Sample records for target size analysis

  1. Evolution of egg target size: an analysis of selection on correlated characters.

    PubMed

    Podolsky, R D

    2001-12-01

    In broadcast-spawning marine organisms, chronic sperm limitation should select for traits that improve chances of sperm-egg contact. One mechanism may involve increasing the size of the physical or chemical target for sperm. However, models of fertilization kinetics predict that increasing egg size can reduce net zygote production due to an associated decline in fecundity. An alternate method for increasing physical target size is through addition of energetically inexpensive external structures, such as the jelly coats typical of eggs in species from several phyla. In selection experiments on eggs of the echinoid Dendraster excentricus, in which sperm was used as the agent of selection, eggs with larger overall targets were favored in fertilization. Actual shifts in target size following selection matched quantitative predictions of a model that assumed fertilization was proportional to target size. Jelly volume and ovum volume, two characters that contribute to target size, were correlated both within and among females. A cross-sectional analysis of selection partitioned the independent effects of these characters on fertilization success and showed that they experience similar direct selection pressures. Coupled with data on relative organic costs of the two materials, these results suggest that, under conditions where fertilization is limited by egg target size, selection should favor investment in low-cost accessory structures and may have a relatively weak effect on the evolution of ovum size.

  2. Analysis of calibration accuracy of cameras with different target sizes for large field of view

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Chai, Zhiwen; Long, Changyu; Deng, Huaxia; Ma, Mengchao; Zhong, Xiang; Yu, Huan

    2018-03-01

    Visual measurement plays an increasingly important role in the field o f aerospace, ship and machinery manufacturing. Camera calibration of large field-of-view is a critical part of visual measurement . For the issue a large scale target is difficult to be produced, and the precision can not to be guaranteed. While a small target has the advantage of produced of high precision, but only local optimal solutions can be obtained . Therefore, studying the most suitable ratio of the target size to the camera field of view to ensure the calibration precision requirement of the wide field-of-view is required. In this paper, the cameras are calibrated by a series of different dimensions of checkerboard calibration target s and round calibration targets, respectively. The ratios of the target size to the camera field-of-view are 9%, 18%, 27%, 36%, 45%, 54%, 63%, 72%, 81% and 90%. The target is placed in different positions in the camera field to obtain the camera parameters of different positions . Then, the distribution curves of the reprojection mean error of the feature points' restructure in different ratios are analyzed. The experimental data demonstrate that with the ratio of the target size to the camera field-of-view increas ing, the precision of calibration is accordingly improved, and the reprojection mean error changes slightly when the ratio is above 45%.

  3. Contingent orienting or contingent capture: a size singleton matching the target-distractor size relation cannot capture attention.

    PubMed

    Du, Feng; Yin, Yue; Qi, Yue; Zhang, Kan

    2014-08-01

    In the present study, we examined whether a peripheral size-singleton distractor that matches the target-distractor size relation can capture attention and disrupt central target identification. Three experiments consistently showed that a size singleton that matches the target-distractor size relation cannot capture attention when it appears outside of the attentional window, even though the same size singleton produces a cuing effect. In addition, a color singleton that matches the target color, instead of a size singleton that matches the target-distractor size relation, captures attention when it is outside of the attentional window. Thus, a size-relation-matched distractor is much weaker than a color-matched distractor in capturing attention and cannot capture attention when the distractor appears outside of the attentional window.

  4. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Li, Jian-Feng; Yu, Yong; Wang, Jia-Xiang; Li, Xiao-Ya; Peng, Qi-Xian; Zhu, Wen-Jun

    2012-11-01

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  5. Contrast, size, and orientation-invariant target detection in infrared imagery

    NASA Astrophysics Data System (ADS)

    Zhou, Yi-Tong; Crawshaw, Richard D.

    1991-08-01

    Automatic target detection in IR imagery is a very difficult task due to variations in target brightness, shape, size, and orientation. In this paper, the authors present a contrast, size, and orientation invariant algorithm based on Gabor functions for detecting targets from a single IR image frame. The algorithms consists of three steps. First, it locates potential targets by using low-resolution Gabor functions which resist noise and background clutter effects, then, it removes false targets and eliminates redundant target points based on a similarity measure. These two steps mimic human vision processing but are different from Zeevi's Foveating Vision System. Finally, it uses both low- and high-resolution Gabor functions to verify target existence. This algorithm has been successfully tested on several IR images that contain multiple examples of military vehicles with different size and brightness in various background scenes and orientations.

  6. Impact of Target Distance, Target Size, and Visual Acuity on the Video Head Impulse Test.

    PubMed

    Judge, Paul D; Rodriguez, Amanda I; Barin, Kamran; Janky, Kristen L

    2018-05-01

    The video head impulse test (vHIT) assesses the vestibulo-ocular reflex. Few have evaluated whether environmental factors or visual acuity influence the vHIT. The purpose of this study was to evaluate the influence of target distance, target size, and visual acuity on vHIT outcomes. Thirty-eight normal controls and 8 subjects with vestibular loss (VL) participated. vHIT was completed at 3 distances and with 3 target sizes. Normal controls were subdivided on the basis of visual acuity. Corrective saccade frequency, corrective saccade amplitude, and gain were tabulated. In the normal control group, there were no significant effects of target size or visual acuity for any vHIT outcome parameters; however, gain increased as target distance decreased. The VL group demonstrated higher corrective saccade frequency and amplitude and lower gain as compared with controls. In conclusion, decreasing target distance increases gain for normal controls but not subjects with VL. Preliminarily, visual acuity does not affect vHIT outcomes.

  7. Role of Beam Spot Size in Heating Targets at Depth.

    PubMed

    Ross, E Victor; Childs, James

    2015-12-01

    Wavelength, fluence and pulse width are primary device parameters for the treatment of skin and hair conditions. Wavelength selection is based on tissue scatter and target chromophores. Pulse width is chosen to optimize target heating. Energy absorbed by a target is determined by fluence and spot size of the light source as well as the depth of the target. We conducted an in vitro skin study and simulations to compare heating of a target at a particular depth versus spot size. Porcine skin and fat tissue were prepared and separated to form a 2mm skin layer above a 1 cm thick fat layer. A 50 μm thermocouple was placed between the layers and centered beneath a 23 x 38 mm treatment window of an 805 nm diode laser device (Vectus, Cynosure, Westford, MA). Apertures provided various incident beam spot sizes and the temperature rise of the thermocouple was measured for a fixed fluence. The 2mm deep target's temperature rise versus treatment area showed two regimes with different positive slopes. The first regime up to approximately 1 cm(2) area has a greater temperature rise versus area than that for the regime greater than 1 cm(2). The slope in the second regime is nonetheless appreciable and provides a fluence reduction factor for skin safety. The same temperature rise in a target at 2 mm depth (typical hair bulb depth in some areas) is realized by increasing the area from 1 to 4 cm(2) while reducing the fluence by half. The role of spot size and in situ beam divergence is an important consideration to determine optimum fluence settings that increase skin safety when treating deeper targets.

  8. Asteroid collisions: Target size effects and resultant velocity distributions

    NASA Technical Reports Server (NTRS)

    Ryan, Eileen V.

    1993-01-01

    To study the dynamic fragmentation of rock to simulate asteroid collisions, we use a 2-D, continuum damage numerical hydrocode which models two-body impacts. This hydrocode monitors stress wave propagation and interaction within the target body, and includes a physical model for the formation and growth of cracks in rock. With this algorithm we have successfully reproduced fragment size distributions and mean ejecta speeds from laboratory impact experiments using basalt, and weak and strong mortar as target materials. Using the hydrocode, we have determined that the energy needed to fracture a body has a much stronger dependence on target size than predicted from most scaling theories. In addition, velocity distributions obtained indicate that mean ejecta speeds resulting from large-body collisions do not exceed escape velocities.

  9. Joint detection and tracking of size-varying infrared targets based on block-wise sparse decomposition

    NASA Astrophysics Data System (ADS)

    Li, Miao; Lin, Zaiping; Long, Yunli; An, Wei; Zhou, Yiyu

    2016-05-01

    The high variability of target size makes small target detection in Infrared Search and Track (IRST) a challenging task. A joint detection and tracking method based on block-wise sparse decomposition is proposed to address this problem. For detection, the infrared image is divided into overlapped blocks, and each block is weighted on the local image complexity and target existence probabilities. Target-background decomposition is solved by block-wise inexact augmented Lagrange multipliers. For tracking, label multi-Bernoulli (LMB) tracker tracks multiple targets taking the result of single-frame detection as input, and provides corresponding target existence probabilities for detection. Unlike fixed-size methods, the proposed method can accommodate size-varying targets, due to no special assumption for the size and shape of small targets. Because of exact decomposition, classical target measurements are extended and additional direction information is provided to improve tracking performance. The experimental results show that the proposed method can effectively suppress background clutters, detect and track size-varying targets in infrared images.

  10. Sodium modulates opioid receptors through a membrane component different from G-proteins. Demonstration by target size analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, S.; Costa, T.; Herz, A.

    1988-07-25

    The target size for opioid receptor binding was studied after manipulations known to affect the interactions between receptor and GTP-binding regulatory proteins (G-proteins). Addition of GTP or its analogs to the binding reaction, exposure of intact cells to pertussis toxin prior to irradiation, or treatment of irradiated membranes with N-ethylmaleimide did not change the target size (approximately equal to 100 kDa) for opioid receptors in NG 108-15 cells and rat brain. These data suggest that the 100-kDa species does not include an active subunit of a G-protein or alternatively that GTP does not promote the dissociation of the receptor-G-protein complex.more » The presence of Na+ (100 mM) in the radioligand binding assay induced a biphasic decay curve for agonist binding and a flattening of the monoexponential decay curve for a partial agonist. In both cases the effect was explained by an irradiation-induced loss of the low affinity state of the opioid receptor produced by the addition of Na+. This suggests that an allosteric inhibitor that mediates the effect of sodium on the receptor is destroyed at low doses of irradiation, leaving receptors which are no longer regulated by sodium. The effect of Na+ on target size was slightly increased by the simultaneous addition of GTP but was not altered by pertussis toxin treatment. Thus, the sodium unit is distinct from G-proteins and may represent a new component of the opioid receptor complex. Assuming a simple bimolecular model of one Na+ unit/receptor, the size of this inhibitor can be measured as 168 kDa.« less

  11. Investigations of internal noise levels for different target sizes, contrasts, and noise structures

    NASA Astrophysics Data System (ADS)

    Han, Minah; Choi, Shinkook; Baek, Jongduk

    2014-03-01

    To describe internal noise levels for different target sizes, contrasts, and noise structures, Gaussian targets with four different sizes (i.e., standard deviation of 2,4,6 and 8) and three different noise structures(i.e., white, low-pass, and highpass) were generated. The generated noise images were scaled to have standard deviation of 0.15. For each noise type, target contrasts were adjusted to have the same detectability based on NPW, and the detectability of CHO was calculated accordingly. For human observer study, 3 trained observers performed 2AFC detection tasks, and correction rate, Pc, was calculated for each task. By adding proper internal noise level to numerical observer (i.e., NPW and CHO), detectability of human observer was matched with that of numerical observers. Even though target contrasts were adjusted to have the same detectability of NPW observer, detectability of human observer decreases as the target size increases. The internal noise level varies for different target sizes, contrasts, and noise structures, demonstrating different internal noise levels should be considered in numerical observer to predict the detection performance of human observer.

  12. Numeral size, spacing between targets, and exposure time in discrimination by elderly people using an lcd monitor.

    PubMed

    Huang, Kuo-Chen; Yeh, Po-Chan

    2007-04-01

    The present study investigated the effects of numeral size, spacing between targets, and exposure time on the discrimination performance by elderly and younger people using a liquid crystal display screen. Analysis showed size of numerals significantly affected discrimination, which increased with increasing numeral size. Spacing between targets also had a significant effect on discrimination, i.e., the larger the space between numerals, the better their discrimination. When the spacing between numerals increased to 4 or 5 points, however, discrimination did not increase beyond that for 3-point spacing. Although performance increased with increasing exposure time, the difference in discrimination at an exposure time of 0.8 vs 1.0 sec. was not significant. The accuracy by the elderly group was less than that by younger subjects.

  13. Granule size control and targeting in pulsed spray fluid bed granulation.

    PubMed

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  14. Target size matters: target errors contribute to the generalization of implicit visuomotor learning.

    PubMed

    Reichenthal, Maayan; Avraham, Guy; Karniel, Amir; Shmuelof, Lior

    2016-08-01

    The process of sensorimotor adaptation is considered to be driven by errors. While sensory prediction errors, defined as the difference between the planned and the actual movement of the cursor, drive implicit learning processes, target errors (e.g., the distance of the cursor from the target) are thought to drive explicit learning mechanisms. This distinction was mainly studied in the context of arm reaching tasks where the position and the size of the target were constant. We hypothesize that in a dynamic reaching environment, where subjects have to hit moving targets and the targets' dynamic characteristics affect task success, implicit processes will benefit from target errors as well. We examine the effect of target errors on learning of an unnoticed perturbation during unconstrained reaching movements. Subjects played a Pong game, in which they had to hit a moving ball by moving a paddle controlled by their hand. During the game, the movement of the paddle was gradually rotated with respect to the hand, reaching a final rotation of 25°. Subjects were assigned to one of two groups: The high-target error group played the Pong with a small ball, and the low-target error group played with a big ball. Before and after the Pong game, subjects performed open-loop reaching movements toward static targets with no visual feedback. While both groups adapted to the rotation, the postrotation reaching movements were directionally biased only in the small-ball group. This result provides evidence that implicit adaptation is sensitive to target errors. Copyright © 2016 the American Physiological Society.

  15. Size dependence of the disruption threshold: laboratory examination of millimeter-centimeter porous targets

    NASA Astrophysics Data System (ADS)

    Nakamura, Akiko M.; Yamane, Fumiya; Okamoto, Takaya; Takasawa, Susumu

    2015-03-01

    The outcome of collision between small solid bodies is characterized by the threshold energy density Q*s, the specific energy to shatter, that is defined as the ratio of projectile kinetic energy to the target mass (or the sum of target and projectile) needed to produce the largest intact fragment that contains one half the target mass. It is indicated theoretically and by numerical simulations that the disruption threshold Q*s decreases with target size in strength-dominated regime. The tendency was confirmed by laboratory impact experiments using non-porous rock targets (Housen and Holsapple, 1999; Nagaoka et al., 2014). In this study, we performed low-velocity impact disruption experiments on porous gypsum targets with porosity of 65-69% and of three different sizes to examine the size dependence of the disruption threshold for porous material. The gypsum specimens were shown to have a weaker volume dependence on static tensile strength than do the non-porous rocks. The disruption threshold had also a weaker dependence on size scale as Q*s ∝D-γ , γ ≤ 0.25 - 0.26, while the previous laboratory studies showed γ=0.40 for the non-porous rocks. The measurements at low-velocity lead to a value of about 100 J kg-1 for Q*s which is roughly one order of magnitude lower than the value of Q*s for the gypsum targets of 65% porosity but impacted by projectiles with higher velocities. Such a clear dependence on the impact velocity was also shown by previous studies of gypsum targets with porosity of 50%.

  16. Impedance modulation and feedback corrections in tracking targets of variable size and frequency.

    PubMed

    Selen, Luc P J; van Dieën, Jaap H; Beek, Peter J

    2006-11-01

    Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In this experiment, we studied both mechanisms, using mechanical perturbations to estimate stiffness and damping as indices of impedance modulation and submovement scaling as an index of feedback driven corrections. Eight subjects tracked three differently sized targets (0.0135, 0.0270, and 0.0405 rad) moving at three different frequencies (0.20, 0.25, and 0.33 Hz). Movement variability decreased with both decreasing target size and movement frequency, whereas stiffness and damping increased with decreasing target size, independent of movement frequency. These results are consistent with the theory that mechanical impedance acts as a filter of noisy neuromuscular signals but challenge stochastic theories of motor control that do not account for impedance modulation and only partially for feedback control. Submovements during unperturbed cycles were quantified in terms of their gain, i.e., the slope between their duration and amplitude in the speed profile. Submovement gain decreased with decreasing movement frequency and increasing target size. The results were interpreted to imply that submovement gain is related to observed tracking errors and that those tracking errors are expressed in units of target size. We conclude that impedance and submovement gain modulation contribute additively to tracking accuracy.

  17. Meta-analysis of PECS with individuals with ASD: investigation of targeted versus non-targeted outcomes, participant characteristics, and implementation phase.

    PubMed

    Ganz, Jennifer B; Davis, John L; Lund, Emily M; Goodwyn, Fara D; Simpson, Richard L

    2012-01-01

    The Picture Exchange Communication System (PECS) is a widely used picture/icon aided augmentative communication system designed for learners with autism and other developmental disorders. This meta-analysis analyzes the extant empirical literature for PECS relative to targeted (functional communication) and non-targeted concomitant outcomes (behavior, social skills, and speech) for learners with autism, learners with autism and intellectual disabilities and those with autism and multiple disabilities. Effect size analyses were done using the Improvement Rate Difference method, an advanced metric. Effect sizes were independently analyzed for targeted and non-targeted outcomes, student age, learner disability, and number of phases in the PECS protocol acquired by learners. Results supported the judgment that PECS is a promising intervention method. Analysis also revealed that functional communication outcomes associated with the PECS protocol were most impacted, that preschool children and those with autism generally showed the strongest training effects, and that in general students who advanced through the most PECS protocol phases had the best outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Using Flexible Busing to Meet Average Class Size Targets

    ERIC Educational Resources Information Center

    Felt, Andrew J.; Koelemay, Ryan; Richter, Alexander

    2008-01-01

    This article describes a method of flexible redistricting for K-12 public school districts that allows students from the same geographical region to be bused to different schools, with the goal of meeting average class size (ACS) target ranges. Results of a case study on a geographically large school district comparing this method to a traditional…

  19. Hydrocode predictions of collisional outcomes: Effects of target size

    NASA Technical Reports Server (NTRS)

    Ryan, Eileen V.; Asphaug, Erik; Melosh, H. J.

    1991-01-01

    Traditionally, laboratory impact experiments, designed to simulate asteroid collisions, attempted to establish a predictive capability for collisional outcomes given a particular set of initial conditions. Unfortunately, laboratory experiments are restricted to using targets considerably smaller than the modelled objects. It is therefore necessary to develop some methodology for extrapolating the extensive experimental results to the size regime of interest. Results are reported obtained through the use of two dimensional hydrocode based on 2-D SALE and modified to include strength effects and the fragmentation equations. The hydrocode was tested by comparing its predictions for post-impact fragment size distributions to those observed in laboratory impact experiments.

  20. Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy.

    PubMed

    Zhang, Shengchang; Wu, Lin; Cao, Jin; Wang, Kaili; Ge, Yanru; Ma, Wanjun; Qi, Xueyong; Shen, Song

    2018-06-13

    Nanoparticles based multifunctional system exhibits great potential in diagnosis and therapy of rheumatoid arthritis (RA). The size of nanoparticles plays an essential role in biodistribution and cellular uptake, in turn affects the drug delivery efficiency and therapeutic effect. To investigate the optimal size for RA targeting, Fe 3 O 4 nanoparticles with well-defined particle sizes (70-350 nm) and identical surface properties were developed as model nanoparticles. The synthesized Fe 3 O 4 nanoparticles exhibited excellent biocompatibility and showed higher temperature response under irradiation of near infrared light. Size-dependent internalization was observed when incubated with inflammatory cells. Compared with large ones, small nanoparticles were more readily be phagocytized, leading to higher cytotoxicity in vitro. However, the in vivo experiment in CIA mice demonstrated a quite different result that nanoparticles with size of 220 nm exerted better accessibility to inflamed joint and resulted in higher temperature and better therapeutic effect under laser irradiation. This study not only offered a novel method for RA therapy but also a guideline for RA targeted drug carrier design. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Interactions between target location and reward size modulate the rate of microsaccades in monkeys

    PubMed Central

    Tokiyama, Stefanie; Lisberger, Stephen G.

    2015-01-01

    We have studied how rewards modulate the occurrence of microsaccades by manipulating the size of an expected reward and the location of the cue that sets the expectations for future reward. We found an interaction between the size of the reward and the location of the cue. When monkeys fixated on a cue that signaled the size of future reward, the frequency of microsaccades was higher if the monkey expected a large vs. a small reward. When the cue was presented at a site in the visual field that was remote from the position of fixation, reward size had the opposite effect: the frequency of microsaccades was lower when the monkey was expecting a large reward. The strength of pursuit initiation also was affected by reward size and by the presence of microsaccades just before the onset of target motion. The gain of pursuit initiation increased with reward size and decreased when microsaccades occurred just before or after the onset of target motion. The effect of the reward size on pursuit initiation was much larger than any indirect effects reward might cause through modulation of the rate of microsaccades. We found only a weak relationship between microsaccade direction and the location of the exogenous cue relative to fixation position, even in experiments where the location of the cue indicated the direction of target motion. Our results indicate that the expectation of reward is a powerful modulator of the occurrence of microsaccades, perhaps through attentional mechanisms. PMID:26311180

  2. Classification of video sequences into chosen generalized use classes of target size and lighting level.

    PubMed

    Leszczuk, Mikołaj; Dudek, Łukasz; Witkowski, Marcin

    The VQiPS (Video Quality in Public Safety) Working Group, supported by the U.S. Department of Homeland Security, has been developing a user guide for public safety video applications. According to VQiPS, five parameters have particular importance influencing the ability to achieve a recognition task. They are: usage time-frame, discrimination level, target size, lighting level, and level of motion. These parameters form what are referred to as Generalized Use Classes (GUCs). The aim of our research was to develop algorithms that would automatically assist classification of input sequences into one of the GUCs. Target size and lighting level parameters were approached. The experiment described reveals the experts' ambiguity and hesitation during the manual target size determination process. However, the automatic methods developed for target size classification make it possible to determine GUC parameters with 70 % compliance to the end-users' opinion. Lighting levels of the entire sequence can be classified with an efficiency reaching 93 %. To make the algorithms available for use, a test application has been developed. It is able to process video files and display classification results, the user interface being very simple and requiring only minimal user interaction.

  3. Laser backscattered from partially convex targets of large sizes in random media for E-wave polarization.

    PubMed

    El-Ocla, Hosam

    2006-08-01

    The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.

  4. 48 CFR 52.219-21 - Small Business Size Representation for Targeted Industry Categories Under the Small Business...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Small Business Size Representation for Targeted Industry Categories Under the Small Business Competitiveness Demonstration Program....219-21 Small Business Size Representation for Targeted Industry Categories Under the Small Business...

  5. A robust close-range photogrammetric target extraction algorithm for size and type variant targets

    NASA Astrophysics Data System (ADS)

    Nyarko, Kofi; Thomas, Clayton; Torres, Gilbert

    2016-05-01

    The Photo-G program conducted by Naval Air Systems Command at the Atlantic Test Range in Patuxent River, Maryland, uses photogrammetric analysis of large amounts of real-world imagery to characterize the motion of objects in a 3-D scene. Current approaches involve several independent processes including target acquisition, target identification, 2-D tracking of image features, and 3-D kinematic state estimation. Each process has its own inherent complications and corresponding degrees of both human intervention and computational complexity. One approach being explored for automated target acquisition relies on exploiting the pixel intensity distributions of photogrammetric targets, which tend to be patterns with bimodal intensity distributions. The bimodal distribution partitioning algorithm utilizes this distribution to automatically deconstruct a video frame into regions of interest (ROI) that are merged and expanded to target boundaries, from which ROI centroids are extracted to mark target acquisition points. This process has proved to be scale, position and orientation invariant, as well as fairly insensitive to global uniform intensity disparities.

  6. Target size analysis of serotonin 5-HT/sub 1/ and 5-HT/sub 2/ receptors in bovine brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, N.; Tanaka, C.

    1985-09-23

    Freeze-dried crude synaptic membranes prepared from bovine cerebral cortex and striatum were exposed to high energy gamma ray from the source of /sup 60/Co. The size of serotonin 5-HT/sub 1/ receptors labeled by (/sup 3/H)serotonin and that of 5-HT/sub 2/ receptors labeled by (/sup 3/H)spiperone or (/sup 3/H)ketanserin was determined by target size analyses. The values were 57,000 daltons, 145,000 daltons and 152,000 daltons for the cerebral cortex and 56,000 daltons, 141,000 daltons and 150,000 daltons for the striatum, respectively. The estimated sizes were deduced by reference to enzyme standards with known molecular masses and which were irradiated in parallel.more » These results demonstrate that the molecular entities in situ for 5-HT/sub 1/ receptors are distinct from those for 5-HT/sub 2/ receptors, thus supporting data on the existence of two distinct populations of serotonin receptors, hitherto evidenced physiopharmacologically.« less

  7. Effects of window size and shape on accuracy of subpixel centroid estimation of target images

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.

    1993-01-01

    A new algorithm is presented for increasing the accuracy of subpixel centroid estimation of (nearly) point target images in cases where the signal-to-noise ratio is low and the signal amplitude and shape vary from frame to frame. In the algorithm, the centroid is calculated over a data window that is matched in width to the image distribution. Fourier analysis is used to explain the dependency of the centroid estimate on the size of the data window, and simulation and experimental results are presented which demonstrate the effects of window size for two different noise models. The effects of window shape were also investigated for uniform and Gaussian-shaped windows. The new algorithm was developed to improve the dynamic range of a close-range photogrammetric tracking system that provides feedback for control of a large gap magnetic suspension system (LGMSS).

  8. Predicting the size-dependent tissue accumulation of agents released from vascular targeted nanoconstructs

    NASA Astrophysics Data System (ADS)

    de Tullio, Marco D.; Singh, Jaykrishna; Pascazio, Giuseppe; Decuzzi, Paolo

    2014-03-01

    Vascular targeted nanoparticles have been developed for the delivery of therapeutic and imaging agents in cancer and cardiovascular diseases. However, at authors' knowledge, a comprehensive systematic analysis on their delivery efficiency is still missing. Here, a computational model is developed to predict the vessel wall accumulation of agents released from vascular targeted nanoconstructs. The transport problem for the released agent is solved using a finite volume scheme in terms of three governing parameters: the local wall shear rate , ranging from to ; the wall filtration velocity , varying from to ; and the agent diffusion coefficient , ranging from to . It is shown that the percentage of released agent adsorbing on the vessel walls in the vicinity of the vascular targeted nanoconstructs reduces with an increase in shear rate , and with a decrease in filtration velocity and agent diffusivity . In particular, in tumor microvessels, characterized by lower shear rates () and higher filtration velocities (), an agent with a diffusivity (i.e. a 50 nm particle) is predicted to deposit on the vessel wall up to of the total released dose. Differently, drug molecules, exhibiting a smaller size and much higher diffusion coefficient (), are predicted to accumulate up to . In healthy vessels, characterized by higher and lower , the largest majority of the released agent is redistributed directly in the circulation. These data suggest that drug molecules and small nanoparticles only can be efficiently released from vascular targeted nanoconstructs towards the diseased vessel walls and tissue.

  9. Repopulation of calibrations with samples from the target site: effect of the size of the calibration.

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Zornoza, R.; Gómez, I.; Mataix-Solera, J.; Navarro-Pedreño, J.; Mataix-Beneyto, J.; García-Orenes, F.

    2009-04-01

    Near infrared (NIR) reflectance spectroscopy offers important advantages because is a non-destructive technique, the pre-treatments needed in samples are minimal, and the spectrum of the sample is obtained in less than 1 minute without the needs of chemical reagents. For these reasons, NIR is a fast and cost-effective method. Moreover, NIR allows the analysis of several constituents or parameters simultaneously from the same spectrum once it is obtained. For this, a needed steep is the development of soil spectral libraries (set of samples analysed and scanned) and calibrations (using multivariate techniques). The calibrations should contain the variability of the target site soils in which the calibration is to be used. Many times this premise is not easy to fulfil, especially in libraries recently developed. A classical way to solve this problem is through the repopulation of libraries and the subsequent recalibration of the models. In this work we studied the changes in the accuracy of the predictions as a consequence of the successive addition of samples to repopulation. In general, calibrations with high number of samples and high diversity are desired. But we hypothesized that calibrations with lower quantities of samples (lower size) will absorb more easily the spectral characteristics of the target site. Thus, we suspect that the size of the calibration (model) that will be repopulated could be important. For this reason we also studied this effect in the accuracy of predictions of the repopulated models. In this study we used those spectra of our library which contained data of soil Kjeldahl Nitrogen (NKj) content (near to 1500 samples). First, those spectra from the target site were removed from the spectral library. Then, different quantities of samples of the library were selected (representing the 5, 10, 25, 50, 75 and 100% of the total library). These samples were used to develop calibrations with different sizes (%) of samples. We used partial least

  10. miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.

    PubMed

    Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei

    2017-01-01

    MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.

  11. Study of μDBO overlay target size reduction for application broadening

    NASA Astrophysics Data System (ADS)

    Calado, Victor; Dépré, Jérôme; Massacrier, Clément; Tarabrin, Sergey; van Haren, Richard; Dettoni, Florent; Bouyssou, Régis; Dezauzier, Christophe

    2018-03-01

    With these proceedings we present μ-diffraction-based overlay (μDBO) targets that are well below the currently supported minimum size of 10×10 μm2 . We have been capable of measuring overlay targets as small as 4×4 μm2 with our latest generation YieldStar system. Furthermore we find an excellent precision (TMU < 0.33 nm for 6 × 6 μm2 ) without any compromise on throughput (MAM time < 60 ms). At last a study that compares four generations of YieldStar systems show clearly that the latest generation YieldStar systems is much better capable of reading small overlay targets such that the performance of a 16 × 16 μm2 on an early generation YieldStar 2nd-gen is comparable to that of a 8 × 8 μm2 on the latest YieldStar 5th-gen. This work enables a smaller metrology footprint, more placement flexibility and in-die overlay metrology solutions.

  12. Development of hierarchical, tunable pore size polymer foams for ICF targets

    DOE PAGES

    Hamilton, Christopher E.; Lee, Matthew Nicholson; Parra-Vasquez, A. Nicholas Gerardo

    2016-08-01

    In this study, one of the great challenges of inertial confinement fusion experiments is poor understanding of the effects of reactant heterogeneity on fusion reactions. The Marble campaign, conceived at Los Alamos National Laboratory, aims to gather new insights into this issue by utilizing target capsules containing polymer foams of variable pore sizes, tunable over an order of magnitude. Here, we describe recent and ongoing progress in the development of CH and CH/CD polymer foams in support of Marble. Hierarchical and tunable pore sizes have been achieved by utilizing a sacrificial porogen template within an open-celled poly(divinylbenzene) or poly(divinylbenzene-co-styrene) aerogelmore » matrix, resulting in low-density foams (~30 mg/ml) with continuous multimodal pore networks.« less

  13. Ideal Particle Sizes for Inhaled Steroids Targeting Vocal Granulomas: Preliminary Study Using Computational Fluid Dynamics.

    PubMed

    Perkins, Elizabeth L; Basu, Saikat; Garcia, Guilherme J M; Buckmire, Robert A; Shah, Rupali N; Kimbell, Julia S

    2018-03-01

    Objectives Vocal fold granulomas are benign lesions of the larynx commonly caused by gastroesophageal reflux, intubation, and phonotrauma. Current medical therapy includes inhaled corticosteroids to target inflammation that leads to granuloma formation. Particle sizes of commonly prescribed inhalers range over 1 to 4 µm. The study objective was to use computational fluid dynamics to investigate deposition patterns over a range of particle sizes of inhaled corticosteroids targeting the larynx and vocal fold granulomas. Study Design Retrospective, case-specific computational study. Setting Tertiary academic center. Subjects/Methods A 3-dimensional anatomically realistic computational model of a normal adult airway from mouth to trachea was constructed from 3 computed tomography scans. Virtual granulomas of varying sizes and positions along the vocal fold were incorporated into the base model. Assuming steady-state, inspiratory, turbulent airflow at 30 L/min, computational fluid dynamics was used to simulate respiratory transport and deposition of inhaled corticosteroid particles ranging over 1 to 20 µm. Results Laryngeal deposition in the base model peaked for particle sizes 8 to 10 µm (2.8%-3.5%). Ideal sizes ranged over 6 to 10, 7 to 13, and 7 to 14 µm for small, medium, and large granuloma sizes, respectively. Glottic deposition was maximal at 10.8% for 9-µm-sized particles for the large posterior granuloma, 3 times the normal model (3.5%). Conclusion As the virtual granuloma size increased and the location became more posterior, glottic deposition and ideal particle size generally increased. This preliminary study suggests that inhalers with larger particle sizes, such as fluticasone propionate dry-powder inhaler, may improve laryngeal drug deposition. Most commercially available inhalers have smaller particles than suggested here.

  14. Size Matters: Developing Design Rules to Engineer Nanoparticles for Solid Tumour Targeting

    NASA Astrophysics Data System (ADS)

    Sykes, Edward Alexander

    Nanotechnology enables the design of highly customizable platforms for producing minimally invasive and programmable strategies for cancer diagnosis and treatment. Advances in this field have demonstrated that nanoparticles can enhance specificity of anti-cancer agents, respond to tumour-specific cues, and direct the visualization of biological targets in vivo. . Nanoparticles can be synthesized within the 1 to 100 nm range to achieve different electromagnetic properties and specifically interact with biological tissues by tuning their size, shape, and surface chemistry. However, it remains unclear which physicochemical parameters are critical for delivering nanomaterials to the tumour site. With less than 5% of administered nanoparticles reaching the tumour, engineering of nanoparticles for effective delivery to solid tumours remains a critical challenge to cancer nanomedicine. A more comprehensive understanding of the interplay between the nanomaterial physicochemical properties and biological systems is necessary to enhance the efficacy of nanoparticle tumour targeting. This thesis explores how nanoparticle size and functionalization with cancer cell specific agents impact nanoparticle delivery to tumours. Furthermore, this doctoral work (i) discusses how tumour structure evolves with growth, (ii) elucidates how such changes modulate nanoparticle accumulation, and (iii) identifies how the skin serves as a significant off-target site for nanoparticle uptake. This thesis also demonstrates the utility of empirically-derived parametric models, Monte Carlo simulations, and decision matrices for mechanistically understanding and predicting the impact of nanomaterial features and tumour biology on nanoparticle fate in vivo. These topics establish key design considerations to tailor nanoparticles for enhanced tumour targeting. Collectively, the concepts presented herein form a fundamental framework for the development of personalized nanomedicine and nano

  15. Speckle pattern sequential extraction metric for estimating the focus spot size on a remote diffuse target.

    PubMed

    Yu, Zhan; Li, Yuanyang; Liu, Lisheng; Guo, Jin; Wang, Tingfeng; Yang, Guoqing

    2017-11-10

    The speckle pattern (line by line) sequential extraction (SPSE) metric is proposed by the one-dimensional speckle intensity level crossing theory. Through the sequential extraction of received speckle information, the speckle metrics for estimating the variation of focusing spot size on a remote diffuse target are obtained. Based on the simulation, we will give some discussions about the SPSE metric range of application under the theoretical conditions, and the aperture size will affect the metric performance of the observation system. The results of the analyses are verified by the experiment. This method is applied to the detection of relative static target (speckled jitter frequency is less than the CCD sampling frequency). The SPSE metric can determine the variation of the focusing spot size over a long distance, moreover, the metric will estimate the spot size under some conditions. Therefore, the monitoring and the feedback of far-field spot will be implemented laser focusing system applications and help the system to optimize the focusing performance.

  16. SCFSAP controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana

    PubMed Central

    Wang, Zhibiao; Li, Na; Jiang, Shan; Gonzalez, Nathalie; Huang, Xiahe; Wang, Yingchun; Inzé, Dirk; Li, Yunhai

    2016-01-01

    Control of organ size by cell proliferation and growth is a fundamental process, but the mechanisms that determine the final size of organs are largely elusive in plants. We have previously revealed that the ubiquitin receptor DA1 regulates organ size by repressing cell proliferation in Arabidopsis. Here we report that a mutant allele of STERILE APETALA (SAP) suppresses the da1-1 mutant phenotype. We show that SAP is an F-box protein that forms part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex and controls organ size by promoting the proliferation of meristemoid cells. Genetic analyses suggest that SAP may act in the same pathway with PEAPOD1 and PEAPOD2, which are negative regulators of meristemoid proliferation, to control organ size, but does so independently of DA1. Further results reveal that SAP physically associates with PEAPOD1 and PEAPOD2, and targets them for degradation. These findings define a molecular mechanism by which SAP and PEAPOD control organ size. PMID:27048938

  17. SU-F-T-574: MLC Based SRS Beam Commissioning - Minimum Target Size Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakikhani, R; Able, C

    2016-06-15

    Purpose: To implement a MLC accelerator based SRS program using small fields down to 1 cm × 1 cm and to determine the smallest target size safe for clinical treatment. Methods: Computerized beam scanning was performed in water using a diode detector and a linac-head attached transmission ion chamber to characterize the small field dosimetric aspects of a 6 MV photon beam (Trilogy-Varian Medical Systems, Inc.). The output factors, PDD and profiles of field sizes 1, 2, 3, 4, and 10 cm{sup 2} were measured and utilized to create a new treatment planning system (TPS) model (AAA ver 11021). Staticmore » MLC SRS treatment plans were created and delivered to a homogeneous phantom (Cube 20, CIRS, Inc.) for a 1.0 cm and 1.5 cm “PTV” target. A 12 field DMLC plan was created for a 2.1 cm target. Radiochromic film (EBT3, Ashland Inc.) was used to measure the planar dose in the axial, coronal and sagittal planes. A micro ion chamber (0.007 cc) was used to measure the dose at isocenter for each treatment delivery. Results: The new TPS model was validated by using a tolerance criteria of 2% dose and 2 mm distance to agreement. For fields ≤ 3 cm{sup 2}, the max PDD, Profile and OF difference was 0.9%, 2%/2mm and 1.4% respectively. The measured radiochromic film planar dose distributions had gamma scores of 95.3% or higher using a 3%/2mm criteria. Ion chamber measurements for all 3 test plans effectively met our goal of delivering the dose accurately to within 5% when compared to the expected dose reported by the TPS (1 cm plan Δ= −5.2%, 1.5 cm plan Δ= −2.0%, 2 cm plan Δ= 1.5%). Conclusion: End to end testing confirmed that MLC defined SRS for target sizes ≥ 1.0 cm can be safely planned and delivered.« less

  18. Parkinson's disease patients undershoot target size in handwriting and similar tasks

    PubMed Central

    Van Gemmert, A W A; Adler, C; Stelmach, G

    2003-01-01

    Objectives:Previous research suggested that people with Parkinson's disease are able to increase handwriting stroke size up to 1.5 cm without an increase of stroke duration; whereas age matched individuals in normal health are able to modulate stroke size without changes in stroke duration for sizes up to 2 cm. This study was designed to test this finding by examining whether sizes larger than 1.5 cm show different relationships with stroke duration for patients with Parkinson's disease as compared with age matched controls. Methods:The study included 13 subjects with Parkinson's disease and 13 age matched controls. Participants were required to write a cursive "llllllll" pattern, or a cursive "lililili" pattern without the dots, at a comfortable speed and also as fast as possible, in five different sizes (1.0, 1.5, 2.0, 3.0, and 5.0 cm). The participants wrote with a ballpoint pen on a digitiser tablet. The target pattern was displayed at its required size on a screen, but disappeared as soon as the pen touched the surface of the digitiser tablet. Online visual monitoring of the hand was prevented by a cover over the digitiser. After each trial, the recorded movement of the tip of the pen was displayed with two lines to indicate whether the size requirement had been met. The writing conditions were presented in random order and consisted of 12 trials for each participant. Results:The results demonstrated that stroke size and duration produced by the participants with Parkinson's disease were independently modulated up to 1.5 cm; sizes over 1.5 cm resulted in progressive undershooting by patients with Parkinson's disease (PD). It was also shown that these participants modulated acceleration measures inefficiently as compared with controls. Conclusions:The findings suggest that individuals with Parkinson's disease writing at speed produce inadequate stroke sizes when these should equal or exceed 1.5 cm. PMID:14617705

  19. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana.

    PubMed

    Wang, Zhibiao; Li, Na; Jiang, Shan; Gonzalez, Nathalie; Huang, Xiahe; Wang, Yingchun; Inzé, Dirk; Li, Yunhai

    2016-04-06

    Control of organ size by cell proliferation and growth is a fundamental process, but the mechanisms that determine the final size of organs are largely elusive in plants. We have previously revealed that the ubiquitin receptor DA1 regulates organ size by repressing cell proliferation in Arabidopsis. Here we report that a mutant allele of STERILE APETALA (SAP) suppresses the da1-1 mutant phenotype. We show that SAP is an F-box protein that forms part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex and controls organ size by promoting the proliferation of meristemoid cells. Genetic analyses suggest that SAP may act in the same pathway with PEAPOD1 and PEAPOD2, which are negative regulators of meristemoid proliferation, to control organ size, but does so independently of DA1. Further results reveal that SAP physically associates with PEAPOD1 and PEAPOD2, and targets them for degradation. These findings define a molecular mechanism by which SAP and PEAPOD control organ size.

  20. Biological Functionalization of Drug Delivery Carriers to Bypass Size Restrictions of Receptor-Mediated Endocytosis Independently from Receptor Targeting

    PubMed Central

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2014-01-01

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolar-mediated pathways, allows uptake of nano- and micro-carriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and micro-carriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size-restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems. PMID:24237309

  1. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    PubMed

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  2. Space based lidar shot pattern targeting strategies for small targets such as streams

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    2001-01-01

    An analysis of the effectiveness of four different types of lidar shot distribution is conducted to determine which is best for concentrating shots in a given location. A simple preemptive targeting strategy is found to work as adequately as a more involved dynamic strategy for most target sizes considered.

  3. Small, medium, large or supersize? The development and evaluation of interventions targeted at portion size.

    PubMed

    Vermeer, W M; Steenhuis, I H M; Poelman, M P

    2014-07-01

    In the past decades, portion sizes of high-caloric foods and drinks have increased and can be considered an important environmental obesogenic factor. This paper describes a research project in which the feasibility and effectiveness of environmental interventions targeted at portion size was evaluated. The studies that we conducted revealed that portion size labeling, offering a larger variety of portion sizes, and proportional pricing (that is, a comparable price per unit regardless of the size) were considered feasible to implement according to both consumers and point-of-purchase representatives. Studies into the effectiveness of these interventions demonstrated that the impact of portion size labeling on the (intended) consumption of soft drinks was, at most, modest. Furthermore, the introduction of smaller portion sizes of hot meals in worksite cafeterias in addition to the existing size stimulated a moderate number of consumers to replace their large meals by a small meal. Elaborating on these findings, we advocate further research into communication and marketing strategies related to portion size interventions; the development of environmental portion size interventions as well as educational interventions that improve people's ability to deal with a 'super-sized' environment; the implementation of regulation with respect to portion size labeling, and the use of nudges to stimulate consumers to select healthier portion sizes.

  4. Communication target object recognition for D2D connection with feature size limit

    NASA Astrophysics Data System (ADS)

    Ok, Jiheon; Kim, Soochang; Kim, Young-hoon; Lee, Chulhee

    2015-03-01

    Recently, a new concept of device-to-device (D2D) communication, which is called "point-and-link communication" has attracted great attentions due to its intuitive and simple operation. This approach enables user to communicate with target devices without any pre-identification information such as SSIDs, MAC addresses by selecting the target image displayed on the user's own device. In this paper, we present an efficient object matching algorithm that can be applied to look(point)-and-link communications for mobile services. Due to the limited channel bandwidth and low computational power of mobile terminals, the matching algorithm should satisfy low-complexity, low-memory and realtime requirements. To meet these requirements, we propose fast and robust feature extraction by considering the descriptor size and processing time. The proposed algorithm utilizes a HSV color histogram, SIFT (Scale Invariant Feature Transform) features and object aspect ratios. To reduce the descriptor size under 300 bytes, a limited number of SIFT key points were chosen as feature points and histograms were binarized while maintaining required performance. Experimental results show the robustness and the efficiency of the proposed algorithm.

  5. Blue and Black Cloth Targets: Effects of Size, Shape and Color on Stable Fly (L.) (Diptera: Muscidae) Attraction

    USDA-ARS?s Scientific Manuscript database

    Stable fly management has been challenging. Insecticide-treated targets made from blue and black fabric, developed in Africa, were evaluated in Louisiana and Florida to determine if they would attract and kill stable flies. Untreated targets were used to answer questions about configuration, size an...

  6. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    PubMed

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. What determines organ size differences between species? A meta-analysis of the cellular basis.

    PubMed

    Gázquez, Ayelén; Beemster, Gerrit T S

    2017-07-01

    Little is known about how the characteristic differences in organ size between species are regulated. At the cellular level, the size of an organ is strictly regulated by cell division and expansion during its development. We performed a meta-analysis of the growth parameters of roots, and Graminae and eudicotyledonous leaves, to address the question of how quantitative variation in these two processes contributes to size differences across a range of species. We extracted or derived cellular parameters from published kinematic growth analyses. These data were subjected to linear regression analyses to identify the parameters that determine differences in organ growth. Our results demonstrate that, across all species and organs, similar conclusions can be made: cell number rather than cell size determines the final size of plant organs; cell number is determined by meristem size rather than the rate at which cells divide; cells that are small when leaving the meristem compensate by expanding for longer; mature cell size is primarily determined by the duration of cell expansion. These results identify the regulation of the transition from cell division to expansion as the key cellular mechanism targeted by the evolution of organ size. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Small, medium, large or supersize? The development and evaluation of interventions targeted at portion size

    PubMed Central

    Vermeer, W M; Steenhuis, I H M; Poelman, M P

    2014-01-01

    In the past decades, portion sizes of high-caloric foods and drinks have increased and can be considered an important environmental obesogenic factor. This paper describes a research project in which the feasibility and effectiveness of environmental interventions targeted at portion size was evaluated. The studies that we conducted revealed that portion size labeling, offering a larger variety of portion sizes, and proportional pricing (that is, a comparable price per unit regardless of the size) were considered feasible to implement according to both consumers and point-of-purchase representatives. Studies into the effectiveness of these interventions demonstrated that the impact of portion size labeling on the (intended) consumption of soft drinks was, at most, modest. Furthermore, the introduction of smaller portion sizes of hot meals in worksite cafeterias in addition to the existing size stimulated a moderate number of consumers to replace their large meals by a small meal. Elaborating on these findings, we advocate further research into communication and marketing strategies related to portion size interventions; the development of environmental portion size interventions as well as educational interventions that improve people's ability to deal with a ‘super-sized' environment; the implementation of regulation with respect to portion size labeling, and the use of nudges to stimulate consumers to select healthier portion sizes. PMID:25033959

  9. Target identification by image analysis.

    PubMed

    Fetz, V; Prochnow, H; Brönstrup, M; Sasse, F

    2016-05-04

    Covering: 1997 to the end of 2015Each biologically active compound induces phenotypic changes in target cells that are characteristic for its mode of action. These phenotypic alterations can be directly observed under the microscope or made visible by labelling structural elements or selected proteins of the cells with dyes. A comparison of the cellular phenotype induced by a compound of interest with the phenotypes of reference compounds with known cellular targets allows predicting its mode of action. While this approach has been successfully applied to the characterization of natural products based on a visual inspection of images, recent studies used automated microscopy and analysis software to increase speed and to reduce subjective interpretation. In this review, we give a general outline of the workflow for manual and automated image analysis, and we highlight natural products whose bacterial and eucaryotic targets could be identified through such approaches.

  10. Analysis of Network Address Shuffling as a Moving Target Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Thomas E.; Crouse, Michael B.; Fulp, Errin W.

    2014-06-10

    Address shuffling is a type of moving target defense that prevents an attacker from reliably contacting a system by periodically remapping network addresses. Although limited testing has demonstrated it to be effective, little research has been conducted to examine the theoretical limits of address shuffling. As a result, it is difficult to understand how effective shuffling is and under what circumstances it is a viable moving target defense. This paper introduces probabilistic models that can provide insight into the performance of address shuffling. These models quantify the probability of attacker success in terms of network size, quantity of addresses scanned,more » quantity of vulnerable systems, and the frequency of shuffling. Theoretical analysis will show that shuffling is an acceptable defense if there is a small population of vulnerable systems within a large network address space, however shuffling has a cost for legitimate users. These results will also be shown empirically using simulation and actual traffic traces.« less

  11. Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates.

    PubMed

    Shuvaev, Vladimir V; Muro, Silvia; Arguiri, Evguenia; Khoshnejad, Makan; Tliba, Samira; Christofidou-Solomidou, Melpo; Muzykantov, Vladimir R

    2016-07-28

    Controlled endothelial delivery of SOD may alleviate abnormal local surplus of superoxide involved in ischemia-reperfusion, inflammation and other disease conditions. Targeting SOD to endothelial surface vs. intracellular compartments is desirable to prevent pathological effects of external vs. endogenous superoxide, respectively. Thus, SOD conjugated with antibodies to cell adhesion molecule PECAM (Ab/SOD) inhibits pro-inflammatory signaling mediated by endogenous superoxide produced in the endothelial endosomes in response to cytokines. Here we defined control of surface vs. endosomal delivery and effect of Ab/SOD, focusing on conjugate size and targeting to PECAM vs. ICAM. Ab/SOD enlargement from about 100 to 300nm enhanced amount of cell-bound SOD and protection against extracellular superoxide. In contrast, enlargement inhibited endocytosis of Ab/SOD and diminished mitigation of inflammatory signaling of endothelial superoxide. In addition to size, shape is important: endocytosis of antibody-coated spheres was more effective than that of polymorphous antibody conjugates. Further, targeting to ICAM provides higher endocytic efficacy than targeting to PECAM. ICAM-targeted Ab/SOD more effectively mitigated inflammatory signaling by intracellular superoxide in vitro and in animal models, although total uptake was inferior to that of PECAM-targeted Ab/SOD. Therefore, both geometry and targeting features of Ab/SOD conjugates control delivery to cell surface vs. endosomes for optimal protection against extracellular vs. endosomal oxidative stress, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis

    PubMed Central

    Adnan, Tassha Hilda

    2016-01-01

    Sensitivity and specificity analysis is commonly used for screening and diagnostic tests. The main issue researchers face is to determine the sufficient sample sizes that are related with screening and diagnostic studies. Although the formula for sample size calculation is available but concerning majority of the researchers are not mathematicians or statisticians, hence, sample size calculation might not be easy for them. This review paper provides sample size tables with regards to sensitivity and specificity analysis. These tables were derived from formulation of sensitivity and specificity test using Power Analysis and Sample Size (PASS) software based on desired type I error, power and effect size. The approaches on how to use the tables were also discussed. PMID:27891446

  13. Vertex Space Analysis for Model-Based Target Recognition.

    DTIC Science & Technology

    1996-08-01

    performed in our unique invariant representation, Vertex Space, that reduces both the dimensionality and size of the required search space. Vertex Space ... mapping results in a reduced representation that serves as a characteristic target signature which is invariant to four of the six viewing geometry

  14. Sample size and power for cost-effectiveness analysis (part 1).

    PubMed

    Glick, Henry A

    2011-03-01

    Basic sample size and power formulae for cost-effectiveness analysis have been established in the literature. These formulae are reviewed and the similarities and differences between sample size and power for cost-effectiveness analysis and for the analysis of other continuous variables such as changes in blood pressure or weight are described. The types of sample size and power tables that are commonly calculated for cost-effectiveness analysis are also described and the impact of varying the assumed parameter values on the resulting sample size and power estimates is discussed. Finally, the way in which the data for these calculations may be derived are discussed.

  15. A combined pre-clinical meta-analysis and randomized confirmatory trial approach to improve data validity for therapeutic target validation.

    PubMed

    Kleikers, Pamela W M; Hooijmans, Carlijn; Göb, Eva; Langhauser, Friederike; Rewell, Sarah S J; Radermacher, Kim; Ritskes-Hoitinga, Merel; Howells, David W; Kleinschnitz, Christoph; Schmidt, Harald H H W

    2015-08-27

    Biomedical research suffers from a dramatically poor translational success. For example, in ischemic stroke, a condition with a high medical need, over a thousand experimental drug targets were unsuccessful. Here, we adopt methods from clinical research for a late-stage pre-clinical meta-analysis (MA) and randomized confirmatory trial (pRCT) approach. A profound body of literature suggests NOX2 to be a major therapeutic target in stroke. Systematic review and MA of all available NOX2(-/y) studies revealed a positive publication bias and lack of statistical power to detect a relevant reduction in infarct size. A fully powered multi-center pRCT rejects NOX2 as a target to improve neurofunctional outcomes or achieve a translationally relevant infarct size reduction. Thus stringent statistical thresholds, reporting negative data and a MA-pRCT approach can ensure biomedical data validity and overcome risks of bias.

  16. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  17. Sample size and power considerations in network meta-analysis

    PubMed Central

    2012-01-01

    Background Network meta-analysis is becoming increasingly popular for establishing comparative effectiveness among multiple interventions for the same disease. Network meta-analysis inherits all methodological challenges of standard pairwise meta-analysis, but with increased complexity due to the multitude of intervention comparisons. One issue that is now widely recognized in pairwise meta-analysis is the issue of sample size and statistical power. This issue, however, has so far only received little attention in network meta-analysis. To date, no approaches have been proposed for evaluating the adequacy of the sample size, and thus power, in a treatment network. Findings In this article, we develop easy-to-use flexible methods for estimating the ‘effective sample size’ in indirect comparison meta-analysis and network meta-analysis. The effective sample size for a particular treatment comparison can be interpreted as the number of patients in a pairwise meta-analysis that would provide the same degree and strength of evidence as that which is provided in the indirect comparison or network meta-analysis. We further develop methods for retrospectively estimating the statistical power for each comparison in a network meta-analysis. We illustrate the performance of the proposed methods for estimating effective sample size and statistical power using data from a network meta-analysis on interventions for smoking cessation including over 100 trials. Conclusion The proposed methods are easy to use and will be of high value to regulatory agencies and decision makers who must assess the strength of the evidence supporting comparative effectiveness estimates. PMID:22992327

  18. Survival analysis and classification methods for forest fire size.

    PubMed

    Tremblay, Pier-Olivier; Duchesne, Thierry; Cumming, Steven G

    2018-01-01

    Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at "being held" (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at "being held" exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances.

  19. psRNATarget: a plant small RNA target analysis server

    PubMed Central

    Dai, Xinbin; Zhao, Patrick Xuechun

    2011-01-01

    Plant endogenous non-coding short small RNAs (20–24 nt), including microRNAs (miRNAs) and a subset of small interfering RNAs (ta-siRNAs), play important role in gene expression regulatory networks (GRNs). For example, many transcription factors and development-related genes have been reported as targets of these regulatory small RNAs. Although a number of miRNA target prediction algorithms and programs have been developed, most of them were designed for animal miRNAs which are significantly different from plant miRNAs in the target recognition process. These differences demand the development of separate plant miRNA (and ta-siRNA) target analysis tool(s). We present psRNATarget, a plant small RNA target analysis server, which features two important analysis functions: (i) reverse complementary matching between small RNA and target transcript using a proven scoring schema, and (ii) target-site accessibility evaluation by calculating unpaired energy (UPE) required to ‘open’ secondary structure around small RNA’s target site on mRNA. The psRNATarget incorporates recent discoveries in plant miRNA target recognition, e.g. it distinguishes translational and post-transcriptional inhibition, and it reports the number of small RNA/target site pairs that may affect small RNA binding activity to target transcript. The psRNATarget server is designed for high-throughput analysis of next-generation data with an efficient distributed computing back-end pipeline that runs on a Linux cluster. The server front-end integrates three simplified user-friendly interfaces to accept user-submitted or preloaded small RNAs and transcript sequences; and outputs a comprehensive list of small RNA/target pairs along with the online tools for batch downloading, key word searching and results sorting. The psRNATarget server is freely available at http://plantgrn.noble.org/psRNATarget/. PMID:21622958

  20. Survival analysis and classification methods for forest fire size

    PubMed Central

    2018-01-01

    Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at “being held” (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances. PMID:29320497

  1. Adequacy of laser diffraction for soil particle size analysis

    PubMed Central

    Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash

    2017-01-01

    Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer’s recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to ‘overestimate’ plate-like clay particles, while laser diffraction will ‘underestimate’ the proportion of clay particles. In this study we used Lin’s concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle

  2. Blue and Black Cloth Targets: Effects of Size, Shape, and Color on Stable Fly (Diptera: Muscidae) Attraction.

    PubMed

    Hogsette, Jerome A; Foil, Lane D

    2018-04-02

    Stable fly management is challenging because of the fly's dispersal behavior and its tendency to remain on the host only while feeding. Optically attractive traps have been used to survey and sometimes reduce adult populations. Insecticide-treated blue and black cloth targets developed for tsetse fly management in Africa were found to be attractive to stable flies in the United States, and various evaluations were conducted in Louisiana and Florida. Tests using untreated targets were designed to answer questions about configuration, size, and color relative to efficacy and stability in high winds. Studies with electric grid targets and with targets paired with Olson traps showed cloth target color attraction in the following decreasing order: black > blue-black > blue. A solid black target is easier to make than a blue-black target because no sewing is involved. Attraction was not affected when flat 1-m2 targets were formed into cylinders, despite the limited view of the blue and black colors together. There was no reduction in attraction when the 1-m2 cylindrical targets were compared with smaller (63 × 30 cm high) cylindrical targets. In addition, there was no difference in attraction between the small blue-black, blue, and black targets. Significance of findings and implications of potential uses for treated targets are discussed. Target attraction was indicated by the numbers of stable flies captured on an Olson sticky trap placed 30 cm from the target. Although this system is adequate for field research, it greatly underestimates the actual numbers of stable flies attracted to treated targets.

  3. Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation.

    PubMed

    Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders

    2013-09-07

    The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.

  4. Computer-aided target tracking in motion analysis studies

    NASA Astrophysics Data System (ADS)

    Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.

    1990-08-01

    Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.

  5. Standardized Regression Coefficients as Indices of Effect Sizes in Meta-Analysis

    ERIC Educational Resources Information Center

    Kim, Rae Seon

    2011-01-01

    When conducting a meta-analysis, it is common to find many collected studies that report regression analyses, because multiple regression analysis is widely used in many fields. Meta-analysis uses effect sizes drawn from individual studies as a means of synthesizing a collection of results. However, indices of effect size from regression analyses…

  6. Box-Cox transformation of firm size data in statistical analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting Ting; Takaishi, Tetsuya

    2014-03-01

    Firm size data usually do not show the normality that is often assumed in statistical analysis such as regression analysis. In this study we focus on two firm size data: the number of employees and sale. Those data deviate considerably from a normal distribution. To improve the normality of those data we transform them by the Box-Cox transformation with appropriate parameters. The Box-Cox transformation parameters are determined so that the transformed data best show the kurtosis of a normal distribution. It is found that the two firm size data transformed by the Box-Cox transformation show strong linearity. This indicates that the number of employees and sale have the similar property as a firm size indicator. The Box-Cox parameters obtained for the firm size data are found to be very close to zero. In this case the Box-Cox transformations are approximately a log-transformation. This suggests that the firm size data we used are approximately log-normal distributions.

  7. Feature long axis size and local luminance contrast determine ship target acquisition performance: strong evidence for the TOD case

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; Toet, Alexander; Kooi, Frank L.

    2016-10-01

    Visual images of a civilian target ship on a sea background were produced using a CAD model. The total set consisted of 264 images and included 3 different color schemes, 2 ship viewing aspects, 5 sun illumination conditions, 2 sea reflection values, 2 ship positions with respect to the horizon and 3 values of atmospheric contrast reduction. In a perception experiment, the images were presented on a display in a long darkened corridor. Observers were asked to indicate the range at which they were able to detect the ship and classify the following 5 ship elements: accommodation, funnel, hull, mast, and hat above the bridge. This resulted in a total of 1584 Target Acquisition (TA) range estimates for two observers. Next, the ship contour, ship elements and corresponding TA ranges were analyzed applying several feature size and contrast measures. Most data coincide on a contrast versus angular size plot using (1) the long axis as characteristic ship/ship feature size and (2) local Weber contrast as characteristic ship/ship feature contrast. Finally, the data were compared with a variety of visual performance functions assumed to be representative for Target Acquisition: the TOD (Triangle Orientation Discrimination), MRC (Minimum Resolvable Contrast), CTF (Contrast Threshold Function), TTP (Targeting Task Performance) metric and circular disc detection data for the unaided eye (Blackwell). The results provide strong evidence for the TOD case: both position and slope of the TOD curve match the ship detection and classification data without any free parameter. In contrast, the MRC and CTF are too steep, the TTP and disc detection curves are too shallow and all these curves need an overall scaling factor in order to coincide with the ship and ship feature recognition data.

  8. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis.

    PubMed

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-12-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO 2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO 2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO 2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO 2 : anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO 2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO 2 nanoparticles.

  9. The Precision Efficacy Analysis for Regression Sample Size Method.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.; Barcikowski, Robert S.

    The general purpose of this study was to examine the efficiency of the Precision Efficacy Analysis for Regression (PEAR) method for choosing appropriate sample sizes in regression studies used for precision. The PEAR method, which is based on the algebraic manipulation of an accepted cross-validity formula, essentially uses an effect size to…

  10. ETF Facility evaporator skid orifice sizing design analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ELLINGSON, S.D.

    1999-08-31

    This document releases and records the design analysis for sizing the Orifice plate being installed on the Effluent Treatment Facility (ETF) evaporator skid per Engineering Change Notice (ECN) 651583.

