempts to improve mitochondrial function in a range of diseases spurred active drug discovery efforts. Currently, the most effective strategy to deliver drugs to mitochondria is the covalent link of lipophilic cations to the bioactive compound. Although targeting mitochondrial oxidative stress with antioxidants has been demonstrated, clinical use has been hampered by several challenges, with no FDA-approved drug so far. Development of new mitochondriotropic antioxidant agents based on dietary polyphenols has recently gained momentum. Due to their nature, mitochondria-targeted multi-functional antioxidants can trigger stress responses and contribute to tissue protection through hormesis mechanisms, inhibiting excessive mitochondrial ROS production and associated diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The effects of return current and target charging in short pulse high intensity laser interactions

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2003-10-01

    Since the introduction of the technique of chirped pulse amplification (CPA), peak laser intensities have increased dramatically. It is now possible to perform laser-plasma interaction experiments at intensities approaching 1021 Wcm-2. The electrons in the field of such lasers are highly relativistic (gamma 31) and the temperature of the hot electron distribution produced in a plasma at such extreme intensities can exceed 10 MeV. Since the resulting beam current exceeds the Alfvén limit, a neutralizing return current of cold plasma electrons moving in the opposite direction is produced. Another source of return current is that due to the escape of very energetic electrons from the target, which then creates a large electrostatic potential due to charge separation. These return currents can cause significant ohmic heating. We present results from experiments performed at Rutherford Appleton Laboratory using the VULCAN laser facility (I> 5 x1019 Wcm-2). Single wire targets were used and in some shots a secondary wire or foil was placed near the target. Three main observations were made: (i) generation of a Z-pinch in the wire due to the return current, (ii) optical transition radiation at 2w and (iii) proton emission from both the primary wire target and the secondary wire or foil. The Z-pinch was observed to be m=0 unstable. The current was estimated to be about 0.8 MA using simple energy balance considerations. Intense second harmonic emission due to coherent optical transition radiation from both the primary target and secondary objects was observed and is likely due to electron bunches accelerated by the ponderomotive jxB force of the laser. The proton emission from the secondary wire or foil was likely due to field emission of electrons from the these objects in response to the large potential produced from charging of the primary target. Results of simulations to model these interactions will also be presented.

  12. Finding the sweet spots of inhibition: understanding the targets of a functional antibody against Plasmodium vivax Duffy binding protein.

    PubMed

    Ntumngia, Francis B; King, Christopher L; Adams, John H

    2012-11-01

    Plasmodium vivax Duffy binding protein region II (DBPII) is an essential ligand for reticulocyte invasion, thereby making this molecule an attractive vaccine candidate against asexual blood-stage P. vivax. Similar to other Plasmodium blood-stage vaccine candidates, strain-specific immunity due to DBPII allelic variation may complicate vaccine efficacy. Targeting immune responses to more conserved epitopes that are potential targets of strain-transcending neutralising immunity is necessary to avoid induction of strain-specific responses to dominant variant epitopes. In this article, we focus on different approaches to optimise the design of DBP immunogenicity to target conserved epitopes, which is important for developing a broadly effective vaccine against P. vivax. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis

    PubMed Central

    Chung, Eun Ji; Tirrell, Matthew

    2016-01-01

    Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows for easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this review, we first describe the pathogenesis of atherosclerosis and the damage caused to vascular tissue, as well as the current diagnostic and treatment options. Then we provide an overview of targeted strategies using self-assembling nanoparticles and include liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, we elaborate on and provide an overview of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles. PMID:26085109

  14. Fabrication of redox-responsive magnetic protein microcapsules from hen egg white by the sonochemical method.

    PubMed

    Zhong, Shuangling; Cui, Xuejun; Tian, Fangyuan

    2015-01-01

    Redox-responsive magnetic protein microcapsules with Fe3O4 magnetic nanoparticles (MNPs) encapsulated inside have been obtained using a facile, cost-effective and fast sonochemical method from hen egg white proteins. Such prepared redox-responsive magnetic hen egg white protein microcapsules (MHEWPMCs) could be easily manipulated to do magnetic-guided targeting delivery. The synchronous loading of the hydrophobic dye Coumarin 6 as a model of drug into MHEWPMCs was readily achieved during the fabrication of MHEWPMCs by dissolving them into the oil phase before ultrasonication. TEM images indicated that Fe3O4 MNPs were encapsulated in MHEWPMCs. Confocal laser scanning microscopic images indicated that the dye was distributed evenly in the MHEWPMCs and no leakage of dye from the MHEWPMCs was observed due to the protection of protein shells. The MHEWPMCs are potential candidates as attractive carriers for drug targeting delivery and stimuli-responsive release due to their magnetic and redox responsiveness of the disulfide in the microcapsule shells.

  15. Stimuli-responsive polymers for antimicrobial therapy: drug targeting, contact-killing surfaces and competitive release.

    PubMed

    Alvarez-Lorenzo, Carmen; Garcia-Gonzalez, Carlos A; Bucio, Emilio; Concheiro, Angel

    2016-08-01

    Polymers can be designed to modify their features as a function of the level and nature of the surrounding microorganisms. Such responsive polymers can endow drug delivery systems and drug-medical device combination products with improved performance against intracellular infections and biofilms. Knowledge on microorganism growth environment outside and inside cells and formation of biofilm communities on biological and synthetic surfaces, together with advances in materials science and drug delivery are prompting strategies with improved efficacy and safety compared to traditional systemic administration of antimicrobial agents. This review deals with antimicrobial strategies that rely on: (i) polymers that disintegrate or undergo phase-transitions in response to changes in enzymes, pH and pO2 associated to microorganism growth; (ii) stimuli-responsive polymers that expose contact-killing groups when microorganisms try to adhere; and (iii) bioinspired polymers that recognize microorganisms for triggered (competitive/affinity-driven) drug release. Prophylaxis and treatment of infections may benefit from polymers that are responsive to the unique changes that microbial growth causes in the surrounding environment or that even recognize the microorganism itself or its quorum sensing signals. These polymers may offer novel tools for the design of macrophage-, bacteria- and/or biofilm-targeted nanocarriers as well as of medical devices with switchable antibiofouling properties.

  16. ELEVATION OF C-FLIP IN CASTRATE-RESISTANT PROSTATE CANCER ANTAGONIZES THERAPEUTIC RESPONSE TO ANDROGEN-RECEPTOR TARGETED THERAPY

    PubMed Central

    McCourt, Clare; Maxwell, Pamela; Mazzucchelli, Roberta; Montironi, Rodolfo; Scarpelli, Marina; Salto-Tellez, Manuel; O’Sullivan, Joe M.; Longley, Daniel B.; Waugh, David J.J.

    2012-01-01

    Purpose To characterize the importance of cellular Fas-associated death domain (FADD)-like interleukin 1β-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase 8 (FLICE)-promoted apoptosis, in modulating the response of prostate cancer (CaP) cells to androgen receptor (AR)-targeted therapy. Experimental Design c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacological interventions. Results c-FLIP expression was increased in high-grade prostatic intra-epithelial neoplasia (HGPIN) and CaP tissue relative to normal prostate epithelium (P<0.001). Maximal c-FLIP expression was detected in castrate-resistant CaP (CRPC) (P<0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also down-regulated c-FLIP expression, induced caspase-8 and caspase-3/7 mediated apoptosis and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance. Conclusion c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of CaP cells. A combination of HDACi with androgen-deprivation therapy (ADT) may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP however may be relevant to enhance the response of existing and novel therapeutics in CRPC. PMID:22623731

  17. Quantitative targeting maps based on experimental investigations for a branched tube model in magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Gitter, K.; Odenbach, S.

    2011-12-01

    Magnetic drug targeting (MDT), because of its high targeting efficiency, is a promising approach for tumour treatment. Unwanted side effects are considerably reduced, since the nanoparticles are concentrated within the target region due to the influence of a magnetic field. Nevertheless, understanding the transport phenomena of nanoparticles in an artery system is still challenging. This work presents experimental results for a branched tube model. Quantitative results describe, for example, the net amount of nanoparticles that are targeted towards the chosen region due to the influence of a magnetic field. As a result of measurements, novel drug targeting maps, combining, e.g. the magnetic volume force, the position of the magnet and the net amount of targeted nanoparticles, are presented. The targeting maps are valuable for evaluation and comparison of setups and are also helpful for the design and the optimisation of a magnet system with an appropriate strength and distribution of the field gradient. The maps indicate the danger of accretion within the tube and also show the promising result of magnetic drug targeting that up to 97% of the nanoparticles were successfully targeted.

  18. Alterations in tendon microenvironment in response to mechanical load: potential molecular targets for treatment strategies

    PubMed Central

    Fouda, Mohamed B; Thankam, Finosh G; Dilisio, Matthew F; Agrawal, Devendra K

    2017-01-01

    Rotator cuff (RC) tendons could beinflicted in many ways with an eventual outcome of pain, weakness and disability, which represent a large burden on health care cost. However, optimal healing, either conservatively or with surgical intervention, remains an issue that needs further investigation. Disorders of the RC tendons may result from external factors like trauma, or internal factors through physiologic and metabolic derangement. Most RC tendon disorders may be asymptomatic and may result from an over-activity of the inflicted shoulder and its tendons. Such tendon disorders are poorly diagnosed since patients do not seek medical attention until pain or weakness ensue. Immunological and biochemical events in RC disorders due to mechanical intolerance have not been investigated. Generally, the mechanical load drives normal physiological properties of the tendon. But, mechanical overload/burden exerts stress on tenocytes, and disrupts the tendon microenvironment by triggering a multitude of signaling pathways leading to extracellular matrix remodeling, disorganization, alteration in collagen composition and apoptosis. These events result in weak tendon which is highly susceptible to rupture or tear. In this article, we critically reviewed the intrinsic signaling pathways that are excessively triggered by continuous mechanical load and the counteracting physiological responses and associated derangements. The elucidation of the molecular events underlying mechanical stress-induced symptomatic/asymptomatic tendinopathy could provide information on potential target sites for translational application in the management of rotator cuff disorders. PMID:29118899

  19. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents

    PubMed Central

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R.

    2016-01-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer’s. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. PMID:26762467

  20. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells

    PubMed Central

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Xu, Ronald X.; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2016-01-01

    Dual responsive nanoparticles are developed for co-delivery of multiple anticancer drugs to target the drug resistance mechanisms of cancer stem-like cells (CSCs). The nanoparticles consist of four polymers approved by the Food and Drug Administration (FDA) for medical use: Poly(D,L-lactide-co-glycolide) (PLGA), Pluronic F127 (PF127), chitosan, and hyaluronic acid (HA). By combining PLGA and PF127 together, more stable and uniform-sized nanoparticles can be obtained than using PLGA or PF127 alone. The HA is used for not only actively targeting CSCs to reduce their drug resistance due to dormancy (i.e., slow metabolism), but also replacing the commonly used poly(vinyl alcohol) as a stabilizing agent to synthesize the nanoparticles using the double-emulsion approach and to allow for acidic pH-triggered drug release and thermal responsiveness. Besides minimizing drug efflux from CSCs, the nanoparticles encapsulated with doxorubicin hydrochloride (DOX, hydrophilic) and irinotecan (CPT, hydrophobic) to inhibit the activity of topoisomerases II and I, respectively, can fight against the CSC drug resistance associated with their enhanced DNA repair and anti-apoptosis. Ultimately, the two drugs-laden nanoparticles can be used to efficiently destroy the CSCs both in vitro and in vivo with up to ~500 times of enhancement compared to the simple mixture of the two drugs. PMID:26344365

  1. Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis.

    PubMed

    Chiu, Christopher W; Nozawa, Hiroaki; Hanahan, Douglas

    2010-10-10

    Pancreatic neuroendocrine tumors (PNETs), although rare, often metastasize, such that surgery, the only potentially curative therapy, is not possible. There is no effective systemic therapy for patients with advanced PNETs. Therefore, new strategies are needed. Toward that end, we investigated the potential benefit of dual therapeutic targeting of the epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) kinases, using a preclinical mouse model of PNET. Rapamycin and erlotinib, inhibitors of mTOR and EGFR, respectively, were used to treat RIP-Tag2 transgenic mice bearing advanced multifocal PNET. Tumor growth and survival were monitored, and tumors were surveyed for potential biomarkers of response to the therapeutics. Rapamycin monotherapy was notably efficacious, prolonging survival concomitant with tumor stasis (stable disease). However, the tumors developed resistance, as evidenced by eventual relapse to progressive tumor growth. Erlotinib monotherapy slowed tumor growth and elicited a marginal survival benefit. In combination, there was an unprecedented survival benefit in the face of this aggressive multifocal cancer and, in contrast to either monotherapy, the development of adaptive resistance was not apparent. Additionally, the antiapoptotic protein survivin was implicated as a biomarker of sensitivity and beneficial responses to the dual targeted therapy. Preclinical trials in a mouse model of endogenous PNET suggest that combined targeting of the mTOR and EGFR signaling pathways could have potential clinical benefit in treating PNET. These results have encouraged development of an ongoing phase II clinical trial aimed to evaluate the efficacy of this treatment regimen in human neuroendocrine tumors.

  2. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.

    PubMed

    Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Guo, Qingcheng; Gu, Nana; Zhang, Dapeng; Qian, Weizhu; Dai, Jianxin; Hou, Sheng; Wang, Hao; Guo, Yajun

    The host immune system generally serves as a barrier against tumor formation. Programmed death-ligand 1 (PD-L1) is a critical "don't find me" signal to the adaptive immune system, whereas CD47 transmits an anti-phagocytic signal, known as the "don't eat me" signal, to the innate immune system. These and similar immune checkpoints are often overexpressed on human tumors. Thus, dual targeting both innate and adaptive immune checkpoints would likely maximize anti-tumor therapeutic effect and elicit more durable responses. Herein, based on the variable region of atezolizumab and consensus variant 1 (CV1) monomer, we constructed a dual-targeting fusion protein targeting both CD47 and PD-L1 using "Knobs-into-holes" technology, denoted as IAB. It was effective in inducing phagocytosis of tumor cells, stimulating T-cell activation and mediating antibody-dependent cell-mediated cytotoxicity in vitro. No obvious sign of hematological toxicity was observed in mice administered IAB at a dose of 100 mg/kg, and IAB exhibited potent antitumor activity in an immune-competent mouse model of MC38. Additionally, the anti-tumor effect of IAB was impaired by anti-CD8 antibody or clodronate liposomes, which implied that both CD8+ T cells and macrophages were required for the anti-tumor efficacy of IAB and IAB plays an essential role in the engagement of innate and adaptive immune responses. Collectively, these results demonstrate the capacity of an elicited endogenous immune response against tumors and elucidate essential characteristics of synergistic innate and adaptive immune response, and indicate dual blockade of CD47 and PD-L1 by IAB may be a synergistic therapy that activates both innate and adaptive immune response against tumors.

  3. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.

    PubMed

    Bar-Zeev, Maya; Livney, Yoav D; Assaraf, Yehuda G

    2017-03-01

    Intrinsic anticancer drug resistance appearing prior to chemotherapy as well as acquired resistance due to drug treatment, remain the dominant impediments towards curative cancer therapy. Hence, novel targeted strategies to overcome cancer drug resistance constitute a key aim of cancer research. In this respect, targeted nanomedicine offers innovative therapeutic strategies to overcome the various limitations of conventional chemotherapy, enabling enhanced selectivity, early and more precise cancer diagnosis, individualized treatment as well as overcoming of drug resistance, including multidrug resistance (MDR). Delivery systems based on nanoparticles (NPs) include diverse platforms enabling a plethora of rationally designed therapeutic nanomedicines. Here we review NPs designed to enhance antitumor drug uptake and selective intracellular accumulation using strategies including passive and active targeting, stimuli-responsive drug activation or target-activated release, triggered solely in the cancer cell or in specific organelles, cutting edge theranostic multifunctional NPs delivering drug combinations for synergistic therapy, while facilitating diagnostics, and personalization of therapeutic regimens. In the current paper we review the recent findings of the past four years and discuss the advantages and limitations of the various novel NPs-based drug delivery systems. Special emphasis is put on in vivo study-based evidences supporting significant therapeutic impact in chemoresistant cancers. A future perspective is proposed for further research and development of complex targeted, multi-stage responsive nanomedical drug delivery systems for personalized cancer diagnosis and efficacious therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Target Predictability, Sustained Attention, and Response Inhibition

    ERIC Educational Resources Information Center

    Carter, Leonie; Russell, Paul N.; Helton, William S.

    2013-01-01

    We examined whether the sustained attention to response task is a better measure of response inhibition or sustained attention. Participants performed a number detection task for 37.3 min using either a Sustained Attention to Response Task (SART; high Go low No-Go) or a more traditionally formatted vigilance task (TFT; high No-Go low Go) response…

  5. UV-B-Responsive Association of the Arabidopsis bZIP Transcription Factor ELONGATED HYPOCOTYL5 with Target Genes, Including Its Own Promoter[W][OPEN

    PubMed Central

    Binkert, Melanie; Kozma-Bognár, László; Terecskei, Kata; De Veylder, Lieven; Nagy, Ferenc; Ulm, Roman

    2014-01-01

    In plants subjected to UV-B radiation, responses are activated that minimize damage caused by UV-B. The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) acts downstream of the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) and promotes UV-B-induced photomorphogenesis and acclimation. Expression of HY5 is induced by UV-B; however, the transcription factor(s) that regulate HY5 transcription in response to UV-B and the impact of UV-B on the association of HY5 with its target promoters are currently unclear. Here, we show that HY5 binding to the promoters of UV-B-responsive genes is enhanced by UV-B in a UVR8-dependent manner in Arabidopsis thaliana. In agreement, overexpression of REPRESSOR OF UV-B PHOTOMORPHOGENESIS2, a negative regulator of UVR8 function, blocks UV-B-responsive HY5 enrichment at target promoters. Moreover, we have identified a T/G-box in the HY5 promoter that is required for its UV-B responsiveness. We show that HY5 and its homolog HYH bind to the T/GHY5-box cis-acting element and that they act redundantly in the induction of HY5 expression upon UV-B exposure. Therefore, HY5 is enriched at target promoters in response to UV-B in a UVR8 photoreceptor-dependent manner, and HY5 and HYH interact directly with a T/G-box cis-acting element of the HY5 promoter, mediating the transcriptional activation of HY5 in response to UV-B. PMID:25351492

  6. Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation

    PubMed Central

    Sweet, Jennifer A.; Pace, Jonathan; Girgis, Fady; Miller, Jonathan P.

    2016-01-01

    Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS. PMID:27445709

  7. Characterizing and Targeting Replication Stress Response Defects in Breast Cancer

    DTIC Science & Technology

    2011-08-01

    induced RSR breast cell model, in which cyclin E can be conditionally induced to trigger RSR in normal breast cells. Using this model, we demonstrated...which makes these defects effective targets for both breast cancer prevention and breast cancer treatment. This project is to use cutting-edge...defective RSR; identify drugs that target these defects; and develop RSR-defect-targeting nanoparticles for diagnostic imaging, prevention, and

  8. Characterizing and Targeting Replication Stress Response Defects in Breast Cancer

    DTIC Science & Technology

    2013-08-01

    This project is to use cutting-edge technologies to characterize novel RSR genes and their functions in tumor suppression; identify gene signature...and membrane proteins associated with defective RSR; identify drugs that target these defects; and develop RSR-defect-targeting nanoparticles for...screening and validation of drugs that target RSR-defect cells. The progress of our third year research is described below. BODY The tasks

  9. Manifestation of anharmonic resonance in the interaction of intense ultrashort laser pulses with microstructured targets

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Kundu, M.; Madhu Trivikram, T.; Ray, Krishanu; Krishnamurthy, M.

    2016-10-01

    Identification of the basic processes responsible for an efficient heating of intense laser produced plasmas is one of the important features of high intensity laser matter interaction studies. Collisionless absorption due to the anharmonicity in the self-consistent electrostatic potential of the plasma, known as anharmonic resonance (AHR), has been proposed to be a basic mechanism but a clear experimental demonstration is needed. Here, we show that microstructured targets enhance X-ray emission and the polarization dependence ascribes the enhancement to anharmonic resonance heating. It is found that p-polarized pulses of 5 ×1017 W/cm2 intensity bring in a 16-fold enhancement in the X-ray emission in the energy range 20-350 keV compared to s-polarized pulses with microstructured targets. This ratio is 2 for the case of polished targets under otherwise identical conditions. Particle-in-cell simulations clearly show that AHR is the key absorption mechanism responsible for this effect.

  10. ESAT-6 Targeting to DEC205+ Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis.

    PubMed

    Silva-Sánchez, Aarón; Meza-Pérez, Selene; Flores-Langarica, Adriana; Donis-Maturano, Luis; Estrada-García, Iris; Calderón-Amador, Juana; Hernández-Pando, Rogelio; Idoyaga, Juliana; Steinman, Ralph M; Flores-Romo, Leopoldo

    2015-01-01

    Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen's naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions.

  11. ESAT-6 Targeting to DEC205+ Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis

    PubMed Central

    Silva-Sánchez, Aarón; Meza-Pérez, Selene; Flores-Langarica, Adriana; Donis-Maturano, Luis; Estrada-García, Iris; Calderón-Amador, Juana; Hernández-Pando, Rogelio; Idoyaga, Juliana; Flores-Romo, Leopoldo

    2015-01-01

    Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen’s naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions. PMID:25915045

  12. Target representation of naturalistic echolocation sequences in single unit responses from the inferior colliculus of big brown bats

    NASA Astrophysics Data System (ADS)

    Sanderson, Mark I.; Simmons, James A.

    2005-11-01

    Echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals whose duration, repetition rate, and sweep structure change systematically during interception of prey. When stimulated with a 2.5-s sequence of 54 FM pulse-echo pairs that mimic sounds received during search, approach, and terminal stages of pursuit, single neurons (N=116) in the bat's inferior colliculus (IC) register the occurrence of a pulse or echo with an average of <1 spike/sound. Individual IC neurons typically respond to only a segment of the search or approach stage of pursuit, with fewer neurons persisting to respond in the terminal stage. Composite peristimulus-time-histogram plots of responses assembled across the whole recorded population of IC neurons depict the delay of echoes and, hence, the existence and distance of the simulated biosonar target, entirely as on-response latencies distributed across time. Correlated changes in pulse duration, repetition rate, and pulse or echo amplitude do modulate the strength of responses (probability of the single spike actually occurring for each sound), but registration of the target itself remains confined exclusively to the latencies of single spikes across cells. Modeling of echo processing in FM biosonar should emphasize spike-time algorithms to explain the content of biosonar images.

  13. Immediate and subsequent effects of response interruption and redirection on targeted and untargeted forms of stereotypy.

    PubMed

    Pastrana, Sarah J; Rapp, John T; Frewing, Tyla M

    2013-07-01

    A number of studies have shown that response interruption and redirection (RIRD) decreases immediate engagement in targeted stereotypic behaviors; however, its effects on untargeted stereotypy have not yet been studied, and its effects following removal of treatment are unclear. We evaluated the immediate and subsequent effects of RIRD on targeted motor stereotypy, as well as untargeted but higher probability vocal stereotypy, of two participants diagnosed with autism, using a three-component multiple-schedule design. Treatment with RIRD decreased immediate engagement in motor stereotypy for both participants, and did not increase subsequent engagement above baseline levels for either participant. In addition, RIRD produced modest changes in immediate engagement in untargeted vocal stereotypy for both participants. We briefly discuss the clinical implications and limitations of the findings from this study.

  14. Target/error overlap in jargonaphasia: The case for a one-source model, lexical and non-lexical summation, and the special status of correct responses.

    PubMed

    Olson, Andrew; Halloran, Elizabeth; Romani, Cristina

    2015-12-01

    We present three jargonaphasic patients who made phonological errors in naming, repetition and reading. We analyse target/response overlap using statistical models to answer three questions: 1) Is there a single phonological source for errors or two sources, one for target-related errors and a separate source for abstruse errors? 2) Can correct responses be predicted by the same distribution used to predict errors or do they show a completion boost (CB)? 3) Is non-lexical and lexical information summed during reading and repetition? The answers were clear. 1) Abstruse errors did not require a separate distribution created by failure to access word forms. Abstruse and target-related errors were the endpoints of a single overlap distribution. 2) Correct responses required a special factor, e.g., a CB or lexical/phonological feedback, to preserve their integrity. 3) Reading and repetition required separate lexical and non-lexical contributions that were combined at output. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors.

    PubMed

    Karandish, Fataneh; Froberg, James; Borowicz, Pawel; Wilkinson, John C; Choi, Yongki; Mallik, Sanku

    2018-03-01

    Often cancer relapses after an initial response to chemotherapy because of the tumor's heterogeneity and the presence of progenitor stem cells, which can renew. To overcome drug resistance, metastasis, and relapse in cancer, a promising approach is the inhibition of cancer stemness. In this study, the expression of the neuropilin-1 receptor in both pancreatic and prostate cancer stem cells was identified and targeted with a stimuli-responsive, polymeric nanocarrier to deliver a stemness inhibitor (napabucasin) to cancer stem cells. Reduction-sensitive amphiphilic block copolymers PEG 1900 -S-S-PLA 6000 and the N 3 -PEG 1900 -PLA 6000 were synthesized. The tumor penetrating iRGD peptide-hexynoic acid conjugate was linked to the N 3 -PEG 1900 -PLA 6000 polymer via a Cu 2+ catalyzed "Click" reaction. Subsequently, this peptide-polymer conjugate was incorporated into polymersomes for tumor targeting and tissue penetration. We prepared polymersomes containing 85% PEG 1900 -S-S-PLA 6000 , 10% iRGD-polymer conjugate, and 5% DPPE-lissamine rhodamine dye. The iRGD targeted polymersomes encapsulating the cancer stemness inhibitor napabucasin were internalized in both prostate and pancreatic cancer stem cells. The napabucasin encapsulated polymersomes significantly (p < .05) reduced the viability of both prostate and pancreatic cancer stem cells and decreased the stemness protein expression notch-1 and nanog compared to the control and vesicles without any drug. The napabucasin encapsulated polymersome formulations have the potential to lead to a new direction in prostate and pancreatic cancer therapy by penetrating deeply into the tumors, releasing the encapsulated stemness inhibitor, and killing cancer stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Tumor responsive targeted multifunctional nanosystems for cancer imaging, chemo- and siRNA therapy

    NASA Astrophysics Data System (ADS)

    Savla, Ronak

    Cancer is one of the most insidious diseases. Compromising of over 100 different types and sharing the unifying factors of uncontrolled growth and metastasis, unmet clinical needs in terms of cancer diagnosis and treatment continue to exist. It is widely accepted that most forms of cancer are treatable or even curable if detected before widespread metastasis occurs. Nearly a quarter of deaths in the United States is the result of cancer and it only trails heart disease in terms of annual mortality. Surgery, chemotherapy, and radiation therapy are the primary treatment modalities for cancer. Research in these procedures has resulted in substantial benefits for cancer patients, but there is still room for an improvement. However, a time has been reached at which it appears that the benefits from these modalities have been reached the maximum. Therefore, it is vital to develop new strategies for the diagnosis and treatment of cancer. The field of nanotechnology is concerned with structures in the nanometer size range and holds the potential to drastically impact and improve the lives of patients suffering from cancer. Not only can nanotechnology improve current methods of diagnosis and treatment, it has a possibility of introducing newer and better modalities. The overall purpose of this work is to develop novel nanotechnology-based methodologies for the diagnosis and treatment of various forms of cancers. The first aim of the project is the development of a multifunctional targeted nanosystem for the delivery of siRNA to overcome drug resistance. The second aspect is the synthesis of a quantum dot-based delivery system that releases drug in response to pH changes. The third aim is the development of a targeted, tumor environment responsive magnetic resonance nanoparticle contrast agent coupled with a nanoparticle-based treatment.

  17. Knowing where is different from knowing what: Distinct response time profiles and accuracy effects for target location, orientation, and color probability.

    PubMed

    Jabar, Syaheed B; Filipowicz, Alex; Anderson, Britt

    2017-11-01

    When a location is cued, targets appearing at that location are detected more quickly. When a target feature is cued, targets bearing that feature are detected more quickly. These attentional cueing effects are only superficially similar. More detailed analyses find distinct temporal and accuracy profiles for the two different types of cues. This pattern parallels work with probability manipulations, where both feature and spatial probability are known to affect detection accuracy and reaction times. However, little has been done by way of comparing these effects. Are probability manipulations on space and features distinct? In a series of five experiments, we systematically varied spatial probability and feature probability along two dimensions (orientation or color). In addition, we decomposed response times into initiation and movement components. Targets appearing at the probable location were reported more quickly and more accurately regardless of whether the report was based on orientation or color. On the other hand, when either color probability or orientation probability was manipulated, response time and accuracy improvements were specific for that probable feature dimension. Decomposition of the response time benefits demonstrated that spatial probability only affected initiation times, whereas manipulations of feature probability affected both initiation and movement times. As detection was made more difficult, the two effects further diverged, with spatial probability disproportionally affecting initiation times and feature probability disproportionately affecting accuracy. In conclusion, all manipulations of probability, whether spatial or featural, affect detection. However, only feature probability affects perceptual precision, and precision effects are specific to the probable attribute.

  18. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination.

    PubMed

    Garinot, Marie; Fiévez, Virginie; Pourcelle, Vincent; Stoffelbach, François; des Rieux, Anne; Plapied, Laurence; Theate, Ivan; Freichels, Hélène; Jérôme, Christine; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2007-07-31

    To improve the efficiency of orally delivered vaccines, PEGylated PLGA-based nanoparticles displaying RGD molecules at their surface were designed to target human M cells. RGD grafting was performed by an original method called "photografting" which covalently linked RGD peptides mainly on the PEG moiety of the PCL-PEG, included in the formulation. First, three non-targeted formulations with size and zeta potential adapted to M cell uptake and stable in gastro-intestinal fluids, were developed. Their transport by an in vitro model of the human Follicle associated epithelium (co-cultures) was largely increased as compared to mono-cultures (Caco-2 cells). RGD-labelling of nanoparticles significantly increased their transport by co-cultures, due to interactions between the RGD ligand and the beta(1) intregrins detected at the apical surface of co-cultures. In vivo studies demonstrated that RGD-labelled nanoparticles particularly concentrated in M cells. Finally, ovalbumin-loaded nanoparticles were orally administrated to mice and induced an IgG response, attesting antigen ability to elicit an immune response after oral delivery.

  19. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  20. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  1. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  2. "The face of ostracism": The impact of the social categorization on the thermal facial responses of the target and the observer.

    PubMed

    Paolini, Daniele; Alparone, Francesca R; Cardone, Daniela; van Beest, Ilja; Merla, Arcangelo

    2016-01-01

    Ostracism has been shown to elicit pain in both the target and the observers. Two experiments investigated the autonomic thermal signature associated with an ostracism experience and assessed whether and how social categorization impacts the autonomic arousal of both the target and the observer. Autonomic response was assessed using thermal infrared imaging, recording facial temperature variation during an online game of ball toss (i.e., Cyberball). Social categorization was manipulated using a minimal group paradigm. The results show a more intense autonomic response during ostracism (vs. inclusion), marked by an increase in facial temperature in the nose and the perioral area. This autonomic response is stronger when individuals are ostracized by ingroup (vs. outgroup) members. Similar pattern of temperature variations emerge when individuals observe an ostracism episode involving ingroup members. Our findings advance the understanding of psycho-physiological mechanisms underlying the ostracism experience and emphasize the impact of social categorization in such mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effects of Target Probability and Memory Demands on the Vigilance of Adults with and without Mental Retardation.

    ERIC Educational Resources Information Center

    Tomporowski, Phillip D.; Tinsley, Veronica

    1994-01-01

    The vigilance of young adults with and without mild mental retardation (MR) was compared, with subjects performing two memory demanding, cognitively based tests. The vigilance decrement of MR adults declined more rapidly than did the vigilance of non-MR adults, due to an interaction between target detectability and response bias, and poor target…

  4. Targeting the Endoplasmic Reticulum Unfolded Protein Response to Counteract the Oxidative Stress-Induced Endothelial Dysfunction

    PubMed Central

    Moltedo, Ornella; Faraonio, Raffaella

    2018-01-01

    In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein misfolding within the endoplasmic reticulum. Although the first outcome of the UPR pathways is the promotion of an adaptive response, the persistent activation of UPR leads to increased oxidative stress and cell death. This molecular switch has been correlated to the onset or to the exacerbation of the endothelial dysfunction in cardiovascular diseases. In this review, we highlight the multiple chances of the UPR to induce or ameliorate oxidative disturbances and propose the UPR pathways as a new therapeutic target for the clinical management of endothelial dysfunction. PMID:29725497

  5. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan

    PubMed Central

    Lopez-Moya, Federico; Kowbel, David; Nueda, Ma José; Palma-Guerrero, Javier; Glass, N. Louise; Lopez-Llorca, Luis Vicente

    2016-01-01

    Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed, NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement and NCU04537 a MFS monosaccharide transporter related with assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as antifungal. PMID:26694141

  6. HIV-1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses

    PubMed Central

    Col, Edwige; Caron, Cécile; Chable-Bessia, Christine; Legube, Gaelle; Gazzeri, Sylvie; Komatsu, Yasuhiko; Yoshida, Minoru; Benkirane, Monsef; Trouche, Didier; Khochbin, Saadi

    2005-01-01

    HIV-1 transactivator Tat uses cellular acetylation signalling by targeting several cellular histone acetyltransferases (HAT) to optimize its various functions. Although Tip60 was the first HAT identified to interact with Tat, the biological significance of this interaction has remained obscure. We had previously shown that Tat represses Tip60 HAT activity. Here, a new mechanism of Tip60 neutralization by Tat is described, where Tip60 is identified as a substrate for the newly reported p300/CBP-associated E4-type ubiquitin-ligase activity, and Tat uses this mechanism to induce the polyubiquitination and degradation of Tip60. Tip60 targeting by Tat results in a dramatic impairment of the Tip60-dependent apoptotic cell response to DNA damage. These data reveal yet unknown strategies developed by HIV-1 to increase cell resistance to genotoxic stresses and show a role of Tat as a modulator of cellular protein ubiquitination. PMID:16001085

  7. Target-similarity search using Plasmodium falciparum proteome identifies approved drugs with anti-malarial activity and their possible targets

    PubMed Central

    Akala, Hoseah M.; Macharia, Rosaline W.; Juma, Dennis W.; Cheruiyot, Agnes C.; Andagalu, Ben; Brown, Mathew L.; El-Shemy, Hany A.; Nyanjom, Steven G.

    2017-01-01

    Malaria causes about half a million deaths annually, with Plasmodium falciparum being responsible for 90% of all the cases. Recent reports on artemisinin resistance in Southeast Asia warrant urgent discovery of novel drugs for the treatment of malaria. However, most bioactive compounds fail to progress to treatments due to safety concerns. Drug repositioning offers an alternative strategy where drugs that have already been approved as safe for other diseases could be used to treat malaria. This study screened approved drugs for antimalarial activity using an in silico chemogenomics approach prior to in vitro verification. All the P. falciparum proteins sequences available in NCBI RefSeq were mined and used to perform a similarity search against DrugBank, TTD and STITCH databases to identify similar putative drug targets. Druggability indices of the potential P. falciparum drug targets were obtained from TDR targets database. Functional amino acid residues of the drug targets were determined using ConSurf server which was used to fine tune the similarity search. This study predicted 133 approved drugs that could target 34 P. falciparum proteins. A literature search done at PubMed and Google Scholar showed 105 out of the 133 drugs to have been previously tested against malaria, with most showing activity. For further validation, drug susceptibility assays using SYBR Green I method were done on a representative group of 10 predicted drugs, eight of which did show activity against P. falciparum 3D7 clone. Seven had IC50 values ranging from 1 μM to 50 μM. This study also suggests drug-target association and hence possible mechanisms of action of drugs that did show antiplasmodial activity. The study results validate the use of proteome-wide target similarity approach in identifying approved drugs with activity against P. falciparum and could be adapted for other pathogens. PMID:29088219

  8. Response Rates and Response Bias for 50 Surveys of Pediatricians

    PubMed Central

    Cull, William L; O'Connor, Karen G; Sharp, Sanford; Tang, Suk-fong S

    2005-01-01

    Research Objective To track response rates across time for surveys of pediatricians, to explore whether response bias is present for these surveys, and to examine whether response bias increases with lower response rates. Data Source/Study Setting A total of 63,473 cases were gathered from 50 different surveys of pediatricians conducted by the American Academy of Pediatrics (AAP) since 1994. Thirty-one surveys targeted active U.S. members of the AAP, six targeted pediatric residents, and the remaining 13 targeted AAP-member and nonmember pediatric subspecialists. Information for the full target samples, including nonrespondents, was collected using administrative databases of the AAP and the American Board of Pediatrics. Study Design To assess bias for each survey, age, gender, location, and AAP membership type were compared for respondents and the full target sample. Correlational analyses were conducted to examine whether surveys with lower response rates had increasing levels of response bias. Principal Findings Response rates to the 50 surveys examined declined significantly across survey years (1994–2002). Response rates ranged from 52 to 81 percent with an average of 68 percent. Comparisons between respondents and the full target samples showed the respondent group to be younger, to have more females, and to have less specialty-fellow members. Response bias was not apparent for pediatricians' geographical location. The average response bias, however, was fairly small for all factors: age (0.45 years younger), gender (1.4 percentage points more females), and membership type (1.1 percentage points fewer specialty-fellow members). Gender response bias was found to be inversely associated with survey response rates (r=−0.38). Even for the surveys with the lowest response rates, amount of response bias never exceeded 5 percentage points for gender, 3 years for age, or 3 percent for membership type. Conclusions While response biases favoring women, young

  9. Perceptions of similarity and response to selected comparison targets in type 2 diabetes.

    PubMed

    Arigo, Danielle; Smyth, Joshua M; Suls, Jerry M

    2015-01-01

    Social comparisons (i.e. self-evaluations relative to others) may affect motivation for diabetes self-care behaviours. Comparisons can have either positive or negative effects, but it is not clear what differentiates these responses. This study tested the effect of a patient's perceived similarity to a comparison target on motivation for self-care. Individuals with type 2 diabetes (n = 180, MA1c = 7.59%) selected to read one of four brief descriptions of a patient with diabetes. Participants rated their motivation for self-care behaviours prior and subsequent to reading and reported the extent to which they focused on similarities between the self and the selected patient while reading. Perceived similarity moderated the effect of selection on motivation for self-care (p = .01, η2 = .06). Increased motivation was observed if participants focused on similarities with patients 'doing better' (i.e. high coping effectiveness/low symptom severity) and decreased motivation if they focused on similarities with patients 'doing worse' (low coping effectiveness/high symptom severity). Providing social comparison information in diabetes management (and perhaps other chronic diseases) may improve motivation for self-care among some patients. A subset of patients, however, may benefit from guidance to focus on similarities with certain targets.

