Sample records for target specific intracellular

  1. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-04

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  2. Genus-specific PCR Primers Targeting Intracellular Parasite Euduboscquella (Dinoflagellata: Syndinea)

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Ho; Choi, Jung Min; Kim, Young-Ok

    2018-03-01

    We designed a genus-specific primer pair targeting the intracellular parasite Euduboscquella. To increase target specificity and inhibit untargeted PCR, two nucleotides were added at the 3' end of the reverse primer, one being a complementary nucleotide to the Euduboscquella-specific SNP (single-nucleotide polymorphism) and the other a deliberately mismatched nucleotide. Target specificity of the primer set was verified experimentally using PCR of two Euduboscquella species (positive controls) and 15 related species (negative controls composed of ciliates, diatoms and dinoflagellates), and analytical comparison with SILVA SSU rRNA gene database (release 119) in silico. In addition, we applied the Euduboscquella-specific primer set to four environmental samples previously determined by cytological staining to be either positive or negative for Euduboscquella. As expected, only positive controls and environmental samples known to contain Euduboscquella were successfully amplified by the primer set. An inferred SSU rRNA gene phylogeny placed environmental samples containing aloricate ciliates infected by Euduboscquella in a cluster discrete from Euduboscquella groups a-d previously reported from loricate, tintinnid ciliates.

  3. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin.

    PubMed

    Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung

    2017-11-17

    With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.

  4. Toward Intracellular Targeted Delivery of Cancer Therapeutics

    PubMed Central

    Pandya, Hetal; Debinski, Waldemar

    2013-01-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells. PMID:22671766

  5. Synthesis of fluorescent dye-doped silica nanoparticles for target-cell-specific delivery and intracellular microRNA imaging.

    PubMed

    Li, Henan; Mu, Yawen; Qian, Shanshan; Lu, Jusheng; Wan, Yakun; Fu, Guodong; Liu, Songqin

    2015-01-21

    MicroRNA (miRNA) is found to be up-regulated in many kinds of cancer and therefore is classified as an oncomiR. Herein, we design a multifunctional fluorescent nanoprobe (FSiNP-AS/MB) with the AS1411 aptamer and a molecular beacon (MB) co-immobilized on the surface of the fluorescent dye-doped silica nanoparticles (FSiNPs) for target-cell-specific delivery and intracellular miRNA imaging. The FSiNPs were prepared by a facile reverse microemulsion method from tetraethoxysilane and silane derivatized coumarin that was previously synthesized by click chemistry. The as-prepared FSiNPs possess uniform size distribution, good optical stability and biocompatibility. In addition, there is a remarkable affinity interaction between the AS1411 aptamer and the nucleolin protein on the cancer cell surface. Thus, a target-cell-specific delivery system by the FSiNP-AS/MB is proposed for effectively transferring a MB into the cancer cells to recognize the target miRNA. Using miRNA-21 in MCF-7 cells (a human breast cancer cell line) as a model, the proposed multifunctional nanosystems not only allow target-cell-specific delivery with the binding affinity of AS1411, but also can track simultaneously the transfected cells and detect intracellular miRNA in situ. The proposed multifunctional nanosystems are a promising platform for a highly sensitive luminescent nonviral vector in biomedical and clinical research.

  6. Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport

    NASA Astrophysics Data System (ADS)

    Hafner, Anne E.; Rieger, Heiko

    2018-03-01

    The efficiency of intracellular cargo transport from specific source to target locations is strongly dependent upon molecular motor-assisted motion along the cytoskeleton. Radial transport along microtubules and lateral transport along the filaments of the actin cortex underneath the cell membrane are characteristic for cells with a centrosome. The interplay between the specific cytoskeleton organization and the motor performance realizes a spatially inhomogeneous intermittent search strategy. In order to analyze the efficiency of such intracellular search strategies we formulate a random velocity model with intermittent arrest states. We evaluate efficiency in terms of mean first passage times for three different, frequently encountered intracellular transport tasks: i) the narrow escape problem, which emerges during cargo transport to a synapse or other specific region of the cell membrane, ii) the reaction problem, which considers the binding time of two particles within the cell, and iii) the reaction-escape problem, which arises when cargo must be released at a synapse only after pairing with another particle. Our results indicate that cells are able to realize efficient search strategies for various intracellular transport tasks economically through a spatial cytoskeleton organization that involves only a narrow actin cortex rather than a cell body filled with randomly oriented actin filaments.

  7. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2015-12-30

    Targeting of drug delivery systems (DDSs) to specific intracellular organelles (i.e., subcellular targeting) has been investigated in numerous publications, but targeting efficiency of these systems is seldom reported. We searched scientific publications in the subcellular DDS targeting field and analyzed targeting efficiency and major formulation parameters that affect it. We identified 77 scientific publications that matched the search criteria. In the majority of these studies nanoparticle-based DDSs were applied, while liposomes, quantum dots and conjugates were used less frequently. The nucleus was the most common intracellular target, followed by mitochondrion, endoplasmic reticulum and Golgi apparatus. In 65% of the publications, DDSs surface was decorated with specific targeting residues, but the efficiency of this surface decoration was not analyzed in predominant majority of the studies. Moreover, only 23% of the analyzed publications contained quantitative data on DDSs subcellular targeting efficiency, while the majority of publications reported qualitative results only. From the analysis of publications in the subcellular targeting field, it appears that insufficient efforts are devoted to quantitative analysis of the major formulation parameters and of the DDSs' intracellular fate. Based on these findings, we provide recommendations for future studies in the field of organelle-specific drug delivery and targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  9. Toward intracellular targeted delivery of cancer therapeutics: progress and clinical outlook for brain tumor therapy.

    PubMed

    Pandya, Hetal; Debinski, Waldemar

    2012-08-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells.