  11. Transcriptome-wide Analysis of Exosome Targets

    PubMed Central

    Schneider, Claudia; Kudla, Grzegorz; Wlotzka, Wiebke; Tuck, Alex; Tollervey, David

    2012-01-01

    Summary The exosome plays major roles in RNA processing and surveillance but the in vivo target range and substrate acquisition mechanisms remain unclear. Here we apply in vivo RNA crosslinking (CRAC) to the nucleases (Rrp44, Rrp6), two structural subunits (Rrp41, Csl4) and a cofactor (Trf4) of the yeast exosome. Analysis of wild-type Rrp44 and catalytic mutants showed that both the CUT and SUT classes of non-coding RNA, snoRNAs and, most prominently, pre-tRNAs and other Pol III transcripts are targeted for oligoadenylation and exosome degradation. Unspliced pre-mRNAs were also identified as targets for Rrp44 and Rrp6. CRAC performed using cleavable proteins (split-CRAC) revealed that Rrp44 endonuclease and exonuclease activities cooperate on most substrates. Mapping oligoadenylated reads suggests that the endonuclease activity may release stalled exosome substrates. Rrp6 was preferentially associated with structured targets, which frequently did not associate with the core exosome indicating that substrates follow multiple pathways to the nucleases. PMID:23000172

  12. Uncertainty Prediction in Passive Target Motion Analysis

    DTIC Science & Technology

    2016-05-12

    fundamental property of bearings- only target motion analysis (TMA) is that bearing B to the Attorney Docket No. 300118 3 of 25 target 10 results...the measurements used to estimate them are often non-linear. This is true for the bearing observation: = tan −1 ( () () ) ( 3 ...Parameter Evaluation Plot ( PEP ) is one example of such a grid-based approach. U.S. Patent No. 7,020,046 discloses one version of this method and is

  13. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  14. Statistical Analysis Techniques for Small Sample Sizes

    NASA Technical Reports Server (NTRS)

    Navard, S. E.

    1984-01-01

    The small sample sizes problem which is encountered when dealing with analysis of space-flight data is examined. Because of such a amount of data available, careful analyses are essential to extract the maximum amount of information with acceptable accuracy. Statistical analysis of small samples is described. The background material necessary for understanding statistical hypothesis testing is outlined and the various tests which can be done on small samples are explained. Emphasis is on the underlying assumptions of each test and on considerations needed to choose the most appropriate test for a given type of analysis.

  15. Whole-Genome Thermodynamic Analysis Reduces siRNA Off-Target Effects

    PubMed Central

    Chen, Xi; Liu, Peng; Chou, Hui-Hsien

    2013-01-01

    Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST. We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools, siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by Picky, a whole-genome thermodynamic analysis tool. Picky can identify off-target genes that may hybridize to a siRNA within a user-specified melting temperature range. Our experiments validated that some off-target genes predicted by Picky can indeed be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes were also found to be inhibited as predicted by Picky. In summary, we demonstrate that whole-genome thermodynamic analysis can identify off-target genes that are missed in sequence-level screening. Because Picky prediction is deterministic according to thermodynamics, if a siRNA candidate has no Picky predicted off-targets, it is unlikely to cause off-target effects. Therefore, we recommend including Picky as an additional screening step in siRNA design. PMID:23484018

  16. Molecular Composition Analysis of Distant Targets

    NASA Technical Reports Server (NTRS)

    Hughes, Gary B.; Lubin, Philip

    2017-01-01

    This document is the Final Report for NASA Innovative Advanced Concepts (NIAC) Phase I Grant 15-NIAC16A-0145, titled Molecular Composition Analysis of Distant Targets. The research was focused on developing a system concept for probing the molecular composition of cold solar system targets, such as Asteroids, Comets, Planets and Moons from a distant vantage, for example from a spacecraft that is orbiting the target (Hughes et al., 2015). The orbiting spacecraft is equipped with a high-power laser, which is run by electricity from photovoltaic panels. The laser is directed at a spot on the target. Materials on the surface of the target are heated by the laser beam, and begin to melt and then evaporate, forming a plume of asteroid molecules in front of the heated spot. The heated spot glows, producing blackbody illumination that is visible from the spacecraft, via a path through the evaporated plume. As the blackbody radiation from the heated spot passes through the plume of evaporated material, molecules in the plume absorb radiation in a manner that is specific to the rotational and vibrational characteristics of the specific molecules. A spectrometer aboard the spacecraft is used to observe absorption lines in the blackbody signal. The pattern of absorption can be used to estimate the molecular composition of materials in the plume, which originated on the target. Focusing on a single spot produces a borehole, and shallow subsurface profiling of the targets bulk composition is possible. At the beginning of the Phase I research, the estimated Technology Readiness Level (TRL) of the system was TRL-1. During the Phase I research, an end-to-end theoretical model of the sensor system was developed from first principles. The model includes laser energy and optical propagation, target heating, melting and evaporation of target material, plume density, thermal radiation from the heated spot, molecular cross section of likely asteroid materials, and estimation of the

  17. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.

    PubMed

    Zhou, Hong; Zhou, Michael; Li, Daisy; Manthey, Joseph; Lioutikova, Ekaterina; Wang, Hong; Zeng, Xiao

    2017-11-17

    The beauty and power of the genome editing mechanism, CRISPR Cas9 endonuclease system, lies in the fact that it is RNA-programmable such that Cas9 can be guided to any genomic loci complementary to a 20-nt RNA, single guide RNA (sgRNA), to cleave double stranded DNA, allowing the introduction of wanted mutations. Unfortunately, it has been reported repeatedly that the sgRNA can also guide Cas9 to off-target sites where the DNA sequence is homologous to sgRNA. Using human genome and Streptococcus pyogenes Cas9 (SpCas9) as an example, this article mathematically analyzed the probabilities of off-target homologies of sgRNAs and discovered that for large genome size such as human genome, potential off-target homologies are inevitable for sgRNA selection. A highly efficient computationl algorithm was developed for whole genome sgRNA design and off-target homology searches. By means of a dynamically constructed sequence-indexed database and a simplified sequence alignment method, this algorithm achieves very high efficiency while guaranteeing the identification of all existing potential off-target homologies. Via this algorithm, 1,876,775 sgRNAs were designed for the 19,153 human mRNA genes and only two sgRNAs were found to be free of off-target homology. By means of the novel and efficient sgRNA homology search algorithm introduced in this article, genome wide sgRNA design and off-target analysis were conducted and the results confirmed the mathematical analysis that for a sgRNA sequence, it is almost impossible to escape potential off-target homologies. Future innovations on the CRISPR Cas9 gene editing technology need to focus on how to eliminate the Cas9 off-target activity.

  18. Topological Analysis and Gaussian Decision Tree: Effective Representation and Classification of Biosignals of Small Sample Size.

    PubMed

    Zhang, Zhifei; Song, Yang; Cui, Haochen; Wu, Jayne; Schwartz, Fernando; Qi, Hairong

    2017-09-01

    Bucking the trend of big data, in microdevice engineering, small sample size is common, especially when the device is still at the proof-of-concept stage. The small sample size, small interclass variation, and large intraclass variation, have brought biosignal analysis new challenges. Novel representation and classification approaches need to be developed to effectively recognize targets of interests with the absence of a large training set. Moving away from the traditional signal analysis in the spatiotemporal domain, we exploit the biosignal representation in the topological domain that would reveal the intrinsic structure of point clouds generated from the biosignal. Additionally, we propose a Gaussian-based decision tree (GDT), which can efficiently classify the biosignals even when the sample size is extremely small. This study is motivated by the application of mastitis detection using low-voltage alternating current electrokinetics (ACEK) where five categories of bisignals need to be recognized with only two samples in each class. Experimental results demonstrate the robustness of the topological features as well as the advantage of GDT over some conventional classifiers in handling small dataset. Our method reduces the voltage of ACEK to a safe level and still yields high-fidelity results with a short assay time. This paper makes two distinctive contributions to the field of biosignal analysis, including performing signal processing in the topological domain and handling extremely small dataset. Currently, there have been no related works that can efficiently tackle the dilemma between avoiding electrochemical reaction and accelerating assay process using ACEK.

  19. Particle size analysis of some water/oil/water multiple emulsions.

    PubMed

    Ursica, L; Tita, D; Palici, I; Tita, B; Vlaia, V

    2005-04-29

    Particle size analysis gives useful information about the structure and stability of multiple emulsions, which are important characteristics of these systems. It also enables the observation of the growth process of particles dispersed in multiple emulsions, accordingly, the evolution of their dimension in time. The size of multiple particles in the seven water/oil/water (W/O/W) emulsions was determined by measuring the particles size observed during the microscopic examination. In order to describe the distribution of the size of multiple particles, the value of two parameters that define the particle size was calculated: the arithmetical mean diameter and the median diameter. The results of the particle size analysis in the seven multiple emulsions W/O/W studied are presented as histograms of the distribution density immediately, 1 and 3 months after the preparation of each emulsion, as well as by establishing the mean and the median diameter of particles. The comparative study of the distribution histograms and of the mean and median diameters of W/O/W multiple particles indicates that the prepared emulsions are fine and very fine dispersions, stable, and presenting a growth of the abovementioned diameters during the study.

  20. Accuracy in parameter estimation for targeted effects in structural equation modeling: sample size planning for narrow confidence intervals.

    PubMed

    Lai, Keke; Kelley, Ken

    2011-06-01

    In addition to evaluating a structural equation model (SEM) as a whole, often the model parameters are of interest and confidence intervals for those parameters are formed. Given a model with a good overall fit, it is entirely possible for the targeted effects of interest to have very wide confidence intervals, thus giving little information about the magnitude of the population targeted effects. With the goal of obtaining sufficiently narrow confidence intervals for the model parameters of interest, sample size planning methods for SEM are developed from the accuracy in parameter estimation approach. One method plans for the sample size so that the expected confidence interval width is sufficiently narrow. An extended procedure ensures that the obtained confidence interval will be no wider than desired, with some specified degree of assurance. A Monte Carlo simulation study was conducted that verified the effectiveness of the procedures in realistic situations. The methods developed have been implemented in the MBESS package in R so that they can be easily applied by researchers. © 2011 American Psychological Association

  1. Analysis of Noise Mechanisms in Cell-Size Control.

    PubMed

    Modi, Saurabh; Vargas-Garcia, Cesar Augusto; Ghusinga, Khem Raj; Singh, Abhyudai

    2017-06-06

    At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth). Analysis reveals that variation in cell size is most sensitive to errors in partitioning of volume among daughter cells, and not surprisingly, this process is well regulated among microbes. Moreover, depending on the dominant noise mechanism, different size-control strategies (or a combination of them) provide efficient buffering of size variations. We further explore mixer models of size control, where a timer phase precedes/follows an adder, as has been proposed in Caulobacter crescentus. Although mixing a timer and an adder can sometimes attenuate size variations, it invariably leads to higher-order moments growing unboundedly over time. This results in a power-law distribution for the cell size, with an exponent that depends inversely on the noise in the timer phase. Consistent with theory, we find evidence of power-law statistics in the tail of C. crescentus cell-size distribution, although there is a discrepancy between the observed power-law exponent and that predicted from the noise parameters. The discrepancy, however, is removed after data reveal that the size added by individual newborns in the adder phase itself exhibits power-law statistics. Taken together, this study provides key insights into the role of noise mechanisms in size homeostasis, and suggests an inextricable link between timer-based models of size control and

  2. Size matters: a meta-analysis on the impact of hospital size on patient mortality.

    PubMed

    Fareed, Naleef

    2012-06-01

    This paper seeks to understand the relationship between hospital size and patient mortality. Patient mortality has been used by several studies in the health services research field as a proxy for measuring healthcare quality. A systematic review is conducted to identify studies that investigate the impact of hospital size on patient mortality. Using the findings of 21 effect sizes from 10 eligible studies, a meta-analysis is performed using a random effects model. Subgroup analyses using three factors--the measure used for hospital size, type of mortality measure used and whether mortality was adjusted or unadjusted--were utilised to investigate their moderating influence on the study's primary relationship. Results from this analysis indicate that big hospitals have lower odds of patient mortality versus small hospitals. Specifically, the probability of patient mortality in a big hospital, in reference to a small hospital, is 11% less. Subgroup analyses show that studies with unadjusted mortality rates have an even lower overall odds ratio of mortality versus studies with adjusted mortality rates. Aside from some limitations in data reporting, the findings of this paper support theoretical notions that big hospitals have lower mortality rates than small hospitals. Guidelines for better data reporting and future research are provided to further explore the phenomenon. Policy implications of this paper's findings are underscored and a sense of urgency is called for in an effort to help improve the state of a healthcare system that struggles with advancing healthcare quality. © 2012 The Author. International Journal of Evidence-Based Healthcare © 2012 The Joanna Briggs Institute.

  3. Global preamplification simplifies targeted mRNA quantification

    PubMed Central

    Kroneis, Thomas; Jonasson, Emma; Andersson, Daniel; Dolatabadi, Soheila; Ståhlberg, Anders

    2017-01-01

    The need to perform gene expression profiling using next generation sequencing and quantitative real-time PCR (qPCR) on small sample sizes and single cells is rapidly expanding. However, to analyse few molecules, preamplification is required. Here, we studied global and target-specific preamplification using 96 optimised qPCR assays. To evaluate the preamplification strategies, we monitored the reactions in real-time using SYBR Green I detection chemistry followed by melting curve analysis. Next, we compared yield and reproducibility of global preamplification to that of target-specific preamplification by qPCR using the same amount of total RNA. Global preamplification generated 9.3-fold lower yield and 1.6-fold lower reproducibility than target-specific preamplification. However, the performance of global preamplification is sufficient for most downstream applications and offers several advantages over target-specific preamplification. To demonstrate the potential of global preamplification we analysed the expression of 15 genes in 60 single cells. In conclusion, we show that global preamplification simplifies targeted gene expression profiling of small sample sizes by a flexible workflow. We outline the pros and cons for global preamplification compared to target-specific preamplification. PMID:28332609

  4. STIS Target Acquisitions During SMOV

    NASA Astrophysics Data System (ADS)

    Katsanis, Rocio M.; Downes, Ron; Hartig, George; Kraemer, Steve

    1997-07-01

    We summarize the first results on the analysis of in-flight STIS target acquisition (ACQ and ACQ/PEAK). These results show that the STIS target acquisition (ACQ) is working very accurately for point sources (within 0.5 pixels = 0.025 arcseconds), about 4 times better than specified in the Instrument Handbook. As a result of the accuracy of the ACQ algorithm, we are no longer recommending to perform ACQ/PEAKs for the 0.2 arcsecond wide slits. For diffuse acquisitions the accuracy varies with target size. Although analysis of ACQ/PEAK data is hampered by a flight software problem, we anticipate that peakups will be accurate to roughly ±5% of the slit width (instead of the ±15% pr eviously advertised). We are implementing several enhancements to the flight software that will take effect by mid- August to improve the quality of the acquisitions.

  5. High-resolution, submicron particle size distribution analysis using gravitational-sweep sedimentation.

    PubMed Central

    Mächtle, W

    1999-01-01

    Sedimentation velocity is a powerful tool for the analysis of complex solutions of macromolecules. However, sample turbidity imposes an upper limit to the size of molecular complexes currently amenable to such analysis. Furthermore, the breadth of the particle size distribution, combined with possible variations in the density of different particles, makes it difficult to analyze extremely complex mixtures. These same problems are faced in the polymer industry, where dispersions of latices, pigments, lacquers, and emulsions must be characterized. There is a rich history of methods developed for the polymer industry finding use in the biochemical sciences. Two such methods are presented. These use analytical ultracentrifugation to determine the density and size distributions for submicron-sized particles. Both methods rely on Stokes' equations to estimate particle size and density, whereas turbidity, corrected using Mie's theory, provides the concentration measurement. The first method uses the sedimentation time in dispersion media of different densities to evaluate the particle density and size distribution. This method works provided the sample is chemically homogeneous. The second method splices together data gathered at different sample concentrations, thus permitting the high-resolution determination of the size distribution of particle diameters ranging from 10 to 3000 nm. By increasing the rotor speed exponentially from 0 to 40,000 rpm over a 1-h period, size distributions may be measured for extremely broadly distributed dispersions. Presented here is a short history of particle size distribution analysis using the ultracentrifuge, along with a description of the newest experimental methods. Several applications of the methods are provided that demonstrate the breadth of its utility, including extensions to samples containing nonspherical and chromophoric particles. PMID:9916040

  6. High-Precision Pinpointing of Luminescent Targets in Encoder-Assisted Scanning Microscopy Allowing High-Speed Quantitative Analysis.

    PubMed

    Zheng, Xianlin; Lu, Yiqing; Zhao, Jiangbo; Zhang, Yuhai; Ren, Wei; Liu, Deming; Lu, Jie; Piper, James A; Leif, Robert C; Liu, Xiaogang; Jin, Dayong

    2016-01-19

    Compared with routine microscopy imaging of a few analytes at a time, rapid scanning through the whole sample area of a microscope slide to locate every single target object offers many advantages in terms of simplicity, speed, throughput, and potential for robust quantitative analysis. Existing techniques that accommodate solid-phase samples incorporating individual micrometer-sized targets generally rely on digital microscopy and image analysis, with intrinsically low throughput and reliability. Here, we report an advanced on-the-fly stage scanning method to achieve high-precision target location across the whole slide. By integrating X- and Y-axis linear encoders to a motorized stage as the virtual "grids" that provide real-time positional references, we demonstrate an orthogonal scanning automated microscopy (OSAM) technique which can search a coverslip area of 50 × 24 mm(2) in just 5.3 min and locate individual 15 μm lanthanide luminescent microspheres with standard deviations of 1.38 and 1.75 μm in X and Y directions. Alongside implementation of an autofocus unit that compensates the tilt of a slide in the Z-axis in real time, we increase the luminescence detection efficiency by 35% with an improved coefficient of variation. We demonstrate the capability of advanced OSAM for robust quantification of luminescence intensities and lifetimes for a variety of micrometer-scale luminescent targets, specifically single down-shifting and upconversion microspheres, crystalline microplates, and color-barcoded microrods, as well as quantitative suspension array assays of biotinylated-DNA functionalized upconversion nanoparticles.

  7. Penetration analysis of projectile with inclined concrete target

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  8. Molecular Analysis of Sarcoidosis Granulomas Reveals Antimicrobial Targets

    PubMed Central

    Celada, Lindsay J.; Polosukhin, Vasiliy V.; Atkinson, James B.; Drake, Wonder P.

    2016-01-01

    Sarcoidosis is a granulomatous disease of unknown cause. Prior molecular and immunologic studies have confirmed the presence of mycobacterial virulence factors, such as catalase peroxidase and superoxide dismutase A, within sarcoidosis granulomas. Molecular analysis of granulomas can identify targets of known antibiotics classes. Currently, major antibiotics are directed against DNA synthesis, protein synthesis, and cell wall formation. We conducted molecular analysis of 40 sarcoidosis diagnostic specimens and compared them with 33 disease control specimens for the presence of mycobacterial genes that encode antibiotic targets. We assessed for genes involved in DNA synthesis (DNA gyrase A [gyrA] and DNA gyrase B), protein synthesis (RNA polymerase subunit β), cell wall synthesis (embCAB operon and enoyl reductase), and catalase peroxidase. Immunohistochemical analysis was conducted to investigate the locale of mycobacterial genes such as gyrA within 12 sarcoidosis specimens and 12 disease controls. Mycobacterial DNA was detected in 33 of 39 sarcoidosis specimens by quantitative real-time polymerase chain reaction compared with 2 of 30 disease control specimens (P < 0.001, two-tailed Fisher’s test). Twenty of 39 were positive for three or more mycobacterial genes, compared with 1 of 30 control specimens (P < 0.001, two-tailed Fisher’s test). Immunohistochemistry analysis localized mycobacterial gyrA nucleic acids to sites of granuloma formation in 9 of 12 sarcoidosis specimens compared with 1 of 12 disease controls (P < 0.01). Microbial genes encoding enzymes that can be targeted by currently available antimycobacterial antibiotics are present in sarcoidosis specimens and localize to sites of granulomatous inflammation. Use of antimicrobials directed against target enzymes may be an innovative treatment alternative. PMID:26807608

  9. Analysis and sizing of Mars aerobrake structure

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Craft, W. J.

    1993-01-01

    A cone-sphere aeroshell structure for aerobraking into Martian atmosphere is studied. Using this structural configuration, a space frame load-bearing structure is proposed. To generate this structure efficiently and to perform a variety of studies of several configurations, a mesh generator that utilizes only a few configurational parameters is developed. A finite element analysis program that analyzes space frame structures was developed. A sizing algorithm that arrives at a minimum mass configuration was developed and integrated into the finite element analysis program. A typical 135-ft-diam aerobrake configuration was analyzed and sized. The minimum mass obtained in this study using high modulus graphite/epoxy composite material members is compared with the masses obtained from two other aerobrake structures using lightweight erectable tetrahedral truss and part-spherical truss configurations. Excellent agreement for the minimum mass was obtained with the three different aerobrake structures. Also, the minimum mass using the present structure was obtained when the supports were not at the base but at about 75 percent of the base diameter.

  10. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.

    PubMed

    Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min

    2013-07-01

    Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Exploratory Factor Analysis with Small Sample Sizes

    ERIC Educational Resources Information Center

    de Winter, J. C. F.; Dodou, D.; Wieringa, P. A.

    2009-01-01

    Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes ("N"), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for "N" below 50. Simulations were carried out to estimate the minimum required "N" for different…

  12. Sentiment analysis enhancement with target variable in Kumar’s Algorithm

    NASA Astrophysics Data System (ADS)

    Arman, A. A.; Kawi, A. B.; Hurriyati, R.

    2016-04-01

    Sentiment analysis (also known as opinion mining) refers to the use of text analysis and computational linguistics to identify and extract subjective information in source materials. Sentiment analysis is widely applied to reviews discussion that is being talked in social media for many purposes, ranging from marketing, customer service, or public opinion of public policy. One of the popular algorithm for Sentiment Analysis implementation is Kumar algorithm that developed by Kumar and Sebastian. Kumar algorithm can identify the sentiment score of the statement, sentence or tweet, but cannot determine the relationship of the object or target related to the sentiment being analysed. This research proposed solution for that challenge by adding additional component that represent object or target to the existing algorithm (Kumar algorithm). The result of this research is a modified algorithm that can give sentiment score based on a given object or target.

  13. A Practical Method of Policy Analysis by Estimating Effect Size

    ERIC Educational Resources Information Center

    Phelps, James L.

    2011-01-01

    The previous articles on class size and other productivity research paint a complex and confusing picture of the relationship between policy variables and student achievement. Missing is a conceptual scheme capable of combining the seemingly unrelated research and dissimilar estimates of effect size into a unified structure for policy analysis and…

  14. Simultaneous Comparison of Two Roller Compaction Techniques and Two Particle Size Analysis Methods.

    PubMed

    Saarinen, Tuomas; Antikainen, Osmo; Yliruusi, Jouko

    2017-11-01

    A new dry granulation technique, gas-assisted roller compaction (GARC), was compared with conventional roller compaction (CRC) by manufacturing 34 granulation batches. The process variables studied were roll pressure, roll speed, and sieve size of the conical mill. The main quality attributes measured were granule size and flow characteristics. Within granulations also the real applicability of two particle size analysis techniques, sieve analysis (SA) and fast imaging technique (Flashsizer, FS), was tested. All granules obtained were acceptable. In general, the particle size of GARC granules was slightly larger than that of CRC granules. In addition, the GARC granules had better flowability. For example, the tablet weight variation of GARC granules was close to 2%, indicating good flowing and packing characteristics. The comparison of the two particle size analysis techniques showed that SA was more accurate in determining wide and bimodal size distributions while FS showed narrower and mono-modal distributions. However, both techniques gave good estimates for mean granule sizes. Overall, SA was a time-consuming but accurate technique that provided reliable information for the entire granule size distribution. By contrast, FS oversimplified the shape of the size distribution, but nevertheless yielded acceptable estimates for mean particle size. In general, FS was two to three orders of magnitude faster than SA.

  15. Efficient moving target analysis for inverse synthetic aperture radar images via joint speeded-up robust features and regular moment

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Su, Fulin

    2018-01-01

    We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.

  16. Automated Big Data Analysis in Bottom-up and Targeted Proteomics

    PubMed Central

    van der Plas-Duivesteijn, Suzanne; Domański, Dominik; Smith, Derek; Borchers, Christoph; Palmblad, Magnus; Mohamme, Yassene

    2014-01-01

    Similar to other data intensive sciences, analyzing mass spectrometry-based proteomics data involves multiple steps and diverse software using different algorithms and data formats and sizes. Besides that the distributed and evolving nature of the data in online repositories, another challenge is that a scientists have to deal with many steps of analysis pipelines. A documented data processing is also becoming an essential part for the overall reproducibility of the results. Thanks to different e-Science initiatives, scientific workflow engines have become a means for automated, sharable and reproducible data processing. While these are designed as general tools, they can be employed to solve different challenges that we are facing in handling our Big Data. Here we present three use cases: improving the performance of different spectral search engines by decomposing input data and recomposing the resulting files, building spectral libraries from more than 20 million spectra, and integrating information from multiple resources to select most appropriate peptides for targeted proteomics analyses. The three use cases demonstrate different challenges in exploiting proteomics data analysis. In the first we integrate local and cloud processing resources in order to obtain better performance resulting in more than 30-fold speed improvement. By considering search engines as legacy software our solution is applicable to multiple search algorithms. The second use case is an example of automated processing of many data files of different sizes and locations, starting with raw data and ending with the final, ready-to-use library. This demonstrates the robustness and fault tolerance when dealing with huge amount data stored in multiple files. The third use case demonstrates retrieval and integration of information and data from multiple online repositories. In addition to the diversity of data formats and Web interfaces, this use case also illustrates how to deal with

  17. A novel measure of effect size for mediation analysis.

    PubMed

    Lachowicz, Mark J; Preacher, Kristopher J; Kelley, Ken

    2018-06-01

    Mediation analysis has become one of the most popular statistical methods in the social sciences. However, many currently available effect size measures for mediation have limitations that restrict their use to specific mediation models. In this article, we develop a measure of effect size that addresses these limitations. We show how modification of a currently existing effect size measure results in a novel effect size measure with many desirable properties. We also derive an expression for the bias of the sample estimator for the proposed effect size measure and propose an adjusted version of the estimator. We present a Monte Carlo simulation study conducted to examine the finite sampling properties of the adjusted and unadjusted estimators, which shows that the adjusted estimator is effective at recovering the true value it estimates. Finally, we demonstrate the use of the effect size measure with an empirical example. We provide freely available software so that researchers can immediately implement the methods we discuss. Our developments here extend the existing literature on effect sizes and mediation by developing a potentially useful method of communicating the magnitude of mediation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Targeted Therapy for Acute Autoimmune Myocarditis with Nano-Sized Liposomal FK506 in Rats.

    PubMed

    Okuda, Keiji; Fu, Hai Ying; Matsuzaki, Takashi; Araki, Ryo; Tsuchida, Shota; Thanikachalam, Punniyakoti V; Fukuta, Tatsuya; Asai, Tomohiro; Yamato, Masaki; Sanada, Shoji; Asanuma, Hiroshi; Asano, Yoshihiro; Asakura, Masanori; Hanawa, Haruo; Hao, Hiroyuki; Oku, Naoto; Takashima, Seiji; Kitakaze, Masafumi; Sakata, Yasushi; Minamino, Tetsuo

    2016-01-01

    Immunosuppressive agents are used for the treatment of immune-mediated myocarditis; however, the need to develop a more effective therapeutic approach remains. Nano-sized liposomes may accumulate in and selectively deliver drugs to an inflammatory lesion with enhanced vascular permeability. The aims of this study were to investigate the distribution of liposomal FK506, an immunosuppressive drug encapsulated within liposomes, and the drug's effects on cardiac function in a rat experimental autoimmune myocarditis (EAM) model. We prepared polyethylene glycol-modified liposomal FK506 (mean diameter: 109.5 ± 4.4 nm). We induced EAM by immunization with porcine myosin and assessed the tissue distribution of the nano-sized beads and liposomal FK506 in this model. After liposomal or free FK506 was administered on days 14 and 17 after immunization, the cytokine expression in the rat hearts along with the histological findings and hemodynamic parameters were determined on day 21. Ex vivo fluorescent imaging revealed that intravenously administered fluorescent-labeled nano-sized beads had accumulated in myocarditic but not normal hearts on day 14 after immunization and thereafter. Compared to the administration of free FK506, FK506 levels were increased in both the plasma and hearts of EAM rats when liposomal FK506 was administered. The administration of liposomal FK506 markedly suppressed the expression of cytokines, such as interferon-γ and tumor necrosis factor-α, and reduced inflammation and fibrosis in the myocardium on day 21 compared to free FK506. The administration of liposomal FK506 also markedly ameliorated cardiac dysfunction on day 21 compared to free FK506. Nano-sized liposomes may be a promising drug delivery system for targeting myocarditic hearts with cardioprotective agents.

  19. Synthetic aperture radar operator tactical target acquisition research

    NASA Technical Reports Server (NTRS)

    Hershberger, M. L.; Craig, D. W.

    1978-01-01

    A radar target acquisition research study was conducted to access the effects of two levels of 13 radar sensor, display, and mission parameters on operator tactical target acquisition. A saturated fractional-factorial screening design was employed to examine these parameters. Data analysis computed ETA squared values for main and second-order effects for the variables tested. Ranking of the research parameters in terms of importance to system design revealed four variables (radar coverage, radar resolution/multiple looks, display resolution, and display size) accounted for 50 percent of the target acquisition probability variance.

  20. Nuclear Security: Target Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Surinder Paul; Gibbs, Philip W.; Bultz, Garl A.

    2014-03-01

    This objectives of this session were to understand the basic steps of target identification; describe the SNRI targets in detail; characterize specific targets with more detail; prioritize targets based on guidance documents; understand the graded safeguards concept; identify roll up and understand why it is a concern; and recognize the category for different materials.

  1. Drug target inference through pathway analysis of genomics data

    PubMed Central

    Ma, Haisu; Zhao, Hongyu

    2013-01-01

    Statistical modeling coupled with bioinformatics is commonly used for drug discovery. Although there exist many approaches for single target based drug design and target inference, recent years have seen a paradigm shift to system-level pharmacological research. Pathway analysis of genomics data represents one promising direction for computational inference of drug targets. This article aims at providing a comprehensive review on the evolving issues is this field, covering methodological developments, their pros and cons, as well as future research directions. PMID:23369829

  2. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.

    PubMed

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W

    2016-05-01

    Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level. This pre-recycling process aims to achieve material segregation with a focus on the metallic portion and provide clear targets for subsequent recycling processes. The results show that contained metallic materials can be segregated into different size fractions at different levels. For example, for lithium cobalt oxide batteries, cobalt content has been improved from 35% by weight in the metallic portion before this pre-recycling process to 82% in the ultrafine (<0.5mm) fraction and to 68% in the fine (0.5-1mm) fraction, and been excluded in the larger pieces (>6mm). However, size fractions across multiple battery chemistries showed significant variability in material concentration. This finding indicates that sorting by cathode before pre-treatment could reduce the uncertainty of input materials and therefore improve the purity of output streams. Thus, battery labeling systems may be an important step towards implementation of any pre-recycling process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Why Do We Miss Rare Targets? Exploring the Boundaries of the Low Prevalence Effect

    DTIC Science & Technology

    2008-11-24

    effect of prevalence ( F (1,8) = 34.2, p G 0.001, partial eta2 = 0.81), but no effect of set size ( F (1,8) G 1 , n.s.) and no interaction ( F (1,8) G 1 , n.s...Figure 2d; for Prevalence, Target Presence, and all interaction terms, F (1,8) G 1 , n.s.; for Set Size, F (1,8) = 1.7, p 9 0.2). What hints can we get... 1 , n.s.), and no interaction ( F (1,14) G 1 , n.s.). There were insufficient errors on target-absent trials for analysis. An analysis by RT quartile

  4. Capture of shrinking targets with realistic shrink patterns.

    PubMed

    Hoffmann, Errol R; Chan, Alan H S; Dizmen, Coskun

    2013-01-01

    Previous research [Hoffmann, E. R. 2011. "Capture of Shrinking Targets." Ergonomics 54 (6): 519-530] reported experiments for capture of shrinking targets where the target decreased in size at a uniform rate. This work extended this research for targets having a shrink-size versus time pattern that of an aircraft receding from an observer. In Experiment 1, the time to capture the target in this case was well correlated in terms of Fitts' index of difficulty, measured at the time of capture of the target, a result that is in agreement with the 'balanced' model of Johnson and Hart [Johnson, W. W., and Hart, S. G. 1987. "Step Tracking Shrinking Targets." Proceedings of the human factors society 31st annual meeting, New York City, October 1987, 248-252]. Experiment 2 measured the probability of target capture for varying initial target sizes and target shrink rates constant, defined as the time for the target to shrink to half its initial size. Data of shrink time constant for 50% probability of capture were related to initial target size but did not greatly affect target capture as the rate of target shrinking decreased rapidly with time.

  5. Sizing and Lifecycle Cost Analysis of an Ares V Composite Interstage

    NASA Technical Reports Server (NTRS)

    Mann, Troy; Smeltzer, Stan; Grenoble, Ray; Mason, Brian; Rosario, Sev; Fairbairn, Bob

    2012-01-01

    The Interstage Element of the Ares V launch vehicle was sized using a commercially available structural sizing software tool. Two different concepts were considered, a metallic design and a composite design. Both concepts were sized using similar levels of analysis fidelity and included the influence of design details on each concept. Additionally, the impact of the different manufacturing techniques and failure mechanisms for composite and metallic construction were considered. Significant details were included in analysis models of each concept, including penetrations for human access, joint connections, as well as secondary loading effects. The designs and results of the analysis were used to determine lifecycle cost estimates for the two Interstage designs. Lifecycle cost estimates were based on industry provided cost data for similar launch vehicle components. The results indicated that significant mass as well as cost savings are attainable for the chosen composite concept as compared with a metallic option.

  6. Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

    DOE PAGES

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; ...

    2014-09-01

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less

  7. Detection and size analysis of proteins with switchable DNA layers.

    PubMed

    Rant, Ulrich; Pringsheim, Erika; Kaiser, Wolfgang; Arinaga, Kenji; Knezevic, Jelena; Tornow, Marc; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard

    2009-04-01

    We introduce a chip-compatible scheme for the label-free detection of proteins in real-time that is based on the electrically driven conformation switching of DNA oligonucleotides on metal surfaces. The switching behavior is a sensitive indicator for the specific recognition of IgG antibodies and antibody fragments, which can be detected in quantities of less than 10(-18) mol on the sensor surface. Moreover, we show how the dynamics of the induced molecular motion can be monitored by measuring the high-frequency switching response. When proteins bind to the layer, the increase in hydrodynamic drag slows the switching dynamics, which allows us to determine the size of the captured proteins. We demonstrate the identification of different antibody fragments by means of their kinetic fingerprint. The switchDNA method represents a generic approach to simultaneously detect and size target molecules using a single analytical platform.

  8. Sample size determination for mediation analysis of longitudinal data.

    PubMed

    Pan, Haitao; Liu, Suyu; Miao, Danmin; Yuan, Ying

    2018-03-27

    Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design. To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method. Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use. Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.

  9. HASA: Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Harloff, Gary J.; Berkowitz, Brian M.

    1988-01-01

    A review of the hypersonic literature indicated that a general weight and sizing analysis was not available for hypersonic orbital, transport, and fighter vehicles. The objective here is to develop such a method for the preliminary design of aerospace vehicles. This report describes the developed methodology and provides examples to illustrate the model, entitled the Hypersonic Aerospace Sizing Analysis (HASA). It can be used to predict the size and weight of hypersonic single-stage and two-stage-to-orbit vehicles and transports, and is also relevant for supersonic transports. HASA is a sizing analysis that determines vehicle length and volume, consistent with body, fuel, structural, and payload weights. The vehicle component weights are obtained from statistical equations for the body, wing, tail, thermal protection system, landing gear, thrust structure, engine, fuel tank, hydraulic system, avionics, electral system, equipment payload, and propellant. Sample size and weight predictions are given for the Space Shuttle orbiter and other proposed vehicles, including four hypersonic transports, a Mach 6 fighter, a supersonic transport (SST), a single-stage-to-orbit (SSTO) vehicle, a two-stage Space Shuttle with a booster and an orbiter, and two methane-fueled vehicles.

  10. Developing the Noncentrality Parameter for Calculating Group Sample Sizes in Heterogeneous Analysis of Variance

    ERIC Educational Resources Information Center

    Luh, Wei-Ming; Guo, Jiin-Huarng

    2011-01-01

    Sample size determination is an important issue in planning research. In the context of one-way fixed-effect analysis of variance, the conventional sample size formula cannot be applied for the heterogeneous variance cases. This study discusses the sample size requirement for the Welch test in the one-way fixed-effect analysis of variance with…

  11. Particle size analysis of amalgam powder and handpiece generated specimens.

    PubMed

    Drummond, J L; Hathorn, R M; Cailas, M D; Karuhn, R

    2001-07-01

    The increasing interest in the elimination of amalgam particles from the dental waste (DW) stream, requires efficient devices to remove these particles. The major objective of this project was to perform a comparative evaluation of five basic methods of particle size analysis in terms of the instrument's ability to quantify the size distribution of the various components within the DW stream. The analytical techniques chosen were image analysis via scanning electron microscopy, standard wire mesh sieves, X-ray sedigraphy, laser diffraction, and electrozone analysis. The DW particle stream components were represented by amalgam powders and handpiece/diamond bur generated specimens of enamel; dentin, whole tooth, and condensed amalgam. Each analytical method quantified the examined DW particle stream components. However, X-ray sedigraphy, electrozone, and laser diffraction particle analyses provided similar results for determining particle distributions of DW samples. These three methods were able to more clearly quantify the properties of the examined powder and condensed amalgam samples. Furthermore, these methods indicated that a significant fraction of the DW stream contains particles less than 20 microm. The findings of this study indicated that the electrozone method is likely to be the most effective technique for quantifying the particle size distribution in the DW particle stream. This method required a relative small volume of sample, was not affected by density, shape factors or optical properties, and measured a sufficient number of particles to provide a reliable representation of the particle size distribution curve.

  12. Estimating Most Productive Scale Size in Data Envelopment Analysis with Integer Value Data

    NASA Astrophysics Data System (ADS)

    Dwi Sari, Yunita; Angria S, Layla; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    The most productive scale size (MPSS) is a measurement that states how resources should be organized and utilized to achieve optimal results. The most productive scale size (MPSS) can be used as a benchmark for the success of an industry or company in producing goods or services. To estimate the most productive scale size (MPSS), each decision making unit (DMU) should pay attention the level of input-output efficiency, by data envelopment analysis (DEA) method decision making unit (DMU) can identify units used as references that can help to find the cause and solution from inefficiencies can optimize productivity that main advantage in managerial applications. Therefore, data envelopment analysis (DEA) is chosen to estimating most productive scale size (MPSS) that will focus on the input of integer value data with the CCR model and the BCC model. The purpose of this research is to find the best solution for estimating most productive scale size (MPSS) with input of integer value data in data envelopment analysis (DEA) method.

  13. Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease.

    PubMed

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Stein, Jason L; Hibar, Derrek P; Nichols, Thomas E; Medland, Sarah E; Thompson, Paul M; Hager, Reinmar

    2014-10-03

    Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.

  14. Interaction between numbers and size during visual search.

    PubMed

    Krause, Florian; Bekkering, Harold; Pratt, Jay; Lindemann, Oliver

    2017-05-01

    The current study investigates an interaction between numbers and physical size (i.e. size congruity) in visual search. In three experiments, participants had to detect a physically large (or small) target item among physically small (or large) distractors in a search task comprising single-digit numbers. The relative numerical size of the digits was varied, such that the target item was either among the numerically large or small numbers in the search display and the relation between numerical and physical size was either congruent or incongruent. Perceptual differences of the stimuli were controlled by a condition in which participants had to search for a differently coloured target item with the same physical size and by the usage of LCD-style numbers that were matched in visual similarity by shape transformations. The results of all three experiments consistently revealed that detecting a physically large target item is significantly faster when the numerical size of the target item is large as well (congruent), compared to when it is small (incongruent). This novel finding of a size congruity effect in visual search demonstrates an interaction between numerical and physical size in an experimental setting beyond typically used binary comparison tasks, and provides important new evidence for the notion of shared cognitive codes for numbers and sensorimotor magnitudes. Theoretical consequences for recent models on attention, magnitude representation and their interactions are discussed.

  15. Monitoring urban subsidence based on SAR lnterferometric point target analysis

    USGS Publications Warehouse

    Zhang, Y.; Zhang, Jiahua; Gong, W.; Lu, Z.

    2009-01-01

    lnterferometric point target analysis (IPTA) is one of the latest developments in radar interferometric processing. It is achieved by analysis of the interferometric phases of some individual point targets, which are discrete and present temporarily stable backscattering characteristics, in long temporal series of interferometric SAR images. This paper analyzes the interferometric phase model of point targets, and then addresses two key issues within IPTA process. Firstly, a spatial searching method is proposed to unwrap the interferometric phase difference between two neighboring point targets. The height residual error and linear deformation rate of each point target can then be calculated, when a global reference point with known height correction and deformation history is chosen. Secondly, a spatial-temporal filtering scheme is proposed to further separate the atmosphere phase and nonlinear deformation phase from the residual interferometric phase. Finally, an experiment of the developed IPTA methodology is conducted over Suzhou urban area. Totally 38 ERS-1/2 SAR scenes are analyzed, and the deformation information over 3 546 point targets in the time span of 1992-2002 are generated. The IPTA-derived deformation shows very good agreement with the published result, which demonstrates that the IPTA technique can be developed into an operational tool to map the ground subsidence over urban area.

  16. Equations for hydraulic conductivity estimation from particle size distribution: A dimensional analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Peng; François, Bertrand; Lambert, Pierre

    2017-09-01

    Estimating hydraulic conductivity from particle size distribution (PSD) is an important issue for various engineering problems. Classical models such as Hazen model, Beyer model, and Kozeny-Carman model usually regard the grain diameter at 10% passing (d10) as an effective grain size and the effects of particle size uniformity (in Beyer model) or porosity (in Kozeny-Carman model) are sometimes embedded. This technical note applies the dimensional analysis (Buckingham's ∏ theorem) to analyze the relationship between hydraulic conductivity and particle size distribution (PSD). The porosity is regarded as a dependent variable on the grain size distribution in unconsolidated conditions. It indicates that the coefficient of grain size uniformity and a dimensionless group representing the gravity effect, which is proportional to the mean grain volume, are the main two determinative parameters for estimating hydraulic conductivity. Regression analysis is then carried out on a database comprising 431 samples collected from different depositional environments and new equations are developed for hydraulic conductivity estimation. The new equation, validated in specimens beyond the database, shows an improved prediction comparing to using the classic models.

  17. Online virtual isocenter based radiation field targeting for high performance small animal microirradiation

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Ansell, Steve; Lindsay, Patricia E.; Jaffray, David A.

    2015-12-01

    Advances in precision microirradiators for small animal radiation oncology studies have provided the framework for novel translational radiobiological studies. Such systems target radiation fields at the scale required for small animal investigations, typically through a combination of on-board computed tomography image guidance and fixed, interchangeable collimators. Robust targeting accuracy of these radiation fields remains challenging, particularly at the millimetre scale field sizes achievable by the majority of microirradiators. Consistent and reproducible targeting accuracy is further hindered as collimators are removed and inserted during a typical experimental workflow. This investigation quantified this targeting uncertainty and developed an online method based on a virtual treatment isocenter to actively ensure high performance targeting accuracy for all radiation field sizes. The results indicated that the two-dimensional field placement uncertainty was as high as 1.16 mm at isocenter, with simulations suggesting this error could be reduced to 0.20 mm using the online correction method. End-to-end targeting analysis of a ball bearing target on radiochromic film sections showed an improved targeting accuracy with the three-dimensional vector targeting error across six different collimators reduced from 0.56+/- 0.05 mm (mean  ±  SD) to 0.05+/- 0.05 mm for an isotropic imaging voxel size of 0.1 mm.

  18. Accuracy of software-assisted detection of tumour feeders in transcatheter hepatic chemoembolization using three target definition protocols.

    PubMed

    Iwazawa, J; Ohue, S; Hashimoto, N; Mitani, T

    2014-02-01

    To compare the accuracy of computer software analysis using three different target-definition protocols to detect tumour feeder vessels for transarterial chemoembolization of hepatocellular carcinoma. C-arm computed tomography (CT) data were analysed for 81 tumours from 57 patients who had undergone chemoembolization using software-assisted detection of tumour feeders. Small, medium, and large-sized targets were manually defined for each tumour. The tumour feeder was verified when the target tumour was enhanced on selective C-arm CT of the investigated vessel during chemoembolization. The sensitivity, specificity, and accuracy of the three protocols were evaluated and compared. One hundred and eight feeder vessels supplying 81 lesions were detected. The sensitivity of the small, medium, and large target protocols was 79.8%, 91.7%, and 96.3%, respectively; specificity was 95%, 88%, and 50%, respectively; and accuracy was 87.5%, 89.9%, and 74%, respectively. The sensitivity was significantly higher for the medium (p = 0.003) and large (p < 0.001) target protocols than for the small target protocol. The specificity and accuracy were higher for the small (p < 0.001 and p < 0.001, respectively) and medium (p < 0.001 and p < 0.001, respectively) target protocols than for the large target protocol. The overall accuracy of software-assisted automated feeder analysis in transarterial chemoembolization for hepatocellular carcinoma is affected by the target definition size. A large target definition increases sensitivity and decreases specificity in detecting tumour feeders. A target size equivalent to the tumour size most accurately predicts tumour feeders. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Visual accumulation tube for size analysis of sands

    USGS Publications Warehouse

    Colby, B.C.; Christensen, R.P.

    1956-01-01

    The visual-accumulation-tube method was developed primarily for making size analyses of the sand fractions of suspended-sediment and bed-material samples. Because the fundamental property governing the motion of a sediment particle in a fluid is believed to be its fall velocity. the analysis is designed to determine the fall-velocity-frequency distribution of the individual particles of the sample. The analysis is based on a stratified sedimentation system in which the sample is introduced at the top of a transparent settling tube containing distilled water. The procedure involves the direct visual tracing of the height of sediment accumulation in a contracted section at the bottom of the tube. A pen records the height on a moving chart. The method is simple and fast, provides a continuous and permanent record, gives highly reproducible results, and accurately determines the fall-velocity characteristics of the sample. The apparatus, procedure, results, and accuracy of the visual-accumulation-tube method for determining the sedimentation-size distribution of sands are presented in this paper.

  20. Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts

    NASA Astrophysics Data System (ADS)

    van der Bogert, C. H.; Hiesinger, H.; Dundas, C. M.; Krüger, T.; McEwen, A. S.; Zanetti, M.; Robinson, M. S.

    2017-12-01

    Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the

  1. Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts

    USGS Publications Warehouse

    Van der Bogert, Carolyn H.; Hiesinger, Harald; Dundas, Colin M.; Kruger, T.; McEwen, Alfred S.; Zanetti, Michael; Robinson, Mark S.

    2017-01-01

    Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the

  2. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    PubMed

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  3. Does apparent size capture attention in visual search? Evidence from the Muller-Lyer illusion.

    PubMed

    Proulx, Michael J; Green, Monique

    2011-11-23

    Is perceived size a crucial factor for the bottom-up guidance of attention? Here, a visual search experiment was used to examine whether an irrelevantly longer object can capture attention when participants were to detect a vertical target item. The longer object was created by an apparent size manipulation, the Müller-Lyer illusion; however, all objects contained the same number of pixels. The vertical target was detected more efficiently when it was also perceived as the longer item that was defined by apparent size. Further analysis revealed that the longer Müller-Lyer object received a greater degree of attentional priority than published results for other features such as retinal size, luminance contrast, and the abrupt onset of a new object. The present experiment has demonstrated for the first time that apparent size can capture attention and, thus, provide bottom-up guidance on the basis of perceived salience.

  4. A pretreatment method for grain size analysis of red mudstones

    NASA Astrophysics Data System (ADS)

    Jiang, Zaixing; Liu, Li'an

    2011-11-01

    Traditional sediment disaggregation methods work well for loose mud sediments, but not for tightly cemented mudstones by ferric oxide minerals. In this paper, a new pretreatment method for analyzing the grain size of red mudstones is presented. The experimental samples are Eocene red mudstones from the Dongying Depression, Bohai Bay Basin. The red mudstones are composed mainly of clay minerals, clastic sediments and ferric oxides that make the mudstones red and tightly compacted. The procedure of the method is as follows. Firstly, samples of the red mudstones were crushed into fragments with a diameter of 0.6-0.8 mm in size; secondly, the CBD (citrate-bicarbonate-dithionite) treatment was used to remove ferric oxides so that the cementation of intra-aggregates and inter-aggregates became weakened, and then 5% dilute hydrochloric acid was added to further remove the cements; thirdly, the fragments were further ground with a rubber pestle; lastly, an ultrasonicator was used to disaggregate the samples. After the treatment, the samples could then be used for grain size analysis or for other geological analyses of sedimentary grains. Compared with other pretreatment methods for size analysis of mudstones, this proposed method is more effective and has higher repeatability.

  5. The other half of the story: effect size analysis in quantitative research.

    PubMed

    Maher, Jessica Middlemis; Markey, Jonathan C; Ebert-May, Diane

    2013-01-01

    Statistical significance testing is the cornerstone of quantitative research, but studies that fail to report measures of effect size are potentially missing a robust part of the analysis. We provide a rationale for why effect size measures should be included in quantitative discipline-based education research. Examples from both biological and educational research demonstrate the utility of effect size for evaluating practical significance. We also provide details about some effect size indices that are paired with common statistical significance tests used in educational research and offer general suggestions for interpreting effect size measures. Finally, we discuss some inherent limitations of effect size measures and provide further recommendations about reporting confidence intervals.

  6. A mathematical analysis of multiple-target SELEX.

    PubMed

    Seo, Yeon-Jung; Chen, Shiliang; Nilsen-Hamilton, Marit; Levine, Howard A

    2010-10-01

    SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a procedure by which a mixture of nucleic acids can be fractionated with the goal of identifying those with specific biochemical activities. One combines the mixture with a specific target molecule and then separates the target-NA complex from the resulting reactions. The target-NA complex is separated from the unbound NA by mechanical means (such as by filtration), the NA is eluted from the complex, amplified by PCR (polymerase chain reaction), and the process repeated. After several rounds, one should be left with the nucleic acids that best bind to the target. The problem was first formulated mathematically in Irvine et al. (J. Mol. Biol. 222:739-761, 1991). In Levine and Nilsen-Hamilton (Comput. Biol. Chem. 31:11-25, 2007), a mathematical analysis of the process was given. In Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998), multiple target SELEX was considered. It was assumed that each target has a single nucleic acid binding site that permits occupation by no more than one nucleic acid. Here, we revisit Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998) using the same assumptions. The iteration scheme is shown to be convergent and a simplified algorithm is given. Our interest here is in the behavior of the multiple target SELEX process as a discrete "time" dynamical system. Our goal is to characterize the limiting states and their dependence on the initial distribution of nucleic acid and target fraction components. (In multiple target SELEX, we vary the target component fractions, but not their concentrations, as fixed and the initial pool of nucleic acids as a variable starting condition). Given N nucleic acids and a target consisting of M subtarget component species, there is an M × N matrix of affinities, the (i,j) entry corresponding to the affinity of the jth nucleic acid for the ith subtarget. We give a structure condition on this matrix that is equivalent to the following

  7. PASCO: Structural panel analysis and sizing code: Users manual - Revised

    NASA Technical Reports Server (NTRS)

    Anderson, M. S.; Stroud, W. J.; Durling, B. J.; Hennessy, K. W.

    1981-01-01

    A computer code denoted PASCO is described for analyzing and sizing uniaxially stiffened composite panels. Buckling and vibration analyses are carried out with a linked plate analysis computer code denoted VIPASA, which is included in PASCO. Sizing is based on nonlinear mathematical programming techniques and employs a computer code denoted CONMIN, also included in PASCO. Design requirements considered are initial buckling, material strength, stiffness and vibration frequency. A user's manual for PASCO is presented.

  8. TARGET - TASK ANALYSIS REPORT GENERATION TOOL, VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Ortiz, C. J.

    1994-01-01

    The Task Analysis Report Generation Tool, TARGET, is a graphical interface tool used to capture procedural knowledge and translate that knowledge into a hierarchical report. TARGET is based on VISTA, a knowledge acquisition tool developed by the Naval Systems Training Center. TARGET assists a programmer and/or task expert organize and understand the steps involved in accomplishing a task. The user can label individual steps in the task through a dialogue-box and get immediate graphical feedback for analysis. TARGET users can decompose tasks into basic action kernels or minimal steps to provide a clear picture of all basic actions needed to accomplish a job. This method allows the user to go back and critically examine the overall flow and makeup of the process. The user can switch between graphics (box flow diagrams) and text (task hierarchy) versions to more easily study the process being documented. As the practice of decomposition continues, tasks and their subtasks can be continually modified to more accurately reflect the user's procedures and rationale. This program is designed to help a programmer document an expert's task thus allowing the programmer to build an expert system which can help others perform the task. Flexibility is a key element of the system design and of the knowledge acquisition session. If the expert is not able to find time to work on the knowledge acquisition process with the program developer, the developer and subject matter expert may work in iterative sessions. TARGET is easy to use and is tailored to accommodate users ranging from the novice to the experienced expert systems builder. TARGET is written in C-language for IBM PC series and compatible computers running MS-DOS and Microsoft Windows version 3.0 or 3.1. No source code is supplied. The executable also requires 2Mb of RAM, a Microsoft compatible mouse, a VGA display and an 80286, 386 or 486 processor machine. The standard distribution medium for TARGET is one 5.25 inch 360K

  9. Significance of the model considering mixed grain-size for inverse analysis of turbidites

    NASA Astrophysics Data System (ADS)

    Nakao, K.; Naruse, H.; Tokuhashi, S., Sr.

    2016-12-01

    A method for inverse analysis of turbidity currents is proposed for application to field observations. Estimation of initial condition of the catastrophic events from field observations has been important for sedimentological researches. For instance, there are various inverse analyses to estimate hydraulic conditions from topography observations of pyroclastic flows (Rossano et al., 1996), real-time monitored debris-flow events (Fraccarollo and Papa, 2000), tsunami deposits (Jaffe and Gelfenbaum, 2007) and ancient turbidites (Falcini et al., 2009). These inverse analyses need forward models and the most turbidity current models employ uniform grain-size particles. The turbidity currents, however, are the best characterized by variation of grain-size distribution. Though there are numerical models of mixed grain-sized particles, the models have difficulty in feasibility of application to natural examples because of calculating costs (Lesshaft et al., 2011). Here we expand the turbidity current model based on the non-steady 1D shallow-water equation at low calculation costs for mixed grain-size particles and applied the model to the inverse analysis. In this study, we compared two forward models considering uniform and mixed grain-size particles respectively. We adopted inverse analysis based on the Simplex method that optimizes the initial conditions (thickness, depth-averaged velocity and depth-averaged volumetric concentration of a turbidity current) with multi-point start and employed the result of the forward model [h: 2.0 m, U: 5.0 m/s, C: 0.01%] as reference data. The result shows that inverse analysis using the mixed grain-size model found the known initial condition of reference data even if the condition where the optimization started is deviated from the true solution, whereas the inverse analysis using the uniform grain-size model requires the condition in which the starting parameters for optimization must be in quite narrow range near the solution. The

  10. Dispersion of Projectile and Target Debris Upon Penetration of Thin Targets

    NASA Astrophysics Data System (ADS)

    Gwynn, D.; Bernhard, R. P.; See, T. H.; Horz, F.

    1996-03-01

    We continue to conduct penetration experiments of thin foils to support the development of cosmic-dust flight instruments that utilize thin films for the measurement of particle trajectories, or for the potential soft capture of hypervelocity impactors for subsequent compositional analysis upon retrieval to Earth. Each experiment is equipped with a witness plate, mounted to the rear of the target and fabricated from soft Aluminum-1100, ~30 x 30 cm in size and ranging from 2 to 5 mm thick; these witness plates essentially simulate the rear wall of a capture cell onto which the projectile material will plate out, including material that is being dislodged from the penetrated foil itself. Using compositionally contrasting projectile and foil materials in the laboratory, such as soda-lime glass impactors and aluminum targets, one produces two distinct populations of craters on the witness plates.

  11. Micron-size hydrogen cluster target for laser-driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Jinno, S.; Kanasaki, M.; Uno, M.; Matsui, R.; Uesaka, M.; Kishimoto, Y.; Fukuda, Y.

    2018-04-01

    As a new laser-driven ion acceleration technique, we proposed a way to produce impurity-free, highly reproducible, and robust proton beams exceeding 100 MeV using a Coulomb explosion of micron-size hydrogen clusters. In this study, micron-size hydrogen clusters were generated by expanding the cooled high-pressure hydrogen gas into a vacuum via a conical nozzle connected to a solenoid valve cooled by a mechanical cryostat. The size distributions of the hydrogen clusters were evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed mathematically based on the Mie scattering theory combined with the Tikhonov regularization method. The maximum size of the hydrogen cluster at 25 K and 6 MPa in the stagnation state was recognized to be 2.15 ± 0.10 μm. The mean cluster size decreased with increasing temperature, and was found to be much larger than that given by Hagena’s formula. This discrepancy suggests that the micron-size hydrogen clusters were formed by the atomization (spallation) of the liquid or supercritical fluid phase of hydrogen. In addition, the density profiles of the gas phase were evaluated for 25 to 80 K at 6 MPa using a Nomarski interferometer. Based on the measurement results and the equation of state for hydrogen, the cluster mass fraction was obtained. 3D particles-in-cell (PIC) simulations concerning the interaction processes of micron-size hydrogen clusters with high power laser pulses predicted the generation of protons exceeding 100 MeV and accelerating in a laser propagation direction via an anisotropic Coulomb explosion mechanism, thus demonstrating a future candidate in laser-driven proton sources for upcoming multi-petawatt lasers.

  12. Analysis of hard coal quality for narrow size fraction under 20 mm

    NASA Astrophysics Data System (ADS)

    Niedoba, Tomasz; Pięta, Paulina

    2018-01-01

    The paper presents the results of an analysis of hard coal quality diversion in narrow size fraction by using taxonomic methods. Raw material samples were collected in selected mines of Upper Silesian Industrial Region and they were classified according to the Polish classification as types 31, 34.2 and 35. Then, each size fraction was characterized in terms of the following properties: density, ash content, calorific content, volatile content, total sulfur content and analytical moisture. As a result of the analysis it can be stated that the best quality in the entire range of the tested size fractions was the 34.2 coking coal type. At the same time, in terms of price parameters, high quality of raw material characterised the following size fractions: 0-6.3 mm of 31 energetic coal type and 0-3.15 mm of 35 coking coal type. The methods of grouping (Ward's method) and agglomeration (k-means method) have shown that the size fraction below 10 mm was characterized by higher quality in all the analyzed hard coal types. However, the selected taxonomic methods do not make it possible to identify individual size fraction or hard coal types based on chosen parameters.

  13. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis

    PubMed Central

    Dragovic, Rebecca A.; Gardiner, Christopher; Brooks, Alexandra S.; Tannetta, Dionne S.; Ferguson, David J.P.; Hole, Patrick; Carr, Bob; Redman, Christopher W.G.; Harris, Adrian L.; Dobson, Peter J.; Harrison, Paul; Sargent, Ian L.

    2011-01-01

    Cellular microvesicles and nanovesicles (exosomes) are involved in many disease processes and have major potential as biomarkers. However, developments in this area are constrained by limitations in the technology available for their measurement. Here we report on the use of fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles. In this system vesicles are visualized by light scattering using a light microscope. A video is taken, and the NTA software tracks the brownian motion of individual vesicles and calculates their size and total concentration. Using human placental vesicles and plasma, we have demonstrated that NTA can measure cellular vesicles as small as ∼50 nm and is far more sensitive than conventional flow cytometry (lower limit ∼300 nm). By combining NTA with fluorescence measurement we have demonstrated that vesicles can be labeled with specific antibody-conjugated quantum dots, allowing their phenotype to be determined. From the Clinical Editor The authors of this study utilized fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles, demonstrating that NTA is far more sensitive than conventional flow cytometry. PMID:21601655

  14. Tool for Sizing Analysis of the Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.

    2005-01-01

    Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.

  15. [Segment analysis of the target market of physiotherapeutic services].

    PubMed

    Babaskin, D V

    2010-01-01

    The objective of the present study was to demonstrate the possibilities to analyse selected segments of the target market of physiotherapeutic services provided by medical and preventive-facilities of two major types. The main features of a target segment, such as provision of therapeutic massage, are illustrated in terms of two characteristics, namely attractiveness to the users and the ability of a given medical facility to satisfy their requirements. Based on the analysis of portfolio of the available target segments the most promising ones (winner segments) were selected for further marketing studies. This choice does not exclude the possibility of involvement of other segments of medical services in marketing activities.

  16. Interactions between Impacting Particles and Target in Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Kang, Sang-Wook; Chow, Tze-Show

    1996-11-01

    The time-dependent interaction phenomena between a target and the incident solid particles borne by supersonic gas-jet stream have been numerically analyzed. In particular, the analysis dealt with particles such as aluminum, copper, and uranium ipinging on aluminum, copper, or uranium targets at various impact velocities ranging from 200 m/s to 1,000 m/s. Typical particle sizes were 50 to 100 micrometers. Results show considerable deformation of both the incident particles and the target when the velocity is greater than 500 m/s. Experiments performed on copper particles impacting an aluminum target demonstrate that under certain conditions (such as a supersonic gas jet issuing from a nozzle carrying solid particles) the impacts not only deform but also cause deposition of the particles on the surface. The present analysis shows the plausibility of such behavior when the particles impact the target at high velocities.