  10. Study of target and non-target interplay in spatial attention task.

    PubMed

    Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree

    2018-02-01

    Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.

  11. Design of Student Information Management Database Application System for Office and Departmental Target Responsibility System

    NASA Astrophysics Data System (ADS)

    Zhou, Hui

    It is the inevitable outcome of higher education reform to carry out office and departmental target responsibility system, in which statistical processing of student's information is an important part of student's performance review. On the basis of the analysis of the student's evaluation, the student information management database application system is designed by using relational database management system software in this paper. In order to implement the function of student information management, the functional requirement, overall structure, data sheets and fields, data sheet Association and software codes are designed in details.

  12. Subacute combined degeneration of the cord due to folate deficiency: response to methyl folate treatment.

    PubMed Central

    Lever, E G; Elwes, R D; Williams, A; Reynolds, E H

    1986-01-01

    Subacute combined degeneration of the cord is a rare complication of folate deficiency. Disturbance of methylation reactions in nervous tissue probably underlie subacute combined degeneration of the cord arising from folate as well as vitamin B12 deficiency. Methyl tetrahydrofolate is the form in which folic acid is transported into the CNS. Therefore methyl tetrahydrofolate treatment of the neurological and psychiatric manifestations of folate deficiency would seem to be theoretically advantageous. A case of subacute combined degeneration of the cord due to dietary folate deficiency and associated with an organic brain syndrome is reported. There was striking haematological, neurological and psychiatric response to methyl folate treatment. PMID:3783183

  13. Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa.

    PubMed

    Lu, Tao; Zhu, Youchao; Xu, Jiahui; Ke, Mingjing; Zhang, Meng; Tan, Chengxia; Fu, Zhengwei; Qian, Haifeng

    2018-03-01

    The top-selling strobilurin, azoxystrobin (AZ), is a broad-spectrum fungicide that protects against many kinds of pathogenic fungi by preventing their ATP production. The extensive use of AZ can have negative consequences on non-target species and its effects and toxic mechanisms on algae are still poorly understood. In this work, Chlorella pyrenoidosa that had been grown in BG-11 medium was exposed to AZ (0.5-10 mg L -1 ) for 10 d. The physiological and molecular responses of the algae to AZ treatment, including photosynthetic efficiency, lipid peroxidation level, antioxidant enzyme activities, as well as transcriptome-based analysis of gene expression, were examined to investigate the potential toxic mechanism. Results shows that the photosynthetic pigment (per cell) increased slightly after AZ treatments, indicating that the photosystem of C. pyrenoidosa may have been strengthened. Glutathione and ascorbate contents were increased, and antioxidant enzyme activities were induced to relieve oxidative damage (e.g., from lipid peroxidation) in algae after AZ treatment. Transcriptome-based analysis of gene expression combined with physiological verification suggested that the 5 mg L -1 AZ treatment did not inhibit ATP generation in C. pyrenoidosa, but did significantly alter amino acid metabolism, especially in aspartate- and glutamine-related reactions. Moreover, perturbation of ascorbate synthesis, fat acid metabolism, and RNA translation was also observed, suggesting that AZ inhibits algal cell growth through multiple pathways. The identification of AZ-responsive genes in the eukaryotic alga C. pyrenoidosa provides new insight into AZ stress responses in a non-target organism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. UTILIZING SHELLFISH RESPONSES TO SET TARGET WATER QUALITY CONDITIONS FOR THE RESTORATION OF OYSTER REEFS IN THE CALOOSAHATCHEE ESTUARY, FLORIDA.

    EPA Science Inventory

    Volety, Aswani K., S.G. Tolley and James T. Winstead. 2002. Utilizing Shellfish Responses to Set Target Water Quality Conditions for the Restoration of Oyster Reefs in the Caloosahatchee Estuary, Florida. Presented at the International Workshop on Restoration of Benthic Invertebr...

  15. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response.

    PubMed

    Liang, Ruijing; Xie, Jun; Li, Jun; Wang, Ke; Liu, Liping; Gao, Yujie; Hussain, Mubashir; Shen, Guanxin; Zhu, Jintao; Tao, Juan

    2017-12-01

    For nanovaccine-based cancer immunotherapy, dendritic cells (DCs) are one of the most powerful antigen presenting cells (APCs) that initiate and promote the maturation of antigen-specific cytotoxic T lymphocytes (e.g., CD8 + T cells) to induce the local and systemic antitumor immunity and further suppress the tumor metastasis and produce long-term protection against tumor. Thus, the activation and maturation of DCs is the prerequisite for efficient CD8 + T cell-based antitumor immune responses, which is considered as a primary and promising task for nanovaccine engineering. Herein, we introduce a versatile nanovaccine of liposomes-coated gold nanocages (Lipos-AuNCs) modified with DCs specific antibody aCD11c for targeted delivery of adjuvant MPLA and melanoma antigen peptide TRP2 to promote the activation and maturation of DCs, and enhance tumor specific T lymphocytes responses. Moreover, AuNCs accumulation and AuNCs-engulfed DCs migration to regional lymph nodes (RLNs) became real-time visualization through in vivo fluorescence and photoacoustic (PA) imaging to monitor the immunity process. In vivo experimental results demonstrated that the targeted antigen/adjuvants-loaded AuNCs exhibited enhanced antitumor immune response to inhibit tumor growth and metastasis in both B16-F10 prophylactic and lung metastasis models, which may act as a promising nanoplatform for antitumor immunotherapy and in vivo tracking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fluorescent carbon dot-gated multifunctional mesoporous silica nanocarriers for redox/enzyme dual-responsive targeted and controlled drug delivery and real-time bioimaging.

    PubMed

    Wang, Ying; Cui, Yu; Zhao, Yating; He, Bing; Shi, Xiaoli; Di, Donghua; Zhang, Qiang; Wang, Siling

    2017-08-01

    A distinctive and personalized nanocarrier is described here for controlled and targeted antitumor drug delivery and real-time bioimaging by combining a redox/enzyme dual-responsive disulfide-conjugated carbon dot with mesoporous silica nanoparticles (MSN-SS-CD HA ). The carbon dot with controlling and targeting abilities was prepared through a polymerizing reaction by applying citric acid and HA as starting materials (named CD HA ). The as-prepared MSN-SS-CD HA exhibited not only superior photostability and excellent biocompatibility, but also the ability to target A549 cells with overexpression of CD44 receptors. Upon loading the antitumor drug, doxorubicin (DOX), into the mesoporous channels of MSN nanoparticles, CD HA with a diameter size of 3nm completely blocked the pore entrance of DOX-encapsulated MSN nanoparticles with a pore size of about 3nm, thus preventing the premature leakage of DOX and increasing the antitumor activity until being triggered by specific stimuli in the tumor environment. The results of the cell imaging and cytotoxicity studies demonstrated that the redox/enzyme dual-responsive DOX-encapsulated MSN-SS-CD HA nanoparticles can selectively deliver and control the release of DOX into tumor cells. Ex vivo fluorescence images showed a much stronger fluorescence of MSN-SS-CD HA -DOX in the tumor site than in normal tissues, greatly facilitating the accumulation of DOX in the target tissue. However, its counterpart, MSN-SH-DOX exhibited no or much lower tumor cytotoxicity and drug accumulation in tumor tissue. In addition, MSN-SS-CD was also used as a control to investigate the ability of MSN-SS-CD HA to target A549 cells. The results obtained indicated that MSN-SS-CD HA possessed a higher cellular uptake through the CD44 receptor-mediated endocytosis compared with MSN-SS-CD in the A549 cells. Such specific redox/enzyme dual-responsive targeted nanocarriers are a useful strategy achieving selective controlled and targeted delivery of

  17. Using Culturally Responsive Stories in Mathematics: Responses from the Target Audience

    ERIC Educational Resources Information Center

    Corp, Amy

    2017-01-01

    This study examined how Black students responded to the utilization of culturally responsive stories in their mathematics class. All students in the two classes participated in mathematics lessons that began with an African American story (culturally responsive to this population), followed by mathematical discussion and concluded with solving…

  18. Conspicuity of target lights: The influence of color

    NASA Technical Reports Server (NTRS)

    Connors, M. M.

    1975-01-01

    The conspicuity (or attention-getting qualities) were investigated of foveally-equated, colored lights, when seen against a star background. Subjects who were periodically engaged in a distracting cockpit task were required to search a large visual field and report the appearance of a target light as quickly as possible. Targets were red, yellow, white, green, and blue, and appeared either as steady or as flashing lights. Results indicate that red targets were missed more frequently and responded to more slowly than lights of other hues. Yellow targets were acquired more slowly than white, green, or blue targets; responses to white targets were significantly slower than responses to green or blue targets. In general, flashing lights were superior to steady lights, but this was not found for all hues. For red, the 2 Hz flash was superior to all other flash rates and to the steady light, none of which differed significantly from each other. Over all hues, conspicuity was found to peak at 2-3 Hz. Response time was found to be fastest, generally, for targets appearing at between 3 and 8 from the center of the visual field. However, this pattern was not repeated for every hue. Conspicuity response times suggest a complex relationship between hue and position in the visual field that is explained only partially by retinal sensitivity.

  19. Different Neuroplasticity for Task Targets and Distractors

    PubMed Central

    Spingath, Elsie Y.; Kang, Hyun Sug; Plummer, Thane; Blake, David T.

    2011-01-01

    Adult learning-induced sensory cortex plasticity results in enhanced action potential rates in neurons that have the most relevant information for the task, or those that respond strongly to one sensory stimulus but weakly to its comparison stimulus. Current theories suggest this plasticity is caused when target stimulus evoked activity is enhanced by reward signals from neuromodulatory nuclei. Prior work has found evidence suggestive of nonselective enhancement of neural responses, and suppression of responses to task distractors, but the differences in these effects between detection and discrimination have not been directly tested. Using cortical implants, we defined physiological responses in macaque somatosensory cortex during serial, matched, detection and discrimination tasks. Nonselective increases in neural responsiveness were observed during detection learning. Suppression of responses to task distractors was observed during discrimination learning, and this suppression was specific to cortical locations that sampled responses to the task distractor before learning. Changes in receptive field size were measured as the area of skin that had a significant response to a constant magnitude stimulus, and these areal changes paralleled changes in responsiveness. From before detection learning until after discrimination learning, the enduring changes were selective suppression of cortical locations responsive to task distractors, and nonselective enhancement of responsiveness at cortical locations selective for target and control skin sites. A comparison of observations in prior studies with the observed plasticity effects suggests that the non-selective response enhancement and selective suppression suffice to explain known plasticity phenomena in simple spatial tasks. This work suggests that differential responsiveness to task targets and distractors in primary sensory cortex for a simple spatial detection and discrimination task arise from nonselective

  20. MicroRNA-302 Cluster Downregulates Enterovirus 71-Induced Innate Immune Response by Targeting KPNA2.

    PubMed

    Peng, Nanfang; Yang, Xuecheng; Zhu, Chengliang; Zhou, Li; Yu, Haisheng; Li, Mengqi; Lin, Yong; Wang, Xueyu; Li, Qian; She, Yinglong; Wang, Jun; Zhao, Qian; Lu, Mengji; Zhu, Ying; Liu, Shi

    2018-05-18

    Enterovirus 71 (EV71) induces significantly elevated levels of cytokines and chemokines, leading to local or systemic inflammation and severe complications. As shown in our previous study, microRNA (miR) 302c regulates influenza A virus-induced IFN expression by targeting NF-κB-inducing kinase. However, little is known about the role of the miR-302 cluster in EV71-mediated proinflammatory responses. In this study, we found that the miR-302 cluster controls EV71-induced cytokine expression. Further studies demonstrated that karyopherin α2 (KPNA2) is a direct target of the miR-302 cluster. Interestingly, we also found that EV71 infection upregulates KPNA2 expression by downregulating miR-302 cluster expression. Upon investigating the mechanisms behind this event, we found that KPNA2 intracellularly associates with JNK1/JNK2 and p38, leading to translocation of those transcription factors from the cytosol into the nucleus. In EV71-infected patients, miR-302 cluster expression was downregulated and KPNA2 expression was upregulated compared with controls, and their expression levels were closely correlated. Taken together, our work establishes a link between the miR-302/ KPNA2 axis and EV71-induced cytokine expression and represents a promising target for future antiviral therapy. Copyright © 2018 by The American Association of Immunologists, Inc.

  1. Targeting Tumor-Associated Macrophages as a Potential Strategy to Enhance the Response to Immune Checkpoint Inhibitors.

    PubMed

    Cassetta, Luca; Kitamura, Takanori

    2018-01-01

    Inhibition of immune checkpoint pathways in CD8 + T cell is a promising therapeutic strategy for the treatment of solid tumors that has shown significant anti-tumor effects and is now approved by the FDA to treat patients with melanoma and lung cancer. However the response to this therapy is limited to a certain fraction of patients and tumor types, for reasons still unknown. To ensure success of this treatment, CD8 + T cells, the main target of the checkpoint inhibitors, should exert full cytotoxicity against tumor cells. However recent studies show that tumor-associated macrophages (TAM) can impede this process by different mechanisms. In this mini-review we will summarize recent studies showing the effect of TAM targeting on immune checkpoint inhibitors efficacy. We will also discuss on the limitations of the current strategies as well on the future scientific challenges for the progress of the tumor immunology field.

  2. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response

    PubMed Central

    2014-01-01

    Background Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA“s” and PthC“s” of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Results Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA“s” and PthC“s” in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. Conclusions The identification of PthA“s” and PthC“s” targets, such as the LOB (LATERAL ORGAN BOUNDARY) and CCNBS genes that we report here, is key for the understanding

  3. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response.

    PubMed

    Pereira, Andre L A; Carazzolle, Marcelo F; Abe, Valeria Y; de Oliveira, Maria L P; Domingues, Mariane N; Silva, Jaqueline C; Cernadas, Raul A; Benedetti, Celso E

    2014-02-25

    Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA"s" and PthC"s" of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA"s" and PthC"s" in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. The identification of PthA"s" and PthC"s" targets, such as the LOB (lateral organ boundary) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host

  4. Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis

    PubMed Central

    Chávez-Hernández, Elva C.; Alejandri-Ramírez, Naholi D.; Juárez-González, Vasti T.; Dinkova, Tzvetanka D.

    2015-01-01

    Maize somatic embryogenesis (SE) is induced from the immature zygotic embryo in darkness and under the appropriate hormones' levels. Small RNA expression is reprogrammed and certain miRNAs become particularly enriched during induction while others, characteristic to the zygotic embryo, decrease. To explore the impact of different environmental cues on miRNA regulation in maize SE, we tested specific miRNA abundance and their target gene expression in response to photoperiod and hormone depletion for two different maize cultivars (VS-535 and H-565). The expression levels of miR156, miR159, miR164, miR168, miR397, miR398, miR408, miR528, and some predicted targets (SBP23, GA-MYB, CUC2, AGO1c, LAC2, SOD9, GR1, SOD1A, PLC) were examined upon staged hormone depletion in the presence of light photoperiod or darkness. Almost all examined miRNA, except miR159, increased upon hormone depletion, regardless photoperiod absence/presence. miR528, miR408, and miR398 changed the most. On the other hand, expression of miRNA target genes was strongly regulated by the photoperiod exposure. Stress-related miRNA targets showed greater differences between cultivars than development-related targets. miRNA/target inverse relationship was more frequently observed in darkness than light. Interestingly, miR528, but not miR159, miR168 or miR398, was located on polyribosome fractions suggesting a role for this miRNA at the level of translation. Overall our results demonstrate that hormone depletion exerts a great influence on specific miRNA expression during plant regeneration independently of light. However, their targets are additionally influenced by the presence of photoperiod. The reproducibility or differences observed for particular miRNA-target regulation between two different highly embryogenic genotypes provide clues for conserved miRNA roles within the SE process. PMID:26257760

  5. Innate Immune Response to Burkholderia mallei

    DTIC Science & Technology

    2017-02-16

    stimulate immune responses via TLR4 activation that may contribute to persistent infection. Summary Mortality is high due to septicemia and immune...phosphorylation of adenosine monophosphate- activated protein kinase (AMPK); regulators of NF-κB signaling pathway (e.g. IκBα, GSK3β, Src, and STAT1) and mitogen... activated protein kinases (e.g. p38, ERK1/2 and c-Myc) (13). The degrees in which target host proteins or processes are modulated correlated to the

  6. Event-related Potentials During Target-response Tasks to Study Cognitive Processes of Upper Limb Use in Children with Unilateral Cerebral Palsy.

    PubMed

    Zielinski, Ingar Marie; Steenbergen, Bert; Baas, C Marjolein; Aarts, Pauline; Jongsma, Marijtje L A

    2016-01-11

    Unilateral Cerebral Palsy (CP) is a neurodevelopmental disorder that is a very common cause of disability in childhood. It is characterized by unilateral motor impairments that are frequently dominated in the upper limb. In addition to a reduced movement capacity of the affected upper limb, several children with unilateral CP show a reduced awareness of the remaining movement capacity of that limb. This phenomenon of disregarding the preserved capacity of the affected upper limb is regularly referred to as Developmental Disregard (DD). Different theories have been postulated to explain DD, each suggesting slightly different guidelines for therapy. Still, cognitive processes that might additionally contribute to DD in children with unilateral CP have never been directly studied. The current protocol was developed to study cognitive aspects involved in upper limb control in children with unilateral CP with and without DD. This was done by recording event-related potentials (ERPs) extracted from the ongoing EEG during target-response tasks asking for a hand-movement response. ERPs consist of several components, each of them associated with a well-defined cognitive process (e.g., the N1 with early attention processes, the N2 with cognitive control and the P3 with cognitive load and mental effort). Due to its excellent temporal resolution, the ERP technique enables to study several covert cognitive processes preceding overt motor responses and thus allows insight into the cognitive processes that might contribute to the phenomenon of DD. Using this protocol adds a new level of explanation to existing behavioral studies and opens new avenues to the broader implementation of research on cognitive aspects of developmental movement restrictions in children.

  7. Initial targets and cellular responses to PDT

    NASA Astrophysics Data System (ADS)

    Rodriguez, Myriam E.; Azizuddin, Kashif; Chiu, Song-mao; Delos Santos, Grace; Joseph, Sheeba; Xue, Liang-yan; Oleinick, Nancy L.

    2007-02-01

    Pc 4, a photosensitizer first synthesized at Case Western Reserve University and now in clinical trial at University Hospitals of Cleveland, has been shown to bind preferentially and with high affinity to mitochondrial and endoplasmic reticulum membranes. Upon photoirradiation of Pc 4-loaded cells, membrane components are photodamaged. In most cancer cells, apoptosis is triggered by the initial photodamage; however, in cells deficient in one of the critical intermediates of apoptosis, this process does not occur, although the cells remain as sensitive to the lethal effects of Pc 4-PDT as the apoptosis-competent cells, when cell death is determined by colony formation. Here we report that an alternative death process, autophagy, is induced in all cells tested and becomes the dominant pathway for elimination of lethally damaged cells when apoptosis is compromised. The anti-apoptotic protein Bcl-2, when overexpressed, protects only apoptosis-competent cells against loss of clonogenicity, while the autophagy inhibitor 3-methyladenine provides a markedly greater protection to apoptosis-deficient cells. The results suggest that the primary determinant of cell death is not the final pathway for elimination of the cells but the initial photodamage to critical membrane targets. In attempts to identify those targets, we have studied the role of different membrane phospholipids in the localization of Pc 4. Cardiolipin (CL) is a phospholipid found exclusively in the mitochondrial inner membrane and at the contact sites between the inner and outer membranes. Previous fluorescence resonance energy transfer studies revealed colocalization of Pc 4 and CL, which points to CL as a possible binding site and target for Pc 4. Unilamellar liposomes with different lipid compositions were used as membrane models to test the affinity of Pc 4. As revealed by the binding constants, Pc 4 does not display preferential binding to CL in these systems. Moreover, binding affinities appear to be

  8. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Moya, Federico; Kowbel, David; Nueda, Ma Jose

    Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. In this paper, we have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding amore » class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca 2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca 2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Finally, our results are of paramount importance for developing chitosan as an antifungal.« less

  9. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan

    DOE PAGES

    Lopez-Moya, Federico; Kowbel, David; Nueda, Ma Jose; ...

    2015-12-01

    Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. In this paper, we have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding amore » class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca 2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca 2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Finally, our results are of paramount importance for developing chitosan as an antifungal.« less

  10. Targeting Epigenetic Mechanisms in Pain due to Trauma and Traumatic Brain Injury(TBI)

    DTIC Science & Technology

    2016-10-01

    particularly likely to involve TBI, peripheral trauma or both. Disability due to pain and other causes is very high amongst such patients. We have no...Chemokine, Disability , Analgesia, Spinal Cord 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 15 19a. NAME OF...are particularly likely to involve TBI, peripheral trauma or both. Disability due to pain and other causes is very high amongst such patients. We have

  11. Increase in Speech Recognition due to Linguistic Mismatch Between Target and Masker Speech: Monolingual and Simultaneous Bilingual Performance

    PubMed Central

    Calandruccio, Lauren; Zhou, Haibo

    2014-01-01

    Purpose To examine whether improved speech recognition during linguistically mismatched target–masker experiments is due to linguistic unfamiliarity of the masker speech or linguistic dissimilarity between the target and masker speech. Method Monolingual English speakers (n = 20) and English–Greek simultaneous bilinguals (n = 20) listened to English sentences in the presence of competing English and Greek speech. Data were analyzed using mixed-effects regression models to determine differences in English recogition performance between the 2 groups and 2 masker conditions. Results Results indicated that English sentence recognition for monolinguals and simultaneous English–Greek bilinguals improved when the masker speech changed from competing English to competing Greek speech. Conclusion The improvement in speech recognition that has been observed for linguistically mismatched target–masker experiments cannot be simply explained by the masker language being linguistically unknown or unfamiliar to the listeners. Listeners can improve their speech recognition in linguistically mismatched target–masker experiments even when the listener is able to obtain meaningful linguistic information from the masker speech. PMID:24167230

  12. Lipid Nanoparticles: A novel approach for brain targeting.

    PubMed

    Shankar, Ravi; Joshi, Monika; Pathak, Kamla

    2018-06-10

    Brain is a delicate organ, separated from general circulation and is characterized by the presence of relatively impermeable Blood Brain Barrier (BBB). The BBB maintains homeostasis in the brain thus restricting the entrance of foreign bodies and several molecules from reaching the brain. As a result several promising molecules do not reach the target site and fail to produce in vivo response. Nevertheless, lipid nanoparticles are taken up readily by the brain because of their lipophilic nature. The bioacceptable and biodegradable nature of lipid nanoparticles makes them less toxic and suited for brain targeting. In the present review the BBB, mechanism of transport across the BBB, strategies to bypass the blood-brain barrier have been presented. The aptness of lipid nanoparticles for brain targeting has been highlighted. The proposed mechanism of uptake of the lipid nanoparticles, methods of prolonging the plasma retention and various methods of preparation for formulation of effective delivery systems for brain targeting have been included and dealt in this review. Lipid based formulations can be designated as the current and future generation of drug delivery systems as these possess tremendous potential to bypass BBB and reach the target site due to their small size and ability to dodge the reticular endothelial system. However, these nanostructures need to be investigated intensively to successfully reach the clinical trials stage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions

    PubMed Central

    Basourakos, Spyridon P.; Li, Likun; Aparicio, Ana M.; Corn, Paul G.; Kim, Jeri; Thompson, Timothy C.

    2017-01-01

    Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a “molecular landscape,” i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with ”BRCAness”, i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that

  14. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial.

    PubMed

    Khan, Fakhar Z; Virdee, Mumohan S; Palmer, Christopher R; Pugh, Peter J; O'Halloran, Denis; Elsik, Maros; Read, Philip A; Begley, David; Fynn, Simon P; Dutka, David P

    2012-04-24

    This study sought to assess the impact of targeted left ventricular (LV) lead placement on outcomes of cardiac resynchronization therapy (CRT). Placement of the LV lead to the latest sites of contraction and away from the scar confers the best response to CRT. We conducted a randomized, controlled trial to compare a targeted approach to LV lead placement with usual care. A total of 220 patients scheduled for CRT underwent baseline echocardiographic speckle-tracking 2-dimensional radial strain imaging and were then randomized 1:1 into 2 groups. In group 1 (TARGET [Targeted Left Ventricular Lead Placement to Guide Cardiac Resynchronization Therapy]), the LV lead was positioned at the latest site of peak contraction with an amplitude of >10% to signify freedom from scar. In group 2 (control) patients underwent standard unguided CRT. Patients were classified by the relationship of the LV lead to the optimal site as concordant (at optimal site), adjacent (within 1 segment), or remote (≥2 segments away). The primary endpoint was a ≥15% reduction in LV end-systolic volume at 6 months. Secondary endpoints were clinical response (≥1 improvement in New York Heart Association functional class), all-cause mortality, and combined all-cause mortality and heart failure-related hospitalization. The groups were balanced at randomization. In the TARGET group, there was a greater proportion of responders at 6 months (70% vs. 55%, p = 0.031), giving an absolute difference in the primary endpoint of 15% (95% confidence interval: 2% to 28%). Compared with controls, TARGET patients had a higher clinical response (83% vs. 65%, p = 0.003) and lower rates of the combined endpoint (log-rank test, p = 0.031). Compared with standard CRT treatment, the use of speckle-tracking echocardiography to the target LV lead placement yields significantly improved response and clinical status and lower rates of combined death and heart failure-related hospitalization. (Targeted Left Ventricular Lead

  15. Novel electrochemical immunoassay for quantitative monitoring of biotoxin using target-responsive cargo release from mesoporous silica nanocontainers.

    PubMed

    Zhang, Bing; Liu, Bingqian; Liao, Jiayao; Chen, Guonan; Tang, Dianping

    2013-10-01

    A novel homogeneous immunoassay protocol was designed for quantitative monitoring of small molecular biotoxin (brevetoxin B, PbTx-2, as a model) by using target-responsive cargo release from polystyrene microsphere-gated mesoporous silica nanocontainer (MSN). Initially, monoclonal mouse anti-PbTx-2 capture antibody was covalently conjugated onto the surface of MSN (mAb-MSN), and the electroactive cargo (methylene blue, MB) was then trapped in the pores of mAb-MSN by using aminated polystyrene microspheres (APSM) based on the electrostatic interaction. Upon addition of target PbTx-2, the positively charged APSM was displaced from the negatively charged mAb-MSN because of the specific antigen-antibody reaction. Thereafter, the molecular gate was opened, and the trapped methylene blue was released from the pores. The released methylene blue could be monitored by using a square wave voltammetry (SWV) in a homemade microelectrochemical detection cell. Under optimal conditions, the SWV peak current increased with the increasing of PbTx-2 concentration in the range from 0.01 to 3.5 ng mL(-1) with a detection limit (LOD) of 6 pg mL(-1) PbTx-2 at the 3Sblank criterion. Intra- and interassay coefficients of variation with identical batches were ≤6% and 9.5%, respectively. The specificity and sample matrix interfering effects were acceptable. The analysis in 12 spiked seafood samples showed good accordance between results obtained by the developed immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) method. Importantly, the target-responsive controlled release system-based electrochemical immunoassay (CRECIA) offers a promising scheme for the development of advanced homogeneous immunoassay without the sample separation and washing procedure.

  16. Modal interactions due to friction in the nonlinear vibration response of the "Harmony" test structure: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Claeys, M.; Sinou, J.-J.; Lambelin, J.-P.; Todeschini, R.

    2016-08-01

    The nonlinear vibration response of an assembly with friction joints - named "Harmony" - is studied both experimentally and numerically. The experimental results exhibit a softening effect and an increase of dissipation with excitation level. Modal interactions due to friction are also evidenced. The numerical methodology proposed groups together well-known structural dynamic methods, including finite elements, substructuring, Harmonic Balance and continuation methods. On the one hand, the application of this methodology proves its capacity to treat a complex system where several friction movements occur at the same time. On the other hand, the main contribution of this paper is the experimental and numerical study of evidence of modal interactions due to friction. The simulation methodology succeeds in reproducing complex form of dynamic behavior such as these modal interactions.

  17. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ.

    PubMed

    Yuan, Youyong; Kwok, Ryan T K; Tang, Ben Zhong; Liu, Bin

    2014-02-12

    Targeted drug delivery to tumor cells with minimized side effects and real-time in situ monitoring of drug efficacy is highly desirable for personalized medicine. In this work, we report the synthesis and biological evaluation of a chemotherapeutic Pt(IV) prodrug whose two axial positions are functionalized with a cyclic arginine-glycine-aspartic acid (cRGD) tripeptide for targeting integrin αvβ3 overexpressed cancer cells and an apoptosis sensor which is composed of tetraphenylsilole (TPS) fluorophore with aggregation-induced emission (AIE) characteristics and a caspase-3 enzyme specific Asp-Glu-Val-Asp (DEVD) peptide. The targeted Pt(IV) prodrug can selectively bind to αvβ3 integrin overexpressed cancer cells to facilitate cellular uptake. In addition, the Pt(IV) prodrug can be reduced to active Pt(II) drug in cells and release the apoptosis sensor TPS-DEVD simultaneously. The reduced Pt(II) drug can induce the cell apoptosis and activate caspase-3 enzyme to cleave the DEVD peptide sequence. Due to free rotation of the phenylene rings, TPS-DEVD is nonemissive in aqueous media. The specific cleavage of DEVD by caspase-3 generates the hydrophobic TPS residue, which tends to aggregate, resulting in restriction of intramolecular rotations of the phenyl rings and ultimately leading to fluorescence enhancement. Such noninvasive and real-time imaging of drug-induced apoptosis in situ can be used as an indicator for early evaluation of the therapeutic responses of a specific anticancer drug.

  18. Targeting Antitumor Immune Response for Enhancing the Efficacy of Photodynamic Therapy of Cancer: Recent Advances and Future Perspectives

    PubMed Central

    2016-01-01

    Photodynamic therapy (PDT) is a minimally invasive therapeutic strategy for cancer treatment, which can destroy local tumor cells and induce systemic antitumor immune response, whereas, focusing on improving direct cytotoxicity to tumor cells treated by PDT, there is growing interest in developing approaches to further explore the immune stimulatory properties of PDT. In this review we summarize the current knowledge of the innate and adaptive immune responses induced by PDT against tumors, providing evidence showing PDT facilitated-antitumor immunity. Various immunotherapeutic approaches on different cells are reviewed for their effectiveness in improving the treatment efficiency in concert with PDT. Future perspectives are discussed for further enhancing PDT efficiency via intracellular targetable drug delivery as well as optimized experimental model development associated with the study of antitumor immune response. PMID:27672421

  19. Simulation, Theory, and Observations of the Spectrum of the Rayleigh-Taylor Instability due to Laser Imprint of Planar Targets

    NASA Astrophysics Data System (ADS)

    Keskinen, M. J.; Karasik, Max; Bates, J. W.; Schmitt, A. J.

    2006-10-01

    A limitation on the efficiency of high gain direct drive inertial confinement fusion is the extent of pellet disruption caused by the Rayleigh-Taylor (RT) instability. The RT instability can be seeded by pellet surface irregularities and/or laser imprint nonuniformities. It is important to characterize the evolution of the RT instability, e.g., the k-spectrum of areal mass. In this paper we study the time-dependent evolution of the spectrum of the Rayleigh-Taylor instability due to laser imprint in planar targets. This is achieved using the NRL FAST hydrodynamic simulation code together with analytical models. It is found that the optically smoothed laser imprint-driven RT spectrum develops into an inverse power law in k-space after several linear growth times. FAST simulation code results are compared with recent NRL Nike KrF laser experimental data. An analytical model, which is a function of Froude and Atwood numbers, is derived for the RT spectrum and favorably compared with both FAST simulation and Nike observations.

  20. Targeting the tumour microenvironment in ovarian cancer.

    PubMed

    Hansen, Jean M; Coleman, Robert L; Sood, Anil K

    2016-03-01

    The study of cancer initiation, growth, and metastasis has traditionally been focused on cancer cells, and the view that they proliferate due to uncontrolled growth signalling owing to genetic derangements. However, uncontrolled growth in tumours cannot be explained solely by aberrations in cancer cells themselves. To fully understand the biological behaviour of tumours, it is essential to understand the microenvironment in which cancer cells exist, and how they manipulate the surrounding stroma to promote the malignant phenotype. Ovarian cancer is the leading cause of death from gynaecologic cancer worldwide. The majority of patients will have objective responses to standard tumour debulking surgery and platinum-taxane doublet chemotherapy, but most will experience disease recurrence and chemotherapy resistance. As such, a great deal of effort has been put forth to develop therapies that target the tumour microenvironment in ovarian cancer. Herein, we review the key components of the tumour microenvironment as they pertain to this disease, outline targeting opportunities and supporting evidence thus far, and discuss resistance to therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Immune Response to Recombinant Adenovirus in Humans: Capsid Components from Viral Input Are Targets for Vector-Specific Cytotoxic T Lymphocytes

    PubMed Central

    Molinier-Frenkel, Valérie; Gahery-Segard, Hanne; Mehtali, Majid; Le Boulaire, Christophe; Ribault, Sébastien; Boulanger, Pierre; Tursz, Thomas; Guillet, Jean-Gérard; Farace, Françoise

    2000-01-01

    We previously demonstrated that a single injection of 109 PFU of recombinant adenovirus into patients induces strong vector-specific immune responses (H. Gahéry-Ségard, V. Molinier-Frenkel, C. Le Boulaire, P. Saulnier, P. Opolon, R. Lengagne, E. Gautier, A. Le Cesne, L. Zitvogel, A. Venet, C. Schatz, M. Courtney, T. Le Chevalier, T. Tursz, J.-G. Guillet, and F. Farace, J. Clin. Investig. 100:2218–2226, 1997). In the present study we analyzed the mechanism of vector recognition by cytotoxic T lymphocytes (CTL). CD8+ CTL lines were derived from two patients and maintained in long-term cultures. Target cell infections with E1-deleted and E1-plus E2-deleted adenoviruses, as well as transcription-blocking experiments with actinomycin D, revealed that host T-cell recognition did not require viral gene transcription. Target cells treated with brefeldin A were not lysed, indicating that viral input protein-derived peptides are associated with HLA class I molecules. Using recombinant capsid component-loaded targets, we observed that the three major proteins could be recognized. These results raise the question of the use of multideleted adenoviruses for gene therapy in the quest to diminish antivector CTL responses. PMID:10906225

  2. Report: EPA’s Information Systems and Data Are at Risk Due to Insufficient Training of Personnel With Significant Information Security Responsibilities

    EPA Pesticide Factsheets

    Report #14-P-0142, March 21, 2014. The EPA places its information systems and data at risk due to an organizational structure that has not specified required duties and responsibilities to ensure personnel are trained on key information security roles.

  3. Celastrol Analogs as Inducers of the Heat Shock Response. Design and Synthesis of Affinity Probes for the Identification of Protein Targets

    PubMed Central

    Klaić, Lada; Morimoto, Richard I.; Silverman, Richard B.