  10. Engineering the First Chimeric Antibody in Targeting Intracellular PRL-3 Oncoprotein for Cancer Therapy in Mice

    PubMed Central

    Al-Aidaroos, Abdul Qader O.; Hong, Cheng William; Tan, Cheng Peow Bobby; Park, Jung Eun; Varghese, Leyon; Feng, Zhiwei; Zhou, Jianbiao; Chng, Wee Joo; Zeng, Qi

    2012-01-01

    Antibodies are considered as ‘magic bullets’ because of their high specificity. It is believed that antibodies are too large to routinely enter the cytosol, thus antibody therapeutic approach has been limited to extracellular or secreted proteins expressed by cancer cells. However, many oncogenic proteins are localized within the cell. To explore the possibility of antibody therapies against intracellular targets, we generated a chimeric antibody targeting the intracellular PRL-3 oncoprotein to assess its antitumor activities in mice. Remarkably, we observed that the PRL-3 chimeric antibody could efficiently and specifically reduce the formation of PRL-3 expressing metastatic tumors. We further found that natural killer (NK) cells were important in mediating the therapeutic effect, which was only observed in a nude mouse model (T-cell deficient), but not in a Severe Combined Immunodeficiency’ (scid) mouse model (B- and T-cell deficient), indicating the anticancer effect also depends on host B-cell activity. Our study involving 377 nude and scid mice suggests that antibodies targeting intracellular proteins can be developed to treat cancer. PMID:22374986

  11. Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics.

    PubMed

    Stayton, P S; Hoffman, A S; Murthy, N; Lackey, C; Cheung, C; Tan, P; Klumb, L A; Chilkoti, A; Wilbur, F S; Press, O W

    2000-03-01

    There are many protein and DNA based therapeutics under development in the biotechnology and pharmaceutical industries. Key delivery challenges remain before many of these biomolecular therapeutics reach the clinic. Two important barriers are the effective targeting of drugs to specific tissues and cells and the subsequent intracellular delivery to appropriate cellular compartments. In this review, we summarize protein engineering work aimed at improving the stability and refolding efficiency of antibody fragments used in targeting, and at constructing new streptavidin variants which may offer improved performance in pre-targeting delivery strategies. In addition, we review recent work with pH-responsive polymers that mimic the membrane disruptive properties of viruses and toxins. These polymers could serve as alternatives to fusogenic peptides in gene therapy formulations and to enhance the intracellular delivery of protein therapeutics that function in the cytoplasm.

  12. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin.

    PubMed

    Paliwal, Shivani Rai; Paliwal, Rishi; Agrawal, Govind Prasad; Vyas, Suresh Prasad

    2016-12-01

    Surface-modified pH-sensitive liposomal system may be useful for intracellular delivery of chemotherapeutics. Achieving site-specific targeting with over-expressed hyaluronic acid (HA) receptors along with using pH sensitive liposome carrier for intracellular drug delivery was the aim of this study. Stealth HA-targeted pH-sensitive liposomes (SL-pH-HA) were developed and evaluated to achieve effective intracellular delivery of doxorubicin (DOX) vis-a-vis enhanced antitumor activity. The in vitro release studies demonstrated that the release of DOX from SL-pH-HA was pH-dependent, i.e. faster at mildly acidic pH ∼5, compared to physiological pH ∼7.4. SLpH-HA was evaluated for their cytotoxicity potential on CD44 receptor expressing MCF-7 cells. The half maximal inhibitory concentration (IC50) of SL-pH-HA and SL-HA were about 1.9 and 2.5 μM, respectively, after 48 h of incubation. The quantitative uptake study revealed higher localization of targeted liposomes in the receptor positive cells, which was further confirmed by fluorescent microscopy. The antitumor efficacy of the DOX-loaded HA-targeted pH-sensitive liposomes was also verified in a tumor xenograft mouse model. DOX was efficiently delivered to the tumor site by active targeting via HA and CD44 receptor interaction. The major side-effect of conventional DOX formulation, i.e. cardiotoxicity was also estimated by measuring serum enzyme levels of LDH and CPK and found to be minimized with developed formulation. Overall, HA targeted pH-sensitive liposomes were significantly more potent than the non-targeted liposomes in cells expressing high levels of CD44. Results strongly implies the promise of such liposomal system as an intracellular drug delivery carrier developed for potential anticancer treatment.

  13. Intracellular Targeting Specificity of Novel Phthalocyanines Assessed in a Host-Parasite Model for Developing Potential Photodynamic Medicine

    PubMed Central

    Dutta, Sujoy; Ongarora, Benson G.; Li, Hairong; Vicente, Maria da Graca H.; Kolli, Bala K.; Chang, Kwang Poo

    2011-01-01

    Photodynamic therapy, unlikely to elicit drug-resistance, deserves attention as a strategy to counter this outstanding problem common to the chemotherapy of all diseases. Previously, we have broadened the applicability of this modality to photodynamic vaccination by exploiting the unusual properties of the trypanosomatid protozoa, Leishmania, i.e., their innate ability of homing to the phagolysosomes of the antigen-presenting cells and their selective photolysis therein, using transgenic mutants endogenously inducible for porphyrin accumulation. Here, we extended the utility of this host-parasite model for in vitro photodynamic therapy and vaccination by exploring exogenously supplied photosensitizers. Seventeen novel phthalocyanines (Pcs) were screened in vitro for their photolytic activity against cultured Leishmania. Pcs rendered cationic and soluble (csPcs) for cellular uptake were phototoxic to both parasite and host cells, i.e., macrophages and dendritic cells. The csPcs that targeted to mitochondria were more photolytic than those restricted to the endocytic compartments. Treatment of infected cells with endocytic csPcs resulted in their accumulation in Leishmania-containing phagolysosomes, indicative of reaching their target for photodynamic therapy, although their parasite versus host specificity is limited to a narrow range of csPc concentrations. In contrast, Leishmania pre-loaded with csPc were selectively photolyzed intracellularly, leaving host cells viable. Pre-illumination of such csPc-loaded Leishmania did not hinder their infectivity, but ensured their intracellular lysis. Ovalbumin (OVA) so delivered by photo-inactivated OVA transfectants to mouse macrophages and dendritic cells were co-presented with MHC Class I molecules by these antigen presenting cells to activate OVA epitope-specific CD8+T cells. The in vitro evidence presented here demonstrates for the first time not only the potential of endocytic csPcs for effective photodynamic therapy

  14. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors.