  17. Sparse targets in hydroacoustic surveys: Balancing quantity and quality of in situ target strength data

    USGS Publications Warehouse

    DuFour, Mark R.; Mayer, Christine M.; Kocovsky, Patrick; Qian, Song; Warner, David M.; Kraus, Richard T.; Vandergoot, Christopher

    2017-01-01

    Hydroacoustic sampling of low-density fish in shallow water can lead to low sample sizes of naturally variable target strength (TS) estimates, resulting in both sparse and variable data. Increasing maximum beam compensation (BC) beyond conventional values (i.e., 3 dB beam width) can recover more targets during data analysis; however, data quality decreases near the acoustic beam edges. We identified the optimal balance between data quantity and quality with increasing BC using a standard sphere calibration, and we quantified the effect of BC on fish track variability, size structure, and density estimates of Lake Erie walleye (Sander vitreus). Standard sphere mean TS estimates were consistent with theoretical values (−39.6 dB) up to 18-dB BC, while estimates decreased at greater BC values. Natural sources (i.e., residual and mean TS) dominated total fish track variation, while contributions from measurement related error (i.e., number of single echo detections (SEDs) and BC) were proportionally low. Increasing BC led to more fish encounters and SEDs per fish, while stability in size structure and density were observed at intermediate values (e.g., 18 dB). Detection of medium to large fish (i.e., age-2+ walleye) benefited most from increasing BC, as proportional changes in size structure and density were greatest in these size categories. Therefore, when TS data are sparse and variable, increasing BC to an optimal value (here 18 dB) will maximize the TS data quantity while limiting lower-quality data near the beam edges.

  18. An opportunity cost approach to sample size calculation in cost-effectiveness analysis.

    PubMed

    Gafni, A; Walter, S D; Birch, S; Sendi, P

    2008-01-01

    The inclusion of economic evaluations as part of clinical trials has led to concerns about the adequacy of trial sample size to support such analysis. The analytical tool of cost-effectiveness analysis is the incremental cost-effectiveness ratio (ICER), which is compared with a threshold value (lambda) as a method to determine the efficiency of a health-care intervention. Accordingly, many of the methods suggested to calculating the sample size requirements for the economic component of clinical trials are based on the properties of the ICER. However, use of the ICER and a threshold value as a basis for determining efficiency has been shown to be inconsistent with the economic concept of opportunity cost. As a result, the validity of the ICER-based approaches to sample size calculations can be challenged. Alternative methods for determining improvements in efficiency have been presented in the literature that does not depend upon ICER values. In this paper, we develop an opportunity cost approach to calculating sample size for economic evaluations alongside clinical trials, and illustrate the approach using a numerical example. We compare the sample size requirement of the opportunity cost method with the ICER threshold method. In general, either method may yield the larger required sample size. However, the opportunity cost approach, although simple to use, has additional data requirements. We believe that the additional data requirements represent a small price to pay for being able to perform an analysis consistent with both concept of opportunity cost and the problem faced by decision makers. Copyright (c) 2007 John Wiley & Sons, Ltd.

  19. Measuring Submicron-Sized Fractionated Particulate Matter on Aluminum Impactor Disks

    PubMed Central

    Buchholz, Bruce A.; Zermeño, Paula; Hwang, Hyun-Min; Young, Thomas M.; Guilderson, Thomas P.

    2011-01-01

    Sub-micron sized airborne particulate matter (PM) is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to fractionate PM into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56–100 nm, 100–180 nm, 180–320 nm, 320–560 nm, 560–1000 nm, and 1000–1800 nm. Since the MOUDI has a low flow rate (30 L/min), it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20–200 microgram C) and large aluminum substrate (~25 mg Al) present several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for 14C-AMS analysis of PM deposited on Al impact foils. PMID:22228915

  20. An Archer's Perceived Form Scales the "Hitableness" of Archery Targets

    ERIC Educational Resources Information Center

    Lee, Yang; Lee, Sih; Carello, Claudia; Turvey, M. T.

    2012-01-01

    For skills that involve hitting a target, subsequent judgments of target size correlate with prior success in hitting that target. We used an archery context to examine the judgment-success relationship with varied target sizes in the absence of explicit knowledge of results. Competitive archers shot at targets 50 m away that varied in size among…

  1. Label-Free Raman Microspectral Analysis for Comparison of Cellular Uptake and Distribution between Non-Targeted and EGFR-Targeted Biodegradable Polymeric Nanoparticles

    PubMed Central

    Chernenko, Tatyana; Buyukozturk, Fulden; Miljkovic, Milos; Carrier, Rebecca; Diem, Max; Amiji, Mansoor

    2013-01-01

    Active targeted delivery of nanoparticle-encapsulated agents to tumor cells in vivo is expected to enhance therapeutic effect with significantly less non-specific toxicity. Active targeting is based on surface modification of nanoparticles with ligands that bind with extracellular targets and enhance payload delivery in the cells. In this study, we have used label-free Raman micro-spectral analysis and kinetic modeling to study cellular interactions and intracellular delivery of C6-ceramide using a non-targeted and an epidermal growth factor receptor (EGFR) targeted biodegradable polymeric nano-delivery systems, in EGFR-expressing human ovarian adenocarcinoma (SKOV3) cells. The results show that EGFR peptide-modified nanoparticles were rapidly internalized in SKOV3 cells leading to significant intracellular accumulation as compared to non-specific uptake by the non-targeted nanoparticles. Raman micro-spectral analysis enables visualization and quantification of the carrier system, drug-load, and responses of the biological systems interrogated, without exogenous staining and labeling procedures. PMID:24298430

  2. Estimation of turbulent kinetic energy using 4D phase-contrast MRI: Effect of scan parameters and target vessel size.

    PubMed

    Ha, Hojin; Hwang, Dongha; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Baek, Jehyun; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-07-01

    Quantifying turbulence velocity fluctuation is important because it indicates the fluid energy dissipation of the blood flow, which is closely related to the pressure drop along the blood vessel. This study aims to evaluate the effects of scan parameters and the target vessel size of 4D phase-contrast (PC)-MRI on quantification of turbulent kinetic energy (TKE). Comprehensive 4D PC-MRI measurements with various velocity-encoding (VENC), echo time (TE), and voxel size values were carried out to estimate TKE distribution in stenotic flow. The total TKE (TKEsum), maximum TKE (TKEmax), and background noise level (TKEnoise) were compared for each scan parameter. The feasibility of TKE estimation in small vessels was also investigated. Results show that the optimum VENC for stenotic flow with a peak velocity of 125cm/s was 70cm/s. Higher VENC values overestimated the TKEsum by up to six-fold due to increased TKEnoise, whereas lower VENC values (30cm/s) underestimated it by 57.1%. TE and voxel size did not significantly influence the TKEsum and TKEnoise, although the TKEmax significantly increased as the voxel size increased. TKE quantification in small-sized vessels (3-5-mm diameter) was feasible unless high-velocity turbulence caused severe phase dispersion in the reference image. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Meta-Analysis of Effect Sizes Reported at Multiple Time Points Using General Linear Mixed Model.

    PubMed

    Musekiwa, Alfred; Manda, Samuel O M; Mwambi, Henry G; Chen, Ding-Geng

    2016-01-01

    Meta-analysis of longitudinal studies combines effect sizes measured at pre-determined time points. The most common approach involves performing separate univariate meta-analyses at individual time points. This simplistic approach ignores dependence between longitudinal effect sizes, which might result in less precise parameter estimates. In this paper, we show how to conduct a meta-analysis of longitudinal effect sizes where we contrast different covariance structures for dependence between effect sizes, both within and between studies. We propose new combinations of covariance structures for the dependence between effect size and utilize a practical example involving meta-analysis of 17 trials comparing postoperative treatments for a type of cancer, where survival is measured at 6, 12, 18 and 24 months post randomization. Although the results from this particular data set show the benefit of accounting for within-study serial correlation between effect sizes, simulations are required to confirm these results.

  4. Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis)

    Treesearch

    Taylor M. Wilcox; Kevin S. McKelvey; Michael K. Young; Winsor H. Lowe; Michael K. Schwartz

    2015-01-01

    Environmental DNA (eDNA) sampling has become a widespread approach for detecting aquatic animals with high potential for improving conservation biology. However, little research has been done to determine the size of particles targeted by eDNA surveys. In this study, we conduct particle distribution analysis of eDNA from a captive Brook Trout (Salvelinus fontinalis) in...

  5. Tertiary structure-based analysis of microRNA–target interactions

    PubMed Central

    Gan, Hin Hark; Gunsalus, Kristin C.

    2013-01-01

    Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009

  6. Rotation to a Partially Specified Target Matrix in Exploratory Factor Analysis: How Many Targets?

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Ahn, Soyeon; Jin, Ying

    2013-01-01

    The purpose of this study was to explore the influence of the number of targets specified on the quality of exploratory factor analysis solutions with a complex underlying structure and incomplete substantive measurement theory. Three Monte Carlo studies were performed based on the ratio of the number of observed variables to the number of…

  7. Weighting by Inverse Variance or by Sample Size in Random-Effects Meta-Analysis

    ERIC Educational Resources Information Center

    Marin-Martinez, Fulgencio; Sanchez-Meca, Julio

    2010-01-01

    Most of the statistical procedures in meta-analysis are based on the estimation of average effect sizes from a set of primary studies. The optimal weight for averaging a set of independent effect sizes is the inverse variance of each effect size, but in practice these weights have to be estimated, being affected by sampling error. When assuming a…

  8. Finite-size analysis of a continuous-variable quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leverrier, Anthony; Grosshans, Frederic; Grangier, Philippe

    2010-06-15

    The goal of this paper is to extend the framework of finite-size analysis recently developed for quantum key distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly consider the finite-size effects on the parameter estimation procedure. Despite the fact that some questions are left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection procedure. As expected, these results are significantly more pessimistic than those obtained in the asymptotic regime. However, we show that recent continuous-variable protocols are able to provide fully securemore » secret keys in the finite-size scenario, over distances larger than 50 km.« less

  9. A low molecular weight artificial RNA of unique size with multiple probe target regions

    NASA Technical Reports Server (NTRS)

    Pitulle, C.; Dsouza, L.; Fox, G. E.

    1997-01-01

    Artificial RNAs (aRNAs) containing novel sequence segments embedded in a deletion mutant of Vibrio proteolyticus 5S rRNA have previously been shown to be expressed from a plasmid borne growth rate regulated promoter in E. coli. These aRNAs accumulate to high levels and their detection is a promising tool for studies in molecular microbial ecology and in environmental monitoring. Herein a new construct is described which illustrates the versatility of detection that is possible with aRNAs. This 3xPen aRNA construct carries a 72 nucleotide insert with three copies of a unique 17 base probe target sequence. This aRNA is 160 nucleotides in length and again accumulates to high levels in the E. coli cytoplasm without incorporating into ribosomes. The 3xPen aRNA illustrates two improvements in detection. First, by appropriate selection of insert size, we obtained an aRNA which provides a unique and hence, easily quantifiable peak, on a high resolution gel profile of low molecular weight RNAs. Second, the existence of multiple probe targets results in a nearly commensurate increase in signal when detection is by hybridization. These aRNAs are naturally amplified and carry sequence segments that are not found in known rRNA sequences. It thus may be possible to detect them directly. An experimental step involving RT-PCR or PCR amplification of the gene could therefore be avoided.

  10. Stock assessment of fishery target species in Lake Koka, Ethiopia.

    PubMed

    Tesfaye, Gashaw; Wolff, Matthias

    2015-09-01

    Effective management is essential for small-scale fisheries to continue providing food and livelihoods for households, particularly in developing countries where other options are often limited. Studies on the population dynamics and stock assessment on fishery target species are thus imperative to sustain their fisheries and the benefits for the society. In Lake Koka (Ethiopia), very little is known about the vital population parameters and exploitation status of the fishery target species: tilapia Oreochromis niloticus, common carp Cyprinus carpio and catfish Clarias gariepinus. Our study, therefore, aimed at determining the vital population parameters and assessing the status of these target species in Lake Koka using length frequency data collected quarterly from commercial catches from 2007-2012. A total of 20,097 fish specimens (distributed as 7,933 tilapia, 6,025 catfish and 6,139 common carp) were measured for the analysis. Von Bertalarffy growth parameters and their confidence intervals were determined from modal progression analysis using ELEFAN I and applying the jackknife technique. Mortality parameters were determined from length-converted catch curves and empirical models. The exploitation status of these target species were then assessed by computing exploitation rates (E) from mortality parameters as well as from size indicators i.e., assessing the size distribution of fish catches relative to the size at maturity (Lm), the size that provides maximum cohort biomass (Lopt) and the abundance of mega-spawners. The mean value of growth parameters L∞, K and the growth performance index ø' were 44.5 cm, 0.41/year and 2.90 for O. niloticus, 74.1 cm, 0.28/year and 3.19 for C. carpio and 121.9 cm, 0.16/year and 3.36 for C. gariepinus, respectively. The 95 % confidence intervals of the estimates were also computed. Total mortality (Z) estimates were 1.47, 0.83 and 0.72/year for O. niloticus, C. carpio and C. gariepinus, respectively. Our study suggest that

  11. Nuclear Security: Target Analysis-rev

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Surinder Paul; Gibbs, Philip W.; Bultz, Garl A.

    2014-03-01

    The objectives of this presentation are to understand target identification, including roll-up and protracted theft; evaluate target identification in the SNRI; recognize the target characteristics and consequence levels; and understand graded safeguards.

  12. Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.

  13. Standardized Effect Size Measures for Mediation Analysis in Cluster-Randomized Trials

    ERIC Educational Resources Information Center

    Stapleton, Laura M.; Pituch, Keenan A.; Dion, Eric

    2015-01-01

    This article presents 3 standardized effect size measures to use when sharing results of an analysis of mediation of treatment effects for cluster-randomized trials. The authors discuss 3 examples of mediation analysis (upper-level mediation, cross-level mediation, and cross-level mediation with a contextual effect) with demonstration of the…

  14. Meta-Analysis of PECS with Individuals with ASD: Investigation of Targeted versus Non-Targeted Outcomes, Participant Characteristics, and Implementation Phase

    ERIC Educational Resources Information Center

    Ganz, Jennifer B.; Davis, John L.; Lund, Emily M.; Goodwyn, Fara D.; Simpson, Richard L.

    2012-01-01

    The Picture Exchange Communication System (PECS) is a widely used picture/icon aided augmentative communication system designed for learners with autism and other developmental disorders. This meta-analysis analyzes the extant empirical literature for PECS relative to targeted (functional communication) and non-targeted concomitant outcomes…

  15. The impact of targeted Rheumatoid Arthritis pharmacological treatment on mental health: A systematic review and network meta-analysis.

    PubMed

    Matcham, Faith; Galloway, James; Hotopf, Matthew; Roberts, Emmert; Scott, Ian C; Steer, Sophia; Norton, Sam

    2018-06-06

    Rheumatoid Arthritis (RA) pharmacotherapy may impact mental health (MH) outcomes by improving pain and stiffness; and potentially via targeting inflammatory processes common to RA and depression. The objectives of this review were to i) ascertain the frequency of MH assessment in RA pharmacotherapy trials; ii) quantify the efficacy of RA pharmacotherapy efficacy on MH outcomes; iii) explore the clinical and demographic factors related to MH outcomes. CENTRAL, PsychINFO, Web of Science, Medline, Embase and CINAHL were systematically searched from inception to March 2017 for randomised trials of disease-modifying anti-rheumatic drugs (DMARDs) in adult RA patients. The primary outcome was MH; self-reported physical health was extracted as a secondary outcome. Pairwise meta-analysis (PMA) created pooled effect sizes and 95%CIs for comparisons of all treatments versus comparators (active or placebo). Network meta-analysis (NMA) provided effect size estimates of targeted biologic DMARDs (bDMARDs) versus conventional synthetic DMARDs (csDMARDs) using indirect comparisons of different treatment modalities. 71 eligible studies were identified. 57 studies were included in the PMA, representing 23,535 patients. bDMARDs showed small effects on MH (standardised mean difference (SMD) versus csDMARDs = 0.19 to 0.30), and moderate effects on self-reported physical health (SMD versus csDMARDs = 0.46 to 0.50), with NMA determining no significant differences in effectiveness between bDMARD mode of action on either outcome. Effective pharmacotherapy alone is unlikely to substantially improve MH outcomes for most RA patients. Integrated MH care provided within routine clinical practice is essential to optimise mental and physical health outcomes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Optimum target sizes for a sequential sawing process

    Treesearch

    H. Dean Claxton

    1972-01-01

    A method for solving a class of problems in random sequential processes is presented. Sawing cedar pencil blocks is used to illustrate the method. Equations are developed for the function representing loss from improper sizing of blocks. A weighted over-all distribution for sawing and drying operations is developed and graphed. Loss minimizing changes in the control...

  17. A phylogenetic analysis of egg size, clutch size, spawning mode, adult body size, and latitude in reef fishes

    NASA Astrophysics Data System (ADS)

    Kasimatis, Katja; Riginos, Cynthia

    2016-06-01

    Theoretical treatments of egg size in fishes suggest that constraints on reproductive output should create trade-offs between the size and number of eggs produced per spawn. For marine reef fishes, the observation of distinct reproductive care strategies (demersal guarding, egg scattering, and pelagic spawning) has additionally prompted speculation that these strategies reflect alternative fitness optima with selection on egg size differing by reproductive mode and perhaps latitude. Here, we aggregate data from 278 reef fish species and test whether clutch size, reproductive care, adult body size, and latitudinal bands (i.e., tropical, subtropical, and temperate) predict egg size, using a statistically unified framework that accounts for phylogenetic correlations among traits. We find no inverse relationship between species egg size and clutch size, but rather that egg size differs by reproductive mode (mean volume for demersal eggs = 1.22 mm3, scattered eggs = 0.18 mm3, pelagic eggs = 0.52 mm3) and that clutch size is strongly correlated with adult body size. Larger eggs were found in temperate species compared with tropical species in both demersal guarders and pelagic spawners, but this difference was not strong when accounting for phylogenetic correlations, suggesting that differences in species composition underlies regional differences in egg size. In summary, demersal guarders are generally small fishes with small clutch sizes that produce large eggs. Pelagic spawners and egg scatterers are variable in adult and clutch size. Although pelagic spawned eggs are variable in size, those of scatterers are consistently small.

  18. Shrinking the apparatus size for DNA analysis

    NASA Astrophysics Data System (ADS)

    Zimmer, Klaus-Peter; Braun, Alexander; Kostrzewa, M.

    2001-03-01

    Miniaturization of chemical and/or biological analytical systems requires an innovative design and new manufacturing methods. This includes the fabrication of components or structures, the assembly of these parts, and a testing strategy. The separation of an entire device into a disposable microfluidic system and a multi-use supply unit and housing allows an easy fabrication as well as low cost of operation. A simple, replicated, micro-sized, and disposable unit guarantees the same initial conditions for every analytic cycle, whereas, on the other hand all microfluidic actuators and other key elements can remain outside of the microsystem. In order to drive the implemented passive elements of the microfluidic system by external forces of the base unit, elasticity is a crucial material property. Thus silicone was used as material for the microsystem. A microfluidic system intended for use in DNA analysis employing the principles of the polymerase chain reaction (PCR) is presented. All functional units have been integrated into a complex module using a CAD-program. The 3D-drawing was converted into several machining layers for a direct laser writing CNC-code. A focussed excimer laser beam was used in order to micromachine the negative channel and reservoir system in a polycarbonate slab employing ablative photo-decomposition. Excimer laser micromachining proofed to be an ideal prototyping technique for this purpose with sufficient lateral and depth control. Its rather low throughput was bypassed with an additional hot embossed intermediate positive polyethylene master which, in turn, replicated produces the negative fluidic system in the target material PDMS (polydimethylsiloxane) as an elastomeric material. The components of the fluidic systems have been sealed with flat slabs or other microsystem parts of either PDMS or glass. In either case both parts were exposed to a plasma discharge for some seconds in order to clean, oxidize and activate the surface. This

  19. Size Matters: FTIR Spectral Analysis of Apollo Regolith Samples Exhibits Grain Size Dependence.

    NASA Astrophysics Data System (ADS)

    Martin, Dayl; Joy, Katherine; Pernet-Fisher, John; Wogelius, Roy; Morlok, Andreas; Hiesinger, Harald

    2017-04-01

    The Mercury Thermal Infrared Spectrometer (MERTIS) on the upcoming BepiColombo mission is designed to analyse the surface of Mercury in thermal infrared wavelengths (7-14 μm) to investigate the physical properties of the surface materials [1]. Laboratory analyses of analogue materials are useful for investigating how various sample properties alter the resulting infrared spectrum. Laboratory FTIR analysis of Apollo fine (<1mm) soil samples 14259,672, 15401,147, and 67481,96 have provided an insight into how grain size, composition, maturity (i.e., exposure to space weathering processes), and proportion of glassy material affect their average infrared spectra. Each of these samples was analysed as a bulk sample and five size fractions: <25, 25-63, 63-125, 125-250, and <250 μm. Sample 14259,672 is a highly mature highlands regolith with a large proportion of agglutinates [2]. The high agglutinate content (>60%) causes a 'flattening' of the spectrum, with reduced reflectance in the Reststrahlen Band region (RB) as much as 30% in comparison to samples that are dominated by a high proportion of crystalline material. Apollo 15401,147 is an immature regolith with a high proportion of volcanic glass pyroclastic beads [2]. The high mafic mineral content results in a systematic shift in the Christiansen Feature (CF - the point of lowest reflectance) to longer wavelength: 8.6 μm. The glass beads dominate the spectrum, displaying a broad peak around the main Si-O stretch band (at 10.8 μm). As such, individual mineral components of this sample cannot be resolved from the average spectrum alone. Apollo 67481,96 is a sub-mature regolith composed dominantly of anorthite plagioclase [2]. The CF position of the average spectrum is shifted to shorter wavelengths (8.2 μm) due to the higher proportion of felsic minerals. Its average spectrum is dominated by anorthite reflectance bands at 8.7, 9.1, 9.8, and 10.8 μm. The average reflectance is greater than the other samples due to

  20. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae).

    PubMed

    Landis, Jacob B; Soltis, Douglas E; Soltis, Pamela S

    2017-06-23

    Flower size varies dramatically across angiosperms, representing innovations over the course of >130 million years of evolution and contributing substantially to relationships with pollinators. However, the genetic underpinning of flower size is not well understood. Saltugilia (Polemoniaceae) provides an excellent non-model system for extending the genetic study of flower size to interspecific differences that coincide with variation in pollinators. Using targeted gene capture methods, we infer phylogenetic relationships among all members of Saltugilia to provide a framework for investigating the genetic control of flower size differences via RNA-Seq de novo assembly. Nuclear concatenation and species tree inference methods provide congruent topologies. The inferred evolutionary trajectory of flower size is from small flowers to larger flowers. We identified 4 to 10,368 transcripts that are differentially expressed during flower development, with many unigenes associated with cell wall modification and components of the auxin and gibberellin pathways. Saltugilia is an excellent model for investigating covarying floral and pollinator evolution. Four candidate genes from model systems (BIG BROTHER, BIG PETAL, GASA, and LONGIFOLIA) show differential expression during development of flowers in Saltugilia, and four other genes (FLOWERING-PROMOTING FACTOR 1, PECTINESTERASE, POLYGALACTURONASE, and SUCROSE SYNTHASE) fit into hypothesized organ size pathways. Together, these gene sets provide a strong foundation for future functional studies to determine their roles in specifying interspecific differences in flower size.

  1. SeedVicious: Analysis of microRNA target and near-target sites.

    PubMed

    Marco, Antonio

    2018-01-01

    Here I describe seedVicious, a versatile microRNA target site prediction software that can be easily fitted into annotation pipelines and run over custom datasets. SeedVicious finds microRNA canonical sites plus other, less efficient, target sites. Among other novel features, seedVicious can compute evolutionary gains/losses of target sites using maximum parsimony, and also detect near-target sites, which have one nucleotide different from a canonical site. Near-target sites are important to study population variation in microRNA regulation. Some analyses suggest that near-target sites may also be functional sites, although there is no conclusive evidence for that, and they may actually be target alleles segregating in a population. SeedVicious does not aim to outperform but to complement existing microRNA prediction tools. For instance, the precision of TargetScan is almost doubled (from 11% to ~20%) when we filter predictions by the distance between target sites using this program. Interestingly, two adjacent canonical target sites are more likely to be present in bona fide target transcripts than pairs of target sites at slightly longer distances. The software is written in Perl and runs on 64-bit Unix computers (Linux and MacOS X). Users with no computing experience can also run the program in a dedicated web-server by uploading custom data, or browse pre-computed predictions. SeedVicious and its associated web-server and database (SeedBank) are distributed under the GPL/GNU license.

  2. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  3. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  4. Search time critically depends on irrelevant subset size in visual search.

    PubMed

    Benjamins, Jeroen S; Hooge, Ignace T C; van Elst, Jacco C; Wertheim, Alexander H; Verstraten, Frans A J

    2009-02-01

    In order for our visual system to deal with the massive amount of sensory input, some of this input is discarded, while other parts are processed [Wolfe, J. M. (1994). Guided search 2.0: a revised model of visual search. Psychonomic Bulletin and Review, 1, 202-238]. From the visual search literature it is unclear how well one set of items can be selected that differs in only one feature from target (a 1F set), while another set of items can be ignored that differs in two features from target (a 2F set). We systematically varied the percentage of 2F non-targets to determine the contribution of these non-targets to search behaviour. Increasing the percentage 2F non-targets, that have to be ignored, was expected to result in increasingly faster search, since it decreases the size of 1F set that has to be searched. Observers searched large displays for a target in the 1F set with a variable percentage of 2F non-targets. Interestingly, when the search displays contained 5% 2F non-targets, the search time was longer compared to the search time in other conditions. This effect of 2F non-targets on performance was independent of set size. An inspection of the saccades revealed that saccade target selection did not contribute to the longer search times in displays with 5% 2F non-targets. Occurrence of longer search times in displays containing 5% 2F non-targets might be attributed to covert processes related to visual analysis of the fixated part of the display. Apparently, visual search performance critically depends on the percentage of irrelevant 2F non-targets.

  5. Analysis of Infrared Signature Variation and Robust Filter-Based Supersonic Target Detection

    PubMed Central

    Sun, Sun-Gu; Kim, Kyung-Tae

    2014-01-01

    The difficulty of small infrared target detection originates from the variations of infrared signatures. This paper presents the fundamental physics of infrared target variations and reports the results of variation analysis of infrared images acquired using a long wave infrared camera over a 24-hour period for different types of backgrounds. The detection parameters, such as signal-to-clutter ratio were compared according to the recording time, temperature and humidity. Through variation analysis, robust target detection methodologies are derived by controlling thresholds and designing a temporal contrast filter to achieve high detection rate and low false alarm rate. Experimental results validate the robustness of the proposed scheme by applying it to the synthetic and real infrared sequences. PMID:24672290

  6. Current target acquisition methodology in force on force simulations

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Miller, Brian; Mazz, John P.

    2017-05-01

    The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military community in force on force simulations for training, testing, and analysis. There have been significant improvements to these models over the past few years. The significant improvements are the transition of ACQUIRE TTP-TAS (ACQUIRE Targeting Task Performance Target Angular Size) methodology for all imaging sensors and the development of new discrimination criteria for urban environments and humans. This paper is intended to provide an overview of the current target acquisition modeling approach and provide data for the new discrimination tasks. This paper will discuss advances and changes to the models and methodologies used to: (1) design and compare sensors' performance, (2) predict expected target acquisition performance in the field, (3) predict target acquisition performance for combat simulations, and (4) how to conduct model data validation for combat simulations.

  7. Instant Grainification: Real-Time Grain-Size Analysis from Digital Images in the Field

    NASA Astrophysics Data System (ADS)

    Rubin, D. M.; Chezar, H.

    2007-12-01

    Over the past few years, digital cameras and underwater microscopes have been developed to collect in-situ images of sand-sized bed sediment, and software has been developed to measure grain size from those digital images (Chezar and Rubin, 2004; Rubin, 2004; Rubin et al., 2006). Until now, all image processing and grain- size analysis was done back in the office where images were uploaded from cameras and processed on desktop computers. Computer hardware has become small and rugged enough to process images in the field, which for the first time allows real-time grain-size analysis of sand-sized bed sediment. We present such a system consisting of weatherproof tablet computer, open source image-processing software (autocorrelation code of Rubin, 2004, running under Octave and Cygwin), and digital camera with macro lens. Chezar, H., and Rubin, D., 2004, Underwater microscope system: U.S. Patent and Trademark Office, patent number 6,680,795, January 20, 2004. Rubin, D.M., 2004, A simple autocorrelation algorithm for determining grain size from digital images of sediment: Journal of Sedimentary Research, v. 74, p. 160-165. Rubin, D.M., Chezar, H., Harney, J.N., Topping, D.J., Melis, T.S., and Sherwood, C.R., 2006, Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size: USGS Open-File Report 2006-1360.

  8. Single-Molecule Analysis for RISC Assembly and Target Cleavage.

    PubMed

    Sasaki, Hiroshi M; Tadakuma, Hisashi; Tomari, Yukihide

    2018-01-01

    RNA-induced silencing complex (RISC) is a small RNA-protein complex that mediates silencing of complementary target RNAs. Biochemistry has been successfully used to characterize the molecular mechanism of RISC assembly and function for nearly two decades. However, further dissection of intermediate states during the reactions has been warranted to fill in the gaps in our understanding of RNA silencing mechanisms. Single-molecule analysis with total internal reflection fluorescence (TIRF) microscopy is a powerful imaging-based approach to interrogate complex formation and dynamics at the individual molecule level with high sensitivity. Combining this technique with our recently established in vitro reconstitution system of fly Ago2-RISC, we have developed a single-molecule observation system for RISC assembly. In this chapter, we summarize the detailed protocol for single-molecule analysis of chaperone-assisted assembly of fly Ago2-RISC as well as its target cleavage reaction.

  9. Use of methods for specifying the target difference in randomised controlled trial sample size calculations: Two surveys of trialists' practice.

    PubMed

    Cook, Jonathan A; Hislop, Jennifer M; Altman, Doug G; Briggs, Andrew H; Fayers, Peter M; Norrie, John D; Ramsay, Craig R; Harvey, Ian M; Vale, Luke D

    2014-06-01

    the most recent trial, the target difference was usually one viewed as important by a stakeholder group, mostly also viewed as a realistic difference given the interventions under evaluation, and sometimes one that led to an achievable sample size. The response rates achieved were relatively low despite the surveys being short, well presented, and having utilised reminders. Substantial variations in practice exist with awareness, use, and willingness to recommend methods varying substantially. The findings support the view that sample size calculation is a more complex process than would appear to be the case from trial reports and protocols. Guidance on approaches for sample size estimation may increase both awareness and use of appropriate formal methods. © The Author(s), 2014.

  10. Estimating the settling velocity of bioclastic sediment using common grain-size analysis techniques

    USGS Publications Warehouse

    Cuttler, Michael V. W.; Lowe, Ryan J.; Falter, James L.; Buscombe, Daniel D.

    2017-01-01

    Most techniques for estimating settling velocities of natural particles have been developed for siliciclastic sediments. Therefore, to understand how these techniques apply to bioclastic environments, measured settling velocities of bioclastic sedimentary deposits sampled from a nearshore fringing reef in Western Australia were compared with settling velocities calculated using results from several common grain-size analysis techniques (sieve, laser diffraction and image analysis) and established models. The effects of sediment density and shape were also examined using a range of density values and three different models of settling velocity. Sediment density was found to have a significant effect on calculated settling velocity, causing a range in normalized root-mean-square error of up to 28%, depending upon settling velocity model and grain-size method. Accounting for particle shape reduced errors in predicted settling velocity by 3% to 6% and removed any velocity-dependent bias, which is particularly important for the fastest settling fractions. When shape was accounted for and measured density was used, normalized root-mean-square errors were 4%, 10% and 18% for laser diffraction, sieve and image analysis, respectively. The results of this study show that established models of settling velocity that account for particle shape can be used to estimate settling velocity of irregularly shaped, sand-sized bioclastic sediments from sieve, laser diffraction, or image analysis-derived measures of grain size with a limited amount of error. Collectively, these findings will allow for grain-size data measured with different methods to be accurately converted to settling velocity for comparison. This will facilitate greater understanding of the hydraulic properties of bioclastic sediment which can help to increase our general knowledge of sediment dynamics in these environments.

  11. Comparing Results of SPH/N-body Impact Simulations Using Both Solid and Rubble-pile Target Asteroids

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Bottke, W. F.; Enke, B. L.; Nesvorný, D.; Asphaug, E.; Richardson, D. C.

    2006-09-01

    We have been investigating the properties of satellites and the morphology of size-frequency distributions (SFDs) resulting from a suite of 160 SPH/N-body simulations of impacts into 100-km diameter parent asteroids (Durda et al. 2004, Icarus 170, 243-257; Durda et al. 2006, Icarus, in press). These simulations have produced many valuable insights into the outcomes of cratering and disruptive impacts but were limited to monolithic basalt targets. As a natural consequence of collisional evolution, however, many asteroids have undergone a series of battering impacts that likely have left their interiors substantially fractured, if not completely rubblized. In light of this, we have re-mapped the matrix of simulations using rubble-pile target objects. We constructed the rubble-pile targets by filling the interior of the 100-km diameter spherical shell (the target envelope) with randomly sized solid spheres in mutual contact. We then assigned full damage (which reduces tensile and shear stresses to zero) to SPH particles in the contacts between the components; the remaining volume is void space. The internal spherical components have a power-law distribution of sizes simulating fragments of a pre-shattered parent object. First-look analysis of the rubble-pile results indicate some general similarities to the simulations with the monolithic targets (e.g., similar trends in the number of small, gravitationally bound satellite systems as a function of impact conditions) and some significant differences (e.g., size of largest remnants and smaller debris affecting size frequency distributions of resulting families). We will report details of a more thorough analysis and the implications for collisional models of the main asteroid belt. This work is supported by the National Science Foundation, grant number AST0407045.

  12. Crowding is size and eccentricity dependent.

    PubMed

    Gurnsey, Rick; Roddy, Gabrielle; Chanab, Waël

    2011-06-17

    Crowding is a form of lateral interaction in which flanking items interfere with the detection or discrimination of a target stimulus. It is believed that crowding is a property of peripheral vision only and that no crowding occurs at fixation. If these two claims are true, then there must be a change in the nature of crowding interactions across the visual field. In three different tasks, we determined target size and flanker separation at threshold for eccentricities of 0 to 16° in the lower visual field for 7 relative separations (1.25 to 8 times target size). In all three tasks, the magnitude of crowding increases with eccentricity; there was no crowding at fixation and extreme crowding at 16°. Using a novel double-scaling procedure, we show that the non-foveal data in all three tasks can be characterized as shifted versions of the same psychometric function such that different sections of the function characterize data at each eccentricity. This pattern of results can be understood in terms of size-dependent responses to the target and distance-dependent interference from the flankers. The data suggest that the distance-dependent interference increases with eccentricity.

  13. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf

    2015-12-07

    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High

  14. Multi-Stage System for Automatic Target Recognition

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Lu, Thomas T.; Ye, David; Edens, Weston; Johnson, Oliver

    2010-01-01

    A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feedforward back-propagation neural network (NN) is then trained to classify each feature vector and to remove false positives. The system parameter optimizations process has been developed to adapt to various targets and datasets. The objective was to design an efficient computer vision system that can learn to detect multiple targets in large images with unknown backgrounds. Because the target size is small relative to the image size in this problem, there are many regions of the image that could potentially contain the target. A cursory analysis of every region can be computationally efficient, but may yield too many false positives. On the other hand, a detailed analysis of every region can yield better results, but may be computationally inefficient. The multi-stage ATR system was designed to achieve an optimal balance between accuracy and computational efficiency by incorporating both models. The detection stage first identifies potential ROIs where the target may be present by performing a fast Fourier domain OT-MACH filter-based correlation. Because threshold for this stage is chosen with the goal of detecting all true positives, a number of false positives are also detected as ROIs. The verification stage then transforms the regions of interest into feature space, and eliminates false positives using an

  15. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  16. An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome.

    PubMed

    Hay, Elizabeth Anne; Khalaf, Abdulla Razak; Marini, Pietro; Brown, Andrew; Heath, Karyn; Sheppard, Darrin; MacKenzie, Alasdair

    2017-08-01

    We have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome. However, reports of "off target" effects, whereby the CAS9 endonuclease is able to cut sites other than those targeted, limits the appeal of this technology. We used cytoplasmic microinjection of gRNA and CAS9 mRNA into 1-cell mouse embryos to rapidly generate enhancer knockout mouse lines. The current study describes our analysis of the genomes of these enhancer knockout lines to detect possible off-target effects. Bioinformatic analysis was used to identify the most likely putative off-target sites and to design PCR primers that would amplify these sequences from genomic DNA of founder enhancer deletion mouse lines. Amplified DNA was then sequenced and blasted against the mouse genome sequence to detect off-target effects. Using this approach we were unable to detect any evidence of off-target effects in the genomes of three founder lines using any of the four gRNAs used in the analysis. This study suggests that the problem of off-target effects in transgenic mice have been exaggerated and that CAS9/CRISPR represents a highly effective and accurate method of deleting putative neuropeptide gene enhancer sequences from the mouse genome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.

    PubMed

    Schuck, P

    2000-03-01

    A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifugation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coefficient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution can be obtained than from van Holde-Weischet analysis. The sensitivity to the values of the regularization parameter and to the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size distributions, and by applications to experimental data of continuous and discrete protein mixtures.

  18. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schollmeier, M.; Harres, K.; Nuernberg, F.

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained duringmore » the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.« less

  19. Comprehensive treatments for social cognitive deficits in schizophrenia: A critical review and effect-size analysis of controlled studies.

    PubMed

    Kurtz, Matthew M; Gagen, Emily; Rocha, Nuno B F; Machado, Sergio; Penn, David L

    2016-02-01

    Recent advances in psychosocial treatments for schizophrenia have targeted social cognitive deficits. A critical literature review and effect-size (ES) analysis was conducted to investigate the efficacy of comprehensive programs of social cognitive training in schizophrenia. Results revealed 16 controlled studies consisting of seven models of comprehensive treatment with only three of these treatment models investigated in more than one study. The effects of social cognitive training were reported in 11/15 studies that included facial affect recognition skills (ES=.84) and 10/13 studies that included theory-of-mind (ES=.70) as outcomes. Less than half (4/9) of studies that measured attributional style as an outcome reported effects of treatment, but effect sizes across studies were significant (ESs=.30-.52). The effect sizes for symptoms were modest, but, with the exception of positive symptoms, significant (ESs=.32-.40). The majority of trials were randomized (13/16), selected active control conditions (11/16) and included at least 30 participants (12/16). Concerns for this area of research include the absence of blinded outcome raters in more than 50% of trials and low rates of utilization of procedures for maintaining treatment fidelity. These findings provide preliminary support for the broader use of comprehensive social cognitive training procedures as a psychosocial intervention for schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Using cost-effectiveness analysis to evaluate targeting strategies: the case of vitamin A supplementation.

    PubMed

    Loevinsohn, B P; Sutter, R W; Costales, M O

    1997-03-01

    Given the demonstrated efficacy of vitamin A supplements in reducing childhood mortality, health officials now have to decide whether it would be efficient to target the supplements to high risk children. Decisions about targeting are complex because they depend on a number of factors; the degree of clustering of preventable deaths, the cost of the intervention, the side-effects of the intervention, the cost of identifying the high risk group, and the accuracy of the 'diagnosis' of risk. A cost-effectiveness analysis was used in the Philippines to examine whether vitamin A supplements should be given universally to all children 6-59 months, targeted broadly to children suffering from mild, moderate, or severe malnutrition, or targeted narrowly to pre-schoolers with moderate and severe malnutrition. The first year average cost of the universal approach was US$67.21 per death averted compared to $144.12 and $257.20 for the broad and narrow targeting approaches respectively. When subjected to sensitivity analysis the conclusion about the most cost-effective strategy was robust to changes in underlying assumptions such as the efficacy of supplements, clustering of deaths, and toxicity. Targeting vitamin A supplements to high risk children is not an efficient use of resources. Based on the results of this cost-effectiveness analysis and a consideration of alternate strategies, it is apparent that vitamin A, like immunization, should be provided to all pre-schoolers in the developing world. Issues about targeting public health interventions can usefully be addressed by cost-effectiveness analysis.

  1. Using spatial uncertainty to manipulate the size of the attention focus.

    PubMed

    Huang, Dan; Xue, Linyan; Wang, Xin; Chen, Yao

    2016-09-01

    Preferentially processing behaviorally relevant information is vital for primate survival. In visuospatial attention studies, manipulating the spatial extent of attention focus is an important question. Although many studies have claimed to successfully adjust attention field size by either varying the uncertainty about the target location (spatial uncertainty) or adjusting the size of the cue orienting the attention focus, no systematic studies have assessed and compared the effectiveness of these methods. We used a multiple cue paradigm with 2.5° and 7.5° rings centered around a target position to measure the cue size effect, while the spatial uncertainty levels were manipulated by changing the number of cueing positions. We found that spatial uncertainty had a significant impact on reaction time during target detection, while the cue size effect was less robust. We also carefully varied the spatial scope of potential target locations within a small or large region and found that this amount of variation in spatial uncertainty can also significantly influence target detection speed. Our results indicate that adjusting spatial uncertainty is more effective than varying cue size when manipulating attention field size.

  2. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: forensic fire debris analysis.

    PubMed

    Williams, Mary R; Sigman, Michael E; Lewis, Jennifer; Pitan, Kelly McHugh

    2012-10-10

    A bayesian soft classification method combined with target factor analysis (TFA) is described and tested for the analysis of fire debris data. The method relies on analysis of the average mass spectrum across the chromatographic profile (i.e., the total ion spectrum, TIS) from multiple samples taken from a single fire scene. A library of TIS from reference ignitable liquids with assigned ASTM classification is used as the target factors in TFA. The class-conditional distributions of correlations between the target and predicted factors for each ASTM class are represented by kernel functions and analyzed by bayesian decision theory. The soft classification approach assists in assessing the probability that ignitable liquid residue from a specific ASTM E1618 class, is present in a set of samples from a single fire scene, even in the presence of unspecified background contributions from pyrolysis products. The method is demonstrated with sample data sets and then tested on laboratory-scale burn data and large-scale field test burns. The overall performance achieved in laboratory and field test of the method is approximately 80% correct classification of fire debris samples. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Kinetic analysis of the effects of target structure on siRNA efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Zhang, Wenbing

    2012-12-01

    RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.

  4. Systems biology approaches and tools for analysis of interactomes and multi-target drugs.

    PubMed

    Schrattenholz, André; Groebe, Karlfried; Soskic, Vukic

    2010-01-01

    Systems biology is essentially a proteomic and epigenetic exercise because the relatively condensed information of genomes unfolds on the level of proteins. The flexibility of cellular architectures is not only mediated by a dazzling number of proteinaceous species but moreover by the kinetics of their molecular changes: The time scales of posttranslational modifications range from milliseconds to years. The genetic framework of an organism only provides the blue print of protein embodiments which are constantly shaped by external input. Indeed, posttranslational modifications of proteins represent the scope and velocity of these inputs and fulfil the requirements of integration of external spatiotemporal signal transduction inside an organism. The optimization of biochemical networks for this type of information processing and storage results in chemically extremely fine tuned molecular entities. The huge dynamic range of concentrations, the chemical diversity and the necessity of synchronisation of complex protein expression patterns pose the major challenge of systemic analysis of biological models. One further message is that many of the key reactions in living systems are essentially based on interactions of moderate affinities and moderate selectivities. This principle is responsible for the enormous flexibility and redundancy of cellular circuitries. In complex disorders such as cancer or neurodegenerative diseases, which initially appear to be rooted in relatively subtle dysfunctions of multimodal physiologic pathways, drug discovery programs based on the concept of high affinity/high specificity compounds ("one-target, one-disease"), which has been dominating the pharmaceutical industry for a long time, increasingly turn out to be unsuccessful. Despite improvements in rational drug design and high throughput screening methods, the number of novel, single-target drugs fell much behind expectations during the past decade, and the treatment of "complex

  5. A Bayesian approach for incorporating economic factors in sample size design for clinical trials of individual drugs and portfolios of drugs.

    PubMed

    Patel, Nitin R; Ankolekar, Suresh

    2007-11-30

    Classical approaches to clinical trial design ignore economic factors that determine economic viability of a new drug. We address the choice of sample size in Phase III trials as a decision theory problem using a hybrid approach that takes a Bayesian view from the perspective of a drug company and a classical Neyman-Pearson view from the perspective of regulatory authorities. We incorporate relevant economic factors in the analysis to determine the optimal sample size to maximize the expected profit for the company. We extend the analysis to account for risk by using a 'satisficing' objective function that maximizes the chance of meeting a management-specified target level of profit. We extend the models for single drugs to a portfolio of clinical trials and optimize the sample sizes to maximize the expected profit subject to budget constraints. Further, we address the portfolio risk and optimize the sample sizes to maximize the probability of achieving a given target of expected profit.

  6. A BRDF-BPDF database for the analysis of Earth target reflectances

    NASA Astrophysics Data System (ADS)

    Breon, Francois-Marie; Maignan, Fabienne

    2017-01-01

    Land surface reflectance is not isotropic. It varies with the observation geometry that is defined by the sun, view zenith angles, and the relative azimuth. In addition, the reflectance is linearly polarized. The reflectance anisotropy is quantified by the bidirectional reflectance distribution function (BRDF), while its polarization properties are defined by the bidirectional polarization distribution function (BPDF). The POLDER radiometer that flew onboard the PARASOL microsatellite remains the only space instrument that measured numerous samples of the BRDF and BPDF of Earth targets. Here, we describe a database of representative BRDFs and BPDFs derived from the POLDER measurements. From the huge number of data acquired by the spaceborne instrument over a period of 7 years, we selected a set of targets with high-quality observations. The selection aimed for a large number of observations, free of significant cloud or aerosol contamination, acquired in diverse observation geometries with a focus on the backscatter direction that shows the specific hot spot signature. The targets are sorted according to the 16-class International Geosphere-Biosphere Programme (IGBP) land cover classification system, and the target selection aims at a spatial representativeness within the class. The database thus provides a set of high-quality BRDF and BPDF samples that can be used to assess the typical variability of natural surface reflectances or to evaluate models. It is available freely from the PANGAEA website (target="_blank">doi:10.1594/PANGAEA.864090). In addition to the database, we provide a visualization and analysis tool based on the Interactive Data Language (IDL). It allows an interactive analysis of the measurements and a comparison against various BRDF and BPDF analytical models. The present paper describes the input data, the selection principles, the database format, and the analysis tool

  7. Effective Size Analysis of the Diametral Compression (Brazil) Test Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadaan, Osama M.; Wereszczak, Andrew A

    2009-04-01

    This study considers the finite element analysis (FEA) simulation and Weibull effective size analysis for the diametral compression (DC) or Brazil specimen loaded with three different push-rod geometries. Those geometries are a flat push-rod, a push-rod whose radius of curvature is larger than that for the DC specimen, and a push-rod whose radius of curvature matches that of the DC specimen. Such established effective size analysis recognizes that the tensile strength of structural ceramics is typically one to two orders of magnitude less than its compressive strength. Therefore, because fracture is much more apt to result from a tensile stressmore » than a compressive one, this traditional analysis only considers the first principal tensile stress field in the mechanically loaded ceramic component for the effective size analysis. The effective areas and effective volumes were computed as function of Weibull modulus using the CARES/Life code. Particular attention was devoted to the effect of mesh sensitivity and localized stress concentration. The effect of specimen width on the stress state was also investigated. The effects of push-rod geometry, the use of steel versus WC push-rods, and considering a frictionless versus no-slip interface between push-rod and specimen on the maximum stresses, where those stresses are located, and the effective area and effective volume results are described. Of the three push-rod geometries, it is concluded that the push-rod (made from WC rather than steel) whose radius of curvature matches that of the DC specimen is the most apt to cause fracture initiation within the specimen's bulk rather than at the loading interface. Therefore, its geometry is the most likely to produce a valid diametral compression strength test. However, the DC specimen remains inefficient in terms of its area and volume efficiencies; namely, the tensile strength of only a few percent of the specimen's entire area or volume is sampled. Given the high

  8. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE PAGES

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; ...

    2017-04-12

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  9. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  10. Curation of inhibitor-target data: process and impact on pathway analysis.

    PubMed

    Devidas, Sreenivas

    2009-01-01

    The past decade has seen a significant emergence in the availability and use of pathway analysis tools. The workflow that is supported by most of the pathway analysis tools is limited to either of the following: a. a network of genes based on the input data set, or b. the resultant network filtered down by a few criteria such as (but not limited to) i. disease association of the genes in the network; ii. targets known to be the target of one or more launched drugs; iii. targets known to be the target of one or more compounds in clinical trials; and iv. targets reasonably known to be potential candidate or clinical biomarkers. Almost all the tools in use today are biased towards the biological side and contain little, if any, information on the chemical inhibitors associated with the components of a given biological network. The limitation resides as follows: The fact that the number of inhibitors that have been published or patented is probably several fold (probably greater than 10-fold) more than the number of published protein-protein interactions. Curation of such data is both expensive and time consuming and could impact ROI significantly. The non-standardization associated with protein and gene names makes mapping reasonably non-straightforward. The number of patented and published inhibitors across target classes increases by over a million per year. Therefore, keeping the databases current becomes a monumental problem. Modifications required in the product architectures to accommodate chemistry-related content. GVK Bio has, over the past 7 years, curated the compound-target data that is necessary for the addition of such compound-centric workflows. This chapter focuses on identification, curation and utility of such data.

  11. Conservative Sample Size Determination for Repeated Measures Analysis of Covariance.

    PubMed

    Morgan, Timothy M; Case, L Douglas

    2013-07-05

    In the design of a randomized clinical trial with one pre and multiple post randomized assessments of the outcome variable, one needs to account for the repeated measures in determining the appropriate sample size. Unfortunately, one seldom has a good estimate of the variance of the outcome measure, let alone the correlations among the measurements over time. We show how sample sizes can be calculated by making conservative assumptions regarding the correlations for a variety of covariance structures. The most conservative choice for the correlation depends on the covariance structure and the number of repeated measures. In the absence of good estimates of the correlations, the sample size is often based on a two-sample t-test, making the 'ultra' conservative and unrealistic assumption that there are zero correlations between the baseline and follow-up measures while at the same time assuming there are perfect correlations between the follow-up measures. Compared to the case of taking a single measurement, substantial savings in sample size can be realized by accounting for the repeated measures, even with very conservative assumptions regarding the parameters of the assumed correlation matrix. Assuming compound symmetry, the sample size from the two-sample t-test calculation can be reduced at least 44%, 56%, and 61% for repeated measures analysis of covariance by taking 2, 3, and 4 follow-up measures, respectively. The results offer a rational basis for determining a fairly conservative, yet efficient, sample size for clinical trials with repeated measures and a baseline value.

  12. A generalized target theory and its applications.

    PubMed

    Zhao, Lei; Mi, Dong; Hu, Bei; Sun, Yeqing

    2015-09-28

    Different radiobiological models have been proposed to estimate the cell-killing effects, which are very important in radiotherapy and radiation risk assessment. However, most applied models have their own scopes of application. In this work, by generalizing the relationship between "hit" and "survival" in traditional target theory with Yager negation operator in Fuzzy mathematics, we propose a generalized target model of radiation-induced cell inactivation that takes into account both cellular repair effects and indirect effects of radiation. The simulation results of the model and the rethinking of "the number of targets in a cell" and "the number of hits per target" suggest that it is only necessary to investigate the generalized single-hit single-target (GSHST) in the present theoretical frame. Analysis shows that the GSHST model can be reduced to the linear quadratic model and multitarget model in the low-dose and high-dose regions, respectively. The fitting results show that the GSHST model agrees well with the usual experimental observations. In addition, the present model can be used to effectively predict cellular repair capacity, radiosensitivity, target size, especially the biologically effective dose for the treatment planning in clinical applications.

  13. Global analysis of bacterial transcription factors to predict cellular target processes.

    PubMed

    Doerks, Tobias; Andrade, Miguel A; Lathe, Warren; von Mering, Christian; Bork, Peer

    2004-03-01

    Whole-genome sequences are now available for >100 bacterial species, giving unprecedented power to comparative genomics approaches. We have applied genome-context methods to predict target processes that are regulated by transcription factors (TFs). Of 128 orthologous groups of proteins annotated as TFs, to date, 36 are functionally uncharacterized; in our analysis we predict a probable cellular target process or biochemical pathway for half of these functionally uncharacterized TFs.

  14. Real Time Intelligent Target Detection and Analysis with Machine Vision

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Padgett, Curtis; Brown, Kenneth

    2000-01-01

    We present an algorithm for detecting a specified set of targets for an Automatic Target Recognition (ATR) application. ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. We address the problem of discriminating between targets and nontarget objects in a scene by evaluating 40x40 image blocks belonging to an image. Each image block is first projected onto a set of templates specifically designed to separate images of targets embedded in a typical background scene from those background images without targets. These filters are found using directed principal component analysis which maximally separates the two groups. The projected images are then clustered into one of n classes based on a minimum distance to a set of n cluster prototypes. These cluster prototypes have previously been identified using a modified clustering algorithm based on prior sensed data. Each projected image pattern is then fed into the associated cluster's trained neural network for classification. A detailed description of our algorithm will be given in this paper. We outline our methodology for designing the templates, describe our modified clustering algorithm, and provide details on the neural network classifiers. Evaluation of the overall algorithm demonstrates that our detection rates approach 96% with a false positive rate of less than 0.03%.

  15. The impact of PET/CT scanning on the size of target volumes, radiation exposure of organs at risk, TCP and NTCP, in the radiotherapy planning of non-small cell lung cancer.

    PubMed

    Vojtíšek, Radovan; Mužík, Jan; Slampa, Pavel; Budíková, Marie; Hejsek, Jaroslav; Smolák, Petr; Ferda, Jiří; Fínek, Jindřich

    2014-05-01

    To compare radiotherapy plans made according to CT and PET/CT and to investigate the impact of changes in target volumes on tumour control probability (TCP), normal tissue complication probability (NTCP) and the impact of PET/CT on the staging and treatment strategy. Contemporary studies have proven that PET/CT attains higher sensitivity and specificity in the diagnosis of lung cancer and also leads to higher accuracy than CT alone in the process of target volume delineation in NSCLC. Between October 2009 and March 2012, 31 patients with locally advanced NSCLC, who had been referred to radical radiotherapy were involved in our study. They all underwent planning PET/CT examination. Then we carried out two separate delineations of target volumes and two radiotherapy plans and we compared the following parameters of those plans: staging, treatment purpose, the size of GTV and PTV and the exposure of organs at risk (OAR). TCP and NTCP were also compared. PET/CT information led to a significant decrease in the sizes of target volumes, which had the impact on the radiation exposure of OARs. The reduction of target volume sizes was not reflected in the significant increase of the TCP value. We found that there is a very strong direct linear relationship between all evaluated dosimetric parameters and NTCP values of all evaluated OARs. Our study found that the use of planning PET/CT in the radiotherapy planning of NSCLC has a crucial impact on the precise determination of target volumes, more precise staging of the disease and thus also on possible changes of treatment strategy.

  16. Comparative Analysis of Predicted Plastid-Targeted Proteomes of Sequenced Higher Plant Genomes

    PubMed Central

    Schaeffer, Scott; Harper, Artemus; Raja, Rajani; Jaiswal, Pankaj; Dhingra, Amit

    2014-01-01

    Plastids are actively involved in numerous plant processes critical to growth, development and adaptation. They play a primary role in photosynthesis, pigment and monoterpene synthesis, gravity sensing, starch and fatty acid synthesis, as well as oil, and protein storage. We applied two complementary methods to analyze the recently published apple genome (Malus × domestica) to identify putative plastid-targeted proteins, the first using TargetP and the second using a custom workflow utilizing a set of predictive programs. Apple shares roughly 40% of its 10,492 putative plastid-targeted proteins with that of the Arabidopsis (Arabidopsis thaliana) plastid-targeted proteome as identified by the Chloroplast 2010 project and ∼57% of its entire proteome with Arabidopsis. This suggests that the plastid-targeted proteomes between apple and Arabidopsis are different, and interestingly alludes to the presence of differential targeting of homologs between the two species. Co-expression analysis of 2,224 genes encoding putative plastid-targeted apple proteins suggests that they play a role in plant developmental and intermediary metabolism. Further, an inter-specific comparison of Arabidopsis, Prunus persica (Peach), Malus × domestica (Apple), Populus trichocarpa (Black cottonwood), Fragaria vesca (Woodland Strawberry), Solanum lycopersicum (Tomato) and Vitis vinifera (Grapevine) also identified a large number of novel species-specific plastid-targeted proteins. This analysis also revealed the presence of alternatively targeted homologs across species. Two separate analyses revealed that a small subset of proteins, one representing 289 protein clusters and the other 737 unique protein sequences, are conserved between seven plastid-targeted angiosperm proteomes. Majority of the novel proteins were annotated to play roles in stress response, transport, catabolic processes, and cellular component organization. Our results suggest that the current state of knowledge regarding

  17. Eddy Current Testing and Sizing of Deep Cracks in a Thick Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Endo, H.; Uchimoto, T.

    2004-02-26

    Due to the skin effect of eddy current testing, target of ECT restricts to thin structure such as steam generator tubes with 1.27mm thickness. Detecting and sizing of a deep crack in a thick structure remains a problem. In this paper, an ECT probe is presented to solve this problem with the help of numerical analysis. The parameters such as frequency, coil size etc. are discussed. The inverse problem of crack sizing is solved by applying a fast simulator of ECT based on an edge based finite element method and steepest descent method, and reconstructed results of 5, 10 andmore » 15mm depth cracks from experimental signals are shown.« less

  18. Early Pancreatic Ductal Adenocarcinoma Survival Is Dependent on Size: Positive Implications for Future Targeted Screening.

    PubMed

    Hur, Chin; Tramontano, Angela C; Dowling, Emily C; Brooks, Gabriel A; Jeon, Alvin; Brugge, William R; Gazelle, G Scott; Kong, Chung Yin; Pandharipande, Pari V

    2016-08-01

    Pancreatic ductal adenocarcinoma (PDAC) has not experienced a meaningful mortality improvement for the past few decades. Successful screening is difficult to accomplish because most PDACs present late in their natural history, and current interventions have not provided significant benefit. Our goal was to identify determinants of survival for early PDAC to help inform future screening strategies. Early PDACs from the National Cancer Institute's Surveillance, Epidemiology, and End Results Program database (2000-2010) were analyzed. We stratified by size and included carcinomas in situ (Tis). Overall cancer-specific survival was calculated. A Cox proportional hazards model was developed and the significance of key covariates for survival prediction was evaluated. A Kaplan-Meier plot demonstrated significant differences in survival by size at diagnosis; these survival benefits persisted after adjustment for key covariates in the Cox proportional hazards analysis. In addition, relatively weaker predictors of worse survival included older age, male sex, black race, nodal involvement, tumor location within the head of the pancreas, and no surgery or radiotherapy. For early PDAC, we found tumor size to be the strongest predictor of survival, even after adjustment for other patient characteristics. Our findings suggest that early PDAC detection can have clinical benefit, which has positive implications for future screening strategies.

  19. Validation of a particle tracking analysis method for the size determination of nano- and microparticles

    NASA Astrophysics Data System (ADS)

    Kestens, Vikram; Bozatzidis, Vassili; De Temmerman, Pieter-Jan; Ramaye, Yannic; Roebben, Gert

    2017-08-01

    Particle tracking analysis (PTA) is an emerging technique suitable for size analysis of particles with external dimensions in the nano- and sub-micrometre scale range. Only limited attempts have so far been made to investigate and quantify the performance of the PTA method for particle size analysis. This article presents the results of a validation study during which selected colloidal silica and polystyrene latex reference materials with particle sizes in the range of 20 nm to 200 nm were analysed with NS500 and LM10-HSBF NanoSight instruments and video analysis software NTA 2.3 and NTA 3.0. Key performance characteristics such as working range, linearity, limit of detection, limit of quantification, sensitivity, robustness, precision and trueness were examined according to recommendations proposed by EURACHEM. A model for measurement uncertainty estimation following the principles described in ISO/IEC Guide 98-3 was used for quantifying random and systematic variations. For nominal 50 nm and 100 nm polystyrene and a nominal 80 nm silica reference materials, the relative expanded measurement uncertainties for the three measurands of interest, being the mode, median and arithmetic mean of the number-weighted particle size distribution, varied from about 10% to 12%. For the nominal 50 nm polystyrene material, the relative expanded uncertainty of the arithmetic mean of the particle size distributions increased up to 18% which was due to the presence of agglomerates. Data analysis was performed with software NTA 2.3 and NTA 3.0. The latter showed to be superior in terms of sensitivity and resolution.

  20. Design Analysis of SNS Target StationBiological Shielding Monoligh with Proton Power Uprate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekar, Kursat B.; Ibrahim, Ahmad M.