    2012-01-01

    The natural product celastrol (1) possesses numerous beneficial therapeutic properties and affects numerous cellular pathways. The mechanism of action and cellular target(s) of celastrol, however, remain unresolved. While a number of studies have proposed that the activity of celastrol is mediated through reaction with cysteine residues, these observations have been based on studies with specific proteins or by in vitro analysis of a small fraction of the proteome. In this study, we have investigated the spatial and structural requirements of celastrol for the design of suitable affinity probes to identify cellular binding partners of celastrol. Although celastrol has several potential sites for modification, some of these were not synthetically amenable or yielded unstable analogs. Conversion of the carboxylic acid functionality to amides and long-chain analogs, however, yielded bioactive compounds that induced the heat shock response (HSR) and antioxidant response and inhibited Hsp90 activity. This led to the synthesis of biotinylated celastrols (23 and 24) that were used as affinity reagents in extracts of human Panc-1 cells to identify Annexin II, eEF1A, and β-tubulin as potential targets of celastrol. PMID:22380712

  4. Cross-talk between freezing response and signaling for regulatory transcriptions of MIR475b and its targets by miR475b promoter in Populus suaveolens

    PubMed Central

    Niu, Jun; Wang, Jia; Hu, Huiwen; Chen, Yinlei; An, Jiyong; Cai, Jian; Sun, Runze; Sheng, Zhongting; Liu, Xieping; Lin, Shanzhi

    2016-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that play important roles in post-transcriptional regulation of their target genes, yet the transcriptional regulation of plant miRNAs by promoter is poorly understood. Here, we firstly clone pri-miR475b cDNA and its native promoter from P. suaveolens, and characterize Psu-MIR475b as class-II gene transcribed by RNA polymerase II. By 5′ deletion analysis of Psu-miR475b promoter in a series of promoter-GUS chimeric vectors, we functionally identify three positive regulatory regions and multiple cis-acting elements responsible for Psu-miR475b promoter activity in response to freezing stress and exogenous hormone treatment. Moreover, the Psu-miR475b promoter activity displays a tissue-specific manner, negatively regulated by freezing stress and positively by MeJA, SA or GA treatment. Importantly, we comparatively analyze the time-course transcriptional profiles of Psu-miR475b and its targets in Psu-miR475b over-expression transgenic plants controlled by Psu-miR475b-specific promoter or CaMV 35S constitutive promoter, and explore the regulatory mechanism of Psu-miR475b promoter controlling transcriptional expressions of Psu-MIR475b and its targets in response to freezing stress and exogenous hormone treatment. Our results reveal that Psu-miR475b promoter-mediated transcriptions of Psu-MIR475b and its targets in response to freezing stress may be involved in a cross-talk between freezing response and stress signaling process. PMID:26853706

  5. Novel targets for ATM-deficient malignancies

    PubMed Central

    Winkler, Johannes; Hofmann, Kay; Chen, Shuhua

    2014-01-01

    Conventional chemo- and radiotherapies for the treatment of cancer target rapidly dividing cells in both tumor and non-tumor tissues and can exhibit severe cytotoxicity in normal tissue and impair the patient's immune system. Novel targeted strategies aim for higher efficacy and tumor specificity. The role of ATM protein in the DNA damage response is well known and ATM deficiency frequently plays a role in tumorigenesis and development of malignancy. In addition to contributing to disease development, ATM deficiency also renders malignant cells heavily dependent on other pathways that cooperate with the ATM-mediated DNA damage response to ensure tumor cell survival. Disturbing those cooperative pathways by inhibiting critical protein components allows specific targeting of tumors while sparing healthy cells with normal ATM status. We review druggable candidate targets for the treatment of ATM-deficient malignancies and the mechanisms underlying such targeted therapies. PMID:27308314

  6. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  7. Inverse target- and cue-priming effects of masked stimuli.

    PubMed

    Mattler, Uwe

    2007-02-01

    The processing of a visual target that follows a briefly presented prime stimulus can be facilitated if prime and target stimuli are similar. In contrast to these positive priming effects, inverse priming effects (or negative compatibility effects) have been found when a mask follows prime stimuli before the target stimulus is presented: Responses are facilitated after dissimilar primes. Previous studies on inverse priming effects examined target-priming effects, which arise when the prime and the target stimuli share features that are critical for the response decision. In contrast, 3 experiments of the present study demonstrate inverse priming effects in a nonmotor cue-priming paradigm. Inverse cue-priming effects exhibited time courses comparable to inverse target-priming effects. Results suggest that inverse priming effects do not arise from specific processes of the response system but follow from operations that are more general.

  8. Coadministration of iRGD with Multistage Responsive Nanoparticles Enhanced Tumor Targeting and Penetration Abilities for Breast Cancer Therapy.

    PubMed

    Hu, Chuan; Yang, Xiaotong; Liu, Rui; Ruan, Shaobo; Zhou, Yang; Xiao, Wei; Yu, Wenqi; Yang, Chuanyao; Gao, Huile

    2018-06-21

    Limited tumor targeting and poor penetration of nanoparticles are two major obstacles to improving the outcome of tumor therapy. Herein, coadministration of tumor-homing peptide iRGD and multistage-responsive penetrating nanoparticles for the treatment of breast cancer are reported. This multistage-responsive nanoparticle, IDDHN, was comprised of an NO donor-modified hyaluronic acid (HN) shell and a small-sized dendrimer, namely, dendri-graft-l-lysine conjugated with doxorubicin and indocyanine (IDD). The results showed that IDDHN could be degraded rapidly from about 330 nm to a smaller size that was in a size range of 35 to 150 nm (most at 35-60 nm) after hyaluronidase (HAase) incubation for 4 h; in vitro cellular uptake demonstrated that iRGD could mediate more endocytosis of IDDHN into 4T1 cells, which was attributed to the overexpression of α v β 3 integrin receptor. Multicellular spheroids penetration results showed synergistically enhanced deeper distribution of IDDHN into tumors, with the presence of iRGD, HAase incubation, and NO release upon laser irradiation. In vivo imaging indicated that coadministration with iRGD markedly enhanced the tumor targeting and penetration abilities of IDDHN. Surprisingly, coadministration of IDDHN with iRGD plus 808 nm laser irradiation nearly suppressed all tumor growth. These results systematically revealed the excellent potential of coadministration of iRGD with multistage-responsive nanoparticles for enhancing drug delivery efficiency and overcoming the 4T1 breast cancer.

  9. Interactome Analysis of Microtubule-targeting Agents Reveals Cytotoxicity Bases in Normal Cells.

    PubMed

    Gutiérrez-Escobar, Andrés Julián; Méndez-Callejas, Gina

    2017-12-01

    Cancer causes millions of deaths annually and microtubule-targeting agents (MTAs) are the most commonly-used anti-cancer drugs. However, the high toxicity of MTAs on normal cells raises great concern. Due to the non-selectivity of MTA targets, we analyzed the interaction network in a non-cancerous human cell. Subnetworks of fourteen MTAs were reconstructed and the merged network was compared against a randomized network to evaluate the functional richness. We found that 71.4% of the MTA interactome nodes are shared, which affects cellular processes such as apoptosis, cell differentiation, cell cycle control, stress response, and regulation of energy metabolism. Additionally, possible secondary targets were identified as client proteins of interphase microtubules. MTAs affect apoptosis signaling pathways by interacting with client proteins of interphase microtubules, suggesting that their primary targets are non-tumor cells. The paclitaxel and doxorubicin networks share essential topological axes, suggesting synergistic effects. This may explain the exacerbated toxicity observed when paclitaxel and doxorubicin are used in combination for cancer treatment. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. Immunotherapeutic strategies targeting Natural killer T cell responses in cancer

    PubMed Central

    Shissler, Susannah C.; Bollino, Dominique R.; Tiper, Irina V.; Bates, Joshua; Derakhshandeh, Roshanak; Webb, Tonya J.

    2017-01-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T-cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where Type II cells generally suppress tumor immunity while Type I NKT cells can enhance antitumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell targeted therapies for the treatment of cancer. PMID:27393665

  11. Unambiguous Identification of β-Tubulin as the Direct Cellular Target Responsible for the Cytotoxicity of Chalcone by Photoaffinity Labeling.

    PubMed

    Zhou, Bo; Yu, Xingxin; Zhuang, Chunlin; Villalta, Peter; Lin, Yong; Lu, Junxuan; Xing, Chengguo

    2016-07-05

    Chalcone is a simple and potentially privileged structure in medicinal chemistry with a diverse repertoire of biological activities, among which cytotoxicity is of particular interest. The sharp structure-activity relationship (SAR) for chalcone's cytotoxicity suggests structure-specific target interactions. Despite the numerous putative targets proposed, evidence for direct target interactions in cells is unavailable. In this study, guided by the sharp cytotoxic SAR, we developed a cytotoxic chalcone-based photoaffinity labeling (PAL) probe, (E)-3-(3-azidophenyl)-1-[3,5-dimethoxy-4-(prop-2-yn-1-yloxy)phenyl]-2-methylprop-2-en-1-one (C95; IC50 : 0.38±0.01 μm), along with two structurally similar non-cytotoxic probes. These probes were used to search for the direct cellular target responsible for chalcone's cytotoxicity through intact cell-based PAL experiments, in which β-tubulin was identified to specifically interact with the cytotoxic probe (i.e., C95) but not the non-cytotoxic probes. A set of phenotypical and biochemical assays further reinforced β-tubulin as the cytotoxic target of chalcones. Peptide mass quantitation by mass spectrometric analysis revealed one peptide potentially labeled by C95, providing information on chalcone's binding site on β-tubulin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Wei, Lulu; Lu, Beibei; Cui, Lin; Peng, Xueying; Wu, Jianning; Li, Deqiang; Liu, Zhiyong; Guo, Xuhong

    2017-12-01

    A novel type of amphiphilic pH-responsive folate-poly(ɛ-caprolactone)- block-poly(2-hydroxyethylmethacrylate)- co-poly(2-(dimethylamino)-ethylmethacrylate) (FA-PCL- b-P(HEMA- co-DMAEMA)) (MFP) block copolymers were designed and synthesized via atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) techniques. The molecular structures of the copolymers were confirmed with 1H NMR, FTIR and GPC measurements. The critical micelle concentration (CMC) of MFP in aqueous solution was extremely low (about 6.54 mg/L). The in vitro release behavior of DOX-loaded micelles was significantly accelerated when the pH value of solution decreased from 7.4 to 5.0. In vitro antitumor efficiency was evaluated by incubating DOX-loaded micelles with Hela cells. The results demonstrated that this copolymer possessed excellent biocompatibility, and FA-decorated micelles MFP showed higher cellular uptake than those micelles without the FA moiety, indicating their unique targetability. These folate-conjugated biodegradable micelles are highly promising for targeted cancer chemothe-rapy.

  13. Age-related slowing of response selection and production in a visual choice reaction time task

    PubMed Central

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce

    2015-01-01

    Aging is associated with delayed processing in choice reaction time (CRT) tasks, but the processing stages most impacted by aging have not been clearly identified. Here, we analyzed CRT latencies in a computerized serial visual feature-conjunction task. Participants responded to a target letter (probability 40%) by pressing one mouse button, and responded to distractor letters differing either in color, shape, or both features from the target (probabilities 20% each) by pressing the other mouse button. Stimuli were presented randomly to the left and right visual fields and stimulus onset asynchronies (SOAs) were adaptively reduced following correct responses using a staircase procedure. In Experiment 1, we tested 1466 participants who ranged in age from 18 to 65 years. CRT latencies increased significantly with age (r = 0.47, 2.80 ms/year). Central processing time (CPT), isolated by subtracting simple reaction times (SRT) (obtained in a companion experiment performed on the same day) from CRT latencies, accounted for more than 80% of age-related CRT slowing, with most of the remaining increase in latency due to slowed motor responses. Participants were faster and more accurate when the stimulus location was spatially compatible with the mouse button used for responding, and this effect increased slightly with age. Participants took longer to respond to distractors with target color or shape than to distractors with no target features. However, the additional time needed to discriminate the more target-like distractors did not increase with age. In Experiment 2, we replicated the findings of Experiment 1 in a second population of 178 participants (ages 18–82 years). CRT latencies did not differ significantly in the two experiments, and similar effects of age, distractor similarity, and stimulus-response spatial compatibility were found. The results suggest that the age-related slowing in visual CRT latencies is largely due to delays in response selection and

  14. Broad Resistance to ACCase Inhibiting Herbicides in a Ryegrass Population Is Due Only to a Cysteine to Arginine Mutation in the Target Enzyme

    PubMed Central

    Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Dale, Richard Paul; McIndoe, Eddie

    2012-01-01

    Background The design of sustainable weed management strategies requires a good understanding of the mechanisms by which weeds evolve resistance to herbicides. Here we have conducted a study on the mechanism of resistance to ACCase inhibiting herbicides in a Lolium multiflorum population (RG3) from the UK. Methodology/Principal Findings Analysis of plant phenotypes and genotypes showed that all the RG3 plants (72%) that contained the cysteine to arginine mutation at ACCase codon position 2088 were resistant to ACCase inhibiting herbicides. Whole plant dose response tests on predetermined wild and mutant 2088 genotypes from RG3 and a standard sensitive population indicated that the C2088R mutation is the only factor conferring resistance to all ten ACCase herbicides tested. The associated resistance indices ranged from 13 for clethodim to over 358 for diclofop-methyl. Clethodim, the most potent herbicide was significantly affected even when applied on small mutant plants at the peri-emergence and one leaf stages. Conclusion/Significance This study establishes the clear and unambiguous importance of the C2088R target site mutation in conferring broad resistance to ten commonly used ACCase inhibiting herbicides. It also demonstrates that low levels “creeping”, multigenic, non target site resistance, is not always selected before single gene target site resistance appears in grass weed populations subjected to herbicide selection pressure. PMID:22768118

  15. Optimizing prognosis-related key miRNA-target interactions responsible for cancer metastasis.

    PubMed

    Zhao, Hongying; Yuan, Huating; Hu, Jing; Xu, Chaohan; Liao, Gaoming; Yin, Wenkang; Xu, Liwen; Wang, Li; Zhang, Xinxin; Shi, Aiai; Li, Jing; Xiao, Yun

    2017-12-12

    Increasing evidence suggests that the abnormality of microRNAs (miRNAs) and their downstream targets is frequently implicated in the pathogenesis of human cancers, however, the clinical benefit of causal miRNA-target interactions has been seldom studied. Here, we proposed a computational method to optimize prognosis-related key miRNA-target interactions by combining transcriptome and clinical data from thousands of TCGA tumors across 16 cancer types. We obtained a total of 1,956 prognosis-related key miRNA-target interactions between 112 miRNAs and 1,443 their targets. Interestingly, these key target genes are specifically involved in tumor progression-related functions, such as 'cell adhesion' and 'cell migration'. Furthermore, they are most significantly correlated with 'tissue invasion and metastasis', a hallmark of metastasis, in ten distinct types of cancer through the hallmark analysis. These results implicated that the prognosis-related key miRNA-target interactions were highly associated with cancer metastasis. Finally, we observed that the combination of these key miRNA-target interactions allowed to distinguish patients with good prognosis from those with poor prognosis both in most TCGA cancer types and independent validation sets, highlighting their roles in cancer metastasis. We provided a user-friendly database named miRNATarget (freely available at http://biocc.hrbmu.edu.cn/miRNATar/), which provides an overview of the prognosis-related key miRNA-target interactions across 16 cancer types.

  16. TargetCompare: A web interface to compare simultaneous miRNAs targets.

    PubMed

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-Dos-Santos, André M; Dos Santos, Andrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. http://lghm.ufpa.br/targetcompare.

  17. 2013 Immune Risk Standing Review Panel Research Plan Review for: The Risk of Crew Adverse Health Event Due to Altered Immune Response

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    The 2013 Immune Risk Standing Review Panel (from here on referred to as the SRP) participated in a meeting with representatives from the Human Research Program (HRP) Human Health Countermeasures (HHC) Element and HRP management on February 3-4, 2014 in Houston, TX to review the updated Research Plan for the Risk of Crew Adverse Health Event Due to Altered Immune Response in the HRP Integrated Research Plan. The SRP is impressed with the work the immune discipline has done since the 2012 SRP review and agrees with the new wording of the Gaps, no longer questions, now statements. The SRP also likes the addition of adding targets for closing the Gaps, but it is not clear how they got to some of the interim stages (interval percentages). A major concern that the SRP has mentioned since the initial 2009 SRP meeting is that there is still not enough emphasis on the interdisciplinary aspect of the immune risk associated with other risks (i.e., nutrition, radiation, etc.). The SRP recommends that a "translational SRP" or advisory group be developed that is composed of members from all of the HRP SRPs. The SRP also thinks that the immune discipline should consider a more systems biology approach. Lastly, the SRP is concerned that the risks observed in research from low Earth orbit (LEO) missions may not accurately reflect all the risks of longer duration flight beyond LEO. Also, there does not seem to be a concern for immune responses that may occur when someone is in space longer than six months, for example, a Mars mission would take three years. The absence of disease in past and current flight scenarios does not mean the risk may not be there in future flight settings.

  18. HVSR Response Evolution due to Seasonal Variation: Observations from 2 Years of Continuous Monitoring

    NASA Astrophysics Data System (ADS)

    Nurse, K. B.; Milkereit, B.

    2017-12-01

    The seismic Horizontal to Vertical Spectral Ratio analysis technique reliably gives overburden depth to bedrock, for an independently determined Vs, based on the frequency of the main resonance peak. Above this, smaller resonances reflect the velocity structure within the overburden itself. This range in the HVSR response shows sufficient sensitivity to be exploited as a monitoring tool, to detect change in seismic physical properties and from that, change in overburden conditions. To explore the variation of the response, several 3C geophones have been deployed in southern Ontario, Canada since December 2015 (and ongoing). The local geology is a sedimentary basin with 30m of overburden, a simple 2D environment well suited for the HVSR method. Data are collected for 15s per minute, with an effective frequency band of 2-400Hz. HVSR estimates are produced for each sampling period and archived. Over these two years, winter freeze/thaw, saturated spring and summer draught conditions were sampled. H/V daily averages are dominated by the stable 3Hz resonance due to the overall surface layer, but smaller spectral peaks up to 100Hz are clear and evolve in frequency and amplitude over the collection period. Ground freeze/thaw cycles are clearly evident by significant reduction in the horizontal field, but also the changing of the soil moisture content throughout the year causes subtle shifts in the response (correlated to rain events and water table variation). The long term sampling does show a sensitivity of the HVSR method to the overburden in proximity to the sensor, and suggests a possibility for its use in monitoring soil / water-table conditions. But it also highlights that the estimate from an isolated H/V acquisition does include this variability and needs to be adequately quantified in VS30 estimates.

  19. Tumor-targeted IL-2 amplifies T cell-mediated immune response induced by gene therapy with single-chain IL-12

    PubMed Central

    Lode, Holger N.; Xiang, Rong; Duncan, Steven R.; Theofilopoulos, Argyrios N.; Gillies, Stephen D.; Reisfeld, Ralph A.

    1999-01-01

    Induction, maintenance, and amplification of tumor-protective immunity after cytokine gene therapy is essential for the clinical success of immunotherapeutic approaches. We investigated whether this could be achieved by single-chain IL-12 (scIL-12) gene therapy followed by tumor-targeted IL-2 using a fusion protein containing a tumor-specific recombinant anti-ganglioside GD2 antibody and IL-2 (ch14.18-IL-2) in a poorly immunogenic murine neuroblastoma model. Herein, we demonstrate the absence of liver and bone marrow metastases after a lethal challenge with NXS2 wild-type cells only in mice (five of six animals) vaccinated with scIL-12-producing NXS2 cells and given a booster injection of low-dose ch14.18-IL-2 fusion protein. This tumor-protective immunity was effective 3 months after initial vaccination, in contrast to control animals treated with a nonspecific fusion protein or an equivalent mixture of antibody and IL-2. Only vaccinated mice receiving the tumor-specific ch14.18-IL-2 fusion protein revealed a reactivation of CD8+ T cells and subsequent MHC class I-restricted tumor target cell lysis in vitro. The sequential increase in the usage of TCR chains Vβ11 and -13 in mouse CD8+ T cells after vaccination and amplification with ch14.18-IL-2 suggests that the initial polyclonal CD8+ T cell response is effectively boosted by targeted IL-2. In conclusion, we demonstrate that a successful boost of a partially protective memory T cell immune response that is induced by scIL-12 gene therapy could be generated by tumor-specific targeting of IL-2 with a ch14.18-IL-2 fusion protein. This approach could increase success rates of clinical cancer vaccine trials. PMID:10411920

  20. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation.

    PubMed

    Sharma, Rishi; Kim, Soo-Young; Sharma, Anjali; Zhang, Zhi; Kambhampati, Siva Pramodh; Kannan, Sujatha; Kannan, Rangaramanujam M

    2017-11-15

    Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal

  1. Assembling of stimuli-responsive tumor targeting polypyrrole nanotubes drug carrier system for controlled release.

    PubMed

    Chen, Jian; Li, Xiufang; Li, Jiawen; Li, Jianbing; Huang, Ling; Ren, Tao; Yang, Xiao; Zhong, Shian

    2018-08-01

    A stimuli-responsive polypyrrole (PPy) nanotubes drug carrier system has been designed to deliver anticancer drugs to tumor cells in a targeted and controlled manner. The PPy nanotubes drug carrier was fabricated by a template method. The nanotubes surface was functionalized with cleavable acylhydrazone and disulfide bonds by attaching thiolated β-cyclodextrin (β-CD). The solubilizing poly(ethylene glycol) polymer (PEG), attached with an adamantane (Ad) entity at one end and a folate (FA) entity at the other end, was introduced onto the nanotubes surface via β-cyclodextrin-adamantane interaction. The synthesized FA-PEG-Ad-β-CD-PPy showed excellent biocompatibility and low cytotoxicity for two cell lines. Doxorubicin (Dox) loaded FA-PEG-Ad-β-CD-PPy nanotubes showed a triggered in vitro drug release behavior in the presence of acidic media and reducing agents. The folate-mediated endocytosis and intracellular release of Dox-loaded nanoparticles were confirmed by fluorescence microscopy and cell viability evaluations. In the in vitro study, Dox loaded within the nanoparticles showed enhanced selectivity for cancerous cells and reduced cytotoxicity for normal cells compared to free Dox. The PPy based targeted drug vehicle shows excellent promise for drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Targeting host factors to treat West Nile and dengue viral infections.

    PubMed

    Krishnan, Manoj N; Garcia-Blanco, Mariano A

    2014-02-10

    West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.

  3. Targeting Host Factors to Treat West Nile and Dengue Viral Infections

    PubMed Central

    Krishnan, Manoj N.; Garcia-Blanco, Mariano A.

    2014-01-01

    West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans. PMID:24517970

  4. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.

    PubMed

    Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C

    2009-02-01

    Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.

  5. Targeted gene flow for conservation.

    PubMed

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens. © 2015 Society for Conservation Biology.

  6. Insulation and wiring specificity of BceR-like response regulators and their target promoters in Bacillus subtilis.

    PubMed

    Fang, Chong; Nagy-Staroń, Anna; Grafe, Martin; Heermann, Ralf; Jung, Kirsten; Gebhard, Susanne; Mascher, Thorsten

    2017-04-01

    BceRS and PsdRS are paralogous two-component systems in Bacillus subtilis controlling the response to antimicrobial peptides. In the presence of extracellular bacitracin and nisin, respectively, the two response regulators (RRs) bind their target promoters, P bceA or P psdA , resulting in a strong up-regulation of target gene expression and ultimately antibiotic resistance. Despite high sequence similarity between the RRs BceR and PsdR and their known binding sites, no cross-regulation has been observed between them. We therefore investigated the specificity determinants of P bceA and P psdA that ensure the insulation of these two paralogous pathways at the RR-promoter interface. In vivo and in vitro analyses demonstrate that the regulatory regions within these two promoters contain three important elements: in addition to the known (main) binding site, we identified a linker region and a secondary binding site that are crucial for functionality. Initial binding to the high-affinity, low-specificity main binding site is a prerequisite for the subsequent highly specific binding of a second RR dimer to the low-affinity secondary binding site. In addition to this hierarchical cooperative binding, discrimination requires a competition of the two RRs for their respective binding site mediated by only slight differences in binding affinities. © 2016 John Wiley & Sons Ltd.

  7. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions.

    PubMed

    Basourakos, Spyridon P; Li, Likun; Aparicio, Ana M; Corn, Paul G; Kim, Jeri; Thompson, Timothy C

    2017-01-01

    Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a "molecular landscape," i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with "BRCAness", i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that establish a

  8. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer.

    PubMed

    Ma, Xiaopeng; Phi Van, Valerie; Kimm, Melanie A; Prakash, Jaya; Kessler, Horst; Kosanke, Katja; Feuchtinger, Annette; Aichler, Michaela; Gupta, Aayush; Rummeny, Ernst J; Eisenblätter, Michel; Siveke, Jens; Walch, Axel K; Braren, Rickmer; Ntziachristos, Vasilis; Wildgruber, Moritz

    2017-01-01

    Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT) for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC) model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF) probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib) for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. National responses to global health targets: exploring policy transfer in the context of the UNAIDS ‘90–90–90’ treatment targets in Ghana and Uganda

    PubMed Central

    McRobie, Ellen; Matovu, Fred; Nanyiti, Aisha; Nonvignon, Justice; Abankwah, Daniel Nana Yaw; Case, Kelsey K; Hallett, Timothy B; Hanefeld, Johanna; Conteh, Lesong

    2018-01-01

    Abstract Global health organizations frequently set disease-specific targets with the goal of eliciting adoption at the national-level; consideration of the influence of target setting on national policies, programme and health budgets is of benefit to those setting targets and those intended to respond. In 2014, the Joint United Nations Programme on HIV/AIDS set ‘ambitious’ treatment targets for country adoption: 90% of HIV-positive persons should know their status; 90% of those on treatment; 90% of those achieving viral suppression. Using case studies from Ghana and Uganda, we explore how the target and its associated policy content have been adopted at the national level. That is whether adoption is in rhetoric only or supported by programme, policy or budgetary changes. We review 23 (14 from Ghana, 9 from Uganda) national policy, operational and strategic documents for the HIV response and assess commitments to ‘90–90–90’. In-person semi-structured interviews were conducted with purposively sampled key informants (17 in Ghana, 20 in Uganda) involved in programme-planning and resource allocation within HIV to gain insight into factors facilitating adoption of 90–90–90. Interviews were transcribed and analysed thematically, inductively and deductively, guided by pre-existing policy theories, including Dolowitz and Marsh’s policy transfer framework to describe features of the transfer and the Global Health Advocacy and Policy Project framework to explain observations. Regardless of notable resource constraints, transfer of the 90–90–90 targets was evident beyond rhetoric with substantial shifts in policy and programme activities. In both countries, there was evidence of attempts to minimize resource constraints by seeking programme efficiencies, prioritization of programme activities and devising domestic financing mechanisms; however, significant resource gaps persist. An effective health network, comprised of global and local actors

  10. New targets and therapies for gastrointestinal stromal tumors.

    PubMed

    Wozniak, Agnieszka; Gebreyohannes, Yemarshet K; Debiec-Rychter, Maria; Schöffski, Patrick

    2017-12-01

    The majority of gastrointestinal stromal tumors (GIST) are driven by an abnormal receptor tyrosine kinase (RTK) signaling, occurring mainly due to somatic mutations in KIT or platelet derived growth factor receptor alpha (PDGFRA). Although the introduction of tyrosine kinase inhibitors (TKIs) has revolutionized therapy for GIST patients, with time the vast majority of them develop TKI resistance. Advances in understanding the molecular background of GIST resistance allows for the identification of new targets and the development of novel strategies to overcome or delay its occurrence. Areas covered: The focus of this review is on novel, promising therapeutic approaches to overcome heterogeneous resistance to registered TKIs. These approaches involve new TKIs, including drugs specific for a mutated form of KIT/PDGFRA, drugs with inhibitory effect against multiple RTKs, compounds targeting dysregulated downstream signaling pathways, drugs affecting KIT expression and degradation, inhibitors of cell cycle, and immunotherapeutics. Expert commentary: As the resistance to standard TKI treatment can be heterogeneous, a combinational approach for refractory GIST could be beneficial. Moreover, the understanding of the molecular background of resistant disease would allow development of a more personalized approach for these patients and their response to targeted therapy could be monitored closely using 'liquid biopsy'.

  11. Role of nocturnal penile erection test on response to daily sildenafil in patients with erectile dysfunction due to pelvic fracture urethral disruption: a single-center experience.

    PubMed

    Peng, Jing; Zhang, Zhichao; Cui, Wanshou; Yuan, Yiming; Gao, Bing; Song, Weidong; Xin, Zhongcheng

    2014-12-01

    To evaluate the results of nocturnal penile erection test and response to daily sildenafil in patients with erectile dysfunction (ED) due to pelvic fracture urethral disruption. From January 2010 to January 2012, we included 38 patients with ED due to pelvic fracture urethral disruption. The mean age was 33.1 years (range, 22-49 years). All were evaluated subjectively and objectively by the International Index of Erectile Function-5, nocturnal penile tumescence and rigidity (NPTR) test, and penile Doppler ultrasonography. Patients received daily sildenafil 50 mg for 3 months. Thirty-one patients were followed up: 54.8% showed response to sildenafil defined as reporting successful vaginal penetration and intercourse. Patients with neurogenic, arterial, and venous EDs did not differ in efficiency rates (P = .587). However, the penile erectile rigidity recorded by NPTR test affected efficiency significantly (P = .046). Patients with tip rigidity >40% had the highest response rate (76.9%), but the response rate for patients with tip rigidity <20% was only 22.2%. NPTR recording can reveal resident erectile function in patients with ED due to trauma and is significant for selecting pharmacologic treatment as optimal therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. TargetCompare: A web interface to compare simultaneous miRNAs targets

    PubMed Central

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-dos-Santos, André M; dos Santos, Ândrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. Availability http://lghm.ufpa.br/targetcompare PMID:25352731

  13. Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.

    PubMed

    Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A

    2006-04-01

    Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.

  14. Cooperative Adaptive Responses in Gene Regulatory Networks with Many Degrees of Freedom

    PubMed Central

    Inoue, Masayo; Kaneko, Kunihiko

    2013-01-01

    Cells generally adapt to environmental changes by first exhibiting an immediate response and then gradually returning to their original state to achieve homeostasis. Although simple network motifs consisting of a few genes have been shown to exhibit such adaptive dynamics, they do not reflect the complexity of real cells, where the expression of a large number of genes activates or represses other genes, permitting adaptive behaviors. Here, we investigated the responses of gene regulatory networks containing many genes that have undergone numerical evolution to achieve high fitness due to the adaptive response of only a single target gene; this single target gene responds to changes in external inputs and later returns to basal levels. Despite setting a single target, most genes showed adaptive responses after evolution. Such adaptive dynamics were not due to common motifs within a few genes; even without such motifs, almost all genes showed adaptation, albeit sometimes partial adaptation, in the sense that expression levels did not always return to original levels. The genes split into two groups: genes in the first group exhibited an initial increase in expression and then returned to basal levels, while genes in the second group exhibited the opposite changes in expression. From this model, genes in the first group received positive input from other genes within the first group, but negative input from genes in the second group, and vice versa. Thus, the adaptation dynamics of genes from both groups were consolidated. This cooperative adaptive behavior was commonly observed if the number of genes involved was larger than the order of ten. These results have implications in the collective responses of gene expression networks in microarray measurements of yeast Saccharomyces cerevisiae and the significance to the biological homeostasis of systems with many components. PMID:23592959

  15. Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia-reperfusion: therapeutic potential of mitochondrially-targeted antioxidants

    PubMed Central

    Mukhopadhyay, Partha; Horváth, Bėla; Zsengellėr, Zsuzsanna; Bátkai, Sándor; Cao, Zongxian; Kechrid, Malek; Holovac, Eileen; Erdėlyi, Katalin; Tanchian, Galin; Liaudet, Lucas; Stillman, Isaac E.; Joseph, Joy; Kalyanaraman, Balaraman; Pacher, Pál

    2012-01-01

    Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury, however its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explored the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2 hours of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute pro-inflammatory response (TNF-α, MIP-1αCCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6 hours of reperfusion and peaking at 24 hours). Mitochondrially-targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage. PMID:22683818

  16. Maternal Binding and Neutralizing IgG Responses Targeting the C-Terminal Region of the V3 Loop Are Predictive of Reduced Peripartum HIV-1 Transmission Risk.

    PubMed

    Martinez, David R; Vandergrift, Nathan; Douglas, Ayooluwa O; McGuire, Erin; Bainbridge, John; Nicely, Nathan I; Montefiori, David C; Tomaras, Georgia D; Fouda, Genevieve G; Permar, Sallie R

    2017-05-01

    The development of an effective maternal HIV-1 vaccine that could synergize with antiretroviral therapy (ART) to eliminate pediatric HIV-1 infection will require the characterization of maternal immune responses capable of blocking transmission of autologous HIV to the infant. We previously determined that maternal plasma antibody binding to linear epitopes within the variable loop 3 (V3) region of HIV envelope (Env) and neutralizing responses against easy-to-neutralize tier 1 viruses were associated with reduced risk of peripartum HIV infection in the historic U.S. Woman and Infant Transmission Study (WITS) cohort. Here, we defined the fine specificity and function of the potentially protective maternal V3-specific IgG antibodies associated with reduced peripartum HIV transmission risk in this cohort. The V3-specific IgG binding that predicted low risk of mother-to-child-transmission (MTCT) was dependent on the C-terminal flank of the V3 crown and particularly on amino acid position 317, a residue that has also been associated with breakthrough transmission in the RV144 vaccine trial. Remarkably, the fine specificity of potentially protective maternal plasma V3-specific tier 1 virus-neutralizing responses was dependent on the same region in the V3 loop. Our findings suggest that MTCT risk is associated with neutralizing maternal IgG that targets amino acid residues in the C-terminal region of the V3 loop crown, suggesting the importance of the region in immunogen design for maternal vaccines to prevent MTCT. IMPORTANCE Efforts to curb HIV-1 transmission in pediatric populations by antiretroviral therapy (ART) have been highly successful in both developed and developing countries. However, more than 150,000 infants continue to be infected each year, likely due to a combination of late maternal HIV diagnosis, lack of ART access or adherence, and drug-resistant viral strains. Defining the fine specificity of maternal humoral responses that partially protect against

  17. Constant-load versus heart rate-targeted exercise - Responses of systolic intervals

    NASA Technical Reports Server (NTRS)

    Lance, V. Q.; Spodick, D. H.

    1975-01-01

    Various systolic intervals were measured prior to and during heart rate-targeted bicycle ergometer exercise. There were striking similarities within each matched exercise set for Q-Im, isovolumetric contraction time, preejection period (PEP), and PEP/left ventricular ejection time (LVET). LVET was significantly shorter for rate-targeted exercise. It is concluded that either constant-load or rate-targeted bicycle ergometry may be used with the choice of method determined by the purpose of the protocol, and that systolic intervals (except LVET) should not be much altered owing to the method chosen.

  18. 3-Bromopyruvate: targets and outcomes.

    PubMed

    Shoshan, Maria C

    2012-02-01

    The pyruvate mimetic 3-bromopyruvate (3-BP) is generally presented as an inhibitor of glycolysis and has shown remarkable efficacy in not only preventing tumor growth, but even eradicating existant tumors in animal studies. We here review reported molecular targets of 3-BP and suggest that the very range of possible targets, which pertain to the altered energy metabolism of tumor cells, contributes both to the efficacy and the tumor specificity of the drug. Its in vivo efficacy is suggested to be due to a combination of glycolytic and mitochondrial targets, as well as to secondary effects affecting the tumor microenvironment. The cytotoxicity of 3-BP is less due to pyruvate mimicry than to alkylation of, e.g., key thiols. Alkylation of DNA/RNA has not been reported. More research is warranted to better understand the pharmacokinetics of 3-BP, and its potential toxic effects to normal cells, in particular those that are highly ATP-/mitochondrion-dependent.

  19. Ion acceleration enhanced by target ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, S.; State Key Laboratory of Nuclear Physics and Technology, and Key Lab of HEDPS, CAPT, Peking University, Beijing 100871; Institute of Radiation, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  20. The structure of distractor-response bindings: Conditions for configural and elemental integration.

    PubMed

    Moeller, Birte; Frings, Christian; Pfister, Roland

    2016-04-01

    Human action control is influenced by bindings between perceived stimuli and responses carried out in their presence. Notably, responses given to a target stimulus can also be integrated with additional response-irrelevant distractor stimuli that accompany the target (distractor-response binding). Subsequently reencountering such a distractor then retrieves the associated response. Although a large body of evidence supports the existence of this effect, the specific structure of distractor-response bindings is still unclear. Here, we test the predictions derived from 2 possible assumptions about the structure of bindings between distractors and responses. According to a configural approach, the entire distractor object is integrated with a response, and only upon repetition of the entire distractor object the associated response would be retrieved. According to an elemental approach, one would predict integration of individual distractor features with the response and retrieval due to the repetition of an individual distractor feature. Four experiments indicate that both, configural and elemental bindings exist and specify boundary conditions for each type of binding. These findings provide detailed insights into the architecture of bindings between response-irrelevant stimuli and actions and thus allow for specifying how distractor stimuli influence human behavior. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Targeted Morphoproteomic Profiling of Ewing's Sarcoma Treated with Insulin-Like Growth Factor 1 Receptor (IGF1R) Inhibitors: Response/Resistance Signatures

    PubMed Central

    Subbiah, Vivek; Naing, Aung; Brown, Robert E.; Chen, Helen; Doyle, Laurence; LoRusso, Patricia; Benjamin, Robert; Anderson, Pete; Kurzrock, Razelle

    2011-01-01

    Background Insulin-like growth factor 1 receptor (IGF1R) targeted therapies have resulted in responses in a small number of patients with advanced metastatic Ewing's sarcoma. We performed morphoproteomic profiling to better understand response/resistance mechanisms of Ewing's sarcoma to IGF1R inhibitor-based therapy. Methodology/Principal Findings This pilot study assessed two patients with advanced Ewing's sarcoma treated with IGF1R antibody alone followed by combined IGF1R inhibitor plus mammalian target of rapamycin (mTOR) inhibitor treatment once resistance to single-agent IGF1R inhibitor developed. Immunohistochemical probes were applied to detect p-mTOR (Ser2448), p-Akt (Ser473), p-ERK1/2 (Thr202/Tyr204), nestin, and p-STAT3 (Tyr 705) in the original and recurrent tumor. The initial remarkable radiographic responses to IGF1R-antibody therapy was followed by resistance and then response to combined IGF1R plus mTOR inhibitor therapy in both patients, and then resistance to the combination regimen in one patient. In patient 1, upregulation of p-Akt and p-mTOR in the tumor that relapsed after initial response to IGF1R antibody might explain the resistance that developed, and the subsequent response to combined IGF1R plus mTOR inhibitor therapy. In patient 2, upregulation of mTOR was seen in the primary tumor, perhaps explaining the initial response to the IGF1R and mTOR inhibitor combination, while the resistant tumor that emerged showed activation of the ERK pathway as well. Conclusion/Significance Morphoproteomic analysis revealed that the mTOR pathway was activated in these two patients with advanced Ewing's sarcoma who showed response to combined IGF1R and mTOR inhibition, and the ERK pathway in the patient in whom resistance to this combination emerged. Our pilot results suggests that morphoproteomic assessment of signaling pathway activation in Ewing's sarcoma merits further investigation as a guide to understanding response and resistance signatures. PMID

  2. Natural healing-inspired collagen-targeting surgical protein glue for accelerated scarless skin regeneration.

    PubMed

    Jeon, Eun Young; Choi, Bong-Hyuk; Jung, Dooyup; Hwang, Byeong Hee; Cha, Hyung Joon

    2017-07-01

    Skin scarring after deep dermal injuries is a major clinical problem due to the current therapies limited to established scars with poor understanding of healing mechanisms. From investigation of aberrations within the extracellular matrix involved in pathophysiologic scarring, it was revealed that one of the main factors responsible for impaired healing is abnormal collagen reorganization. Here, inspired by the fundamental roles of decorin, a collagen-targeting proteoglycan, in collagen remodeling, we created a scar-preventive collagen-targeting glue consisting of a newly designed collagen-binding mussel adhesive protein and a specific glycosaminoglycan. The collagen-targeting glue specifically bound to type I collagen in a dose-dependent manner and regulated the rate and the degree of fibrillogenesis. In a rat skin excisional model, the collagen-targeting glue successfully accelerated initial wound regeneration as defined by effective reepithelialization, neovascularization, and rapid collagen synthesis. Moreover, the improved dermal collagen architecture was demonstrated by uniform size of collagen fibrils, their regular packing, and a restoration of healthy tissue component. Collectively, our natural healing-inspired collagen-targeting glue may be a promising therapeutic option for improving the healing rate with high-quality and effective scar inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cognitive processing load during listening is reduced more by decreasing voice similarity than by increasing spatial separation between target and masker speech.