    PubMed

    Chaturvedi, Madhu; Schilling, Justin; Beautrait, Alexandre; Bouvier, Michel; Benovic, Jeffrey L; Shukla, Arun K

    2018-05-04

    G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    PubMed Central

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  16. Modularly Constructed Synthetic Granzyme B Molecule Enables Interrogation of Intracellular Proteases for Targeted Cytotoxicity.

    PubMed

    Ho, Patrick; Ede, Christopher; Chen, Yvonne Y

    2017-08-18

    Targeted therapies promise to increase the safety and efficacy of treatments against diseases ranging from cancer to viral infections. However, the vast majority of targeted therapeutics relies on the recognition of extracellular biomarkers, which are rarely restricted to diseased cells and are thus prone to severe and sometimes-fatal off-target toxicities. In contrast, intracellular antigens present a diverse yet underutilized repertoire of disease markers. Here, we report a protein-based therapeutic platform-termed Cytoplasmic Oncoprotein VErifier and Response Trigger (COVERT)-which enables the interrogation of intracellular proteases to trigger targeted cytotoxicity. COVERT molecules consist of the cytotoxic protein granzyme B (GrB) fused to an inhibitory N-terminal peptide, which can be removed by researcher-specified proteases to activate GrB function. We demonstrate that fusion of a small ubiquitin-like modifier 1 (SUMO1) protein to GrB yields a SUMO-GrB molecule that is specifically activated by the cancer-associated sentrin-specific protease 1 (SENP1). SUMO-GrB selectively triggers apoptotic phenotypes in HEK293T cells that overexpress SENP1, and it is highly sensitive to different SENP1 levels across cell lines. We further demonstrate the rational design of additional COVERT molecules responsive to enterokinase (EK) and tobacco etch virus protease (TEVp), highlighting the COVERT platform's modularity and adaptability to diverse protease targets. As an initial step toward engineering COVERT-T cells for adoptive T-cell therapy, we verified that primary human T cells can express, package, traffic, and deliver engineered GrB molecules in response to antigen stimulation. Our findings set the foundation for future intracellular-antigen-responsive therapeutics that can complement surface-targeted therapies.

  17. Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery

    PubMed Central

    Gordon, Laurie J.; Wayne, Gareth J.; Almqvist, Helena; Axelsson, Hanna; Seashore-Ludlow, Brinton; Treyer, Andrea; Lundbäck, Thomas; West, Andy; Hann, Michael M.; Artursson, Per

    2017-01-01

    Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery. PMID:28701380

  18. Preparation and characterization of vinculin-targeted polymer–lipid nanoparticle as intracellular delivery vehicle

    PubMed Central

    Wang, Junping; Örnek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer–lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin–fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin–fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles. PMID:23293518

  19. Preparation and characterization of vinculin-targeted polymer-lipid nanoparticle as intracellular delivery vehicle.

    PubMed

    Wang, Junping; Ornek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer-lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin-fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin-fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles.

  20. Multiple-Targeted Graphene-based Nanocarrier for Intracellular Imaging of mRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying; Li, Zhaohui; Liu, Misha

    Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labeledmore » single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis.« less

  1. The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer.

    PubMed

    Bizama, Carolina; Benavente, Felipe; Salvatierra, Edgardo; Gutiérrez-Moraga, Ana; Espinoza, Jaime A; Fernández, Elmer A; Roa, Iván; Mazzolini, Guillermo; Sagredo, Eduardo A; Gidekel, Manuel; Podhajcer, Osvaldo L

    2014-02-15

    Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer. © 2013 UICC.

  2. Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets.

    PubMed

    Li, Tengfei; Vandesquille, Matthias; Koukouli, Fani; Dudeffant, Clémence; Youssef, Ihsen; Lenormand, Pascal; Ganneau, Christelle; Maskos, Uwe; Czech, Christian; Grueninger, Fiona; Duyckaerts, Charles; Dhenain, Marc; Bay, Sylvie; Delatour, Benoît; Lafaye, Pierre

    2016-12-10

    Detection of intracerebral targets with imaging probes is challenging due to the non-permissive nature of blood-brain barrier (BBB). The present work describes two novel single-domain antibodies (VHHs or nanobodies) that specifically recognize extracellular amyloid deposits and intracellular tau neurofibrillary tangles, the two core lesions of Alzheimer's disease (AD). Following intravenous administration in transgenic mouse models of AD, in vivo real-time two-photon microscopy showed gradual extravasation of the VHHs across the BBB, diffusion in the parenchyma and labeling of amyloid deposits and neurofibrillary tangles. Our results demonstrate that VHHs can be used as specific BBB-permeable probes for both extracellular and intracellular brain targets and suggest new avenues for therapeutic and diagnostic applications in neurology. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Biological macromolecules based targeted nanodrug delivery systems for the treatment of intracellular infections.

    PubMed

    Aparna, V; Shiva, M; Biswas, Raja; Jayakumar, R

    2018-04-15

    Intracellular infections are tricky to treat, the reason being the poor penetration of antibiotics/antimycotics into the microbial niche (host cell). Macrophages are primary targets of facultative and obligate intracellular bacteria/fungi to be abused as host cells. The need for drugs with better intracellular penetration led to the development of endocytosable drug carriers, which can cross the cell membrane of the host cells (macrophages) by imitating the entry path of the pathogens. Therefore, the drugs can be targeted to macrophages ensuring enhanced therapeutic effect. This review discusses the exploitation of various nanocarriers for targeted delivery of drugs to the macrophages in the last two decades. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Intracellular Membrane Association of the Aplysia cAMP Phosphodiesterase Long and Short Forms via Different Targeting Mechanisms*

    PubMed Central

    Kim, Kun-Hyung; Jun, Yong-Woo; Park, Yongsoo; Lee, Jin-A; Suh, Byung-Chang; Lim, Chae-Seok; Lee, Yong-Seok; Kaang, Bong-Kiun; Jang, Deok-Jin

    2014-01-01

    Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively. PMID:25077971

  5. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip.