    2017-05-01

    This report documents the analysis of the dose rate in the experiment area outside the Spallation Neutron Source (SNS) target station shielding monolith with proton beam energy of 1.3 GeV. The analysis implemented a coupled three dimensional (3D)/two dimensional (2D) approach that used both the Monte Carlo N-Particle Extended (MCNPX) 3D Monte Carlo code and the Discrete Ordinates Transport (DORT) two dimensional deterministic code. The analysis with proton beam energy of 1.3 GeV showed that the dose rate in continuously occupied areas on the lateral surface outside the SNS target station shielding monolith is less than 0.25 mrem/h, which compliesmore » with the SNS facility design objective. However, the methods and codes used in this analysis are out of date and unsupported, and the 2D approximation of the target shielding monolith does not accurately represent the geometry. We recommend that this analysis is updated with modern codes and libraries such as ADVANTG or SHIFT. These codes have demonstrated very high efficiency in performing full 3D radiation shielding analyses of similar and even more difficult problems.« less

  1. Targeting the T-Lak cell originated protein kinase by OTS964 shrinks the size of power-law coded heterogeneous glioma stem cell populations

    PubMed Central

    Sugimori, Michiya; Hayakawa, Yumiko; Koh, Masaki; Hayashi, Tomohide; Tamura, Ryoi; Kuroda, Satoshi

    2018-01-01

    Glioblastoma resists chemoradiotherapy, then, recurs to be a fatal space-occupying lesion. The recurrence is caused by re-growing cell populations such as glioma stem cells (GSCs), suggesting that GSC populations should be targeted. This study addressed whether a novel anti-cancer drug, OTS964, an inhibitor for T-LAK cell originated protein kinase (TOPK), is effective in reducing the size of the heterogeneous GSC populations, a power-law coded heterogeneous GSC populations consisting of glioma sphere (GS) clones, by detailing quantitative growth properties. We found that OTS964 killed GS clones while suppressing the growth of surviving GS clones, thus identifying clone-eliminating and growth-disturbing efficacies of OTS964. The efficacies led to a significant size reduction in GS populations in a dose-dependent manner. The surviving GS clones reconstructed GS populations in the following generations; the recovery of GS populations fits a recurrence after the chemotherapy. The recovering GS clones resisted the clone-eliminating effect of OTS964 in sequential exposure during the growth recovery. However, surprisingly, the resistant properties of the recovered-GS clones had been plastically canceled during self-renewal, and then the GS clones had become re-sensitive to OTS964. Thus, OTS964 targets GSCs to eliminate them or suppress their growth, resulting in shrinkage of the power-law coded GSC populations. We propose a therapy focusing on long-term control in recurrence of glioblastoma via reducing the size of the GSC populations by OTS964. PMID:29423027

  2. Targeting the T-Lak cell originated protein kinase by OTS964 shrinks the size of power-law coded heterogeneous glioma stem cell populations.

    PubMed

    Sugimori, Michiya; Hayakawa, Yumiko; Koh, Masaki; Hayashi, Tomohide; Tamura, Ryoi; Kuroda, Satoshi

    2018-01-09

    Glioblastoma resists chemoradiotherapy, then, recurs to be a fatal space-occupying lesion. The recurrence is caused by re-growing cell populations such as glioma stem cells (GSCs), suggesting that GSC populations should be targeted. This study addressed whether a novel anti-cancer drug, OTS964, an inhibitor for T-LAK cell originated protein kinase (TOPK), is effective in reducing the size of the heterogeneous GSC populations, a power-law coded heterogeneous GSC populations consisting of glioma sphere (GS) clones, by detailing quantitative growth properties. We found that OTS964 killed GS clones while suppressing the growth of surviving GS clones, thus identifying clone-eliminating and growth-disturbing efficacies of OTS964. The efficacies led to a significant size reduction in GS populations in a dose-dependent manner. The surviving GS clones reconstructed GS populations in the following generations; the recovery of GS populations fits a recurrence after the chemotherapy. The recovering GS clones resisted the clone-eliminating effect of OTS964 in sequential exposure during the growth recovery. However, surprisingly, the resistant properties of the recovered-GS clones had been plastically canceled during self-renewal, and then the GS clones had become re-sensitive to OTS964. Thus, OTS964 targets GSCs to eliminate them or suppress their growth, resulting in shrinkage of the power-law coded GSC populations. We propose a therapy focusing on long-term control in recurrence of glioblastoma via reducing the size of the GSC populations by OTS964.

  3. Investigation of Truck Size and Weight Limits - Technical Supplement. Vol. 1. Analysis of Truck Payloads Under Various Limits of Size, Weight and Configuration

    DOT National Transportation Integrated Search

    1981-02-01

    This volume documents the results of an analysis of the impact that various truck size and weight limits have on the carrier equipment selection process as a result of changes, in the design payload and design density of individual trucks. An analysi...

  4. Study of target and non-target interplay in spatial attention task.

    PubMed

    Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree

    2018-02-01

    Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.

  5. A test of size-scaling and relative-size hypotheses for the moon illusion.

    PubMed

    Redding, Gordon M

    2002-11-01

    In two experiments participants reproduced the size of the moon in pictorial scenes under two conditions: when the scene element was normally oriented, producing a depth gradient like a floor, or when the scene element was inverted, producing a depth gradient like a ceiling. Target moons were located near to or far from the scene element. Consistent with size constancy scaling, the illusion reversed when the "floor" of a pictorial scene was inverted to represent a "ceiling." Relative size contrast predicted a reduction or increase in the illusion with no change in direction. The relation between pictorial and natural moon illusions is discussed.

  6. Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.

    PubMed

    Li, Yongqiang; Liu, Xue; Li, Xinyi; Liu, Yiyang; Zheng, Yi; Wang, Min; Shen, Hao

    2013-08-01

    Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh-Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes.

  7. Non-targeted analysis of unexpected food contaminants using LC-HRMS.

    PubMed

    Kunzelmann, Marco; Winter, Martin; Åberg, Magnus; Hellenäs, Karl-Erik; Rosén, Johan

    2018-03-29

    A non-target analysis method for unexpected contaminants in food is described. Many current methods referred to as "non-target" are capable of detecting hundreds or even thousands of contaminants. However, they will typically still miss all other possible contaminants. Instead, a metabolomics approach might be used to obtain "true non-target" analysis. In the present work, such a method was optimized for improved detection capability at low concentrations. The method was evaluated using 19 chemically diverse model compounds spiked into milk samples to mimic unknown contamination. Other milk samples were used as reference samples. All samples were analyzed with UHPLC-TOF-MS (ultra-high-performance liquid chromatography time-of-flight mass spectrometry), using reversed-phase chromatography and electrospray ionization in positive mode. Data evaluation was performed by the software TracMass 2. No target lists of specific compounds were used to search for the contaminants. Instead, the software was used to sort out all features only occurring in the spiked sample data, i.e., the workflow resembled a metabolomics approach. Procedures for chemical identification of peaks were outside the scope of the study. Method, study design, and settings in the software were optimized to minimize manual evaluation and faulty or irrelevant hits and to maximize hit rate of the spiked compounds. A practical detection limit was established at 25 μg/kg. At this concentration, most compounds (17 out of 19) were detected as intact precursor ions, as fragments or as adducts. Only 2 irrelevant hits, probably natural compounds, were obtained. Limitations and possible practical use of the approach are discussed.

  8. A comparative analysis of adult body size and its correlates in acanthocephalan parasites.

    PubMed

    Poulin, Robert; Wise, Megan; Moore, Janice

    2003-07-30

    Adult acanthocephalan body sizes vary interspecifically over more than two orders of magnitude; yet, despite its importance for our understanding of the coevolutionary links between hosts and parasites, this variation remains unexplained. Here, we used a comparative analysis to investigate how final adult sizes and relative increments in size following establishment in the definitive host are influenced by three potential determinants of acanthocephalan sizes: initial (cystacanth) size at infection, host body mass, and the thermal regime experienced during growth, i.e. whether the definitive host is an ectotherm or an endotherm. Relative growth from the cystacanth stage to the adult stage ranged from twofold to more than 10,000-fold across acanthocephalan species, averaging just over 100-fold. However, this relative increment in size did not correlate with host mass, and did not differ between acanthocephalan species using ectothermic hosts and those growing in endothermic hosts. In contrast, final acanthocephalan adult sizes correlated positively with host mass, and after correction for host mass, final adult sizes were higher in species parasitising endotherms than in those found in ectotherms. The relationship between host mass and acanthocephalan adult size practically disappears, however, once phylogenetic influences are taken into account. Positive relationships between adult acanthocephalan size, cystacanth size and egg size indicate that a given relative size is a feature of an acanthocephalan species at all stages of its life cycle. These relationships also suggest that adult size is to some extent determined by cystacanth size, and that the characteristics of the definitive host are not the sole determinants of parasite life history traits.

  9. Analysis of variograms with various sample sizes from a multispectral image

    USDA-ARS?s Scientific Manuscript database

    Variograms play a crucial role in remote sensing application and geostatistics. In this study, the analysis of variograms with various sample sizes of remotely sensed data was conducted. A 100 X 100 pixel subset was chosen from an aerial multispectral image which contained three wavebands, green, ...

  10. Statistical Inference for Data Adaptive Target Parameters.

    PubMed

    Hubbard, Alan E; Kherad-Pajouh, Sara; van der Laan, Mark J

    2016-05-01

    Consider one observes n i.i.d. copies of a random variable with a probability distribution that is known to be an element of a particular statistical model. In order to define our statistical target we partition the sample in V equal size sub-samples, and use this partitioning to define V splits in an estimation sample (one of the V subsamples) and corresponding complementary parameter-generating sample. For each of the V parameter-generating samples, we apply an algorithm that maps the sample to a statistical target parameter. We define our sample-split data adaptive statistical target parameter as the average of these V-sample specific target parameters. We present an estimator (and corresponding central limit theorem) of this type of data adaptive target parameter. This general methodology for generating data adaptive target parameters is demonstrated with a number of practical examples that highlight new opportunities for statistical learning from data. This new framework provides a rigorous statistical methodology for both exploratory and confirmatory analysis within the same data. Given that more research is becoming "data-driven", the theory developed within this paper provides a new impetus for a greater involvement of statistical inference into problems that are being increasingly addressed by clever, yet ad hoc pattern finding methods. To suggest such potential, and to verify the predictions of the theory, extensive simulation studies, along with a data analysis based on adaptively determined intervention rules are shown and give insight into how to structure such an approach. The results show that the data adaptive target parameter approach provides a general framework and resulting methodology for data-driven science.

  11. Statistical analysis of target acquisition sensor modeling experiments

    NASA Astrophysics Data System (ADS)

    Deaver, Dawne M.; Moyer, Steve

    2015-05-01

    The U.S. Army RDECOM CERDEC NVESD Modeling and Simulation Division is charged with the development and advancement of military target acquisition models to estimate expected soldier performance when using all types of imaging sensors. Two elements of sensor modeling are (1) laboratory-based psychophysical experiments used to measure task performance and calibrate the various models and (2) field-based experiments used to verify the model estimates for specific sensors. In both types of experiments, it is common practice to control or measure environmental, sensor, and target physical parameters in order to minimize uncertainty of the physics based modeling. Predicting the minimum number of test subjects required to calibrate or validate the model should be, but is not always, done during test planning. The objective of this analysis is to develop guidelines for test planners which recommend the number and types of test samples required to yield a statistically significant result.

  12. Time-frequency analysis of backscattered signals from diffuse radar targets

    NASA Astrophysics Data System (ADS)

    Kenny, O. P.; Boashash, B.

    1993-06-01

    The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. The authors discuss time-frequency representation of the backscattered signal from a diffuse radar target. It is then shown that for point scatterers which are statistically dependent or for which the reflectivity coefficient has a nonzero mean value, reconstruction using time of flight positron emission tomography on time-frequency images is effective for estimating the scattering function of the target.

  13. Effects-based strategy development through center of gravity and target system analysis

    NASA Astrophysics Data System (ADS)

    White, Christopher M.; Prendergast, Michael; Pioch, Nicholas; Jones, Eric K.; Graham, Stephen

    2003-09-01

    This paper describes an approach to effects-based planning in which a strategic-theater-level mission is refined into operational-level and ultimately tactical-level tasks and desired effects, informed by models of the expected enemy response at each level of abstraction. We describe a strategy development system that implements this approach and supports human-in-the-loop development of an effects-based plan. This system consists of plan authoring tools tightly integrated with a suite of center of gravity (COG) and target system analysis tools. A human planner employs the plan authoring tools to develop a hierarchy of tasks and desired effects. Upon invocation, the target system analysis tools use reduced-order models of enemy centers of gravity to select appropriate target set options for the achievement of desired effects, together with associated indicators for each option. The COG analysis tools also provide explicit models of the causal mechanisms linking tasks and desired effects to one another, and suggest appropriate observable indicators to guide ISR planning, execution monitoring, and campaign assessment. We are currently implementing the system described here as part of the AFRL-sponsored Effects Based Operations program.

  14. Analysis of variograms with various sample sizes from a multispectral image

    USDA-ARS?s Scientific Manuscript database

    Variogram plays a crucial role in remote sensing application and geostatistics. It is very important to estimate variogram reliably from sufficient data. In this study, the analysis of variograms with various sample sizes of remotely sensed data was conducted. A 100x100-pixel subset was chosen from ...

  15. TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems.

    PubMed

    Cao, Nan; Shi, Conglei; Lin, Sabrina; Lu, Jie; Lin, Yu-Ru; Lin, Ching-Yung

    2016-01-01

    Users with anomalous behaviors in online communication systems (e.g. email and social medial platforms) are potential threats to society. Automated anomaly detection based on advanced machine learning techniques has been developed to combat this issue; challenges remain, though, due to the difficulty of obtaining proper ground truth for model training and evaluation. Therefore, substantial human judgment on the automated analysis results is often required to better adjust the performance of anomaly detection. Unfortunately, techniques that allow users to understand the analysis results more efficiently, to make a confident judgment about anomalies, and to explore data in their context, are still lacking. In this paper, we propose a novel visual analysis system, TargetVue, which detects anomalous users via an unsupervised learning model and visualizes the behaviors of suspicious users in behavior-rich context through novel visualization designs and multiple coordinated contextual views. Particularly, TargetVue incorporates three new ego-centric glyphs to visually summarize a user's behaviors which effectively present the user's communication activities, features, and social interactions. An efficient layout method is proposed to place these glyphs on a triangle grid, which captures similarities among users and facilitates comparisons of behaviors of different users. We demonstrate the power of TargetVue through its application in a social bot detection challenge using Twitter data, a case study based on email records, and an interview with expert users. Our evaluation shows that TargetVue is beneficial to the detection of users with anomalous communication behaviors.

  16. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery.

    PubMed

    Nguyen, Dai Hai; Lee, Jung Seok; Choi, Jong Hoon; Park, Kyung Min; Lee, Yunki; Park, Ki Dong

    2016-04-15

    Nanoparticle-based imaging and therapy are of interest for theranostic nanomedicine. In particular, superparamagnetic iron oxide (SPIO) nanoparticles (NPs) have attracted much attention in cancer imaging, diagnostics, and treatment because of their superior imagability and biocompatibility (approved by the Food and Drug Administration). Here, we developed SPIO nanoparticles (NPs) that self-assembled into magnetic nanoclusters (SAMNs) in aqueous environments as a theranostic nano-system. To generate multi-functional SPIO NPs, we covalently conjugated β-cyclodextrin (β-CD) to SPIO NPs using metal-adhesive dopamine groups. Polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. The core-shell structure of the magnetic nanoclusters was elucidated based on the condensed SPIO core and a PEG shell using electron microscopy and the composition was analyzed by thermogravimetric analysis (TGA). Our results indicate that nanocluster size could be readily controlled by changing the SPIO/PEG ratio in the assemblies. Interestingly, we observed a significant enhancement in magnetic resonance contrast due to the large cluster size and dense iron oxide core. In addition, tethering a tumor-targeting peptide to the SAMNs enhanced their uptake into tumor cells. PTX was efficiently loaded into β-CDs and released in a controlled manner when exposed to competitive guest molecules. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. In this study, we developed multi-functional SPIO NPs that self-assembled into magnetic nanoclusters (SAMNs) in aqueous conditions as a theranostic nano-system. The beta-cyclodextrin (β-CD) was immobilized on the surfaces of SPIO NPs and RGD-conjugated polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. We found that nanocluster size could be

  17. Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application

    PubMed Central

    Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia

    2009-01-01

    Background microRNAs (miRNAs) are single-stranded RNA molecules of about 20–23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. Results GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. Conclusion GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA. PMID:19534746

  18. Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application.

    PubMed

    Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia

    2009-06-16

    microRNAs (miRNAs) are single-stranded RNA molecules of about 20-23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA.

  19. Critical Initial Flaw Size Analysis

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Raju, Ivatury S.; Cheston, Derrick J.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The USS consists of several "tuna can" segments that are approximately 216 inches in diameter, 115 inches tall, and 0.5 inches thick. A 6 inch wide by 1 inch thick flange is welded to the skin and is used to fasten adjacent tuna cans. A schematic of a "tuna can" and the location of the flange-to-skin weld are shown in Figure 1. Gussets (shown in yellow in Figure 1) are welded to the skin and flange every 10 degrees around the circumference of the "tuna can". The flange-to-skin weld is a flux core butt weld with a fillet weld on the inside surface, as illustrated in Figure 2. The welding process may create loss of fusion defects in the weld that could develop into fatigue cracks and jeopardize the structural integrity of the Ares I-X vehicle. The CIFS analysis was conducted to determine the largest crack in the weld region that will not grow to failure within 4 lifetimes, as specified by NASA standard 5001 & 5019 [1].

  20. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy.

    PubMed

    Qiu, Liping; Chen, Tao; Öçsoy, Ismail; Yasun, Emir; Wu, Cuichen; Zhu, Guizhi; You, Mingxu; Han, Da; Jiang, Jianhui; Yu, Ruqin; Tan, Weihong

    2015-01-14

    The development of multidrug resistance (MDR) has become an increasingly serious problem in cancer therapy. The cell-membrane overexpression of P-glycoprotein (P-gp), which can actively efflux various anticancer drugs from the cell, is a major mechanism of MDR. Nuclear-uptake nanodrug delivery systems, which enable intranuclear release of anticancer drugs, are expected to address this challenge by bypassing P-gp. However, before entering the nucleus, the nanocarrier must pass through the cell membrane, necessitating coordination between intracellular and intranuclear delivery. To accommodate this requirement, we have used DNA self-assembly to develop a nuclear-uptake nanodrug system carried by a cell-targeted near-infrared (NIR)-responsive nanotruck for drug-resistant cancer therapy. Via DNA hybridization, small drug-loaded gold nanoparticles (termed nanodrugs) can self-assemble onto the side face of a silver-gold nanorod (NR, termed nanotruck) whose end faces were modified with a cell type-specific internalizing aptamer. By using this size-photocontrollable nanodrug delivery system, anticancer drugs can be efficiently accumulated in the nuclei to effectively kill the cancer cells.

  1. In-depth resistome analysis by targeted metagenomics.

    PubMed

    Lanza, Val F; Baquero, Fernando; Martínez, José Luís; Ramos-Ruíz, Ricardo; González-Zorn, Bruno; Andremont, Antoine; Sánchez-Valenzuela, Antonio; Ehrlich, Stanislav Dusko; Kennedy, Sean; Ruppé, Etienne; van Schaik, Willem; Willems, Rob J; de la Cruz, Fernando; Coque, Teresa M

    2018-01-15

    Antimicrobial resistance is a major global health challenge. Metagenomics allows analyzing the presence and dynamics of "resistomes" (the ensemble of genes encoding antimicrobial resistance in a given microbiome) in disparate microbial ecosystems. However, the low sensitivity and specificity of available metagenomic methods preclude the detection of minority populations (often present below their detection threshold) and/or the identification of allelic variants that differ in the resulting phenotype. Here, we describe a novel strategy that combines targeted metagenomics using last generation in-solution capture platforms, with novel bioinformatics tools to establish a standardized framework that allows both quantitative and qualitative analyses of resistomes. We developed ResCap, a targeted sequence capture platform based on SeqCapEZ (NimbleGene) technology, which includes probes for 8667 canonical resistance genes (7963 antibiotic resistance genes and 704 genes conferring resistance to metals or biocides), and 2517 relaxase genes (plasmid markers) and 78,600 genes homologous to the previous identified targets (47,806 for antibiotics and 30,794 for biocides or metals). Its performance was compared with metagenomic shotgun sequencing (MSS) for 17 fecal samples (9 humans, 8 swine). ResCap significantly improves MSS to detect "gene abundance" (from 2.0 to 83.2%) and "gene diversity" (26 versus 14.9 genes unequivocally detected per sample per million of reads; the number of reads unequivocally mapped increasing up to 300-fold by using ResCap), which were calculated using novel bioinformatic tools. ResCap also facilitated the analysis of novel genes potentially involved in the resistance to antibiotics, metals, biocides, or any combination thereof. ResCap, the first targeted sequence capture, specifically developed to analyze resistomes, greatly enhances the sensitivity and specificity of available metagenomic methods and offers the possibility to analyze genes

  2. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling.

    PubMed

    Wang, Nan; Wei, Fang; Qi, Yuhang; Li, Hongxiang; Lu, Xin; Zhao, Guoqiang; Xu, Qun

    2014-11-26

    MoS2 nanosheets with polydispersity of the lateral dimensions from natural mineral molybdenite have been prepared in the emulsions microenvironment built by the water/surfactant/CO2 system. The size, thickness, and atomic structure are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and laser-scattering particle size analysis. Meanwhile, by the analysis of photoluminescence spectroscopy and microscope, the MoS2 nanosheets with smaller lateral dimensions exhibit extraordinary photoluminescence properties different from those with relatively larger lateral dimensions. The discovery of the excitation dependent photoluminescence for MoS2 nanosheets makes them potentially of interests for the applications in optoelectronics and biology. Moreover, we demonstrate that the fabricated MoS2 nanosheets can be a nontoxic fluorescent label for cell-targeted labeling application.

  3. Recent trends in particle size analysis techniques

    NASA Technical Reports Server (NTRS)

    Kang, S. H.

    1984-01-01

    Recent advances and developments in the particle-sizing technologies are briefly reviewed in accordance with three operating principles including particle size and shape descriptions. Significant trends of the particle size analysing equipment recently developed show that compact electronic circuitry and rapid data processing systems were mainly adopted in the instrument design. Some newly developed techniques characterizing the particulate system were also introduced.

  4. Experimental and Theoretical Modal Analysis of Full-Sized Wood Composite Panels Supported on Four Nodes

    PubMed Central

    Guan, Cheng; Zhang, Houjiang; Wang, Xiping; Miao, Hu; Zhou, Lujing; Liu, Fenglu

    2017-01-01

    Key elastic properties of full-sized wood composite panels (WCPs) must be accurately determined not only for safety, but also serviceability demands. In this study, the modal parameters of full-sized WCPs supported on four nodes were analyzed for determining the modulus of elasticity (E) in both major and minor axes, as well as the in-plane shear modulus of panels by using a vibration testing method. The experimental modal analysis was conducted on three full-sized medium-density fiberboard (MDF) and three full-sized particleboard (PB) panels of three different thicknesses (12, 15, and 18 mm). The natural frequencies and mode shapes of the first nine modes of vibration were determined. Results from experimental modal testing were compared with the results of a theoretical modal analysis. A sensitivity analysis was performed to identify the sensitive modes for calculating E (major axis: Ex and minor axis: Ey) and the in-plane shear modulus (Gxy) of the panels. Mode shapes of the MDF and PB panels obtained from modal testing are in a good agreement with those from theoretical modal analyses. A strong linear relationship exists between the measured natural frequencies and the calculated frequencies. The frequencies of modes (2, 0), (0, 2), and (2, 1) under the four-node support condition were determined as the characteristic frequencies for calculation of Ex, Ey, and Gxy of full-sized WCPs. The results of this study indicate that the four-node support can be used in free vibration test to determine the elastic properties of full-sized WCPs. PMID:28773043

  5. Using Image Attributes to Assure Accurate Particle Size and Count Using Nanoparticle Tracking Analysis.

    PubMed

    Defante, Adrian P; Vreeland, Wyatt N; Benkstein, Kurt D; Ripple, Dean C

    2018-05-01

    Nanoparticle tracking analysis (NTA) obtains particle size by analysis of particle diffusion through a time series of micrographs and particle count by a count of imaged particles. The number of observed particles imaged is controlled by the scattering cross-section of the particles and by camera settings such as sensitivity and shutter speed. Appropriate camera settings are defined as those that image, track, and analyze a sufficient number of particles for statistical repeatability. Here, we test if image attributes, features captured within the image itself, can provide measurable guidelines to assess the accuracy for particle size and count measurements using NTA. The results show that particle sizing is a robust process independent of image attributes for model systems. However, particle count is sensitive to camera settings. Using open-source software analysis, it was found that a median pixel area, 4 pixels 2 , results in a particle concentration within 20% of the expected value. The distribution of these illuminated pixel areas can also provide clues about the polydispersity of particle solutions prior to using a particle tracking analysis. Using the median pixel area serves as an operator-independent means to assess the quality of the NTA measurement for count. Published by Elsevier Inc.

  6. Design of protein-responsive micro-sized hydrogels for self-regulating microfluidic systems

    NASA Astrophysics Data System (ADS)

    Hirayama, Mayu; Tsuruta, Kazuhiro; Kawamura, Akifumi; Ohara, Masayuki; Shoji, Kan; Kawano, Ryuji; Miyata, Takashi

    2018-03-01

    Diagnosis sensors using micro-total analysis systems (µ-TAS) have been developed for detecting target biomolecules such as proteins and saccharides because they are signal biomolecules for monitoring body conditions and diseases. In this study, biomolecularly stimuli-responsive micro-sized hydrogels that exhibited quick shrinkage in response to lectin concanavalinA (ConA) were prepared in a microchannel by photopolymerization using a fluorescence microscope. In preparing the micro-size hydrogels, glycosyloxyethyl methacrylate (GEMA) as a ligand monomer was copolymerized with a crosslinker in the presence of template ConA in molecular imprinting. The ConA-imprinted micro-hydrogel showed greater shrinkage in response to target ConA than nonimprinted micro-hydrogel. When a buffer solution was switched to an aqueous ConA solution in the Y-shaped microchannel, the flow rates changed quickly because of the responsive shrinkage of the micro-hydrogel prepared in the microchannel. These results suggest that the ConA-imprinted micro-hydrogel acted as a self-regulated microvalve in microfluidic systems.

  7. Characterization studies of prototype ISOL targets for the RIA

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Burtseva, Tatiana; Neubauer, Janelle; Nolen, Jerry A.; Villari, Antonio C. C.; Gomes, Itacil C.

    2005-12-01

    Targets employing refractory compounds are being developed for the rare isotope accelerator (RIA) facility to produce ion species far from stability. With the 100 kW beams proposed for the production targets, dissipation of heat becomes a challenging issue. In our two-step target design, neutrons are generated in a refractory primary target, inducing fission in the surrounding uranium carbide. The interplay of density, grain size, thermal conductivity and diffusion properties of the UC2 needs to be well understood before fabrication. Thin samples of uranium carbide were prepared for thermal conductivity measurements using an electron beam to heat the sample and an optical pyrometer to observe the thermal radiation. Release efficiencies and independent thermal analysis on these samples are being undertaken at Oak Ridge National Laboratory (ORNL). An alternate target concept for RIA, the tilted slab approach promises to be simple with fast ion release and capable of withstanding high beam intensities while providing considerable yields via spallation. A proposed small business innovative research (SBIR) project will design a prototype tilted target, exploring the materials needed for fabrication and testing at an irradiation facility to address issues of heat transfer and stresses within the target.

  8. WormSizer: high-throughput analysis of nematode size and shape.

    PubMed

    Moore, Brad T; Jordan, James M; Baugh, L Ryan

    2013-01-01

    The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant. Our estimate is more robust to changes in morphology or optical density as it only assumes radial symmetry. This open source software is written as a plugin for the well-known image-processing framework Fiji/ImageJ. It may therefore be extended easily. We evaluated the technical performance of this framework, and we used it to analyze growth and shape of several canonical Caenorhabditis elegans mutants in a developmental time series. We confirm quantitatively that a Dumpy (Dpy) mutant is short and fat and that a Long (Lon) mutant is long and thin. We show that daf-2 insulin-like receptor mutants are larger than wild-type upon hatching but grow slow, and WormSizer can distinguish dauer larvae from normal larvae. We also show that a Small (Sma) mutant is actually smaller than wild-type at all stages of larval development. WormSizer works with Uncoordinated (Unc) and Roller (Rol) mutants as well, indicating that it can be used with mutants despite behavioral phenotypes. We used our complete data set to perform a power analysis, giving users a sense of how many images are needed to detect different effect sizes. Our analysis confirms and extends on existing phenotypic characterization of well-characterized mutants, demonstrating the utility and robustness of WormSizer.

  9. The relation between visualization size, grouping, and user performance.

    PubMed

    Gramazio, Connor C; Schloss, Karen B; Laidlaw, David H

    2014-12-01

    In this paper we make the following contributions: (1) we describe how the grouping, quantity, and size of visual marks affects search time based on the results from two experiments; (2) we report how search performance relates to self-reported difficulty in finding the target for different display types; and (3) we present design guidelines based on our findings to facilitate the design of effective visualizations. Both Experiment 1 and 2 asked participants to search for a unique target in colored visualizations to test how the grouping, quantity, and size of marks affects user performance. In Experiment 1, the target square was embedded in a grid of squares and in Experiment 2 the target was a point in a scatterplot. Search performance was faster when colors were spatially grouped than when they were randomly arranged. The quantity of marks had little effect on search time for grouped displays ("pop-out"), but increasing the quantity of marks slowed reaction time for random displays. Regardless of color layout (grouped vs. random), response times were slowest for the smallest mark size and decreased as mark size increased to a point, after which response times plateaued. In addition to these two experiments we also include potential application areas, as well as results from a small case study where we report preliminary findings that size may affect how users infer how visualizations should be used. We conclude with a list of design guidelines that focus on how to best create visualizations based on grouping, quantity, and size of visual marks.

  10. Influence of eye size and beam entry angle on dose to non-targeted tissues of the eye during stereotactic x-ray radiosurgery of AMD

    NASA Astrophysics Data System (ADS)

    Cantley, Justin L.; Hanlon, Justin; Chell, Erik; Lee, Choonsik; Smith, W. Clay; Bolch, Wesley E.

    2013-10-01

    Age-related macular degeneration is a leading cause of vision loss for the elderly population of industrialized nations. The IRay® Radiotherapy System, developed by Oraya® Therapeutics, Inc., is a stereotactic low-voltage irradiation system designed to treat the wet form of the disease. The IRay System uses three robotically positioned 100 kVp collimated photon beams to deliver an absorbed dose of up to 24 Gy to the macula. The present study uses the Monte Carlo radiation transport code MCNPX to assess absorbed dose to six non-targeted tissues within the eye—total lens, radiosensitive tissues of the lens, optic nerve, distal tip of the central retinal artery, non-targeted portion of the retina, and the ciliary body--all as a function of eye size and beam entry angle. The ocular axial length was ranged from 20 to 28 mm in 2 mm increments, with the polar entry angle of the delivery system varied from 18° to 34° in 2° increments. The resulting data showed insignificant variations in dose for all eye sizes. Slight variations in the dose to the optic nerve and the distal tip of the central retinal artery were noted as the polar beam angle changed. An increase in non-targeted retinal dose was noted as the entry angle increased, while the dose to the lens, sensitive volume of the lens, and ciliary body decreased as the treatment polar angle increased. Polar angles of 26° or greater resulted in no portion of the sensitive volume of the lens receiving an absorbed dose of 0.5 Gy or greater. All doses to non-targeted structures reported in this study were less than accepted thresholds for post-procedure complications.

  11. Prognostic value of tumor size in gastric cancer: an analysis of 2,379 patients.

    PubMed

    Guo, Pengtao; Li, Yangming; Zhu, Zhi; Sun, Zhe; Lu, Chong; Wang, Zhenning; Xu, Huimian

    2013-04-01

    Tumor size has been included into the staging systems of many solid tumors, such as lung and breast. However, tumor size is not integrated in the staging of gastric cancer, and its prognostic value for gastric cancer needs to be reappraised. A total of 2,379 patients who received radical resection for histopathologically confirmed gastric adenocarcinoma were enrolled in the present study. Tumor size, originally presented as continuous variable, was categorized into small gastric cancer (SGC) group and large gastric cancer (LGC) group using an optimal cutoff point determined by Cox proportional hazards model. The associations between tumor size and other clinicopathological factors were checked using Chi-square test. Survival of gastric cancer patients was estimated by using univariate Kaplan-Meier method, and the survival difference was checked by using the log-rank test. The significant clinicopathological factors were included into the Cox proportional hazards model to determine the independent prognostic factors, and their hazard ratios were calculated. With the optimal cutoff point of 4 cm, tumor size was categorized into SGC group (≤ 4 cm) and LGC group (>4 cm). Tumor size closely correlated with age, tumor location, macroscopic type, Lauren classification, and lymphatic vessel invasion. Moreover, tumor size was also significantly associated with depth of tumor invasion and status of regional lymph nodes. The 5-year survival rate was 68.7 % for SGC group which was much higher than 40.2 % for LGC group. Univariate analysis showed that SGC had a better survival than LGC, mainly for patients with IIA, IIB, and IIIA stage. Multivariate analysis revealed that tumor size as well as age, tumor location, macroscopic type, Lauren classification, lymphatic vessel invasion, depth of tumor invasion, and status of regional lymph nodes were independent prognostic factors for gastric cancer. Tumor size is a reliable prognostic factor for patients with gastric cancer, and

  12. Rapid Analysis of the Size Distribution of Metal-Containing Aerosol

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Crawford, Kathryn J.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2017-01-01

    Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 μm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selective and collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to detect Fe particles at mass per substrate loadings less than 2.5 μg effectively, it produced results similar to those using the ICP-MS at a mass per substrate loading greater than 2.5 μg. PMID:28871214

  13. Insect Detection of Small Targets Moving in Visual Clutter

    PubMed Central

    Barnett, Paul D; O'Carroll, David C

    2006-01-01

    Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron. PMID:16448249

  14. [Analysis of particle size characteristics of road sediments in Beijing Olympic Park].

    PubMed

    Li, Hai-yan; Shi, An-bang; Qu, Yang-sheng; Yue, Jing-lin

    2014-09-01

    Particle size analysis of road sediment collected in October and November in Beijing Olympic Park indicates that most of the sediments are 76-830 μm; the grain size of the sediments in the area of large population flow is mainly coarse but the grain size in the area of large traffic volume is fine relatively while most of the sediments are <300 p.m. Moreover, sediments of size range <300 μm can be easily accumulated on the road with moderate traffic density. The results demonstrate that the effect of pedestrian flow on the composition of the particles is unobvious and the main influences are the traffic density, extensive construction. With the length of dry period increasing, the content of sediments of size range >300 μm decreases and the content of sediments of size range < 150 μm increases, however, the change of the content of sediments of size range 150-300 μm is not obvious. The results indicate that the effectiveness of the road sediment removal depends on the length of dry period, and the accumulation of different size particles varies differently under the different dry days. Compared with the stone road, surface particles can accumulate on the asphalt road more easily as the accumulation of particles is affected by the road material significantly. Therefore, to reduce the urban surface water pollution, it is necessary to improve the design of park road such as using the stone road, which can decrease the roughness of the road.

  15. Time-reversal optical tomography: detecting and locating extended targets in a turbid medium

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Xu, M.; Gayen, S. K.

    2012-03-01

    Time Reversal Optical Tomography (TROT) is developed to locate extended target(s) in a highly scattering turbid medium, and estimate their optical strength and size. The approach uses Diffusion Approximation of Radiative Transfer Equation for light propagation along with Time Reversal (TR) Multiple Signal Classification (MUSIC) scheme for signal and noise subspaces for assessment of target location. A MUSIC pseudo spectrum is calculated using the eigenvectors of the TR matrix T, whose poles provide target locations. Based on the pseudo spectrum contours, retrieval of target size is modeled as an optimization problem, using a "local contour" method. The eigenvalues of T are related to optical strengths of targets. The efficacy of TROT to obtain location, size, and optical strength of one absorptive target, one scattering target, and two absorptive targets, all for different noise levels was tested using simulated data. Target locations were always accurately determined. Error in optical strength estimates was small even at 20% noise level. Target size and shape were more sensitive to noise. Results from simulated data demonstrate high potential for application of TROT in practical biomedical imaging applications.

  16. Sizing for the apparel industry using statistical analysis - a Brazilian case study

    NASA Astrophysics Data System (ADS)

    Capelassi, C. H.; Carvalho, M. A.; El Kattel, C.; Xu, B.

    2017-10-01

    The study of the body measurements of Brazilian women used the Kinect Body Imaging system for 3D body scanning. The result of the study aims to meet the needs of the apparel industry for accurate measurements. Data was statistically treated using the IBM SPSS 23 system, with 95% confidence (P<0,05) for the inferential analysis, with the purpose of grouping the measurements in sizes, so that a smaller number of sizes can cover a greater number of people. The sample consisted of 101 volunteers aged between 19 and 62 years. A cluster analysis was performed to identify the main body shapes of the sample. The results were divided between the top and bottom body portions; For the top portion, were used the measurements of the abdomen, waist and bust circumferences, as well as the height; For the bottom portion, were used the measurements of the hip circumference and the height. Three sizing systems were developed for the researched sample from the Abdomen-to-Height Ratio - AHR (top portion): Small (AHR < 0,52), Medium (AHR: 0,52-0,58), Large (AHR > 0,58) and from the Hip-to-Height Ratio - HHR (bottom portion): Small (HHR < 0,62), Medium (HHR: 0,62-0,68), Large (HHR > 0,68).

  17. Targets of perioperative fluid therapy and their effects on postoperative outcome: a systematic review and meta-analysis.

    PubMed

    Berger, M M; Gradwohl-Matis, I; Brunauer, A; Ulmer, H; Dünser, M W

    2015-07-01

    Perioperative fluid management plays a fundamental role in maintaining organ perfusion, and is considered to affect morbidity and mortality. Targets according to which fluid therapy should be administered are poorly defined. This systematic review aimed to identify specific targets for perioperative fluid therapy. The PubMed database (January 1993-December 2013) and reference lists were searched to identify clinical trials which evaluated specific targets of perioperative fluid therapy and reported clinically relevant perioperative endpoints in adult patients. Only studies in which targeted fluid therapy was the sole intervention were included into the main data analysis. A pooled data analysis was used to compare mortality between goal-directed fluid therapy and control interventions. Thirty-six clinical studies were selected. Sixteen studies including 1224 patients specifically evaluated targeted fluid therapy and were included into the main data analysis. Three specific targets for perioperative fluid therapy were identified: a systolic or pulse pressure variation <10-12%, an increase in stroke volume <10%, and a corrected flow time of 0.35-0.4 s in combination with an increase in stroke volume <10%. Targeting any one of these goals resulted in less postoperative complications (pooled data analysis: OR 0.53; CI95, 0.34-0.83; P=0.005) and a shorter length of intensive care unit/hospital stay, but no difference in postoperative mortality (pooled data analysis: OR 0.61; CI95, 0.33-1.11; P=0.12). This systematic review identified three goals for perioperative fluid administration, targeting of which appeared to be associated with less postoperative complications and shorter intensive care unit/hospital lengths of stay. Perioperative mortality remained unaffected.

  18. Network analysis of translocated Takahe populations to identify disease surveillance targets.

    PubMed

    Grange, Zoë L; VAN Andel, Mary; French, Nigel P; Gartrell, Brett D

    2014-04-01

    Social network analysis is being increasingly used in epidemiology and disease modeling in humans, domestic animals, and wildlife. We investigated this tool in describing a translocation network (area that allows movement of animals between geographically isolated locations) used for the conservation of an endangered flightless rail, the Takahe (Porphyrio hochstetteri). We collated records of Takahe translocations within New Zealand and used social network principles to describe the connectivity of the translocation network. That is, networks were constructed and analyzed using adjacency matrices with values based on the tie weights between nodes. Five annual network matrices were created using the Takahe data set, each incremental year included records of previous years. Weights of movements between connected locations were assigned by the number of Takahe moved. We calculated the number of nodes (i(total)) and the number of ties (t(total)) between the nodes. To quantify the small-world character of the networks, we compared the real networks to random graphs of the equivalent size, weighting, and node strength. Descriptive analysis of cumulative annual Takahe movement networks involved determination of node-level characteristics, including centrality descriptors of relevance to disease modeling such as weighted measures of in degree (k(i)(in)), out degree (k(i)(out)), and betweenness (B(i)). Key players were assigned according to the highest node measure of k(i)(in), k(i)(out), and B(i) per network. Networks increased in size throughout the time frame considered. The network had some degree small-world characteristics. Nodes with the highest cumulative tie weights connecting them were the captive breeding center, the Murchison Mountains and 2 offshore islands. The key player fluctuated between the captive breeding center and the Murchison Mountains. The cumulative networks identified the captive breeding center every year as the hub of the network until the final

  19. Towards large scale multi-target tracking

    NASA Astrophysics Data System (ADS)

    Vo, Ba-Ngu; Vo, Ba-Tuong; Reuter, Stephan; Lam, Quang; Dietmayer, Klaus

    2014-06-01

    Multi-target tracking is intrinsically an NP-hard problem and the complexity of multi-target tracking solutions usually do not scale gracefully with problem size. Multi-target tracking for on-line applications involving a large number of targets is extremely challenging. This article demonstrates the capability of the random finite set approach to provide large scale multi-target tracking algorithms. In particular it is shown that an approximate filter known as the labeled multi-Bernoulli filter can simultaneously track one thousand five hundred targets in clutter on a standard laptop computer.

  20. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  1. A Macrophysiological Analysis of Energetic Constraints on Geographic Range Size in Mammals

    PubMed Central

    Ceballos, Gerardo; Steele, Michael A.

    2013-01-01

    Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i) Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative, mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR

  2. Stakeholder analysis and mapping as targeted communication strategy.

    PubMed

    Shirey, Maria R

    2012-09-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author highlights the importance of stakeholder theory and discusses how to apply the theory to conduct a stakeholder analysis. This article also provides an explanation of how to use related stakeholder mapping techniques with targeted communication strategies.

  3. Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging.

    PubMed

    Wang, Chung-Hsin; Huang, Yu-Fen; Yeh, Chih-Kuang

    2011-06-07

    Targeted ultrasound contrast agents can be prepared by some specific bioconjugation techniques. The biotin-avidin complex is an extremely useful noncovalent binding system, but the system might induce immunogenic side effects in human bodies. Previous proposed covalently conjugated systems suffered from low conjugation efficiency and complex procedures. In this study, we propose a covalently conjugated nanobubble coupling with nucleic acid ligands, aptamers, for providing a higher specific affinity for ultrasound targeting studies. The sgc8c aptamer was linked with nanobubbles through thiol-maleimide coupling chemistry for specific targeting to CCRF-CEM cells. Further improvements to reduce the required time and avoid the degradation of nanobubbles during conjugation procedures were also made. Several investigations were used to discuss the performance and consistency of the prepared nanobubbles, such as size distribution, conjugation efficiency analysis, and flow cytometry assay. Further, we applied our conjugated nanobubbles to ex vivo ultrasound targeted imaging and compared the resulting images with optical images. The results indicated the availability of aptamer-conjugated nanobubbles in targeted ultrasound imaging and the practicability of using a highly sensitive ultrasound system in noninvasive biological research.

  4. Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture

    NASA Technical Reports Server (NTRS)

    Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)

    1999-01-01

    The present invention is a system for chemometric analysis for the extraction of the individual component fluorescence spectra and fluorescence lifetimes from a target mixture. The present invention combines a processor with an apparatus for generating an excitation signal to transmit at a target mixture and an apparatus for detecting the emitted signal from the target mixture. The present invention extracts the individual fluorescence spectrum and fluorescence lifetime measurements from the frequency and wavelength data acquired from the emitted signal. The present invention uses an iterative solution that first requires the initialization of several decision variables and the initial approximation determinations of intermediate matrices. The iterative solution compares the decision variables for convergence to see if further approximation determinations are necessary. If the solution converges, the present invention then determines the reduced best fit error for the analysis of the individual fluorescence lifetime and the fluorescence spectrum before extracting the individual fluorescence lifetime and fluorescence spectrum from the emitted signal of the target mixture.

  5. The immune synapse clears and excludes molecules above a size threshold

    PubMed Central

    Cartwright, Adam N. R.; Griggs, Jeremy; Davis, Daniel M.

    2014-01-01

    Natural killer cells assess target cell health via interactions at the immune synapse (IS) that facilitates signal integration and directed secretion. Here we test whether the IS also functions as a gasket. Quantitative fluorescence microscopy of nanometer-scale dextrans within synapses formed by various effector-target cell conjugates reveal that molecules are excluded in a size-dependent manner at activating synapses. Dextran sized ≤4 nm move in and out of the IS, but access is significantly reduced (by >50%) for dextran sized 10–13 nm, and dextran ≥32 nm is almost entirely excluded. Depolymerization of F-actin abrogated exclusion. Unexpectedly, larger-sized dextrans are cleared as the IS assembles in a zipper-like manner. Monoclonal antibodies are also excluded from the IS but smaller single-domain antibodies are able to penetrate. Therefore, the IS can clear and exclude molecules above a size threshold, and drugs designed to target synaptic cytokines or cytotoxic proteins must fit these dimensions. PMID:25407222

  6. Electrophysiological evidence for size invariance in masked picture repetition priming

    PubMed Central

    Eddy, Marianna D.; Holcomb, Phillip J.

    2009-01-01

    This experiment examined invariance in object representations through measuring event-related potentials (ERPs) to pictures in a masked repetition priming paradigm. Pairs of pictures were presented where the prime was either the same size or half the size of the target object and the target was either presented in a normal orientation or was a normal sized mirror reflection of the prime object. Previous masked repetition priming studies have found a cascade of priming effect sensitive to perceptual (N190/P190) and semantic (N400) properties of the stimulus. This experiment found that both early (N190/P190 effects) and later effects (N400) were invariant to size, whereas only the N190/P190 effect was invariant to mirror reflection. The combination of a small prime and a mirror reflected target led to no significant priming effects. Taken together, the results of this set of experiments suggests that object recognition, more specifically, activating an object representation, occurs in a hierarchical fashion where overlapping perceptual information between the prime and target is necessary, although not always sufficient, to activate a higher level semantic representation. PMID:19560248

  7. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing.

    PubMed

    Henry, Thomas A; Bainard, Jillian D; Newmaster, Steven G

    2014-10-01

    Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.

  8. Statistical power and effect sizes of depression research in Japan.

    PubMed

    Okumura, Yasuyuki; Sakamoto, Shinji

    2011-06-01

    Few studies have been conducted on the rationales for using interpretive guidelines for effect size, and most of the previous statistical power surveys have covered broad research domains. The present study aimed to estimate the statistical power and to obtain realistic target effect sizes of depression research in Japan. We systematically reviewed 18 leading journals of psychiatry and psychology in Japan and identified 974 depression studies that were mentioned in 935 articles published between 1990 and 2006. In 392 studies, logistic regression analyses revealed that using clinical populations was independently associated with being a statistical power of <0.80 (odds ratio 5.9, 95% confidence interval 2.9-12.0) and of <0.50 (odds ratio 4.9, 95% confidence interval 2.3-10.5). Of the studies using clinical populations, 80% did not achieve a power of 0.80 or more, and 44% did not achieve a power of 0.50 or more to detect the medium population effect sizes. A predictive model for the proportion of variance explained was developed using a linear mixed-effects model. The model was then used to obtain realistic target effect sizes in defined study characteristics. In the face of a real difference or correlation in population, many depression researchers are less likely to give a valid result than simply tossing a coin. It is important to educate depression researchers in order to enable them to conduct an a priori power analysis. © 2011 The Authors. Psychiatry and Clinical Neurosciences © 2011 Japanese Society of Psychiatry and Neurology.

  9. Improving accuracy of portion-size estimations through a stimulus equivalence paradigm.

    PubMed

    Hausman, Nicole L; Borrero, John C; Fisher, Alyssa; Kahng, SungWoo

    2014-01-01

    The prevalence of obesity continues to increase in the United States (Gordon-Larsen, The, & Adair, 2010). Obesity can be attributed, in part, to overconsumption of energy-dense foods. Given that overeating plays a role in the development of obesity, interventions that teach individuals to identify and consume appropriate portion sizes are warranted. Specifically, interventions that teach individuals to estimate portion sizes correctly without the use of aids may be critical to the success of nutrition education programs. The current study evaluated the use of a stimulus equivalence paradigm to teach 9 undergraduate students to estimate portion size accurately. Results suggested that the stimulus equivalence paradigm was effective in teaching participants to make accurate portion size estimations without aids, and improved accuracy was observed in maintenance sessions that were conducted 1 week after training. Furthermore, 5 of 7 participants estimated the target portion size of novel foods during extension sessions. These data extend existing research on teaching accurate portion-size estimations and may be applicable to populations who seek treatment (e.g., overweight or obese children and adults) to teach healthier eating habits. © Society for the Experimental Analysis of Behavior.

  10. Drug Target Mining and Analysis of the Chinese Tree Shrew for Pharmacological Testing

    PubMed Central

    Liu, Jie; Lee, Wen-hui; Zhang, Yun

    2014-01-01

    The discovery of new drugs requires the development of improved animal models for drug testing. The Chinese tree shrew is considered to be a realistic candidate model. To assess the potential of the Chinese tree shrew for pharmacological testing, we performed drug target prediction and analysis on genomic and transcriptomic scales. Using our pipeline, 3,482 proteins were predicted to be drug targets. Of these predicted targets, 446 and 1,049 proteins with the highest rank and total scores, respectively, included homologs of targets for cancer chemotherapy, depression, age-related decline and cardiovascular disease. Based on comparative analyses, more than half of drug target proteins identified from the tree shrew genome were shown to be higher similarity to human targets than in the mouse. Target validation also demonstrated that the constitutive expression of the proteinase-activated receptors of tree shrew platelets is similar to that of human platelets but differs from that of mouse platelets. We developed an effective pipeline and search strategy for drug target prediction and the evaluation of model-based target identification for drug testing. This work provides useful information for future studies of the Chinese tree shrew as a source of novel targets for drug discovery research. PMID:25105297

  11. Prediction methodologies for target scene generation in the aerothermal targets analysis program (ATAP)

    NASA Astrophysics Data System (ADS)

    Hudson, Douglas J.; Torres, Manuel; Dougherty, Catherine; Rajendran, Natesan; Thompson, Rhoe A.

    2003-09-01

    The Air Force Research Laboratory (AFRL) Aerothermal Targets Analysis Program (ATAP) is a user-friendly, engineering-level computational tool that features integrated aerodynamics, six-degree-of-freedom (6-DoF) trajectory/motion, convective and radiative heat transfer, and thermal/material response to provide an optimal blend of accuracy and speed for design and analysis applications. ATAP is sponsored by the Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) facility at Eglin AFB, where it is used with the CHAMP (Composite Hardbody and Missile Plume) technique for rapid infrared (IR) signature and imagery predictions. ATAP capabilities include an integrated 1-D conduction model for up to 5 in-depth material layers (with options for gaps/voids with radiative heat transfer), fin modeling, several surface ablation modeling options, a materials library with over 250 materials, options for user-defined materials, selectable/definable atmosphere and earth models, multiple trajectory options, and an array of aerodynamic prediction methods. All major code modeling features have been validated with ground-test data from wind tunnels, shock tubes, and ballistics ranges, and flight-test data for both U.S. and foreign strategic and theater systems. Numerous applications include the design and analysis of interceptors, booster and shroud configurations, window environments, tactical missiles, and reentry vehicles.

  12. Reported shoes size during GH therapy: is foot overgrowth a myth or reality?

    PubMed

    Lago, Débora C F; Coutinho, Cláudia A; Kochi, Cristiane; Longui, Carlos A

    2015-10-01

    To describe population reference values for shoes size, and to identify possible disproportional foot growth during GH therapy. Construction of percentile chart based on 3,651 controls (male: 1,838; female: 1,813). The GH treated group included 13 children with idiopathic short stature (ISS) and 50 children with normal height, but with height prediction below their target height; male: 26 and female: 37 mean ± SD age 13.3 ± 1.9 and 12.9 ± 1.5 years, respectively. GH (0.05 mg/kg/day) was used for 3.2 ± 1.6 years, ranging from 1.0-10.3 years. Height expressed as SDS, target height (TH) SDS, self-reported shoes size and target shoes size (TSS) SDS were recorded. Reference values were established showed as a foot SDS calculator available online at www.clinicalcaselearning.com/v2. Definitive shoes size was attained in controls at mean age of 13y in girls and 14y in boys (average values 37 and 40, respectively). In the study group, shoes size was -0.15 ± 0.9 and -0.02 ± 1.3 SDS, with target feet of 0.08 ± 0.8 and -0.27 ± 0.7 SDS in males and females, respectively. There was a significant positive correlation between shoes size and familial TSS, between shoes size and height and between TSS and TH. There was no correlation between duration of GH treatment and shoes size. Our data suggest that during long-term treatment with GH, patients maintain proportional growth in shoes size and height, and the expected correlation with the familial target. We conclude that there is no excessive increase in the size of foot as estimated by the size of shoes in individuals under long term GH therapy.

  13. Fertilization selection on egg and jelly-coat size in the sand dollar Dendraster excentricus.

    PubMed

    Levitan, D R; Irvine, S D

    2001-12-01

    Organisms with external fertilization are often sperm limited, and in echinoids, larger eggs have a higher probability of fertilization than smaller eggs. This difference is thought to be a result of the more frequent sperm-egg collisions experienced by larger targets. Here we report how two components of egg target size, the egg cell and jelly coat, contributed to fertilization success in a selection experiment. We used a cross-sectional analysis of correlated characters to estimate the selection gradients on egg and jelly-coat size in five replicate male pairs of the sand dollar Dendraster excentricus. Results indicated that eggs with larger cells and jelly coats were preferentially fertilized under sperm limitation in the laboratory. The selection gradients were an average of 922% steeper for egg than for jelly-coat size. The standardized selection gradients for egg and jelly-coat size were similar. Our results suggest that fertilization selection can act on both egg-cell and jelly-coat size but that an increase in egg-cell volume is much more likely to increase fertilization success than an equal change in jelly-coat volume. The strengths of the selection gradients were inversely related to the correlation of egg traits across replicate egg clutches. This result suggests the importance of replication in studies of selection of correlated characters.

  14. A novel local anti-colorectal cancer drug delivery system: negative lipidoid nanoparticles with a passive target via a size-dependent pattern

    NASA Astrophysics Data System (ADS)

    Ding, Weifeng; Wang, Feng; Zhang, Jianfeng; Guo, Yibing; Ju, Shaoqing; Wang, Huimin

    2013-09-01

    The nontoxic, targeted and effective delivery of nucleic acid drugs remains an important challenge for clinical development. Here, we describe a novel negative lipidoid nanoparticle delivery system, providing entrapment-based transfection agents for local delivery of siRNA to the colorectal cancer focus. The delivery system was synthesized with lipidoid material 98N12-5(1), mPEG2000-C12/C14 glyceride and cholesterol at a desired molar ratio to realize the anionic surface charge of particles, which could alleviate to a larger degree the inflammatory response and immune stimulation of the organism, embodying dramatic biocompatibility. In particular, mPEG2000-C12/C14 glyceride was selected to ameliorate the stability of the delivery system and protection of nucleic acids by extending the tail length of the carbons, crucial also to neutralize the positive charge of 98N12-5(1) to form a resultant anionic particle. In vivo experiments revealed that a particle size of 90 nm perfectly realized a passive target in a size-dependent manner and did not affect the function of the liver and kidneys by a local delivery method, enema. We clarified that the uptake of negative lipidoid nanoparticles internalized through a lipid raft endocytotic pathway with low cytotoxicity, strong biocompatibility and high efficacy. This study suggests that negative lipidoid nanoparticles with enema delivery costitute, uniquely and appropriately, a local anti-colorectal cancer nucleic acid drug delivery platform, and the application of similar modes may be feasible in other therapeutic settings.

  15. A Theory of Eye Movements during Target Acquisition

    ERIC Educational Resources Information Center

    Zelinsky, Gregory J.

    2008-01-01

    The gaze movements accompanying target localization were examined via human observers and a computational model (target acquisition model [TAM]). Search contexts ranged from fully realistic scenes to toys in a crib to Os and Qs, and manipulations included set size, target eccentricity, and target-distractor similarity. Observers and the model…

  16. Assessment of the influence of field size on maize gene flow using SSR analysis.

    PubMed

    Palaudelmàs, M; Melé, E; Monfort, A; Serra, J; Salvia, J; Messeguer, J

    2012-06-01

    One of the factors that may influence the rate of cross-fertilization is the relative size of the pollen donor and receptor fields. We designed a spatial distribution with four varieties of genetically-modified (GM) yellow maize to generate different sized fields while maintaining a constant distance to neighbouring fields of conventional white kernel maize. Samples of cross-fertilized, yellow kernels in white cobs were collected from all of the adjacent fields at different distances. A special series of samples was collected at distances of 0, 2, 5, 10, 20, 40, 80 and 120 m following a transect traced in the dominant down-wind direction in order to identify the origin of the pollen through SSR analysis. The size of the receptor fields should be taken into account, especially when they extend in the same direction than the GM pollen flow is coming. From collected data, we then validated a function that takes into account the gene flow found in the field border and that is very useful for estimating the % of GM that can be found in any point of the field. It also serves to predict the total GM content of the field due to cross fertilization. Using SSR analysis to identify the origin of pollen showed that while changes in the size of the donor field clearly influence the percentage of GMO detected, this effect is moderate. This study demonstrates that doubling the donor field size resulted in an approximate increase of GM content in the receptor field of 7%. This indicates that variations in the size of the donor field have a smaller influence on GM content than variations in the size of the receptor field.

  17. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    PubMed

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  18. Range shortening, radiation transport, and Rayleigh-Taylor instability phenomena in ion-beam-driven inertial-fusion-reactor-size targets: Implosion, ignition, and burn phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, K.A.; Tahir, N.A.

    In this paper we present an analysis of the theory of the energy deposition of ions in cold materials and hot dense plasmas together with numerical calculations for heavy and light ions of interest to ion-beam fusion. We have used the g-smcapso-smcapsr-smcapsg-smcapso-smcapsn-smcaps computer code of Long, Moritz, and Tahir (which is an extension of the code originally written for protons by Nardi, Peleg, and Zinamon) to carry out these calculations. The energy-deposition data calculated in this manner has been used in the design of heavy-ion-beam-driven fusion targets suitable for a reactor, by its inclusion in the m-smcapse-smcapsd-smcapsu-smcapss-smcapsa-smcaps code of Christiansen,more » Ashby, and Roberts as extended by Tahir and Long. A number of other improvements have been made in this code and these are also discussed. Various aspects of the theoretical analysis of such targets are discussed including the calculation of the hydrodynamic stability, the hydrodynamic efficiency, and the gain. Various different target designs have been used, some of them new. In general these targets are driven by Bi/sup +/ ions of energy 8--12 GeV, with an input energy of 4--6.5 MJ, with output energies in the range 600--900 MJ, and with gains in the range 120--180. The peak powers are in the range of 500--750 TW. We present detailed calculations of the ablation, compression, ignition, and burn phases. By the application of a new stability analysis which includes ablation and density-gradient effects we show that these targets appear to implode in a stable manner. Thus the targets designed offer working examples suited for use in a future inertial-confinement fusion reactor.« less

  19. Multireader multicase reader studies with binary agreement data: simulation, analysis, validation, and sizing.

    PubMed

    Chen, Weijie; Wunderlich, Adam; Petrick, Nicholas; Gallas, Brandon D

    2014-10-01

    We treat multireader multicase (MRMC) reader studies for which a reader's diagnostic assessment is converted to binary agreement (1: agree with the truth state, 0: disagree with the truth state). We present a mathematical model for simulating binary MRMC data with a desired correlation structure across readers, cases, and two modalities, assuming the expected probability of agreement is equal for the two modalities ([Formula: see text]). This model can be used to validate the coverage probabilities of 95% confidence intervals (of [Formula: see text], [Formula: see text], or [Formula: see text] when [Formula: see text]), validate the type I error of a superiority hypothesis test, and size a noninferiority hypothesis test (which assumes [Formula: see text]). To illustrate the utility of our simulation model, we adapt the Obuchowski-Rockette-Hillis (ORH) method for the analysis of MRMC binary agreement data. Moreover, we use our simulation model to validate the ORH method for binary data and to illustrate sizing in a noninferiority setting. Our software package is publicly available on the Google code project hosting site for use in simulation, analysis, validation, and sizing of MRMC reader studies with binary agreement data.

  20. Paired Exome Analysis Reveals Clonal Evolution and Potential Therapeutic Targets in Urothelial Carcinoma.

    PubMed

    Lamy, Philippe; Nordentoft, Iver; Birkenkamp-Demtröder, Karin; Thomsen, Mathilde Borg Houlberg; Villesen, Palle; Vang, Søren; Hedegaard, Jakob; Borre, Michael; Jensen, Jørgen Bjerggaard; Høyer, Søren; Pedersen, Jakob Skou; Ørntoft, Torben F; Dyrskjøt, Lars

    2016-10-01

    Greater knowledge concerning tumor heterogeneity and clonality is needed to determine the impact of targeted treatment in the setting of bladder cancer. In this study, we performed whole-exome, transcriptome, and deep-focused sequencing of metachronous tumors from 29 patients initially diagnosed with early-stage bladder tumors (14 with nonprogressive disease and 15 with progressive disease). Tumors from patients with progressive disease showed a higher variance of the intrapatient mutational spectrum and a higher frequency of APOBEC-related mutations. Allele-specific expression was also higher in these patients, particularly in tumor suppressor genes. Phylogenetic analysis revealed a common origin of the metachronous tumors, with a higher proportion of clonal mutations in the ancestral branch; however, 19 potential therapeutic targets were identified as both ancestral and tumor-specific alterations. Few subclones were present based on PyClone analysis. Our results illuminate tumor evolution and identify candidate therapeutic targets in bladder cancer. Cancer Res; 76(19); 5894-906. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. A statistical analysis of North East Atlantic (submicron) aerosol size distributions

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Monahan, C.; Greaney, R.; Beddows, D. C. S.; Harrison, R. M.; Ceburnis, D.; O'Dowd, C. D.