    PubMed

    Zekveld, Adriana A; Rudner, Mary; Kramer, Sophia E; Lyzenga, Johannes; Rönnberg, Jerker

    2014-01-01

    We investigated changes in speech recognition and cognitive processing load due to the masking release attributable to decreasing similarity between target and masker speech. This was achieved by using masker voices with either the same (female) gender as the target speech or different gender (male) and/or by spatially separating the target and masker speech using HRTFs. We assessed the relation between the signal-to-noise ratio required for 50% sentence intelligibility, the pupil response and cognitive abilities. We hypothesized that the pupil response, a measure of cognitive processing load, would be larger for co-located maskers and for same-gender compared to different-gender maskers. We further expected that better cognitive abilities would be associated with better speech perception and larger pupil responses as the allocation of larger capacity may result in more intense mental processing. In line with previous studies, the performance benefit from different-gender compared to same-gender maskers was larger for co-located masker signals. The performance benefit of spatially-separated maskers was larger for same-gender maskers. The pupil response was larger for same-gender than for different-gender maskers, but was not reduced by spatial separation. We observed associations between better perception performance and better working memory, better information updating, and better executive abilities when applying no corrections for multiple comparisons. The pupil response was not associated with cognitive abilities. Thus, although both gender and location differences between target and masker facilitate speech perception, only gender differences lower cognitive processing load. Presenting a more dissimilar masker may facilitate target-masker separation at a later (cognitive) processing stage than increasing the spatial separation between the target and masker. The pupil response provides information about speech perception that complements intelligibility data.

  4. Cognitive processing load during listening is reduced more by decreasing voice similarity than by increasing spatial separation between target and masker speech

    PubMed Central

    Zekveld, Adriana A.; Rudner, Mary; Kramer, Sophia E.; Lyzenga, Johannes; Rönnberg, Jerker

    2014-01-01

    We investigated changes in speech recognition and cognitive processing load due to the masking release attributable to decreasing similarity between target and masker speech. This was achieved by using masker voices with either the same (female) gender as the target speech or different gender (male) and/or by spatially separating the target and masker speech using HRTFs. We assessed the relation between the signal-to-noise ratio required for 50% sentence intelligibility, the pupil response and cognitive abilities. We hypothesized that the pupil response, a measure of cognitive processing load, would be larger for co-located maskers and for same-gender compared to different-gender maskers. We further expected that better cognitive abilities would be associated with better speech perception and larger pupil responses as the allocation of larger capacity may result in more intense mental processing. In line with previous studies, the performance benefit from different-gender compared to same-gender maskers was larger for co-located masker signals. The performance benefit of spatially-separated maskers was larger for same-gender maskers. The pupil response was larger for same-gender than for different-gender maskers, but was not reduced by spatial separation. We observed associations between better perception performance and better working memory, better information updating, and better executive abilities when applying no corrections for multiple comparisons. The pupil response was not associated with cognitive abilities. Thus, although both gender and location differences between target and masker facilitate speech perception, only gender differences lower cognitive processing load. Presenting a more dissimilar masker may facilitate target-masker separation at a later (cognitive) processing stage than increasing the spatial separation between the target and masker. The pupil response provides information about speech perception that complements intelligibility data

  5. Effective Strategies for Diagnosis of Systemic Inflammatory Response Syndrome (SIRS) due to Bacterial Infection in Surgical Patients.

    PubMed

    Stubljar, David; Skvarc, Miha

    2015-01-01

    Surgery associated with trauma and soft tissue injuries after surgery significantly activates the systemic immune response. If an infection after surgery occurs, the response is even stronger. Due to spontaneous activation of immune response and elevated biomarkers for sepsis and cytokines, posttraumatic complications such as new-coming postoperative infections are difficult to diagnose. Sepsis as systemic inflammatory response syndrome (SIRS) rapidly progresses through severe sepsis to septic shock and organ failure, and with no applied antibiotic treatment, the disease often ends at death of the patients. In the treatment of non-surgery patients, the biomarkers like white cell blood count, C-reactive protein (CRP) or procalcitonin (PCT) proved to be useful in sepsis recognition. However, diagnostics after surgeries are more complicated and these biomarkers are not ideal. The solution is a sepsis biomarker, which would have high sensitivity and specificity, that can improve diagnostic accuracy of sepsis, should also be measured easily by the patients, and should not be too expensive. We think more sensitive and specific biomarkers such as presepsin (sCD14-ST) or CD64 index on neutrophils could be useful. A diagnosis of sepsis should be based on clinical signs, and clinicians should use biomarker that is not only most sensitive and specific but also is cost effective. Furthermore, confirmation of the bacterial or fungal infection with blood cultures or with the use of broad range polymerase chain reaction (PCR), when culturing is impossible, should be performed.

  6. microRNAs and Their Targets in Apple (Malus domestica cv. "Fuji") Involved in Response to Infection of Pathogen Valsa mali.

    PubMed

    Feng, Hao; Xu, Ming; Zheng, Xiang; Zhu, Tongyi; Gao, Xiaoning; Huang, Lili

    2017-01-01

    miRNAs are important regulators involving in plant-pathogen interactions. However, their roles in apple tree response to Valsa canker pathogen ( Valsa mali, Vm ) infection were poorly understood. In this study, we constructed two miRNA libraries using the twig bark tissues of apple tree ( Malus domestica Borkh. cv. "Fuji") inoculated with Vm (IVm) and PDA medium (control, BMd). Among all detected miRNAs, 23 miRNAs were specifically isolated from BMd and 39 miRNAs were specifically isolated from IVm. Meanwhile, the expression of 294 miRNAs decreased; and another 172 miRNAs showed an increased expression trend in IVm compared with that in BMd. Furthermore, two degradome sequencing libraries were also constructed to identify the target genes of these miRNAs. In total, 353 differentially expressed miRNAs between IVm and BMd were detected to be able to target 1,077 unigenes with 2,251 cleavage sites. Based on GO and KEGG analysis, these genes were found to be mainly related to transcription regulation and signal transduction. In addition, we selected 17 miRNAs and 22 corresponding target genes to screen the expression profiles when apple twigs were infected by Vm . The expression trends of most miRNAs/target genes were consist with the results of deep sequencing. Many of them may involve in the apple twig- Vm interaction by inducing/reducing their expression. What's more, miRNAs and their target genes regulate the apple twig- Vm interaction by forming many complicated regulation networks rather than one to one model. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, most of which are disease resistance related genes. This indicates that mdm-miR482b may play important roles in apple twig response to Vm . More important, the feedback regulation of sRNA pathway in apple twig is also very complex, and play critical role in the interaction between apple twig and Vm based on the results of

  7. Differences in multiple-target visual search performance between non-professional and professional searchers due to decision-making criteria.

    PubMed

    Biggs, Adam T; Mitroff, Stephen R

    2015-11-01

    Professional visual searches, such as those conducted by airport security personnel, often demand highly accurate performance. As many factors can hinder accuracy, it is critical to understand the potential influences. Here, we examined how explicit decision-making criteria might affect multiple-target search performance. Non-professional searchers (college undergraduates) and professional searchers (airport security officers) classified trials as 'safe' or 'dangerous', in one of two conditions. Those in the 'one = dangerous' condition classified trials as dangerous if they found one or two targets, and those in the 'one = safe' condition only classified trials as dangerous if they found two targets. The data suggest an important role of context that may be mediated by experience; non-professional searchers were more likely to miss a second target in the one = dangerous condition (i.e., when finding a second found target did not change the classification), whereas professional searchers were more likely to miss a second in the one = safe condition. © 2014 The British Psychological Society.

  8. Distractor Repetitions Retrieve Previous Responses and Previous Targets: Experimental Dissociations of Distractor-Response and Distractor-Target Bindings

    ERIC Educational Resources Information Center

    Giesen, Carina; Rothermund, Klaus

    2014-01-01

    Even an irrelevant distractor stimulus is integrated into event files. Subsequently repeating the distractor triggers retrieval of the event file; however, an unresolved issue concerns the question of "what" is retrieved by the distractor. While recent studies predominantly assume that the distractor retrieves the previous response, it…

  9. Blunted sympathoinhibitory responses in obesity-related hypertension are due to aberrant central but not peripheral signalling mechanisms

    PubMed Central

    How, Jackie M Y; Wardak, Suhail A; Ameer, Shaik I; Davey, Rachel A; Sartor, Daniela M

    2014-01-01

    The gut hormone cholecystokinin (CCK) acts at subdiaphragmatic vagal afferents to induce renal and splanchnic sympathoinhibition and vasodilatation, via reflex inhibition of a subclass of cardiovascular-controlling neurons in the rostroventrolateral medulla (RVLM). These sympathoinhibitory and vasodilator responses are blunted in obese, hypertensive rats and our aim in the present study was to determine whether this is attributable to (i) altered sensitivity of presympathetic vasomotor RVLM neurons, and (ii) aberrant peripheral or central signalling mechanisms. Using a diet-induced obesity model, male Sprague–Dawley rats exhibited either an obesity-prone (OP) or obesity-resistant (OR) phenotype when placed on a medium high fat diet for 13–15 weeks; control animals were placed on a low fat diet. OP animals had elevated resting arterial pressure compared to OR/control animals (P < 0.05). Barosensitivity of RVLM neurons was significantly attenuated in OP animals (P < 0.05), suggesting altered baroreflex gain. CCK induced inhibitory responses in RVLM neurons of OR/control animals but not OP animals. Subdiaphragmatic vagal nerve responsiveness to CCK and CCK1 receptor mRNA expression in nodose ganglia did not differ between the groups, but CCK induced significantly less Fos-like immunoreactivity in both the nucleus of the solitary tract and the caudal ventrolateral medulla of OP animals compared to controls (P < 0.05). These results suggest that blunted sympathoinhibitory and vasodilator responses in obesity-related hypertension are due to alterations in RVLM neuronal responses, resulting from aberrant central but not peripheral signalling mechanisms. In obesity, blunted sympathoinhibitory mechanisms may lead to increased regional vascular resistance and contribute to the development of hypertension. PMID:24492842

  10. H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents

    NASA Astrophysics Data System (ADS)

    Lee, Dongwon; Bae, Soochan; Hong, Donghyun; Lim, Hyungsuk; Yoon, Joo Heung; Hwang, On; Park, Seunggyu; Ke, Qingen; Khang, Gilson; Kang, Peter M.

    2013-07-01

    The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the overproduction of reactive oxygen species (ROS). Hydrogen peroxide (H2O2), the most abundant form of ROS produced during I/R, causes inflammation, apoptosis and subsequent tissue damages. Here, we report H2O2-responsive antioxidant nanoparticles formulated from copolyoxalate containing vanillyl alcohol (VA) (PVAX) as a novel I/R-targeted nanotherapeutic agent. PVAX was designed to incorporate VA and H2O2-responsive peroxalate ester linkages covalently in its backbone. PVAX nanoparticles therefore degrade and release VA, which is able to reduce the generation of ROS, and exert anti-inflammatory and anti-apoptotic activity. In hind-limb I/R and liver I/R models in mice, PVAX nanoparticles specifically reacted with overproduced H2O2 and exerted highly potent anti-inflammatory and anti-apoptotic activities that reduced cellular damages. Therefore, PVAX nanoparticles have tremendous potential as nanotherapeutic agents for I/R injury and H2O2-associated diseases.

  11. Malus hupehensis miR168 Targets to ARGONAUTE1 and Contributes to the Resistance against Botryosphaeria dothidea Infection by Altering Defense Responses.

    PubMed

    Yu, Xinyi; Hou, Yingjun; Chen, Weiping; Wang, Sanhong; Wang, Peihong; Qu, Shenchun

    2017-09-01

    MicroRNA (miRNA)-mediated post-transcriptional regulation plays a fundamental role in various plant physiological processes, including responses to pathogens. MicroRNA168 has been implicated as an essential factor of miRNA pathways by targeting ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC). A fluctuation in AGO1 expression influences various plant-pathogen interactions, and the homeostasis of AGO1 and miR168 accumulation is maintained by a complicated feedback regulatory loop. In this study, the connection between miR168 and the resistance of Malus hupehensis to Botryosphaeria dothidea is revealed. The induction of both the mature miR168 and its precursor in plants subjected to B. dothidea infection indicate the transcriptional activation of MIR168a. MIR168a promoter analysis demonstrates that the promoter can be activated by B. dothidea and salicylic acid (SA). However, the direct target of miR168, M. hupehensis ARGONAUTE1 (MhAGO1), is shown to be induced under the infection. Expression and transcription activity analysis demonstrate the transcriptional activation and the post-transcriptional suppression of MhAGO1 in response to B. dothidea infection. By inhibiting reactive oxygen species (ROS) production and enhancing SA-mediated defense responses, miR168a delays the symptom development of leaves inoculated with B. dothidea and impedes the pathogen growth, while MhAGO1 is found to have the opposite effects. Collectively, these findings suggest that the expression of miR168 and MhAGO1 in M. hupehensis in response to B. dothidea infection is regulated by a complicated mechanism. Targeting to MhAGO1, a negative regulator, miR168 plays a positive role in the resistance by alterations in diverse defense responses. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Application of Smoothing Techniques for Tracking Maneuvering Targets. Multiple Target Tracking in Clutter: New Approaches

    DTIC Science & Technology

    1992-07-01

    target state estimation is affected not only by the measurement noise but also by the uncertainty in the origins of the measurements. To improve the...to identify targets in the presence of anticipated background noise (including earth, lunar, star backgrounds, complicated spacecraft structures...each other. Futhermore, those frames are often degraded versions of the original scene due to blur and noise . Through the task of image registration

  13. Lay Public's Knowledge and Decisions in Response to Symptoms of Acute Myocardial Infarction

    ERIC Educational Resources Information Center

    Cytryn, Kayla N.; Yoskowitz, Nicole A.; Cimino, James J.; Patel, Vimla L.

    2009-01-01

    Despite public health initiatives targeting rapid action in response to symptoms of myocardial infarction (MI), people continue to delay in going to a hospital when experiencing these symptoms due to lack of recognition as cardiac-related. The objective of this research was to characterize lay individuals' knowledge of symptoms of acute myocardial…

  14. Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells.

    PubMed

    García-Vallejo, Juan J; Ambrosini, Martino; Overbeek, Annemieke; van Riel, Wilhelmina E; Bloem, Karien; Unger, Wendy W J; Chiodo, Fabrizio; Bolscher, Jan G; Nazmi, Kamran; Kalay, Hakan; van Kooyk, Yvette

    2013-04-01

    Dendritic cells are the most powerful type of antigen presenting cells. Current immunotherapies targeting dendritic cells have shown a relative degree of success but still require further improvement. One of the most important issues to solve is the efficiency of antigen delivery to dendritic cells in order to achieve an appropriate uptake, processing, and presentation to Ag-specific T cells. C-type lectins have shown to be ideal receptors for the targeting of antigens to dendritic cells and allow the use of their natural ligands - glycans - instead of antibodies. Amongst them, dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is an interesting candidate due to its biological properties and the availability of its natural carbohydrate ligands. Using Le(b)-conjugated poly(amido amine) (PAMAM) dendrimers we aimed to characterize the optimal level of multivalency necessary to achieve the desired internalization, lysosomal delivery, Ag-specific T cell proliferation, and cytokine response. Increasing DC-SIGN ligand multivalency directly translated in an enhanced binding, which might also be interesting for blocking purposes. Internalization, routing to lysosomal compartments, antigen presentation and cytokine response could be optimally achieved with glycopeptide dendrimers carrying 16-32 glycan units. This report provides the basis for the design of efficient targeting of peptide antigens for the immunotherapy of cancer, autoimmunity and infectious diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Pharmacogenetics and target identification in diabetes.

    PubMed

    Pearson, Ewan R

    2018-02-24

    In diabetes, pharmacogenetics can be used both to identify patient subgroups who will have most benefit and/or least harm from a particularly treatment, and to gain insights into the molecular mechanisms of drug action and disease aetiology. There is increasing evidence that genetic variation alters response to diabetes treatments-both in terms of glycaemic response and side effects. This can be seen with dramatic impact on clinical care, in patients with genetic forms of diabetes such as Maturity Onset Diabetes of the Young caused by HNF1A mutations, and Neonatal diabetes due to activating mutations in ABCC8 or KCNJ11. Beyond monogenic diabetes, pharmacogenetic variants have yet to impact on clinical practice, yet the effect sizes (e.g. for metformin intolerance and OCT1 variants; or for metformin action and SLC2A2 variants) are potentially of clinical utility, especially if the genotype is already known at the point of prescribing. Over the next few years, increasing cohort sizes and linkage at scale to electronic medical records will provide considerable potential for stratification and novel target identification in diabetes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Lateralized responses during covert attention are modulated by target eccentricity.

    PubMed

    Bahramisharif, Ali; Heskes, Tom; Jensen, Ole; van Gerven, Marcel A J

    2011-03-10

    Various studies have demonstrated that covert attention to different locations in the visual field can be used as a control signal for brain computer interfacing. It is well known that when covert attention is directed to the left visual hemifield, posterior alpha activity decreases in the right hemisphere while simultaneously increasing in the left hemisphere and vice versa. However, it remains unknown if and how the classical lateralization pattern depends on the eccentricity of the locations to which one attends. In this paper we study the effect of target eccentricity on the performance of a brain computer interface system that is driven by covert attention. Results show that the lateralization pattern becomes more pronounced as target eccentricity increases and suggest that in the current design the minimum eccentricity for having an acceptable classification performance for two targets at equal distance from fixation in opposite hemifields is about 6° of visual angle. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Targeted gene insertion for molecular medicine.

    PubMed

    Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán

    2008-11-01

    Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.

  18. Event terms in the response spectra prediction equation and their deviation due to stress drop variations

    NASA Astrophysics Data System (ADS)

    Kawase, H.; Nakano, K.

    2015-12-01

    We investigated the characteristics of strong ground motions separated from acceleration Fourier spectra and acceleration response spectra of 5% damping calculated from weak and moderate ground motions observed by K-NET, KiK-net, and the JMA Shindokei Network in Japan using the generalized spectral inversion method. The separation method used the outcrop motions at YMGH01 as reference where we extracted site responses due to shallow weathered layers. We include events with JMA magnitude equal to or larger than 4.5 observed from 1996 to 2011. We find that our frequency-dependent Q values are comparable to those of previous studies. From the corner frequencies of Fourier source spectra, we calculate Brune's stress parameters and found a clear magnitude dependence, in which smaller events tend to spread over a wider range while maintaining the same maximum value. We confirm that this is exactly the case for several mainshock-aftershock sequences. The average stress parameters for crustal earthquakes are much smaller than those of subduction zone, which can be explained by their depth dependence. We then compared the strong motion characteristics based on the acceleration response spectra and found that the separated characteristics of strong ground motions are different, especially in the lower frequency range less than 1Hz. These differences comes from the difference between Fourier spectra and response spectra found in the observed data; that is, predominant components in high frequency range of Fourier spectra contribute to increase the response in lower frequency range with small Fourier amplitude because strong high frequency component acts as an impulse to a Single-Degree-of-Freedom system. After the separation of the source terms for 5% damping response spectra we can obtain regression coefficients with respect to the magnitude, which lead to a new GMPE as shown in Fig.1 on the left. Although stress drops for inland earthquakes are 1/7 of the subduction

  19. Non-targeted effects of ionizing radiation–implications for low dose risk

    PubMed Central

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric; Hildebrandt, Guido; Belyakov, Oleg V.; Prise, Kevin M.; Little, Mark P.

    2014-01-01

    Non-DNA targeted effects of ionizing radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionizing radiation. Other outstanding questions include links between the different non-targeted responses and the variations in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the Non-targeted effects of ionizing radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects. PMID:23262375

  20. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    PubMed

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    due to the advantage afforded by lysosomal targeting after exogenous antigen processing initiation and major histocompatibility complex (MHC) class II antigen presentation trafficking. MHC II-restricted antigen recognition effectively primes HTNV-specific CD4 + T-cells, leading to the promotion of significant immune responses and immunological memory. An epitope-spreading phenomenon was observed, which mirrors the previous result from the Gn study, in which the dominant IFN-γ-responsive hot-spot epitopes were shared between HLA-II and H2 d . Importantly, the pan-epitope reaction to Gc indicated that Gc should be with potential for use in further hantavirus DNA vaccine investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A compound chimeric antigen receptor strategy for targeting multiple myeloma.

    PubMed

    Chen, K H; Wada, M; Pinz, K G; Liu, H; Shuai, X; Chen, X; Yan, L E; Petrov, J C; Salman, H; Senzel, L; Leung, E L H; Jiang, X; Ma, Y

    2018-02-01

    Current clinical outcomes using chimeric-antigen receptors (CARs) against multiple myeloma show promise in the eradication of bulk disease. However, these anti-BCMA (CD269) CARs observe relapse as a common phenomenon after treatment due to the reemergence of either antigen-positive or -negative cells. Hence, the development of improvements in CAR design to target antigen loss and increase effector cell persistency represents a critical need. Here, we report on the anti-tumor activity of a CAR T-cell possessing two complete and independent CAR receptors against the multiple myeloma antigens BCMA and CS1. We determined that the resulting compound CAR (cCAR) T-cell possesses consistent, potent and directed cytotoxicity against each target antigen population. Using multiple mouse models of myeloma and mixed cell populations, we are further able to show superior in vivo survival by directed cytotoxicity against multiple populations compared to a single-expressing CAR T-cell. These findings indicate that compound targeting of BCMA and CS1 on myeloma cells can potentially be an effective strategy for augmenting the response against myeloma bulk disease and for initiation of broader coverage CAR therapy.

  2. Self-reported sleep disturbances due to railway noise: exposure-response relationships for nighttime equivalent and maximum noise levels.

    PubMed

    Aasvang, Gunn Marit; Moum, Torbjorn; Engdahl, Bo

    2008-07-01

    The objective of the present survey was to study self-reported sleep disturbances due to railway noise with respect to nighttime equivalent noise level (L(p,A,eq,night)) and maximum noise level (L(p,A,max)). A sample of 1349 people in and around Oslo in Norway exposed to railway noise was studied in a cross-sectional survey to obtain data on sleep disturbances, sleep problems due to noise, and personal characteristics including noise sensitivity. Individual noise exposure levels were determined outside of the bedroom facade, the most-exposed facade, and inside the respondents' bedrooms. The exposure-response relationships were analyzed by using logistic regression models, controlling for possible modifying factors including the number of noise events (train pass-by frequency). L(p,A,eq,night) and L(p,A,max) were significantly correlated, and the proportion of reported noise-induced sleep problems increased as both L(p,A,eq,night) and L(p,A,max) increased. Noise sensitivity, type of bedroom window, and pass-by frequency were significant factors affecting noise-induced sleep disturbances, in addition to the noise exposure level. Because about half of the study population did not use a bedroom at the most-exposed side of the house, the exposure-response curve obtained by using noise levels for the most-exposed facade underestimated noise-induced sleep disturbance for those who actually have their bedroom at the most-exposed facade.

  3. Single and fused transgenic Bacillus thuringiensis rice alter the species-specific responses of non-target planthoppers to elevated carbon dioxide and temperature.

    PubMed

    Wan, Guijun; Dang, Zhihao; Wu, Gang; Parajulee, Megha N; Ge, Feng; Chen, Fajun

    2014-05-01

    The approval of transgenic Bacillus thuringiensis (Bt) rice by China was momentous for biotech crops, although it has yet to be approved for commercial production. Non-target pest problems in rice paddies, such as the three ecologically similar species of planthoppers Nilaparvata lugens, Laodelphax striatellus and Sogatella furcifera, could become increasingly serious under global climate change. Fused (Cry1Ab/Cry1Ac) and single (Cry1Ab) transgenic Bt rice were evaluated for effects on species-specific responses of planthoppers to elevated carbon dioxide (CO2) and temperature. Transgenic Bt rice lines significantly modified species-specific responses of the planthoppers to elevated CO2 and temperature. High temperature appears to favour outbreaks of S. furcifera relative to N. lugens and L. striatellus when feeding upon fused transgenic Bt rice, especially at elevated CO2 . Elevated CO2 at high temperature appears to be a factor reducing S. furcifera occurrence when feeding upon single transgenic Bt rice. Different types of transgenic Bt rice alter the species-specific responses of non-target planthoppers to elevated CO2 and temperature. Compared with their non-transgenic parental lines, the single transgenic Bt rice shows better performance in controlling the non-target planthopper S. furcifera by comparison with the fused transgenic Bt rice under elevated CO2 and temperature. It is suggested that multitypes of transgenic Bt rice be used in the field simultaneously in order to take advantage of high transgenic diversity for optimal performance against all pests in paddy fields. © 2013 Society of Chemical Industry.

  4. Neural Dynamics Underlying Target Detection in the Human Brain

    PubMed Central

    Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.

    2014-01-01

    Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944

  5. Validating the random search model for two targets of different difficulty.

    PubMed

    Chan, Alan H S; Yu, Ruifeng

    2010-02-01

    A random visual search model was fitted to 1,788 search times obtained from a nonidentical double-target search task. 30 Hong Kong Chinese (13 men, 17 women) ages 18 to 33 years (M = 23, SD = 6.8) took part in the experiment voluntarily. The overall adequacy and prediction accuracy of the model for various search time parameters (mean and median search times and response times) for both individual and pooled data show that search strategy may reasonably be inferred from search time distributions. The results also suggested the general applicability of the random search model for describing the search behavior of a large number of participants performing the type of search used here, as well as the practical feasibility of its application for determination of stopping policy for optimization of an inspection system design. Although the data generally conformed to the model the search for the more difficult target was faster than expected. The more difficult target was usually detected after the easier target and it is suggested that some degree of memory-guided searching may have been used for the second target. Some abnormally long search times were observed and it is possible that these might have been due to the characteristics of visual lobes, nonoptimum interfixation distances and inappropriate overlapping of lobes, as has been previously reported.

  6. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  7. Genomic response to Wnt signalling is highly context-dependent - Evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Railo, Antti; Pajunen, Antti; Itaeranta, Petri

    2009-10-01

    Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-{beta}-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of {beta}-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays ofmore » gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.« less

  8. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yijun; Lu, Hongjuan; Wang, Dongxu

    2012-12-15

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. Amore » high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does

  9. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  10. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  11. Genome-Wide Investigation of MicroRNAs and Their Targets in Response to Freezing Stress in Medicago sativa L., Based on High-Throughput Sequencing

    PubMed Central

    Shu, Yongjun; Liu, Ying; Li, Wei; Song, Lili; Zhang, Jun; Guo, Changhong

    2016-01-01

    Winter damage, especially in northern climates, is a major limitation of the utilization of perennial forages such as alfalfa. Therefore, improving freezing tolerance is imperative in alfalfa genetic breeding. However, freezing tolerance is a complex trait that is determined by many genes. To understand the complex regulation mechanisms of freezing tolerance in alfalfa, we performed small RNA sequencing analysis under cold (4°) and freezing (−8°) stress. The sequencing results revealed that 173 known, and 24 novel miRNAs were expressed, and that the expression of 35 miRNAs was affected by cold and/or freezing stress. Meanwhile, 105 target genes cleaved by these miRNAs were characterized by degradome sequencing. These targets were associated with biological regulation, cellular processes, metabolic processes, and response to stress. Interestingly, most of them were characterized as transcription factors (TFs), including auxin response factors, SBP, NAC, AP2/ERF, and GRF, which play important roles in plant abiotic responses. In addition, important miRNAs and mRNAs involved in nodulation were also identified, for example, the relationship between miR169 and the TF CCAAT (also named as NF-YA/HAP2), which suggested that nodulation has an important function in freezing tolerance in alfalfa. Our results provide valuable information to help determine the molecular mechanisms of freezing tolerance in alfalfa, which will aid the application of these miRNAs and their targets in the improvement of freezing tolerance in alfalfa and related plants. PMID:26801649

  12. Vaccine Targeting of Subdominant CD8+ T Cell Epitopes Increases the Breadth of the T Cell Response upon Viral Challenge, but May Impair Immediate Virus Control.

    PubMed

    Steffensen, Maria A; Pedersen, Louise H; Jahn, Marie L; Nielsen, Karen N; Christensen, Jan P; Thomsen, Allan R

    2016-03-15

    As a result of the difficulties in making efficient vaccines against genetically unstable viruses such as HIV, it has been suggested that future vaccines should preferentially target subdominant epitopes, the idea being that this should allow a greater breadth of the induced T cell response and, hence, a greater efficiency in controlling escape variants. However, to our knowledge the evidence supporting this concept is limited at best. To improve upon this, we used the murine lymphocytic choriomeningitis virus model and adenoviral vectors to compare a vaccine expressing unmodified Ag to a vaccine expressing the same Ag without its immunodominant epitope. We found that removal of the dominant epitope allowed the induction of CD8(+) T cell responses targeting at least two otherwise subdominant epitopes. Importantly, the overall magnitude of the induced T cell responses was similar, allowing us to directly compare the efficiency of these vaccines. Doing this, we observed that mice vaccinated with the vaccine expressing unmodified Ag more efficiently controlled an acute viral challenge. In the course of a more chronic viral infection, mice vaccinated using the vaccine targeting subdominant epitopes caught up with the conventionally vaccinated mice, and analysis of the breadth of the CD8(+) T cell response revealed that this was notably greater in the former mice. However, under the conditions of our studies, we never saw any functional advantage of this. This may represent a limitation of our model, but clearly our findings underscore the importance of carefully weighing the pros and cons of changes in epitope targeting before any implementation. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. UV exposure, genetic targets in melanocytic tumors and transgenic mouse models.

    PubMed

    de Gruijl, Frank R; van Kranen, Henk J; van Schanke, Arne

    2005-01-01

    The genetic changes and corruption of kinase activity in melanomas appear to revolve around a central axis: mitogenic signaling along the RAS pathway down to transcription regulation by pRB. Epidemiological studies point to the importance of ultraviolet (UV) radiation in the etiology of melanoma, but where and how UV radiation is targeted to contribute to the oncogenic signaling remains obscure. Animal models of melanoma genesis could serve to clarify this issue, but many of these models are not responsive to UV exposure. Most interesting advances have been made by using transgenic mice that carry genetic defects that are known to be relevant to human melanoma: specifically, dysfunction in the tumor suppressive action of p16INK4a or a receptor tyrosine kinase/RAS pathway, that is constitutively activated in melanocytes. The latter types of mice appear to be most responsive to (neonatal) UV exposure. Whether this is due to a general increase in target cells by melanocytosis and a paucity or complete lack of pigment, or a possible UV-induced response of the promoter-enhancer of the transgene or a genuinely independent and additional genetic alteration caused by UV exposure needs to be established. Importantly, the full effect of UV radiation needs to be ascertained in mice with different pigmentation by varying the wavelengths, UV-B versus UV-A1, and the exposure schedules, i.e. neonatal versus adult and chronic versus intermittent overexposure. Intermittent UV-B overexposure deserves special attention because it most strongly evokes proliferative responses in melanocytes.

  14. Structural requirements of oleosin domains for subcellular targeting to the oil body.

    PubMed Central

    van Rooijen, G J; Moloney, M M

    1995-01-01

    We have investigated the protein domains responsible for the correct subcellular targeting of plant seed oleosins. We have attempted to study this targeting in vivo using "tagged" oleosins in transgenic plants. Different constructs were prepared lacking gene sequences encoding one of three structural domains of natural oleosins. Each was fused in frame to the Escherichia coli uid A gene encoding beta-glucuronidase (GUS). These constructs were introduced into Brassica napus using Agrobacterium-mediated transformation. GUS activity was measured in washed oil bodies and in the soluble protein fraction of the transgenic seeds. It was found that complete Arabidopsis oleosin-GUS fusions undergo correct subcellular targeting in transgenic Brassica seeds. Removal of the C-terminal domain of the Arabidopsis oleosin comprising the last 48 amino acids had no effect on overall subcellular targeting. In contrast, loss of the first 47 amino acids (N terminus) or amino acids 48 to 113 (which make up a lipophilic core) resulted in impaired targeting of the fusion protein to the oil bodies and greatly reduced accumulation of the fusion protein. Northern blotting revealed that this reduction is not due to differences in mRNA accumulation. Results from these measurements indicated that both the N-terminal and central oleosin domain are important for targeting to the oil body and show that there is a direct correlation between the inability to target to the oil body and protein stability. PMID:8539295

  15. Redox-responsive mesoporous selenium delivery of doxorubicin targets MCF-7 cells and synergistically enhances its anti-tumor activity.

    PubMed

    Zhao, Shuang; Yu, Qianqian; Pan, Jiali; Zhou, Yanhui; Cao, Chengwen; Ouyang, Jian-Ming; Liu, Jie

    2017-05-01

    To reduce the side effects and enhance the anti-tumor activities of anticancer drugs in the clinic, the use of nano mesoporous materials, with mesoporous silica (MSN) being the best-studied, has become an effective method of drug delivery. In this study, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores, and our results demonstrated that MSe could synergistically enhance the antitumor activity of DOX. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro, HSA-MSe@DOX prominently induced cancer cell toxicity by synergistically enhancing the effects of MSe and DOX. Moreover, HSA-MSe@DOX possessed tumor-targeting abilities in tumor-bearing nude mice and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors. To reduce the side effects and enhance the anti-tumor activities of anticancer drugs, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro and in vivo, HSA-MSe@DOX possessed tumor-targeting abilities and not only

  16. Targeted Nanotechnology for Cancer Imaging

    PubMed Central

    Toy, Randall; Bauer, Lisa; Hoimes, Christopher; Ghaghada, Ketan B.; Karathanasis, Efstathios

    2014-01-01

    Targeted nanoparticle imaging agents provide many benefits and new opportunities to facilitate accurate diagnosis of cancer and significantly impact patient outcome. Due to the highly engineerable nature of nanotechnology, targeted nanoparticles exhibit significant advantages including increased contrast sensitivity, binding avidity and targeting specificity. Considering the various nanoparticle designs and their adjustable ability to target a specific site and generate detectable signals, nanoparticles can be optimally designed in terms of biophysical interactions (i.e., intravascular and interstitial transport) and biochemical interactions (i.e., targeting avidity towards cancer-related biomarkers) for site-specific detection of very distinct microenvironments. This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer. We will report various targeted nanoparticles for cancer imaging using X-ray computed tomography, ultrasound, magnetic resonance imaging, nuclear imaging and optical imaging. Finally, to realize the full potential of targeted nanotechnology for cancer imaging, we will describe the challenges and opportunities for the clinical translation and widespread adaptation of targeted nanoparticles imaging agents. PMID:25116445

  17. Smooth Muscle Cell Genome Browser: Enabling the Identification of Novel Serum Response Factor Target Genes

    PubMed Central

    Lee, Moon Young; Park, Chanjae; Berent, Robyn M.; Park, Paul J.; Fuchs, Robert; Syn, Hannah; Chin, Albert; Townsend, Jared; Benson, Craig C.; Redelman, Doug; Shen, Tsai-wei; Park, Jong Kun; Miano, Joseph M.; Sanders, Kenton M.; Ro, Seungil

    2015-01-01

    Genome-scale expression data on the absolute numbers of gene isoforms offers essential clues in cellular functions and biological processes. Smooth muscle cells (SMCs) perform a unique contractile function through expression of specific genes controlled by serum response factor (SRF), a transcription factor that binds to DNA sites known as the CArG boxes. To identify SRF-regulated genes specifically expressed in SMCs, we isolated SMC populations from mouse small intestine and colon, obtained their transcriptomes, and constructed an interactive SMC genome and CArGome browser. To our knowledge, this is the first online resource that provides a comprehensive library of all genetic transcripts expressed in primary SMCs. The browser also serves as the first genome-wide map of SRF binding sites. The browser analysis revealed novel SMC-specific transcriptional variants and SRF target genes, which provided new and unique insights into the cellular and biological functions of the cells in gastrointestinal (GI) physiology. The SRF target genes in SMCs, which were discovered in silico, were confirmed by proteomic analysis of SMC-specific Srf knockout mice. Our genome browser offers a new perspective into the alternative expression of genes in the context of SRF binding sites in SMCs and provides a valuable reference for future functional studies. PMID:26241044

  18. Eye-Target Synchrony and Attention

    NASA Astrophysics Data System (ADS)

    Contreras, R.; Kolster, R.; Basu, S.; Voss, H. U.; Ghajar, J.; Suh, M.; Bahar, S.