    PubMed

    Tu, Yu-Hsuan; Ho, Yu-Hsuan; Chuang, Ying-Chih; Chen, Po-Chung; Chen, Chien-Sheng

    2011-01-01

    Lactoferricin B (LfcinB) is a well-known antimicrobial peptide. Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this antimicrobial peptide have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO) analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP) assays. Sixteen proteins were identified, and an E. coli interaction database (EcID) analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA) cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets of LfcinB using an E. coli proteome chip approach.

  6. Identification of Lactoferricin B Intracellular Targets Using an Escherichia coli Proteome Chip

    PubMed Central

    Chen, Po-Chung; Chen, Chien-Sheng

    2011-01-01

    Lactoferricin B (LfcinB) is a well-known antimicrobial peptide. Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this antimicrobial peptide have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO) analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP) assays. Sixteen proteins were identified, and an E. coli interaction database (EcID) analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA) cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets of LfcinB using an E. coli proteome chip approach. PMID:22164243

  7. Multifunctional Poly(L-lactide)-Polyethylene Glycol-Grafted Graphene Quantum Dots for Intracellular MicroRNA Imaging and Combined Specific-Gene-Targeting Agents Delivery for Improved Therapeutics.

    PubMed

    Dong, Haifeng; Dai, Wenhao; Ju, Huangxian; Lu, Huiting; Wang, Shiyan; Xu, Liping; Zhou, Shu-Feng; Zhang, Yue; Zhang, Xueji

    2015-05-27

    Photoluminescent (PL) graphene quantum dots (GQDs) with large surface area and superior mechanical flexibility exhibit fascinating optical and electronic properties and possess great promising applications in biomedical engineering. Here, a multifunctional nanocomposite of poly(l-lactide) (PLA) and polyethylene glycol (PEG)-grafted GQDs (f-GQDs) was proposed for simultaneous intracellular microRNAs (miRNAs) imaging analysis and combined gene delivery for enhanced therapeutic efficiency. The functionalization of GQDs with PEG and PLA imparts the nanocomposite with super physiological stability and stable photoluminescence over a broad pH range, which is vital for cell imaging. Cell experiments demonstrate the f-GQDs excellent biocompatibility, lower cytotoxicity, and protective properties. Using the HeLa cell as a model, we found the f-GQDs effectively delivered a miRNA probe for intracellular miRNA imaging analysis and regulation. Notably, the large surface of GQDs was capable of simultaneous adsorption of agents targeting miRNA-21 and survivin, respectively. The combined conjugation of miRNA-21-targeting and survivin-targeting agents induced better inhibition of cancer cell growth and more apoptosis of cancer cells, compared with conjugation of agents targeting miRNA-21 or survivin alone. These findings highlight the promise of the highly versatile multifunctional nanocomposite in biomedical application of intracellular molecules analysis and clinical gene therapeutics.

  8. Targeted drug delivery and enhanced intracellular release using functionalized liposomes

    NASA Astrophysics Data System (ADS)

    Garg, Ashish

    The ability to target cancer cells using an appropriate drug delivery system can significantly reduce the associated side effects from cancer therapies and can help in improving the overall quality of life, post cancer survival. Integrin alpha5beta1 is expressed on several types of cancer cells, including colon cancer and plays an important role in tumor growth and metastasis. Thus, the ability to target the integrin alpha 5beta1 using an appropriate drug delivery nano-vector can significantly help in inhibiting tumor growth and reducing tumor metastasis. The work in this thesis focuses on designing and optimizing, functionalized stealth liposomes (liposomes covered with polyethylene glycol (PEG)) that specifically target the integrin alpha5beta1. The PEG provides a steric barrier allowing the liposomes to circulate in the blood for longer duration and the functionalizing moiety, PR_b peptide specifically recognizes and binds to integrin alpha5beta1 expressing cells. The work demonstrates that by optimizing the amount of PEG and PR_b on the liposomal interface, nano-vectors can be engineered that bind to CT26.WT colon cancer cells in a specific manner and internalize through alpha 5beta1-mediated endocytosis. To further improve the efficacy of the system, PR_b functionalized pH-sensitive stealth liposomes that exhibit triggered release under mild acidic conditions present in endocytotic vesicles were designed. The study showed that PR_b functionalized pH-sensitive stealth liposomes, undergo destabilization under mildly acidic conditions and incorporation of the PR_b peptide does not significantly affect the pH-sensitivity of the liposomes. PR_b functionalized pH-sensitive stealth liposomes bind to CT26.WT colon carcinoma cells that express integrin alpha5beta 1, undergo cellular internalization, and release their load intracellularly in a short period of time as compared to other formulations. PR_b-targeted pH-sensitive stealth liposomes encapsulating 5

  9. Future perspectives in target-specific immunotherapies of myasthenia gravis

    PubMed Central

    Dalakas, Marinos C.