    2011-12-01

    The Global Atmospheric Watch research station at Mace Head (Ireland) offers the possibility to sample some of the cleanest air masses being imported into Europe as well as some of the most polluted being exported out of Europe. We present a statistical cluster analysis of the physical characteristics of aerosol size distributions in air ranging from the cleanest to the most polluted for the year 2008. Data coverage achieved was 75% throughout the year. By applying the Hartigan-Wong k-Means method, 12 clusters were identified as systematically occurring. These 12 clusters could be further combined into 4 categories with similar characteristics, namely: coastal nucleation category (occurring 21.3 % of the time), open ocean nucleation category (occurring 32.6% of the time), background clean marine category (occurring 26.1% of the time) and anthropogenic category (occurring 20% of the time) aerosol size distributions. The coastal nucleation category is characterised by a clear and dominant nucleation mode at sizes less than 10 nm while the open ocean nucleation category is characterised by a dominant Aitken mode between 15 nm and 50 nm. The background clean marine aerosol exhibited a clear bimodality in the sub-micron size distribution, with although it should be noted that either the Aitken mode or the accumulation mode may dominate the number concentration. However, peculiar background clean marine size distributions with coarser accumulation modes are also observed during winter months. By contrast, the continentally-influenced size distributions are generally more monomodal (accumulation), albeit with traces of bimodality. The open ocean category occurs more often during May, June and July, corresponding with the North East (NE) Atlantic high biological period. Combined with the relatively high percentage frequency of occurrence (32.6%), this suggests that the marine biota is an important source of new nano aerosol particles in NE Atlantic Air.

  2. Unified approach for two-target game analysis

    NASA Technical Reports Server (NTRS)

    Shinar, J.; Davidovitz, A.

    1988-01-01

    A two-target differential game is defined from the outset by a qualitative (game-of-kind) formulation. The solution of such a game is the decomposition of the space of admissible initial conditions into zones of different outcomes: two winning zones, one for each player, the zone of nowinning (draw) and (if the intersection of the two target sets is not empty) a zone of eventual mutual winning (mutual kill). In this paper it is shown that the solution of any two-target game can be constructed, based on solving first two single-target pursuit-evasion games of kind (one for each target set) in a systematic way.

  3. The Hippo Pathway Targets Rae1 to Regulate Mitosis and Organ Size and to Feed Back to Regulate Upstream Components Merlin, Hippo, and Warts.

    PubMed

    Jahanshahi, Maryam; Hsiao, Kuangfu; Jenny, Andreas; Pfleger, Cathie M

    2016-08-01

    Hippo signaling acts as a master regulatory pathway controlling growth, proliferation, and apoptosis and also ensures that variations in proliferation do not alter organ size. How the pathway coordinates restricting proliferation with organ size control remains a major unanswered question. Here we identify Rae1 as a highly-conserved target of the Hippo Pathway integrating proliferation and organ size. Genetic and biochemical studies in Drosophila cells and tissues and in mammalian cells indicate that Hippo signaling promotes Rae1 degradation downstream of Warts/Lats. In proliferating cells, Rae1 loss restricts cyclin B levels and organ size while Rae1 over-expression increases cyclin B levels and organ size, similar to Hippo Pathway over-activation or loss-of-function, respectively. Importantly, Rae1 regulation by the Hippo Pathway is crucial for its regulation of cyclin B and organ size; reducing Rae1 blocks cyclin B accumulation and suppresses overgrowth caused by Hippo Pathway loss. Surprisingly, in addition to suppressing overgrowth, reducing Rae1 also compromises survival of epithelial tissue overgrowing due to loss of Hippo signaling leading to a tissue "synthetic lethality" phenotype. Excitingly, Rae1 plays a highly conserved role to reduce the levels and activity of the Yki/YAP oncogene. Rae1 increases activation of the core kinases Hippo and Warts and plays a post-transcriptional role to increase the protein levels of the Merlin, Hippo, and Warts components of the pathway; therefore, in addition to Rae1 coordinating organ size regulation with proliferative control, we propose that Rae1 also acts in a feedback circuit to regulate pathway homeostasis.

  4. The influence of attention toward facial expressions on size perception.

    PubMed

    Choi, Jeong-Won; Kim, Kiho; Lee, Jang-Han

    2016-01-01

    According to the New Look theory, size perception is affected by emotional factors. Although previous studies have attempted to explain the effects of both emotion and motivation on size perception, they have failed to identify the underlying mechanisms. This study aimed to investigate the underlying mechanisms of size perception by applying attention toward facial expressions using the Ebbinghaus illusion as a measurement tool. The participants, female university students, were asked to judge the size of a target stimulus relative to the size of facial expressions (i.e., happy, angry, and neutral) surrounding the target. The results revealed that the participants perceived angry and neutral faces to be larger than happy faces. This finding indicates that individuals pay closer attention to neutral and angry faces than happy ones. These results suggest that the mechanisms underlying size perception involve cognitive processes that focus attention toward relevant stimuli and block out irrelevant stimuli.

  5. Dihydrolipoyl dehydrogenase as a potential UVB target in skin epidermis; using an integrated approach of label-free quantitative proteomics and targeted metabolite analysis.

    PubMed

    Moon, Eunjung; Park, Hye Min; Lee, Choong Hwan; Do, Seon-Gil; Park, Jong-Moon; Han, Na-Young; Do, Moon Ho; Lee, Jong Ha; Lee, Hookeun; Kim, Sun Yeou

    2015-03-18

    Photodamage is extrinsically induced by overexposure to ultraviolet (UV) radiation, and it increases the risk of various skin disorders. Therefore, discovery of novel biomarkers of photodamage is important. In this study, using LC-MS/MS analysis of epidermis from UVB-irradiated hairless mice, we identified 57 proteins whose levels changed after UVB exposure, and selected 7 proteins related to the tricarboxylic acid (TCA) cycle through pathway analysis. Dihydrolipoyl dehydrogenase (DLD) was the only TCA cycle-associated protein that showed a decreased expression after the UVB exposure. We also performed targeted analysis to detect intermediates and products of the TCA cycle using GC-TOF-MS. Interestingly, malic acid and fumaric acid levels significantly decreased in the UVB-treated group. Our results demonstrate that DLD and its associated metabolites, malic acid and fumaric acid, may be candidate biomarkers of UVB-induced skin photoaging. Additionally, we showed that Aloe vera, a natural skin moisturizer, regulated DLD, malic acid and fumaric acid levels in UVB-exposed epidermis. Our strategy to integrate the proteome and targeted metabolite to detect novel UVB targets will lead to a better understanding of skin photoaging and photodamage. Our study also supports that A. vera exerts significant anti-photodamage activity via regulation of DLD, a novel UVB target, in the epidermis. This study is the first example of an integration of proteomic and metabolite analysis techniques to find new biomarker candidates for the regulation of the UVB-induced skin photoaging. DLD, malic acid, and fumaric acid can be used for development of cosmeceuticals and nutraceuticals regulating the change of skin metabolism induced by the UVB overexposure. Moreover, this is also the first attempt to investigate the role of the TCA cycle in photodamaged epidermis. Our integration of the proteomic and targeted metabolite analyses will lead to a better understanding of the unidentified

  6. Analysis of Molecular Diffusion by First-Passage Time Variance Identifies the Size of Confinement Zones

    PubMed Central

    Rajani, Vishaal; Carrero, Gustavo; Golan, David E.; de Vries, Gerda; Cairo, Christopher W.

    2011-01-01

    The diffusion of receptors within the two-dimensional environment of the plasma membrane is a complex process. Although certain components diffuse according to a random walk model (Brownian diffusion), an overwhelming body of work has found that membrane diffusion is nonideal (anomalous diffusion). One of the most powerful methods for studying membrane diffusion is single particle tracking (SPT), which records the trajectory of a label attached to a membrane component of interest. One of the outstanding problems in SPT is the analysis of data to identify the presence of heterogeneity. We have adapted a first-passage time (FPT) algorithm, originally developed for the interpretation of animal movement, for the analysis of SPT data. We discuss the general application of the FPT analysis to molecular diffusion, and use simulations to test the method against data containing known regions of confinement. We conclude that FPT can be used to identify the presence and size of confinement within trajectories of the receptor LFA-1, and these results are consistent with previous reports on the size of LFA-1 clusters. The analysis of trajectory data for cell surface receptors by FPT provides a robust method to determine the presence and size of confined regions of diffusion. PMID:21402028

  7. A comparative analysis of sex change in Labridae supports the size advantage hypothesis.

    PubMed

    Kazancioğlu, Erem; Alonzo, Suzanne H

    2010-08-01

    The size advantage hypothesis (SAH) predicts that the rate of increase in male and female fitness with size (the size advantage) drives the evolution of sequential hermaphroditism or sex change. Despite qualitative agreement between empirical patterns and SAH, only one comparative study tested SAH quantitatively. Here, we perform the first comparative analysis of sex change in Labridae, a group of hermaphroditic and dioecious (non-sex changer) fish with several model sex-changing species. We also estimate, for the first time, rates of evolutionary transitions between sex change and dioecy. Our analyses support SAH and indicate that the evolution of hermaphroditism is correlated to the size advantage. Furthermore, we find that transitions from sex change to dioecy are less likely under stronger size advantage. We cannot determine, however, how the size advantage affects transitions from dioecy to sex change. Finally, contrary to what is generally expected, we find that transitions from dioecy to sex change are more likely than transitions from sex change to dioecy. The similarity of sexual differentiation in hermaphroditic and dioecious labrids might underlie this pattern. We suggest that elucidating the developmental basis of sex change is critical to predict and explain patterns of the evolutionary history of sequential hermaphroditism.

  8. Estimating an Effect Size in One-Way Multivariate Analysis of Variance (MANOVA)

    ERIC Educational Resources Information Center

    Steyn, H. S., Jr.; Ellis, S. M.

    2009-01-01

    When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…

  9. Effect of display size on visual attention.

    PubMed

    Chen, I-Ping; Liao, Chia-Ning; Yeh, Shih-Hao

    2011-06-01

    Attention plays an important role in the design of human-machine interfaces. However, current knowledge about attention is largely based on data obtained when using devices of moderate display size. With advancement in display technology comes the need for understanding attention behavior over a wider range of viewing sizes. The effect of display size on test participants' visual search performance was studied. The participants (N = 12) performed two types of visual search tasks, that is, parallel and serial search, under three display-size conditions (16 degrees, 32 degrees, and 60 degrees). Serial, but not parallel, search was affected by display size. In the serial task, mean reaction time for detecting a target increased with the display size.

  10. Comparative Analysis of State Fish Consumption Advisories Targeting Sensitive Populations

    PubMed Central

    Scherer, Alison C.; Tsuchiya, Ami; Younglove, Lisa R.; Burbacher, Thomas M.; Faustman, Elaine M.

    2008-01-01

    Objective Fish consumption advisories are issued to warn the public of possible toxicological threats from consuming certain fish species. Although developing fetuses and children are particularly susceptible to toxicants in fish, fish also contain valuable nutrients. Hence, formulating advice for sensitive populations poses challenges. We conducted a comparative analysis of advisory Web sites issued by states to assess health messages that sensitive populations might access. Data sources We evaluated state advisories accessed via the National Listing of Fish Advisories issued by the U.S. Environmental Protection Agency. Data extraction We created criteria to evaluate advisory attributes such as risk and benefit message clarity. Data synthesis All 48 state advisories issued at the time of this analysis targeted children, 90% (43) targeted pregnant women, and 58% (28) targeted women of childbearing age. Only six advisories addressed single contaminants, while the remainder based advice on 2–12 contaminants. Results revealed that advisories associated a dozen contaminants with specific adverse health effects. Beneficial health effects of any kind were specifically associated only with omega-3 fatty acids found in fish. Conclusions These findings highlight the complexity of assessing and communicating information about multiple contaminant exposure from fish consumption. Communication regarding potential health benefits conferred by specific fish nutrients was minimal and focused primarily on omega-3 fatty acids. This overview suggests some lessons learned and highlights a lack of both clarity and consistency in providing the breadth of information that sensitive populations such as pregnant women need to make public health decisions about fish consumption during pregnancy. PMID:19079708

  11. Bottom-up and top-down attentional contributions to the size congruity effect.

    PubMed

    Sobel, Kenith V; Puri, Amrita M; Faulkenberry, Thomas J

    2016-07-01

    The size congruity effect refers to the interaction between the numerical and physical (i.e., font) sizes of digits in a numerical (or physical) magnitude selection task. Although various accounts of the size congruity effect have attributed this interaction to either an early representational stage or a late decision stage, only Risko, Maloney, and Fugelsang (Attention, Perception, & Psychophysics, 75, 1137-1147, 2013) have asserted a central role for attention. In the present study, we used a visual search paradigm to further study the role of attention in the size congruity effect. In Experiments 1 and 2, we showed that manipulating top-down attention (via the task instructions) had a significant impact on the size congruity effect. The interaction between numerical and physical size was larger for numerical size comparison (Exp. 1) than for physical size comparison (Exp. 2). In the remaining experiments, we boosted the feature salience by using a unique target color (Exp. 3) or by increasing the display density by using three-digit numerals (Exps. 4 and 5). As expected, a color singleton target abolished the size congruity effect. Searching for three-digit targets based on numerical size (Exp. 4) resulted in a large size congruity effect, but search based on physical size (Exp. 5) abolished the effect. Our results reveal a substantial role for top-down attention in the size congruity effect, which we interpreted as support for a shared-decision account.

  12. Cognitive Behavior Therapy for Schizophrenia: Effect Sizes, Clinical Models, and Methodological Rigor

    PubMed Central

    Wykes, Til; Steel, Craig; Everitt, Brian; Tarrier, Nicholas

    2008-01-01

    Background: Guidance in the United States and United Kingdom has included cognitive behavior therapy for psychosis (CBTp) as a preferred therapy. But recent advances have widened the CBTp targets to other symptoms and have different methods of provision, eg, in groups. Aim: To explore the effect sizes of current CBTp trials including targeted and nontargeted symptoms, modes of action, and effect of methodological rigor. Method: Thirty-four CBTp trials with data in the public domain were used as source data for a meta-analysis and investigation of the effects of trial methodology using the Clinical Trial Assessment Measure (CTAM). Results: There were overall beneficial effects for the target symptom (33 studies; effect size = 0.400 [95% confidence interval {CI} = 0.252, 0.548]) as well as significant effects for positive symptoms (32 studies), negative symptoms (23 studies), functioning (15 studies), mood (13 studies), and social anxiety (2 studies) with effects ranging from 0.35 to 0.44. However, there was no effect on hopelessness. Improvements in one domain were correlated with improvements in others. Trials in which raters were aware of group allocation had an inflated effect size of approximately 50%–100%. But rigorous CBTp studies showed benefit (estimated effect size = 0.223; 95% CI = 0.017, 0.428) although the lower end of the CI should be noted. Secondary outcomes (eg, negative symptoms) were also affected such that in the group of methodologically adequate studies the effect sizes were not significant. Conclusions: As in other meta-analyses, CBTp had beneficial effect on positive symptoms. However, psychological treatment trials that make no attempt to mask the group allocation are likely to have inflated effect sizes. Evidence considered for psychological treatment guidance should take into account specific methodological detail. PMID:17962231

  13. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-Means Cluster Analysis

    ERIC Educational Resources Information Center

    de Craen, Saskia; Commandeur, Jacques J. F.; Frank, Laurence E.; Heiser, Willem J.

    2006-01-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these…

  14. An analysis of health promotion materials for Dutch truck drivers: Off target and too complex?

    PubMed

    Boeijinga, Anniek; Hoeken, Hans; Sanders, José

    2017-01-01

    Despite various health promotion initiatives, unfavorable figures regarding Dutch truck drivers' eating behaviors, exercise behaviors, and absenteeism have not improved. The aim was to obtain a better understanding of the low level of effectiveness of current health interventions for Dutch truck drivers by examining to what extent these are tailored to the target group's particular mindset (focus of content) and health literacy skills (presentation of content). The article analyzes 21 health promotion materials for Dutch truck drivers using a two-step approach: (a) an analysis of the materials' focus, guided by the Health Action Process Approach; and (b) an argumentation analysis, guided by pragma-dialectics. The corpus analysis revealed: (a) a predominant focus on the motivation phase; and (b) in line with the aim of motivating the target group, a consistent use of pragmatic arguments, which were typically presented in an implicit way. The results indicate that existing health promotion materials for Dutch truck drivers are not sufficiently tailored to the target group's mindset and health literacy skills. Recommendations are offered to develop more tailored/effective health interventions targeting this high-risk, underserved occupational group.

  15. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyan; Jin, Tingting; Jin, Yachao; Wu, Leihong; Hu, Bin; Tian, Yu; Fan, Xiaohui

    2013-01-01

    This study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm, which is essential to the safe design and application of SP. Data obtained from histopathological examinations suggested that SP of these sizes can all induce acute inflammation in the liver. In vivo imaging showed that intravenously administrated SP are mainly present in the liver, spleen and intestinal tract. Interestingly, in gene expression analysis, the cellular response pathways activated in the liver are predominantly conserved independently of particle dose when the same size SP are administered or are conserved independently of particle size, surface area and particle number when nano- or submicro-sized SP are administered at their toxic doses. Meanwhile, integrated analysis of transcriptomics, previous metabonomics and conventional toxicological results support the view that SP can result in inflammatory and oxidative stress, generate mitochondrial dysfunction, and eventually cause hepatocyte necrosis by neutrophil-mediated liver injury.

  16. Constraints on the size of Asteroid (216) Kleopatra using stress analysis

    NASA Astrophysics Data System (ADS)

    Hirabayashi, M.; Scheeres, D. J.

    2013-12-01

    We investigate the stable size of Asteroid (216) Kleopatra by considering structural constraints on this body. Comprehensive radar observations (Ostro et al. 2000, Science) were used to estimate a shape model for this asteroid. Their estimation revealed that the shape looks like a dog-bone, the mean radius is 54.3 km (with uncertainty as large as 25%), and the surface seems similar to lunar surface regolith. However, 10 years later, Descamps et al. (2011, Icarus) performed near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope and found that although the shape may be consistent with their observation result, their size appeared to be larger than the Ostro size (by a factor of about 1.24). Our motivation in this study is to investigate structural stability constraints on the size of this asteroid. Across the stated range of uncertainty we find significant differences in the necessary angle of friction and cohesion for the body to avoid plastic deformation. We use the following physical parameters as fixed: a mass of 4.64e18 kg (Descamps et al. 2011, Icarus), a rotation period of 5.385 hr (Magnusson 1990, Icarus), and the Ostro et al. shape. We use the Drucker-Prager criterion to describe the rheology of the asteroid's material. Furthermore, we determine the friction angle from the fact that the surface of this asteroid is similar to lunar surface regolith, whose porosity ranges from 33% to 55%. According to Scott (1963), a soil with porosity of 44% (the mean value of the lunar surface porosity) has a friction angle of 32 degrees (which we use as our nominal value). Since the interior structure is unknown, we assume that the body is homogeneous. We first analyze the stable size by using the upper bound theorem from limit analysis on the assumption that this asteroid's materials are cohesionless. Based on this theorem, for any static surface traction and body force, the yield due to a smooth and convex yield envelope associated with the volume

  17. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    PubMed

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online

  18. Does working memory load facilitate target detection?

    PubMed

    Fruchtman-Steinbok, Tom; Kessler, Yoav

    2016-02-01

    Previous studies demonstrated that increasing working memory (WM) load delays performance of a concurrent task, by distracting attention and thus interfering with encoding and maintenance processes. The present study used a version of the change detection task with a target detection requirement during the retention interval. In contrast to the above prediction, target detection was faster following a larger set-size, specifically when presented shortly after the memory array (up to 400 ms). The effect of set-size on target detection was also evident when no memory retention was required. The set-size effect was also found using different modalities. Moreover, it was only observed when the memory array was presented simultaneously, but not sequentially. These results were explained by increased phasic alertness exerted by the larger visual display. The present study offers new evidence of ongoing attentional processes in the commonly-used change detection paradigm. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...

  20. Cup-Shaped Superparamagnetic Hemispheres for Size-Selective Cell Filtration

    PubMed Central

    Kim, Hyonchol; Terazono, Hideyuki; Takei, Hiroyuki; Yasuda, Kenji

    2014-01-01

    We propose a new method of size separation of cells exploiting precisely size-controlled hemispherical superparamagnetic microparticles. A three-layered structure of a 2-nm nickel layer inserted between 15-nm silicon dioxide layers was formed on polystyrene cast spheres by vapor deposition. The polystyrene was then removed by burning and the hemispherical superparamagnetic microparticles, “magcups”, were obtained. The standard target cells (CCRF-CEM, 12 ± 2 μm) were mixed with a set of different sizes of the fabricated magcups, and we confirmed that the cells were captured in the magcups having cavities larger than 15 μm in diameter, and then gathered by magnetic force. The collected cells were grown in a culture medium without any damage. The results suggest that this method is quick, simple and non-invasive size separation of target cells. PMID:25219418

  1. Mining, identification and function analysis of microRNAs and target genes in peanut (Arachis hypogaea L.).

    PubMed

    Zhang, Tingting; Hu, Shuhao; Yan, Caixia; Li, Chunjuan; Zhao, Xiaobo; Wan, Shubo; Shan, Shihua

    2017-02-01

    In the present investigation, a total of 60 conserved peanut (Arachis hypogaea L.) microRNA (miRNA) sequences, belonging to 16 families, were identified using bioinformatics methods. There were 392 target gene sequences, identified from 58 miRNAs with Target-align software and BLASTx analyses. Gene Ontology (GO) functional analysis suggested that these target genes were involved in mediating peanut growth and development, signal transduction and stress resistance. There were 55 miRNA sequences, verified employing a poly (A) tailing test, with a success rate of up to 91.67%. Twenty peanut target gene sequences were randomly selected, and the 5' rapid amplification of the cDNA ends (5'-RACE) method were used to validate the cleavage sites of these target genes. Of these, 14 (70%) peanut miRNA targets were verified by means of gel electrophoresis, cloning and sequencing. Furthermore, functional analysis and homologous sequence retrieval were conducted for target gene sequences, and 26 target genes were chosen as the objects for stress resistance experimental study. Real-time fluorescence quantitative PCR (qRT-PCR) technology was applied to measure the expression level of resistance-associated miRNAs and their target genes in peanut exposed to Aspergillus flavus (A. flavus) infection and drought stress, respectively. In consequence, 5 groups of miRNAs & targets were found accorded with the mode of miRNA negatively controlling the expression of target genes. This study, preliminarily determined the biological functions of some resistance-associated miRNAs and their target genes in peanut. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Instrumental neutron activation analysis for studying size-fractionated aerosols

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Zemplén-Papp, Éva

    1999-10-01

    Instrumental neutron activation analysis (INAA) was utilized for studying aerosol samples collected into a coarse and a fine size fraction on Nuclepore polycarbonate membrane filters. As a result of the panoramic INAA, 49 elements were determined in an amount of about 200-400 μg of particulate matter by two irradiations and four γ-spectrometric measurements. The analytical calculations were performed by the absolute ( k0) standardization method. The calibration procedures, application protocol and the data evaluation process are described and discussed. They make it possible now to analyse a considerable number of samples, with assuring the quality of the results. As a means of demonstrating the system's analytical capabilities, the concentration ranges, median or mean atmospheric concentrations and detection limits are presented for an extensive series of aerosol samples collected within the framework of an urban air pollution study in Budapest. For most elements, the precision of the analysis was found to be beyond the uncertainty represented by the sampling techniques and sample variability.

  3. Spatial coding of object typical size: evidence for a SNARC-like effect.

    PubMed

    Sellaro, Roberta; Treccani, Barbara; Job, Remo; Cubelli, Roberto

    2015-11-01

    The present study aimed to assess whether the representation of the typical size of objects can interact with response position codes in two-choice bimanual tasks, and give rise to a SNARC-like effect (faster responses when the representation of the typical size of the object to which the target stimulus refers corresponds to response side). Participants performed either a magnitude comparison task (in which they were required to judge whether the target was smaller or larger than a reference stimulus; Experiment 1) or a semantic decision task (in which they had to classify the target as belonging to either the category of living or non-living entities; Experiment 2). Target stimuli were pictures or written words referring to either typically large and small animals or inanimate objects. In both tasks, participants responded by pressing a left- or right-side button. Results showed that, regardless of the to-be-performed task (magnitude comparison or semantic decision) and stimulus format (picture or word), left responses were faster when the target represented typically small-sized entities, whereas right responses were faster for typically large-sized entities. These results provide evidence that the information about the typical size of objects is activated even if it is not requested by the task, and are consistent with the idea that objects' typical size is automatically spatially coded, as has been proposed to occur for number magnitudes. In this representation, small objects would be on the left and large objects would be on the right. Alternative interpretations of these results are also discussed.

  4. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy.

    PubMed

    Mosafer, Jafar; Abnous, Khalil; Tafaghodi, Mohsen; Mokhtarzadeh, Ahad; Ramezani, Mohammad

    2017-04-01

    A superparamagnetic iron oxide nanoparticles (SPIONs)/doxorubicin (Dox) co-loaded poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles targeted with AS1411 aptamer (Apt) against murine C26 colon carcinoma cells is successfully developed via a modified multiple emulsion solvent evaporation method for theranostic purposes. The mean size of SPIO/Dox-NPs (NPs) was 130nm with a narrow particle size distribution and Dox loading of 3.0%. The SPIO loading of 16.0% and acceptable magnetic properties are obtained and analyzed using thermogravimetric and vibration simple magnetometer analysis, respectively. The best release profile from NPs was observed in PBS at pH 7.4, in which very low burst release was observed. Nucleolin is a targeting ligand to facilitate anti-tumor delivery of AS1411-targeted NPs. The Apt conjugation to NPs (Apt-NPs) enhanced cellular uptake of Dox in C26 cancer cells. Apt-NPs enhance the cytotoxicity effect of Dox followed by a significantly higher tumor inhibition and prolonged animal survival in mice bearing C26 colon carcinoma xenografts. Furthermore, Apt-NPs enhance the contrast of magnetic resonance images in tumor site. Altogether, these Apt-NPs could be considered as a powerful tumor-targeted delivery system for their potential as dual therapeutic and diagnostic applications in cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Challenges in the size analysis of a silica nanoparticle mixture as candidate certified reference material

    NASA Astrophysics Data System (ADS)

    Kestens, Vikram; Roebben, Gert; Herrmann, Jan; Jämting, Åsa; Coleman, Victoria; Minelli, Caterina; Clifford, Charles; De Temmerman, Pieter-Jan; Mast, Jan; Junjie, Liu; Babick, Frank; Cölfen, Helmut; Emons, Hendrik

    2016-06-01

    A new certified reference material for quality control of nanoparticle size analysis methods has been developed and produced by the Institute for Reference Materials and Measurements of the European Commission's Joint Research Centre. The material, ERM-FD102, consists of an aqueous suspension of a mixture of silica nanoparticle populations of distinct particle size and origin. The characterisation relied on an interlaboratory comparison study in which 30 laboratories of demonstrated competence participated with a variety of techniques for particle size analysis. After scrutinising the received datasets, certified and indicative values for different method-defined equivalent diameters that are specific for dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS), scanning and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM), particle tracking analysis (PTA) and asymmetrical-flow field-flow fractionation (AF4) were assigned. The value assignment was a particular challenge because metrological concepts were not always interpreted uniformly across all participating laboratories. This paper presents the main elements and results of the ERM-FD102 characterisation study and discusses in particular the key issues of measurand definition and the estimation of measurement uncertainty.

  6. Size-exclusion chromatography system for macromolecular interaction analysis

    DOEpatents

    Stevens, Fred J.

    1988-01-01

    A low pressure, microcomputer controlled system employing high performance liquid chromatography (HPLC) allows for precise analysis of the interaction of two reversibly associating macromolecules such as proteins. Since a macromolecular complex migrates faster than its components during size-exclusion chromatography, the difference between the elution profile of a mixture of two macromolecules and the summation of the elution profiles of the two components provides a quantifiable indication of the degree of molecular interaction. This delta profile is used to qualitatively reveal the presence or absence of significant interaction or to rank the relative degree of interaction in comparing samples and, in combination with a computer simulation, is further used to quantify the magnitude of the interaction in an arrangement wherein a microcomputer is coupled to analytical instrumentation in a novel manner.

  7. A sediment record of barrier estuary behaviour at the mesoscale: Interpreting high-resolution particle size analysis

    NASA Astrophysics Data System (ADS)

    Clarke, David W.; Boyle, John F.; Chiverrell, Richard C.; Lario, Javier; Plater, Andrew J.

    2014-09-01

    At present, limited understanding of mesoscale (years-decades-centuries) back-barrier lagoon, barrier estuary behaviour is a critical shortcoming for resource managers and decision makers. In this paper, high-resolution particle size analysis of a sediment core from an intermittently open and closed barrier estuary is utilised to reconstruct a history of back-barrier environmental change at mesoscale temporal resolution. Sediments from Pescadero Marsh, California, were analysed for their particle size distribution at consecutive 2-mm intervals down-core. Site selection, informed by a time series of maps and aerial photographs coupled with a robust core chronology, ensured that the particle size data primarily reflect changing hydrodynamics of the back-barrier area over the European-American era (1850 to the present). Following more traditional plotting of particle size data and summary statistics, and statistical analysis of particle size end-members, visual analysis and categorisation of particle size distribution curves (PSDCs) provide an effective basis for the identification of recurring modal sizes and subpopulations. These particle size windows (PSWs) are interpreted as reflecting different modes of sediment transport and deposition, i.e., suspension and saltation loads, the varying prominence of which is interpreted as being modified by barrier integrity. When considered together, the down-core mean particle size (MPS) trend and individual PSDCs offer considerable insight into mesoscale system behaviour at subannual resolution over multiple years. This behaviour is expressed in the recurrence of characteristic barrier estuarine environments (closed lagoon, tidal lagoon, tidal marsh, and open estuary) and the overall barrier regime, and their persistence over the last c. 150 years. Subannual and multiannual fluctuations in back-barrier environmental configuration are seen to be superimposed on a longer-term quasi-stable barrier regime, demonstrating the value

  8. Multireader multicase reader studies with binary agreement data: simulation, analysis, validation, and sizing

    PubMed Central

    Chen, Weijie; Wunderlich, Adam; Petrick, Nicholas; Gallas, Brandon D.

    2014-01-01

    Abstract. We treat multireader multicase (MRMC) reader studies for which a reader’s diagnostic assessment is converted to binary agreement (1: agree with the truth state, 0: disagree with the truth state). We present a mathematical model for simulating binary MRMC data with a desired correlation structure across readers, cases, and two modalities, assuming the expected probability of agreement is equal for the two modalities (P1=P2). This model can be used to validate the coverage probabilities of 95% confidence intervals (of P1, P2, or P1−P2 when P1−P2=0), validate the type I error of a superiority hypothesis test, and size a noninferiority hypothesis test (which assumes P1=P2). To illustrate the utility of our simulation model, we adapt the Obuchowski–Rockette–Hillis (ORH) method for the analysis of MRMC binary agreement data. Moreover, we use our simulation model to validate the ORH method for binary data and to illustrate sizing in a noninferiority setting. Our software package is publicly available on the Google code project hosting site for use in simulation, analysis, validation, and sizing of MRMC reader studies with binary agreement data. PMID:26158051

  9. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2015-12-30

    Targeting of drug delivery systems (DDSs) to specific intracellular organelles (i.e., subcellular targeting) has been investigated in numerous publications, but targeting efficiency of these systems is seldom reported. We searched scientific publications in the subcellular DDS targeting field and analyzed targeting efficiency and major formulation parameters that affect it. We identified 77 scientific publications that matched the search criteria. In the majority of these studies nanoparticle-based DDSs were applied, while liposomes, quantum dots and conjugates were used less frequently. The nucleus was the most common intracellular target, followed by mitochondrion, endoplasmic reticulum and Golgi apparatus. In 65% of the publications, DDSs surface was decorated with specific targeting residues, but the efficiency of this surface decoration was not analyzed in predominant majority of the studies. Moreover, only 23% of the analyzed publications contained quantitative data on DDSs subcellular targeting efficiency, while the majority of publications reported qualitative results only. From the analysis of publications in the subcellular targeting field, it appears that insufficient efforts are devoted to quantitative analysis of the major formulation parameters and of the DDSs' intracellular fate. Based on these findings, we provide recommendations for future studies in the field of organelle-specific drug delivery and targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The Hippo Pathway Targets Rae1 to Regulate Mitosis and Organ Size and to Feed Back to Regulate Upstream Components Merlin, Hippo, and Warts

    PubMed Central

    Jenny, Andreas; Pfleger, Cathie M.

    2016-01-01

    Hippo signaling acts as a master regulatory pathway controlling growth, proliferation, and apoptosis and also ensures that variations in proliferation do not alter organ size. How the pathway coordinates restricting proliferation with organ size control remains a major unanswered question. Here we identify Rae1 as a highly-conserved target of the Hippo Pathway integrating proliferation and organ size. Genetic and biochemical studies in Drosophila cells and tissues and in mammalian cells indicate that Hippo signaling promotes Rae1 degradation downstream of Warts/Lats. In proliferating cells, Rae1 loss restricts cyclin B levels and organ size while Rae1 over-expression increases cyclin B levels and organ size, similar to Hippo Pathway over-activation or loss-of-function, respectively. Importantly, Rae1 regulation by the Hippo Pathway is crucial for its regulation of cyclin B and organ size; reducing Rae1 blocks cyclin B accumulation and suppresses overgrowth caused by Hippo Pathway loss. Surprisingly, in addition to suppressing overgrowth, reducing Rae1 also compromises survival of epithelial tissue overgrowing due to loss of Hippo signaling leading to a tissue “synthetic lethality” phenotype. Excitingly, Rae1 plays a highly conserved role to reduce the levels and activity of the Yki/YAP oncogene. Rae1 increases activation of the core kinases Hippo and Warts and plays a post-transcriptional role to increase the protein levels of the Merlin, Hippo, and Warts components of the pathway; therefore, in addition to Rae1 coordinating organ size regulation with proliferative control, we propose that Rae1 also acts in a feedback circuit to regulate pathway homeostasis. PMID:27494403

  11. Sizing and economic analysis of stand alone photovoltaic system with hydrogen storage

    NASA Astrophysics Data System (ADS)

    Nordin, N. D.; Rahman, H. A.

    2017-11-01

    This paper proposes a design steps in sizing of standalone photovoltaic system with hydrogen storage using intuitive method. The main advantage of this method is it uses a direct mathematical approach to find system’s size based on daily load consumption and average irradiation data. The keys of system design are to satisfy a pre-determined load requirement and maintain hydrogen storage’s state of charge during low solar irradiation period. To test the effectiveness of the proposed method, a case study is conducted using Kuala Lumpur’s generated meteorological data and rural area’s typical daily load profile of 2.215 kWh. In addition, an economic analysis is performed to appraise the proposed system feasibility. The finding shows that the levelized cost of energy for proposed system is RM 1.98 kWh. However, based on sizing results obtained using a published method with AGM battery as back-up supply, the system cost is lower and more economically viable. The feasibility of PV system with hydrogen storage can be improved if the efficiency of hydrogen storage technologies significantly increases in the future. Hence, a sensitivity analysis is performed to verify the effect of electrolyzer and fuel cell efficiencies towards levelized cost of energy. Efficiencies of electrolyzer and fuel cell available in current market are validated using laboratory’s experimental data. This finding is needed to envisage the applicability of photovoltaic system with hydrogen storage as a future power supply source in Malaysia.

  12. Tomography of epidermal growth factor receptor binding to fluorescent Affibody in vivo studied with magnetic resonance guided fluorescence recovery in varying orthotopic glioma sizes

    NASA Astrophysics Data System (ADS)

    Holt, Robert W.; Demers, Jennifer-Lynn H.; Sexton, Kristian J.; Gunn, Jason R.; Davis, Scott C.; Samkoe, Kimberley S.; Pogue, Brian W.

    2015-02-01

    The ability to image targeted tracer binding to epidermal growth factor receptor (EGFR) was studied in vivo in orthotopically grown glioma tumors of different sizes. The binding potential was quantified using a dual-tracer approach, which employs a fluorescently labeled peptide targeted to EGFR and a reference tracer with similar pharmacokinetic properties but no specific binding, to estimate the relative bound fraction from kinetic compartment modeling. The recovered values of binding potential did not vary significantly as a function of tumor size (1 to 33 mm3), suggesting that binding potential may be consistent in the U251 tumors regardless of size or stage after implantation. However, the fluorescence yield of the targeted fluorescent tracers in the tumor was affected significantly by tumor size, suggesting that dual-tracer imaging helps account for variations in absolute uptake, which plague single-tracer imaging techniques. Ex vivo analysis showed relatively high spatial heterogeneity in each tumor that cannot be resolved by tomographic techniques. Nonetheless, the dual-tracer tomographic technique is a powerful tool for longitudinal bulk estimation of receptor binding.

  13. A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana

    PubMed Central

    Paz-Ares, Javier; Weigel, Detlef

    2010-01-01

    Many targets of plant microRNAs (miRNAs) are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for ∼20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA–resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants. PMID:20661442

  14. A long-term target detection approach in infrared image sequence

    NASA Astrophysics Data System (ADS)

    Li, Hang; Zhang, Qi; Wang, Xin; Hu, Chao

    2016-10-01

    An automatic target detection method used in long term infrared (IR) image sequence from a moving platform is proposed. Firstly, based on POME(the principle of maximum entropy), target candidates are iteratively segmented. Then the real target is captured via two different selection approaches. At the beginning of image sequence, the genuine target with litter texture is discriminated from other candidates by using contrast-based confidence measure. On the other hand, when the target becomes larger, we apply online EM method to estimate and update the distributions of target's size and position based on the prior detection results, and then recognize the genuine one which satisfies both the constraints of size and position. Experimental results demonstrate that the presented method is accurate, robust and efficient.

  15. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    PubMed Central

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are <0.6Gy(RBE) and <1.7% respectively. Conclusions For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y

  16. Sample Size Calculations for Precise Interval Estimation of the Eta-Squared Effect Size

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2015-01-01

    Analysis of variance is one of the most frequently used statistical analyses in the behavioral, educational, and social sciences, and special attention has been paid to the selection and use of an appropriate effect size measure of association in analysis of variance. This article presents the sample size procedures for precise interval estimation…

  17. A Meta-Analysis: Identification of Common Mir-145 Target Genes that have Similar Behavior in Different GEO Datasets.

    PubMed

    Pashaei, Elnaz; Guzel, Esra; Ozgurses, Mete Emir; Demirel, Goksun; Aydin, Nizamettin; Ozen, Mustafa

    MicroRNAs, which are small regulatory RNAs, post-transcriptionally regulate gene expression by binding 3'-UTR of their mRNA targets. Their deregulation has been shown to cause increased proliferation, migration, invasion, and apoptosis. miR-145, an important tumor supressor microRNA, has shown to be downregulated in many cancer types and has crucial roles in tumor initiation, progression, metastasis, invasion, recurrence, and chemo-radioresistance. Our aim is to investigate potential common target genes of miR-145, and to help understanding the underlying molecular pathways of tumor pathogenesis in association with those common target genes. Eight published microarray datasets, where targets of mir-145 were investigated in cell lines upon mir-145 over expression, were included into this study for meta-analysis. Inter group variabilities were assessed by box-plot analysis. Microarray datasets were analyzed using GEOquery package in Bioconducter 3.2 with R version 3.2.2 and two-way Hierarchical Clustering was used for gene expression data analysis. Meta-analysis of different GEO datasets showed that UNG, FUCA2, DERA, GMFB, TF, and SNX2 were commonly downregulated genes, whereas MYL9 and TAGLN were found to be commonly upregulated upon mir-145 over expression in prostate, breast, esophageal, bladder cancer, and head and neck squamous cell carcinoma. Biological process, molecular function, and pathway analysis of these potential targets of mir-145 through functional enrichments in PPI network demonstrated that those genes are significantly involved in telomere maintenance, DNA binding and repair mechanisms. As a conclusion, our results indicated that mir-145, through targeting its common potential targets, may significantly contribute to tumor pathogenesis in distinct cancer types and might serve as an important target for cancer therapy.

  18. Target-locking acquisition with real-time confocal (TARC) microscopy.

    PubMed

    Lu, Peter J; Sims, Peter A; Oki, Hidekazu; Macarthur, James B; Weitz, David A

    2007-07-09

    We present a real-time target-locking confocal microscope that follows an object moving along an arbitrary path, even as it simultaneously changes its shape, size and orientation. This Target-locking Acquisition with Realtime Confocal (TARC) microscopy system integrates fast image processing and rapid image acquisition using a Nipkow spinning-disk confocal microscope. The system acquires a 3D stack of images, performs a full structural analysis to locate a feature of interest, moves the sample in response, and then collects the next 3D image stack. In this way, data collection is dynamically adjusted to keep a moving object centered in the field of view. We demonstrate the system's capabilities by target-locking freely-diffusing clusters of attractive colloidal particles, and activelytransported quantum dots (QDs) endocytosed into live cells free to move in three dimensions, for several hours. During this time, both the colloidal clusters and live cells move distances several times the length of the imaging volume.

  19. Cavitation Damage Experiments for Mercury Spallation Targets At the LANSCE WNR in 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Wendel, Mark W; Felde, David K

    2010-01-01

    Proton beam experiments investigating cavitation damage in short pulse mercury spallation targets were performed at LANSCE WNR in July of 2008. They included two main areas for investigation: damage dependence on mercury velocity using geometry more prototypic to the SNS target than previously employed and damage dependence on incident proton beam flux intensity. The flow dependence experiment employed six test targets with mercury velocity in the channel ranging from 0 to more than 4 m/s. Each was hit with 100 WNR beam pulses with peak proton flux equivalent to that of SNS operating at 2.7 MW. Damage dependence on incidentmore » proton beam flux intensity was also investigated with three intensity levels used on simple rectangular shaped targets without mercury flow. Intensity variation was imposed by focusing the beam differently while maintaining protons per pulse. This kept total energy deposited in each target constant. A fourth test target was hit with various beams: constant protons and varied spot size; constant spot size and varied protons. No damage will be assessed in this case. Instead, acoustic emissions associated with cavitation collapse were measured by laser Doppler vibrometer (LDV) from readings of exterior vessel motions as well as by mercury wetted acoustic transducers. This paper will provide a description of the experiment and present available results. Damage assessment will require several months before surface analysis can be completed and was not available in time for IWSMT-9.« less

  20. Effect Sizes for Growth-Modeling Analysis for Controlled Clinical Trials in the Same Metric as for Classical Analysis

    ERIC Educational Resources Information Center

    Feingold, Alan

    2009-01-01

    The use of growth-modeling analysis (GMA)--including hierarchical linear models, latent growth models, and general estimating equations--to evaluate interventions in psychology, psychiatry, and prevention science has grown rapidly over the last decade. However, an effect size associated with the difference between the trajectories of the…

  1. Does precision decrease with set size?

    PubMed Central

    Mazyar, Helga; van den Berg, Ronald; Ma, Wei Ji

    2012-01-01

    The brain encodes visual information with limited precision. Contradictory evidence exists as to whether the precision with which an item is encoded depends on the number of stimuli in a display (set size). Some studies have found evidence that precision decreases with set size, but others have reported constant precision. These groups of studies differed in two ways. The studies that reported a decrease used displays with heterogeneous stimuli and tasks with a short-term memory component, while the ones that reported constancy used homogeneous stimuli and tasks that did not require short-term memory. To disentangle the effects of heterogeneity and short-memory involvement, we conducted two main experiments. In Experiment 1, stimuli were heterogeneous, and we compared a condition in which target identity was revealed before the stimulus display with one in which it was revealed afterward. In Experiment 2, target identity was fixed, and we compared heterogeneous and homogeneous distractor conditions. In both experiments, we compared an optimal-observer model in which precision is constant with set size with one in which it depends on set size. We found that precision decreases with set size when the distractors are heterogeneous, regardless of whether short-term memory is involved, but not when it is homogeneous. This suggests that heterogeneity, not short-term memory, is the critical factor. In addition, we found that precision exhibits variability across items and trials, which may partly be caused by attentional fluctuations. PMID:22685337

  2. Effects of Group Size and Lack of Sphericity on the Recovery of Clusters in K-means Cluster Analysis.

    PubMed

    Craen, Saskia de; Commandeur, Jacques J F; Frank, Laurence E; Heiser, Willem J

    2006-06-01

    K-means cluster analysis is known for its tendency to produce spherical and equally sized clusters. To assess the magnitude of these effects, a simulation study was conducted, in which populations were created with varying departures from sphericity and group sizes. An analysis of the recovery of clusters in the samples taken from these populations showed a significant effect of lack of sphericity and group size. This effect was, however, not as large as expected, with still a recovery index of more than 0.5 in the "worst case scenario." An interaction effect between the two data aspects was also found. The decreasing trend in the recovery of clusters for increasing departures from sphericity is different for equal and unequal group sizes.

  3. Habitat degradation and fishing effects on the size structure of coral reef fish communities.

    PubMed

    Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C

    2010-03-01

    Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.

  4. Assessment of Prospectively Assigned Likert Scores for Targeted Magnetic Resonance Imaging-Transrectal Ultrasound Fusion Biopsies in Patients with Suspected Prostate Cancer.

    PubMed

    Costa, Daniel N; Lotan, Yair; Rofsky, Neil M; Roehrborn, Claus; Liu, Alexander; Hornberger, Brad; Xi, Yin; Francis, Franto; Pedrosa, Ivan

    2016-01-01

    We assess the performance of prospectively assigned magnetic resonance imaging based Likert scale scores for the detection of clinically significant prostate cancer, and analyze the pre-biopsy imaging variables associated with increased cancer detection using targeted magnetic resonance imaging-transrectal ultrasound fusion biopsy. In this retrospective review of prospectively generated data including men with abnormal multiparametric prostate magnetic resonance imaging (at least 1 Likert score 3 or greater lesion) who underwent subsequent targeted magnetic resonance imaging-transrectal ultrasound fusion biopsy, we determined the association between different imaging variables (Likert score, lesion size, lesion location, prostate volume, radiologist experience) and targeted biopsy positivity rate. We also compared the detection of clinically significant cancer according to Likert scale scores. Tumors with high volume (50% or more of any core) Gleason score 3+4 or any tumor with greater Gleason score were considered clinically significant. Each lesion served as the elementary unit for analysis. We used logistic regression for univariate and multivariate (stepwise selection) analysis to assess for an association between targeted biopsy positivity rate and each tested variable. The relationship between Likert scale and Gleason score was evaluated using the Spearman correlation coefficient. A total of 161 men with 244 lesions met the study eligibility criteria. Targeted biopsies diagnosed cancer in 41% (66 of 161) of the men and 41% (99 of 244) of the lesions. The Likert score was the strongest predictor of targeted biopsy positivity (OR 3.7, p <0.0001). Other imaging findings associated with a higher targeted biopsy positivity rate included smaller prostate volume (OR 0.7, p <0.01), larger lesion size (OR 2.2, p <0.001) and anterior location (OR 2.0, p=0.01). On multiple logistic regression analysis Likert score, lesion size and prostate volume were significant

  5. Mechanism of MicroRNA-Target Interaction: Molecular Dynamics Simulations and Thermodynamics Analysis

    PubMed Central

    Wang, Yonghua; Li, Yan; Ma, Zhi; Yang, Wei; Ai, Chunzhi

    2010-01-01

    MicroRNAs (miRNAs) are endogenously produced ∼21-nt riboregulators that associate with Argonaute (Ago) proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target) and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1) three important (PAZ, Mid and PIWI) domains exist in Argonaute which define the global dynamics of the protein; 2) the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3) it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5′-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg2+) plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA). Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago. PMID:20686687

  6. Analysis of copy number variants by three detection algorithms and their association with body size in horses.

    PubMed

    Metzger, Julia; Philipp, Ute; Lopes, Maria Susana; da Camara Machado, Artur; Felicetti, Michela; Silvestrelli, Maurizio; Distl, Ottmar

    2013-07-18

    Copy number variants (CNVs) have been shown to play an important role in genetic diversity of mammals and in the development of many complex phenotypic traits. The aim of this study was to perform a standard comparative evaluation of CNVs in horses using three different CNV detection programs and to identify genomic regions associated with body size in horses. Analysis was performed using the Illumina Equine SNP50 genotyping beadchip for 854 horses. CNVs were detected by three different algorithms, CNVPartition, PennCNV and QuantiSNP. Comparative analysis revealed 50 CNVs that affected 153 different genes mainly involved in sensory perception, signal transduction and cellular components. Genome-wide association analysis for body size showed highly significant deleted regions on ECA1, ECA8 and ECA9. Homologous regions to the detected CNVs on ECA1 and ECA9 have also been shown to be correlated with human height. Comparative analysis of CNV detection algorithms was useful to increase the specificity of CNV detection but had certain limitations dependent on the detection tool. GWAS revealed genome-wide associated CNVs for body size in horses.

  7. The Future of Molecular Analysis in Melanoma: Diagnostics to Direct Molecularly Targeted Therapy.

    PubMed

    Akabane, Hugo; Sullivan, Ryan J

    2016-02-01

    Melanoma is a malignancy of pigment-producing cells that is driven by a variety of genetic mutations and aberrations. In most cases, this leads to upregulation of the mitogen-activated protein kinase (MAPK) pathway through activating mutations of upstream mediators of the pathway including BRAF and NRAS. With the advent of effective MAPK pathway inhibitors, including the US FDA-approved BRAF inhibitors vemurafenib and dabrafenib and MEK inhibitor trametinib, molecular analysis has become an integral part of the care of patients with metastatic melanoma. In this article, the key molecular targets and strategies to inhibit these targets therapeutically are presented, and the techniques of identifying these targets, in both tissue and blood, are discussed.

  8. A statistical analysis of North East Atlantic (submicron) aerosol size distributions

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Monahan, C.; Greaney, R.; Beddows, D. C. S.; Harrison, R. M.; Ceburnis, D.; O'Dowd, C. D.

    2011-08-01

    The Global Atmospheric Watch research station at Mace Head (Ireland) offers the possibility to sample some of the cleanest air masses being imported into Europe as well as some of the most polluted being exported out of Europe. We present a statistical Cluster~analysis of the physical characteristics of aerosol size distributions in air ranging from the cleanest to the most polluted for the year 2008. Data coverage achieved was 75 % throughout the year. By applying the Hartigan-Wong k-Means method, 12 Clusters were identified as systematically occurring and these 12 Clusters could be further combined into 4 categories with similar characteristics, namely: coastal nucleation category (occurring 21.3 % of the time), open ocean nucleation category (occurring 32.6 % of the time), background clean marine category (occurring 26.1 % of the time) and anthropogenic category (occurring 20 % of the time) aerosol size distributions. The coastal nucleation category is characterised by a clear and dominant nucleation mode at sizes less that 10 nm while the open ocean nucleation category is characterised by a dominant Aitken mode between 15 nm and 50 nm. The background clean marine characteristic is a clear bimodality in the size distribution, although it should be noted that either the Aitken mode or the Accumulation mode may dominate the number concentration. By contrast, the continentally-influenced size distributions are generally more mono-modal, albeit with traces of bi-modality. The open ocean category occurs more often during May, June and July, corresponding with the N. E. Atlantic high biological period. Combined with the relatively high percentage frequency of occurrence (32.6 %), this suggests that the marine biota is an important source of new aerosol particles in N. E. Atlantic Air.

  9. Size matters: the interplay between sensing and size in aquatic environments

    NASA Astrophysics Data System (ADS)

    Wadhwa, Navish; Martens, Erik A.; Lindemann, Christian; Jacobsen, Nis S.; Andersen, Ken H.; Visser, Andre

    2015-11-01

    Sensing the presence or absence of other organisms in the surroundings is critical for the survival of any aquatic organism. This is achieved via the use of various sensory modes such as chemosensing, mechanosensing, vision, hearing, and echolocation. We ask how the size of an organism determines what sensory modes are available to it while others are not. We investigate this by examining the physical laws governing signal generation, transmission, and reception, together with the limits set by physiology. Hydrodynamics plays an important role in sensing; in particular chemosensing and mechanosensing are constrained by the physics of fluid motion at various scales. Through our analysis, we find a hierarchy of sensing modes determined by body size. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in the literature. Our analysis of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life. The Centre for Ocean Life is a VKR center of excellence supported by the Villum Foundation.

  10. Clustering analysis of moving target signatures

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto

    2010-04-01

    Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.

  11. A study of payload specialist station monitor size constraints. [space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.

    1975-01-01

    Constraints on the CRT display size for the shuttle orbiter cabin are studied. The viewing requirements placed on these monitors were assumed to involve display of imaged scenes providing visual feedback during payload operations and display of alphanumeric characters. Data on target recognition/resolution, target recognition, and range rate detection by human observers were utilized to determine viewing requirements for imaged scenes. Field-of-view and acuity requirements for a variety of payload operations were obtained along with the necessary detection capability in terms of range-to-target size ratios. The monitor size necessary to meet the acuity requirements was established. An empirical test was conducted to determine required recognition sizes for displayed alphanumeric characters. The results of the test were used to determine the number of characters which could be simultaneously displayed based on the recognition size requirements using the proposed monitor size. A CRT display of 20 x 20 cm is recommended. A portion of the display area is used for displaying imaged scenes and the remaining display area is used for alphanumeric characters pertaining to the displayed scene. The entire display is used for the character alone mode.

  12. The Hard but Necessary Task of Gathering Order-One Effect Size Indices in Meta-Analysis

    ERIC Educational Resources Information Center

    Ortego, Carmen; Botella, Juan

    2010-01-01

    Meta-analysis of studies with two groups and two measurement occasions must employ order-one effect size indices to represent study outcomes. Especially with non-random assignment, non-equivalent control group designs, a statistical analysis restricted to post-treatment scores can lead to severely biased conclusions. The 109 primary studies…

  13. School Programs Targeting Stress Management in Children and Adolescents: A Meta-Analysis

    ERIC Educational Resources Information Center

    Kraag, Gerda; Zeegers, Maurice P.; Kok, Gerjo; Hosman, Clemens; Abu-Saad, Huda Huijer

    2006-01-01

    Introduction: This meta-analysis evaluates the effect of school programs targeting stress management or coping skills in school children. Methods: Articles were selected through a systematic literature search. Only randomized controlled trials or quasi-experimental studies were included. The standardized mean differences (SMDs) between baseline…

  14. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production.

    PubMed

    George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon

    2014-08-01

    The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.

  15. Development of a targeted transgenesis strategy in highly differentiated cells: a powerful tool for functional genomic analysis.

    PubMed

    Puttini, Stefania; Ouvrard-Pascaud, Antoine; Palais, Gael; Beggah, Ahmed T; Gascard, Philippe; Cohen-Tannoudji, Michel; Babinet, Charles; Blot-Chabaud, Marcel; Jaisser, Frederic

    2005-03-16

    Functional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells.

  16. Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan

    2017-08-01

    Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.

  17. Allocating Sample Sizes to Reduce Budget for Fixed-Effect 2×2 Heterogeneous Analysis of Variance

    ERIC Educational Resources Information Center

    Luh, Wei-Ming; Guo, Jiin-Huarng

    2016-01-01

    This article discusses the sample size requirements for the interaction, row, and column effects, respectively, by forming a linear contrast for a 2×2 factorial design for fixed-effects heterogeneous analysis of variance. The proposed method uses the Welch t test and its corresponding degrees of freedom to calculate the final sample size in a…

  18. Enhanced size-dependent trapping of particles using microvortices

    PubMed Central

    Zhou, Jian; Kasper, Susan; Papautsky, Ian

    2013-01-01

    Inertial microfluidics has been attracting considerable interest for size-based separation of particles and cells. The inertial forces can be manipulated by expanding the microchannel geometry, leading to formation of microvortices which selectively isolate and trap particles or cells from a mixture. In this work, we aim to enhance our understanding of particle trapping in such microvortices by developing a model of selective particle trapping. Design and operational parameters including flow conditions, size of the trapping region, and target particle concentration are explored to elucidate their influence on trapping behavior. Our results show that the size dependence of trapping is characterized by a threshold Reynolds number, which governs the selective entry of particles into microvortices from the main flow. We show that concentration enhancement on the order of 100,000× and isolation of targets at concentrations in the 1/mL is possible. Ultimately, the insights gained from our systematic investigation suggest optimization solutions that enhance device performance (efficiency, size selectivity, and yield) and are applicable to selective isolation and trapping of large rare cells as well as other applications. PMID:24187531

  19. Design of ligand-targeted nanoparticles for enhanced cancer targeting

    NASA Astrophysics Data System (ADS)

    Stefanick, Jared F.

    Ligand-targeted nanoparticles are increasingly used as drug delivery vehicles for cancer therapy, yet have not consistently produced successful clinical outcomes. Although these inconsistencies may arise from differences in disease models and target receptors, nanoparticle design parameters can significantly influence therapeutic efficacy. By employing a multifaceted synthetic strategy to prepare peptide-targeted nanoparticles with high purity, reproducibility, and precisely controlled stoichiometry of functionalities, this work evaluates the roles of polyethylene glycol (PEG) coating, ethylene glycol (EG) peptide-linker length, peptide hydrophilicity, peptide density, and nanoparticle size on tumor targeting in a systematic manner. These parameters were analyzed in multiple disease models by targeting human epidermal growth factor receptor 2 (HER2) in breast cancer and very late antigen-4 (VLA-4) in multiple myeloma to demonstrate the widespread applicability of this approach. By increasing the hydrophilicity of the targeting peptide sequence and simultaneously optimizing the EG peptide-linker length, the in vitro cellular uptake of targeted liposomes was significantly enhanced. Specifically, including a short oligolysine chain adjacent to the targeting peptide sequence effectively increased cellular uptake ~80-fold using an EG6 peptide-linker compared to ~10-fold using an EG45 linker. In vivo, targeted liposomes prepared in a traditional manner lacking the oligolysine chain demonstrated similar biodistribution and tumor uptake to non-targeted liposomes. However, by including the oligolysine chain, targeted liposomes using an EG45 linker significantly improved tumor uptake ~8-fold over non-targeted liposomes, while the use of an EG6 linker decreased tumor accumulation and uptake, owing to differences in cellular uptake kinetics, clearance mechanisms, and binding site barrier effects. To further improve tumor targeting and enhance the selectivity of targeted

  20. Realism and Effectiveness of Robotic Moving Targets

    DTIC Science & Technology

    2017-04-01

    scenario or be manually controlled . The targets can communicate with other nearby targets, which means they can move independently, as a group , or...present a realistic three- dimensional human-sized target that can freely move with semi-autonomous control . The U.S. Army Research Institute for...Procedure: Performance and survey data were collected during multiple training exercises from Soldiers who engaged the RHTTs. Different groups

  1. Foam encapsulated targets

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.; Dahlbacka, Glen H.

    1983-01-01

    Foam encapsulated laser-fusion targets wherein a quantity of thermonuclear fuel is embedded in low density, microcellular foam which serves as an electron conduction channel for symmetrical implosion of the fuel by illumination of the target by one or more laser beams. The fuel, such as DT, is contained within a hollow shell constructed of glass, for example, with the foam having a cell size of preferably no greater than 2 .mu.m, a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3, and external diameter of less than 200 .mu.m.

  2. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific

    NASA Astrophysics Data System (ADS)

    Chen, K.-H.; Lundy, D. J.; Toh, E. K.-W.; Chen, C.-H.; Shih, C.; Chen, P.; Chang, H.-C.; Lai, J. J.; Stayton, P. S.; Hoffman, A. S.; Hsieh, P. C.-H.