    2007-03-01

    Eye-target synchrony is critical during smooth pursuit. We apply stochastic phase synchronization to human pursuit of a moving target, in both normal and mild traumatic brain injured (TBI) subjects. Smooth pursuit utilizes the same neural networks used by attention. To test whether smooth pursuit is modulated by attention, subjects tracked a target while loaded with tasks involving working memory. Preliminary results suggest that additional cognitive load increases normal subjects' performance, while the effect is reversed in TBI patients. We correlate these results with eye-target synchrony. Additionally, we correlate eye-target synchrony with frequency of target motion, and discuss how the range of frequencies for optimal synchrony depends on the shift from attentional to automatic-response time scales. Synchrony deficits in TBI patients can be correlated with specific regions of brain damage imaged with diffusion tensor imaging (DTI).

  19. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine.

    PubMed

    Ye, Ting; Yue, Yan; Fan, Xiangmei; Dong, Chunsheng; Xu, Wei; Xiong, Sidong

    2014-07-31

    Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Convergence of the mammalian target of rapamycin complex 1- and glycogen synthase kinase 3-β-signaling pathways regulates the innate inflammatory response.

    PubMed

    Wang, Huizhi; Brown, Jonathan; Gu, Zhen; Garcia, Carlos A; Liang, Ruqiang; Alard, Pascale; Beurel, Eléonore; Jope, Richard S; Greenway, Terrance; Martin, Michael

    2011-05-01

    The PI3K pathway and its regulation of mammalian target of rapamycin complex 1 (mTORC1) and glycogen synthase kinase 3 (GSK3) play pivotal roles in controlling inflammation. In this article, we show that mTORC1 and GSK3-β converge and that the capacity of mTORC1 to affect the inflammatory response is due to the inactivation of GSK3-β. Inhibition of mTORC1 attenuated GSK3 phosphorylation and increased its kinase activity. Immunoprecipitation and in vitro kinase assays demonstrated that GSK3-β associated with a downstream target of mTORC1, p85S6K, and phosphorylated GSK3-β. Inhibition of S6K1 abrogated the phosphorylation of GSK3-β while increasing and decreasing the levels of IL-12 and IL-10, respectively, in LPS-stimulated monocytes. In contrast, the direct inhibition of GSK3 attenuated the capacity of S6K1 inhibition to influence the levels of IL-10 and IL-12 produced by LPS-stimulated cells. At the transcriptional level, mTORC1 inhibition reduced the DNA binding of CREB and this effect was reversed by GSK3 inhibition. As a result, mTORC1 inhibition increased the levels of NF-κB p65 associated with CREB-binding protein. Inhibition of NF-κB p65 attenuated rapamycin's ability to influence the levels of pro- or anti-inflammatory cytokine production in monocytes stimulated with LPS. These studies identify the molecular mechanism by which mTORC1 affects GSK3 and show that mTORC1 inhibition regulates pro- and anti-inflammatory cytokine production via its capacity to inactivate GSK3.

  1. Ingroup categorization and response conflict: Interactive effects of target race, flanker compatibility, and infrequency on N2 amplitude.

    PubMed

    Dickter, Cheryl L; Bartholow, Bruce D

    2010-05-01

    Three largely independent lines of research have investigated experimental manipulations that influence the amplitude of the N2 component of the event-related brain potential (ERP), one linking heightened N2 amplitude to response conflict, another showing that N2 is sensitive to stimulus infrequency, and the third showing larger N2 amplitude during categorization of racial ingroup relative to racial outgroup targets. The purpose of this research was to investigate potential interactions between these three features on the amplitude of the N2. ERPs were recorded while participants completed a modified flanker task using pictures of ingroup and outgroup faces. Results showed a 3-way interaction, indicating that the N2 was largest for ingroup targets on high-conflict trials but only when such trials were relatively infrequent. Implications of these findings for theories of both conflict monitoring and person perception are discussed.

  2. Power and the objectification of social targets.

    PubMed

    Gruenfeld, Deborah H; Inesi, M Ena; Magee, Joe C; Galinsky, Adam D

    2008-07-01

    Objectification has been defined historically as a process of subjugation whereby people, like objects, are treated as means to an end. The authors hypothesized that objectification is a response to social power that involves approaching useful social targets regardless of the value of their other human qualities. Six studies found that under conditions of power, approach toward a social target was driven more by the target's usefulness, defined in terms of the perceiver's goals, than in low-power and baseline conditions. This instrumental response to power, which was linked to the presence of an active goal, was observed using multiple instantiations of power, different measures of approach, a variety of goals, and several types of instrumental and noninstrumental target attributes. Implications for research on the psychology of power, automatic goal pursuit, and self-objectification theory are discussed.

  3. Evidence of locally enhanced target heating due to instabilities of counter-streaming fast electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koester, Petra; Cecchetti, Carlo A.; Booth, Nicola

    2015-02-15

    The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10{sup 19 }W/cm{sup 2}. High-resolution X-ray spectroscopy ofmore » the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams.« less

  4. Neural activation during response competition

    NASA Technical Reports Server (NTRS)

    Hazeltine, E.; Poldrack, R.; Gabrieli, J. D.

    2000-01-01

    The flanker task, introduced by Eriksen and Eriksen [Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143--149], provides a means to selectively manipulate the presence or absence of response competition while keeping other task demands constant. We measured brain activity using functional magnetic resonance imaging (fMRI) during performance of the flanker task. In accordance with previous behavioral studies, trials in which the flanking stimuli indicated a different response than the central stimulus were performed significantly more slowly than trials in which all the stimuli indicated the same response. This reaction time effect was accompanied by increases in activity in four regions: the right ventrolateral prefrontal cortex, the supplementary motor area, the left superior parietal lobe, and the left anterior parietal cortex. The increases were not due to changes in stimulus complexity or the need to overcome previously learned associations between stimuli and responses. Correspondences between this study and other experiments manipulating response interference suggest that the frontal foci may be related to response inhibition processes whereas the posterior foci may be related to the activation of representations of the inappropriate responses.

  5. Analysis of Societal Response in Urban Landscape Irrigation due to the Recent California Drought Utilizing Remotely Sensed Satellite and High Resolution Aerial NAIP Imagery

    NASA Astrophysics Data System (ADS)

    Munoz, V.; Mendoza, J.; Ha, J. J.; Pagan, B. R.; Margulis, S. A.; Pal, J. S.

    2016-12-01

    California is currently amidst the most severe multi-year drought on record. Severe strains on water supply throughout the state have resulted in calls from water agencies and the Governor of California for extensive conservation. In Southern California, as much as 65% of daily water usage in single family homes goes towards outdoor use, primarily for grass lawns and landscaping. Therefore, the majority of the water conservation messaging has been targeted at turf removal and limiting outdoor irrigation. However, quantification of the effectiveness of these conservation campaigns and subsequent impacts on outdoor irrigation in large urban areas is difficult due to a lack of readily available in situ metering data separating indoor and outdoor use. Here we use a suite of high-resolution remotely sensed products to examine the impacts of the drought on irrigated vegetation over the Greater Los Angeles County. One-meter National Agriculture Imagery Program (NAIP) data from the United States Department of Agriculture and 30-meter Landsat data over Los Angeles is used to calculate the Normalized Difference Vegetation Index (NDVI). NDVI is compared between non-drought (2005, 2009, 2010) and drought years (2012, 2014). Declines in NDVI are typically manifested as browning of vegetation due to reduced irrigation, or the replacement of water intensive grass lawns with more native vegetation. Results suggest that changes in NDVI during the drought may be dependent on societal responses to water conservation campaigns. Our analysis suggests that disparities in plant greenness, a proxy of plant health, and total vegetated area exist between wealthy and poor communities, both prior to and during the drought. This disparity is likely to increase during drought periods, assuming wealthier communities are less likely to respond to increasing water rates and more stringent watering restrictions.

  6. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics.

    PubMed

    Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory

    2011-07-01

    Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.

  7. Nanomedicine Strategies to Target Tumor-Associated Macrophages

    PubMed Central

    Binnemars-Postma, Karin; Storm, Gert; Prakash, Jai

    2017-01-01

    In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are involved in inflammatory and malignant processes, activated M2 macrophages are more involved in the wound-healing processes occurring in tumors. Tumor-associated macrophages (TAM) display M2 macrophage characteristics and support tumor growth and metastasis by matrix remodeling, neo-angiogenesis, and suppressing local immunity. Due to their detrimental role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer may prove to be beneficial in the treatment of cancer. Due to the plastic nature of macrophages, their activities may be altered to inhibit tumor growth. In this review, we will discuss the therapeutic options for the modulation and targeting of TAM. Different therapeutic strategies to deplete, inhibit recruitment of, or re-educate TAM will be discussed. Current strategies for the targeting of TAM using nanomedicine are reviewed. Passive targeting using different nanoparticle systems is described. Since TAM display a number of upregulated surface proteins compared to non-TAM, specific targeting using targeting ligands coupled to nanoparticles is discussed in detail. PMID:28471401

  8. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  9. microRNAs and Their Targets in Apple (Malus domestica cv. “Fuji”) Involved in Response to Infection of Pathogen Valsa mali

    PubMed Central

    Feng, Hao; Xu, Ming; Zheng, Xiang; Zhu, Tongyi; Gao, Xiaoning; Huang, Lili

    2017-01-01

    miRNAs are important regulators involving in plant-pathogen interactions. However, their roles in apple tree response to Valsa canker pathogen (Valsa mali, Vm) infection were poorly understood. In this study, we constructed two miRNA libraries using the twig bark tissues of apple tree (Malus domestica Borkh. cv. “Fuji”) inoculated with Vm (IVm) and PDA medium (control, BMd). Among all detected miRNAs, 23 miRNAs were specifically isolated from BMd and 39 miRNAs were specifically isolated from IVm. Meanwhile, the expression of 294 miRNAs decreased; and another 172 miRNAs showed an increased expression trend in IVm compared with that in BMd. Furthermore, two degradome sequencing libraries were also constructed to identify the target genes of these miRNAs. In total, 353 differentially expressed miRNAs between IVm and BMd were detected to be able to target 1,077 unigenes with 2,251 cleavage sites. Based on GO and KEGG analysis, these genes were found to be mainly related to transcription regulation and signal transduction. In addition, we selected 17 miRNAs and 22 corresponding target genes to screen the expression profiles when apple twigs were infected by Vm. The expression trends of most miRNAs/target genes were consist with the results of deep sequencing. Many of them may involve in the apple twig-Vm interaction by inducing/reducing their expression. What's more, miRNAs and their target genes regulate the apple twig-Vm interaction by forming many complicated regulation networks rather than one to one model. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, most of which are disease resistance related genes. This indicates that mdm-miR482b may play important roles in apple twig response to Vm. More important, the feedback regulation of sRNA pathway in apple twig is also very complex, and play critical role in the interaction between apple twig and Vm based on the results of

  10. Analysis of miRNAs targeting transcription factors in Persicaria minor induced by Fusarium oxysporum

    NASA Astrophysics Data System (ADS)

    Samad, Abdul Fatah A.; Ali, Nazaruddin Muhammad; Ismail, Ismanizan; Murad, Abdul Munir Abdul

    2016-11-01

    A recent discovery showed small non-coding RNA known as microRNA has a crucial role in plant development and plant survival in extreme condition. In the past few years, researchers have managed to identify the various families of transcription factors that play a crucial role in regulating plant development and plant responses to stresses. This study focuses on the expression pattern of miRNA targeted transcription factor under biotic stress in a plant rich with secondary metabolite, Persicaria minor. A pathogenic fungus, Fusarium oxysporum was used in the biotic stress treatment since the previous study revealed this fungus could trigger plant defense system. Two small RNA libraries were constructed which consist of control and treated samples. In order to identify the potential target, psRobot target prediction software was used for each miRNA that shows significant change due to the infection. The result showed miR156b/c, miR172a, miR319, miR858, and miR894 were found to be targeting a wide range of transcription factors that involve in plant development and plant response towards stresses. The expression of miR156b/c and miR172 were up-regulated while the expression of miR319, miR858, and miR894 was found to be down-regulated. These results may provide a certain level of networking between those two regulatory molecules in plant genetic system under biotic stress.

  11. Experimental response of Salix cuttings to different flow regimes due to human activities

    NASA Astrophysics Data System (ADS)

    Gorla, Lorenzo; Signarbieux, Constant; Turberg, Pascal; Buttler, Alexandre; Perona, Paolo

    2014-05-01

    Hydropower production and other human activities change the natural flow regime of rivers, in turn impacting the riparian environment. The main challenge in order to define eco-sustainable flows is to quantify the effects in terms of geomorphology and ecosystem adaptation. We present 2-years controlled experiments to investigate riparian vegetation (Salix Viminalis) response to forced water table changing dynamics, from one water regime to another, in a temperate region (Switzerland). Three synthetic flow regimes have been simulated and applied to three batteries of Salix cuttings growing outdoor within plastic pots, each about 1 meter tall. In 2012 one treatment simulated a minimal flow policy for small run-of-river hydropower plants, which drastically impacts the low and the medium-low components of the hydrograph, but not the extremes. In 2013 we confirmed and completed some of 2012 results, by reproducing typical hydropeaking effects due to dam management and focusing on daily water table variations and offsets. For both the seasons, after an initial period where all pots undergone the same oscillations in order to uniform the plants initial conditions, the experiment started, and the water dynamic was changed. Cuttings transitory response dynamics has been quantified by continuous sap flow and water potential measurements, and by regularly collecting growth parameters, as well as leaves photosynthesis, fluorescence, and pictures of each plant. At the end of the experiment, all cuttings were carefully removed and the both above and below ground biomass analyzed in detail. Particularly, the 3D root structure was obtained by High Resolution Computer Tomography. Our analyses revealed a clear dependence between roots distribution and water regime reflecting the need for adaptation, in agreement with field observations of Pasquale et al. (2012). In particular, an initial strong difference in terms of stress and growth performances was then followed by a later

  12. Cellular responses and gene expression profile changes due to bleomycin-induced DNA damage in human fibroblasts in space

    PubMed Central

    Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu

    2017-01-01

    Living organisms in space are constantly exposed to radiation, toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage is essential for assessing the radiation risk for astronauts and the mutation rate in microorganisms. In a study conducted on the International Space Station, confluent human fibroblasts in culture were treated with bleomycin for three hours in the true microgravity environment. The degree of DNA damage was quantified by immunofluorescence staining for γ-H2AX, which is manifested in three types of staining patterns. Although similar percentages of these types of patterns were found between flight and ground cells, there was a slight shift in the distribution of foci counts in the flown cells with countable numbers of γ-H2AX foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. We also performed a microarray analysis of gene expressions in response to bleomycin treatment. A qualitative comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. The microarray data was confirmed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly upregulated in both flight and ground cells after bleomycin treatment. Our results suggest that whether microgravity affects DNA damage response in space can be dependent on the cell type and cell growth condition. PMID:28248986

  13. Randomized controlled trial comparing cerebral perfusion pressure-targeted therapy versus intracranial pressure-targeted therapy for raised intracranial pressure due to acute CNS infections in children.

    PubMed

    Kumar, Ramesh; Singhi, Sunit; Singhi, Pratibha; Jayashree, Muralidharan; Bansal, Arun; Bhatti, Anuj

    2014-08-01

    In children with acute CNS infection, management of raised intracranial pressure improves mortality and neuromorbidity. We compared cerebral perfusion pressure-targeted approach with the conventional intracranial pressure-targeted approach to treat raised intracranial pressure in these children. Prospective open-label randomized controlled trial. PICU in a tertiary care academic institute. Hundred ten children (1-12 yr) with acute CNS infections having raised intracranial pressure and a modified Glasgow Coma Scale score less than or equal to 8 were enrolled. Patients were randomized to receive either cerebral perfusion pressure-targeted therapy (n = 55) (maintaining cerebral perfusion pressure ≥ 60 mm Hg, using normal saline bolus and vasoactive therapy-dopamine, and if needed noradrenaline) or intracranial pressure-targeted therapy (n = 55) (maintaining intracranial pressure < 20 mm Hg using osmotherapy while ensuring normal blood pressure). The primary outcome was mortality up to 90 days after discharge from PICU. Secondary outcome was modified Glasgow Coma Scale score at 72 hours after enrollment, length of PICU stay, duration of mechanical ventilation, and hearing deficit and functional neurodisability at discharge and 90-day follow-up. A 90-day mortality in intracranial pressure group (38.2%) was significantly higher than cerebral perfusion pressure group (18.2%; relative risk = 2.1; 95% CI, 1.09-4.04; p = 0.020). The cerebral perfusion pressure group in comparison with intracranial pressure group had significantly higher median (interquartile range) modified Glasgow Coma Scale score at 72 hours (10 [8-11] vs 7 [4-9], p < 0.001), shorter length of PICU stay (13 d [10.8-15.2 d] vs. 18 d [14.5-21.5 d], p = 0.002) and mechanical ventilation (7.5 d [5.4-9.6 d] vs. 11.5 d [9.5-13.5 d], p = 0.003), lower prevalence of hearing deficit (8.9% vs 37.1%; relative risk = 0.69; 95% CI, 0.53-0.90; p = 0.005), and neurodisability at discharge from PICU (53.3% vs. 82

  14. Induction of Non-Targeted Stress Responses in Mammary Tissues by Heavy Ions

    PubMed Central

    Chai, Yunfei; Lam, Roy K. K.; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio; Yu, Peter K. N.; Hei, Tom K.

    2015-01-01

    Purpose Side effects related to radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in directly irradiated cells. However, several studies have reported over the years of radiation-induced non-targeted/ abscopal effects in vivo that challenge this paradigm. There is evidence that Cyclooxygenase-2 (COX2) plays an important role in modulating non-targeted effects, including DNA damages in vitro and mutagenesis in vivo. While most reports on radiation-induced non-targeted response utilize x-rays, there is little information available for heavy ions. Methods and Materials Adult female transgenic gpt delta mice were exposed to an equitoxic dose of either carbon or argon particles using the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS) in Japan. The mice were stratified into 4 groups of 5 animals each: Control; animals irradiated under full shielding (Sham-irradiated); animals receiving whole body irradiation (WBIR); and animals receiving partial body irradiation (PBIR) to the lower abdomen with a 1 x 1 cm2 field. The doses used in the carbon ion group (4.5 Gy) and in argon particle group (1.5 Gy) have a relative biological effectiveness equivalent to a 5 Gy dose of x-rays. 24 hours after irradiation, breast tissues in and out of the irradiated field were harvested for analysis. Induction of COX2, 8-hydroxydeoxyguanosine (8-OHdG), phosphorylated histone H2AX (γ-H2AX), and apoptosis-related cysteine protease-3 (Caspase-3) antibodies were examined in the four categories of breast tissues using immunohistochemical techniques. Analysis was performed by measuring the intensity of more than 20 individual microscopic fields and comparing the relative fold difference. Results In the carbon ion group, the relative fold increase in COX2 expression was 1.01 in sham-irradiated group (p > 0.05), 3.07 in PBIR (p < 0.05) and 2.50 in WBIR (p < 0.05), respectively, when

  15. Induction of Non-Targeted Stress Responses in Mammary Tissues by Heavy Ions.

    PubMed

    Wang, Tony J C; Wu, Cheng-Chia; Chai, Yunfei; Lam, Roy K K; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio; Yu, Peter K N; Hei, Tom K

    2015-01-01

    Side effects related to radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in directly irradiated cells. However, several studies have reported over the years of radiation-induced non-targeted/ abscopal effects in vivo that challenge this paradigm. There is evidence that Cyclooxygenase-2 (COX2) plays an important role in modulating non-targeted effects, including DNA damages in vitro and mutagenesis in vivo. While most reports on radiation-induced non-targeted response utilize x-rays, there is little information available for heavy ions. Adult female transgenic gpt delta mice were exposed to an equitoxic dose of either carbon or argon particles using the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS) in Japan. The mice were stratified into 4 groups of 5 animals each: Control; animals irradiated under full shielding (Sham-irradiated); animals receiving whole body irradiation (WBIR); and animals receiving partial body irradiation (PBIR) to the lower abdomen with a 1 x 1 cm2 field. The doses used in the carbon ion group (4.5 Gy) and in argon particle group (1.5 Gy) have a relative biological effectiveness equivalent to a 5 Gy dose of x-rays. 24 hours after irradiation, breast tissues in and out of the irradiated field were harvested for analysis. Induction of COX2, 8-hydroxydeoxyguanosine (8-OHdG), phosphorylated histone H2AX (γ-H2AX), and apoptosis-related cysteine protease-3 (Caspase-3) antibodies were examined in the four categories of breast tissues using immunohistochemical techniques. Analysis was performed by measuring the intensity of more than 20 individual microscopic fields and comparing the relative fold difference. In the carbon ion group, the relative fold increase in COX2 expression was 1.01 in sham-irradiated group (p > 0.05), 3.07 in PBIR (p < 0.05) and 2.50 in WBIR (p < 0.05), respectively, when compared with controls. The relative fold

  16. T-REX on-demand redox targeting in live cells.

    PubMed

    Parvez, Saba; Long, Marcus J C; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Pham, Vanha N; Lee, Dustin K; Aye, Yimon

    2016-12-01

    This protocol describes targetable reactive electrophiles and oxidants (T-REX)-a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE(alkyne)) and the HaloTag-targetable photocaged precursor to HNE(alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t 1/2 <1-2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4-24 h, depending on the nature of the pathway and the type of readouts used.

  17. T-REX on-demand redox targeting in live cells

    PubMed Central

    Parvez, Saba; Long, Marcus J C; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Pham, Vanha N; Lee, Dustin K; Aye, Yimon

    2017-01-01

    This protocol describes targetable reactive electrophiles and oxidants (T-REX)—a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE (alkyne)) and the HaloTag-targetable photocaged precursor to HNE (alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t1/2 <1–2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4–24 h, depending on the nature of the pathway and the type of readouts used. PMID:27809314

  18. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets.

    PubMed

    Wang, Zhang; Arat, Seda; Magid-Slav, Michal; Brown, James R

    2018-01-10

    With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson's disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies.

  19. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A.

    PubMed

    Liu, Rudi; Huang, Yishun; Ma, Yanli; Jia, Shasha; Gao, Mingxuan; Li, Jiuxing; Zhang, Huimin; Xu, Dunming; Wu, Min; Chen, Yan; Zhu, Zhi; Yang, Chaoyong

    2015-04-01

    A target-responsive aptamer-cross-linked hydrogel was designed and synthesized for portable and visual quantitative detection of the toxin Ochratoxin A (OTA), which occurs in food and beverages. The hydrogel network forms by hybridization between one designed DNA strand containing the OTA aptamer and two complementary DNA strands grafting on linear polyacrylamide chains. Upon the introduction of OTA, the aptamer binds with OTA, leading to the dissociation of the hydrogel, followed by release of the preloaded gold nanoparticles (AuNPs), which can be observed by the naked eye. To enable sensitive visual and quantitative detection, we encapsulated Au@Pt core-shell nanoparticles (Au@PtNPs) in the hydrogel to generate quantitative readout in a volumetric bar-chart chip (V-Chip). In the V-Chip, Au@PtNPs catalyzes the oxidation of H2O2 to generate O2, which induces movement of an ink bar to a concentration-dependent distance for visual quantitative readout. Furthermore, to improve the detection limit in complex real samples, we introduced an immunoaffinity column (IAC) of OTA to enrich OTA from beer. After the enrichment, as low as 1.27 nM (0.51 ppb) OTA can be detected by the V-Chip, which satisfies the test requirement (2.0 ppb) by the European Commission. The integration of a target-responsive hydrogel with portable enrichment by IAC, as well as signal amplification and quantitative readout by a simple microfluidic device, offers a new method for portable detection of food safety hazard toxin OTA.

  20. Mechanical and IL-1β Responsive miR-365 Contributes to Osteoarthritis Development by Targeting Histone Deacetylase 4.

    PubMed

    Yang, Xu; Guan, Yingjie; Tian, Shaoqi; Wang, Yuanhe; Sun, Kang; Chen, Qian

    2016-03-23

    Mechanical stress plays an important role in the initiation and progression of osteoarthritis. Studies show that excessive mechanical stress can directly damage the cartilage extracellular matrix and shift the balance in chondrocytes to favor catabolic activity over anabolism. However, the underlying mechanism remains unknown. MicroRNAs (miRNAs) are emerging as important regulators in osteoarthritis pathogenesis. We have found that mechanical loading up-regulated microRNA miR-365 in growth plate chondrocytes, which promotes chondrocyte differentiation. Here, we explored the role of the mechanical responsive microRNA miR-365 in pathogenesis of osteoarthritis (OA). We found that miR-365 was up-regulated by cyclic loading and IL-1β stimulation in articular chondrocytes through a mechanism that involved the transcription factor NF-κB. miR-365 expressed significant higher level in rat anterior cruciate ligament (ACL) surgery induced OA cartilage as well as human OA cartilage from primary OA patients and traumatic OA Patients. Overexpression of miR-365 in chondrocytes increases gene expression of matrix degrading enzyme matrix metallopeptidase 13 (MMP13) and collagen type X (Col X). The increase in miR-365 expression in OA cartilage and in response to IL-1 may contribute to the abnormal gene expression pattern characteristic of OA. Inhibition of miR-365 down-regulated IL-1β induced MMP13 and Col X gene expression. We further showed histone deacetylase 4 (HDAC4) is a direct target of miR-365, which mediates mechanical stress and inflammation in OA pathogenesis. Thus, miR-365 is a critical regulator of mechanical stress and pro-inflammatory responses, which contributes cartilage catabolism. Manipulation of the expression of miR-365 in articular chondrocytes by miR-365 inhibitor may be a potent therapeutic target for the prevention and treatment of osteoarthritis.

  1. Incoherent imaging of radar targets

    NASA Astrophysics Data System (ADS)

    van Ommen, A.; van der Spek, G. A.

    1986-05-01

    Theory suggests that, if a target can be modeled as a rigid constellation of point scatterers, the RCS pattern over a certain aspect change can be used to produce a one-dimensional image. The results for actual measured RCS patterns, however, are not promising. This is illustrated by processing on 4 s of echo data obtained from a Boeing 737 in straight flight, during which its aspect change is 2 deg. The conclusion might be that, for the application considered, aircraft cannot be modeled as a rigid constellation of point scatterers; this is partly due to the treatment of a three-dimensional target as a line target.

  2. Targeting the CRMP2-Ca2+ Channel Complex for Abortive Treatment of Migraine and Posttraumatic Headache

    DTIC Science & Technology

    2017-09-01

    31 Aug 2017 4. TITLE AND SUBTITLE Targeting the CRMP2-Ca2+ Channel Complex for ofAbortive Treatment of Migraine and Post -Traumatic Headache 5a...CONTRACT NUMBER Abortive Treatment Migraine and Post -Traumatic Head ch 5b. GRANT NUMBER W81XWH-16-1-0533 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...due to toxicity. In this study , we explored the axonal growth/specification collapsin response mediator protein 2 (CRMP2) as a novel “druggable

  3. Translational Approaches Targeting Reconsolidation

    PubMed Central

    Kroes, Marijn C.W.; LeDoux, Joseph E.; Phelps, Elizabeth A.

    2017-01-01

    Maladaptive learned responses and memories contribute to psychiatric disorders that constitute a significant socio-economic burden. Primary treatment methods teach patients to inhibit maladaptive responses, but do not get rid of the memory itself, which explains why many patients experience a return of symptoms even after initially successful treatment. This highlights the need to discover more persistent and robust techniques to diminish maladaptive learned behaviours. One potentially promising approach is to alter the original memory, as opposed to inhibiting it, by targeting memory reconsolidation. Recent research shows that reactivating an old memory results in a period of memory flexibility and requires restorage, or reconsolidation, for the memory to persist. This reconsolidation period allows a window for modification of a specific old memory. Renewal of memory flexibility following reactivation holds great clinical potential as it enables targeting reconsolidation and changing of specific learned responses and memories that contribute to maladaptive mental states and behaviours. Here, we will review translational research on non-human animals, healthy human subjects, and clinical populations aimed at altering memories by targeting reconsolidation using biological treatments (electrical stimulation, noradrenergic antagonists) or behavioural interference (reactivation–extinction paradigm). Both approaches have been used successfully to modify aversive and appetitive memories, yet effectiveness in treating clinical populations has been limited. We will discuss that memory flexibility depends on the type of memory tested and the brain regions that underlie specific types of memory. Further, when and how we can most effectively reactivate a memory and induce flexibility is largely unclear. Finally, the development of drugs that can target reconsolidation and are safe for use in humans would optimize cross-species translations. Increasing the understanding of

  4. FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target

    PubMed Central

    Horton, Janet K.; Siamakpour-Reihani, Sharareh; Lee, Chen-Ting; Zhou, Ying; Chen, Wei; Geradts, Joseph; Fels, Diane R.; Hoang, Peter; Ashcraft, Kathleen A.; Groth, Jeff; Kung, Hsiu-Ni; Dewhirst, Mark W.; Chi, Jen-Tsan A.

    2015-01-01

    Although a standardized approach to radiotherapy has been used to treat breast cancer, regardless of subtype (e.g., luminal, basal), recent clinical data suggest that radiation response may vary significantly among subtypes. We hypothesized that this clinical variability may be due, in part, to differences in cellular radiation response. In this study, we utilized RNA samples for microarray analysis from two sources: 1. Paired pre- and postirradiation breast tumor tissue from 32 early-stage breast cancer patients treated in our unique preoperative radiation Phase I trial; and 2. Sixteen biologically diverse breast tumor cell lines exposed to 0 and 5 Gy irradiation. The transcriptome response to radiation exposure was derived by comparing gene expression in samples before and after irradiation. Genes with the highest coefficient of variation were selected for further evaluation and validated at the RNA and protein level. Gene editing and agonistic antibody treatment were performed to assess the impact of gene modulation on radiation response. Gene expression in our cohort of luminal breast cancer patients was distinctly different before and after irradiation. Further, two distinct patterns of gene expression were observed in our biologically diverse group of breast cancer cell lines pre- versus postirradiation. Cell lines that showed significant change after irradiation were largely luminal subtype, while gene expression in the basal and HER2+ cell lines was minimally impacted. The 100 genes with the most significant response to radiation in patients were identified and analyzed for differential patterns of expression in the radiation-responsive versus nonresponsive cell lines. Fourteen genes were identified as significant, including FAS, a member of the tumor necrosis factor receptor family known to play a critical role in programed cell death. Modulation of FAS in breast cancer cell lines altered radiation response phenotype and enhanced radiation sensitivity in

  5. Mule determines the apoptotic response to HDAC inhibitors by targeted ubiquitination and destruction of HDAC2

    PubMed Central

    Zhang, Jing; Kan, Shu; Huang, Brian; Hao, Zhenyue; Mak, Tak W.; Zhong, Qing

    2011-01-01

    Histone deacetylases (HDACs) are major epigenetic modulators involved in a broad spectrum of human diseases including cancers. Administration of HDAC inhibitors (HDACis) leads to growth inhibition, differentiation, and apoptosis of cancer cells. Understanding the regulatory mechanism of HDACs is imperative to harness the therapeutic potentials of HDACis. Here we show that HDACi- and DNA damage-induced apoptosis are severely compromised in mouse embryonic fibroblasts lacking a HECT domain ubiquitin ligase, Mule (Mcl-1 ubiquitin ligase E3). Mule specifically targets HDAC2 for ubiquitination and degradation. Accumulation of HDAC2 in Mule-deficient cells leads to compromised p53 acetylation as well as crippled p53 transcriptional activation, accumulation, and apoptotic response upon DNA damage and Nutlin-3 treatments. These defects in Mule-null cells can be partially reversed by HDACis and fully rescued by lowering the elevated HDAC2 in Mule-null cells to the normal levels as in wild-type cells. Taken together, our results reveal a critical regulatory mechanism of HDAC2 by Mule and suggest this pathway determines the cellular response to HDACis and DNA damage. PMID:22016339

  6. Target-responsive aptamer release from manganese dioxide nanosheets for electrochemical sensing of cocaine with target recycling amplification.

    PubMed

    Chen, Zongbao; Lu, Minghua

    2016-11-01

    A novel electrochemical sensing platform based on manganese dioxide (MnO2) nanosheets was developed for sensitive screening of target cocaine with the signal amplification. Ferrocene-labeled cocaine aptamers were initially immobilized onto MnO2 nanosheets-modified screen-printed carbon electrode because of π-stacking interaction between nucleobases and nanosheets. The immobilized ferrocene-aptamer activated the electrical contact with the electrode, thereby resulting in the sensor circuit to switch on. Upon target cocaine introduction, the analyte reacted with the aptamer and caused the dissociation of ferrocene-aptamer from the electrode, thus giving rise to the detection circuit to switch off. The released aptamer was cleaved by DNase I with target recycling. Under optimal conditions, the decreasing percentage of the electronic signal relative to background current increased with the increasing cocaine concentration in the dynamic range of 0.1-20nM, and the detection limit was 32pM. The reproducibility, selectivity and method accuracy were acceptable. Importantly, this concept offers promise for rapid, simple, and cost-effective analysis of cocaine biological samples without the needs of sample separation and multiple washing steps. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Study of time-reversal-based signal processing applied to polarimetric GPR detection of elongated targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N.; Teixeira, Fernando L.

    2017-04-01

    Ground penetrating radar (GPR) is a useful sensing modality for mapping and identification of underground infrastructure networks, such as metal and concrete pipes (gas, water or sewer), phone conduits or cables, and other buried objects. Due to the polarization-dependent response of typical targets, it is of interest to investigate the optimum antenna arrangement and/or combination of arrangements that maximize the detection and classification capabilities of polarimetric GPR imaging systems. Here, we provide a preliminary study of time-reversal-based techniques applied to target detection by GPR utilizing different relative orientations of linear-polarized antenna elements (with respect to each other, as well as to the targets). We modeled three different pipe materials (metallic, plastic and concrete) and GPR systems operating at center frequencies of 100 MHz and 200 MHz. Full-wave numerical simulations are adopted to account for mutual coupling between targets. This type of assessment study may contribute to the improvement of GPR data interpretation of infrastructure networks in urban area surveys and in other engineering studies.

  8. Vascular targets for cannabinoids: animal and human studies

    PubMed Central

    Stanley, Christopher; O'Sullivan, Saoirse E

    2014-01-01

    Application of cannabinoids and endocannabinoids to perfused vascular beds or individual isolated arteries results in changes in vascular resistance. In most cases, the result is vasorelaxation, although vasoconstrictor responses are also observed. Cannabinoids also modulate the actions of vasoactive compounds including acetylcholine, methoxamine, angiotensin II and U46619 (thromboxane mimetic). Numerous mechanisms of action have been proposed including receptor activation, potassium channel activation, calcium channel inhibition and the production of vasoactive mediators such as calcitonin gene-related peptide, prostanoids, NO, endothelial-derived hyperpolarizing factor and hydrogen peroxide. The purpose of this review is to examine the evidence for the range of receptors now known to be activated by cannabinoids. Direct activation by cannabinoids of CB1, CBe, TRPV1 (and potentially other TRP channels) and PPARs in the vasculature has been observed. A potential role for CB2, GPR55 and 5-HT1A has also been identified in some studies. Indirectly, activation of prostanoid receptors (TP, IP, EP1 and EP4) and the CGRP receptor is involved in the vascular responses to cannabinoids. The majority of this evidence has been obtained through animal research, but recent work has confirmed some of these targets in human arteries. Vascular responses to cannabinoids are enhanced in hypertension and cirrhosis, but are reduced in obesity and diabetes, both due to changes in the target sites of action. Much further work is required to establish the extent of vascular actions of cannabinoids and the application of this research in physiological and pathophysiological situations. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24329566

  9. Dual-Responsive Molecular Probe for Tumor Targeted Imaging and Photodynamic Therapy

    PubMed Central

    Meng, Xiaoqing; Yang, Yueting; Zhou, Lihua; Zhang, li; Lv, Yalin; Li, Sanpeng; Wu, Yayun; Zheng, Mingbin; Li, Wenjun; Gao, Guanhui; Deng, Guanjun; Jiang, Tao; Ni, Dapeng; Gong, Ping; Cai, Lintao

    2017-01-01

    The precision oncology significantly relies on the development of multifunctional agents to integrate tumor targeting, imaging and therapeutics. In this study, a first small-molecule theranostic probe, RhoSSCy is constructed by conjugating 5′-carboxyrhodamines (Rho) and heptamethine cyanine IR765 (Cy) using a reducible disulfide linker and pH tunable amino-group to realize thiols/pH dual sensing. In vitro experiments verify that RhoSSCy is highly sensitive for quantitative analysis and imaging intracellular pH gradient and biothiols. Furthermore, RhoSSCy shows superb tumor targeted dual-modal imaging via near-infrared fluorescence (NIRF) and photoacoustic (PA). Importantly, RhoSSCy also induces strongly reactive oxygen species for tumor photodynamic therapy (PDT) with robust antitumor activity both in vitro and in vivo. Such versatile small-molecule theranostic probe may be promising for tumor targeted imaging and precision therapy. PMID:28638467

  10. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis

    PubMed Central

    Malhotra, Deepti; Portales-Casamar, Elodie; Singh, Anju; Srivastava, Siddhartha; Arenillas, David; Happel, Christine; Shyr, Casper; Wakabayashi, Nobunao; Kensler, Thomas W.; Wasserman, Wyeth W.; Biswal, Shyam

    2010-01-01

    The Nrf2 (nuclear factor E2 p45-related factor 2) transcription factor responds to diverse oxidative and electrophilic environmental stresses by circumventing repression by Keap1, translocating to the nucleus, and activating cytoprotective genes. Nrf2 responses provide protection against chemical carcinogenesis, chronic inflammation, neurodegeneration, emphysema, asthma and sepsis in murine models. Nrf2 regulates the expression of a plethora of genes that detoxify oxidants and electrophiles and repair or remove damaged macromolecules, such as through proteasomal processing. However, many direct targets of Nrf2 remain undefined. Here, mouse embryonic fibroblasts (MEF) with either constitutive nuclear accumulation (Keap1−/−) or depletion (Nrf2−/−) of Nrf2 were utilized to perform chromatin-immunoprecipitation with parallel sequencing (ChIP-Seq) and global transcription profiling. This unique Nrf2 ChIP-Seq dataset is highly enriched for Nrf2-binding motifs. Integrating ChIP-Seq and microarray analyses, we identified 645 basal and 654 inducible direct targets of Nrf2, with 244 genes at the intersection. Modulated pathways in stress response and cell proliferation distinguish the inducible and basal programs. Results were confirmed in an in vivo stress model of cigarette smoke-exposed mice. This study reveals global circuitry of the Nrf2 stress response emphasizing Nrf2 as a central node in cell survival response. PMID:20460467

  11. Behavioral and Physiological Response of Musca domestica to Colored Visual Targets

    DTIC Science & Technology

    2012-01-01

    Observaciones sobre la busqueda de sitios de reposo y estudio experimental sobre la seleccion de colores porMusca domestica en el ambiente natural. M.S...designed to provide direct compari- son betweenwhite and blue targets, both against each other and the least desirable target (yellow). For the...thesis, Institución Politecnico Nacional, Mexico, DF, Mexico. Nava, A. 1967. Preferencias deMusca domestica en la selec- cion de superÞcies de

  12. Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens.