    2015-01-01

    Myasthenia gravis (MG) is an autoimmune disease caused by complement-fixing antibodies against acetylcholine receptors (AChR); antigen-specific CD4+ T cells, regulatory T cells (Tregs) and T helper (Th) 17+ cells are essential in antibody production. Target-specific therapeutic interventions should therefore be directed against antibodies, B cells, complement and molecules associated with T cell signaling. Even though the progress in the immunopathogenesis of the disease probably exceeds any other autoimmune disorder, MG is still treated with traditional drugs or procedures that exert a non-antigen specific immunosuppression or immunomodulation. Novel biological agents currently on the market, directed against the following molecular pathways, are relevant and specific therapeutic targets that can be tested in MG: (a) T cell intracellular signaling molecules, such as anti-CD52, anti-interleukin (IL) 2 receptors, anti- costimulatory molecules, and anti-Janus tyrosine kinases (JAK1, JAK3) that block the intracellular cascade associated with T-cell activation; (b) B cells and their trophic factors, directed against key B-cell molecules; (c) complement C3 or C5, intercepting the destructive effect of complement-fixing antibodies; (d) cytokines and cytokine receptors, such as those targeting IL-6 which promotes antibody production and IL-17, or the p40 subunit of IL-12/1L-23 that affect regulatory T cells; and (e) T and B cell transmigration molecules associated with lymphocyte egress from the lymphoid organs. All drugs against these molecular pathways require testing in controlled trials, although some have already been tried in small case series. Construction of recombinant AChR antibodies that block binding of the pathogenic antibodies, thereby eliminating complement and antibody-depended-cell-mediated cytotoxicity, are additional novel molecular tools that require exploration in experimental MG. PMID:26600875

  10. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Ren, Xiaoyang; Sawant, Rupa R; Wu, Xiangwei; Torchilin, Vladimir P; Lapotko, Dmitri O

    2014-07-01

    Chemoradiation-resistant cancers limit treatment efficacy and safety. We show here the cancer cell-specific, on-demand intracellular amplification of chemotherapy and chemoradiation therapy via gold nanoparticle- and laser pulse-induced mechanical intracellular impact. Cancer aggressiveness promotes the clustering of drug nanocarriers and gold nanoparticles in cancer cells. This cluster, upon exposure to a laser pulse, generates a plasmonic nanobubble, the mechanical explosion that destroys the host cancer cell or ejects the drug into its cytoplasm by disrupting the liposome and endosome. The same cluster locally amplifies external X-rays. Intracellular synergy of the mechanical impact of plasmonic nanobubble, ejected drug and amplified X-rays improves the efficacy of standard chemoradiation in resistant and aggressive head and neck cancer by 100-fold in vitro and 17-fold in vivo, reduces the effective entry doses of drugs and X-rays to 2-6% of their clinical doses and efficiently spares normal cells. The developed quadrapeutics technology combines four clinically validated components and transforms a standard macrotherapy into an intracellular on-demand theranostic microtreatment with radically amplified therapeutic efficacy and specificity.

  11. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles

    PubMed Central

    Lukianova-Hleb, Ekaterina Y; Wu, Xiangwei; Torchilin, Vladimir P; Lapotko, Dmitri O

    2014-01-01

    Chemoradiation-resistant cancers limit treatment efficacy and safety. We show here the cancer cell–specific, on-demand intracellular amplification of chemotherapy and chemoradiation therapy via gold nanoparticle– and laser pulse–induced mechanical intracellular impact. Cancer aggressiveness promotes the clustering of drug nanocarriers and gold nanoparticles in cancer cells. This cluster, upon exposure to a laser pulse, generates a plasmonic nanobubble, the mechanical explosion that destroys the host cancer cell or ejects the drug into its cytoplasm by disrupting the liposome and endosome. The same cluster locally amplifies external X-rays. Intracellular synergy of the mechanical impact of plasmonic nanobubble, ejected drug and amplified X-rays improves the efficacy of standard chemoradiation in resistant and aggressive head and neck cancer by 100-fold in vitro and 17-fold in vivo, reduces the effective entry doses of drugs and X-rays to 2–6% of their clinical doses and efficiently spares normal cells. The developed quadrapeutics technology combines four clinically validated components and transforms a standard macrotherapy into an intracellular on-demand theranostic microtreatment with radically amplified therapeutic efficacy and specificity. PMID:24880615

  12. Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively Target an Intracellular Ligand Specific for Ovarian Cancer

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-12-1-0554 TITLE: Riboswitch-Mediated Aptamer Binding for...TITLE AND SUBTITLE Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively Target an Intracellular...for imaging and low toxicity for therapy. We will make a riboswitch consisting of two aptamers and a sensor region that can hybridize with the

  13. Intracellular Delivery System for Antibody–Peptide Drug Conjugates

    PubMed Central

    Berguig, Geoffrey Y; Convertine, Anthony J; Frayo, Shani; Kern, Hanna B; Procko, Erik; Roy, Debashish; Srinivasan, Selvi; Margineantu, Daciana H; Booth, Garrett; Palanca-Wessels, Maria Corinna; Baker, David; Hockenbery, David; Press, Oliver W; Stayton, Patrick S

    2015-01-01

    Antibodies armed with biologic drugs could greatly expand the therapeutic potential of antibody–drug conjugates for cancer therapy, broadening their application to disease targets currently limited by intracellular delivery barriers. Additional selectivity and new therapeutic approaches could be realized with intracellular protein drugs that more specifically target dysregulated pathways in hematologic cancers and other malignancies. A multifunctional polymeric delivery system for enhanced cytosolic delivery of protein drugs has been developed that incorporates endosomal-releasing activity, antibody targeting, and a biocompatible long-chain ethylene glycol component for optimized safety, pharmacokinetics, and tumor biodistribution. The pH-responsive polymeric micelle carrier, with an internalizing anti-CD22 monoclonal targeting antibody, effectively delivered a proapoptotic Bcl-2 interacting mediator (BIM) peptide drug that suppressed tumor growth for the duration of treatment and prolonged survival in a xenograft mouse model of human B-cell lymphoma. Antitumor drug activity was correlated with a mechanistic induction of the Bcl-2 pathway biomarker cleaved caspase-3 and a marked decrease in the Ki-67 proliferation biomarker. Broadening the intracellular target space by more effective delivery of protein/peptide drugs could expand the repertoire of antibody–drug conjugates to currently undruggable disease-specific targets and permit tailored drug strategies to stratified subpopulations and personalized medicines. PMID:25669432

  14. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting.