    2015-09-01

    This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner.This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered

  3. Global Sensitivity Analysis with Small Sample Sizes: Ordinary Least Squares Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Liu, Wei; Sivaramakrishnan, Raghu

    2016-12-21

    A new version of global sensitivity analysis is developed in this paper. This new version coupled with tools from statistics, machine learning, and optimization can devise small sample sizes that allow for the accurate ordering of sensitivity coefficients for the first 10-30 most sensitive chemical reactions in complex chemical-kinetic mechanisms, and is particularly useful for studying the chemistry in realistic devices. A key part of the paper is calibration of these small samples. Because these small sample sizes are developed for use in realistic combustion devices, the calibration is done over the ranges of conditions in such devices, with amore » test case being the operating conditions of a compression ignition engine studied earlier. Compression ignition engines operate under low-temperature combustion conditions with quite complicated chemistry making this calibration difficult, leading to the possibility of false positives and false negatives in the ordering of the reactions. So an important aspect of the paper is showing how to handle the trade-off between false positives and false negatives using ideas from the multiobjective optimization literature. The combination of the new global sensitivity method and the calibration are sample sizes a factor of approximately 10 times smaller than were available with our previous algorithm.« less

  4. Economic Analysis and Optimal Sizing for behind-the-meter Battery Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Kintner-Meyer, Michael CW; Yang, Tao

    This paper proposes methods to estimate the potential benefits and determine the optimal energy and power capacity for behind-the-meter BSS. In the proposed method, a linear programming is first formulated only using typical load profiles, energy/demand charge rates, and a set of battery parameters to determine the maximum saving in electric energy cost. The optimization formulation is then adapted to include battery cost as a function of its power and energy capacity in order to capture the trade-off between benefits and cost, and therefore to determine the most economic battery size. Using the proposed methods, economic analysis and optimal sizingmore » have been performed for a few commercial buildings and utility rate structures that are representative of those found in the various regions of the Continental United States. The key factors that affect the economic benefits and optimal size have been identified. The proposed methods and case study results cannot only help commercial and industrial customers or battery vendors to evaluate and size the storage system for behind-the-meter application, but can also assist utilities and policy makers to design electricity rate or subsidies to promote the development of energy storage.« less

  5. Integrated metabonomics analysis of the size-response relationship of silica nanoparticles-induced toxicity in mice

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyan; Tian, Yu; Zhao, Qinqin; Jin, Tingting; Xiao, Shun; Fan, Xiaohui

    2011-02-01

    Understanding the underlying properties-dependent interactions of nanostructures with biological systems is essential to nanotoxicological research. This study investigates the relationship between particle size and toxicity, and further reveals the mechanism of injury, using silica particles (SP) with diameters of 30, 70, and 300 nm (SP30, SP70, and SP300) as model materials. The biochemical compositions of liver tissues and serum of mice treated with SP30, SP70, and SP300 were analyzed by integrated metabonomics analysis based on gas chromatography-mass spectrometry (GC-MS) and in combination with pattern recognition approaches. Histopathological examinations and serum biochemical analysis were simultaneously performed. The toxicity induced by three different sizes of SP mainly involved hepatocytic necrosis, increased serum aminotransferase, and inflammatory cytokines. Moreover, the toxic effects of SP were dose-dependent for each particle size. The doses of SP30, SP70, and SP300 that were toxic to the liver were 10, 40, and 200 mg kg - 1, respectively. In this study, surface area has a greater effect than particle number on the toxicity of SP30, SP70, and SP300 in the liver. The disturbances in energy metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism may be attributable to the hepatotoxicity induced by SP. In addition, no major differences were found in the response of biological systems caused by the different SP sizes among the metabolite profiles. The results suggest that not only nano-sized but also submicro-sized SP can cause similar extents of liver injury, which is dependent on the exposure dose, and the mechanism of toxicity may be almost the same.

  6. Effect Sizes for Growth-Modeling Analysis for Controlled Clinical Trials in the Same Metric as for Classical Analysis

    PubMed Central

    Feingold, Alan

    2009-01-01

    The use of growth-modeling analysis (GMA)--including Hierarchical Linear Models, Latent Growth Models, and General Estimating Equations--to evaluate interventions in psychology, psychiatry, and prevention science has grown rapidly over the last decade. However, an effect size associated with the difference between the trajectories of the intervention and control groups that captures the treatment effect is rarely reported. This article first reviews two classes of formulas for effect sizes associated with classical repeated-measures designs that use the standard deviation of either change scores or raw scores for the denominator. It then broadens the scope to subsume GMA, and demonstrates that the independent groups, within-subjects, pretest-posttest control-group, and GMA designs all estimate the same effect size when the standard deviation of raw scores is uniformly used. Finally, it is shown that the correct effect size for treatment efficacy in GMA--the difference between the estimated means of the two groups at end of study (determined from the coefficient for the slope difference and length of study) divided by the baseline standard deviation--is not reported in clinical trials. PMID:19271847

  7. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    NASA Astrophysics Data System (ADS)

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  8. Genome size estimates for crustaceans using Feulgen image analysis densitometry of ethanol-preserved tissues.

    PubMed

    Jeffery, Nicholas W; Gregory, T Ryan

    2014-10-01

    Crustaceans are enormously diverse both phylogenetically and ecologically, but they remain substantially underrepresented in the existing genome size database. An expansion of this dataset could be facilitated if it were possible to obtain genome size estimates from ethanol-preserved specimens. In this study, two tests were performed in order to assess the reliability of genome size data generated using preserved material. First, the results of estimates based on flash-frozen versus ethanol-preserved material were compared across 37 species of crustaceans that differ widely in genome size. Second, a comparison was made of specimens from a single species that had been stored in ethanol for 1-14 years. In both cases, the use of gill tissue in Feulgen image analysis densitometry proved to be a very viable approach. This finding is of direct relevance to both new studies of field-collected crustaceans as well as potential studies based on existing collections. © 2014 International Society for Advancement of Cytometry.

  9. Calibration and performance of synchronous SIM/scan mode for simultaneous targeted and discovery (non-targeted) analysis of exhaled breath samples from firefighters

    EPA Science Inventory

    Traditionally, gas chromatography – mass spectrometry (GC-MS) analysis has used a targeted approach called selected ion monitoring (SIM) to quantify specific compounds that may have adverse health effects. Due to method limitations and the constraints of preparing duplicat...

  10. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source

    DOE PAGES

    Gussev, Maxim N.; McClintock, David A.; Garner, Frank

    2015-08-05

    In an earlier publication, tensile testing was performed on specimens removed from the first two operational targets of the Spallation Neutron Source (SNS). There were several anomalous features in the results. First, some specimens had very large elongations (up to 57%) while others had significantly smaller values. Second, there was a larger than the usual amount of data scatter in the elongation results. Third, the stress-strain diagrams of nominally similar specimens spanned a wide range of behavior ranging from expected irradiation-induced hardening to varying levels of force drop after yield point and indirect signs of "traveling deformation wave" behavior associatedmore » with strain-induced martensite formation. To investigate the cause(s) of such variable tensile behavior, several specimens from Target 2, spanning the range of observed tensile behavior, were chosen for detailed microstructural examination using electron backscattering analysis (EBSD). It was also shown that the steel employed in the construction of the target contained an unexpected bimodal grain size distribution, containing very large out-of-specification grains surrounded by necklaces of grains of within-specification sizes. The large grains were frequently comparable to the width of the gauge section of the tensile specimen. Moreover, the propensity to form martensite during deformation was shown to be accelerated by radiation but also to be very sensitive to the relative orientation of the grains with respect to the tensile axis. Specimens having large grains in the gauge that were most favorably oriented for production of martensite strongly exhibited the traveling deformation wave phenomenon, while those specimens with less favorably oriented grains had lesser or no degree of the wave effect, thereby accounting for the larger than expected data scatter.« less

  11. Selective counting and sizing of single virus particles using fluorescent aptamer-based nanoparticle tracking analysis.

    PubMed

    Szakács, Zoltán; Mészáros, Tamás; de Jonge, Marien I; Gyurcsányi, Róbert E

    2018-05-30

    Detection and counting of single virus particles in liquid samples are largely limited to narrow size distribution of viruses and purified formulations. To address these limitations, here we propose a calibration-free method that enables concurrently the selective recognition, counting and sizing of virus particles as demonstrated through the detection of human respiratory syncytial virus (RSV), an enveloped virus with a broad size distribution, in throat swab samples. RSV viruses were selectively labeled through their attachment glycoproteins (G) with fluorescent aptamers, which further enabled their identification, sizing and counting at the single particle level by fluorescent nanoparticle tracking analysis. The proposed approach seems to be generally applicable to virus detection and quantification. Moreover, it could be successfully applied to detect single RSV particles in swab samples of diagnostic relevance. Since the selective recognition is associated with the sizing of each detected particle, this method enables to discriminate viral elements linked to the virus as well as various virus forms and associations.

  12. Immune checkpoint inhibitors and targeted therapies for metastatic melanoma: A network meta-analysis.

    PubMed

    Pasquali, Sandro; Chiarion-Sileni, Vanna; Rossi, Carlo Riccardo; Mocellin, Simone

    2017-03-01

    Immune checkpoint inhibitors and targeted therapies, two new class of drugs for treatment of metastatic melanoma, have not been compared in randomized controlled trials (RCT). We quantitatively summarized the evidence and compared immune and targeted therapies in terms of both efficacy and toxicity. A comprehensive search for RCTs of immune checkpoint inhibitors and targeted therapies was conducted to August 2016. Using a network meta-analysis approach, treatments were compared with each other and ranked based on their effectiveness (as measured by the impact on progression-free survival [PFS]) and acceptability (the inverse of high grade toxicity). Twelve RCTs enrolling 6207 patients were included. Network meta-analysis generated 15 comparisons. Combined BRAF and MEK inhibitors were associated with longer PFS as compared to anti-CTLA4 (HR: 0.22; 95% confidence interval [CI]: 0.12-0.41) and anti-PD1 antibodies alone (HR: 0.38; CI: 0.20-0.72). However, anti-PD1 monoclonal antibodies were less toxic than anti-CTLA4 monoclonal antibodies (RR: 0.65; CI: 0.40-0.78) and their combination significantly increased toxicity compared to either single agent anti-CTLA4 (RR: 2.06; CI: 1.45-2.93) or anti-PD1 monoclonal antibodies (RR: 3.67; CI: 2.27-5.96). Consistently, ranking analysis suggested that the combination of targeted therapies is the most effective strategy, whereas single agent anti-PD1 antibodies have the best acceptability. The GRADE level of evidence quality for these findings was moderate to low. The simultaneous inhibition of BRAF and MEK appears the most effective treatment for melanomas harboring BRAF V600 mutation, although anti-PD1 antibodies appear to be less toxic. Further research is needed to increase the quality of evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Portion size: a qualitative study of consumers' attitudes toward point-of-purchase interventions aimed at portion size.

    PubMed

    Vermeer, Willemijn M; Steenhuis, Ingrid H M; Seidell, Jacob C

    2010-02-01

    This qualitative study assessed consumers' opinions of food portion sizes and their attitudes toward portion-size interventions located in various point-of-purchase settings targeting overweight and obese people. Eight semi-structured focus group discussions were conducted with 49 participants. Constructs from the diffusion of innovations theory were included in the interview guide. Each focus group was recorded and transcribed verbatim. Data were coded and analyzed with Atlas.ti 5.2 using the framework approach. Results showed that many participants thought that portion sizes of various products have increased during the past decades and are larger than acceptable. The majority also indicated that value for money is important when purchasing and that large portion sizes offer more value for money than small portion sizes. Furthermore, many experienced difficulties with self-regulating the consumption of large portion sizes. Among the portion-size interventions that were discussed, participants had most positive attitudes toward a larger availability of portion sizes and pricing strategies, followed by serving-size labeling. In general, reducing package serving sizes as an intervention strategy to control food intake met resistance. The study concludes that consumers consider interventions consisting of a larger variety of available portion sizes, pricing strategies and serving-size labeling as most acceptable to implement.

  14. Effect of Patient Set-up and Respiration motion on Defining Biological Targets for Image-Guided Targeted Radiotherapy

    NASA Astrophysics Data System (ADS)

    McCall, Keisha C.

    Identification and monitoring of sub-tumor targets will be a critical step for optimal design and evaluation of cancer therapies in general and biologically targeted radiotherapy (dose-painting) in particular. Quantitative PET imaging may be an important tool for these applications. Currently radiotherapy planning accounts for tumor motion by applying geometric margins. These margins create a motion envelope to encompass the most probable positions of the tumor, while also maintaining the appropriate tumor control and normal tissue complication probabilities. This motion envelope is effective for uniform dose prescriptions where the therapeutic dose is conformed to the external margins of the tumor. However, much research is needed to establish the equivalent margins for non-uniform fields, where multiple biological targets are present and each target is prescribed its own dose level. Additionally, the size of the biological targets and close proximity make it impractical to apply planning margins on the sub-tumor level. Also, the extent of high dose regions must be limited to avoid excessive dose to the surrounding tissue. As such, this research project is an investigation of the uncertainty within quantitative PET images of moving and displaced dose-painting targets, and an investigation of the residual errors that remain after motion management. This included characterization of the changes in PET voxel-values as objects are moved relative to the discrete sampling interval of PET imaging systems (SPECIFIC AIM 1). Additionally, the repeatability of PET distributions and the delineating dose-painting targets were measured (SPECIFIC AIM 2). The effect of imaging uncertainty on the dose distributions designed using these images (SPECIFIC AIM 3) has also been investigated. This project also included analysis of methods to minimize motion during PET imaging and reduce the dosimetric impact of motion/position-induced imaging uncertainty (SPECIFIC AIM 4).

  15. Target thrust measurement for applied-field magnetoplasmadynamic thruster

    NASA Astrophysics Data System (ADS)

    Wang, B.; Yang, W.; Tang, H.; Li, Z.; Kitaeva, A.; Chen, Z.; Cao, J.; Herdrich, G.; Zhang, K.

    2018-07-01

    In this paper, we present a flat target thrust stand which is designed to measure the thrust of a steady-state applied-field magnetoplasmadynamic thruster (AF-MPDT). In our experiments we varied target-thruster distances and target size to analyze their influence on the target thrust measurement results. The obtained thrust-distance curves increase to local maximum and then decreases with the increasing distance, which means that the plume of the AF-MPDT can still accelerate outside the thruster exit. The peak positions are related to the target sizes: larger targets can make the peak positions further from the thruster and decrease the measurement errors. To further improve the reliability of measurement results, a thermal equilibrium assumption combined with Knudsen’s cosine law is adapted to analyze the error caused by the back stream of plume particles. Under the assumption, the error caused by particle backflow is no more than 3.6% and the largest difference between the measured thrust and the theoretical thrust is 14%. Moreover, it was verified that target thrust measurement can disturb the working of the AF-MPD thruster, and the influence on the thrust measurement result is no more than 1% in our experiment.

  16. Structural and sequencing analysis of local target DNA recognition by MLV integrase.

    PubMed

    Aiyer, Sriram; Rossi, Paolo; Malani, Nirav; Schneider, William M; Chandar, Ashwin; Bushman, Frederic D; Montelione, Gaetano T; Roth, Monica J

    2015-06-23

    Target-site selection by retroviral integrase (IN) proteins profoundly affects viral pathogenesis. We describe the solution nuclear magnetic resonance structure of the Moloney murine leukemia virus IN (M-MLV) C-terminal domain (CTD) and a structural homology model of the catalytic core domain (CCD). In solution, the isolated MLV IN CTD adopts an SH3 domain fold flanked by a C-terminal unstructured tail. We generated a concordant MLV IN CCD structural model using SWISS-MODEL, MMM-tree and I-TASSER. Using the X-ray crystal structure of the prototype foamy virus IN target capture complex together with our MLV domain structures, residues within the CCD α2 helical region and the CTD β1-β2 loop were predicted to bind target DNA. The role of these residues was analyzed in vivo through point mutants and motif interchanges. Viable viruses with substitutions at the IN CCD α2 helical region and the CTD β1-β2 loop were tested for effects on integration target site selection. Next-generation sequencing and analysis of integration target sequences indicate that the CCD α2 helical region, in particular P187, interacts with the sequences distal to the scissile bonds whereas the CTD β1-β2 loop binds to residues proximal to it. These findings validate our structural model and disclose IN-DNA interactions relevant to target site selection. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Finite-size scaling analysis in the two-photon Dicke model

    NASA Astrophysics Data System (ADS)

    Chen, Xiang-You; Zhang, Yu-Yu

    2018-05-01

    We perform a Schrieffer-Wolff transformation to the two-photon Dicke model by keeping the leading-order correction with a quartic term of the field, which is crucial for finite-size scaling analysis. Besides a spectral collapse as a consequence of two-photon interaction, the super-radiant phase transition is indicated by the vanishing of the excitation energy and the uniform atomic polarization. The scaling functions for the ground-state energy and the atomic pseudospin are derived analytically. The scaling exponents of the observables are the same as those in the standard Dicke model, indicating they are in the same universality class.

  18. Optimum viewing distance for target acquisition

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2015-05-01

    Human visual system (HVS) "resolution" (a.k.a. visual acuity) varies with illumination level, target characteristics, and target contrast. For signage, computer displays, cell phones, and TVs a viewing distance and display size are selected. Then the number of display pixels is chosen such that each pixel subtends 1 min-1. Resolution of low contrast targets is quite different. It is best described by Barten's contrast sensitivity function. Target acquisition models predict maximum range when the display pixel subtends 3.3 min-1. The optimum viewing distance is nearly independent of magnification. Noise increases the optimum viewing distance.

  19. Recent changes in the size of southern forest enterprises: A survivor analysis

    Treesearch

    James E. Granskog

    1989-01-01

    Over the decade from 1976 to 1986, the trend among southern enterprises that process softwood timer has been to build larger operations to reduce unit cots. Minimum efficient plant size, as determined by survivor analysis, has increased from 1,000 to 1,500 tons per day from pulpmills, 100 to 250 million square feeet per year for softwood plywood plants, and 20 to 50...

  20. A long-term target detection approach in infrared image sequence

    NASA Astrophysics Data System (ADS)

    Li, Hang; Zhang, Qi; Li, Yuanyuan; Wang, Liqiang

    2015-12-01

    An automatic target detection method used in long term infrared (IR) image sequence from a moving platform is proposed. Firstly, based on non-linear histogram equalization, target candidates are coarse-to-fine segmented by using two self-adapt thresholds generated in the intensity space. Then the real target is captured via two different selection approaches. At the beginning of image sequence, the genuine target with litter texture is discriminated from other candidates by using contrast-based confidence measure. On the other hand, when the target becomes larger, we apply online EM method to iteratively estimate and update the distributions of target's size and position based on the prior detection results, and then recognize the genuine one which satisfies both the constraints of size and position. Experimental results demonstrate that the presented method is accurate, robust and efficient.

  1. Thermal Test on Target with Pressed Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    A thorough test of the thermal performance of a target for Mo 99 production using solid Mo 100 target to produce the Mo 99 via a gamma-n reaction has previously been conducted at Argonne National Laboratory (ANL). The results are reported in “Zero Degree Line Mo Target Thermal Test Results and Analysis,” LANL report Number LA-UR-15-23134 dated 3/27/15. This target was comprised of 25 disks 1 mm thick and 12 mm in diameter, separated by helium coolant gaps 0.5 mm wide. The test reported in the above referenced report was conducted with natural Mo disks all cut from commercial rod.more » The production plant will have Mo 100 disks pressed and sintered using a process being developed at Oak Ridge National Laboratory (ORNL). The structural integrity of press-and-sinter disks is of some concern. The test reported herein included 4 disks made by the ORNL process and placed in the high heat, and therefore high thermal stress, region of the target. The electron beam energy was 23 MeV for these tests. Beam spot size was 3.5 mm horizontal and 3 mm vertical, FWHM. The thermal stress test of pressed-and-sintered disks resulted in no mechanical failures. The induced thermal stresses were below yield stress for natural Mo, indicating that up to that stress state no inherent deficiencies in the mechanical properties of the fabricated disks were evident.« less

  2. An integrated analysis of phenotypic selection on insect body size and development time.

    PubMed

    Eck, Daniel J; Shaw, Ruth G; Geyer, Charles J; Kingsolver, Joel G

    2015-09-01

    Most studies of phenotypic selection do not estimate selection or fitness surfaces for multiple components of fitness within a unified statistical framework. This makes it difficult or impossible to assess how selection operates on traits through variation in multiple components of fitness. We describe a new generation of aster models that can evaluate phenotypic selection by accounting for timing of life-history transitions and their effect on population growth rate, in addition to survival and reproductive output. We use this approach to estimate selection on body size and development time for a field population of the herbivorous insect, Manduca sexta (Lepidoptera: Sphingidae). Estimated fitness surfaces revealed strong and significant directional selection favoring both larger adult size (via effects on egg counts) and more rapid rates of early larval development (via effects on larval survival). Incorporating the timing of reproduction and its influence on population growth rate into the analysis resulted in larger values for size in early larval development at which fitness is maximized, and weaker selection on size in early larval development. These results illustrate how the interplay of different components of fitness can influence selection on size and development time. This integrated modeling framework can be readily applied to studies of phenotypic selection via multiple fitness components in other systems. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  3. Analysis of low-offset CTIA amplifier for small-size-pixel infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Huang, Zhangcheng; Shao, Xiumei

    2014-11-01

    The design of input stage amplifier becomes more and more difficult as the expansion of format arrays and reduction of pixel size. A design method of low-offset amplifier based on 0.18-μm process used in small-size pixel is analyzed in order to decrease the dark signal of extended wavelength InGaAs infrared focal plane arrays (IRFPA). Based on an example of a cascode operational amplifier (op-amp), the relationship between input offset voltage and size of each transistor is discussed through theoretical analysis and Monte Carlo simulation. The results indicate that input transistors and load transistors have great influence on the input offset voltage while common-gate transistors are negligible. Furthermore, the offset voltage begins to increase slightly when the width and length of transistors decrease along with the diminution of pixel size, and raises rapidly when the size is smaller than a proximate threshold value. The offset voltage of preamplifiers with differential architecture and single-shared architecture in small pitch pixel are studied. After optimization under same conditions, simulation results show that single-shared architecture has smaller offset voltage than differential architecture.

  4. Road safety risk evaluation and target setting using data envelopment analysis and its extensions.

    PubMed

    Shen, Yongjun; Hermans, Elke; Brijs, Tom; Wets, Geert; Vanhoof, Koen

    2012-09-01

    Currently, comparison between countries in terms of their road safety performance is widely conducted in order to better understand one's own safety situation and to learn from those best-performing countries by indicating practical targets and formulating action programmes. In this respect, crash data such as the number of road fatalities and casualties are mostly investigated. However, the absolute numbers are not directly comparable between countries. Therefore, the concept of risk, which is defined as the ratio of road safety outcomes and some measure of exposure (e.g., the population size, the number of registered vehicles, or distance travelled), is often used in the context of benchmarking. Nevertheless, these risk indicators are not consistent in most cases. In other words, countries may have different evaluation results or ranking positions using different exposure information. In this study, data envelopment analysis (DEA) as a performance measurement technique is investigated to provide an overall perspective on a country's road safety situation, and further assess whether the road safety outcomes registered in a country correspond to the numbers that can be expected based on the level of exposure. In doing so, three model extensions are considered, which are the DEA based road safety model (DEA-RS), the cross-efficiency method, and the categorical DEA model. Using the measures of exposure to risk as the model's input and the number of road fatalities as output, an overall road safety efficiency score is computed for the 27 European Union (EU) countries based on the DEA-RS model, and the ranking of countries in accordance with their cross-efficiency scores is evaluated. Furthermore, after applying clustering analysis to group countries with inherent similarity in their practices, the categorical DEA-RS model is adopted to identify best-performing and underperforming countries in each cluster, as well as the reference sets or benchmarks for those

  5. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells.

    PubMed

    Wang, Ling; An, Yanli; Yuan, Chenyan; Zhang, Hao; Liang, Chen; Ding, Fengan; Gao, Qi; Zhang, Dongsheng

    2015-01-01

    Targeted delivery is a promising strategy to improve the diagnostic imaging and therapeutic effect of cancers. In this paper, novel cetuximab (C225)-conjugated, gemcitabine (GEM)-containing magnetic albumin nanospheres (C225-GEM/MANs) were fabricated and applied as a theranostic nanocarrier to conduct simultaneous targeting, magnetic resonance imaging (MRI), and double-targeted thermochemotherapy against pancreatic cancer cells. Fe3O4 nanoparticles (NPs) and GEM co-loaded albumin nanospheres (GEM/MANs) were prepared, and then C225 was further conjugated to synthesize C225-GEM/MANs. Their morphology, mean particle size, GEM encapsulation ratio, specific cell-binding ability, and thermal dynamic profiles were characterized. The effects of discriminating different EGFR-expressing pancreatic cancer cells (AsPC-1 and MIA PaCa-2) and monitoring cellular targeting effects were assessed by targeted MRI. Lastly, the antitumor efficiency of double/C225/magnetic-targeted and nontargeted thermochemotherapy was compared with chemotherapy alone using 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and flow cytometry (FCM) assay. When treated with targeted nanospheres, AsPC-1 cells showed a significantly less intense MRI T2 signal than MIA PaCa-2 cells, while both cells had similar signal strength when incubated with nontargeted nanospheres. T2 signal intensity was significantly lower when magnetic and C225 targeting were combined, rather than used alone. The inhibitory and apoptotic rates of each thermochemotherapy group were significantly higher than those of the chemotherapy-alone groups. Additionally, both MTT and FCM analysis verified that double-targeted thermochemotherapy had the highest targeted killing efficiency among all groups. The C225-GEM/MANs can distinguish various EGFR-expressing live pancreatic cancer cells, monitor diverse cellular targeting effects using targeted MRI imaging, and efficiently mediate double-targeted thermochemotherapy

  6. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation

    NASA Astrophysics Data System (ADS)

    Durner, Wolfgang; Iden, Sascha C.; von Unold, Georg

    2017-01-01

    The particle-size distribution (PSD) of a soil expresses the mass fractions of various sizes of mineral particles which constitute the soil material. It is a fundamental soil property, closely related to most physical and chemical soil properties and it affects almost any soil function. The experimental determination of soil texture, i.e., the relative amounts of sand, silt, and clay-sized particles, is done in the laboratory by a combination of sieving (sand) and gravitational sedimentation (silt and clay). In the latter, Stokes' law is applied to derive the particle size from the settling velocity in an aqueous suspension. Traditionally, there are two methodologies for particle-size analysis from sedimentation experiments: the pipette method and the hydrometer method. Both techniques rely on measuring the temporal change of the particle concentration or density of the suspension at a certain depth within the suspension. In this paper, we propose a new method which is based on the pressure in the suspension at a selected depth, which is an integral measure of all particles in suspension above the measuring depth. We derive a mathematical model which predicts the pressure decrease due to settling of particles as function of the PSD. The PSD of the analyzed sample is identified by fitting the simulated time series of pressure to the observed one by inverse modeling using global optimization. The new method yields the PSD in very high resolution and its experimental realization completely avoids any disturbance by the measuring process. A sensitivity analysis of different soil textures demonstrates that the method yields unbiased estimates of the PSD with very small estimation variance and an absolute error in the clay and silt fraction of less than 0.5%.

  7. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation

    NASA Astrophysics Data System (ADS)

    Durner, Wolfgang; Iden, Sascha C.; von Unold, Georg

    2017-04-01

    The particle-size distribution (PSD) of a soil expresses the mass fractions of various sizes of mineral particles which constitute the soil material. It is a fundamental soil property, closely related to most physical and chemical soil properties and it affects almost any soil function. The experimental determination of soil texture, i.e., the relative amounts of sand, silt, and clay-sized particles, is done in the laboratory by a combination of sieving (sand) and gravitational sedimentation (silt and clay). In the latter, Stokes' law is applied to derive the particle size from the settling velocity in an aqueous suspension. Traditionally, there are two methodologies for particle-size analysis from sedimentation experiments: the pipette method and the hydrometer method. Both techniques rely on measuring the temporal change of the particle concentration or density of the suspension at a certain depth within the suspension. In this paper, we propose a new method which is based on the pressure in the suspension at a selected depth, which is an integral measure of all particles in suspension above the measuring depth. We derive a mathematical model which predicts the pressure decrease due to settling of particles as function of the PSD. The PSD of the analyzed sample is identified by fitting the simulated time series of pressure to the observed one by inverse modeling using global optimization. The new method yields the PSD in very high resolution and its experimental realization completely avoids any disturbance by the measuring process. A sensitivity analysis of different soil textures demonstrates that the method yields unbiased estimates of the PSD with very small estimation variance and an absolute error in the clay and silt fraction of less than 0.5%

  8. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  9. Influence of Grain Size on Mechanical Responses in Beta Ti-12Mo Alloy Demonstrating Concurrent Twinning-Induced Plasticity/Transformation-induced Plasticity Effects

    NASA Astrophysics Data System (ADS)

    Zhang, D. C.; Xue, Q.; Lei, J. F.; Ma, Y. J.; Yang, R.; Wang, C.

    2018-06-01

    Metastable β Ti-12Mo wt pct alloys with controllable grain sizes are successfully produced, and the effect of grain size on mechanical responses has been thoroughly investigated. It is found that target alloys possess concurrent twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) features. Mechanisms governing mechanical properties through well-manipulated tensile experiments, detailed microstructure analysis, as well as strong correlations between triggering stress and twinning/phase transformation are offered.

  10. Sustainable Sizing.

    PubMed

    Robinette, Kathleen M; Veitch, Daisy

    2016-08-01

    To provide a review of sustainable sizing practices that reduce waste, increase sales, and simultaneously produce safer, better fitting, accommodating products. Sustainable sizing involves a set of methods good for both the environment (sustainable environment) and business (sustainable business). Sustainable sizing methods reduce (1) materials used, (2) the number of sizes or adjustments, and (3) the amount of product unsold or marked down for sale. This reduces waste and cost. The methods can also increase sales by fitting more people in the target market and produce happier, loyal customers with better fitting products. This is a mini-review of methods that result in more sustainable sizing practices. It also reviews and contrasts current statistical and modeling practices that lead to poor fit and sizing. Fit-mapping and the use of cases are two excellent methods suited for creating sustainable sizing, when real people (vs. virtual people) are used. These methods are described and reviewed. Evidence presented supports the view that virtual fitting with simulated people and products is not yet effective. Fit-mapping and cases with real people and actual products result in good design and products that are fit for person, fit for purpose, with good accommodation and comfortable, optimized sizing. While virtual models have been shown to be ineffective for predicting or representing fit, there is an opportunity to improve them by adding fit-mapping data to the models. This will require saving fit data, product data, anthropometry, and demographics in a standardized manner. For this success to extend to the wider design community, the development of a standardized method of data collection for fit-mapping with a globally shared fit-map database is needed. It will enable the world community to build knowledge of fit and accommodation and generate effective virtual fitting for the future. A standardized method of data collection that tests products' fit methodically

  11. Body size and meta-community structure: the allometric scaling of parasitic worm communities in their mammalian hosts.

    PubMed

    DE Leo, Giulio A; Dobson, Andrew P; Gatto, Marino

    2016-06-01

    In this paper we derive from first principles the expected body sizes of the parasite communities that can coexist in a mammal of given body size. We use a mixture of mathematical models and known allometric relationships to examine whether host and parasite life histories constrain the diversity of parasite species that can coexist in the population of any host species. The model consists of one differential equation for each parasite species and a single density-dependent nonlinear equation for the affected host under the assumption of exploitation competition. We derive threshold conditions for the coexistence and competitive exclusion of parasite species using invasion criteria and stability analysis of the resulting equilibria. These results are then used to evaluate the range of parasites species that can invade and establish in a target host and identify the 'optimal' size of a parasite species for a host of a given body size; 'optimal' is defined as the body size of a parasite species that cannot be outcompeted by any other parasite species. The expected distributions of parasites body sizes in hosts of different sizes are then compared with those observed in empirical studies. Our analysis predicts the relative abundance of parasites of different size that establish in the host and suggests that increasing the ratio of parasite body size to host body size above a minimum threshold increases the persistence of the parasite population.

  12. Characterization of winemaking yeast by cell number-size distribution analysis through flow field-flow fractionation with multi-wavelength turbidimetric detection.

    PubMed

    Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa

    2004-10-29

    Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.

  13. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon

    PubMed Central

    2013-01-01

    Background The wild grass Brachypodium distachyon has emerged as a model system for temperate grasses and biofuel plants. However, the global analysis of miRNAs, molecules known to be key for eukaryotic gene regulation, has been limited in B. distachyon to studies examining a few samples or that rely on computational predictions. Similarly an in-depth global analysis of miRNA-mediated target cleavage using parallel analysis of RNA ends (PARE) data is lacking in B. distachyon. Results B. distachyon small RNAs were cloned and deeply sequenced from 17 libraries that represent different tissues and stresses. Using a computational pipeline, we identified 116 miRNAs including not only conserved miRNAs that have not been reported in B. distachyon, but also non-conserved miRNAs that were not found in other plants. To investigate miRNA-mediated cleavage function, four PARE libraries were constructed from key tissues and sequenced to a total depth of approximately 70 million sequences. The roughly 5 million distinct genome-matched sequences that resulted represent an extensive dataset for analyzing small RNA-guided cleavage events. Analysis of the PARE and miRNA data provided experimental evidence for miRNA-mediated cleavage of 264 sites in predicted miRNA targets. In addition, PARE analysis revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. Conclusions B. distachyon miRNAs and target RNAs were experimentally identified and analyzed. Knowledge gained from this study should provide insights into the roles of miRNAs and the regulation of their targets in B. distachyon and related plants. PMID:24367943

  14. Quantification of uncertainty in photon source spot size inference during laser-driven radiography experiments at TRIDENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobias, Benjamin John; Palaniyappan, Sasikumar; Gautier, Donald Cort

    Images of the R2DTO resolution target were obtained during laser-driven-radiography experiments performed at the TRIDENT laser facility, and analysis of these images using the Bayesian Inference Engine (BIE) determines a most probable full-width half maximum (FWHM) spot size of 78 μm. However, significant uncertainty prevails due to variation in the measured detector blur. Propagating this uncertainty in detector blur through the forward model results in an interval of probabilistic ambiguity spanning approximately 35-195 μm when the laser energy impinges on a thick (1 mm) tantalum target. In other phases of the experiment, laser energy is deposited on a thin (~100more » nm) aluminum target placed 250 μm ahead of the tantalum converter. When the energetic electron beam is generated in this manner, upstream from the bremsstrahlung converter, the inferred spot size shifts to a range of much larger values, approximately 270-600 μm FWHM. This report discusses methods applied to obtain these intervals as well as concepts necessary for interpreting the result within a context of probabilistic quantitative inference.« less

  15. Development of the ECLSS Sizing Analysis Tool and ARS Mass Balance Model Using Microsoft Excel

    NASA Technical Reports Server (NTRS)

    McGlothlin, E. P.; Yeh, H. Y.; Lin, C. H.

    1999-01-01

    The development of a Microsoft Excel-compatible Environmental Control and Life Support System (ECLSS) sizing analysis "tool" for conceptual design of Mars human exploration missions makes it possible for a user to choose a certain technology in the corresponding subsystem. This tool estimates the mass, volume, and power requirements of every technology in a subsystem and the system as a whole. Furthermore, to verify that a design sized by the ECLSS Sizing Tool meets the mission requirements and integrates properly, mass balance models that solve for component throughputs of such ECLSS systems as the Water Recovery System (WRS) and Air Revitalization System (ARS) must be developed. The ARS Mass Balance Model will be discussed in this paper.

  16. Design sensitivity analysis and optimization tool (DSO) for sizing design applications

    NASA Technical Reports Server (NTRS)

    Chang, Kuang-Hua; Choi, Kyung K.; Perng, Jyh-Hwa

    1992-01-01

    The DSO tool, a structural design software system that provides the designer with a graphics-based menu-driven design environment to perform easy design optimization for general applications, is presented. Three design stages, preprocessing, design sensitivity analysis, and postprocessing, are implemented in the DSO to allow the designer to carry out the design process systematically. A framework, including data base, user interface, foundation class, and remote module, has been designed and implemented to facilitate software development for the DSO. A number of dedicated commercial software/packages have been integrated in the DSO to support the design procedures. Instead of parameterizing an FEM, design parameters are defined on a geometric model associated with physical quantities, and the continuum design sensitivity analysis theory is implemented to compute design sensitivity coefficients using postprocessing data from the analysis codes. A tracked vehicle road wheel is given as a sizing design application to demonstrate the DSO's easy and convenient design optimization process.

  17. Target identification using Zernike moments and neural networks

    NASA Astrophysics Data System (ADS)

    Azimi-Sadjadi, Mahmood R.; Jamshidi, Arta A.; Nevis, Andrew J.

    2001-10-01

    The development of an underwater target identification algorithm capable of identifying various types of underwater targets, such as mines, under different environmental conditions pose many technical problems. Some of the contributing factors are: targets have diverse sizes, shapes and reflectivity properties. Target emplacement environment is variable; targets may be proud or partially buried. Environmental properties vary significantly from one location to another. Bottom features such as sand, rocks, corals, and vegetation can conceal a target whether it is partially buried or proud. Competing clutter with responses that closely resemble those of the targets may lead to false positives. All the problems mentioned above contribute to overly difficult and challenging conditions that could lead to unreliable algorithm performance with existing methods. In this paper, we developed and tested a shape-dependent feature extraction scheme that provides features invariant to rotation, size scaling and translation; properties that are extremely useful for any target classification problem. The developed schemes were tested on an electro-optical imagery data set collected under different environmental conditions with variable background, range and target types. The electro-optic data set was collected using a Laser Line Scan (LLS) sensor by the Coastal Systems Station (CSS), located in Panama City, Florida. The performance of the developed scheme and its robustness to distortion, rotation, scaling and translation was also studied.

  18. HIV/AIDS National Strategic Plans of Sub-Saharan African countries: an analysis for gender equality and sex-disaggregated HIV targets.

    PubMed

    Sherwood, Jennifer; Sharp, Alana; Cooper, Bergen; Roose-Snyder, Beirne; Blumenthal, Susan

    2017-12-01

    National Strategic Plans (NSPs) for HIV/AIDS are country planning documents that set priorities for programmes and services, including a set of targets to quantify progress toward national and international goals. The inclusion of sex-disaggregated targets and targets to combat gender inequality is important given the high disease burden among young women and adolescent girls in Sub-Saharan Africa, yet no comprehensive gender-focused analysis of NSP targets has been performed. This analysis quantitatively evaluates national HIV targets, included in NSPs from eighteen Sub-Saharan African countries, for sex-disaggregation. Additionally, NSP targets aimed at reducing gender-based inequality in health outcomes are compiled and inductively coded to report common themes. On average, in the eighteen countries included in this analysis, 31% of NSP targets include sex-disaggregation (range 0-92%). Three countries disaggregated a majority (>50%) of their targets by sex. Sex-disaggregation in data reporting was more common for targets related to the early phases of the HIV care continuum: 83% of countries included any sex-disaggregated targets for HIV prevention, 56% for testing and linkage to care, 22% for improving antiretroviral treatment coverage, and 11% for retention in treatment. The most common target to reduce gender inequality was to prevent gender-based violence (present in 50% of countries). Other commonly incorporated target areas related to improving women's access to family planning, human and legal rights, and decision-making power. The inclusion of sex-disaggregated targets in national planning is vital to ensure that programmes make progress for all population groups. Improving the availability and quality of indicators to measure gender inequality, as well as evaluating programme outcomes by sex, is critical to tracking this progress. This analysis reveals an urgent need to set specific and separate targets for men and women in order to achieve an equitable

  19. HIV/AIDS National Strategic Plans of Sub-Saharan African countries: an analysis for gender equality and sex-disaggregated HIV targets

    PubMed Central

    Sherwood, Jennifer; Sharp, Alana; Cooper, Bergen; Roose-Snyder, Beirne; Blumenthal, Susan

    2017-01-01

    Abstract National Strategic Plans (NSPs) for HIV/AIDS are country planning documents that set priorities for programmes and services, including a set of targets to quantify progress toward national and international goals. The inclusion of sex-disaggregated targets and targets to combat gender inequality is important given the high disease burden among young women and adolescent girls in Sub-Saharan Africa, yet no comprehensive gender-focused analysis of NSP targets has been performed. This analysis quantitatively evaluates national HIV targets, included in NSPs from eighteen Sub-Saharan African countries, for sex-disaggregation. Additionally, NSP targets aimed at reducing gender-based inequality in health outcomes are compiled and inductively coded to report common themes. On average, in the eighteen countries included in this analysis, 31% of NSP targets include sex-disaggregation (range 0–92%). Three countries disaggregated a majority (>50%) of their targets by sex. Sex-disaggregation in data reporting was more common for targets related to the early phases of the HIV care continuum: 83% of countries included any sex-disaggregated targets for HIV prevention, 56% for testing and linkage to care, 22% for improving antiretroviral treatment coverage, and 11% for retention in treatment. The most common target to reduce gender inequality was to prevent gender-based violence (present in 50% of countries). Other commonly incorporated target areas related to improving women’s access to family planning, human and legal rights, and decision-making power. The inclusion of sex-disaggregated targets in national planning is vital to ensure that programmes make progress for all population groups. Improving the availability and quality of indicators to measure gender inequality, as well as evaluating programme outcomes by sex, is critical to tracking this progress. This analysis reveals an urgent need to set specific and separate targets for men and women in order to achieve

  20. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis

    NASA Astrophysics Data System (ADS)

    Li, Tao; Li, Tuan-Jie

    2018-04-01

    The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.

  1. Interactive computer graphics system for structural sizing and analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.

    1975-01-01

    A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.

  2. MaNGA: Target selection and Optimization

    NASA Astrophysics Data System (ADS)

    Wake, David

    2015-01-01

    The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M⊙, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a 'Color-Enhanced' sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

  3. MaNGA: Target selection and Optimization

    NASA Astrophysics Data System (ADS)

    Wake, David

    2016-01-01

    The 6-year SDSS-IV MaNGA survey will measure spatially resolved spectroscopy for 10,000 nearby galaxies using the Sloan 2.5m telescope and the BOSS spectrographs with a new fiber arrangement consisting of 17 individually deployable IFUs. We present the simultaneous design of the target selection and IFU size distribution to optimally meet our targeting requirements. The requirements for the main samples were to use simple cuts in redshift and magnitude to produce an approximately flat number density of targets as a function of stellar mass, ranging from 1x109 to 1x1011 M⊙, and radial coverage to either 1.5 (Primary sample) or 2.5 (Secondary sample) effective radii, while maximizing S/N and spatial resolution. In addition we constructed a "Color-Enhanced" sample where we required 25% of the targets to have an approximately flat number density in the color and mass plane. We show how these requirements are met using simple absolute magnitude (and color) dependent redshift cuts applied to an extended version of the NASA Sloan Atlas (NSA), how this determines the distribution of IFU sizes and the resulting properties of the MaNGA sample.

  4. Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles.

    PubMed

    Ergen, Can; Heymann, Felix; Al Rawashdeh, Wa'el; Gremse, Felix; Bartneck, Matthias; Panzer, Ulf; Pola, Robert; Pechar, Michal; Storm, Gert; Mohr, Nicole; Barz, Matthias; Zentel, Rudolf; Kiessling, Fabian; Trautwein, Christian; Lammers, Twan; Tacke, Frank

    2017-01-01

    Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fractal analysis of seafloor textures for target detection in synthetic aperture sonar imagery

    NASA Astrophysics Data System (ADS)

    Nabelek, T.; Keller, J.; Galusha, A.; Zare, A.

    2018-04-01

    Fractal analysis of an image is a mathematical approach to generate surface related features from an image or image tile that can be applied to image segmentation and to object recognition. In undersea target countermeasures, the targets of interest can appear as anomalies in a variety of contexts, visually different textures on the seafloor. In this paper, we evaluate the use of fractal dimension as a primary feature and related characteristics as secondary features to be extracted from synthetic aperture sonar (SAS) imagery for the purpose of target detection. We develop three separate methods for computing fractal dimension. Tiles with targets are compared to others from the same background textures without targets. The different fractal dimension feature methods are tested with respect to how well they can be used to detect targets vs. false alarms within the same contexts. These features are evaluated for utility using a set of image tiles extracted from a SAS data set generated by the U.S. Navy in conjunction with the Office of Naval Research. We find that all three methods perform well in the classification task, with a fractional Brownian motion model performing the best among the individual methods. We also find that the secondary features are just as useful, if not more so, in classifying false alarms vs. targets. The best classification accuracy overall, in our experimentation, is found when the features from all three methods are combined into a single feature vector.

  6. Is Angiosome-Targeted Angioplasty Effective for Limb Salvage and Wound Healing in Diabetic Foot? : A Meta-Analysis.

    PubMed

    Chae, Kum Ju; Shin, Jin Yong

    2016-01-01

    Given that the efficacy of employing angiosome-targeted angioplasty in the treatment of diabetic foot remains controversial, this study was conducted to examine its efficacy. We performed a systematic literature review and meta-analysis using core databases, extracting the treatment modality of angiosome-targeted angioplasty as the predictor variable, and limb salvage, wound healing, and revision rate as the outcome variables. We used the Newcastle-Ottawa Scale to assess the study quality, along with the Cochrane Risk of Bias Tool. We evaluated publication bias using a funnel plot. The search strategy identified 518 publications. After screening these, we selected four articles for review. The meta-analysis revealed that overall limb salvage and wound healing rates were significantly higher (Odds ratio = 2.209, 3.290, p = 0.001, p<0.001) in patients who received angiosome-targeted angioplasty than in those who received nonangiosome-targeted angioplasty. The revision rate between the angiosome and nonangiosome groups was not significantly different (Odds ratio = 0.747, p = 0.314). Although a further randomized controlled trial is required for confirmation, angiosome-targeted angioplasty in diabetic foot was more effective than nonangiosome-targeted angioplasty with respect to wound healing and limb salvage.

  7. Invited Review Small is beautiful: The analysis of nanogram-sized astromaterials

    NASA Astrophysics Data System (ADS)

    Zolensky, M. E.; Pieters, C.; Clark, B.; Papike, J. J.

    2000-01-01

    The capability of modern methods to characterize ultra-small samples is well established from analysis of interplanetary dust particles (IDPs), interstellar grains recovered from meteorites, and other materials requiring ultra-sensitive analytical capabilities. Powerful analytical techniques are available that require, under favorable circumstances, single particles of only a few nanograms for entire suites of fairly comprehensive characterizations. A returned sample of >1,000 particles with total mass of just one microgram permits comprehensive quantitative geochemical measurements that are impractical to carry out in situ by flight instruments. The main goal of this paper is to describe the state-of-the-art in microanalysis of astromaterials. Given that we can analyze fantastically small quantities of asteroids and comets, etc., we have to ask ourselves how representative are microscopic samples of bodies that measure a few to many km across? With the Galileo flybys of Gaspra and Ida, it is now recognized that even very small airless bodies have indeed developed a particulate regolith. Acquiring a sample of the bulk regolith, a simple sampling strategy, provides two critical pieces of information about the body. Regolith samples are excellent bulk samples since they normally contain all the key components of the local environment, albeit in particulate form. Furthermore, since this fine fraction dominates remote measurements, regolith samples also provide information about surface alteration processes and are a key link to remote sensing of other bodies. Studies indicate that a statistically significant number of nanogram-sized particles should be able to characterize the regolith of a primitive asteroid, although the presence of larger components within even primitive meteorites (e.g.. Murchison), e.g. chondrules, CAI, large crystal fragments, etc., points out the limitations of using data obtained from nanogram-sized samples to characterize entire primitive

  8. Optimization of an RNA-Seq Differential Gene Expression Analysis Depending on Biological Replicate Number and Library Size

    PubMed Central

    Lamarre, Sophie; Frasse, Pierre; Zouine, Mohamed; Labourdette, Delphine; Sainderichin, Elise; Hu, Guojian; Le Berre-Anton, Véronique; Bouzayen, Mondher; Maza, Elie

    2018-01-01

    RNA-Seq is a widely used technology that allows an efficient genome-wide quantification of gene expressions for, for example, differential expression (DE) analysis. After a brief review of the main issues, methods and tools related to the DE analysis of RNA-Seq data, this article focuses on the impact of both the replicate number and library size in such analyses. While the main drawback of previous relevant studies is the lack of generality, we conducted both an analysis of a two-condition experiment (with eight biological replicates per condition) to compare the results with previous benchmark studies, and a meta-analysis of 17 experiments with up to 18 biological conditions, eight biological replicates and 100 million (M) reads per sample. As a global trend, we concluded that the replicate number has a larger impact than the library size on the power of the DE analysis, except for low-expressed genes, for which both parameters seem to have the same impact. Our study also provides new insights for practitioners aiming to enhance their experimental designs. For instance, by analyzing both the sensitivity and specificity of the DE analysis, we showed that the optimal threshold to control the false discovery rate (FDR) is approximately 2−r, where r is the replicate number. Furthermore, we showed that the false positive rate (FPR) is rather well controlled by all three studied R packages: DESeq, DESeq2, and edgeR. We also analyzed the impact of both the replicate number and library size on gene ontology (GO) enrichment analysis. Interestingly, we concluded that increases in the replicate number and library size tend to enhance the sensitivity and specificity, respectively, of the GO analysis. Finally, we recommend to RNA-Seq practitioners the production of a pilot data set to strictly analyze the power of their experimental design, or the use of a public data set, which should be similar to the data set they will obtain. For individuals working on tomato research

  9. Visual search for conjunctions of physical and numerical size shows that they are processed independently.

    PubMed

    Sobel, Kenith V; Puri, Amrita M; Faulkenberry, Thomas J; Dague, Taylor D

    2017-03-01

    The size congruity effect refers to the interaction between numerical magnitude and physical digit size in a symbolic comparison task. Though this effect is well established in the typical 2-item scenario, the mechanisms at the root of the interference remain unclear. Two competing explanations have emerged in the literature: an early interaction model and a late interaction model. In the present study, we used visual conjunction search to test competing predictions from these 2 models. Participants searched for targets that were defined by a conjunction of physical and numerical size. Some distractors shared the target's physical size, and the remaining distractors shared the target's numerical size. We held the total number of search items fixed and manipulated the ratio of the 2 distractor set sizes. The results from 3 experiments converge on the conclusion that numerical magnitude is not a guiding feature for visual search, and that physical and numerical magnitude are processed independently, which supports a late interaction model of the size congruity effect. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of roundup ready soybean.

    PubMed

    Zhang, Haibo; Yang, Litao; Guo, Jinchao; Li, Xiang; Jiang, Lingxi; Zhang, Dabing

    2008-07-23

    To enforce the labeling regulations of genetically modified organisms (GMOs), the application of reference molecules as calibrators is becoming essential for practical quantification of GMOs. However, the reported reference molecules with tandem marker multiple targets have been proved not suitable for duplex PCR analysis. In this study, we developed one unique plasmid molecule based on one pMD-18T vector with three exogenous target DNA fragments of Roundup Ready soybean GTS 40-3-2 (RRS), that is, CaMV35S, NOS, and RRS event fragments, plus one fragment of soybean endogenous Lectin gene. This Lectin gene fragment was separated from the three exogenous target DNA fragments of RRS by inserting one 2.6 kb DNA fragment with no relatedness to RRS detection targets in this resultant plasmid. Then, we proved that this design allows the quantification of RRS using the three duplex real-time PCR assays targeting CaMV35S, NOS, and RRS events employing this reference molecule as the calibrator. In these duplex PCR assays, the limits of detection (LOD) and quantification (LOQ) were 10 and 50 copies, respectively. For the quantitative analysis of practical RRS samples, the results of accuracy and precision were similar to those of simplex PCR assays, for instance, the quantitative results were at the 1% level, the mean bias of the simplex and duplex PCR were 4.0% and 4.6%, respectively, and the statistic analysis ( t-test) showed that the quantitative data from duplex and simplex PCR had no significant discrepancy for each soybean sample. Obviously, duplex PCR analysis has the advantages of saving the costs of PCR reaction and reducing the experimental errors in simplex PCR testing. The strategy reported in the present study will be helpful for the development of new reference molecules suitable for duplex PCR quantitative assays of GMOs.

  11. Overview of Target Fabrication in Support of Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Schroen, Diana; Breden, Eric; Florio, Joseph; Grine-Jones, Suzi; Holt, Randy; Krych, Wojtek; Metzler, James; Russell, Chris; Stolp, Justin; Streit, Jonathan; Youngblood, Kelly

    2004-11-01

    Sandia National Laboratories has succeeded in making its pulsed power driver, the Z machine, a valuable testbed for a great variety of experiments. These experiments include ICF, weapon physics, Equation of State and astrophysics. There are four main target types: Dynamic Hohlraum, Double Pinch, Fast Igniter and EOS. The target sizes are comparable to projected NIF sizes. For example, capsules up to 5 mm have been fielded. This talk will focus on the assembly challenges and the use of foams to create these targets. For many targets, diagnostics and capsules are embedded in the foams, and foam dopants have been added. It is the 14 mg/cc foam target with an embedded capsule (containing deuterium) that has reproducibly produced thermonuclear neutrons. For all target types, the characterization and documentation has had to develop to ensure understanding of target performance. To achieve the required resolution we are using a Nikon automated microscope and a custom OMEGA/NIF target assembly system. Our drive for quality has lead us develop a management system that been registered to ISO 9001.

  12. Contact Instrument Calibration Targets on Mars Rover Curiosity

    NASA Image and Video Library

    2012-02-07

    Two instruments at the end of the robotic arm on NASA Mars rover Curiosity will use calibration targets attached to a shoulder joint of the arm. The penny is a size reference giving the public a familiar object for perceiving size on Mars easily.

  13. Portion Size: Latest Developments and Interventions.

    PubMed

    Steenhuis, Ingrid; Poelman, Maartje

    2017-03-01

    The aim of this review is to provide an overview of (1) underlying mechanisms of the effect of portion size on energy intake, (2) external factors explaining the portion size effect and (3) interventions and measurements aimed at food portion size. Previous studies have shown that portion sizes have increased in recent decades. Many experimental studies have been conducted to unravel the mechanisms underlying the portion-size effect on food intake (e.g. the appropriateness mechanism, the 'unit bias' mechanism, the 'previous experience/expectation' mechanism, the 'visual cue' mechanism and the 'bite size' mechanism). In addition, external factors have been found to drive food portion selection and consumption (e.g. value for money, mindless eating, levels of awareness, estimation bias. Research on several interventions (ranging from 'providing information' to 'eliminating choice') have been conducted, but remain scarce, especially intervention studies in which portion size is a key focus in weight loss. Moreover, only three new instruments with respect to portion control behavior have been developed. There is considerable evidence for the portion-size effect on energy intake. However, the work on interventions targeting portion size and measurements for portion control behavior are limited. Moreover, from the literature it is not yet clear what type of interventions work best, for whom and in what context.

  14. Systemic analysis of genome-wide expression profiles identified potential therapeutic targets of demethylation drugs for glioblastoma.

    PubMed

    Ning, Tongbo; Cui, Hao; Sun, Feng; Zou, Jidian

    2017-09-05

    Glioblastoma represents one of the most aggressive malignant brain tumors with high morbidity and motility. Demethylation drugs have been developed for its treatment with little efficacy has been observed. The purpose of this study was to screen therapeutic targets of demethylation drugs or bioactive molecules for glioblastoma through systemic bioinformatics analysis. We firstly downloaded genome-wide expression profiles from the Gene Expression Omnibus (GEO) and conducted the primary analysis through R software, mainly including preprocessing of raw microarray data, transformation between probe ID and gene symbol and identification of differential expression genes (DEGs). Secondly, functional enrichment analysis was conducted via the Database for Annotation, Visualization and Integrated Discovery (DAVID) to explore biological processes involved in the development of glioblastoma. Thirdly, we constructed protein-protein interaction (PPI) network of interested genes and conducted cross analysis for multi datasets to obtain potential therapeutic targets for glioblastoma. Finally, we further confirmed the therapeutic targets through real-time RT-PCR. As a result, biological processes that related to cancer development, amino metabolism, immune response and etc. were found to be significantly enriched in genes that differential expression in glioblastoma and regulated by 5'aza-dC. Besides, network and cross analysis identified ACAT2, UFC1 and CYB5R1 as novel therapeutic targets of demethylation drugs which also confirmed by real time RT-PCR. In conclusions, our study identified several biological processes and genes that involved in the development of glioblastoma and regulated by 5'aza-dC, which would be helpful for the treatment of glioblastoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Zooplankton community analysis in the Changjiang River estuary by single-gene-targeted metagenomics

    NASA Astrophysics Data System (ADS)

    Cheng, Fangping; Wang, Minxiao; Li, Chaolun; Sun, Song

    2014-07-01

    DNA barcoding provides accurate identification of zooplankton species through all life stages. Single-gene-targeted metagenomic analysis based on DNA barcode databases can facilitate longterm monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitochondrial cytochrome oxidase subunit 1 (cox1) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity>96%) or genus level (similarity<96%). Sibling species could also be distinguished. Many species that were overlooked by morphological methods were identified by molecular methods, especially gelatinous zooplankton and merozooplankton that were likely sampled at different life history phases. Zooplankton community structures differed significantly among all of the samples. The MOTU spatial distributions were influenced by the ecological habits of the corresponding species. In conclusion, single-gene-targeted metagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.

  16. Computational analysis of ribonomics datasets identifies long non-coding RNA targets of γ-herpesviral miRNAs.

    PubMed

    Sethuraman, Sunantha; Thomas, Merin; Gay, Lauren A; Renne, Rolf

    2018-05-29

    Ribonomics experiments involving crosslinking and immuno-precipitation (CLIP) of Ago proteins have expanded the understanding of the miRNA targetome of several organisms. These techniques, collectively referred to as CLIP-seq, have been applied to identifying the mRNA targets of miRNAs expressed by Kaposi's Sarcoma-associated herpes virus (KSHV) and Epstein-Barr virus (EBV). However, these studies focused on identifying only those RNA targets of KSHV and EBV miRNAs that are known to encode proteins. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are also targeted by miRNAs. In this study, we performed a systematic re-analysis of published datasets from KSHV- and EBV-driven cancers. We used CLIP-seq data from lymphoma cells or EBV-transformed B cells, and a crosslinking, ligation and sequencing of hybrids dataset from KSHV-infected endothelial cells, to identify novel lncRNA targets of viral miRNAs. Here, we catalog the lncRNA targetome of KSHV and EBV miRNAs, and provide a detailed in silico analysis of lncRNA-miRNA binding interactions. Viral miRNAs target several hundred lncRNAs, including a subset previously shown to be aberrantly expressed in human malignancies. In addition, we identified thousands of lncRNAs to be putative targets of human miRNAs, suggesting that miRNA-lncRNA interactions broadly contribute to the regulation of gene expression.

  17. CFD Analysis and Design of Detailed Target Configurations for an Accelerator-Driven Subcritical System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Adam; Merzari, Elia; Sofu, Tanju

    2016-08-01

    High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-statemore » simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.« less

  18. Online stable isotope analysis of dissolved organic carbon size classes using size exclusion chromatography coupled to an isotope ratio mass spectrometer.

    PubMed

    Malik, Ashish; Scheibe, Andrea; LokaBharathi, P A; Gleixner, Gerd

    2012-09-18

    Stable isotopic content of dissolved organic carbon (δ(13)C-DOC) provides valuable information on its origin and fate. In an attempt to get additional insights into DOC cycling, we developed a method for δ(13)C measurement of DOC size classes by coupling high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) to online isotope ratio mass spectrometry (IRMS). This represents a significant methodological contribution to DOC research. The interface was evaluated using various organic compounds, thoroughly tested with soil-water from a C3-C4 vegetation change experiment, and also applied to riverine and marine DOC. δ(13)C analysis of standard compounds resulted in excellent analytical precision (≤0.3‰). Chromatography resolved soil DOC into 3 fractions: high molecular weight (HMW; 0.4-10 kDa), low molecular weight (LMW; 50-400 Da), and retained (R) fraction. Sample reproducibility for measurement of δ(13)C-DOC size classes was ±0.25‰ for HMW fraction, ± 0.54‰ for LMW fraction, and ±1.3‰ for R fraction. The greater variance in δ(13)C values of the latter fractions was due to their lower concentrations. The limit of quantification (SD ≤0.6‰) for each size fraction measured as a peak is 200 ng C (2 mg C/L). δ(13)C-DOC values obtained in SEC mode correlated significantly with those obtained without column in the μEA mode (p < 0.001, intercept 0.17‰), which rules out SEC-associated isotopic effects or DOC loss. In the vegetation change experiment, fractions revealed a clear trend in plant contribution to DOC; those in deeper soils and smaller size fractions had less plant material. It was also demonstrated that the technique can be successfully applied to marine and riverine DOC without further sample pretreatment.

  19. Asymmetries in visual search for conjunctive targets.

    PubMed

    Cohen, A

    1993-08-01

    Asymmetry is demonstrated between conjunctive targets in visual search with no detectable asymmetries between the individual features that compose these targets. Experiment 1 demonstrated this phenomenon for targets composed of color and shape. Experiment 2 and 4 demonstrate this asymmetry for targets composed of size and orientation and for targets composed of contrast level and orientation, respectively. Experiment 3 demonstrates that search rate of individual features cannot predict search rate for conjunctive targets. These results demonstrate the need for 2 levels of representations: one of features and one of conjunction of features. A model related to the modified feature integration theory is proposed to account for these results. The proposed model and other models of visual search are discussed.

  20. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Pamela J.

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysismore » and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.« less

  1. Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis

    NASA Astrophysics Data System (ADS)

    Solanki, Rekha Garg; Rajaram, Poolla; Bajpai, P. K.

    2018-05-01

    This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson-Hall (W-H) method was used to study the X-ray peak profile analysis. The strain-size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20-40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV-visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer's formula, W-H plots, SSP and the particle size calculated by TEM images are approximately similar.

  2. Categorization and identification of simultaneous targets.

    PubMed

    Theeuwes, J

    1991-02-01

    Early and late selection theories of visual attention disagree about whether identification occurs before or after selection. Studies showing the category effect, i.e., the time to detect a letter is hardly affected by the number of digits present in the display, are taken as evidence for late selection theories since these studies suggest parallel identification of all items in the display. As an extension of previous studies, in the present study two categorically different targets were presented simultaneously among a variable number of nontargets. Subjects were shown brief displays of two target letters among either 2, 4 or 6 nontarget digits. Subjects responded 'same' when the two letters were identical and 'different' otherwise. Since the 'same-different' response reflects the combined outcome of the simultaneous targets, late-selection theory predicts that the time to match the target letters is independent of the number of nontarget digits. Alternatively, early-selection theory predicts a linear increase of reaction time with display size since the presence of more than one target disrupts parallel preattentive processing, leading to a serial search through all items in the display. The results provide evidence for the early-selection view since reaction time increased linearly with the number of categorically different nontargets. A control experiment revealed that none of the alternative explanations could account for the display size effect.