    PubMed

    Sette, Alessandro; Grey, Howard; Oseroff, Carla; Peters, Bjoern; Moutaftsi, Magdalini; Crotty, Shane; Assarsson, Erika; Greenbaum, Jay; Kim, Yohan; Kolla, Ravi; Tscharke, David; Koelle, David; Johnson, R Paul; Blum, Janice; Head, Steven; Sidney, John

    2009-12-30

    In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.

  13. Different kernel functions due to rainfall response from borehole strainmeter in Taiwan

    NASA Astrophysics Data System (ADS)

    Yen Chen, Chih; Hu, Jyr Ching; LIu, Chi Ching

    2014-05-01

    In order to realize reasons inducing earthquakes, project of monitoring of the fault activity using 3-component Gladwin Tensor Strainmeter (GTSM) has been initiated since 2003 in Taiwan, which is one of the most active seismic regions in the world. Observed strain contains several different effects within including barometric, tidal, groundwater, precipitation, tectonics, seismic and other irregular noise. After removing the response of tides and air pressure on strain, we still can find some anomalies highly related to the rainfall in short time in days. The strain response induced by rainfall can be separated into two parts as observation in groundwater, slow response and quick response, respectively. Quick response reflects the strain responding to the load of falling water drops on the ground surface. A kernel function shows the continual response induced by unit precipitation water in time domain. We split the quick response from data removing tidal and barometric response, and then calculate the kernel function by use of deconvolution method. More, an average kernel function was calculated to reduce the noise level. There are five of the sites installed by CGS Taiwan were selected to calculate kernel functions for individual sites. The results show there may be different on rainfall response in different environmental settings. In the case of stations site on gentle terrain, kernel function for each site shows the similar trend, it rises quickly to maximum in 1 to 2 hrs, and then goes down near to zero gently in period of 2-3 days. But in the case of sites settled side by the rivers, there will be 2nd peak of function when collected water in the catchment flows along by the sites related to the hydrograph of creeks. More, landslides will occur in some sites in hazard of landslide with more rainfall stored on, just like DARB in ChiaYi. The curve of kernel function will be controlled by landslides and debris flows.

  14. Non-Targeted Effects and LET: Considerations for Earth and Space Research

    NASA Technical Reports Server (NTRS)

    Sowa, Marianne B.

    2016-01-01

    It is evident from reports in the literature that there are many confounding factors that are capable of modulating radiation-induced non-targeted responses such as the bystander effect and the adaptive response. It has even been suggested that the observation of non-targeted responses may not be universally observable for differing radiation qualities. Dr. William Morgan made many contributions to the study of radiation induced non-targeted effects and it is indeed this area of research where we first began our collaboration more than a decade ago. In this presentation, I will discuss elements of this journey together with a particular emphasis on the role of LET in non-targeted effects.

  15. Response of plasma facing components in Tokamaks due to intense energy deposition using Particle-In-Cell (PIC) methods

    NASA Astrophysics Data System (ADS)

    Genco, Filippo

    Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving

  16. Targeted drug induces responses in aggressive lymphomas

    Cancer.gov

    Preliminary results from clinical trials in a subtype of lymphoma show that for a number of patients whose disease was not cured by other treatments, the drug ibrutinib can provide significant anti-cancer responses with modest side effects.

  17. Minamata disease: catastrophic poisoning due to a failed public health response.

    PubMed

    Tsuda, Toshihide; Yorifuji, Takashi; Takao, Soshi; Miyai, Masaya; Babazono, Akira

    2009-04-01

    We present the history of Minamata disease in a chronological order from the public health point of view. Because the appropriate public health response - to investigate and control the outbreak - as set out in the Food Sanitation Act was not conducted, no one knew how many became ill following the outbreak. Exposure could not be stopped. In our discussion, we offer two reasons as to why the Japanese public health agencies did not apply the Act: social circumstances in the 1950s and 1960s that placed emphasis on industrial development, and the Japanese medical community's lack of knowledge about the Act. The history of Minamata disease shows us the consequences when public health responses are not implemented. Minamata disease should be an invaluable lesson for future public health responses.

  18. Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures

    PubMed Central

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M.; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  19. Inflammatory Responses in Brain Ischemia

    PubMed Central

    Kawabori, Masahito; Yenari, Midori A.

    2017-01-01

    Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke. PMID:25666795

  20. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean.

    PubMed

    Horvath, David P; Hansen, Stephanie A; Moriles-Miller, Janet P; Pierik, Ronald; Yan, Changhui; Clay, David E; Scheffler, Brian; Clay, Sharon A

    2015-07-01

    Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without weeds. Weed species and the methods to maintain weed-free controls varied between years to mitigate treatment effects, and to allow detection of general soybean weed responses. Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently downregulated genes in weedy plots. Many of the downregulated genes were heat shock genes. Fourteen genes were consistently upregulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the upregulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in Arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean. No claim to original US government works New Phytologist © 2015 New Phytologist Trust.

  1. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARa and T- and B-cell targeting

    EPA Pesticide Factsheets

    Dosing information, body weights during exposure and immune system endpoints. This dataset is associated with the following publication:DeWitt, J., W. Williams , J. Creech, and R. Luebke. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARalpha and T- and B-cell targeting. JOURNAL OF IMMUNOTOXICOLOGY. Taylor & Francis, Inc., Philadelphia, PA, USA, 13(1): 38-45, (2016).

  2. Bioengineering Strategies for Designing Targeted Cancer Therapies

    PubMed Central

    Wen, Xuejun

    2014-01-01

    The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. PMID:23768509

  3. CPTAC Develops Fit-for-Purpose Multiplex Immuno-MRM Assay for Profiling the DNA Damage Response Pathway | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Ionizing radiation (IR) is a commonly employed cancer treatment that kills cancer cells by damaging their DNA. While the DNA damage response (DDR) pathway may be key to determining tumor responses, radiochemical damage due to IR can target the patients’ healthy dividing cells, leading to the formation of secondary hematologic and solid tumors after DNA-damaging therapy.

  4. Vascular targeting of a gold nanoparticle to breast cancer metastasis

    PubMed Central

    Peiris, Pubudu M.; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P.; Lee, Zhenghong; Karathanasis, Efstathios

    2015-01-01

    The vast majority of breast cancer deaths are due to metastatic disease. While deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the gold nanoparticles, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Due to the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. PMID:26036431

  5. Quinolone Resistance Reversion by Targeting the SOS Response

    PubMed Central

    Recacha, E.; Machuca, J.; Díaz de Alba, P.; Ramos-Güelfo, M.; Docobo-Pérez, F.; Pascual, A.

    2017-01-01

    ABSTRACT Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs) and dynamic (killing curves or flow cytometry) methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs). Killing curve assays showed a clear disadvantage for survival (Δlog10 CFU per milliliter [CFU/ml] of 8 log units after 24 h), and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog10 CFU/g of 1.76 log units) in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min) of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy. PMID:29018116

  6. Targeting brains, producing responsibilities: the use of neuroscience within British social policy.

    PubMed

    Broer, Tineke; Pickersgill, Martyn

    2015-05-01

    Concepts and findings 'translated' from neuroscientific research are finding their way into UK health and social policy discourse. Critical scholars have begun to analyse how policies tend to 'misuse' the neurosciences and, further, how these discourses produce unwarranted and individualizing effects, rooted in middle-class values and inducing guilt and anxiety. In this article, we extend such work while simultaneously departing from the normative assumptions implied in the concept of 'misuse'. Through a documentary analysis of UK policy reports focused on the early years, adolescence and older adults, we examine how these employ neuroscientific concepts and consequently (re)define responsibility. In the documents analysed, responsibility was produced in three different but intersecting ways: through a focus on optimisation, self-governance, and vulnerability. Our work thereby adds to social scientific examinations of neuroscience in society that show how neurobiological terms and concepts can be used to construct and support a particular imaginary of citizenship and the role of the state. Neuroscience may be leveraged by policy makers in ways that (potentially) reduce the target of their intervention to the soma, but do so in order to expand the outcome of the intervention to include the enhancement of society writ large. By attending as well to more critical engagements with neuroscience in policy documents, our analysis demonstrates the importance of being mindful of the limits to the deployment of a neurobiological idiom within policy settings. Accordingly, we contribute to increased empirical specificity concerning the impacts and translation of neuroscientific knowledge in contemporary society whilst refusing to take for granted the idea that the neurosciences necessarily have a dominant role (to play). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. The Development of a 3D LADAR Simulator Based on a Fast Target Impulse Response Generation Approach

    NASA Astrophysics Data System (ADS)

    Al-Temeemy, Ali Adnan

    2017-09-01

    A new laser detection and ranging (LADAR) simulator has been developed, using MATLAB and its graphical user interface, to simulate direct detection time of flight LADAR systems, and to produce 3D simulated scanning images under a wide variety of conditions. This simulator models each stage from the laser source to data generation and can be considered as an efficient simulation tool to use when developing LADAR systems and their data processing algorithms. The novel approach proposed for this simulator is to generate the actual target impulse response. This approach is fast and able to deal with high scanning requirements without losing the fidelity that accompanies increments in speed. This leads to a more efficient LADAR simulator and opens up the possibility for simulating LADAR beam propagation more accurately by using a large number of laser footprint samples. The approach is to select only the parts of the target that lie in the laser beam angular field by mathematically deriving the required equations and calculating the target angular ranges. The performance of the new simulator has been evaluated under different scanning conditions, the results showing significant increments in processing speeds in comparison to conventional approaches, which are also used in this study as a point of comparison for the results. The results also show the simulator's ability to simulate phenomena related to the scanning process, for example, type of noise, scanning resolution and laser beam width.

  8. Areal Mass Oscillations in Planar Targets Due to Feedout: Theory and Simulations.

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Obenschain, S. P.; Serlin, V.; Pawley, C. J.; Gardner, J. H.; Aglitskiy, Y.; Metzler, N.

    2001-10-01

    When a planar shock wave breaks out at a rippled rear surface of a laser-driven target, the lateral pressure gradient in a rippled rarefaction wave propagating back to the front surface causes a lateral mass redistribution that reverses the phase of mass variation. If the driving laser pulse has no foot, then the RT growth, starting when the rarefaction wave reaches the front surface, causes the second phase reversal of mass variation, and continues at the initial phase, as consistently observed in feedout experiments on Nike. A foot of the laser pulse can cause an early phase reversal of mass variation, making the strong shock wave driven by the main pulse interact with a density variation in a rippled rarefaction wave rather than with static rear surface ripples. Theory and simulations predict that this interaction can make the phase of mass variation reverse one or three times. Then the phase of the RT growing mode would be opposite to that of the initial mass variation.

  9. miRNAs as potential therapeutic targets for age-related macular degeneration.

    PubMed

    Wang, Shusheng; Koster, Kyle M; He, Yuguang; Zhou, Qinbo

    2012-03-01

    Since their recent discovery, miRNAs have been shown to play critical roles in a variety of pathophysiological processes. Such processes include pathological angiogenesis, the oxidative stress response, immune response and inflammation, all of which have been shown to have important and interdependent roles in the pathogenesis and progression of age-related macular degeneration (AMD). Here we present a brief review of the pathological processes involved in AMD and review miRNAs and other noncoding RNAs involved in regulating these processes. Specifically, we discuss several candidate miRNAs that show promise as AMD therapeutic targets due to their direct involvement in choroidal neovascularization or retinal pigment epithelium atrophy. We discuss potential miRNA-based therapeutics and delivery methods for AMD and provide future directions for the field of miRNA research with respect to AMD. We believe the future of miRNAs in AMD therapy is promising.

  10. Manifold structure preservative for hyperspectral target detection

    NASA Astrophysics Data System (ADS)

    Imani, Maryam

    2018-05-01

    A nonparametric method termed as manifold structure preservative (MSP) is proposed in this paper for hyperspectral target detection. MSP transforms the feature space of data to maximize the separation between target and background signals. Moreover, it minimizes the reconstruction error of targets and preserves the topological structure of data in the projected feature space. MSP does not need to consider any distribution for target and background data. So, it can achieve accurate results in real scenarios due to avoiding unreliable assumptions. The proposed MSP detector is compared to several popular detectors and the experiments on a synthetic data and two real hyperspectral images indicate the superior ability of it in target detection.

  11. Surface-Engineered Multifunctional Eu:Gd2O3 Nanoplates for Targeted and pH-Responsive Drug Delivery and Imaging Applications.

    PubMed

    Saha, Arindam; Mohanta, Subas Chandra; Deka, Kashmiri; Deb, Pritam; Devi, Parukuttyamma Sujatha

    2017-02-01

    In this paper, we report the synthesis of surface-engineered multifunctional Eu:Gd 2 O 3 triangular nanoplates with small size and uniform shape via a high-temperature solvothermal technique. Surface engineering has been performed by a one-step polyacrylate coating, followed by controlled conjugation chemistry. This creates the desired number of surface functional groups that can be used to attach folic acid as a targeting ligand on the nanoparticle surface. To specifically deliver the drug molecules in the nucleus, the folate density on the nanoparticle surface has been kept low. We have also modified the drug molecules with terminal double bond and ester linkage for the easy conjugation of nanoparticles. The nanoparticle surface was further modified with free thiols to specifically attach the modified drug molecules with a pH-responsive feature. High drug loading has been encountered for both hydrophilic drug daunorubicin (∼69% loading) and hydrophobic drug curcumin (∼75% loading) with excellent pH-responsive drug release. These nanoparticles have also been used as imaging probes in fluorescence imaging. Some preliminary experiments to evaluate their application in magnetic resonance imaging have also been explored. A detailed fluorescence imaging study has confirmed the efficient delivery of drugs to the nuclei of cancer cells with a high cytotoxic effect. Synthesized surface-engineered nanomaterials having small hydrodynamic size, excellent colloidal stability, and high drug-loading capacity, along with targeted and pH-responsive delivery of dual drugs to the cancer cells, will be potential nanobiomaterials for various biomedical applications.

  12. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the

  13. Remarkable response with pembrolizumab plus albumin-bound paclitaxel in 2 cases of HER2-positive metastatic breast cancer who have failed to multi-anti-HER2 targeted therapy.

    PubMed

    Li, Bian; Tao, Wang; Shao-Hua, Zhang; Ze-Rui, Qu; Fu-Quan, Jin; Fan, Li; Ze-Fei, Jiang

    2018-04-03

    In clinical practice, one subgroup patients of breast cancer might have developed resistance to multi-anti-HER2 targeted drugs(trastuzumab, lapatinib and/or T-DM1) and can not benefit from the anti-HER2 targeted therapy continuously. We attempt to change the next therapic way for these patients. Two patients with metastatic breast cancer who have failed to multi-anti-HER2 targeted therapy were treated with pembrolizumab (2 mg/Kg, day1) plus albumin-bound paclitaxel (125 mg/m 2 , day1,8) every 3 weeks. CT evaluation and HER2 ECD test were performed every 2 cycles. Both of the two patients achieved remarkable response with Partial Remission (PR), meanwhile serum HER2 ECD levels (the upper normal limit is 15 ng/ml) showed a remarkable decreases(compared to the base line decreases 75% and 60% respectively). The results indicate that regimen of pembrolizumab combination with albumin-bound paclitaxel might produce response in patients with HER2-positive metastatic breast cancer who have failed to multi-anti-HER2 targeted therapy.

  14. pH-responsive nanoparticle assembly from peptide amphiphiles for tumor targeting drug delivery.

    PubMed

    Chang, Cong; Liang, Peiqing; Chen, Linlin; Liu, Junfeng; Chen, Shihong; Zheng, Guohua; Quan, Changyun

    2017-09-01

    In this paper, the peptide amphiphiles (PA) which consists of RGDSEEEEEEEEEEK as pH-sensitive segment and stearic acid as hydrophobic segment named RGDS-E 10 -Lys(C 18 ) was successfully synthesized. TEM images showed that uniformly dispersed nanoparticles could be formed by PA molecules in pH 7.4 medium, however, disintegrated in pH 5.0 medium. Circular dichroism (CD) spectrum indicated that polypeptide adopted a random-coil conformation in neutral medium (pH 7.4). The CD signal was significantly attenuate for decreased solubility of PA in medium with pH 5.0. As expected, the prepared RGDS-E 10 -Lys(C 18 ) assembly showed high pH-sensitive property which demonstrated a much more rapid drug release from micelles in tumor tissue (acidic environment) than in physiological environment (neutral environment). After DOX-loaded micelles incubated with tumor cells, the cytotoxicity of the micelles against Hela cells was increased obviously, indicating the great potential of micelles developed here as promising vehicle for targeted pH-responsive drug delivery.

  15. Drinking Water Enforcement Response Policy and Enforcement Targeting Tool

    EPA Pesticide Factsheets

    This document contains a letter from Cynthia Giles to Regional Administrators about drinking water enforcement response policy with an attached document on Proposed Revision to Enforcement Response Policy for the PWSS Program and Enforcement Tool

  16. Effect of humoral immunity on HIV-1 dynamics with virus-to-target and infected-to-target infections

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2016-08-01

    We consider an HIV-1 dynamics model by incorporating (i) two routes of infection via, respectively, binding of a virus to a receptor on the surface of a target cell to start genetic reactions (virus-to-target infection), and the direct transmission from infected cells to uninfected cells through the concept of virological synapse in vivo (infected-to-target infection); (ii) two types of distributed-time delays to describe the time between the virus or infected cell contacts an uninfected CD4+ T cell and the emission of new active viruses; (iii) humoral immune response, where the HIV-1 particles are attacked by the antibodies that are produced from the B lymphocytes. The existence and stability of all steady states are completely established by two bifurcation parameters, R 0 (the basic reproduction number) and R 1 (the viral reproduction number at the chronic-infection steady state without humoral immune response). By constructing Lyapunov functionals and using LaSalle's invariance principle, we have proven that, if R 0 ≤ 1 , then the infection-free steady state is globally asymptotically stable, if R 1 ≤ 1 < R 0 , then the chronic-infection steady state without humoral immune response is globally asymptotically stable, and if R 1 > 1 , then the chronic-infection steady state with humoral immune response is globally asymptotically stable. We have performed numerical simulations to confirm our theoretical results.

  17. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  18. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    PubMed Central

    Fogg, Mark; Murphy, John R.; Lorch, Jochen; Posner, Marshall; Wang, Fred

    2013-01-01

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. PMID:23601786

  19. Multifunctional particles for melanoma-targeted drug delivery.

    PubMed

    Wadajkar, Aniket S; Bhavsar, Zarna; Ko, Cheng-Yu; Koppolu, Bhanuprasanth; Cui, Weina; Tang, Liping; Nguyen, Kytai T

    2012-08-01

    New magnetic-based core-shell particles (MBCSPs) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSPs consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSPs were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the α(5)β(3) receptors of melanoma cells. MBCSPs consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSPs have an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 μg ml(-1). Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSPs were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in the presence of a magnet. Results indicate great potential of MBCSPs as a platform technology to target, treat and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy.

    PubMed

    Zhang, Xin; Yan, Qi; Mulatihan, Di Naer; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-06-22

    The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.

  1. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Yan, Qi; Naer Mulatihan, Di; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-06-01

    The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.

  2. Bounded Empathy: Neural Responses to Outgroup Targets’ (Mis)fortunes

    PubMed Central

    Cikara, Mina; Fiske, Susan T.

    2013-01-01

    The current study investigates whether mere stereotypes are sufficient to modulate empathic responses to other people’s (mis)fortunes, how these modulations manifest in the brain, and whether affective and neural responses relate to endorsing harm against different outgroup targets. Participants feel least bad when misfortunes befall envied targets, and worst when misfortunes befall pitied targets, as compared to ingroup targets. Participants are also least willing to endorse harming pitied targets, despite pitied targets being outgroup members. However, those participants who exhibit increased activation in functionally-defined insula/MFG when viewing pity targets experience positive events not only report feeling worse about those events, but also more willing to harm pity targets in a tradeoff scenario. Similarly, increased activation in anatomically-defined bilateral anterior insula, in response to positive events, predicts increased willingness to harm envy targets, but decreased willingness to harm ingroup targets, above and beyond self-reported affect in response to the events. Stereotypes’ specific content, and not just outgroup membership, modulates empathic responses and related behavioral consequences including harm. PMID:21671744

  3. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage (FOD) Events

    NASA Technical Reports Server (NTRS)

    Turso, James; Lawrence, Charles; Litt, Jonathan

    2004-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  4. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage "FOD" Events

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Lawrence, Charles; Litt, Jonathan S.

    2007-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/ health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite-element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  5. Putative therapeutic targets for symptom subtypes of adult ADHD: D4 receptor agonism and COMT inhibition improve attention and response inhibition in a novel translational animal model.

    PubMed

    Tomlinson, Anneka; Grayson, Ben; Marsh, Samuel; Hayward, Andrew; Marshall, Kay M; Neill, Joanna C

    2015-04-01

    Prefrontal cortical dopamine plays an important role in cognitive control, specifically in attention and response inhibition; the core deficits in ADHD. We have previously shown that methylphenidate and atomoxetine differentially improve these deficits dependent on baseline performance. The present study extends this work to investigate the effects of putative therapeutic targets in our model. A selective dopamine D4 receptor agonist (A-412997) and the catechol-O-methyl-transferase (COMT) inhibitor; tolcapone, were investigated in the combined subtype of adult ADHD (ADHD-C). Adult female rats were trained to criterion in the 5C-CPT (5-Choice Continuous Performance Task) and then separated into subgroups according to baseline levels of sustained attention, vigilance, and response disinhibition. The subgroups included: high-attentive (HA) and low-attentive with high response disinhibition (ADHD-C). The ADHD-C subgroup was selected to represent the combined subtype of adult ADHD. Effects of tolcapone (3.0, 10.0, 15.0mg/kg) and A-412997 (0.1, 0.3, 1.0µmol/kg) were tested by increasing the variable inter-trial-interval (ITI) duration in the 5C-CPT. Tolcapone (15mg/kg) significantly increased sustained attention, vigilance and response inhibition in ADHD-C animals, and impaired attention in HA animals. A-412997 (1.0µmol/kg) significantly increased vigilance and response inhibition in ADHD-C animals only, with no effect in HA animals. This is the first study to use the translational 5C-CPT to model the adult ADHD-C subtype in rats and to study new targets in this model. Both tolcapone and A-412997 increased vigilance and response inhibition in the ADHD-C subgroup. D4 and COMT are emerging as important potential therapeutic targets in adult ADHD that warrant further investigation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  6. A novel far-red fluorescent xenograft model of ovarian carcinoma for preclinical evaluation of HER2-targeted immunotoxins

    PubMed Central

    Zdobnova, Tatiana; Sokolova, Evgeniya; Stremovskiy, Oleg; Karpenko, Dmitry; Telford, William; Turchin, Ilya; Balalaeva, Irina; Deyev, Sergey

    2015-01-01

    We have created a novel fluorescent model of a human ovarian carcinoma xenograft overexpressing receptor HER2, a promising molecular target of solid tumors. The model is based on a newly generated SKOV-kat cell line stably expressing far-red fluorescent protein Katushka. Katushka is most suitable for the in vivo imaging due to an optimal combination of high brightness and emission in the “window of tissue transparency”. The relevance of the fluorescent model for the in vivo monitoring of tumor growth and response to treatment was demonstrated using a newly created HER2-targeted recombinant immunotoxin based on the 4D5scFv antibody and a fragment of the Pseudomonas exotoxin A. PMID:26436696

  7. Ca-48 targets - Home and abroad!

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Carpenter, Michael; Janssens, Robert V. F.

    2018-05-01

    Using the method of reduction/distillation, high-purity films of robust and ductile calcium metal were prepared for use as targets in nuclear physics experiments. These targets, however, are extremely air-sensitive and procedures must be developed for their handling and use without exposure to the air. In most instances, the thin 48Ca target is used on a carrier foil (backing) and a thin covering film of similar material is employed to further reduce re-oxidation. Un-backed metallic targets are rarely produced due to these concerns. In addition, the low natural abundance of the isotope 48Ca provided an increased incentive for the best efficiencies available in their preparation. Here, we describe the preparation of 48Ca targets employing a gold backing and thin gold cover for use at home, Argonne National Laboratory (ANL), as well as abroad, at Osaka University. For the overseas shipments, much care and preparation were necessary to ensure good targets and safe arrival to the experimental facilities.

  8. Adaptive optics to enhance target recognition

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2012-06-01

    Target recognition can be enhanced by reducing image degradation due to atmospheric turbulence. This is accomplished by an adaptive optic system. We discuss the forms of degradation when a target is viewed through the atmosphere1: scintillation from ground targets on a hot day in visible or infrared light; beam spreading and wavering around in time; atmospheric turbulence caused by motion of the target or by weather. In the case of targets we can use a beacon laser that reflects back from the target into a wavefront detector to measure the effects of turbulence on propagation to and from the target before imaging.1 A deformable mirror then corrects the wavefront shape of the transmitted, reflected or scattered data for enhanced imaging. Further, recognition of targets is enhanced by performing accurate distance measurements to localized parts of the target using lidar. Distance is obtained by sending a short pulse to the target and measuring the time for the pulse to return. There is inadequate time to scan the complete field of view so that the beam must be steered to regions of interest such as extremities of the image during image recognition. Distance is particularly valuable to recognize fine features in range along the target or when segmentation is required to separate a target from background or from other targets. We discuss the issues involved.

  9. Targeted Proteomics Predicts a Sustained Complete-Response after Transarterial Chemoembolization and Clinical Outcomes in Patients with Hepatocellular Carcinoma: A Prospective Cohort Study.

    PubMed

    Yu, Su Jong; Kim, Hyunsoo; Min, Hophil; Sohn, Areum; Cho, Young Youn; Yoo, Jeong-Ju; Lee, Dong Hyeon; Cho, Eun Ju; Lee, Jeong-Hoon; Gim, Jungsoo; Park, Taesung; Kim, Yoon Jun; Kim, Chung Yong; Yoon, Jung-Hwan; Kim, Youngsoo

    2017-03-03

    This study was aimed to identify blood-based biomarkers to predict a sustained complete response (CR) after transarterial chemoembolization (TACE) using targeted proteomics. Consecutive patients with HCC who had undergone TACE were prospectively enrolled (training (n = 100) and validation set (n = 80)). Serum samples were obtained before and 6 months after TACE. Treatment responses were evaluated using the modified Response Evaluation Criteria in Solid Tumors (mRECIST). In the training set, the MRM-MS assay identified five marker candidate proteins (LRG1, APCS, BCHE, C7, and FCN3). When this five-marker panel was combined with the best-performing clinical variables (tumor number, baseline PIVKA, and baseline AFP), the resulting ensemble model had the highest area under the receiver operating curve (AUROC) value in predicting a sustained CR after TACE in the training and validation sets (0.881 and 0.813, respectively). Furthermore, the ensemble model was an independent predictor of rapid progression (hazard ratio (HR), 2.889; 95% confidence interval (CI), 1.612-5.178; P value < 0.001) and overall an unfavorable survival rate (HR, 1.985; 95% CI, 1.024-3.848; P value = 0.042) in the entire population by multivariate analysis. Targeted proteomics-based ensemble model can predict clinical outcomes after TACE. Therefore, this model can aid in determining the best candidates for TACE and the need for adjuvant therapy.

  10. Vocal reporting of echolocation targets: dolphins often report before click trains end.

    PubMed

    Ridgway, S H; Elsberry, W R; Blackwood, D J; Kamolnick, T; Todd, M; Carder, D A; Chaplin, Monica; Cranford, T W

    2012-01-01

    Bottlenose dolphins (Tursiops truncatus) wore opaque suction cups over their eyes while stationing behind an acoustically opaque door. This put the dolphins in a known position and orientation. When the door opened, the dolphin clicked to detect targets. Trainers specified that Dolphin S emit a whistle if the target was a 7.5 cm water filled sphere, or a pulse burst if the target was a rock. S remained quiet if there was no target. Dolphin B whistled for the sphere. She remained quiet for rock and for no target. Thus, S had to choose between three different responses, whistle, pulse burst, or remain quiet. B had to choose between two different responses, whistle or remain quiet. S gave correct vocal responses averaging 114 ms after her last echolocation click (range 182 ms before and 219 ms after the last click). Average response for B was 21 ms before her last echolocation click (range 250 ms before and 95 ms after the last click in the train). More often than not, B began her whistle response before her echolocation train ended. The findings suggest separate neural pathways for generation of response vocalizations as opposed to echolocation clicks. © 2012 Acoustical Society of America.

  11. Resource implications of a national health target: The New Zealand experience of a Shorter Stays in Emergency Departments target.

    PubMed

    Jones, Peter; Sopina, Elizaveta; Ashton, Toni

    2014-12-01

    The Shorter Stays in Emergency Departments health target was introduced in New Zealand in 2009. District Health Boards (DHBs) are expected to meet the target with no additional funding or incentives. The costs of implementing such targets have not previously been studied. A survey of clinical/service managers in ED throughout New Zealand determined the type and cost of resources used for the target. Responses to the target were classified according to their impact in ED, the hospital and the community. Quantifiable resource changes were assigned a financial value and grouped into categories: structure (facilities/beds), staff and processes. Simple statistics were used to describe the data, and the correlation between expenditure and target performance was determined. There was 100% response to the survey. Most DHBs reported some expenditure specifically on the target, with estimated total expenditure of over NZ$52 m. The majority of expenditure occurred in ED (60.8%) and hospital (38.7%) with little spent in the community. New staff accounted for 76.5% of expenditure. Per capita expenditure in the ED was associated with improved target performance (r = 0.48, P = 0.03), whereas expenditure in the hospital was not (r = 0.08, P = 0.75). The fact that estimated expenditure on the target was over $50 million without additional funding suggests that DHBs were able to make savings through improved efficiencies and/or that funds were reallocated from other services. The majority of expenditure occurred in the ED. Most of the funds were spent on staff, and this was associated with improved target performance. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  12. A comparison between exposure-response relationships for wind turbine annoyance and annoyance due to other noise sources.

    PubMed

    Janssen, Sabine A; Vos, Henk; Eisses, Arno R; Pedersen, Eja

    2011-12-01

    Surveys have shown that noise from wind turbines is perceived as annoying by a proportion of residents living in their vicinity, apparently at much lower noise levels than those inducing annoyance due to other environmental sources. The aim of the present study was to derive the exposure-response relationship between wind turbine noise exposure in L(den) and the expected percentage annoyed residents and to compare it to previously established relationships for industrial noise and transportation noise. In addition, the influence of several individual and situational factors was assessed. On the basis of available data from two surveys in Sweden (N=341, N=754) and one survey in the Netherlands (N=725), a relationship was derived for annoyance indoors and for annoyance outdoors at the dwelling. In comparison to other sources of environmental noise, annoyance due to wind turbine noise was found at relatively low noise exposure levels. Furthermore, annoyance was lower among residents who received economical benefit from wind turbines and higher among residents for whom the wind turbine was visible from the dwelling. Age and noise sensitivity had similar effects on annoyance to those found in research on annoyance by other sources. © 2011 Acoustical Society of America

  13. Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces.

    PubMed

    Garbin, Valeria; Overvelde, Marlies; Dollet, Benjamin; de Jong, Nico; Lohse, Detlef; Versluis, Michel

    2011-10-07

    Targeted molecular imaging with ultrasound contrast agent microbubbles is achieved by incorporating targeting ligands on the bubble coating and allows for specific imaging of tissues affected by diseases. Improved understanding of the interplay between the acoustic forces acting on the bubbles during insonation with ultrasound and other forces (e.g. shear due to blood flow, binding of targeting ligands to receptors on cell membranes) can help improve the efficacy of this technique. This work focuses on the effects of the secondary acoustic radiation force, which causes bubbles to attract each other and may affect the adhesion of targeted bubbles. First, we examine the translational dynamics of ultrasound contrast agent microbubbles in contact with (but not adherent to) a semi-rigid membrane due to the secondary acoustic radiation force. An equation of motion that effectively accounts for the proximity of the membrane is developed, and the predictions of the model are compared with experimental data extracted from optical recordings at 15 million frames per second. A time-averaged model is also proposed and validated. In the second part of the paper, initial results on the translation due to the secondary acoustic radiation force of targeted, adherent bubbles are presented. Adherent bubbles are also found to move due to secondary acoustic radiation force, and a restoring force is observed that brings them back to their initial positions. For increasing magnitude of the secondary acoustic radiation force, a threshold is reached above which the adhesion of targeted microbubbles is disrupted. This points to the fact that secondary acoustic radiation forces can cause adherent bubbles to detach and alter the spatial distribution of targeted contrast agents bound to tissues during activation with ultrasound. While the details of the rupture of intermolecular bonds remain elusive, this work motivates the use of the secondary acoustic radiation force to measure the strength

  14. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  15. Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy

    PubMed Central

    Zhang, Mengyuan; He, Jianhua; Jiang, Cuiping; Zhang, Wenli; Yang, Yun; Wang, Zhiyu; Liu, Jianping

    2017-01-01

    Increasing evidence has highlighted the pivotal role that intimal macrophage (iMΦ) plays in the pathophysiology of atherosclerotic plaques, which represents an attractive target for atherosclerosis treatment. In this work, to address the insufficient specificity of conventional reconstituted high-density lipoprotein (rHDL) for iMΦ and its limited cholesterol efflux ability, we designed a hyaluronan (HA)-anchored core–shell rHDL. This nanoparticle achieved efficient iMΦ-targeted drug delivery via a multistage-targeting approach, and excellent cellular cholesterol removal. It contained a biodegradable poly (lactic-co-glycolic acid) (PLGA) core within a lipid bilayer, and apolipoprotein A-I (apoA-I) absorbing on the lipid bilayer was covalently decorated with HA. The covalent HA coating with superior stability and greater shielding was favorable for not only minimizing the liver uptake but also facilitating the accumulation of nanoparticles at leaky endothelium overexpressing CD44 receptors in atherosclerotic plaques. The ultimate iMΦ homing was achieved via apoA-I after HA coating degraded by hyaluronidase (HAase) (abundant in atherosclerotic plaque). The multistage-targeting mechanism was revealed on the established injured endothelium–macrophage co-culture dynamic system. Upon treatment with HAase in vitro, the nanoparticle HA-(C)-PLGA-rHDL exhibited a greater cholesterol efflux capacity compared with conventional rHDL (2.43-fold). Better targeting efficiency toward iMΦ and attenuated liver accumulation were further proved by results from ex vivo imaging and iMΦ-specific fluorescence localization. Ultimately, HA-(C)-PLGA-rHDL loaded with simvastatin realized the most potent anti-atherogenic efficacies in model animals over other preparations. Thus, the HAase-responsive HDL-mimetic nanoparticle was shown in this study to be a promising nanocarrier for anti-atherogenic therapy, in the light of efficient iMΦ-targeted drug delivery and excellent function of

  16. Targeting dopa-sensitive and dopa-resistant gait dysfunction in Parkinson's disease: selective responses to internal and external cues.

    PubMed

    Rochester, Lynn; Baker, Katherine; Nieuwboer, Alice; Burn, David

    2011-02-15

    Independence of certain gait characteristics from dopamine replacement therapies highlights its complex pathophysiology in Parkinson's disease (PD). We explored the effect of two different cue strategies on gait characteristics in relation to their response to dopaminergic medications. Fifty people with PD (age 69.22 ± 6.6 years) were studied. Participants walked with and without cues presented in a randomized order. Cue strategies were: (1) internal cue (attention to increase step length) and (2) external cue (auditory cue with instruction to take large step to the beat). Testing was carried out two times at home (on and off medication). Gait was measured using a Stride Analyzer (B&L Engineering). Gait outcomes were walking speed, stride length, step frequency, and coefficient of variation (CV) of stride time and double limb support duration (DLS). Walking speed, stride length, and stride time CV improved on dopaminergic medications, whereas step frequency and DLS CV did not. Internal and external cues increased stride time and walking speed (on and off dopaminergic medications). Only the external cue significantly improved stride time CV and DLS CV, whereas the internal cue had no effect (on and off dopaminergic medications). Internal and external cues selectively modify gait characteristics in relation to the type of gait disturbance and its dopa-responsiveness. Although internal (attention) and external cues target dopaminergic gait dysfunction (stride length), only external cues target stride to stride fluctuations in gait. Despite an overlap with dopaminergic pathways, external cues may effectively address nondopaminergic gait dysfunction and potentially increase mobility and reduce gait instability and falls. Copyright © 2010 Movement Disorder Society.