    PubMed

    Staquicini, Daniela I; Rangel, Roberto; Guzman-Rojas, Liliana; Staquicini, Fernanda I; Dobroff, Andrey S; Tarleton, Christy A; Ozbun, Michelle A; Kolonin, Mikhail G; Gelovani, Juri G; Marchiò, Serena; Sidman, Richard L; Hajjar, Katherine A; Arap, Wadih; Pasqualini, Renata

    2017-06-26

    Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.

  15. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    PubMed

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  16. Intracellular signaling by phospholipase D as a therapeutic target.

    PubMed

    Steed, P M; Chow, A H

    2001-09-01

    The pharmaceutical industry has recently focused on intracellular signaling as a means to integrate the multiple facets of complex disease states, such as inflammation, because these pathways respond to numerous extracellular signals and coordinate a collection of cell responses contributing to pathology. One critical aspect of intracellular signaling is regulation of key cell functions by lipid mediators, in particular the generation of a key mediator, phosphatidic acid (PA) via the hydrolysis of phosphatidylcholine by phospholipase D (PLD). Research in this field has intensified, due in part to the recent cloning and partial characterization of the two PLD isoforms in mammalian cells, and this work has contributed significantly to our understanding of events downstream of PA generation. It is these effector functions of PLD activity that make this pathway attractive as a therapeutic target while the biochemical properties of the PLD isozymes make them amenable to small molecule intervention. Recent studies indicate that PA, and its immediate metabolites diacylglycerol and lyso-PA, affect numerous cellular pathways including ligand-mediated secretion, cytoskeletal reorganisations, respiratory burst, prostaglandin release, cell migration, cytokine release, and mitogenesis. This review summarises the data implicating signaling via PLD in these cell functions, obtained from: (i) molecular analyses of PLD/effector interactions, (ii) correlation between PA production and cell responses, (iii) experimental manipulation of PA levels, (iv) inhibition of PLD regulators, and (v) direct inhibition of PA production. The utility of targeting PLD signaling for the treatment of acute/chronic inflammation and other indications is discussed in light of these data.

  17. Intracellular localization of gold nanoparticles with targeted delivery in MT-4 lymphocytes

    NASA Astrophysics Data System (ADS)

    Singh, Lavanya; Parboosing, Raveen; Kruger, Hendrik G.; Maguire, Glenn E. M.; Govender, Thavendran

    2016-12-01

    The clinical utility of important therapeutic agents is often limited by the poor permeability of biological membranes. Cell penetrating peptides are usually employed to circumvent this challenge. This approach, coupled with gold nanoparticles, are a promising vehicle for drug delivery due to its good biocompatibility profile, negligable toxicity and possibility for multi-functionalization. Here we report the functionalization and intracellular tracking of gold nanoparticles decorated with a TAT cell penetrating peptide and a fluorescein tag in a simple, two step process. Fluorescence microscopy has confirmed the localization of the functionalized nanoparticles to be inside the cells, specifically within, or in close proximity to the nuclei of MT-4 lymphocytes; a HIV-relevant cell line in which this has not been previously demonstrated. The results of this study demonstrate that TAT has been efficiently conjugated to gold nanoparticles to facilitate both cellular and targeted nuclear entry.

  18. Targeted Intracellular Delivery of Antituberculosis Drugs to Mycobacterium tuberculosis-Infected Macrophages via Functionalized Mesoporous Silica Nanoparticles

    PubMed Central

    Lee, Bai-Yu; Xue, Min; Thomas, Courtney R.; Meng, Huan; Ferris, Daniel; Nel, Andre E.; Zink, Jeffrey I.

    2012-01-01

    Delivery of antituberculosis drugs by nanoparticles offers potential advantages over free drug, including the potential to target specifically the tissues and cells that are infected by Mycobacterium tuberculosis, thereby simultaneously increasing therapeutic efficacy and decreasing systemic toxicity, and the capacity for prolonged release of drug, thereby allowing less-frequent dosing. We have employed mesoporous silica nanoparticle (MSNP) drug delivery systems either equipped with a polyethyleneimine (PEI) coating to release rifampin or equipped with cyclodextrin-based pH-operated valves that open only at acidic pH to release isoniazid (INH) into M. tuberculosis-infected macrophages. The MSNP are internalized efficiently by human macrophages, traffic to acidified endosomes, and release high concentrations of antituberculosis drugs intracellularly. PEI-coated MSNP show much greater loading of rifampin than uncoated MSNP and much greater efficacy against M. tuberculosis-infected macrophages. MSNP were devoid of cytotoxicity at the particle doses employed for drug delivery. Similarly, we have demonstrated that the isoniazid delivered by MSNP equipped with pH-operated nanovalves kill M. tuberculosis within macrophages significantly more effectively than an equivalent amount of free drug. These data demonstrate that MSNP provide a versatile platform that can be functionalized to optimize the loading and intracellular release of specific drugs for the treatment of tuberculosis. PMID:22354311

  19. Purification of target proteins from intracellular inclusions mediated by intein cleavable polyhydroxyalkanoate synthase fusions.

    PubMed

    Du, Jinping; Rehm, Bernd H A

    2017-11-02

    Recombinant protein production and purification from Escherichia coli is often accompanied with expensive and complicated procedures, especially for therapeutic proteins. Here it was demonstrated that, by using an intein cleavable polyhydroxyalkanoate synthase fusion, recombinant proteins can be first produced and sequestered on a natural resin, the polyhydroxyalkanoate (PHA) inclusions, then separated from contaminating host proteins via simple PHA bead isolation steps, and finally purified by specific release into the soluble fraction induced by a pH reduction. By translationally fusing a target protein to PHA synthase using a self-cleaving intein as linker, intracellular production of PHA beads was achieved. Upon isolation of respective PHA beads the soluble pure target protein was released by a simple pH shift to 6. The utility of this approach was exemplified by producing six target proteins, including Aequorea victoria green fluorescent protein (GFP), Mycobacterium tuberculosis vaccine candidate Rv1626, the immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus aureus, human tumor necrosis factor alpha (TNFα), human granulocyte colony-stimulating factor (G-CSF), and human interferon alpha 2b (IFNα2b). Here a new method for production and purification of a tag-less protein was developed through intein cleavable polyhydroxyalkanoate synthase fusion. Pure target protein could be easily obtained without laborious downstream processing.