  3. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis

    PubMed Central

    Brinkman, Marielle C.; Granville, Courtney A.; Gordon, Sydney M.; Clark, Pamela I.

    2016-01-01

    Introduction: Electronic cigarette (e-cigarette) use is increasing worldwide and is highest among both daily and nondaily smokers. E-cigarettes are perceived as a healthier alternative to combustible tobacco products, but their health risk factors have not yet been established, and one of them is lack of data on aerosol size generated by e-cigarettes. Methods: We applied a real-time, high-resolution aerosol differential mobility spectrometer to monitor the evolution of aerosol size and concentration during puff development. Particles generated by e-cigarettes were immediately delivered for analysis with minimal dilution and therefore with minimal sample distortion, which is critically important given the highly dynamic aerosol/vapor mixture inherent to e-cigarette emissions. Results: E-cigarette aerosols normally exhibit a bimodal particle size distribution: nanoparticles (11–25nm count median diameter) and submicron particles (96–175nm count median diameter). Each mode has comparable number concentrations (107–108 particles/cm3). “Dry puff” tests conducted with no e-cigarette liquid (e-liquid) present in the e-cigarette tank demonstrated that under these conditions only nanoparticles were generated. Analysis of the bulk aerosol collected on the filter showed that e-cigarette emissions contained a variety of metals. Conclusions: E-cigarette aerosol size distribution is different from that of combustible tobacco smoke. E-cigarettes generate high concentrations of nanoparticles and their chemical content requires further investigation. Despite the small mass of nanoparticles, their toxicological impact could be significant. Toxic chemicals that are attached to the small nanoparticles may have greater adverse health effects than when attached to larger submicron particles. Implications: The e-cigarette aerosol size distribution is different from that of combustible tobacco smoke and typically exhibits a bimodal behavior with comparable number concentrations

  4. Particulate matter neurotoxicity in culture is size-dependent.

    PubMed

    Gillespie, Patricia; Tajuba, Julianne; Lippmann, Morton; Chen, Lung-Chi; Veronesi, Bellina

    2013-05-01

    Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has more recently been associated with neurotoxicity. This study examines if the size-dependent toxicity reported in cardiopulmonary systems also occurs in neural targets. For this study, PM ambient air was collected over a 2 week period from Sterling Forest State Park (Tuxedo, New York) and its particulates sized as Accumulation Mode, Fine (AMF) (>0.18-1μm) or Ultrafine (UF) (<0.18μm) samples. Rat dopaminergic neurons (N27) were exposed to suspensions of each PM fraction (0, 12.5, 25, 50μm/ml) and cell loss (as measured by Hoechst nuclear stain) measured after 24h exposure. Neuronal loss occurred in response to all tested concentrations of UF (>12.5μg/ml) but was only significant at the highest concentration of AMF (50μg/ml). To examine if PM size-dependent neurotoxicity was retained in the presence of other cell types, dissociated brain cultures of embryonic rat striatum were exposed to AMF (80μg/ml) or UF (8.0μg/ml). After 24h exposure, a significant increase of reactive nitrogen species (nitrite) and morphology suggestive of apoptosis occurred in both treatment groups. However, morphometric analysis of neuron specific enolase staining indicated that only the UF exposure produced significant neuronal loss, relative to controls. Together, these data suggest that the inverse relationship between size and toxicity reported in cardiopulmonary systems occurs in cultures of isolated dopaminergic neurons and in primary cultures of the rat striatum. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Cell-targeted platinum nanoparticles and nanoparticle clusters.

    PubMed

    Papst, Stefanie; Brimble, Margaret A; Evans, Clive W; Verdon, Daniel J; Feisst, Vaughan; Dunbar, P Rod; Tilley, Richard D; Williams, David E

    2015-06-21

    Herein, we report the facile preparation of cell-targeted platinum nanoparticles (PtNPs), through the design of peptides that, as a single molecule added in small concentration during the synthesis, control the size of PtNP clusters during their growth, stabilise the PtNPs in aqueous suspension and enable the functionalisation of the PtNPs with a versatile range of cell-targeting ligands. Water-soluble PtNPs targeted respectively at blood group antigens and at integrin receptors are demonstrated.

  6. Alpha-spectrometry and fractal analysis of surface micro-images for characterisation of porous materials used in manufacture of targets for laser plasma experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aushev, A A; Barinov, S P; Vasin, M G

    2015-06-30

    We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied bymore » alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples. (laser plasma)« less

  7. Electro-optic analysis of the influence of target geometry on electromagnetic pulses generated by petawatt laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Robinson, Timothy; Giltrap, Samuel; Eardley, Samuel; Consoli, Fabrizio; De Angelis, Riccardo; Ingenito, Francesco; Stuart, Nicholas; Verona, Claudio; Smith, Roland A.

    2018-01-01

    We present an analysis of strong laser-driven electromagnetic pulses using novel electro-optic diagnostic techniques. A range of targets were considered, including thin plastic foils (20-550 nm) and mass-limited, optically-levitated micro-targets. Results from foils indicate a dependence of EMP on target thickness, with larger peak electric fields observed with thinner targets. Spectral analysis suggests high repeatability between shots, with identified spectral features consistently detected with <1 MHz standard deviations of the peak position. This deviation is reduced for shots taken on the same day, suggesting that local conditions, such as movement of metal objects within the target chamber, are more likely to lead to minor spectral modifications, highlighting the role of the local environment in determining the details of EMP production. Levitated targets are electrically isolated from their environment, hence these targets should be unable to draw a neutralization current from the earth following ejection of hot electrons from the plasma, in contrast to predictions for pin-mounted foils in the Poyé EMP generation model. With levitated targets, no EMP was measurable above the noise threshold of any diagnostic, despite observation of protons accelerated to >30 MeV energies, suggesting the discharge current contribution to EMP is dominant.

  8. Spatial analysis of ecosystem service relationships to improve targeting of payments for hydrological services

    PubMed Central

    Manson, Robert H.; Ricketts, Taylor H.; Geissert, Daniel

    2018-01-01

    Payment for hydrological services (PHS) are popular tools for conserving ecosystems and their water-related services. However, improving the spatial targeting and impacts of PHS, as well as their ability to foster synergies with other ecosystem services (ES), remain challenging. We aimed at using spatial analyses to evaluate the targeting performance of México’s National PHS program in central Veracruz. We quantified the effectiveness of areas targeted for PHS in actually covering areas of high HS provision and social priority during 2003–2013. First, we quantified provisioning and spatial distributions of two target (water yield and soil retention), and one non-target ES (carbon storage) using InVEST. Subsequently, pairwise relationships among ES were quantified by using spatial correlation and overlap analyses. Finally, we evaluated targeting by: (i) prioritizing areas of individual and overlapping ES; (ii) quantifying spatial co-occurrences of these priority areas with those targeted by PHS; (iii) evaluating the extent to which PHS directly contribute to HS delivery; and (iv), testing if PHS targeted areas disproportionately covered areas with high ecological and social priority. We found that modelled priority areas exhibited non-random distributions and distinct spatial patterns. Our results show significant pairwise correlations between all ES suggesting synergistic relationships. However, our analysis showed a significantly lower overlap than expected and thus significant mismatches between PHS targeted areas and all types of priority areas. These findings suggest that the targeting of areas with high HS provisioning and social priority by Mexico’s PHS program could be improved significantly. This study underscores: (1) the importance of using maps of HS provisioning as main targeting criteria in PHS design to channel payments towards areas that require future conservation, and (2) the need for future research that helps balance ecological and

  9. The Human Kinome Targeted by FDA Approved Multi-Target Drugs and Combination Products: A Comparative Study from the Drug-Target Interaction Network Perspective.

    PubMed

    Li, Ying Hong; Wang, Pan Pan; Li, Xiao Xu; Yu, Chun Yan; Yang, Hong; Zhou, Jin; Xue, Wei Wei; Tan, Jun; Zhu, Feng

    2016-01-01

    The human kinome is one of the most productive classes of drug target, and there is emerging necessity for treating complex diseases by means of polypharmacology (multi-target drugs and combination products). However, the advantages of the multi-target drugs and the combination products are still under debate. A comparative analysis between FDA approved multi-target drugs and combination products, targeting the human kinome, was conducted by mapping targets onto the phylogenetic tree of the human kinome. The approach of network medicine illustrating the drug-target interactions was applied to identify popular targets of multi-target drugs and combination products. As identified, the multi-target drugs tended to inhibit target pairs in the human kinome, especially the receptor tyrosine kinase family, while the combination products were able to against targets of distant homology relationship. This finding asked for choosing the combination products as a better solution for designing drugs aiming at targets of distant homology relationship. Moreover, sub-networks of drug-target interactions in specific disease were generated, and mechanisms shared by multi-target drugs and combination products were identified. In conclusion, this study performed an analysis between approved multi-target drugs and combination products against the human kinome, which could assist the discovery of next generation polypharmacology.

  10. Maneuver Analysis and Targeting Strategy for the Stardust Re-Entry Capsule

    NASA Technical Reports Server (NTRS)

    Helfrich, Cliff; Bhat, Ramachand S.; Kangas, Julie A.; Wilson, Roby S.; Wong, Mau C.; Potts, Christopher L.; Williams, Kenneth E.

    2006-01-01

    The Stardust Sample Return Capsule (SRC) returned to Earth on January 15, 2006 after seven years of collecting interstellar and comet particles over three heliocentric revolutions, as shown in Figure 1. The SRC was carried on board the Stardust spacecraft, as shown in Figure 2. Because the spacecraft was built with unbalanced thrusters, turns and attitude control maintenance resulted in undesirable delta-v being imparted to the trajectory. As a result, a carefully planned maneuver strategy was devised to accurately target the Stardust capsule to the Utah Test and Training Range (UTTR). This paper provides an overview of the Stardust spacecraft and mission and describes the maneuver strategy that was employed to achieve the stringent targeting requirements for landing in Utah. In addition, an overview of Stardust maneuver analysis tools and techniques will also be presented.

  11. Misclassification Errors in Unsupervised Classification Methods. Comparison Based on the Simulation of Targeted Proteomics Data

    PubMed Central

    Andreev, Victor P; Gillespie, Brenda W; Helfand, Brian T; Merion, Robert M

    2016-01-01

    Unsupervised classification methods are gaining acceptance in omics studies of complex common diseases, which are often vaguely defined and are likely the collections of disease subtypes. Unsupervised classification based on the molecular signatures identified in omics studies have the potential to reflect molecular mechanisms of the subtypes of the disease and to lead to more targeted and successful interventions for the identified subtypes. Multiple classification algorithms exist but none is ideal for all types of data. Importantly, there are no established methods to estimate sample size in unsupervised classification (unlike power analysis in hypothesis testing). Therefore, we developed a simulation approach allowing comparison of misclassification errors and estimating the required sample size for a given effect size, number, and correlation matrix of the differentially abundant proteins in targeted proteomics studies. All the experiments were performed in silico. The simulated data imitated the expected one from the study of the plasma of patients with lower urinary tract dysfunction with the aptamer proteomics assay Somascan (SomaLogic Inc, Boulder, CO), which targeted 1129 proteins, including 330 involved in inflammation, 180 in stress response, 80 in aging, etc. Three popular clustering methods (hierarchical, k-means, and k-medoids) were compared. K-means clustering performed much better for the simulated data than the other two methods and enabled classification with misclassification error below 5% in the simulated cohort of 100 patients based on the molecular signatures of 40 differentially abundant proteins (effect size 1.5) from among the 1129-protein panel. PMID:27524871

  12. In-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery.

    PubMed

    Khoshkholgh-Sima, Baharak; Sardari, Soroush; Izadi Mobarakeh, Jalal; Khavari-Nejad, Ramezan Ali

    2015-01-01

    Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of noncompliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need to develop novel antitubercular medicines that target new or more effective biochemical pathways to prevent drug resistant Mycobacterium. Integrated study of metabolic pathways through in-silico approach played a key role in antimycobacterial design process in this study. Our results suggest that pantothenate synthetase (PanC), anthranilate phosphoribosyl transferase (TrpD) and 3-isopropylmalate dehydratase (LeuD) might be appropriate drug targets. In the next step, in-silico ligand analysis was used for more detailed study of chemical tractability of targets. This was helpful to identify pantothenate synthetase (PanC, Rv3602c) as the best target for antimycobacterial design procedure. Virtual library screening on the best ligand of PanC was then performed for inhibitory ligand design. At the end, five chemical intermediates showed significant inhibition of Mycobacterium bovis with good selectivity indices (SI) ≥10 according to Tuberculosis Antimicrobial Acquisition & Coordinating Facility of US criteria for antimycobacterial screening programs.

  13. A Meta-Analysis: School-Based Intervention Programs Targeting Psychosocial Factors for Gifted Racial/Ethnic Minority Students

    ERIC Educational Resources Information Center

    Woo, Hongryun; Bang, Na Mi; Cauley, Bridget; Choi, Namok

    2017-01-01

    This meta-analysis of five studies examined the effect of school-based intervention programs on psychosocial well-being of gifted racial/ethnic minority students in K-12 school settings. Analyses determined the overall effect sizes for various intervention programs and compared the effect sizes for subgroups by grade (i.e., elementary vs.…

  14. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Cihlar, Josef

    1995-09-01

    Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.

  15. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide

    PubMed Central

    Vandergriff, Adam; Huang, Ke; Shen, Deliang; Hu, Shiqi; Hensley, Michael Taylor; Caranasos, Thomas G.; Qian, Li; Cheng, Ke

    2018-01-01

    Rationale: Cardiac stem cell-derived exosomes have been demonstrated to promote cardiac regeneration following myocardial infarction in preclinical studies. Recent studies have used intramyocardial injection in order to concentrate exosomes in the infarct. Though effective in a research setting, this method is not clinically appealing due to its invasive nature. We propose the use of a targeting peptide, cardiac homing peptide (CHP), to target intravenously-infused exosomes to the infarcted heart. Methods: Exosomes were conjugated with CHP through a DOPE-NHS linker. Ex vivo targeting was analyzed by incubating organ sections with the CHP exosomes and analyzing with fluorescence microscopy. In vitro assays were performed on neonatal rat cardiomyocytes and H9C2 cells. For the animal study, we utilized an ischemia/reperfusion rat model. Animals were treated with either saline, scramble peptide exosomes, or CHP exosomes 24 h after surgery. Echocardiography was performed 4 h after surgery and 21 d after surgery. At 21 d, animals were sacrificed, and organs were collected for analysis. Results: By conjugating the exosomes with CHP, we demonstrate increased retention of the exosomes within heart sections ex vivo and in vitro with neonatal rat cardiomyocytes. In vitro studies showed improved viability, reduced apoptosis and increased exosome uptake when using CHP-XOs. Using an animal model of ischemia/reperfusion injury, we measured the heart function, infarct size, cellular proliferation, and angiogenesis, with improved outcomes with the CHP exosomes. Conclusions: Our results demonstrate a novel method for increasing delivery of for treatment of myocardial infarction. By targeting exosomes to the infarcted heart, there was a significant improvement in outcomes with reduced fibrosis and scar size, and increased cellular proliferation and angiogenesis. PMID:29556361

  16. A new database sub-system for grain-size analysis

    NASA Astrophysics Data System (ADS)

    Suckow, Axel

    2013-04-01

    Detailed grain-size analyses of large depth profiles for palaeoclimate studies create large amounts of data. For instance (Novothny et al., 2011) presented a depth profile of grain-size analyses with 2 cm resolution and a total depth of more than 15 m, where each sample was measured with 5 repetitions on a Beckman Coulter LS13320 with 116 channels. This adds up to a total of more than four million numbers. Such amounts of data are not easily post-processed by spreadsheets or standard software; also MS Access databases would face serious performance problems. The poster describes a database sub-system dedicated to grain-size analyses. It expands the LabData database and laboratory management system published by Suckow and Dumke (2001). This compatibility with a very flexible database system provides ease to import the grain-size data, as well as the overall infrastructure of also storing geographic context and the ability to organize content like comprising several samples into one set or project. It also allows easy export and direct plot generation of final data in MS Excel. The sub-system allows automated import of raw data from the Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer. During post processing MS Excel is used as a data display, but no number crunching is implemented in Excel. Raw grain size spectra can be exported and controlled as Number- Surface- and Volume-fractions, while single spectra can be locked for further post-processing. From the spectra the usual statistical values (i.e. mean, median) can be computed as well as fractions larger than a grain size, smaller than a grain size, fractions between any two grain sizes or any ratio of such values. These deduced values can be easily exported into Excel for one or more depth profiles. However, such a reprocessing for large amounts of data also allows new display possibilities: normally depth profiles of grain-size data are displayed only with summarized parameters like the clay

  17. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N. dos; Al-Nuaimy, Waleed; Porsani, Jorge Luís; Hirata, Nina S. Tomita; Alzubi, Hamzah S.

    2014-01-01

    The accuracy of detecting buried targets using ground penetrating radar (GPR) depends mainly on features that are extracted from the data. The objective of this study is to test three spectral features and evaluate the quality to provide a good discrimination among three types of materials (concrete, metallic and plastic) using the 200 MHz GPR system. The spectral features which were selected to check the interaction of the electromagnetic wave with the type of material are: the power spectral density (PSD), short-time Fourier transform (STFT) and the Wigner-Ville distribution (WVD). The analyses were performed with simulated data varying the sizes of the targets and the electrical properties (relative dielectric permittivity and electrical conductivity) of the soil. To check if the simulated data are in accordance with the real data, the same approach was applied on the data obtained in the IAG/USP test site. A noticeable difference was found in the amplitude of the studies' features in the frequency domain and these results show the strength of the signal processing to try to differentiate buried materials using GPR, and so can be used in urban planning and geotechnical studies.

  18. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs.

    PubMed

    Yarragudi, Sasi B; Richter, Robert; Lee, Helen; Walker, Greg F; Clarkson, Andrew N; Kumar, Haribalan; Rizwan, Shakila B

    2017-05-01

    Targeted delivery and retention of drug formulations in the olfactory mucosa, the target site for nose-to-brain drug absorption is a major challenge due to the geometrical complexity of the nose and nasal clearance. Recent modelling data indicates that 10μm-sized microparticles show maximum deposition in the olfactory mucosa. In the present study we tested the hypothesis that 10μm-sized mucoadhesive microparticles would preferentially deposit on, and increase retention of drug on, the olfactory mucosa in a novel 3D-printed human nasal-replica cast under simulated breathing. The naturally occurring mucoadhesive polymer, tamarind seed polysaccharide (TSP) was used to formulate the microparticles using a spray drying technique. Physicochemical properties of microparticles such as size, morphology and mucoadhesiveness was investigated using a combination of laser diffraction, electron microscopy and texture-analysis. Furthermore, FITC-dextrans (5-40kDa) were incorporated in TSP-microparticles as model drugs. Size-dependent permeability of the FITC-dextrans was observed ex vivo using porcine nasal mucosa. Using the human nasal-replica cast, greater deposition of 10μm TSP-microparticles in the olfactory region was observed compared to TSP-microparticles 2μm in size. Collectively, these findings support our hypothesis that 10μm-sized mucoadhesive microparticles can achieve selective deposition and retention of drug in the olfactory mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. LIQHYSMES—size, loss and cost considerations for the SMES—a conceptual analysis

    NASA Astrophysics Data System (ADS)

    Sander, Michael; Neumann, Holger

    2011-10-01

    A new energy storage concept for variable renewable energy, LIQHYSMES, has been proposed which combines the use of liquid hydrogen (LH2) with superconducting magnetic energy storage (SMES). LH2 with its high volumetric energy density and, compared with compressed hydrogen, increased operational safety is the prime energy carrier for large scale stationary energy storage. But balancing load or supply fluctuations with hydrogen alone is unrealistic due to the response times of the flow control. To operate the hydrogen part more steadily, additional short-term electrical energy storage is needed. For this purpose a SMES based on coated conductors or magnesium diboride MgB2 operated in the LH2 bath, is proposed. Different solenoidal and toroidal SMES designs for the 10 GJ range are compared in terms of size and ramping losses. Cost targets for different power levels and supply periods are addressed, taking into account current developments in competing short-term storage devices like super-capacitors, batteries and flywheels.

  20. Automating data analysis for two-dimensional gas chromatography/time-of-flight mass spectrometry non-targeted analysis of comparative samples.

    PubMed

    Titaley, Ivan A; Ogba, O Maduka; Chibwe, Leah; Hoh, Eunha; Cheong, Paul H-Y; Simonich, Staci L Massey

    2018-03-16

    Non-targeted analysis of environmental samples, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC/ToF-MS), poses significant data analysis challenges due to the large number of possible analytes. Non-targeted data analysis of complex mixtures is prone to human bias and is laborious, particularly for comparative environmental samples such as contaminated soil pre- and post-bioremediation. To address this research bottleneck, we developed OCTpy, a Python™ script that acts as a data reduction filter to automate GC × GC/ToF-MS data analysis from LECO ® ChromaTOF ® software and facilitates selection of analytes of interest based on peak area comparison between comparative samples. We used data from polycyclic aromatic hydrocarbon (PAH) contaminated soil, pre- and post-bioremediation, to assess the effectiveness of OCTpy in facilitating the selection of analytes that have formed or degraded following treatment. Using datasets from the soil extracts pre- and post-bioremediation, OCTpy selected, on average, 18% of the initial suggested analytes generated by the LECO ® ChromaTOF ® software Statistical Compare feature. Based on this list, 63-100% of the candidate analytes identified by a highly trained individual were also selected by OCTpy. This process was accomplished in several minutes per sample, whereas manual data analysis took several hours per sample. OCTpy automates the analysis of complex mixtures of comparative samples, reduces the potential for human error during heavy data handling and decreases data analysis time by at least tenfold. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Detection of small-size solder ball defects through heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Xiuyun; Chen, Yaqiu; Lu, Xiaochuan

    2018-02-01

    Aiming to solve the defect detection problem of a small-size solder ball in the high density chip, heat conduction analysis based on eddy current pulsed thermography is put forward to differentiate various defects. With establishing the 3D finite element model about induction heating, defects such as cracks and void can be distinguished by temperature difference resulting from heat conduction. Furthermore, the experiment of 0.4 mm-diameter solder balls with different defects is carried out to prove that crack and void solder can be distinguished. Three kinds of crack length on a gull-wing pin are selected, including 0.24 mm, 1.2 mm, and 2.16 mm, to verify that the small defect can be discriminated. Both the simulation study and experiment result show that the heat conduction analysis method is reliable and convenient.

  2. Effect of molecular exchange on water droplet size analysis as determined by diffusion NMR: The W/O/W double emulsion case.

    PubMed

    Vermeir, Lien; Sabatino, Paolo; Balcaen, Mathieu; Declerck, Arnout; Dewettinck, Koen; Martins, José C; Guthausen, Gisela; Van der Meeren, Paul

    2016-08-01

    The accuracy of the inner water droplet size determination of W/O/W emulsions upon water diffusion measurement by diffusion NMR was evaluated. The resulting droplet size data were compared to the results acquired from the diffusion measurement of a highly water soluble marker compound with low permeability in the oil layer of a W/O/W emulsion, which provide a closer representation of the actual droplet size. Differences in droplet size data obtained from water and the marker were ascribed to extra-droplet water diffusion. The diffusion data of the tetramethylammonium cation marker were measured using high-resolution pulsed field gradient NMR, whereas the water diffusion was measured using both low-resolution and high-resolution NMR. Different data analysis procedures were evaluated to correct for the effect of extra-droplet water diffusion on the accuracy of water droplet size analysis. Using the water diffusion data, the use of a low measurement temperature and diffusion delay Δ could reduce the droplet size overestimation resulting from extra-droplet water diffusion, but this undesirable effect was inevitable. Detailed analysis of the diffusion data revealed that the extra-droplet diffusion effect was due to an exchange between the inner water phase and the oil phase, rather than by exchange between the internal and external aqueous phase. A promising data analysis procedure for retrieving reliable size data consisted of the application of Einstein's diffusion law to the experimentally determined diffusion distances. This simple procedure allowed determining the inner water droplet size of W/O/W emulsions upon measurement of water diffusion by low-resolution NMR at or even above room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Directed evolution of cell size in Escherichia coli.

    PubMed

    Yoshida, Mari; Tsuru, Saburo; Hirata, Naoko; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen; Yomo, Tetsuya

    2014-12-17

    In bacteria, cell size affects chromosome replication, the assembly of division machinery, cell wall synthesis, membrane synthesis and ultimately growth rate. In addition, cell size can also be a target for Darwinian evolution for protection from predators. This strong coupling of cell size and growth, however, could lead to the introduction of growth defects after size evolution. An important question remains: can bacterial cell size change and/or evolve without imposing a growth burden? The directed evolution of particular cell sizes, without a growth burden, was tested with a laboratory Escherichia coli strain. Cells of defined size ranges were collected by a cell sorter and were subsequently cultured. This selection-propagation cycle was repeated, and significant changes in cell size were detected within 400 generations. In addition, the width of the size distribution was altered. The changes in cell size were unaccompanied by a growth burden. Whole genome sequencing revealed that only a few mutations in genes related to membrane synthesis conferred the size evolution. In conclusion, bacterial cell size could evolve, through a few mutations, without growth reduction. The size evolution without growth reduction suggests a rapid evolutionary change to diverse cell sizes in bacterial survival strategies.

  4. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates.

    PubMed

    Vargas, D M; De Bastiani, M A; Zimmer, E R; Klamt, F

    2018-06-23

    Alzheimer's disease (AD) is a multifactorial and complex neuropathology that involves impairment of many intricate molecular mechanisms. Despite recent advances, AD pathophysiological characterization remains incomplete, which hampers the development of effective treatments. In fact, currently, there are no effective pharmacological treatments for AD. Integrative strategies such as transcription regulatory network and master regulator analyses exemplify promising new approaches to study complex diseases and may help in the identification of potential pharmacological targets. In this study, we used transcription regulatory network and master regulator analyses on transcriptomic data of human hippocampus to identify transcription factors (TFs) that can potentially act as master regulators in AD. All expression profiles were obtained from the Gene Expression Omnibus database using the GEOquery package. A normal hippocampus transcription factor-centered regulatory network was reconstructed using the ARACNe algorithm. Master regulator analysis and two-tail gene set enrichment analysis were employed to evaluate the inferred regulatory units in AD case-control studies. Finally, we used a connectivity map adaptation to prospect new potential therapeutic interventions by drug repurposing. We identified TFs with already reported involvement in AD, such as ATF2 and PARK2, as well as possible new targets for future investigations, such as CNOT7, CSRNP2, SLC30A9, and TSC22D1. Furthermore, Connectivity Map Analysis adaptation suggested the repositioning of six FDA-approved drugs that can potentially modulate master regulator candidate regulatory units (Cefuroxime, Cyproterone, Dydrogesterone, Metrizamide, Trimethadione, and Vorinostat). Using a transcription factor-centered regulatory network reconstruction we were able to identify several potential molecular targets and six drug candidates for repositioning in AD. Our study provides further support for the use of bioinformatics

  5. Audible sonar images generated with proprioception for target analysis.

    PubMed

    Kuc, Roman B

    2017-05-01

    Some blind humans have demonstrated the ability to detect and classify objects with echolocation using palatal clicks. An audible-sonar robot mimics human click emissions, binaural hearing, and head movements to extract interaural time and level differences from target echoes. Targets of various complexity are examined by transverse displacements of the sonar and by target pose rotations that model movements performed by the blind. Controlled sonar movements executed by the robot provide data that model proprioception information available to blind humans for examining targets from various aspects. The audible sonar uses this sonar location and orientation information to form two-dimensional target images that are similar to medical diagnostic ultrasound tomograms. Simple targets, such as single round and square posts, produce distinguishable and recognizable images. More complex targets configured with several simple objects generate diffraction effects and multiple reflections that produce image artifacts. The presentation illustrates the capabilities and limitations of target classification from audible sonar images.

  6. The eccentricity effect: target eccentricity affects performance on conjunction searches.

    PubMed

    Carrasco, M; Evert, D L; Chang, I; Katz, S M

    1995-11-01

    The serial pattern found for conjunction visual-search tasks has been attributed to covert attentional shifts, even though the possible contributions of target location have not been considered. To investigate the effect of target location on orientation x color conjunction searches, the target's duration and its position in the display were manipulated. The display was present either until observers responded (Experiment 1), for 104 msec (Experiment 2), or for 62 msec (Experiment 3). Target eccentricity critically affected performance: A pronounced eccentricity effect was very similar for all three experiments; as eccentricity increased, reaction times and errors increased gradually. Furthermore, the set-size effect became more pronounced as target eccentricity increased, and the extent of the eccentricity effect increased for larger set sizes. In addition, according to stepwise regressions, target eccentricity as well as its interaction with set size were good predictors of performance. We suggest that these findings could be explained by spatial-resolution and lateral-inhibition factors. The serial self-terminating hypothesis for orientation x color conjunction searches was evaluated and rejected. We compared the eccentricity effect as well as the extent of the orientation asymmetry in these three conjunction experiments with those found in feature experiments (Carrasco & Katz, 1992). The roles of eye movements, spatial resolution, and covert attention in the eccentricity effect, as well as their implications, are discussed.

  7. Soil Particle Size Analysis by Laser Diffractometry: Result Comparison with Pipette Method

    NASA Astrophysics Data System (ADS)

    Šinkovičová, Miroslava; Igaz, Dušan; Kondrlová, Elena; Jarošová, Miriam

    2017-10-01

    Complex Soil Survey done in Slovakia) in soil is the determinant for soil type specification, we recommend using the derived relationships in soil science when the soil texture analysis is done according to laser diffractometry. The advantages of laser diffraction method comprise the short analysis time, usage of small sample amount, application for the various grain size fraction and soil type classification systems, and a wide range of determined fractions. Therefore, it is necessary to focus on this issue further to address the needs of soil science research and attempt to replace the standard pipette method with more progressive laser diffraction method.

  8. Tritium target manufacturing for use in accelerators

    NASA Astrophysics Data System (ADS)

    Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.

    2001-07-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.

  9. Ejecta Particle Size Distributions for Shock Loaded Sn And Al Targets

    DTIC Science & Technology

    1999-06-01

    respectively. For the first time, particle distributions that results from microjet production will be presented. Results from these experiments will...performed. For the first time, particle size distributions that result from microjet production will be presented. The energy in the microjets will...the metal to break up as a shock wave moves through the material. The figure also shows that if there are surface finish variations, microjets will

  10. Canonical correlation analysis of infant's size at birth and maternal factors: a study in rural northwest Bangladesh.

    PubMed

    Kabir, Alamgir; Merrill, Rebecca D; Shamim, Abu Ahmed; Klemn, Rolf D W; Labrique, Alain B; Christian, Parul; West, Keith P; Nasser, Mohammed

    2014-01-01

    This analysis was conducted to explore the association between 5 birth size measurements (weight, length and head, chest and mid-upper arm [MUAC] circumferences) as dependent variables and 10 maternal factors as independent variables using canonical correlation analysis (CCA). CCA considers simultaneously sets of dependent and independent variables and, thus, generates a substantially reduced type 1 error. Data were from women delivering a singleton live birth (n = 14,506) while participating in a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural Bangladesh. The first canonical correlation was 0.42 (P<0.001), demonstrating a moderate positive correlation mainly between the 5 birth size measurements and 5 maternal factors (preterm delivery, early pregnancy MUAC, infant sex, age and parity). A significant interaction between infant sex and preterm delivery on birth size was also revealed from the score plot. Thirteen percent of birth size variability was explained by the composite score of the maternal factors (Redundancy, RY/X = 0.131). Given an ability to accommodate numerous relationships and reduce complexities of multiple comparisons, CCA identified the 5 maternal variables able to predict birth size in this rural Bangladesh setting. CCA may offer an efficient, practical and inclusive approach to assessing the association between two sets of variables, addressing the innate complexity of interactions.

  11. Business Case Analysis: Continuous Integrated Logistics Support-Targeted Allowance Technique (CILS-TAT)

    DTIC Science & Technology

    2013-06-01

    In this research, we examine the Naval Sea Logistics Command s Continuous Integrated Logistics Support Targeted Allowancing Technique (CILS TAT) and... the feasibility of program re-implementation. We conduct an analysis of this allowancing method s effectiveness onboard U.S. Navy Ballistic Missile...Defense (BMD) ships, measure the costs associated with performing a CILS TAT, and provide recommendations concerning possible improvements to the

  12. The Killer Fly Hunger Games: Target Size and Speed Predict Decision to Pursuit

    PubMed Central

    Wardill, Trevor J.; Knowles, Katie; Barlow, Laura; Tapia, Gervasio; Nordström, Karin; Olberg, Robert M.; Gonzalez-Bellido, Paloma T.

    2015-01-01

    Predatory animals have evolved to optimally detect their prey using exquisite sensory systems such as vision, olfaction and hearing. It may not be so surprising that vertebrates, with large central nervous systems, excel at predatory behaviors. More striking is the fact that many tiny insects, with their miniscule brains and scaled down nerve cords, are also ferocious, highly successful predators. For predation, it is important to determine whether a prey is suitable before initiating pursuit. This is paramount since pursuing a prey that is too large to capture, subdue or dispatch will generate a substantial metabolic cost (in the form of muscle output) without any chance of metabolic gain (in the form of food). In addition, during all pursuits, the predator breaks its potential camouflage and thus runs the risk of becoming prey itself. Many insects use their eyes to initially detect and subsequently pursue prey. Dragonflies, which are extremely efficient predators, therefore have huge eyes with relatively high spatial resolution that allow efficient prey size estimation before initiating pursuit. However, much smaller insects, such as killer flies, also visualize and successfully pursue prey. This is an impressive behavior since the small size of the killer fly naturally limits the neural capacity and also the spatial resolution provided by the compound eye. Despite this, we here show that killer flies efficiently pursue natural (Drosophila melanogaster) and artificial (beads) prey. The natural pursuits are initiated at a distance of 7.9 ± 2.9 cm, which we show is too far away to allow for distance estimation using binocular disparities. Moreover, we show that rather than estimating absolute prey size prior to launching the attack, as dragonflies do, killer flies attack with high probability when the ratio of the prey's subtended retinal velocity and retinal size is 0.37. We also show that killer flies will respond to a stimulus of an angular size that is smaller

  13. Digital Image Analysis Algorithm For Determination of Particle Size Distributions In Diesel Engines

    NASA Astrophysics Data System (ADS)

    Armas, O.; Ballesteros, R.; Gomez, A.

    One of the most serious problems associated to Diesel engines is pollutant emissions, standing out nitrogen oxides and particulate matter. However, although current emis- sions standards in Europe and America with regard to light vehicles and heavy duty engines refer the particulate limit in mass units, concern for knowing size and number of particles emitted by engines is being increased recently. This interest is promoted by last studies about particle harmful effects on health and is enhanced by recent changes in internal combustion engines technology. This study is focused on the implementation of a method to determine the particle size distribution made up in current methodology for vehicles certification in Europe. It will use an automated Digital Image Analysis Algorithm (DIAA) to determine particle size trends from Scanning Electron Microscope (SEM) images of filters charged in a dilution system used for measuring specific particulate emissions. The experimental work was performed on a steady state direct injection Diesel en- gine with 0.5 MW rated power, being considered as a typical engine in middle power industries. Particulate size distributions obtained using DIAA and a Scanning Mobil- ity Particle Sizer (SMPS), nowadays considered as the most reliable technique, were compared. Although number concentration detected by this method does not repre- sent real flowing particle concentration, this algorithm fairly reproduces the trends observed with SMPS when the engine load is varied.

  14. Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kalita, Amarjyoti; Kalita, Manos P. C.

    2017-08-01

    We apply Williamson-Hall (WH) method of X-ray diffraction (XRD) line profile analysis for lattice strain estimation of small sized ZnO nanocrystals (crystallite size≈4 nm). The ZnO nanocrystals are synthesized by room temperature chemical co-precipitation followed by heating at 40 °C. Zinc acetate, sodium hydroxide and 2-mercaptoethanol (ME) are used for the synthesis of the nanocrystals. {100}, {002}, {101} and {200}, {112}, {201} line profiles in the XRD pattern are significantly merged, therefore determination of the full width at half maximum values and peak positions of the line profiles required for WH analysis has been carried out by executing Rietveld refinement of the XRD pattern. Lattice strain of the 4 nm sized ZnO nanocrystals is found to be 5.8×10-3 which is significantly higher as compared to the literature reported values for larger ones (crystallite size≈17-47 nm). Role of ME as capping agent is confirmed by Fourier transform infrared spectroscopy. The band gap of the nanocrystals is determined from the UV-Visible absorption spectrum and is found to be 3.68 eV. The photoluminescence spectrum exhibits emissions in the visible (408 nm-violet, 467 nm-blue and 538 nm-green) regions showing presence of zinc interstitial and oxygen vacancy in the ZnO nanocrystals.

  15. Ejected particle size measurement using Mie scattering in high explosive driven shockwave experiments

    NASA Astrophysics Data System (ADS)

    Monfared, S. K.; Buttler, W. T.; Frayer, D. K.; Grover, M.; LaLone, B. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Schauer, M. M.

    2015-06-01

    We report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. We describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.

  16. Ejected particle size measurement using Mie scattering in high explosive driven shockwave experiments

    DOE PAGES

    Monfared, Shabnam Khalighi; Buttler, William Tillman; Frayer, Daniel K.; ...

    2015-06-11

    In this paper, we report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. Finally, we describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.

  17. Variability in body size and shape of UK offshore workers: A cluster analysis approach.

    PubMed

    Stewart, Arthur; Ledingham, Robert; Williams, Hector

    2017-01-01

    Male UK offshore workers have enlarged dimensions compared with UK norms and knowledge of specific sizes and shapes typifying their physiques will assist a range of functions related to health and ergonomics. A representative sample of the UK offshore workforce (n = 588) underwent 3D photonic scanning, from which 19 extracted dimensional measures were used in k-means cluster analysis to characterise physique groups. Of the 11 resulting clusters four somatotype groups were expressed: one cluster was muscular and lean, four had greater muscularity than adiposity, three had equal adiposity and muscularity and three had greater adiposity than muscularity. Some clusters appeared constitutionally similar to others, differing only in absolute size. These cluster centroids represent an evidence-base for future designs in apparel and other applications where body size and proportions affect functional performance. They also constitute phenotypic evidence providing insight into the 'offshore culture' which may underpin the enlarged dimensions of offshore workers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Unraveling novel broad-spectrum antibacterial targets in food and waterborne pathogens using comparative genomics and protein interaction network analysis.

    PubMed

    Jadhav, Ankush; Shanmugham, Buvaneswari; Rajendiran, Anjana; Pan, Archana

    2014-10-01

    Food and waterborne diseases are a growing concern in terms of human morbidity and mortality worldwide, even in the 21st century, emphasizing the need for new therapeutic interventions for these diseases. The current study aims at prioritizing broad-spectrum antibacterial targets, present in multiple food and waterborne bacterial pathogens, through a comparative genomics strategy coupled with a protein interaction network analysis. The pathways unique and common to all the pathogens under study (viz., methane metabolism, d-alanine metabolism, peptidoglycan biosynthesis, bacterial secretion system, two-component system, C5-branched dibasic acid metabolism), identified by comparative metabolic pathway analysis, were considered for the analysis. The proteins/enzymes involved in these pathways were prioritized following host non-homology analysis, essentiality analysis, gut flora non-homology analysis and protein interaction network analysis. The analyses revealed a set of promising broad-spectrum antibacterial targets, present in multiple food and waterborne pathogens, which are essential for bacterial survival, non-homologous to host and gut flora, and functionally important in the metabolic network. The identified broad-spectrum candidates, namely, integral membrane protein/virulence factor (MviN), preprotein translocase subunits SecB and SecG, carbon storage regulator (CsrA), and nitrogen regulatory protein P-II 1 (GlnB), contributed by the peptidoglycan pathway, bacterial secretion systems and two-component systems, were also found to be present in a wide range of other disease-causing bacteria. Cytoplasmic proteins SecG, CsrA and GlnB were considered as drug targets, while membrane proteins MviN and SecB were classified as vaccine targets. The identified broad-spectrum targets can aid in the design and development of antibacterial agents not only against food and waterborne pathogens but also against other pathogens. Copyright © 2014 Elsevier B.V. All rights

  19. Protein targeting in the analysis of learning and memory: a potential alternative to gene targeting.

    PubMed

    Gerlai, R; Williams, S P; Cairns, B; Van Bruggen, N; Moran, P; Shih, A; Caras, I; Sauer, H; Phillips, H S; Winslow, J W

    1998-11-01

    Gene targeting using homologous recombination in embryonic stem (ES) cells offers unprecedented precision with which one may manipulate single genes and investigate the in vivo effects of defined mutations in the mouse. Geneticists argue that this technique abrogates the lack of highly specific pharmacological tools in the study of brain function and behavior. However, by now it has become clear that gene targeting has some limitations too. One problem is spatial and temporal specificity of the generated mutation, which may appear in multiple brain regions or even in other organs and may also be present throughout development, giving rise to complex, secondary phenotypical alterations. This may be a disadvantage in the functional analysis of a number of genes associated with learning and memory processes. For example, several proteins, including neurotrophins--cell-adhesion molecules--and protein kinases, that play a significant developmental role have recently been suggested to be also involved in neural and behavioral plasticity. Knocking out genes of such proteins may lead to developmental alterations or even embryonic lethality in the mouse, making it difficult to study their function in neural plasticity, learning, and memory. Therefore, alternative strategies to gene targeting may be needed. Here, we suggest a potentially useful in vivo strategy based on systemic application of immunoadhesins, genetically engineered fusion proteins possessing the Fc portion of the human IgG molecule and, for example, a binding domain of a receptor of interest. These proteins are stable in vivo and exhibit high binding specificity and affinity for the endogenous ligand of the receptor, but lack the ability to signal. Thus, if delivered to the brain, immunoadhesins may specifically block signalling of the receptor of interest. Using osmotic minipumps, the protein can be infused in a localized region of the brain for a specified period of time (days or weeks). Thus, the location

  20. AEGIS Automated Targeting for the MSL ChemCam Instrument

    NASA Astrophysics Data System (ADS)

    Estlin, T.; Anderson, R. C.; Blaney, D. L.; Bornstein, B.; Burl, M. C.; Castano, R.; Gaines, D.; Judd, M.; Thompson, D. R.; Wiens, R. C.

    2013-12-01

    The Autonomous Exploration for Gathering Increased Science (AEGIS) system enables automated science data collection by a planetary rover. AEGIS has been in use on the Mars Exploration Rover (MER) mission Opportunity rover since 2010 to provide onboard targeting of the MER Panoramic Camera based on scientist-specified objectives. AEGIS is now being applied for use with the Mars Science Laboratory (MSL) mission ChemCam spectrometer. ChemCam uses a Laser Induced Breakdown Spectrometer (LIBS) to analyze the elemental composition of rocks and soil from up to seven meters away. ChemCam's tightly-focused laser beam (350-550 um) enables targeting of very fine-scale terrain features. AEGIS is being applied in two ways to help ChemCam collect valuable science data. The first application is to enable automated targeting of ChemCam during or after or in the middle of long drives. The majority of ChemCam measurements are collected by allowing the science team to select specific targets in rover images. However this requires the rover to stay in the same area while images are downlinked, analyzed for targets, and new commands uplinked. The only data that can be acquired without this communication cycle is via blind targeting, where measurements are often of soil patches vs. instead of more valuable targets such as rocks with specific properties. AEGIS is being applied to automatically analyze images onboard and select targets for ChemCam analysis. This approach allows the rover to autonomously select and sequence targeted measurements in an opportunistic fashion at different points along the rover's drive path. Rock targets can be prioritized for measurement based on various geologically relevant features, including size, shape and albedo. A second application is to enable intelligent pointing refinement of ChemCam when acquiring data of small targets, such as veins or concretions that are only a few millimeters wide. Due to backlash and other pointing challenges, it can often

  1. Optimal Systolic Blood Pressure Target After SPRINT: Insights from a Network Meta-Analysis of Randomized Trials.

    PubMed

    Bangalore, Sripal; Toklu, Bora; Gianos, Eugenia; Schwartzbard, Arthur; Weintraub, Howard; Ogedegbe, Gbenga; Messerli, Franz H

    2017-06-01

    The optimal on-treatment blood pressure (BP) target has been a matter of debate. The recent SPRINT trial showed significant benefits of a BP target of <120 mm Hg, albeit with an increase in serious adverse effects related to low BP. PubMed, EMBASE, and CENTRAL were searched for randomized trials comparing treating with different BP targets. Trial arms were grouped into 5 systolic BP target categories: 1) <160 mm Hg, 2) <150 mm Hg, 3) <140 mm Hg, 4) <130 mm Hg, and 5) <120 mm Hg. Efficacy outcomes of stroke, myocardial infarction, death, cardiovascular death, heart failure, and safety outcomes of serious adverse effects were evaluated using a network meta-analysis. Seventeen trials that enrolled 55,163 patients with 204,103 patient-years of follow-up were included. There was a significant decrease in stroke (rate ratio [RR] 0.54; 95% confidence interval [CI], 0.29-1.00) and myocardial infarction (RR 0.68; 95% CI, 0.47-1.00) with systolic BP <120 mm Hg (vs <160 mm Hg). Sensitivity analysis using achieved systolic BP showed a 72%, 97%, and 227% increase in stroke with systolic BP of <140 mm Hg, <150 mm Hg, and <160 mm, respectively, when compared with systolic BP <120 mm Hg. There was no difference in death, cardiovascular death, or heart failure when comparing any of the BP targets. However, the point estimate favored lower BP targets (<120 mm Hg, <130 mm Hg) when compared with higher BP targets (<140 mm Hg or <150 mm Hg). BP targets of <120 mm Hg and <130 mm Hg ranked #1 and #2, respectively, as the most efficacious target. There was a significant increase in serious adverse effects with systolic BP <120 mm Hg vs <150 mm Hg (RR 1.83; 95% CI, 1.05-3.20) or vs <140 mm Hg (RR 2.12; 95% CI, 1.46-3.08). BP targets of <140 mm Hg and <150 mm Hg ranked #1 and #2, respectively, as the safest target for the outcome of serious adverse effects. Cluster plots for combined efficacy and safety showed that a systolic BP target of <130 mm Hg had optimal balance between efficacy

  2. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  3. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.

    PubMed

    Vorontsov, Mikhail A; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  4. Pbsize="-1">1-xMnsize="-1">xTe Crystals as a New Thermoelectric Material

    NASA Astrophysics Data System (ADS)

    Osinniy, V.; Jędrzejczak, A.; Domuchowski, W.; Dybko, K.; Witkowska, B.; Story, T.

    2006-11-01

    We studied experimentally thermoelectric properties of p-type bulk crystals of Pbsize="-1">1-xMnsize="-1">xTe and Pbsize="-1">1-x-yAgsize="-1">yMnsize="-1">xTe (0≤ x≤ 0.083 and y≤0.017) at room and liquid nitrogen temperatures. Model calculations of the thermoelectric figure of merit parameter (Z) involved the analysis of carrier concentration, carrier mobility, density of states as well as electronic and lattice contributions to the thermal conductivity of PbMnTe. In the analysis we took into account the main effect of Mn concentration on the band structure parameters of PbMnTe, i.e. the increase of the energy gap. The analysis of electrical, thermoelectric, and thermal properties of Pbsize="-1">1-xMnsize="-1">xTe crystals showed that, at room temperature, the maximum values of the parameter Z occur in crystals with Mn content 0.05≤ x≤0.07 and are comparable with a maximal value of Z observed in PbTe. At T=400 K the increase in the parameter Z by 10% is expected in Pbsize="-1">1-xMnsize="-1">xTe crystal (as compared to PbTe) for a very high concentration of holes of about p=5×10size="-1">19 cmsize="-1">-3. The experimental data correctly reproduce the theoretical Z(p) dependence.

  5. Characterization of micron-size hydrogen clusters using Mie scattering.

    PubMed

    Jinno, S; Tanaka, H; Matsui, R; Kanasaki, M; Sakaki, H; Kando, M; Kondo, K; Sugiyama, A; Uesaka, M; Kishimoto, Y; Fukuda, Y

    2017-08-07

    Hydrogen clusters with diameters of a few micrometer range, composed of 10 8-10 hydrogen molecules, have been produced for the first time in an expansion of supercooled, high-pressure hydrogen gas into a vacuum through a conical nozzle connected to a cryogenic pulsed solenoid valve. The size distribution of the clusters has been evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed based on the Mie scattering theory combined with the Tikhonov regularization method including the instrumental functions, the validity of which was assessed by performing a calibration study using a reference target consisting of standard micro-particles with two different sizes. The size distribution of the clusters was found discrete peaked at 0.33 ± 0.03, 0.65 ± 0.05, 0.81 ± 0.06, 1.40 ± 0.06 and 2.00 ± 0.13 µm in diameter. The highly reproducible and impurity-free nature of the micron-size hydrogen clusters can be a promising target for laser-driven multi-MeV proton sources with the currently available high power lasers.

  6. Size-Dependency of the Surface Ligand Density of Liposomes Prepared by Post-insertion.

    PubMed

    Lee, Shang-Hsuan; Sato, Yusuke; Hyodo, Mamoru; Harashima, Hideyoshi

    2017-01-01

    In the active targeting of a drug delivery system (DDS), the density of the ligand on the functionalized liposome determines its affinity for binding to the target. To evaluate these densities on the surface of different sized liposomes, 4 liposomes with various diameters (188, 137, 70, 40 nm) were prepared and their surfaces were modified with fluorescently labeled ligand-lipid conjugates by the post-insertion method. Each liposomal mixture was fractionated into a series of fractions using size exclusion chromatography (SEC), and the resulting liposome fractions were precisely analyzed and the surface ligand densities calculated. The data collected using this methodology indicate that the density of the ligand on a particle is greatly dependent on the size of the liposome. This, in turn, indicates that smaller liposomes (75-40 nm) tend to possess higher densities. For developing active targeting systems, size and the density of the ligands are two important and independent factors that can affect the efficiency of a system as it relates to medical use.

  7. Globalization, Educational Targeting, and Stable Inequalities: A Comparative Analysis of Argentina, Brazil, and Chile

    NASA Astrophysics Data System (ADS)

    Rambla, Xavier

    2006-05-01

    The present study analyzes educational targeting in Argentina, Brazil and Chile from a sociological point of view. It shows that a `logic of induction' has become the vehicle for anti-poverty education strategies meant to help targeted groups improve on their own. The analysis explores the influence of the global educational agenda, the empirical connection between the logic of induction and the mechanism of emulation, and the territorial aspects of educational inequalities. Emulation plays a main role inasmuch as the logic of induction leads targeted groups to compare their adverse situation with more privileged groups, which actually legitimizes inequalities. A brief statistical summary completes the study, showing that educational inequality has remained unchanged as far as urban-rural ratios (in Brazil and Chile) and regional disparities (in all three countries) are concerned.

  8. Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation.

    PubMed

    Burnham-Marusich, Amanda R; Plechaty, Anna M; Berninsone, Patricia M

    2014-09-01

    Currently, there are few methods to detect differences in posttranslational modifications (PTMs) in a specific manner from complex mixtures. Thus, we developed an approach that combines the sensitivity and specificity of click chemistry with the resolution capabilities of 2D-DIGE. In "Click-DIGE", posttranslationally modified proteins are metabolically labeled with azido-substrate analogs, then size- and charge-matched alkyne-Cy3 or alkyne-Cy5 dyes are covalently attached to the azide of the PTM by click chemistry. The fluorescently-tagged protein samples are then multiplexed for 2DE analysis. Whereas standard DIGE labels all proteins, Click-DIGE focuses the analysis of protein differences to a targeted subset of posttranslationally modified proteins within a complex sample (i.e. specific labeling and analysis of azido glycoproteins within a cell lysate). Our data indicate that (i) Click-DIGE specifically labels azido proteins, (ii) the resulting Cy-protein conjugates are spectrally distinct, and (iii) the conjugates are size- and charge-matched at the level of 2DE. We demonstrate the utility of this approach by detecting multiple differentially expressed glycoproteins between a mutant cell line defective in UDP-galactose transport and the parental cell line. We anticipate that the diversity of azido substrates already available will enable Click-DIGE to be compatible with analysis of a wide range of PTMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    NASA Astrophysics Data System (ADS)

    Siebenwirth, C.; Greubel, C.; Drexler, S. E.; Girst, S.; Reindl, J.; Walsh, D. W. M.; Dollinger, G.; Friedl, A. A.; Schmid, T. E.; Drexler, G. A.

    2015-04-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future.

  10. Crater size estimates for large-body terrestrial impact

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.; Housen, Kevin R.

    1988-01-01

    Calculating the effects of impacts leading to global catastrophes requires knowledge of the impact process at very large size scales. This information cannot be obtained directly but must be inferred from subscale physical simulations, numerical simulations, and scaling laws. Schmidt and Holsapple presented scaling laws based upon laboratory-scale impact experiments performed on a centrifuge (Schmidt, 1980 and Schmidt and Holsapple, 1980). These experiments were used to develop scaling laws which were among the first to include gravity dependence associated with increasing event size. At that time using the results of experiments in dry sand and in water to provide bounds on crater size, they recognized that more precise bounds on large-body impact crater formation could be obtained with additional centrifuge experiments conducted in other geological media. In that previous work, simple power-law formulae were developed to relate final crater diameter to impactor size and velocity. In addition, Schmidt (1980) and Holsapple and Schmidt (1982) recognized that the energy scaling exponent is not a universal constant but depends upon the target media. Recently, Holsapple and Schmidt (1987) includes results for non-porous materials and provides a basis for estimating crater formation kinematics and final crater size. A revised set of scaling relationships for all crater parameters of interest are presented. These include results for various target media and include the kinematics of formation. Particular attention is given to possible limits brought about by very large impactors.

  11. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis.

    PubMed

    Mikheev, Vladimir B; Brinkman, Marielle C; Granville, Courtney A; Gordon, Sydney M; Clark, Pamela I

    2016-09-01

    Electronic cigarette (e-cigarette) use is increasing worldwide and is highest among both daily and nondaily smokers. E-cigarettes are perceived as a healthier alternative to combustible tobacco products, but their health risk factors have not yet been established, and one of them is lack of data on aerosol size generated by e-cigarettes. We applied a real-time, high-resolution aerosol differential mobility spectrometer to monitor the evolution of aerosol size and concentration during puff development. Particles generated by e-cigarettes were immediately delivered for analysis with minimal dilution and therefore with minimal sample distortion, which is critically important given the highly dynamic aerosol/vapor mixture inherent to e-cigarette emissions. E-cigarette aerosols normally exhibit a bimodal particle size distribution: nanoparticles (11-25nm count median diameter) and submicron particles (96-175nm count median diameter). Each mode has comparable number concentrations (10(7)-10(8) particles/cm(3)). "Dry puff" tests conducted with no e-cigarette liquid (e-liquid) present in the e-cigarette tank demonstrated that under these conditions only nanoparticles were generated. Analysis of the bulk aerosol collected on the filter showed that e-cigarette emissions contained a variety of metals. E-cigarette aerosol size distribution is different from that of combustible tobacco smoke. E-cigarettes generate high concentrations of nanoparticles and their chemical content requires further investigation. Despite the small mass of nanoparticles, their toxicological impact could be significant. Toxic chemicals that are attached to the small nanoparticles may have greater adverse health effects than when attached to larger submicron particles. The e-cigarette aerosol size distribution is different from that of combustible tobacco smoke and typically exhibits a bimodal behavior with comparable number concentrations of nanoparticles and submicron particles. While vaping the e

  12. Business Case Analysis: Continuous Integrated Logistics Support-Targeted Allowance Technique (CILS-TAT)

    DTIC Science & Technology

    2013-05-30

    In this research, we examine the Naval Sea Logistics Command’s Continuous Integrated Logistics Support-Targeted Allowancing Technique (CILS-TAT) and... the feasibility of program re-implementation. We conduct an analysis of this allowancing method’s effectiveness onboard U.S. Navy Ballistic Missile...Defense (BMD) ships, measure the costs associated with performing a CILS-TAT, and provide recommendations concerning possible improvements to the

  13. Sejong Open Cluster Survey (SOS). 0. Target Selection and Data Analysis

    NASA Astrophysics Data System (ADS)

    Sung, Hwankyung; Lim, Beomdu; Bessell, Michael S.; Kim, Jinyoung S.; Hur, Hyeonoh; Chun, Moo-Young; Park, Byeong-Gon

    2013-06-01

    Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBVI system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - M_V relations, Sp - T_{eff} relations, Sp - color relations, and T_{eff} - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.

  14. COS Target Acquisition Guidelines, Recommendations, and Interpretation

    NASA Astrophysics Data System (ADS)

    Keyes, Charles (Tony) D.; Penton, Steven V.

    2010-06-01

    Based upon analysis of SMOV and Cycle 17 observations through April 2010, this ISR expands, updates, and supersedes recommendations and information provided about target acquisitions (TA) in the COS Instrument Handbook version 2. This ISR provides an overview of COS TA, presents general guidelines and recommendations for crafting COS TAs, establishes COS TA centering accuracy requirements to achieve COS photometric, velocity, and resolution objectives, and summarizes the performance of the COS on-board TA modes as compared to these centering requirements. Updated TA strategy recommendations are given where appropriate, a user-oriented table lists where to find important quantities for the analysis and interpretation of COS TAs, and a brief appendix with additional supporting information is included. An overview of COS TA strategies is provided in Section 2 and Table 1; important updates to ACQ/SEARCH requirements and SEARCH-SIZE recommendations as a function of target coordinate accuracy are given in Tables 2 and 3; COS TA performance by mode is described in Section 5; important header keywords that are useful for evaluating the quality of COS TAs are listed in Table 5 along with where to find them; Table 6 gives a summary of COS TA modes, options, and recommended values; Section 7 summarizes updated recommendations and guidelines for COS TA; and Appendix A provides additional useful COS TA information.

  15. Smart Hydrogel Particles: Biomarker Harvesting: One-step affinity purification, size exclusion, and protection against degradation

    PubMed Central

    Luchini, Alessandra; Geho, David H.; Bishop, Barney; Tran, Duy; Xia, Cassandra; Dufour, Robert; Jones, Clint; Espina, Virginia; Patanarut, Alexis; Zhu, Weidong; Ross, Mark; Tessitore, Alessandra; Petricoin, Emanuel; Liotta, Lance A.

    2010-01-01

    Disease-associated blood biomarkers exist in exceedingly low concentrations within complex mixtures of high-abundance proteins such as albumin. We have introduced an affinity bait molecule into N-isopropylacrylamide to produce a particle that will perform three independent functions within minutes, in one step, in solution: a) molecular size sieving b) affinity capture of all solution phase target molecules, and c) complete protection of harvested proteins from enzymatic degradation. The captured analytes can be readily electroeluted for analysis. PMID:18076201

  16. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma.

    PubMed

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-04-01

    Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.

  17. Motion state analysis of space target based on optical cross section

    NASA Astrophysics Data System (ADS)

    Tian, Qichen; Li, Zhi; Xu, Can; Liu, Chenghao

    2017-10-01

    In order to solve the problem that the movement state analysis method of the space target based on OCS is not related to the real motion state. This paper proposes a method based on OCS for analyzing the state of space target motion. This paper first establish a three-dimensional model of real STSS satellite, then change the satellite's surface into element, and assign material to each panel according to the actual conditions of the satellite. This paper set up a motion scene according to the orbit parameters of STSS satellite in STK, and the motion states are set to three axis steady state and slowly rotating unstable state respectively. In these two states, the occlusion condition of the surface element is firstly determined, and the effective face element is selected. Then, the coordinates of the observation station and the solar coordinates in the satellite body coordinate system are input into the OCS calculation program, and the OCS variation curves of the three axis steady state and the slow rotating unstable state STSS satellite are obtained. Combining the satellite surface structure and the load situation, the OCS change curve of the three axis stabilized satellite is analyzed, and the conclude that the OCS curve fluctuates up and down when the sunlight is irradiated to the load area; By using Spectral analysis method, autocorrelation analysis and the cross residual method, the rotation speed of OCS satellite in slow rotating unstable state is analyzed, and the rotation speed of satellite is successfully reversed. By comparing the three methods, it is found that the cross residual method is more accurate.

  18. Ground target recognition using rectangle estimation.

    PubMed

    Grönwall, Christina; Gustafsson, Fredrik; Millnert, Mille

    2006-11-01

    We propose a ground target recognition method based on 3-D laser radar data. The method handles general 3-D scattered data. It is based on the fact that man-made objects of complex shape can be decomposed to a set of rectangles. The ground target recognition method consists of four steps; 3-D size and orientation estimation, target segmentation into parts of approximately rectangular shape, identification of segments that represent the target's functional/main parts, and target matching with CAD models. The core in this approach is rectangle estimation. The performance of the rectangle estimation method is evaluated statistically using Monte Carlo simulations. A case study on tank recognition is shown, where 3-D data from four fundamentally different types of laser radar systems are used. Although the approach is tested on rather few examples, we believe that the approach is promising.

  19. Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine.

    PubMed

    Zhu, Zhou; Ihle, Nathan T; Rejto, Paul A; Zarrinkar, Patrick P

    2016-06-13

    Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency. Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles. The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.