  17. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Dong, Zhi-Yue; Cheng, Hong; Wan, Shuang-Shuang; Chen, Wei-Hai; Zou, Mei-Zhen; Huo, Jia-Wei; Deng, He-Xiang; Zhang, Xian-Zheng

    2015-09-01

    Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects.Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects. Electronic supplementary information (ESI) available

  18. Interactive target tracking for persistent wide-area surveillance

    NASA Astrophysics Data System (ADS)

    Ersoy, Ilker; Palaniappan, Kannappan; Seetharaman, Guna S.; Rao, Raghuveer M.

    2012-06-01

    Persistent aerial surveillance is an emerging technology that can provide continuous, wide-area coverage from an aircraft-based multiple-camera system. Tracking targets in these data sets is challenging for vision algorithms due to large data (several terabytes), very low frame rate, changing viewpoint, strong parallax and other imperfections due to registration and projection. Providing an interactive system for automated target tracking also has additional challenges that require online algorithms that are seamlessly integrated with interactive visualization tools to assist the user. We developed an algorithm that overcomes these challenges and demonstrated it on data obtained from a wide-area imaging platform.

  19. Mule determines the apoptotic response to HDAC inhibitors by targeted ubiquitination and destruction of HDAC2.

    PubMed

    Zhang, Jing; Kan, Shu; Huang, Brian; Hao, Zhenyue; Mak, Tak W; Zhong, Qing

    2011-12-15

    Histone deacetylases (HDACs) are major epigenetic modulators involved in a broad spectrum of human diseases including cancers. Administration of HDAC inhibitors (HDACis) leads to growth inhibition, differentiation, and apoptosis of cancer cells. Understanding the regulatory mechanism of HDACs is imperative to harness the therapeutic potentials of HDACis. Here we show that HDACi- and DNA damage-induced apoptosis are severely compromised in mouse embryonic fibroblasts lacking a HECT domain ubiquitin ligase, Mule (Mcl-1 ubiquitin ligase E3). Mule specifically targets HDAC2 for ubiquitination and degradation. Accumulation of HDAC2 in Mule-deficient cells leads to compromised p53 acetylation as well as crippled p53 transcriptional activation, accumulation, and apoptotic response upon DNA damage and Nutlin-3 treatments. These defects in Mule-null cells can be partially reversed by HDACis and fully rescued by lowering the elevated HDAC2 in Mule-null cells to the normal levels as in wild-type cells. Taken together, our results reveal a critical regulatory mechanism of HDAC2 by Mule and suggest this pathway determines the cellular response to HDACis and DNA damage. © 2011 by Cold Spring Harbor Laboratory Press

  20. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells.

    PubMed

    Su, Jing; Chen, Feng; Cryns, Vincent L; Messersmith, Phillip B

    2011-08-10

    A novel cell-targeting, pH-sensitive polymeric carrier was employed in this study for delivery of the anticancer drug bortezomib (BTZ) to cancer cells. Our strategy is based on facile conjugation of BTZ to catechol-containing polymeric carriers that are designed to be taken up selectively by cancer cells through cell surface receptor-mediated mechanisms. The polymer used as a building block in this study was poly(ethylene glycol), which was chosen for its ability to reduce nonspecific interactions with proteins and cells. The catechol moiety was exploited for its ability to bind and release borate-containing therapeutics such as BTZ in a pH-dependent manner. In acidic environments, such as in cancer tissue or the subcellular endosome, BTZ dissociates from the polymer-bound catechol groups to liberate the free drug, which inhibits proteasome function. A cancer-cell-targeting ligand, biotin, was presented on the polymer carriers to facilitate targeted entry of drug-loaded polymer carriers into cancer cells. Our study demonstrated that the cancer-targeting drug-polymer conjugates dramatically enhanced cellular uptake, proteasome inhibition, and cytotoxicity toward breast carcinoma cells in comparison with nontargeting drug-polymer conjugates. The pH-sensitive catechol-boronate binding mechanism provides a chemoselective approach for controlling the release of BTZ in targeted cancer cells, establishing a concept that may be applied in the future toward other boronic acid-containing therapeutics to treat a broad range of diseases. © 2011 American Chemical Society

  1. Cytokine-targeting biologics for allergic diseases.

    PubMed

    Lawrence, Monica G; Steinke, John W; Borish, Larry

    2018-04-01

    Asthma and allergic diseases continue to increase in prevalence, creating a financial burden on the health care system and affecting the quality of life for those who have these diseases. Many intrinsic and extrinsic factors are involved in the initiation and maintenance of the allergic response. Cytokines are proteins with growth, differentiation, and activation functions that regulate and direct the nature of immune responses. clinicaltrials.gov and PubMed. Relevant clinical trials and recent basic science studies were chosen for discussion. Many cytokines have been implicated in the development and perpetuation of the allergic response. Biologics have been and are continuing to be developed that target these molecules for use in patients with asthma and atopic dermatitis where standard treatment options fail. The current state of cytokine-targeting therapies is discussed. This review focused on cytokines involved in the allergic response with an emphasis on those for which therapies are being or have been developed. Copyright © 2018 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. pH-sensitive oncolytic adenovirus hybrid targeting acidic tumor microenvironment and angiogenesis

    PubMed Central

    Choi, Joung-Woo; Jung, Soo-Jung; Kasala, Dayananda; Hwang, June Kyu; Hu, Jun; Bae, You Han; Yun, Chae-Ok

    2015-01-01

    Although oncolytic adenoviruses (Ads) are an attractive option for cancer gene therapy, the intravenous administration of naked Ad still encounters unfavorable host responses, non-specific interactions, and heterogeneity in targeted cancer cells. To overcome these obstacles and achieve specific targeting of the tumor microenvironment, Ad was coated with the pH-sensitive block copolymer, methoxy poly(ethylene glycol)-b-poly(l-histidine-co-l-phenylalanine) (PEGbPHF). The physicochemical properties of the generated nanocomplex, Ad/PEGbPHF, were assessed. At pH 6.4, GFP-expressing Ad/PEGbPHF induced significantly higher GFP expression than naked Ad in both coxsackie and adenovirus receptor (CAR)-positive and -negative cells. To assess the therapeutic efficacy of the Ad/PEGbPHF complex platform, an oncolytic Ad expressing VEGF promoter-targeting transcriptional repressor (KOX) was used to form complexes. At pH 6.4, KOX/PEGbPHF significantly suppressed VEGF gene expression, cancer cell migration, vessel sprouting, and cancer cell killing effect compared to naked KOX or KOX/PEGbPHF at pH 7.4, demonstrating that KOX/PEGbPHF can overcome the lack of CAR that is frequently observed in tumor tissues. The antitumor activity of KOX/PEGbPHF systemically administered to a tumor xenograft model was significantly higher than that of naked KOX. Furthermore, KOX/PEGbPHF showed lower hepatic toxicity and did not induce an innate immune response against Ad. Altogether, these results demonstrate that pH-sensitive polymer-coated Ad complex significantly increases net positive charge upon exposure to hypoxic tumor microenvironment, allowing passive targeting to the tumor tissue. It may offer superior potential for systemic therapy, due to its improved tumor selectivity, increased therapeutic efficacy, and lower toxicity compared to naked KOX. PMID:25575865

  3. Optimizing targeted vaccination across cyber-physical networks: an empirically based mathematical simulation study.

    PubMed

    Mones, Enys; Stopczynski, Arkadiusz; Pentland, Alex 'Sandy'; Hupert, Nathaniel; Lehmann, Sune

    2018-01-01

    Targeted vaccination, whether to minimize the forward transmission of infectious diseases or their clinical impact, is one of the 'holy grails' of modern infectious disease outbreak response, yet it is difficult to achieve in practice due to the challenge of identifying optimal targets in real time. If interruption of disease transmission is the goal, targeting requires knowledge of underlying person-to-person contact networks. Digital communication networks may reflect not only virtual but also physical interactions that could result in disease transmission, but the precise overlap between these cyber and physical networks has never been empirically explored in real-life settings. Here, we study the digital communication activity of more than 500 individuals along with their person-to-person contacts at a 5-min temporal resolution. We then simulate different disease transmission scenarios on the person-to-person physical contact network to determine whether cyber communication networks can be harnessed to advance the goal of targeted vaccination for a disease spreading on the network of physical proximity. We show that individuals selected on the basis of their closeness centrality within cyber networks (what we call 'cyber-directed vaccination') can enhance vaccination campaigns against diseases with short-range (but not full-range) modes of transmission. © 2018 The Author(s).

  4. Glutamate and Its Receptors as Therapeutic Targets for Migraine.

    PubMed

    Hoffmann, Jan; Charles, Andrew

    2018-04-01

    There is substantial evidence indicating a role for glutamate in migraine. Levels of glutamate are higher in the brain and possibly also in the peripheral circulation in migraine patients, particularly during attacks. Altered blood levels of kynurenines, endogenous modulators of glutamate receptors, have been reported in migraine patients. Population genetic studies implicate genes that are involved with glutamate signaling in migraine, and gene mutations responsible for familial hemiplegic migraine and other familial migraine syndromes may influence glutamate signaling. Animal studies indicate that glutamate plays a key role in pain transmission, central sensitization, and cortical spreading depression. Multiple therapies that target glutamate receptors including magnesium, topiramate, memantine, and ketamine have been reported to have efficacy in the treatment of migraine, although with the exception of topiramate, the evidence for the efficacy of these therapies is not strong. Also, because all of these therapies have other mechanisms of action, it is not possible to conclude that the efficacy of these drugs is entirely due to their effects on glutamate receptors. Further studies are needed to more clearly delineate the possible roles of glutamate and its specific receptor subtypes in migraine and to identify new ways of targeting glutamate for migraine therapy.

  5. Gene therapy to target ER stress in brain diseases.

    PubMed

    Valenzuela, Vicente; Martínez, Gabriela; Duran-Aniotz, Claudia; Hetz, Claudio

    2016-10-01

    Gene therapy based on the use of Adeno-associated viruses (AAVs) is emerging as a safe and stable strategy to target molecular pathways involved in a variety of brain diseases. Endoplasmic reticulum (ER) stress is proposed as a transversal feature of most animal models and clinical samples from patients affected with neurodegenerative diseases. Manipulation of the unfolded protein response (UPR), a major homeostatic reaction under ER stress conditions, had proved beneficial in diverse models of neurodegeneration. Although increasing number of drugs are available to target ER stress, the use of small molecules to treat chronic brain diseases is challenging because of poor blood brain barrier permeability and undesirable side effects due to the role of the UPR in the physiology of peripheral organs. Gene therapy is currently considered a possible future alternative to circumvent these problems by the delivery of therapeutic agents to selective regions and cell types of the nervous system. Here we discuss current efforts to design gene therapy strategies to alleviate ER stress on a disease context. This article is part of a Special Issue entitled SI:ER stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin.

    PubMed

    Nag, Ronita; Maity, Manas Kanti; Dasgupta, Maitrayee

    2005-11-01

    The ABA responsive ABI3 and the auxin responsive ARF family of transcription factors bind the CATGCATG (Sph) and TGTCTC core motifs in ABA and auxin response elements (ABRE and AuxRE), respectively. Several evidences indicate ABI3s to act downstream to auxin too. Because DNA binding domain of ABI3s shows significant overlap with ARFs we enquired whether auxin responsiveness through ABI3s could be mediated by their binding to canonical AuxREs. Investigations were undertaken through in vitro gel mobility shift assays (GMSA) using the DNA binding domain B3 of PvAlf (Phaseolus vulgaris ABI3 like factor) and upstream regions of auxin responsive gene GH3 (-267 to -141) and ABA responsive gene Em (-316 to -146) harboring AuxRE and ABRE, respectively. We demonstrate that B3 domain of PvAlf could bind AuxRE only when B3 was associated with its flanking domain B2 (B2B3). Such strict requirement of B2 domain was not observed with ABRE, where B3 could bind with or without being associated with B2. This dual specificity in DNA binding of ABI3s was also demonstrated with nuclear extracts of cultured cells of Arachis hypogea. Supershift analysis of ABRE and AuxRE bound nuclear proteins with antibodies raised against B2B3 domains of PvAlf revealed that ABI3 associated complexes were detectable in association with both cis elements. Competition GMSA confirmed the same complexes to bind ABRE and AuxRE. This dual specificity of ABI3 like factors in DNA binding targeted to natural promoters responsive to ABA and auxin suggests them to have a potential role in conferring crosstalk between these two phytohormones.

  7. Targeted eco-pharmacovigilance for ketoprofen in the environment: Need, strategy and challenge.

    PubMed

    Wang, Jun; Zhao, Shu-Qi; Zhang, Meng-Ya; He, Bing-Shu

    2018-03-01

    Implementing "targeted" eco-pharmacovigilance(EPV) which focuses on individual or specific pharmaceuticals on a prioritised basis is a feasible, economical and customized approach to reduce the environmental concentrations and risks of pharmaceuticals. Non-steroidal anti-inflammatory drugs(NSAIDs) remaining in environment are a kind of priority hazard substances, due to a notable case that diclofenac residues caused the loss of more than 99% of vultures across the Indian sub-continent. Ketoprofen, as another widely used NSAID with comparable or even higher global consumption than diclofenac, in the environment has been shown to present a potential risk to non-target terrestrial and aquatic species. Based on the review of 85 articles reporting the analyses of ketoprofen residues in environment since 2010, we found that this NSAID frequently present in various environmental compartments around the world. Therefore, it is urgent to implement EPV targeting ketoprofen pollution. Here, we provide some recommendations for implementing the targeted EPV for ketoprofen, including: Closely monitoring ketoprofen in the natural environment; Reducing the residues of ketoprofen through source control; Encouraging urine source separation and treatment; Limiting the application of veterinary ketoprofen; Designing and constituting a framework system of targeted EPV. But some challenges, such as ambiguity in the accountability of the main bodies responsible for continued monitoring of ketoprofen residues, the lack of optimized urine source separation scenarios and procedure, the need for detailed design and application schemes of the framework system of targeted EPV, etc. should be addressed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. External calibration of polarimetric radar images using distributed targets

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Nghiem, S. V.; Kwok, R.

    1992-01-01

    A new technique is presented for calibrating polarimetric synthetic aperture radar (SAR) images using only the responses from natural distributed targets. The model for polarimetric radars is assumed to be X = cRST where X is the measured scattering matrix corresponding to the target scattering matrix S distorted by the system matrices T and R (in general T does not equal R(sup t)). To allow for the polarimetric calibration using only distributed targets and corner reflectors, van Zyl assumed a reciprocal polarimetric radar model with T = R(sup t); when applied for JPL SAR data, a heuristic symmetrization procedure is used by POLCAL to compensate the phase difference between the measured HV and VH responses and then take the average of both. This heuristic approach causes some non-removable cross-polarization responses for corner reflectors, which can be avoided by a rigorous symmetrization method based on reciprocity. After the radar is made reciprocal, a new algorithm based on the responses from distributed targets with reflection symmetry is developed to estimate the cross-talk parameters. The new algorithm never experiences problems in convergence and is also found to converge faster than the existing routines implemented for POLCAL. When the new technique is implemented for the JPL polarimetric data, symmetrization and cross-talk removal are performed on a line-by-line (azimuth) basis. After the cross-talks are removed from the entire image, phase and amplitude calibrations are carried out by selecting distributed targets either with azimuthal symmetry along the looking direction or with some well-known volume and surface scattering mechanisms to estimate the relative phases and amplitude responses of the horizontal and vertical channels.

  9. Assessing the impact of Benzo[a]pyrene on Marine Mussels: Application of a novel targeted low density microarray complementing classical biomarker responses

    PubMed Central

    Sforzini, Susanna; Arlt, Volker M.; Barranger, Audrey; Dallas, Lorna J.; Oliveri, Caterina; Aminot, Yann; Pacchioni, Beniamina; Millino, Caterina; Lanfranchi, Gerolamo; Readman, James W.; Moore, Michael N.; Viarengo, Aldo; Jha, Awadhesh N.

    2017-01-01

    Despite the increasing use of mussels in environmental monitoring and ecotoxicological studies, their genomes and gene functions have not been thoroughly explored. Several cDNA microarrays were recently proposed for Mytilus spp., but putatively identified partial transcripts have rendered the generation of robust transcriptional responses difficult in terms of pathway identification. We developed a new low density oligonucleotide microarray with 465 probes covering the same number of genes. Target genes were selected to cover most of the well-known biological processes in the stress response documented over the last decade in bivalve species at the cellular and tissue levels. Our new ‘STressREsponse Microarray’ (STREM) platform consists of eight sub-arrays with three replicates for each target in each sub-array. To assess the potential use of the new array, we tested the effect of the ubiquitous environmental pollutant benzo[a]pyrene (B[a]P) at 5, 50, and 100 μg/L on two target tissues, the gills and digestive gland, of Mytilus galloprovincialis exposed invivo for three days. Bioaccumulation of B[a]P was also determined demonstrating exposure in both tissues. In addition to the well-known effects of B[a]P on DNA metabolism and oxidative stress, the new array data provided clues about the implication of other biological processes, such as cytoskeleton, immune response, adhesion to substrate, and mitochondrial activities. Transcriptional data were confirmed using qRT-PCR. We further investigated cellular functions and possible alterations related to biological processes highlighted by the microarray data using oxidative stress biomarkers (Lipofuscin content) and the assessment of genotoxicity. DNA damage, as measured by the alkaline comet assay, increased as a function of dose.DNA adducts measurements using 32P-postlabeling method also showed the presence of bulky DNA adducts (i.e. dG-N2-BPDE). Lipofiscin content increased significantly in B[a]P exposed mussels

  10. Multi-Agent Cooperative Target Search

    PubMed Central

    Hu, Jinwen; Xie, Lihua; Xu, Jun; Xu, Zhao

    2014-01-01

    This paper addresses a vision-based cooperative search for multiple mobile ground targets by a group of unmanned aerial vehicles (UAVs) with limited sensing and communication capabilities. The airborne camera on each UAV has a limited field of view and its target discriminability varies as a function of altitude. First, by dividing the whole surveillance region into cells, a probability map can be formed for each UAV indicating the probability of target existence within each cell. Then, we propose a distributed probability map updating model which includes the fusion of measurement information, information sharing among neighboring agents, information decay and transmission due to environmental changes such as the target movement. Furthermore, we formulate the target search problem as a multi-agent cooperative coverage control problem by optimizing the collective coverage area and the detection performance. The proposed map updating model and the cooperative control scheme are distributed, i.e., assuming that each agent only communicates with its neighbors within its communication range. Finally, the effectiveness of the proposed algorithms is illustrated by simulation. PMID:24865884

  11. Phage protein-targeted cancer nanomedicines

    PubMed Central

    Petrenko, V.A.; Jayanna, P.K.

    2015-01-01

    Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review. PMID:24269681

  12. Design and evaluation of dual CD44 receptor and folate receptor-targeting double-smart pH-response multifunctional nanocarrier

    NASA Astrophysics Data System (ADS)

    Chen, Daquan; Song, Xiaoyan; Wang, Kaili; Guo, Chunjing; Yu, Yueming; Fan, Huaying; Zhao, Feng

    2017-12-01

    In this article, in order to enhance the bioavailiability and tumor targeting of curcumin (Cur), the oligosaccharides of hyaluronan conjugates, folic acid-oligosaccharides of hyaluronan-acetal-menthone 1,2-glycerol ketal (FA-oHA-Ace-MGK) carried oHA as a ligand to CD44 receptor, double-pH-sensitive Ace-MGK as hydrophobic moieties, and FA as the target of folate receptor. The structure characteristics of this smart response multifunctional dual-targeting nano-sized carrier was measured by fourier-transform infrared (FT-IR) and nuclear magnetic resonance (1H-NMR). Cur, an anticancer drug, was successfully loaded in FA-oHA-Ace-MGK micelles by self-assembly. The measurement results of transmission electron microscopy (TEM) presented that the Cur-loaded micelles were spherical in shape with the average size of 166.3 ± 2.12 nm and zeta potential - 30.07 mV. Much more encapsulated Cur could be released at mildly acidic environments than at pH 7.4, from the Cur-FA-oHA-Ace-MGK micelles. Cytotoxicity assay indicated that non-Cur loaded micelles mostly had no cytotoxicity to MCF-7 cells and A549 cells, and Cur-loaded micelles had significantly lower survival rate than Cur suspension in the same concentration, which proved that the drug-loaded micelles can effectively inhibit tumor cell growth. The targeting of CD44 receptors and folate receptors was proved in vitro cellular uptake assay. These results showed the promising potential of FA-oHA-Ace-MGK as an effective nano-sized carrier for anti-tumor drug delivery.

  13. The Role of High Dose Interleukin-2 in the Era of Targeted Therapy.

    PubMed

    Gills, Jessie; Parker, William P; Pate, Scott; Niu, Sida; Van Veldhuizen, Peter; Mirza, Moben; Holzbeierlein, Jeffery M; Lee, Eugene K

    2017-09-01

    We assessed survival outcomes following high dose interleukin-2 in a contemporary cohort of patients during the era of targeted agents. We retrospectively reviewed the records of patients with metastatic renal cell carcinoma treated with high dose interleukin-2 between July 2007 and September 2014. Clinicopathological data were abstracted and patient response to therapy was based on RECIST (Response Evaluation Criteria In Solid Tumors), version 1.1 criteria. The Kaplan-Meier method was used to estimate progression-free and overall survival in the entire cohort, the response to high dose interleukin-2 in regard to previous targeted agent therapy and the response to the targeted agent in relation to the response to high dose interleukin-2. We identified 92 patients, of whom 87 had documentation of a response to high dose interleukin-2. Median overall survival was 34.4 months from the initiation of high dose interleukin-2 therapy in the entire cohort. Patients who received targeted therapy before high dose interleukin-2 had overall survival (median 34.4 and 30.0 months, p = 0.88) and progression-free survival (median 1.5 and 1.7 months, p = 0.8) similar to those in patients who received no prior therapy, respectively. Additionally, patients with a complete or partial response to high dose interleukin-2 had similar outcomes for subsequent targeted agents compared to patients whose best response was stable or progressive disease (median overall survival 30.1 vs 25.4 months, p = 0.4). Our data demonstrate that patient responses to high dose interleukin-2 and to targeted agents before and after receiving high dose interleukin-2 are independent. As such, carefully selected patients should be offered high dose interleukin-2 for the possibility of a complete and durable response without the fear of limiting the treatment benefit of targeted agents. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Inhibitory control differentiates rare target search performance in children.

    PubMed

    Li, Hongting; Chan, John S Y; Cheung, Sui-Yin; Yan, Jin H

    2012-02-01

    Age-related differences in rare-target search are primarily explained by the speed-accuracy trade-off, primed responses, or decision making. The goal was to examine how motor inhibition influences visual search. Children pressed a key when a rare target was detected. On no-target trials, children withheld reactions. Response time (RT), hits, misses, correct rejection, and false alarms were measured. Tapping tests assessed motor control. Older children tapped faster, were more sensitive to rare targets (higher d'), and reacted more slowly than younger ones. Girls outperformed boys in search sensitivity but not in RT. Motor speed was closely associated with hit rate and RT. Results suggest that development of inhibitory control plays a key role in visual detection. The potential implications for cognitive-motor development and individual differences are discussed.

  15. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.

    PubMed

    Warnatz, Hans-Jörg; Schmidt, Dominic; Manke, Thomas; Piccini, Ilaria; Sultan, Marc; Borodina, Tatiana; Balzereit, Daniela; Wruck, Wasco; Soldatov, Alexey; Vingron, Martin; Lehrach, Hans; Yaspo, Marie-Laure

    2011-07-01

    The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAF recognition elements, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation sequencing analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation sequencing were found highly enriched in genes showing expression changes after BACH1 knockdown, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis.

  16. Future Targets for Female Sexual Dysfunction.

    PubMed

    Farmer, Melissa; Yoon, Hana; Goldstein, Irwin

    2016-08-01

    Female sexual function reflects a dynamic interplay of central and peripheral nervous, vascular, and endocrine systems. The primary challenge in the development of novel treatments for female sexual dysfunction is the identification and targeted modulation of excitatory sexual circuits using pharmacologic treatments that facilitate the synthesis, release, and/or receptor binding of neurochemicals, peptides, and hormones that promote female sexual function. To develop an evidence-based state-of-the-art consensus report that critically integrates current knowledge of the therapeutic potential for known molecular and cellular targets to facilitate the physiologic processes underlying female sexual function. State-of-the-art review representing the opinions of international experts developed in a consensus process during a 1-year period. Expert opinion was established by grading the evidence-based medical literature, intensive internal committee discussion, public presentation, and debate. Scientific investigation is urgently needed to expand knowledge and foster development of future treatments that maintain genital tissue integrity, enhance genital physiologic responsiveness, and optimize positive subjective appraisal of internal and external sexual cues. This article critically condenses the current knowledge of therapeutic manipulation of molecular and cellular targets within biological systems responsible for female sexual physiologic function. Future treatment targets include pharmacologic modulation of emotional learning circuits, restoration of normal tactile sensation, growth factor therapy, gene therapy, stem cell-based therapies, and regenerative medicine. Concurrent use of centrally and peripherally acting therapies could optimize treatment response. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  17. Metabolomics Reveals Target and Off-Target Toxicities of a Model Organophosphate Pesticide to Roach (Rutilus rutilus): Implications for Biomonitoring

    PubMed Central

    2011-01-01

    The ability of targeted and nontargeted metabolomics to discover chronic ecotoxicological effects is largely unexplored. Fenitrothion, an organophosphate pesticide, is categorized as a “red list” pollutant, being particularly hazardous to aquatic life. It acts primarily as a cholinesterase inhibitor, but evidence suggests it can also act as an androgen receptor antagonist. Whole-organism fenitrothion-induced toxicity is well-established, but information regarding target and off-target molecular toxicities is limited. Here we study the molecular responses of male roach (Rutilus rutilus) exposed to fenitrothion, including environmentally realistic concentrations, for 28 days. Acetylcholine was assessed in brain; steroid metabolism was measured in testes and plasma; and NMR and mass spectrometry-based metabolomics were conducted on testes and liver to discover off-target toxicity. O-demethylation was confirmed as a major route of pesticide degradation. Fenitrothion significantly depleted acetylcholine, confirming its primary mode of action, and 11-ketotestosterone in plasma and cortisone in testes, showing disruption of steroid metabolism. Metabolomics revealed significant perturbations to the hepatic phosphagen system and previously undocumented effects on phenylalanine metabolism in liver and testes. On the basis of several unexpected molecular responses that were opposite to the anticipated acute toxicity, we propose that chronic pesticide exposure induces an adapting phenotype in roach, which may have considerable implications for interpreting molecular biomarker responses in field-sampled fish. PMID:21410251

  18. The Role of BPTF in Melanoma Progression and in Response to BRAF-Targeted Therapy

    PubMed Central

    Dar, Altaf A.; Nosrati, Mehdi; Bezrookove, Vladimir; de Semir, David; Majid, Shahana; Thummala, Suresh; Sun, Vera; Tong, Schuyler; Leong, Stanley P. L.; Minor, David; Billings, Paul R.; Soroceanu, Liliana; Debs, Robert; Miller, James R.; Sagebiel, Richard W.

    2015-01-01

    Background: Bromodomain PHD finger transcription factor (BPTF) plays an important role in chromatin remodeling, but its functional role in tumor progression is incompletely understood. Here we explore the oncogenic effects of BPTF in melanoma. Methods: The consequences of differential expression of BPTF were explored using shRNA-mediated knockdown in several melanoma cell lines. Immunoblotting was used to assess the expression of various proteins regulated by BPTF. The functional role of BPTF in melanoma progression was investigated using assays of colony formation, invasion, cell cycle, sensitivity to selective BRAF inhibitors, and in xenograft models of melanoma progression (n = 12 mice per group). The biomarker role of BPTF in melanoma progression was assessed using fluorescence in situ hybridization and immunohistochemical analyses. All statistical tests were two-sided. Results: shRNA-mediated BPTF silencing suppressed the proliferative capacity (by 65.5%) and metastatic potential (by 66.4%) of melanoma cells. Elevated BPTF copy number (mean ≥ 3) was observed in 28 of 77 (36.4%) melanomas. BPTF overexpression predicted poor survival in a cohort of 311 melanoma patients (distant metastasis-free survival P = .03, and disease-specific survival P = .008), and promoted resistance to BRAF inhibitors in melanoma cell lines. Metastatic melanoma tumors progressing on BRAF inhibitors contained low BPTF-expressing, apoptotic tumor cell subclones, indicating the continued presence of drug-responsive subclones within tumors demonstrating overall resistance to anti-BRAF agents. Conclusions: These studies demonstrate multiple protumorigenic functions for BPTF and identify it as a novel target for anticancer therapy. They also suggest the combination of BPTF targeting with BRAF inhibitors as a novel therapeutic strategy for melanomas with mutant BRAF. PMID:25713167

  19. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells.

    PubMed

    Singh, Amit Kumar; Sharma, Neelesh; Ghosh, Mrinmoy; Park, Yang Ho; Jeong, Dong Kee

    2017-11-02

    Recent years have seen an unpretending increase in research using dietary phytochemicals for targeting cancer and cancer stem cells (CSCs) due to the limited efficacy of conventional chemotherapy and radiotherapy and numerous associated side effects. A large number of dietary phytochemicals using traditional recommendation and experimental approaches have been demonstrated to have anti-proliferative, anti-metastatic, reactive oxygen species (ROS) inducing, anti-angiogenic, pro-apoptotic effects and efficacy in targeting cellular molecules and pathways implicated in malignancy. Researchers have shown the knack of phytochemicals in interfering with the CSCs self-renewal process. Thus, dietary phytochemicals can play a significant role in the cancer therapy owing to the plethora of targets without toxicity. In this review, we have discussed about the basic knowledge of CSCs, their identification, characterization, mechanism of self-renewal pathways (Wnt/β-catenin, Hedgehog, and Notch), features that help in the survival of CSCs and use of phytochemicals to replace chemotherapy. Applications of phytochemicals including curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, lycopene, and sulforaphane for their effect on targeting cancer and in particular CSCs along with their molecular mechanisms responsible for pharmacological action are also discussed.

  20. Striatal activity is modulated by target probability.

    PubMed

    Hon, Nicholas

    2017-06-14

    Target probability has well-known neural effects. In the brain, target probability is known to affect frontal activity, with lower probability targets producing more prefrontal activation than those that occur with higher probability. Although the effect of target probability on cortical activity is well specified, its effect on subcortical structures such as the striatum is less well understood. Here, I examined this issue and found that the striatum was highly responsive to target probability. This is consistent with its hypothesized role in the gating of salient information into higher-order task representations. The current data are interpreted in light of that fact that different components of the striatum are sensitive to different types of task-relevant information.

  1. Addressing the selective role of distinct prefrontal areas in response suppression: A study with brain tumor patients.

    PubMed

    Arbula, Sandra; Pacella, Valentina; De Pellegrin, Serena; Rossetto, Marta; Denaro, Luca; D'Avella, Domenico; Della Puppa, Alessandro; Vallesi, Antonino

    2017-06-01

    The diverging evidence for functional localization of response inhibition within the prefrontal cortex might be justified by the still unclear involvement of other intrinsically related cognitive processes like response selection and sustained attention. In this study, the main aim was to understand whether inhibitory impairments, previously found in patients with both left and right frontal lesions, could be better accounted for by assessing these potentially related cognitive processes. We tested 37 brain tumor patients with left prefrontal, right prefrontal and non-prefrontal lesions and a healthy control group on Go/No-Go and Foreperiod tasks. In both types of tasks inhibitory impairments are likely to cause false alarms, although additionally the former task requires response selection and the latter target detection abilities. Irrespective of the task context, patients with right prefrontal damage showed frequent Go and target omissions, probably due to sustained attention lapses. Left prefrontal patients, on the other hand, showed both Go and target omissions and high false alarm rates to No-Go and warning stimuli, suggesting a decisional rather than an inhibitory impairment. An exploratory whole-brain voxel-based lesion-symptom mapping analysis confirmed the association of left ventrolateral and dorsolateral prefrontal lesions with target discrimination failure, and right ventrolateral and medial prefrontal lesions with target detection failure. Results from this study show how left and right prefrontal areas, which previous research has linked to response inhibition, underlie broader cognitive control processes, particularly involved in response selection and target detection. Based on these findings, we suggest that successful inhibitory control relies on more than one functionally distinct process which, if assessed appropriately, might help us to better understand inhibitory impairments across different pathologies. Copyright © 2017 The Authors

  2. Convergence of the Mammalian Target of Rapamycin Complex 1- and Glycogen Synthase Kinase 3-β–Signaling Pathways Regulates the Innate Inflammatory Response

    PubMed Central

    Wang, Huizhi; Brown, Jonathan; Gu, Zhen; Garcia, Carlos A.; Liang, Ruqiang; Alard, Pascale; Beurel, Eléonore; Jope, Richard S.; Greenway, Terrance; Martin, Michael

    2011-01-01

    The PI3K pathway and its regulation of mammalian target of rapamycin complex 1 (mTORC1) and glycogen synthase kinase 3 (GSK3) play pivotal roles in controlling inflammation. In this article, we show that mTORC1 and GSK3-β converge and that the capacity of mTORC1 to affect the inflammatory response is due to the inactivation of GSK3-β. Inhibition of mTORC1 attenuated GSK3 phosphorylation and increased its kinase activity. Immunoprecipitation and in vitro kinase assays demonstrated that GSK3-β associated with a downstream target of mTORC1, p85S6K, and phosphorylated GSK3-β. Inhibition of S6K1 abrogated the phosphorylation of GSK3-β while increasing and decreasing the levels of IL-12 and IL-10, respectively, in LPS-stimulated monocytes. In contrast, the direct inhibition of GSK3 attenuated the capacity of S6K1 inhibition to influence the levels of IL-10 and IL-12 produced by LPS-stimulated cells. At the transcriptional level, mTORC1 inhibition reduced the DNA binding of CREB and this effect was reversed by GSK3 inhibition. As a result, mTORC1 inhibition increased the levels of NF-κB p65 associated with CREB-binding protein. Inhibition of NF-κB p65 attenuated rapamycin’s ability to influence the levels of pro- or anti-inflammatory cytokine production in monocytes stimulated with LPS. These studies identify the molecular mechanism by which mTORC1 affects GSK3 and show that mTORC1 inhibition regulates pro- and anti-inflammatory cytokine production via its capacity to inactivate GSK3. PMID:21422248

  3. Experimental and computational investigation of lateral gauge response in polycarbonate

    NASA Astrophysics Data System (ADS)

    Eliot, Jim; Harris, Ernest Joseph; Hazell, Paul; Appleby-Thomas, Gareth James; Winter, Ron; Wood, David Christopher

    2012-03-01

    The shock behaviour of polycarbonate is of interest due to its extensive use in defence applications. Interestingly, embedded lateral manganin stress gauges in polycarbonate have shown gradients behind incident shocks, suggestive of increasing shear strength. However, such gauges are commonly embedded in a central epoxy interlayer. This is an inherently invasive approach. Recently, research has suggested that in such systems interlayer/target impedance may contribute to observed gradients in lateral stress. Here, experimental T-gauge (Vishay Micro-Measurements® type J2M-SS-580SF-025) traces from polycarbonate targets are compared to computational simulations. The effects of gauge environment are investigated by looking at the response of lateral gauges with both standard "glued-joint" and a "dry joint" encapsulation, where no encapsulating medium is employed.

  4. The role of thyroid hormones in stress response of fish.

    PubMed

    Peter, M C Subhash

    2011-06-01

    Thyroxine (T(4)) and triiodothyronine (T(3)), the principal thyroid hormones (THs) secreted from the hypothalamic-pituitary-thyroid (HPT) axis, produce a plethora of physiologic actions in fish. The diverse actions of THs in fishes are primarily due to the sensitivity of thyroid axis to many physical, chemical and biological factors of both intrinsic and extrinsic origins. The regulation of THs homeostasis becomes more complex due to extrathyroidal deiodination pathways by which the delivery of biologically active T(3) to target cells has been controlled. As primary stress hormones and the end products of hypothalamic-pituitary-interrenal (HPI) and brain-sympathetic-chromaffin (BSC) axes, cortisol and adrenaline exert its actions on its target tissues where it promote and integrate osmotic and metabolic competence. Despite possessing specific osmoregulatory and metabolic actions at cellular and whole-body levels, THs may fine-tune these processes in accordance with the actions of hormones like cortisol and adrenaline. Evidences are presented that THs can modify the pattern and magnitude of stress response in fishes as it modifies either its own actions or the actions of stress hormones. In addition, multiple lines of evidence indicate that hypothalamic and pituitary hormones of thyroid and interrenal axes can interact with each other which in turn may regulate THs/cortisol-mediated actions. Even though it is hard to define these interactions, the magnitude of stress response in fish has been shown to be modified by the changes in the status of THs, pointing to its functional relationship with endocrine stress axes particularly with the interrenal axis. The fine-tuned mechanism that operates in fish during stressor-challenge drives the THs to play both fundamental and modulator roles in stress response by controlling osmoregulation and metabolic regulation. A major role of THs in stress response is thus evident in fish. Copyright © 2011 Elsevier Inc. All rights

  5. Target Acquired: Progress and Promise of Targeted Therapeutics in the Treatment of Prostate Cancer.

    PubMed

    Stuchbery, Ryan; Kurganovs, Natalie J; McCoy, Patrick J; Nelson, Colleen C; Hayes, Vanessa M; Corcoran, Niall M; Hovens, Christopher M

    2015-01-01

    Cancer is fundamentally a genomic disease caused by mutations or rearrangements in the DNA or epigenetic machinery of a patient. An emerging field in cancer treatment targets key aberrations arising from the mutational landscape of an individual patient's disease rather than employing a cancer-wide cytotoxic therapy approach. In prostate cancer in particular, where there is an observed variation in response to standard treatments between patients with disease of a similar pathological stage and grade, mutationdirected treatment may grow to be a viable tool for clinicians to tailor more effective treatments. This review will describe a number of mutations across multiple forms of cancer that have been successfully antagonised by targeted therapeutics including their identification, the development of targeted compounds to combat them and the development of resistance to these therapies. This review will continue to examine these same mutations in the treatment and management of prostate cancer; the prevalence of targetable mutations in prostate cancer, recent clinical trials of targeted-agents and the potential or limitations for their use.