  20. Two-colour live-cell nanoscale imaging of intracellular targets

    NASA Astrophysics Data System (ADS)

    Bottanelli, Francesca; Kromann, Emil B.; Allgeyer, Edward S.; Erdmann, Roman S.; Wood Baguley, Stephanie; Sirinakis, George; Schepartz, Alanna; Baddeley, David; Toomre, Derek K.; Rothman, James E.; Bewersdorf, Joerg

    2016-03-01

    Stimulated emission depletion (STED) nanoscopy allows observations of subcellular dynamics at the nanoscale. Applications have, however, been severely limited by the lack of a versatile STED-compatible two-colour labelling strategy for intracellular targets in living cells. Here we demonstrate a universal labelling method based on the organic, membrane-permeable dyes SiR and ATTO590 as Halo and SNAP substrates. SiR and ATTO590 constitute the first suitable dye pair for two-colour STED imaging in living cells below 50 nm resolution. We show applications with mitochondria, endoplasmic reticulum, plasma membrane and Golgi-localized proteins, and demonstrate continuous acquisition for up to 3 min at 2-s time resolution.

  1. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes

    NASA Astrophysics Data System (ADS)

    Jayant, Krishna; Hirtz, Jan J.; Plante, Ilan Jen-La; Tsai, David M.; de Boer, Wieteke D. A. M.; Semonche, Alexa; Peterka, Darcy S.; Owen, Jonathan S.; Sahin, Ozgur; Shepard, Kenneth L.; Yuste, Rafael

    2017-05-01

    Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.

  2. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes

    PubMed Central

    Jayant, Krishna; Hirtz, Jan J.; Plante, Ilan Jen-La; Tsai, David M.; De Boer, Wieteke D. A. M.; Semonche, Alexa; Peterka, Darcy S.; Owen, Jonathan S.; Sahin, Ozgur; Shepard, Kenneth L.; Yuste, Rafael

    2017-01-01

    Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ~15–30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5–1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures. PMID:27941898

  3. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes.

    PubMed

    Jayant, Krishna; Hirtz, Jan J; Plante, Ilan Jen-La; Tsai, David M; De Boer, Wieteke D A M; Semonche, Alexa; Peterka, Darcy S; Owen, Jonathan S; Sahin, Ozgur; Shepard, Kenneth L; Yuste, Rafael

    2017-05-01

    Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.

  4. Extracellular and Intracellular Cyclophilin A, Native and Post-Translationally Modified, Show Diverse and Specific Pathological Roles in Diseases.

    PubMed

    Xue, Chao; Sowden, Mark P; Berk, Bradford C

    2018-05-01

    CypA (cyclophilin A) is a ubiquitous and highly conserved protein with peptidyl prolyl isomerase activity. Because of its highly abundant level in the cytoplasm, most studies have focused on the roles of CypA as an intracellular protein. However, emerging evidence suggests an important role for extracellular CypA in the pathogenesis of several diseases through receptor (CD147 or other)-mediated autocrine and paracrine signaling pathways. In this review, we will discuss the shared and unique pathological roles of extracellular and intracellular CypA in human cardiovascular diseases. In addition, the evolving role of post-translational modifications of CypA in the pathogenesis of disease is discussed. Finally, recent studies with drugs specific for extracellular CypA show its importance in disease pathogenesis in several animal models and make extracellular CypA a new therapeutic target. © 2018 American Heart Association, Inc.

  5. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems.

    PubMed

    Miyazaki, Maiko; Yuba, Eiji; Hayashi, Hiroshi; Harada, Atsushi; Kono, Kenji

    2018-01-17

    For the enhancement of therapeutic effects and reduction of side effects derived from anticancer drugs in cancer chemotherapy, it is imperative to develop drug delivery systems with cancer-specificity and controlled release function inside cancer cells. pH-sensitive liposomes are useful as an intracellular drug delivery system because of their abilities to transfer their contents into the cell interior through fusion or destabilization of endosome, which has weakly acidic environment. We earlier reported liposomes modified with various types of pH-sensitive polymers based on synthetic polymers and biopolymers as vehicles for intracellular drug delivery systems. In this study, hyaluronic acid (HA)-based pH-sensitive polymers were designed as multifunctional polymers having not only pH-sensitivity but also targeting properties to cells expressing CD44, which is known as a cancer cell surface marker. Carboxyl group-introduced HA derivatives of two types, MGlu-HA and CHex-HA, which have a more hydrophobic side chain structure than that of MGlu-HA, were synthesized by reaction with various dicarboxylic anhydrides. These polymer-modified liposomes were stable at neutral pH, but showed content release under weakly acidic conditions. CHex-HA-modified liposomes delivered their contents into CD44-expressing cells more efficiently than HA-modified or MGlu-HA-modified liposomes or unmodified liposomes, whereas the same liposomes were taken up only slightly by cells expressing CD44 proteins less. Competition assay using free HA or other polymers revealed that HA derivative-modified liposomes might be recognized by CD44. Therefore, HA-derivative-modified liposomes are useful as cell-specific intracellular drug delivery systems.

  6. Arylthiazole antibiotics targeting intracellular methicillin-resistant Staphylococcus aureus (MRSA) that interfere with bacterial cell wall synthesis.