  20. Observational studies using propensity score analysis underestimated the effect sizes in critical care medicine.

    PubMed

    Zhang, Zhongheng; Ni, Hongying; Xu, Xiao

    2014-08-01

    Propensity score (PS) analysis has been increasingly used in critical care medicine; however, its validation has not been systematically investigated. The present study aimed to compare effect sizes in PS-based observational studies vs. randomized controlled trials (RCTs) (or meta-analysis of RCTs). Critical care observational studies using PS were systematically searched in PubMed from inception to April 2013. Identified PS-based studies were matched to one or more RCTs in terms of population, intervention, comparison, and outcome. The effect sizes of experimental treatments were compared for PS-based studies vs. RCTs (or meta-analysis of RCTs) with sign test. Furthermore, ratio of odds ratio (ROR) was calculated from the interaction term of treatment × study type in a logistic regression model. A ROR < 1 indicates greater benefit for experimental treatment in RCTs compared with PS-based studies. RORs of each comparison were pooled by using meta-analytic approach with random-effects model. A total of 20 PS-based studies were identified and matched to RCTs. Twelve of the 20 comparisons showed greater beneficial effect for experimental treatment in RCTs than that in PS-based studies (sign test P = 0.503). The difference was statistically significant in four comparisons. ROR can be calculated from 13 comparisons, of which four showed significantly greater beneficial effect for experimental treatment in RCTs. The pooled ROR was 0.71 (95% CI: 0.63, 0.79; P = 0.002), suggesting that RCTs (or meta-analysis of RCTs) were more likely to report beneficial effect for the experimental treatment than PS-based studies. The result remained unchanged in sensitivity analysis and meta-regression. In critical care literature, PS-based observational study is likely to report less beneficial effect of experimental treatment compared with RCTs (or meta-analysis of RCTs). Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Proteomic analysis of Chlorella vulgaris: Potential targets for enhanced lipid accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T.; Nag, Ambarish; Yang, Shihui

    2013-11-01

    Oleaginous microalgae are capable of producing large quantities of fatty acids and triacylglycerides. As such, they are promising feedstocks for the production of biofuels and bioproducts. Genetic strain-engineering strategies offer a means to accelerate the commercialization of algal biofuels by improving the rate and total accumulation of microalgal lipids. However, the industrial potential of these organisms remains to be met, largely due to the incomplete knowledgebase surrounding the mechanisms governing the induction of algal lipid biosynthesis. Such strategies require further elucidation of genes and gene products controlling algal lipid accumulation. In this study, we have set out to examine thesemore » mechanisms and identify novel strain-engineering targets in the oleaginous microalga, Chlorella vulgaris. Comparative shotgun proteomic analyses have identified a number of novel targets, including previously unidentified transcription factors and proteins involved in cell signaling and cell cycle regulation. These results lay the foundation for strain-improvement strategies and demonstrate the power of translational proteomic analysis.« less

  2. Strategic Protein Target Analysis for Developing Drugs to Stop Dental Caries

    PubMed Central

    Horst, J.A.; Pieper, U.; Sali, A.; Zhan, L.; Chopra, G.; Samudrala, R.; Featherstone, J.D.B.

    2012-01-01

    Dental caries is the most common disease to cause irreversible damage in humans. Several therapeutic agents are available to treat or prevent dental caries, but none besides fluoride has significantly influenced the disease burden globally. Etiologic mechanisms of the mutans group streptococci and specific Lactobacillus species have been characterized to various degrees of detail, from identification of physiologic processes to specific proteins. Here, we analyze the entire Streptococcus mutans proteome for potential drug targets by investigating their uniqueness with respect to non-cariogenic dental plaque bacteria, quality of protein structure models, and the likelihood of finding a drug for the active site. Our results suggest specific targets for rational drug discovery, including 15 known virulence factors, 16 proteins for which crystallographic structures are available, and 84 previously uncharacterized proteins, with various levels of similarity to homologs in dental plaque bacteria. This analysis provides a map to streamline the process of clinical development of effective multispecies pharmacologic interventions for dental caries. PMID:22899687

  3. Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing

    PubMed Central

    2015-01-01

    The use of nanopore biosensors is set to be extremely important in developing precise single molecule detectors and providing highly sensitive advanced analysis of biological molecules. The precise tailoring of nanopore size is a significant step toward achieving this, as it would allow for a nanopore to be tuned to a corresponding analyte. The work presented here details a methodology for selectively opening nanopores in real-time. The tunable nanopores on a quartz nanopipette platform are fabricated using the electroetching of a graphene-based membrane constructed from individual graphene nanoflakes (ø ∼30 nm). The device design allows for in situ opening of the graphene membrane, from fully closed to fully opened (ø ∼25 nm), a feature that has yet to be reported in the literature. The translocation of DNA is studied as the pore size is varied, allowing for subfeatures of DNA to be detected with slower DNA translocations at smaller pore sizes, and the ability to observe trends as the pore is opened. This approach opens the door to creating a device that can be target to detect specific analytes. PMID:26204996

  4. Cat and mouse search: the influence of scene and object analysis on eye movements when targets change locations during search.

    PubMed

    Hillstrom, Anne P; Segabinazi, Joice D; Godwin, Hayward J; Liversedge, Simon P; Benson, Valerie

    2017-02-19

    We explored the influence of early scene analysis and visible object characteristics on eye movements when searching for objects in photographs of scenes. On each trial, participants were shown sequentially either a scene preview or a uniform grey screen (250 ms), a visual mask, the name of the target and the scene, now including the target at a likely location. During the participant's first saccade during search, the target location was changed to: (i) a different likely location, (ii) an unlikely but possible location or (iii) a very implausible location. The results showed that the first saccade landed more often on the likely location in which the target re-appeared than on unlikely or implausible locations, and overall the first saccade landed nearer the first target location with a preview than without. Hence, rapid scene analysis influenced initial eye movement planning, but availability of the target rapidly modified that plan. After the target moved, it was found more quickly when it appeared in a likely location than when it appeared in an unlikely or implausible location. The findings show that both scene gist and object properties are extracted rapidly, and are used in conjunction to guide saccadic eye movements during visual search.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Author(s).

  5. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure.

    PubMed

    Inthavong, Kiao; Fung, Man Chiu; Yang, William; Tu, Jiyuan

    2015-02-01

    To evaluate the deposition efficiency of spray droplets in a nasal cavity produced from a spray device, it is important to determine droplet size distribution, velocity, and its dispersion during atomization. Due to the limiting geometric dimensions of the nasal cavity airway, the spray plume cannot develop to its full size inside the nasal vestibule to penetrate the nasal valve region for effective drug deposition. Particle/droplet image analysis was used to determine local mean droplet sizes at eight regions within the spray plume under different actuation pressures that represent typical hand operation from pediatric to adult patients. The results showed that higher actuation pressure produces smaller droplets in the atomization. Stronger actuation pressure typical of adult users produces a longer period of the fully atomized spray stage, despite a shorter overall spray duration. This produces finer droplets when compared with the data obtained by weaker actuation pressure, typical of pediatric users. The experimental technique presented is able to capture a more complete representation of the droplet size distribution and the atomization process during an actuation. The measured droplet size distribution produced can be related to the empirically defined deposition efficiency curve of the nasal cavity, allowing a prediction of the likely deposition.

  6. Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis.

    PubMed

    Sacco, Roberto; Gabriele, Stefano; Persico, Antonio M

    2015-11-30

    Macrocephaly and brain overgrowth have been associated with autism spectrum disorder. We performed a systematic review and meta-analysis to provide an overall estimate of effect size and statistical significance for both head circumference and total brain volume in autism. Our literature search strategy identified 261 and 391 records, respectively; 27 studies defining percentages of macrocephalic patients and 44 structural brain imaging studies providing total brain volumes for patients and controls were included in our meta-analyses. Head circumference was significantly larger in autistic compared to control individuals, with 822/5225 (15.7%) autistic individuals displaying macrocephaly. Structural brain imaging studies measuring brain volume estimated effect size. The effect size is higher in low functioning autistics compared to high functioning and ASD individuals. Brain overgrowth was recorded in 142/1558 (9.1%) autistic patients. Finally, we found a significant interaction between age and total brain volume, resulting in larger head circumference and brain size during early childhood. Our results provide conclusive effect sizes and prevalence rates for macrocephaly and brain overgrowth in autism, confirm the variation of abnormal brain growth with age, and support the inclusion of this endophenotype in multi-biomarker diagnostic panels for clinical use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. The research on the mean shift algorithm for target tracking

    NASA Astrophysics Data System (ADS)

    CAO, Honghong

    2017-06-01

    The traditional mean shift algorithm for target tracking is effective and high real-time, but there still are some shortcomings. The traditional mean shift algorithm is easy to fall into local optimum in the tracking process, the effectiveness of the method is weak when the object is moving fast. And the size of the tracking window never changes, the method will fail when the size of the moving object changes, as a result, we come up with a new method. We use particle swarm optimization algorithm to optimize the mean shift algorithm for target tracking, Meanwhile, SIFT (scale-invariant feature transform) and affine transformation make the size of tracking window adaptive. At last, we evaluate the method by comparing experiments. Experimental result indicates that the proposed method can effectively track the object and the size of the tracking window changes.

  8. Pilots' Attention Distributions Between Chasing a Moving Target and a Stationary Target.

    PubMed

    Li, Wen-Chin; Yu, Chung-San; Braithwaite, Graham; Greaves, Matthew

    2016-12-01

    Attention plays a central role in cognitive processing; ineffective attention may induce accidents in flight operations. The objective of the current research was to examine military pilots' attention distributions between chasing a moving target and a stationary target. In the current research, 37 mission-ready F-16 pilots participated. Subjects' eye movements were collected by a portable head-mounted eye-tracker during tactical training in a flight simulator. The scenarios of chasing a moving target (air-to-air) and a stationary target (air-to-surface) consist of three operational phases: searching, aiming, and lock-on to the targets. The findings demonstrated significant differences in pilots' percentage of fixation during the searching phase between air-to-air (M = 37.57, SD = 5.72) and air-to-surface (M = 33.54, SD = 4.68). Fixation duration can indicate pilots' sustained attention to the trajectory of a dynamic target during air combat maneuvers. Aiming at the stationary target resulted in larger pupil size (M = 27,105, SD = 6565), reflecting higher cognitive loading than aiming at the dynamic target (M = 23,864, SD = 8762). Pilots' visual behavior is not only closely related to attention distribution, but also significantly associated with task characteristics. Military pilots demonstrated various visual scan patterns for searching and aiming at different types of targets based on the research settings of a flight simulator. The findings will facilitate system designers' understanding of military pilots' cognitive processes during tactical operations. They will assist human-centered interface design to improve pilots' situational awareness. The application of an eye-tracking device integrated with a flight simulator is a feasible and cost-effective intervention to improve the efficiency and safety of tactical training.Li W-C, Yu C-S, Braithwaite G, Greaves M. Pilots' attention distributions between chasing a moving target and a stationary target. Aerosp Med

  9. The effect of interventions targeting screen time reduction: A systematic review and meta-analysis.

    PubMed

    Wu, Lei; Sun, Samio; He, Yao; Jiang, Bin

    2016-07-01

    Previous studies have evaluated the effectiveness of interventions aimed at screen time reduction, but the results have been inconsistent. We therefore conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to summarize the accumulating evidence of the impact of interventions targeting screen time reduction on body mass index (BMI) reduction and screen time reduction. The PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched for RCTs on the effect of interventions targeting screen time reduction. The primary and secondary outcomes were the mean difference between the treatment and control groups in the changes in BMI and changes in screen viewing time. A random effects model was used to calculate the pooled mean differences. Fourteen trials including 2238 participants were assessed. The pooled analysis suggested that interventions targeting screen time reduction had a significant effect on BMI reduction (-0.15 kg/m, P < 0.001, I = 0) and on screen time reduction (-4.63 h/w, P = 0.003, I = 94.6%). Subgroup analysis showed that a significant effect of screen time reduction was observed in studies in which the duration of intervention was <7 months and that the types of interventions in those studies were health promotion curricula or counseling. Interventions for screen time reduction might be effective in reducing screen time and preventing excess weight. Further rigorous investigations with larger samples and longer follow-up periods are still needed to evaluate the efficacy of screen time reduction both in children and in adults.

  10. Targeted agents for patients with advanced/metastatic pancreatic cancer: A protocol for systematic review and network meta-analysis.

    PubMed

    Di, Baoshan; Pan, Bei; Ge, Long; Ma, Jichun; Wu, Yiting; Guo, Tiankang

    2018-03-01

    Pancreatic cancer (PC) is a devastating malignant tumor. Although surgical resection may offer a good prognosis and prolong survival, approximately 80% patients with PC are always diagnosed as unresectable tumor. National Comprehensive Cancer Network's (NCCN) recommended gemcitabine-based chemotherapy as efficient treatment. While, according to recent studies, targeted agents might be a better available option for advanced or metastatic pancreatic cancer patients. The aim of this systematic review and network meta-analysis will be to examine the differences of different targeted interventions for advanced/metastatic PC patients. We will conduct this systematic review and network meta-analysis using Bayesian method and according to Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) statement. To identify relevant studies, 6 electronic databases including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of science, CNKI (Chinese National Knowledge Infrastructure), and CBM (Chinese Biological Medical Database) will be searched. The risk of bias in included randomized controlled trials (RCTs) will be assessed using the Cochrane Handbook version 5.1.0. And we will use GRADE approach to assess the quality of evidence from network meta-analysis. Data will be analyzed using R 3.4.1 software. To the best of our knowledge, this systematic review and network meta-analysis will firstly use both direct and indirect evidence to compare the differences of different targeted agents and targeted agents plus chemotherapy for advanced/metastatic pancreatic cancer patients. This is a protocol of systematic review and meta-analysis, so the ethical approval and patient consent are not required. We will disseminate the results of this review by submitting to a peer-reviewed journal.

  11. Size-based emphysema cluster analysis on low attenuation area in 3D volumetric CT: comparison with pulmonary functional test

    NASA Astrophysics Data System (ADS)

    Lee, Minho; Kim, Namkug; Lee, Sang Min; Seo, Joon Beom; Oh, Sang Young

    2015-03-01

    To quantify low attenuation area (LAA) of emphysematous regions according to cluster size in 3D volumetric CT data of chronic obstructive pulmonary disease (COPD) patients and to compare these indices with their pulmonary functional test (PFT). Sixty patients with COPD were scanned by a more than 16-multi detector row CT scanner (Siemens Sensation 16 and 64) within 0.75mm collimation. Based on these LAA masks, a length scale analysis to estimate each emphysema LAA's size was performed as follows. At first, Gaussian low pass filter from 30mm to 1mm kernel size with 1mm interval on the mask was performed from large to small size, iteratively. Centroid voxels resistant to the each filter were selected and dilated by the size of the kernel, which was regarded as the specific size emphysema mask. The slopes of area and number of size based LAA (slope of semi-log plot) were analyzed and compared with PFT. PFT parameters including DLco, FEV1, and FEV1/FVC were significantly (all p-value< 0.002) correlated with the slopes (r-values; -0.73, 0.54, 0.69, respectively) and EI (r-values; -0.84, -0.60, -0.68, respectively). In addition, the D independently contributed regression for FEV1 and FEV1/FVC (adjust R sq. of regression study: EI only, 0.70, 0.45; EI and D, 0.71, 0.51, respectively). By the size based LAA segmentation and analysis, we evaluated the Ds of area, number, and distribution of size based LAA, which would be independent factors for predictor of PFT parameters.

  12. Multiparametric MRI followed by targeted prostate biopsy for men with suspected prostate cancer: a clinical decision analysis

    PubMed Central

    Willis, Sarah R; Ahmed, Hashim U; Moore, Caroline M; Donaldson, Ian; Emberton, Mark; Miners, Alec H; van der Meulen, Jan

    2014-01-01

    Objective To compare the diagnostic outcomes of the current approach of transrectal ultrasound (TRUS)-guided biopsy in men with suspected prostate cancer to an alternative approach using multiparametric MRI (mpMRI), followed by MRI-targeted biopsy if positive. Design Clinical decision analysis was used to synthesise data from recently emerging evidence in a format that is relevant for clinical decision making. Population A hypothetical cohort of 1000 men with suspected prostate cancer. Interventions mpMRI and, if positive, MRI-targeted biopsy compared with TRUS-guided biopsy in all men. Outcome measures We report the number of men expected to undergo a biopsy as well as the numbers of correctly identified patients with or without prostate cancer. A probabilistic sensitivity analysis was carried out using Monte Carlo simulation to explore the impact of statistical uncertainty in the diagnostic parameters. Results In 1000 men, mpMRI followed by MRI-targeted biopsy ‘clinically dominates’ TRUS-guided biopsy as it results in fewer expected biopsies (600 vs 1000), more men being correctly identified as having clinically significant cancer (320 vs 250), and fewer men being falsely identified (20 vs 50). The mpMRI-based strategy dominated TRUS-guided biopsy in 86% of the simulations in the probabilistic sensitivity analysis. Conclusions Our analysis suggests that mpMRI followed by MRI-targeted biopsy is likely to result in fewer and better biopsies than TRUS-guided biopsy. Future research in prostate cancer should focus on providing precise estimates of key diagnostic parameters. PMID:24934207

  13. In vitro toxicity analysis of nanoscale aluminum: Particle size and shape effects

    NASA Astrophysics Data System (ADS)

    Palazuelos Jorganes, Maria

    2007-12-01

    Nanostructured materials promise to revolutionize many key areas of science and technology. As our ability to manipulate matter at the nanoscale increases, there is a need to assess the effects of these materials on human health and the environment. Materials at the nanoscale are interesting and useful because they possess properties that are different from the equivalent bulk or molecular scale. These same properties can make toxicological profiles very different from those of the same materials on a different scale. There is a rising consensus that toxicity analysis of nanomaterials should start from a thorough physicochemical characterization of the materials under investigation in order to be able to establish a proper correlation between the nanoparticles characteristics and their effects and behavior in physiological environments. This research is a clear example of the necessity of comprehensive studies when investigating the toxicity of nanomaterials. Aluminum nanoparticles are being extensively used for their very unique energetic properties. These materials offer a very promising market that is fostering many startup companies which are expected to consolidate on strong technological positions. Aluminum is generally recognized as a non-toxic material to humans and it is widely used for applications which imply direct human contact. The effect of aluminum nanoparticles in human health is still an unknown. My research consisted of an in vitro toxicity screening of aluminum materials from nano to micron size, including spherical irregularly shaped particles. Several issues relating to size, shape, detection and characterization of nanoparticles in the different environments relevant to in vitro toxicity analysis were addressed and suitable protocols were developed. Lung human epithelial cells were exposed to different concentrations of these materials and the effects were analyzed by means of various toxicity tests. Some of the materials investigated caused

  14. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications.

    PubMed

    Wu, Wei; Luo, Li; Wang, Yi; Wu, Qi; Dai, Han-Bin; Li, Jian-Shu; Durkan, Colm; Wang, Nan; Wang, Gui-Xue

    2018-01-01

    Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process. For pH-responsive nanocarriers with programmable size, changes in pH (~6.5 for tumor tissue, ~5.5 for endosomes, and ~5.0 for lysosomes) may serve as an endogenous stimulus improving the safety and therapeutic efficacy of antitumor drugs. This review focuses on current advanced pH-responsive nanocarriers with programmable size changes for anticancer drug delivery. In particular, pH-responsive mechanisms for nanocarrier retention at tumor sites, size reduction for penetrating into tumor parenchyma, escaping from endo/lysosomes, and swelling or disassembly for drug release will be highlighted. Additional trends and challenges of employing these nanocarriers in future clinical applications are also addressed.

  15. Improving throughput for temporal target nomination using existing infrastructure

    NASA Astrophysics Data System (ADS)

    Raeth, Peter G.

    2007-04-01

    Earlier, we reported on predictive anomaly detection (PAD) for nominating targets within data streams generated by persistent sensing and surveillance. This technique is purely temporal and does not directly depend on the physics attendant on the sensed environment. Since PAD adapts to evolving data streams, there are no determinacy assumptions. We showed PAD to be general across sensor types, demonstrating it using synthetic chaotic data and in audio, visual, and infrared applications. Defense-oriented demonstrations included explosions, muzzle flashes, and missile and aircraft detection. Experiments were ground-based and air-to-air. As new sensors come on line, PAD offers immediate data filtering and target nomination. Its results can be taken individually, pixel by pixel, for spectral analysis and material detection/identification. They can also be grouped for shape analysis, target identification, and track development. PAD analyses reduce data volume by around 95%, depending on target number and size, while still retaining all target indicators. While PAD's code is simple when compared to physics codes, PAD tends to build a huge model. A PAD model for 512 x 640 frames may contain 19,660,800 Gaussian basis functions. (PAD models grow linearly with the number of pixels and the frequency content, in the FFT sense, of the sensed scenario's background data). PAD's complexity in terms of computational and data intensity is an example of what one sees in new algorithms now in the R&D pipeline, especially as DoD seeks capability that runs fully automatic, with little to no human interaction. Work is needed to improve algorithms' throughput while employing existing infrastructure, yet allowing for growth in the types of hardware employed. In this present paper, we discuss a generic cluster interface for legacy codes that can be partitioned at the data level. The discussion's foundation is the growth of PAD models to accommodate a particular scenario and the need to

  16. Margin selection to compensate for loss of target dose coverage due to target motion during external‐beam radiation therapy of the lung

    PubMed Central

    Osei, Ernest; Barnett, Rob

    2015-01-01

    The aim of this study is to provide guidelines for the selection of external‐beam radiation therapy target margins to compensate for target motion in the lung during treatment planning. A convolution model was employed to predict the effect of target motion on the delivered dose distribution. The accuracy of the model was confirmed with radiochromic film measurements in both static and dynamic phantom modes. 502 unique patient breathing traces were recorded and used to simulate the effect of target motion on a dose distribution. A 1D probability density function (PDF) representing the position of the target throughout the breathing cycle was generated from each breathing trace obtained during 4D CT. Changes in the target D95 (the minimum dose received by 95% of the treatment target) due to target motion were analyzed and shown to correlate with the standard deviation of the PDF. Furthermore, the amount of target D95 recovered per millimeter of increased field width was also shown to correlate with the standard deviation of the PDF. The sensitivity of changes in dose coverage with respect to target size was also determined. Margin selection recommendations that can be used to compensate for loss of target D95 were generated based on the simulation results. These results are discussed in the context of clinical plans. We conclude that, for PDF standard deviations less than 0.4 cm with target sizes greater than 5 cm, little or no additional margins are required. Targets which are smaller than 5 cm with PDF standard deviations larger than 0.4 cm are most susceptible to loss of coverage. The largest additional required margin in this study was determined to be 8 mm. PACS numbers: 87.53.Bn, 87.53.Kn, 87.55.D‐, 87.55.Gh

  17. The potential of targeted antibody prophylaxis in SARS outbreak control: a mathematic analysis.

    PubMed

    Bogaards, Johannes Antonie; Putter, Hein; Jan Weverling, Gerrit; Ter Meulen, Jan; Goudsmit, Jaap

    2007-03-01

    Severe acute respiratory syndrome (SARS) coronavirus-like viruses continue to circulate in animal reservoirs. If new mutants of SARS coronavirus do initiate another epidemic, administration of prophylactic antibodies to risk groups may supplement the stringent isolation procedures that contained the first SARS outbreak. We developed a mathematical model to investigate the effects of hospital admission and targeted antibody prophylaxis on the reproduction number R, defined as the number of secondary cases generated by an index case, during different SARS outbreak scenarios. Assuming a basic reproduction number R(0)=3, admission of patients to hospital within 4.3 days of symptom onset is necessary to achieve outbreak control without the need to further reduce community-based transmission. Control may be enhanced by providing pre-exposure prophylaxis to contacts of hospitalized patients, and through contact tracing and provision of post-exposure prophylaxis. Antibody prophylaxis may also be employed to reduce R below one and thereby restrict outbreak size and duration. Patient isolation alone can be sufficient to control SARS outbreaks provided that the time from onset to admission is short. Antibody prophylaxis as supplemental measure generally allows for containment of higher R(0) values and restricts both the size and duration of an outbreak.

  18. Time Critical Targeting: Predictive Vs Reactionary Methods An Analysis For The Future

    DTIC Science & Technology

    2002-06-01

    critical targets. To conduct the analysis, a four-step process is used. First, research is conducted to determine which future aircraft, spacecraft , and...the most promising aircraft, spacecraft , and weapons are determined , they are categorized for use in either the reactive or preemptive method. For...no significant delays, 292; Alan Vick et al., 17. 33 Ibid. 12 sensors are Electro-optical (EO) sensors, thermal imagers , and signal intelligence

  19. Ground-plane influences on size estimation in early visual processing.

    PubMed

    Champion, Rebecca A; Warren, Paul A

    2010-07-21

    Ground-planes have an important influence on the perception of 3D space (Gibson, 1950) and it has been shown that the assumption that a ground-plane is present in the scene plays a role in the perception of object distance (Bruno & Cutting, 1988). Here, we investigate whether this influence is exerted at an early stage of processing, to affect the rapid estimation of 3D size. Participants performed a visual search task in which they searched for a target object that was larger or smaller than distracter objects. Objects were presented against a background that contained either a frontoparallel or slanted 3D surface, defined by texture gradient cues. We measured the effect on search performance of target location within the scene (near vs. far) and how this was influenced by scene orientation (which, e.g., might be consistent with a ground or ceiling plane, etc.). In addition, we investigated how scene orientation interacted with texture gradient information (indicating surface slant), to determine how these separate cues to scene layout were combined. We found that the difference in target detection performance between targets at the front and rear of the simulated scene was maximal when the scene was consistent with a ground-plane - consistent with the use of an elevation cue to object distance. In addition, we found a significant increase in the size of this effect when texture gradient information (indicating surface slant) was present, but no interaction between texture gradient and scene orientation information. We conclude that scene orientation plays an important role in the estimation of 3D size at an early stage of processing, and suggest that elevation information is linearly combined with texture gradient information for the rapid estimation of 3D size. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers

    PubMed Central

    Pabinger, Stephan; Ernst, Karina; Pulverer, Walter; Kallmeyer, Rainer; Valdes, Ana M.; Metrustry, Sarah; Katic, Denis; Nuzzo, Angelo; Kriegner, Albert; Vierlinger, Klemens; Weinhaeusel, Andreas

    2016-01-01

    Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM). Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage. TABSAT is freely

  1. [The development of novel tumor targeting delivery strategy].

    PubMed

    Gao, Hui-le; Jiang, Xin-guo

    2016-02-01

    Tumor is one of the most serious threats for human being. Although many anti-tumor drugs are approved for clinical use, the treatment outcome is still modest because of the poor tumor targeting efficiency and low accumulation in tumor. Therefore, it is important to deliver anti-tumor drug into tumor efficiently, elevate drug concentration in tumor tissues and reduce the drug distribution in normal tissues. And it has been one of the most attractive directions of pharmaceutical academy and industry. Many kinds of strategies, especially various nanoparticulated drug delivery systems, have been developed to address the critical points of complex tumor microenvironment, which are partially or mostly satisfied for tumor treatment. In this paper, we carefully reviewed the novel targeting delivery strategies developed in recent years. The most powerful method is passive targeting delivery based on the enhanced permeability and retention(EPR) effect, and most commercial nanomedicines are based on the EPR effect. However, the high permeability and retention require different particle sizes, thus several kinds of size-changeable nanoparticles are developed, such as size reducible particles and assemble particles, to satisfy the controversial requirement for particle size and enhance both tumor retention and penetration. Surface charge reversible nanoparticles also shows a high efficiency because the anionic charge in blood circulation and normal organs decrease the unintended internalization. The charge can change into positive in tumor microenvironment, facilitating drug uptake by tumor cells. Additionally, tumor microenvironment responsive drug release is important to decrease drug side effect, and many strategies are developed, such as p H sensitive release and enzyme sensitive release. Except the responsive nanoparticles, shaping tumor microenvironment could attenuate the barriers in drug delivery, for example, decreasing tumor collagen intensity and normalizing tumor

  2. Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*

    PubMed Central

    Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela

    2009-01-01

    Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686

  3. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  4. Transcriptome-wide targets of alternative splicing by RBM4 and possible role in cancer.

    PubMed

    Markus, M Andrea; Yang, Yee Hwa J; Morris, Brian J

    2016-04-01

    This study determined transcriptome-wide targets of the splicing factor RBM4 using Affymetrix GeneChip(®) Human Exon 1.0 ST Arrays and HeLa cells treated with RBM4-specific siRNA. This revealed 238 transcripts that were targeted for alternative splicing. Cross-linking and immunoprecipitation experiments identified 945 RBM4 targets in mouse HEK293 cells, 39% of which were ascribed to "alternative splicing" by in silico pathway analysis. Mouse embryonic stem cells transfected with Rbm4 siRNA hairpins exhibited reduced colony numbers and size consistent with involvement of RBM4 in cell proliferation. RBM4 cDNA probing of a cancer cDNA array involving 18 different tumor types from 13 different tissues and matching normal tissue found overexpression of RBM4 mRNA (p<0.01) in cervical, breast, lung, colon, ovarian and rectal cancers. Many RBM4 targets we identified have been implicated in these cancers. In conclusion, our findings reveal transcriptome-wide targets of RBM4 and point to potential cancer-related targets and mechanisms that may involve RBM4. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    PubMed Central

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications. PMID:27690051

  6. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    PubMed

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  7. Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery

    NASA Astrophysics Data System (ADS)

    Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan

    2016-03-01

    Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications.

  8. Infrared variation reduction by simultaneous background suppression and target contrast enhancement for deep convolutional neural network-based automatic target recognition

    NASA Astrophysics Data System (ADS)

    Kim, Sungho

    2017-06-01

    Automatic target recognition (ATR) is a traditionally challenging problem in military applications because of the wide range of infrared (IR) image variations and the limited number of training images. IR variations are caused by various three-dimensional target poses, noncooperative weather conditions (fog and rain), and difficult target acquisition environments. Recently, deep convolutional neural network-based approaches for RGB images (RGB-CNN) showed breakthrough performance in computer vision problems, such as object detection and classification. The direct use of RGB-CNN to the IR ATR problem fails to work because of the IR database problems (limited database size and IR image variations). An IR variation-reduced deep CNN (IVR-CNN) to cope with the problems is presented. The problem of limited IR database size is solved by a commercial thermal simulator (OKTAL-SE). The second problem of IR variations is mitigated by the proposed shifted ramp function-based intensity transformation. This can suppress the background and enhance the target contrast simultaneously. The experimental results on the synthesized IR images generated by the thermal simulator (OKTAL-SE) validated the feasibility of IVR-CNN for military ATR applications.

  9. Multiple-collision analysis of characteristic X-rays from low-energy Ar 2+ travelling in solid targets

    NASA Astrophysics Data System (ADS)

    Cipolla, Sam J.; Mildebrath, Mark E.

    1983-12-01

    The density of atoms in a solid target fosters a multiple-collision mechanism that leads to the production of an equilibrium fraction of L-shell vacancies in an incident heavy ion. It is then possiblein a subsequent ion-atom collision in the solid for an L-vacancy to be transferred to the K-shell of a target atom via rotational coupling of the 2p π-2p σ molecular orbitals formed in the ion-atom quasimolecule. The vacancy-transfer cross section and the equilibrium fraction and lifetime of the vacancies can be found by using an appropriate multiple-collision analysis of the characteristic target and projectile X-rays. Results will be presented for 160-380 keV Ar 2+ incident of targets of Mg, Al, and Si.

  10. The Holistic Targeting (HOT) Methodology as the Means to Improve Information Operations (IO) Target Development and Prioritization

    DTIC Science & Technology

    2008-09-01

    software facilitate targeting problem understanding and the network analysis tool, Palantir , as an efficient and tailored semi-automated means to...the use of compendium software facilitate targeting problem understanding and the network analysis tool, Palantir , as an efficient and tailored semi...OBJECTIVES USING COMPENDIUM SOFTWARE .....63 E. HOT TARGET PRIORITIZATION AND DEVELOPMENT USING PALANTIR SOFTWARE .................................69 1

  11. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size

    PubMed Central

    King, Richard B.

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID

  12. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.

    PubMed

    King, Richard B; Stanford, Kristin M; Jones, Peter C; Bekker, Kent

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation.

  13. Space-based infrared sensors of space target imaging effect analysis

    NASA Astrophysics Data System (ADS)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  14. A study on quantitative analysis of field size and dose by using gating system in 4D conformal radiation treatment

    NASA Astrophysics Data System (ADS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Chung, Woon-Kwan; Cho, Jae-Hwan; Lee, Hae-Kag

    2012-10-01

    This study evaluated the gating-based 4-D conformal radiation therapy (4D-CT) treatment planning by a comparison with the common 3-D conformal radiation therapy (3D-CT) treatment planning and examined the change in treatment field size and dose to the tumors and adjacent normal tissues because an unnecessary dose is also included in the 3-D treatment planning for the radiation treatment of tumors in the chest and abdomen. The 3D-CT and gating-based 4D-CT images were obtained from patients who had undergone radiation treatment for chest and abdomen tumors in the oncology department. After establishing a treatment plan, the CT treatment and planning system were used to measure the change in field size for analysis. A dose volume histogram (DVH) was used to calculate the appropriate dose to planning target volume (PTV) tumors and adjacent normal tissue. The difference in the treatment volume of the chest was 0.6 and 0.83 cm on the X- and Y-axis, respectively, for the gross tumor volume (GTV). Accordingly, the values in the 4D-CT treatment planning were smaller and the dose was more concentrated by 2.7% and 0.9% on the GTV and clinical target volume (CTV), respectively. The normal tissues in the surrounding normal tissues were reduced by 3.0%, 7.2%, 0.4%, 1.7%, 2.6% and 0.2% in the bronchus, chest wall, esophagus, heart, lung and spinal cord, respectively. The difference in the treatment volume of the abdomen was 0.72 cm on the X-axis and 0.51 cm on the Y-axis for the GTV; and 1.06 cm on the X-axis and 1.85 cm on the Y-axis for the PTV. Therefore, the values in the 4D-CT treatment planning were smaller. The dose was concentrated by 6.8% and 4.3% on the GTV and PTV, respectively, whereas the adjacent normal tissues in the cord, Lt. kidney, Rt. kidney, small bowels and whole liver were reduced by 3.2%, 4.2%, 1.5%, 6.2% and 12.7%, respectively. The treatment field size was smaller in volume in the case of the 4D-CT treatment planning. In the DVH, the 4D-CT treatment

  15. Grain-size-yield stress relationship: Analysis and computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, M.A.; Benson, D.J.; Fu, H.H.

    1999-07-01

    The seminal contributions of Julia Weertman to the understanding of the mechanical properties of nanocrystalline materials will be briefly outlined. A constitutive equation predicting the effect of grain size on the yield stress of metals, based on the model proposed by M.A. Meyers and E. Ashworth, is discussed and extended to the nanocrystalline regime. At large grain sizes, it has the Hall-Petch form, and in the nanocrystalline domain the slope gradually decreases until it asymptotically approaches the flow stress of the grain boundaries. The material is envisaged as a composite, comprised of the grain interior, with flow stress {sigma}{sub fB},more » and grain boundary work-hardened layer, with flow stress {sigma}{sub fGB}. Three principal factors contribute to the grain-boundary hardening: (1) the grain boundaries act as barriers to plastic flow; (2) the grain boundaries act as dislocation sources; and (3) elastic anisotropy causes additional stresses in grain-boundary surroundings. The predictions of this model are compared with experimental measurements over the mono, micro, and nanocrystalline domains. Computational predictions are made of plastic flow as a function of grain size incorporating elastic and plastic anisotropy as well as differences of dislocation accumulation rate in grain boundary regions and grain interiors. This is the first plasticity calculation that accounts for grain size effects in a physically-based manner. 58 refs., 7 figs., 1 tab.« less

  16. Pion emission in α-particle interactions with various targets of nuclear emulsion detector

    NASA Astrophysics Data System (ADS)

    Abdelsalam, A.; Abou-Moussa, Z.; Rashed, N.; M. Badawy, B.; A. Amer, H.; Osman, W.; M. El-Ashmawy, M.; Abdallah, N.

    2015-09-01

    The behavior of relativistic hadron multiplicity for 4He-nucleus interactions is investigated. The experiment is carried out at 2.1 A and 3.7 A GeV (Dubna energy) to search for the incident energy effect on the interactions inside different emulsion target nuclei. Data are presented in terms of the number of emitted relativistic hadrons in both forward and backward angular zones. The dependence on the target size is presented. For this purpose the statistical events are discriminated into groups according to the interactions with H, CNO, Em, and AgBr target nuclei. The separation of events, into the mentioned groups, is executed based on Glauber's multiple scattering theory approach. Features suggestive of a decay mechanism seem to be a characteristic of the backward emission of relativistic hadrons. The results strongly support the assumption that the relativistic hadrons may already be emitted during the de-excitation of the excited target nucleus, in a behavior like that of compound-nucleus disintegration. Regarding the limiting fragmentation hypothesis beyond 1 A GeV, the target size is the main parameter affecting the backward production of the relativistic hadron. The incident energy is a principal factor responsible for the forward relativistic hadron production, implying that this system of particle production is a creation system. However, the target size is an effective parameter as well as the projectile size considering the geometrical concept regarded in the nuclear fireball model. The data are analyzed in the framework of the FRITIOF model.

  17. Effects of Grain Size on Ultrasonic Attenuation in Type 316L Stainless Steel

    PubMed Central

    Wan, Tao; Wakui, Takashi; Futakawa, Masatoshi; Obayashi, Hironari

    2017-01-01

    A lead bismuth eutectic (LBE) spallation target will be installed in the Target Test Facility (TEF-T) in the Japan Proton Accelerator Research Complex (J-PARC). The spallation target vessel filled with LBE is made of type 316L stainless steel. However, various damages, such as erosion/corrosion damage and liquid metal embrittlement caused by contact with flowing LBE at high temperature, and irradiation hardening caused by protons and neutrons, may be inflicted on the target vessel, which will deteriorate the steel and might break the vessel. To monitor the target vessel for prevention of an accident, an ultrasonic technique has been proposed to establish off-line evaluation for estimating vessel material status during the target maintenance period. Basic R&D must be carried out to clarify the dependency of ultrasonic wave propagation behavior on material microstructures and obtain fundamental knowledge. As a first step, ultrasonic waves scattered by the grains of type 316L stainless steel are investigated using new experimental and numerical approaches in the present study. The results show that the grain size can be evaluated exactly and quantitatively by calculating the attenuation coefficient of the ultrasonic waves scattered by the grains. The results also show that the scattering regimes of ultrasonic waves depend heavily on the ratio of wavelength to average grain size, and are dominated by grains of extraordinarily large size along the wave propagation path. PMID:28773115

  18. Particle size related bacterial recovery in immunomagnetic separation

    USDA-ARS?s Scientific Manuscript database

    Magnetic nanoparticles (MNPs) have demonstrated superior capture efficiencies in small molecule targets during immunomagnetic separation (IMS), but the potentials of MNPs in bacterial isolation have not been verified. The objective of this study was to evaluate the effect of magnetic particle size o...

  19. Bridging meta-analysis and the comparative method: a test of seed size effect on germination after frugivores' gut passage.

    PubMed

    Verdú, Miguel; Traveset, Anna

    2004-02-01

    Most studies using meta-analysis try to establish relationships between traits across taxa from interspecific databases and, thus, the phylogenetic relatedness among these taxa should be taken into account to avoid pseudoreplication derived from common ancestry. This paper illustrates, with a representative example of the relationship between seed size and the effect of frugivore's gut on seed germination, that meta-analytic procedures can also be phylogenetically corrected by means of the comparative method. The conclusions obtained in the meta-analytical and phylogenetical approaches are very different. The meta-analysis revealed that the positive effects that gut passage had on seed germination increased with seed size in the case of gut passage through birds whereas decreased in the case of gut passage through non-flying mammals. However, once the phylogenetic relatedness among plant species was taken into account, the effects of gut passage on seed germination did not depend on seed size and were similar between birds and non-flying mammals. Some methodological considerations are given to improve the bridge between the meta-analysis and the comparative method.

  20. R2 effect-size measures for mediation analysis

    PubMed Central

    Fairchild, Amanda J.; MacKinnon, David P.; Taborga, Marcia P.; Taylor, Aaron B.

    2010-01-01

    R2 effect-size measures are presented to assess variance accounted for in mediation models. The measures offer a means to evaluate both component paths and the overall mediated effect in mediation models. Statistical simulation results indicate acceptable bias across varying parameter and sample-size combinations. The measures are applied to a real-world example using data from a team-based health promotion program to improve the nutrition and exercise habits of firefighters. SAS and SPSS computer code are also provided for researchers to compute the measures in their own data. PMID:19363189

  1. R2 effect-size measures for mediation analysis.

    PubMed

    Fairchild, Amanda J; Mackinnon, David P; Taborga, Marcia P; Taylor, Aaron B

    2009-05-01

    R(2) effect-size measures are presented to assess variance accounted for in mediation models. The measures offer a means to evaluate both component paths and the overall mediated effect in mediation models. Statistical simulation results indicate acceptable bias across varying parameter and sample-size combinations. The measures are applied to a real-world example using data from a team-based health promotion program to improve the nutrition and exercise habits of firefighters. SAS and SPSS computer code are also provided for researchers to compute the measures in their own data.

  2. Analysis of various factors affecting pupil size in patients with glaucoma.

    PubMed

    Park, Ji Woong; Kang, Bong Hui; Kwon, Ji Won; Cho, Kyong Jin

    2017-09-16

    Pupil size is an important factor in predicting post-operative satisfaction. We assessed the correlation between pupil size, measured by Humphrey static perimetry, and various affecting factors in patients with glaucoma. In total, 825 eyes of 415 patients were evaluated retrospectively. Pupil size was measured with Humphrey static perimetry. Comparisons of pupil size according to the presence of glaucoma were evaluated, as were correlations between pupil size and various factors, including age, logMAR best corrected visual acuity (BCVA), retinal nerve fiber layer (RNFL) thickness, spherical equivalent, intraocular pressure, axial length, central corneal thickness, white-to-white, and the kappa angle. Pupil size was significantly smaller in glaucoma patients than in glaucoma suspects (p < 0.001) or the normal group (p < 0.001). Pupil size decreased significantly as age (p < 0.001) and central cornea thickness (p = 0.007) increased, and increased significantly as logMAR BCVA (p = 0.02) became worse and spherical equivalent (p = 0.007) and RNFL thickness (p = 0.042) increased. In patients older than 50 years, pupil size was significantly larger in eyes with a history of cataract surgery. Humphrey static perimetry can be useful in measuring pupil size. Pupil size was significantly smaller in eyes with glaucoma. Other factors affecting pupil size can be used in a preoperative evaluation when considering cataract surgery or laser refractive surgery.

  3. Visualization and Analysis of MiRNA-Targets Interactions Networks.

    PubMed

    León, Luis E; Calligaris, Sebastián D

    2017-01-01

    MicroRNAs are a class of small, noncoding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the target mRNAs, mainly leading to down-regulation or repression of the target genes. MicroRNAs are involved in diverse regulatory pathways in normal and pathological conditions. In this context, it is highly important to identify the targets of specific microRNA in order to understand the mechanism of its regulation and consequently its involvement in disease. However, the microRNA target identification is experimentally laborious and time-consuming. The in silico prediction of microRNA targets is an extremely useful approach because you can identify potential mRNA targets, reduce the number of possibilities and then, validate a few microRNA-mRNA interactions in an in vitro experimental model. In this chapter, we describe, in a simple way, bioinformatics guidelines to use miRWalk database and Cytoscape software for analyzing microRNA-mRNA interactions through their visualization as a network.

  4. Reducing myocardial infarct size: challenges and future opportunities

    PubMed Central

    Bulluck, Heerajnarain; Yellon, Derek M; Hausenloy, Derek J

    2016-01-01

    Despite prompt reperfusion by primary percutaneous coronary intervention (PPCI), the mortality and morbidity of patients presenting with an acute ST-segment elevation myocardial infarction (STEMI) remain significant with 9% death and 10% heart failure at 1 year. In these patients, one important neglected therapeutic target is ‘myocardial reperfusion injury’, a term given to the cardiomyocyte death and microvascular dysfunction which occurs on reperfusing ischaemic myocardium. A number of cardioprotective therapies (both mechanical and pharmacological), which are known to target myocardial reperfusion injury, have been shown to reduce myocardial infarct (MI) size in small proof-of-concept clinical studies—however, being able to demonstrate improved clinical outcomes has been elusive. In this article, we review the challenges facing clinical cardioprotection research, and highlight future therapies for reducing MI size and preventing heart failure in patients presenting with STEMI at risk of myocardial reperfusion injury. PMID:26674987

  5. Effect of modulation of the particle size distributions in the direct solid analysis by total-reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Fernández-Ruiz, Ramón; Friedrich K., E. Josue; Redrejo, M. J.

    2018-02-01

    The main goal of this work was to investigate, in a systematic way, the influence of the controlled modulation of the particle size distribution of a representative solid sample with respect to the more relevant analytical parameters of the Direct Solid Analysis (DSA) by Total-reflection X-Ray Fluorescence (TXRF) quantitative method. In particular, accuracy, uncertainty, linearity and detection limits were correlated with the main parameters of their size distributions for the following elements; Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb. In all cases strong correlations were finded. The main conclusion of this work can be resumed as follows; the modulation of particles shape to lower average sizes next to a minimization of the width of particle size distributions, produce a strong increment of accuracy, minimization of uncertainties and limit of detections for DSA-TXRF methodology. These achievements allow the future use of the DSA-TXRF analytical methodology for development of ISO norms and standardized protocols for the direct analysis of solids by mean of TXRF.

  6. Controlling the spotlight of attention: visual span size and flexibility in schizophrenia.

    PubMed

    Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M

    2011-10-01

    The current study investigated the size and flexible control of visual span among patients with schizophrenia during visual search performance. Visual span is the region of the visual field from which one extracts information during a single eye fixation, and a larger visual span size is linked to more efficient search performance. Therefore, a reduced visual span may explain patients' impaired performance on search tasks. The gaze-contingent moving window paradigm was used to estimate the visual span size of patients and healthy participants while they performed two different search tasks. In addition, changes in visual span size were measured as a function of two manipulations of task difficulty: target-distractor similarity and stimulus familiarity. Patients with schizophrenia searched more slowly across both tasks and conditions. Patients also demonstrated smaller visual span sizes on the easier search condition in each task. Moreover, healthy controls' visual span size increased as target discriminability or distractor familiarity increased. This modulation of visual span size, however, was reduced or not observed among patients. The implications of the present findings, with regard to previously reported visual search deficits, and other functional and structural abnormalities associated with schizophrenia, are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Analysis of Giga-size Earth Observation Data in Open Source GRASS GIS 7 - from Desktop to On-line Solutions.

    NASA Astrophysics Data System (ADS)

    Stepinski, T. F.; Mitasova, H.; Jasiewicz, J.; Neteler, M.; Gebbert, S.

    2014-12-01

    GRASS GIS is a leading open source GIS for geospatial analysis and modeling. In addition to being utilized as a desktop GIS it also serves as a processing engine for high performance geospatial computing for applications in diverse disciplines. The newly released GRASS GIS 7 supports big data analysis including temporal framework, image segmentation, watershed analysis, synchronized 2D/3D animations and many others. This presentation will focus on new GRASS GIS 7-powered tools for geoprocessing giga-size earth observation (EO) data using spatial pattern analysis. Pattern-based analysis connects to human visual perception of space as well as makes geoprocessing of giga-size EO data possible in an efficient and robust manner. GeoPAT is a collection of GRASS GIS 7 modules that fully integrates procedures for pattern representation of EO data and patterns similarity calculations with standard GIS tasks of mapping, maps overlay, segmentation, classification(Fig 1a), change detections etc. GeoPAT works very well on a desktop but it also underpins several GeoWeb applications (http://sil.uc.edu/ ) which allow users to do analysis on selected EO datasets without the need to download them. The GRASS GIS 7 temporal framework and high resolution visualizations will be illustrated using time series of giga-size, lidar-based digital elevation models representing the dynamics of North Carolina barrier islands over the past 15 years. The temporal framework supports efficient raster and vector data series analysis and simplifies data input for visual analysis of dynamic landscapes (Fig. 1b) allowing users to rapidly identify vulnerable locations, changes in built environment and eroding coastlines. Numerous improvements in GRASS GIS 7 were implemented to support terabyte size data processing for reconstruction of MODIS land surface temperature (LST) at 250m resolution using multiple regressions and PCA (Fig. 1c) . The new MODIS LST series (http://gis.cri.fmach.it/eurolst/) includes

  8. THE EFFECT OF PROJECTION ON DERIVED MASS-SIZE AND LINEWIDTH-SIZE RELATIONSHIPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Rahul; Kauffmann, Jens; Goodman, Alyssa A.

    2010-04-01

    Power-law mass-size and linewidth-size correlations, two of 'Larson's laws', are often studied to assess the dynamical state of clumps within molecular clouds. Using the result of a hydrodynamic simulation of a molecular cloud, we investigate how geometric projection may affect the derived Larson relationships. We find that large-scale structures in the column density map have similar masses and sizes to those in the three-dimensional simulation (position-position-position, PPP). Smaller scale clumps in the column density map are measured to be more massive than the PPP clumps, due to the projection of all emitting gas along lines of sight. Further, due tomore » projection effects, structures in a synthetic spectral observation (position-position-velocity, PPV) may not necessarily correlate with physical structures in the simulation. In considering the turbulent velocities only, the linewidth-size relationship in the PPV cube is appreciably different from that measured from the simulation. Including thermal pressure in the simulated line widths imposes a minimum line width, which results in a better agreement in the slopes of the linewidth-size relationships, though there are still discrepancies in the offsets, as well as considerable scatter. Employing commonly used assumptions in a virial analysis, we find similarities in the computed virial parameters of the structures in the PPV and PPP cubes. However, due to the discrepancies in the linewidth-size and mass-size relationships in the PPP and PPV cubes, we caution that applying a virial analysis to observed clouds may be misleading due to geometric projection effects. We speculate that consideration of physical processes beyond kinetic and gravitational pressure would be required for accurately assessing whether complex clouds, such as those with highly filamentary structure, are bound.« less

  9. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindarajan, A.G.; Lindow, S.E.

    1988-03-01

    Four bacterial species are known to catalyze ice formation at temperatures just below 0/sup 0/C. To better understand the relationship between the molecular structure of bacterial ice-nucleation site(s) and the quantitative and qualitative features of the ice-nucleation-active phenotype, the authors determined by ..gamma..-radiation analysis the in situ size of ice-nucleation sites in strains of Pseudomonas syringae and Erwinia herbicola and in Escherichia coli HB101 carrying the plasmid pICE1.1. Lyophilized cells of each bacterial strain were irradiated with a flux of ..gamma.. radiation from 0 to 10.2 Mrad. Differential concentrations of active ice nuclei decreased as a first-order function of radiationmore » dose in all strains as temperature was decreased from -2/sup 0/C to -14/sup 0/C in 1/sup 0/C intervals. Sizes of ice nuclei were calculated from the /sup +/-radiation flux at which 37% of initial ice nuclei active within each 1/sup 0/C temperature interval remained. The minimum mass of a functional ice nucleus was about 150 kDa for all strains. The size of ice nuclei increased logarithmically with increasing temperature from -12/sup 0/CC to -2/sup 0/C, where the estimated nucleant mass was 19,000 kDa. The ice nucleant in these three bacterial species may represent an oligomeric structure, composed at least in part of an ice gene product that can self-associate to assume many possible sizes.« less

  10. Measuring Response to Intervention: Comparing Three Effect Size Calculation Techniques for Single-Case Design Analysis

    ERIC Educational Resources Information Center

    Ross, Sarah Gwen

    2012-01-01

    Response to intervention (RTI) is increasingly being used in educational settings to make high-stakes, special education decisions. Because of this, the accurate use and analysis of single-case designs to monitor intervention effectiveness has become important to the RTI process. Effect size methods for single-case designs provide a useful way to…

  11. A meta-analysis of aortic root size in elite athletes.

    PubMed

    Iskandar, Aline; Thompson, Paul D

    2013-02-19

    The aorta is exposed to hemodynamic stress during exercise, but whether or not the aorta is larger in athletes is not clear. We performed a systematic literature review and meta-analysis to examine whethere athletes demonstrate increased aortic root dimensions compared with nonathlete controls. We searched MEDLINE and Scopus from inception through August 12, 2012, for English-language studies reporting the aortic root size in elite athletes. Two investigators independently extracted athlete and study characteristics. A multivariate linear mixed model was used to conduct meta-regression analyses. We identified 71 studies reporting aortic root dimensions in 8564 unique athletes, but only 23 of these studies met our criteria by reporting aortic root dimensions at the aortic valve annulus or sinus of Valsalva in elite athletes (n=5580). Athletes were compared directly with controls (n=727) in 13 studies. On meta-regression, the weighted mean aortic root diameter measured at the sinuses of Valsalva was 3.2 mm (P=0.02) larger in athletes than in the nonathletic controls, whereas aortic root size at the aortic valve annulus was 1.6 mm (P=0.04) greater in athletes than in controls. Elite athletes have a small but significantly larger aortic root diameter at the sinuses of Valsalva and aortic valve annulus, but this difference is minor and clinically insignificant. Clinicians evaluating athletes should know that marked aortic root dilatation likely represents a pathological process and not a physiological adaptation to exercise.

  12. Forward-backward multiplicity correlations of target fragments in nucleus-emulsion collisions at a few hundred MeV/u

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Hai; Chen, Yan-Ling; Wang, Guo-Rong; Li, Wang-Dong; Wang, Qing; Yao, Ji-Jie; Zhou, Jian-Guo; Li, Rong; Li, Jun-Sheng; Li, Hui-Ling

    2015-01-01

    The forward-backward multiplicity and correlations of a target evaporated fragment (black track particle) and target recoiled proton (grey track particle) emitted from 150 A MeV 4He, 290 A MeV 12C, 400 A MeV 12C, 400 A MeV 20Ne and 500 A MeV 56Fe induced different types of nuclear emulsion target interactions are investigated. It is found that the forward and backward averaged multiplicity of a grey, black and heavily ionized track particle increases with the increase of the target size. The averaged multiplicity of a forward black track particle, backward black track particle, and backward grey track particle do not depend on the projectile size and energy, but the averaged multiplicity of a forward grey track particle increases with an increase of projectile size and energy. The backward grey track particle multiplicity distribution follows an exponential decay law and the decay constant decreases with an increase of target size. The backward-forward multiplicity correlations follow linear law which is independent of the projectile size and energy, and the saturation effect is observed in some heavy target data sets.

  13. Targeted nano analysis of water and ions using cryocorrelative light and scanning transmission electron microscopy.

    PubMed

    Nolin, Frédérique; Ploton, Dominique; Wortham, Laurence; Tchelidze, Pavel; Balossier, Gérard; Banchet, Vincent; Bobichon, Hélène; Lalun, Nathalie; Terryn, Christine; Michel, Jean

    2012-11-01

    Cryo fluorescence imaging coupled with the cryo-EM technique (cryo-CLEM) avoids chemical fixation and embedding in plastic, and is the gold standard for correlated imaging in a close to native state. This multi-modal approach has not previously included elementary nano analysis or evaluation of water content. We developed a new approach allowing analysis of targeted in situ intracellular ions and water measurements at the nanoscale (EDXS and STEM dark field imaging) within domains identified by examination of specific GFP-tagged proteins. This method allows both water and ions- fundamental to cell biology- to be located and quantified at the subcellular level. We illustrate the potential of this approach by investigating changes in water and ion content in nuclear domains identified by GFP-tagged proteins in cells stressed by Actinomycin D treatment and controls. The resolution of our approach was sufficient to distinguish clumps of condensed chromatin from surrounding nucleoplasm by fluorescence imaging and to perform nano analysis in this targeted compartment. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The cognitive loci of the display and task-relevant set size effects on distractor interference: Evidence from a dual-task paradigm.

    PubMed

    Park, Bo Youn; Kim, Sujin; Cho, Yang Seok

    2018-02-01

    The congruency effect of a task-irrelevant distractor has been found to be modulated by task-relevant set size and display set size. The present study used a psychological refractory period (PRP) paradigm to examine the cognitive loci of the display set size effect (dilution effect) and the task-relevant set size effect (perceptual load effect) on distractor interference. A tone discrimination task (Task 1), in which a response was made to the pitch of the target tone, was followed by a letter discrimination task (Task 2) in which different types of visual target display were used. In Experiment 1, in which display set size was manipulated to examine the nature of the display set size effect on distractor interference in Task 2, the modulation of the congruency effect by display set size was observed at both short and long stimulus-onset asynchronies (SOAs), indicating that the display set size effect occurred after the target was selected for processing in the focused attention stage. In Experiment 2, in which task-relevant set size was manipulated to examine the nature of the task-relevant set size effect on distractor interference in Task 2, the effects of task-relevant set size increased with SOA, suggesting that the target selection efficiency in the preattentive stage was impaired with increasing task-relevant set size. These results suggest that display set size and task-relevant set size modulate distractor processing in different ways.

  15. Automated particle identification through regression analysis of size, shape and colour

    NASA Astrophysics Data System (ADS)

    Rodriguez Luna, J. C.; Cooper, J. M.; Neale, S. L.

    2016-04-01

    Rapid point of care diagnostic tests and tests to provide therapeutic information are now available for a range of specific conditions from the measurement of blood glucose levels for diabetes to card agglutination tests for parasitic infections. Due to a lack of specificity these test are often then backed up by more conventional lab based diagnostic methods for example a card agglutination test may be carried out for a suspected parasitic infection in the field and if positive a blood sample can then be sent to a lab for confirmation. The eventual diagnosis is often achieved by microscopic examination of the sample. In this paper we propose a computerized vision system for aiding in the diagnostic process; this system used a novel particle recognition algorithm to improve specificity and speed during the diagnostic process. We will show the detection and classification of different types of cells in a diluted blood sample using regression analysis of their size, shape and colour. The first step is to define the objects to be tracked by a Gaussian Mixture Model for background subtraction and binary opening and closing for noise suppression. After subtracting the objects of interest from the background the next challenge is to predict if a given object belongs to a certain category or not. This is a classification problem, and the output of the algorithm is a Boolean value (true/false). As such the computer program should be able to "predict" with reasonable level of confidence if a given particle belongs to the kind we are looking for or not. We show the use of a binary logistic regression analysis with three continuous predictors: size, shape and color histogram. The results suggest this variables could be very useful in a logistic regression equation as they proved to have a relatively high predictive value on their own.

  16. Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2016-04-01

    Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of short-lived unstable nuclei, there is a need for an alternative to electron scattering. Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)], 10.1103/PhysRevC.89.011601 proposed a possible way of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross section, σR. The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb breakup contributions as well as density distributions improved by paring correlation. Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in the three-dimensional coordinate space. Results: We analyze σR's of 103 nuclei with Z =20 , 28, 40, 50, 70, and 82 incident on light targets, H,21, 4He, and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb excitation can safely be neglected. We find that the so-called reaction radius, aR=√{σR/π } , for the proton target is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to extract the nuclear sizes. Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately determined by only the matter radius and neutron-skin thickness. If σR's at

  17. Bipartite networks improve understanding of effects of waterbody size and angling method on angler–fish interactions

    USGS Publications Warehouse

    Chizinski, Christopher J.; Martin, Dustin R.; Shizuka, Daizaburo; Pope, Kevin L.

    2018-01-01

    Networks used to study interactions could provide insights to fisheries. We compiled data from 27 297 interviews of anglers across waterbodies that ranged in size from 1 to 12 113 ha. Catch rates of fish species among anglers grouped by species targeted generally differed between angling methods (bank or boat). We constructed angler–catch bipartite networks (angling method specific) between anglers and fish and measured several network metrics. There was considerable variation in networks among waterbodies, with multiple metrics influenced by waterbody size. Number of species-targeting angler groups and number of fish species caught increased with increasing waterbody size. Mean number of links for species-targeting angler groups and fish species caught also increased with waterbody size. Connectance (realized proportion of possible links) of angler–catch interaction networks decreased slower for boat anglers than for bank anglers with increasing waterbody size. Network specialization (deviation of number of interactions from expected) was not significantly related to waterbody size or angling methods. Application of bipartite networks in fishery science requires careful interpretation of outputs, especially considering the numerous confounding factors prevalent in recreational fisheries.

  18. An Experiment Quantifying The Effect Of Clutter On Target Detection

    NASA Astrophysics Data System (ADS)

    Weathersby, Marshall R.; Schmieder, David E.

    1985-01-01

    Experiments were conducted to determine the influence of background clutter on target detection criteria. The experiment consisted of placing observers in front of displayed images on a TV monitor. Observer ability to detect military targets embedded in simulated natural and manmade background clutter was measured when there was unlimited viewing time. Results were described in terms of detection probability versus target resolution for various signal to clutter ratios (SCR). The experiments were preceded by a search for a meaningful clutter definition. The selected definition was a statistical measure computed by averaging the standard deviation of contiguous scene cells over the whole scene. The cell size was comparable to the target size. Observer test results confirmed the expectation that the resolution required for a given detection probability was a continuum function of the clutter level. At the lower SCRs the resolution required for a high probability of detection was near 6 lines pairs per target (LP/TGT), while at the higher SCRs it was found that a resolution of less than 0.25 LP/TGT would yield a high probability of detection. These results are expected to aid in target acquisition performance modeling and to lead to improved specifications for imaging automatic target screeners.

  19. Role of step size and max dwell time in anatomy based inverse optimization for prostate implants

    PubMed Central

    Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha

    2013-01-01

    In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323

  20. An Effect Size for Regression Predictors in Meta-Analysis

    ERIC Educational Resources Information Center

    Aloe, Ariel M.; Becker, Betsy Jane

    2012-01-01

    A new effect size representing the predictive power of an independent variable from a multiple regression model is presented. The index, denoted as r[subscript sp], is the semipartial correlation of the predictor with the outcome of interest. This effect size can be computed when multiple predictor variables are included in the regression model…