  6. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy.

    PubMed

    Mou, Quanbing; Ma, Yuan; Zhu, Xinyuan; Yan, Deyue

    2016-05-28

    Targeted drug delivery is a broadly applicable approach for cancer therapy. However, the nanocarrier-based targeted delivery system suffers from batch-to-batch variation, quality concerns and carrier-related toxicity issues. Thus, to develop a carrier-free targeted delivery system with nanoscale characteristics is very attractive. Here, a novel targeting small molecule nanodrug self-delivery system consisting of targeting ligand and chemotherapy drug was constructed, which combined the advantages of small molecules and nano-assemblies together and showed excellent targeting ability and long blood circulation time with well-defined structure, high drug loading ratio and on-demand drug release behavior. As a proof-of-concept, lactose (Lac) and doxorubicin (DOX) were chosen as the targeting ligand and chemotherapy drug, respectively. Lac and DOX were conjugated through a pH-responsive hydrazone group. For its intrinsic amphiphilic property, Lac-DOX conjugate could self-assemble into nanoparticles in water. Both in vitro and in vivo assays indicated that Lac-DOX nanoparticles exhibited enhanced anticancer activity and weak side effects. This novel active targeting nanodrug delivery system shows great potential in cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Targeting Epigenetic Mechanisms in Pain Due to Trauma and Traumatic Brain Injury (TBI)

    DTIC Science & Technology

    2015-10-01

    particularly likely to involve TBI, peripheral trauma or both. Disability due to pain and other causes is very high amongst such patients. We have no...effective approaches to reducing the likelihood of developing chronic pain after TBI or peripheral injuries, and the mechanisms supporting such pain...brain or peripheral trauma may support chronic pain. Our work to-date has established a rodent model of TBI in combination with injury to a limb as a

  8. RRR for NNN-a rapid research response for the Neglected Tropical Disease NGDO Network: a novel framework to challenges faced by the global programs targeting neglected tropical diseases.

    PubMed

    Toledo, Chelsea E; Jacobson, Julie; Wainwright, Emily C; Ottesen, Eric A; Lammie, Patrick J

    2016-03-01

    While global programs targeting the control or elimination of five of the neglected tropical diseases (NTDs)-lymphatic filariasis, onchocerciasis, soil-transmitted helminthiasis, schistosomiasis and trachoma-are well underway, they still face many operational challenges. Because of the urgency of 2020 program targets, the Bill & Melinda Gates Foundation and the U.S. Agency for International Development devised a novel rapid research response (RRR) framework to engage national programs, researchers, implementers and WHO in a Coalition for Operational Research on NTDs. After 2 years, this effort has succeeded as an important basis for the research response to programmatic challenges facing NTD programs. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  9. Targeted Delivery of siRNA with pH-Responsive Hybrid Gold Nanostars for Cancer Treatment

    PubMed Central

    Zhu, Hongyan; Liu, Wanwan; Cheng, Ziting; Yao, Ke; Yang, Yu; Xu, Bohui

    2017-01-01

    In this work, we report the engineering of gold nanostars (GNS) to deliver small interfering RNA (siRNA) into HepG2 cells. The ligand DG-PEG-Lipoic acid (LA)-Lys-9R (hydrazone) was designed to functionalize GNS, and create the nanoparticles named as 9R/DG-GNS (hydrazone). In the ligand, 2-deoxyglucose (DG) is the targeting molecule, polyethylene glycol (PEG) helps to improve the dispersity and biocompatibility, 9-poly-d-arginine (9R) is employed to provide a positive surface charge and adsorb negative siRNA, and hydrazone bonds are pH-responsive and can avoid receptor-mediated endosomal recycling. Compared to GNS alone, 9R/DG-GNS (hydrazone) showed superior transfection efficiency. The expressions of cyclooxygenase-2 (COX-2) in HepG2 and SGC7901 cells were significantly suppressed by siRNA/9R/DG-GNS (hydrazone) complex. Notably, 9R/DG-GNS (hydrazone) possessed low cytotoxicity even at high concentrations in both normal cells and tumor cells. The combination treatment of siRNA/9R/DG-GNS (hydrazone) complex inhibited the cell growth rate by more than 75%. These results verified that the pH-responsive GNS complex is a promising siRNA delivery system for cancer therapy, and it is anticipated that near-infrared absorbing GNS with good photothermal conversion efficiency can be potentially used for photothermal therapy of tumors. PMID:28937584

  10. The innate immune response in fetal lung mesenchymal cells targets VEGFR2 expression and activity.

    PubMed

    Medal, Rachel M; Im, Amanda M; Yamamoto, Yasutoshi; Lakhdari, Omar; Blackwell, Timothy S; Hoffman, Hal M; Sahoo, Debashis; Prince, Lawrence S

    2017-06-01

    In preterm infants, soluble inflammatory mediators target lung mesenchymal cells, disrupting airway and alveolar morphogenesis. However, how mesenchymal cells respond directly to microbial stimuli remains poorly characterized. Our objective was to measure the genome-wide innate immune response in fetal lung mesenchymal cells exposed to the bacterial endotoxin lipopolysaccharide (LPS). With the use of Affymetrix MoGene 1.0st arrays, we showed that LPS induced expression of unique innate immune transcripts heavily weighted toward CC and CXC family chemokines. The transcriptional response was different between cells from E11, E15, and E18 mouse lungs. In all cells tested, LPS inhibited expression of a small core group of genes including the VEGF receptor Vegfr2 Although best characterized in vascular endothelial populations, we demonstrated here that fetal mouse lung mesenchymal cells express Vegfr2 and respond to VEGF-A stimulation. In mesenchymal cells, VEGF-A increased cell migration, activated the ERK/AKT pathway, and promoted FOXO3A nuclear exclusion. With the use of an experimental coculture model of epithelial-mesenchymal interactions, we also showed that VEGFR2 inhibition prevented formation of three-dimensional structures. Both LPS and tyrosine kinase inhibition reduced three-dimensional structure formation. Our data suggest a novel mechanism for inflammation-mediated defects in lung development involving reduced VEGF signaling in lung mesenchyme. Copyright © 2017 the American Physiological Society.

  11. Shift in tuna catches due to ocean warming.

    PubMed

    Monllor-Hurtado, Alberto; Pennino, Maria Grazia; Sanchez-Lizaso, José Luis

    2017-01-01

    Ocean warming is already affecting global fisheries with an increasing dominance of catches of warmer water species at higher latitudes and lower catches of tropical and subtropical species in the tropics. Tuna distributions are highly conditioned by sea temperature, for this reason and their worldwide distribution, their populations may be a good indicator of the effect of climate change on global fisheries. This study shows the shift of tuna catches in subtropical latitudes on a global scale. From 1965 to 2011, the percentage of tropical tuna in longliner catches exhibited a significantly increasing trend in a study area that included subtropical regions of the Atlantic and western Pacific Oceans and partially the Indian Ocean. This may indicate a movement of tropical tuna populations toward the poles in response to ocean warming. Such an increase in the proportion of tropical tuna in the catches does not seem to be due to a shift of the target species, since the trends in Atlantic and Indian Oceans of tropical tuna catches are decreasing. Our results indicate that as populations shift towards higher latitudes the catches of these tropical species did not increase. Thus, at least in the Atlantic and Indian Oceans, tropical tuna catches have reduced in tropical areas.

  12. Designing oral vaccines targeting intestinal dendritic cells.

    PubMed

    Devriendt, Bert; De Geest, Bruno G; Cox, Eric

    2011-04-01

    Most pathogens colonize and invade the host at mucosal surfaces, such as the lung and the intestine. To combat intestinal pathogens the induction of local adaptive immune responses is required, which is mainly achieved through oral vaccination. However, most vaccines are ineffective when given orally owing to the hostile environment in the gastrointestinal tract. The encapsulation of antigens in biodegradable microparticulate delivery systems enhances their immunogenicity; however, the uptake of these delivery systems by intestinal immune cells is rather poor. Surface decoration of the particulates with targeting ligands could increase the uptake and mediate the selective targeting of the vaccine to intestinal antigen-presenting cells, including dendritic cells. In this review, current knowledge on dendritic cell subsets is discussed, along with progress in the development of selective antigen targeting to these cells, in addition to focusing on data obtained in mice and, where possible, the pig, as a non-rodent animal model for humans. Moreover, the potential use and benefits of Fcγ receptor-mediated targeting of antigen delivery systems are highlighted. In conclusion, dendritic cell targeting ligands grafted on antigen carrier systems should preferably bind to a conserved endocytotic receptor, facilitating the design of a multispecies vaccine platform, which could elicit robust protective immune responses against enteric pathogens.

  13. Intracellular signaling by phospholipase D as a therapeutic target.

    PubMed

    Steed, P M; Chow, A H

    2001-09-01

    The pharmaceutical industry has recently focused on intracellular signaling as a means to integrate the multiple facets of complex disease states, such as inflammation, because these pathways respond to numerous extracellular signals and coordinate a collection of cell responses contributing to pathology. One critical aspect of intracellular signaling is regulation of key cell functions by lipid mediators, in particular the generation of a key mediator, phosphatidic acid (PA) via the hydrolysis of phosphatidylcholine by phospholipase D (PLD). Research in this field has intensified, due in part to the recent cloning and partial characterization of the two PLD isoforms in mammalian cells, and this work has contributed significantly to our understanding of events downstream of PA generation. It is these effector functions of PLD activity that make this pathway attractive as a therapeutic target while the biochemical properties of the PLD isozymes make them amenable to small molecule intervention. Recent studies indicate that PA, and its immediate metabolites diacylglycerol and lyso-PA, affect numerous cellular pathways including ligand-mediated secretion, cytoskeletal reorganisations, respiratory burst, prostaglandin release, cell migration, cytokine release, and mitogenesis. This review summarises the data implicating signaling via PLD in these cell functions, obtained from: (i) molecular analyses of PLD/effector interactions, (ii) correlation between PA production and cell responses, (iii) experimental manipulation of PA levels, (iv) inhibition of PLD regulators, and (v) direct inhibition of PA production. The utility of targeting PLD signaling for the treatment of acute/chronic inflammation and other indications is discussed in light of these data.

  14. Fractal properties of background noise and target signal enhancement using CSEM data

    NASA Astrophysics Data System (ADS)

    Benavides, Alfonso; Everett, Mark E.; Pierce, Carl; Nguyen, Cam

    2003-09-01

    Controlled-source electromagnetic (CSEM) spatial profiles and 2-D conductivity maps were obtained on the Brazos Valley, TX floodplain to study the fractal statistics of geological signals and effects of man-made conductive targets using Geonics EM34, EM31 and EM63. Using target-free areas, a consistent power-law power spectrum (|A(k)| ~ k ^-β) for the profiles was found with β values typical of fractional Brownian motion (fBm). This means that the spatial variation of conductivity does not correspond to Gaussian statistics, where there are spatial correlations at different scales. The presence of targets tends to flatten the power-law power spectrum (PS) at small wavenumbers. Detection and localization of targets can be achieved using short-time Fourier transform (STFT). The presence of targets is enhanced because the signal energy is spread to higher wavenumbers (small scale numbers) in the positions occupied by the targets. In the case of poor spatial sampling or small amount of data, the information available from the power spectrum is not enough to separate spatial correlations from target signatures. Advantages are gained by using the spatial correlations of the fBm in order to reject the background response, and to enhance the signals from highly conductive targets. This approach was tested for the EM31 using a pre-processing step that combines apparent conductivity readings from two perpendicular transmitter-receiver orientations at each station. The response obtained using time-domain CSEM is influence to a lesser degree by geological noise and the target response can be processed to recover target features. The homotopy method is proposed to solve the inverse problem using a set of possible target models and a dynamic library of responses used to optimize the starting model.

  15. Therapies targeting cancer stem cells: Current trends and future challenges

    PubMed Central

    Dragu, Denisa L; Necula, Laura G; Bleotu, Coralia; Diaconu, Carmen C; Chivu-Economescu, Mihaela

    2015-01-01

    Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells (CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a long-lasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of miRNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers. PMID:26516409

  16. Engineering Folate-Targeting Diselenide-containing Triblock Copolymer as a Redox-Responsive Shell-sheddable Micelle for Antitumor Therapy In Vivo.

    PubMed

    Behroozi, Farnaz; Abdkhodaie, Mohammad-Jafar; Sadeghi Abandansari, Hamid; Satarian, Leila; Molazem, Mohammad; Al-Jamal, Khuloud T; Baharvand, Hossein

    2018-06-18

    The oxidation-reduction (redox)-responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA) 2 ]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic-hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC) in an aqueous environment. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses showed that the micelles were spherical with an average diameter of 120 nm. The insoluble anticancer drug paclitaxel (PTX) was loaded into micelles, and its triggered release behavior under different redox conditions was verified. Folate-targeting micelles showed an enhanced uptake in 4T1 breast cancer cells and in vitro cytotoxicity by flow cytometry and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay, respectively. Delayed tumor growth was confirmed in the subcutaneously implanted 4T1 breast cancer in mice after intraperitoneal injection. The proposed redox-responsive copolymer offers a new type of biomaterial for drug delivery into cancer cells in vivo. On-demand drug actuation is highly desired. Redox-responsive polymeric DDSs have been shown to be able to respond and release their cargo in a selective manner when encountering a significant change in the potential difference, such as that present between cancerous and healthy tissues. This study offers an added advantage to the field of redox-responsive polymers by reporting a new type of shell-sheddable micelle based on an amphiphilic triblock co

  17. On the internal target model in a tracking task

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Baron, S.

    1981-01-01

    An optimal control model for predicting operator's dynamic responses and errors in target tracking ability is summarized. The model, which predicts asymmetry in the tracking data, is dependent on target maneuvers and trajectories. Gunners perception, decision making, control, and estimate of target positions and velocity related to crossover intervals are discussed. The model provides estimates for means, standard deviations, and variances for variables investigated and for operator estimates of future target positions and velocities.

  18. Responsivity drop due to conductance modulation in GaN metal-semiconductor-metal Schottky based UV photodetectors on Si(111)

    NASA Astrophysics Data System (ADS)

    Ravikiran, L.; Radhakrishnan, K.; Dharmarasu, N.; Agrawal, M.; Wang, Zilong; Bruno, Annalisa; Soci, Cesare; Lihuang, Tng; Kian Siong, Ang

    2016-09-01

    GaN Schottky metal-semiconductor-metal (MSM) UV photodetectors were fabricated on a 600 nm thick GaN layer, grown on 100 mm Si (111) substrate using an ammonia-MBE growth technique. In this report, the effect of device dimensions, applied bias and input power on the linearity of the GaN Schottky-based MSM photodetectors on Si substrate were investigated. Devices with larger interdigitated spacing, ‘S’ of 9.0 μm between the fingers resulted in good linearity and flat responsivity characteristics as a function of input power with an external quantum efficiency (EQE) of ˜33% at an applied bias of 15 V and an input power of 0.8 W m-2. With the decrease of ‘S’ to 3.0 μm, the EQE was found to increase to ˜97%. However, devices showed non linearity and drop in responsivity from flatness at higher input power. Moreover, the position of dropping from flatter responsivity was found to shift to lower powers with increased bias. The drop in the responsivity was attributed to the modulation of conductance in the MSM due to the trapping of electrons at the dislocations, resulting in the formation of depletion regions around them. In devices with lower ‘S’, both the image force reduction and the enhanced collection efficiency increased the photocurrent as well as the charging of the dislocations. This resulted in the increased depletion regions around the dislocations leading to the modulation of conductance and non-linearity.

  19. Ipsi- and Contralateral Motor Response Using Ultrasound-induced Neurostimulation in Deeply Anesthetized Mice

    NASA Astrophysics Data System (ADS)

    Kamimura, Hermes; Wang, Shutao; Chen, Hong; Wang, Qi; Aurup, Christian; Fan, Kathtleen; Carneiro, Antonio; Konofagou, Elisa

    Ultrasound neurostimulation has been proven capable of eliciting motor responses. However, the studies in sedated rodents presented problems with target specificity due to the use of low ultrasound frequencies (<700 kHz). Here, we show that focused ultrasound (FUS) in mega-Hz range was able to evoke motor responses in mice under deep anesthesia. Contralateral movements of the hind limbs were observed when sonications were carried out at +2 mm of Lambda and ±2 mm lateral of midline in three mice. Moreover, stimulating other regions of the somatosensory and cerebellum induced trunk and ipsilateral limb movements in all six mice.

  20. Cell signaling heterogeneity is modulated by both cell-intrinsic and -extrinsic mechanisms: An integrated approach to understanding targeted therapy.

    PubMed

    Kim, Eunjung; Kim, Jae-Young; Smith, Matthew A; Haura, Eric B; Anderson, Alexander R A

    2018-03-01

    During the last decade, our understanding of cancer cell signaling networks has significantly improved, leading to the development of various targeted therapies that have elicited profound but, unfortunately, short-lived responses. This is, in part, due to the fact that these targeted therapies ignore context and average out heterogeneity. Here, we present a mathematical framework that addresses the impact of signaling heterogeneity on targeted therapy outcomes. We employ a simplified oncogenic rat sarcoma (RAS)-driven mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway in lung cancer as an experimental model system and develop a network model of the pathway. We measure how inhibition of the pathway modulates protein phosphorylation as well as cell viability under different microenvironmental conditions. Training the model on this data using Monte Carlo simulation results in a suite of in silico cells whose relative protein activities and cell viability match experimental observation. The calibrated model predicts distributional responses to kinase inhibitors and suggests drug resistance mechanisms that can be exploited in drug combination strategies. The suggested combination strategies are validated using in vitro experimental data. The validated in silico cells are further interrogated through an unsupervised clustering analysis and then integrated into a mathematical model of tumor growth in a homogeneous and resource-limited microenvironment. We assess posttreatment heterogeneity and predict vast differences across treatments with similar efficacy, further emphasizing that heterogeneity should modulate treatment strategies. The signaling model is also integrated into a hybrid cellular automata (HCA) model of tumor growth in a spatially heterogeneous microenvironment. As a proof of concept, we simulate tumor responses to targeted therapies in a spatially segregated tissue structure containing tumor

  1. Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies

    PubMed Central

    Ersvaer, Elisabeth; Hatfield, Kimberley J.; Reikvam, Håkon; Bruserud, Øystein

    2011-01-01

    The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects. PMID:22046566

  2. Magnetic Targeting Enhances Engraftment and Functional Benefit of Iron-Labeled Cardiosphere-Derived Cells in Myocardial Infarction

    PubMed Central

    Cheng, Ke; Li, Tao-Sheng; Malliaras, Konstantinos; Davis, Darryl; Zhang, Yiqiang; Marbán, Eduardo

    2010-01-01

    Rationale The success of cardiac stem cell therapies is limited by low cell retention, due at least in part to washout via coronary veins. Objective We sought to counter the efflux of transplanted cells by rendering them magnetically-responsive and imposing an external magnetic field on the heart during and immediately after injection. Methods and Results Cardiosphere-derived cells (CDCs) were labeled with superparamagnetic microspheres (SPMs). In vitro studies revealed that cell viability and function were minimally affected by SPM labeling. SPM-labeled rat CDCs were injected intramyocardially, with and without a superimposed magnet. With magnetic targeting, cells were visibly attracted towards the magnet and accumulated around the ischemic zone. In contrast, the majority of non-targeted cells washed out immediately after injection. Fluorescence imaging revealed more retention of transplanted cells in the heart, and less migration into other organs, in the magnetically-targeted group. Quantitative PCR confirmed that magnetic targeting enhanced cell retention (at 24 hours) and engraftment (at 3 weeks) in the recipient hearts by ∼3-fold compared to non-targeted cells. Morphometric analysis revealed maximal attenuation of LV remodeling, and echocardiography showed the greatest functional improvement, in the magnetic targeting group. Histologically, more engrafted cells were evident with magnetic targeting, but there was no incremental inflammation. Conclusion Magnetic targeting enhances cell retention, engraftment and functional benefit. This novel method to improve cell therapy outcomes offers the potential for rapid translation into clinical applications. PMID:20378859

  3. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures

    PubMed Central

    Rosenfeld, Cheryl S.

    2017-01-01

    The gut microbiome consists of over 103–104 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs), heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals. PMID:28936425

  4. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    PubMed

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  5. [Lower lymphocyte response in severe cases of acute bronchiolitis due to respiratory syncytial virus].

    PubMed

    Ramos-Fernández, José Miguel; Moreno-Pérez, David; Antúnez-Fernández, Cristina; Milano-Manso, Guillermo; Cordón-Martínez, Ana María; Urda-Cardona, Antonio

    2018-06-01

    Acute bronchiolitis (AB) of the infant has a serious outcome in 6-16% of the hospital admitted cases. Its pathogenesis and evolution is related to the response of the T lymphocytes. The objective of the present study is to determine if the lower systemic lymphocytic response is related to a worse outcome of AB in hospitalised infants. Retrospective observational-analytical study of cases-controls nested in a cohort of patients admitted due to RSV-AB between the period from October 2010 to March 2015. Those with a full blood count in the first 48hours of respiratory distress were included. Infants with underlying disease, bacterial superinfection, and premature infants <32 weeks of gestation were excluded. The main dichotomous variable was PICU admission. Other variables were: gender, age, post-menstrual age, gestational and post-natal tobacco exposure, admission month, type of lactation, and days of onset of respiratory distress. Lymphocyte counts were categorised by quartiles. Bivariate analysis was performed with the main variable and then by logistic regression to analyse confounding factors. The study included 252 infants, of whom 6.6% (17) required PICU admission. The difference in mean±SD of lymphocytes for patients admitted to and not admitted to PICU was 4,044±1755 and 5,035±1786, respectively (Student-t test, P<.05). An association was found between PICU admission and lymphocyte count <3700/ml (Chi-squared, P=.019; OR: 3.2) and it was found to be maintained in the logistic regression, regardless of age and all other studied factors (Wald 4.191 P=.041, OR: 3.8). A relationship was found between lymphocytosis <3700/ml in the first days of respiratory distress and a worse outcome in previously healthy infants <12 months and gestational age greater than 32 weeks with RSV-AB. Copyright © 2017 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. A Cell-targeted Photodynamic Nanomedicine Strategy for Head & Neck Cancers

    PubMed Central

    Master, Alyssa; Malamas, Anthony; Solanki, Rachna; Clausen, Dana M.; Eiseman, Julie L.; Gupta, Anirban Sen

    2013-01-01

    Photodynamic Therapy (PDT) holds great promise for the treatment of head and neck (H&N) carcinomas where repeated loco-regional therapy often becomes necessary due to the highly aggressive and recurrent nature of the cancers. While interstitial light delivery technologies are being refined for PDT of H&N and other cancers, a parallel clinically relevant research area is the formulation of photosensitizers in nanovehicles that allow systemic administration yet preferential enhanced uptake in the tumor. This approach can render dual-selectivity of PDT, by harnessing both the drug and the light delivery within the tumor. To this end, we report on a cell-targeted nanomedicine approach for the photosensitizer silicon phthalocyanine-4 (Pc 4), by packaging it within polymeric micelles that are surface-decorated with GE11-peptides to promote enhanced cell-selective binding and receptor-mediated internalization in EGFR-overexpressing H&N cancer cells. Using fluorescence spectroscopy and confocal microscopy, we demonstrate in vitro that the EGFR-targeted Pc 4-nanoformulation undergoes faster and higher uptake in EGFR-overexpressing H&N SCC-15 cells. We further demonstrate that this enhanced Pc 4 uptake results in significant cell-killing and drastically reduced post-PDT clonogenicity. Building on this in vitro data, we demonstrate that the EGFR-targeted Pc 4-nanoformulation results in significant intra-tumoral drug uptake and subsequent enhanced PDT response, in vivo, in SCC-15 xenografts in mice. Altogether our results show significant promise towards a cell-targeted photodynamic nanomedicine for effective treatment of H&N carcinomas. PMID:23531079

  7. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao.

    PubMed

    Fister, Andrew S; Landherr, Lena; Maximova, Siela N; Guiltinan, Mark J

    2018-01-01

    Theobroma cacao , the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (TcNPR3) gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA) in vitro , we used Agrobacterium to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of TcNPR3 copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen Phytophthora tropicalis and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via Agrobacterium -mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level.

  8. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao

    PubMed Central

    Fister, Andrew S.; Landherr, Lena; Maximova, Siela N.; Guiltinan, Mark J.

    2018-01-01

    Theobroma cacao, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (TcNPR3) gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA) in vitro, we used Agrobacterium to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of TcNPR3 copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen Phytophthora tropicalis and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via Agrobacterium-mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level. PMID:29552023

  9. A new disaster victim identification management strategy targeting "near identification-threshold" cases: Experiences from the Boxing Day tsunami.

    PubMed

    Wright, Kirsty; Mundorff, Amy; Chaseling, Janet; Forrest, Alexander; Maguire, Christopher; Crane, Denis I

    2015-05-01

    The international disaster victim identification (DVI) response to the Boxing Day tsunami, led by the Royal Thai Police in Phuket, Thailand, was one of the largest and most complex in DVI history. Referred to as the Thai Tsunami Victim Identification operation, the group comprised a multi-national, multi-agency, and multi-disciplinary team. The traditional DVI approach proved successful in identifying a large number of victims quickly. However, the team struggled to identify certain victims due to incomplete or poor quality ante-mortem and post-mortem data. In response to these challenges, a new 'near-threshold' DVI management strategy was implemented to target presumptive identifications and improve operational efficiency. The strategy was implemented by the DNA Team, therefore DNA kinship matches that just failed to reach the reporting threshold of 99.9% were prioritized, however the same approach could be taken by targeting, for example, cases with partial fingerprint matches. The presumptive DNA identifications were progressively filtered through the Investigation, Dental and Fingerprint Teams to add additional information necessary to either strengthen or conclusively exclude the identification. Over a five-month period 111 victims from ten countries were identified using this targeted approach. The new identifications comprised 87 adults, 24 children and included 97 Thai locals. New data from the Fingerprint Team established nearly 60% of the total near-threshold identifications and the combined DNA/Physical method was responsible for over 30%. Implementing the new strategy, targeting near-threshold cases, had positive management implications. The process initiated additional ante-mortem information collections, and established a much-needed, distinct "end-point" for unresolved cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Culturally Responsible Research, Teacher Certification and Gifted Education Services: A Response to Persson's Target Article

    ERIC Educational Resources Information Center

    Vidergor, Hava E.

    2012-01-01

    Persson's (2012a) target article calls for a cultural sensitive research paradigm in the science of giftedness. It charts the potential threats to research validity affected by cultural bias having implications on study and practice in gifted education. The eight recommendations heading under: (1) mindset and habits; (2) research skills; and (3)…

  11. Pharmacophore based design of some multi-targeted compounds targeted against pathways of diabetic complications.

    PubMed

    Chadha, Navriti; Silakari, Om

    2017-09-01

    Diabetic complications is a complex metabolic disorder developed primarily due to prolonged hyperglycemia in the body. The complexity of the disease state as well as the unifying pathophysiology discussed in the literature reports exhibited that the use of multi-targeted agents with multiple complementary biological activities may offer promising therapy for the intervention of the disease over the single-target drugs. In the present study, novel thiazolidine-2,4-dione analogues were designed as multi-targeted agents implicated against the molecular pathways involved in diabetic complications using knowledge based as well as in-silico approaches such as pharmacophore mapping, molecular docking etc. The hit molecules were duly synthesized and biochemical estimation of these molecules against aldose reductase (ALR2), protein kinase Cβ (PKCβ) and poly (ADP-ribose) polymerase 1 (PARP-1) led to identification of compound 2 that showed good potency against PARP-1 and ALR2 enzymes. These positive results support the progress of a low cost multi-targeted agent with putative roles in diabetic complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Respiratory infections due to nontuberculous mycobacterias.

    PubMed

    Máiz Carro, Luis; Barbero Herranz, Esther; Nieto Royo, Rosa

    2018-03-09

    The most common infections caused by nontuberculous mycobacteria (NTM) are lung infections. The microorganisms causing these infections most frequently are Mycobacterium avium complex, Mycobacterium kansasii and Mycobacterium abscessus complex. Their incidence has increased in the last three decades. After identifying an NTM in the respiratory tract, clinical and radiological aspects must be considered to determine if isolations are clinically relevant. Predisposing conditions that could contribute to infection must also be investigated. Pulmonary disease due to NTM is presented in three clinical forms: a) pneumonitis due to hypersensitivity; b) fibrocavitary form; and c) nodular-bronchiectasic. The diagnosis of respiratory disease due to NTM does not make it obligatory to immediately initiate treatment. Before initiating the latter, other factors must be considered, such as age, comorbidities, life expectancy, due to the prolonged nature of treatments, with potential side effects and, in many cases, only a slight response to the treatment. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  13. Dendritic cell targeted vaccines: Recent progresses and challenges

    PubMed Central

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-01-01

    ABSTRACT Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches. PMID:26513200

  14. Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis

    PubMed Central

    Zhou, Rong; Wang, Qian; Jiang, Fangling; Cao, Xue; Sun, Mintao; Liu, Min; Wu, Zhen

    2016-01-01

    MicroRNAs (miRNAs) are 19–24 nucleotide (nt) noncoding RNAs that play important roles in abiotic stress responses in plants. High temperatures have been the subject of considerable attention due to their negative effects on plant growth and development. Heat-responsive miRNAs have been identified in some plants. However, there have been no reports on the global identification of miRNAs and their targets in tomato at high temperatures, especially at different elevated temperatures. Here, three small-RNA libraries and three degradome libraries were constructed from the leaves of the heat-tolerant tomato at normal, moderately and acutely elevated temperatures (26/18 °C, 33/33 °C and 40/40 °C, respectively). Following high-throughput sequencing, 662 conserved and 97 novel miRNAs were identified in total with 469 conserved and 91 novel miRNAs shared in the three small-RNA libraries. Of these miRNAs, 96 and 150 miRNAs were responsive to the moderately and acutely elevated temperature, respectively. Following degradome sequencing, 349 sequences were identified as targets of 138 conserved miRNAs, and 13 sequences were identified as targets of eight novel miRNAs. The expression levels of seven miRNAs and six target genes obtained by quantitative real-time PCR (qRT-PCR) were largely consistent with the sequencing results. This study enriches the number of heat-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in tomatoes at elevated temperatures. PMID:27653374

  15. Prenatal nicotine changes the response to postnatal chlorpyrifos: Interactions targeting serotonergic synaptic function and cognition.

    PubMed

    Slotkin, Theodore A; Skavicus, Samantha; Levin, Edward D; Seidler, Frederic J

    2015-02-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that target serotonin systems. We examined whether prenatal nicotine exposure alters the subsequent response to chlorpyrifos given postnatally. Pregnant rats received nicotine throughout gestation at 3mg/kg/day, a regimen designed to achieve plasma levels seen in smokers; chlorpyrifos was given to pups on postnatal days (PN) 1-4 at 1mg/kg, just above the detection threshold for brain cholinesterase inhibition. We assessed long-term effects from adolescence (PN30) through full adulthood (PN150), measuring the expression of serotonin receptors and serotonin turnover (index of presynaptic impulse activity) in cerebrocortical brain regions encompassing the projections that are known targets for nicotine and chlorpyrifos. Nicotine or chlorpyrifos individually increased the expression of serotonin receptors, with greater effects on males than on females and with distinct temporal and regional patterns indicative of adaptive synaptic changes rather than simply an extension of initial injury. This interpretation was confirmed by our finding an increase in serotonin turnover, connoting presynaptic serotonergic hyperactivity. Animals receiving the combined treatment showed a reduction in these adaptive effects on receptor binding and turnover relative to the individual agents, or even an effect in the opposite direction; further, normal sex differences in serotonin receptor concentrations were dissipated or reversed, an effect that was confirmed by behavioral evaluations in the Novel Objection Recognition Test. In addition to the known liabilities associated with maternal smoking during pregnancy, our results point to additional costs in the form of heightened vulnerability to neurotoxic chemicals encountered later in life. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Prenatal Nicotine Changes the Response to Postnatal Chlorpyrifos: Interactions Targeting Serotonergic Synaptic Function and Cognition

    PubMed Central

    Slotkin, Theodore A.; Skavicus, Samantha; Levin, Edward D.; Seidler, Frederic J.

    2015-01-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that target serotonin systems. We examined whether prenatal nicotine exposure alters the subsequent response to chlorpyrifos given postnatally. Pregnant rats received nicotine throughout gestation at 3 mg/kg/day, a regimen designed to achieve plasma levels seen in smokers; chlorpyrifos was given to pups on postnatal days (PN) 1–4 at 1 mg/kg, just above the detection threshold for brain cholinesterase inhibition. We assessed long-term effects from adolescence (PN30) through full adulthood (PN150), measuring the expression of serotonin receptors and serotonin turnover (index of presynaptic impulse activity) in cerebrocortical brain regions encompassing the projections that are known targets for nicotine and chlorpyrifos. Nicotine or chlorpyrifos individually increased the expression of serotonin receptors, with greater effects on males than on females and with distinct temporal and regional patterns indicative of adaptive synaptic changes rather than simply an extension of initial injury. This interpretation was confirmed by our finding an increase in serotonin turnover, connoting presynaptic serotonergic hyperactivity. Animals receiving the combined treatment showed a reduction in these adaptive effects on receptor binding and turnover relative to the individual agents, or even an effect in the opposite direction; further, normal sex differences in serotonin receptor concentrations were dissipated or reversed, an effect that was confirmed by behavioral evaluations in the Novel Objection Recognition Test. In addition to the known liabilities associated with maternal smoking during pregnancy, our results point to additional costs in the form of heightened vulnerability to neurotoxic chemicals encountered later in life. PMID:25592617

  17. Targets of curcumin

    PubMed Central

    Zhou, Hongyu; Beevers, Christopher S.; Huang, Shile

    2010-01-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-κB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer’s disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here. PMID:20955148

  18. Lorazepam induces multiple disturbances in selective attention: attentional overload, decrement in target processing efficiency, and shifts in perceptual discrimination and response bias.

    PubMed

    Michael, George Andrew; Bacon, Elisabeth; Offerlin-Meyer, Isabelle

    2007-09-01

    There is a general consensus that benzodiazepines affect attentional processes, yet only few studies have tried to investigate these impairments in detail. The purpose of the present study was to investigate the effects of a single dose of Lorazepam on performance in a target cancellation task with important time constraints. We measured correct target detections and correct distractor rejections, misses and false positives. The results show that Lorazepam produces multiple kinds of shifts in performance, which suggests that it impairs multipLe processes: (a) the evolution of performance over time was not the same between the placebo and the Lorazepam groups, with the Lorazepam affecting performance quite early after the beginning of the test. This is suggestive of a depletion of attentional resources during sequential attentional processing; (b) Lorazepam affected differently target and distractor processing, with target detection being the most impaired; (c) misses were more frequent under Lorazepam than under placebo, but no such difference was observed as far as false positives were concerned. Signal detection analyses showed that Lorazepam (d) decreased perceptual discrimination, and (e) reliably increased response bias. Our results bring new insights on the multiple effects of Lorazepam on selective attention which, when combined, may have deleterious effects on human performance.

  19. Eye Movement in Response to Single and Multiple Targets

    DTIC Science & Technology

    1985-02-01

    pursuit control system. METHOD The SVFB technique was described in detail elsewhere (Zeevi et al., 1979). Displaying, to the subject, the point of gaze , in...34 The subject was presented with his point of gaze using the unconditioned SVFB signal (gain = 1, eccentric bias = 0). The SVFB signal was locked on the...superimposing the SVFB on the target, is gazing away from it and thus achieves eccentric fixation (Zeevi et al., 1979). As the subject moves from one

  20. Targeting nodal in conjunction with dacarbazine induces synergistic anticancer effects in metastatic melanoma.

    PubMed

    Hardy, Katharine M; Strizzi, Luigi; Margaryan, Naira V; Gupta, Kanika; Murphy, George F; Scolyer, Richard A; Hendrix, Mary J C

    2015-04-01

    Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. Despite a complete response in fewer than 5% of patients, the chemotherapeutic agent dacarbazine (DTIC) remains the reference drug after almost 40 years. More recently, FDA-approved drugs have shown promise but patient outcome remains modest, predominantly due to drug resistance. As such, combinatorial targeting has received increased attention, and will advance with the identification of new molecular targets. One attractive target for improving melanoma therapy is the growth factor Nodal, whose normal expression is largely restricted to embryonic development, but is reactivated in metastatic melanoma. In this study, we sought to determine how Nodal-positive human melanoma cells respond to DTIC treatment and to ascertain whether targeting Nodal in combination with DTIC would be more effective than monotherapy. A single treatment with DTIC inhibited cell growth but did not induce apoptosis. Rather than reducing Nodal expression, DTIC increased the size of the Nodal-positive subpopulation, an observation coincident with increased cellular invasion. Importantly, clinical tissue specimens from patients with melanomas refractory to DTIC therapy stained positive for Nodal expression, both in pre- and post-DTIC tumors, underscoring the value of targeting Nodal. In vitro, anti-Nodal antibodies alone had some adverse effects on proliferation and apoptosis, but combining DTIC treatment with anti-Nodal antibodies decreased cell growth and increased apoptosis synergistically, at concentrations incapable of producing meaningful effects as monotherapy. Targeting Nodal in combination with DTIC therapy holds promise for the treatment of metastatic melanoma. ©2015 American Association for Cancer Research.