    PubMed

    Eid, Islam; Elsebaei, Mohamed M; Mohammad, Haroon; Hagras, Mohamed; Peters, Christine E; Hegazy, Youssef A; Cooper, Bruce; Pogliano, Joe; Pogliano, Kit; Abulkhair, Hamada S; Seleem, Mohamed N; Mayhoub, Abdelrahman S

    2017-10-20

    The promising antibacterial potency of arylthiazole antibiotics is offset by their limited activity against intracellular bacteria (namely methicillin-resistant Staphylococcus aureus (MRSA)), similar to many clinically-approved antibiotics. The failure to target these hidden pathogens is due to the compounds' lack of proper characteristics to accumulate intracellularly. Fine tuning of the size and polar-surface-area of the linking heteroaromatic ring provided a new series of 5-thiazolylarylthiazoles with balanced properties that allow them to sufficiently cross and accumulate inside macrophages infected with MRSA. The most promising compound 4i exhibited rapid bactericidal activity, good metabolic stability and produced over 80% reduction of intracellular MRSA in infected macrophages. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Targeting of a chlamydial protease impedes intracellular bacterial growth.

    PubMed

    Christian, Jan G; Heymann, Julia; Paschen, Stefan A; Vier, Juliane; Schauenburg, Linda; Rupp, Jan; Meyer, Thomas F; Häcker, Georg; Heuer, Dagmar

    2011-09-01

    Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.

  8. Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs.

    PubMed

    Hayashi, Teruo

    2015-01-01

    Sigma-1 receptor ligands have been long expected to serve as drugs for treatment of human diseases such as neurodegenerative disorders, depression, idiopathic pain, drug abuse, and cancer. Recent research exploring the molecular function of the sigma-1 receptor started unveiling underlying mechanisms of the therapeutic activity of those ligands. Via the molecular chaperone activity, the sigma-1 receptor regulates protein folding/degradation, ER/oxidative stress, and cell survival. The chaperone activity is activated or inhibited by synthetic sigma-1 receptor ligands in an agonist-antagonist manner. Sigma-1 receptors are localized at the endoplasmic reticulum (ER) membranes that are physically associated with the mitochondria (MAM: mitochondria-associated ER membrane). In specific types of neurons (e.g., those at the spinal cord), sigma-1 receptors are also clustered at ER membranes that juxtapose postsynaptic plasma membranes. Recent studies indicate that sigma-1 receptors, partly in sake of its unique subcellular localization, regulate the mitochondria function that involves bioenergetics and free radical generation. The sigma-1 receptor may thus provide an intracellular drug target that enables controlling ER stress and free radical generation under pathological conditions. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  9. Intracellular delivery of polymeric nanocarriers: a matter of size, shape, charge, elasticity and surface composition.

    PubMed

    Agarwal, Rachit; Roy, Krishnendu

    2013-06-01

    Recent progress in drug discovery has enabled the targeting of specific intracellular molecules to achieve therapeutic effects. These next-generation therapeutics are often biologics that cannot enter cells by mere diffusion. Therefore, it is imperative that drug carriers are efficiently internalized by cells and reach specific target organelles before releasing their cargo. Nanoscale polymeric carriers are particularly suitable for such intracellular delivery. Although size and surface charge have been the most studied parameters for nanocarriers, it is now well appreciated that other properties, for example, particle shape, elasticity and surface composition, also play a critical role in their transport across physiological barriers. It is proposed that a multivariate design space that considers the interdependence of particle geometry with its mechanical and surface properties must be optimized to formulate drug nanocarriers for effective accumulation at target sites and efficient intracellular delivery.

  10. Intracellular water - an overlooked drug target? Cisplatin impact in cancer cells probed by neutrons.

    PubMed

    Marques, M P M; Batista de Carvalho, A L M; Sakai, V Garcia; Hatter, L; Batista de Carvalho, L A E

    2017-01-25

    The first neutron scattering study on human nucleated cells is reported, addressing the subject of solvent-slaving to a drug by probing intracellular water upon drug exposure. Inelastic and quasi-elastic neutron scattering spectroscopy with isotope labelling was applied for monitoring interfacial water response to the anticancer drug cisplatin, in the low prognosis human metastatic breast cancer cells MDA-MB-231. Optical vibrational data were also obtained for lyophilised cells. Concentration-dependent dynamical changes evidencing a progressive mobility reduction were unveiled between untreated and cisplatin-exposed samples, concurrent with variations in the native organisation of water molecules within the intracellular medium as a consequence of drug action. The results thus obtained yielded a clear picture of the intracellular water response to cisplatin and constitute the first reported experimental proof of a drug impact on the cytomatrix by neutron techniques. This is an innovative way of tackling a drug's pharmacodynamics, searching for alternative targets of drug action.

  11. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection.

    PubMed

    Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan

    2016-08-26

    Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Identification of Host-Targeted Small Molecules That Restrict Intracellular Mycobacterium tuberculosis Growth

    PubMed Central

    Silvis, Melanie R.; Luo, Samantha S.; Sogi, Kimberly; Vokes, Martha; Bray, Mark-Anthony; Carpenter, Anne E.; Moore, Christopher B.; Siddiqi, Noman; Rubin, Eric J.; Hung, Deborah T.

    2014-01-01

    Mycobacterium tuberculosis remains a significant threat to global health. Macrophages are the host cell for M. tuberculosis infection, and although bacteria are able to replicate intracellularly under certain conditions, it is also clear that macrophages are capable of killing M. tuberculosis if appropriately activated. The outcome of infection is determined at least in part by the host-pathogen interaction within the macrophage; however, we lack a complete understanding of which host pathways are critical for bacterial survival and replication. To add to our understanding of the molecular processes involved in intracellular infection, we performed a chemical screen using a high-content microscopic assay to identify small molecules that restrict mycobacterial growth in macrophages by targeting host functions and pathways. The identified host-targeted inhibitors restrict bacterial growth exclusively in the context of macrophage infection and predominantly fall into five categories: G-protein coupled receptor modulators, ion channel inhibitors, membrane transport proteins, anti-inflammatories, and kinase modulators. We found that fluoxetine, a selective serotonin reuptake inhibitor, enhances secretion of pro-inflammatory cytokine TNF-α and induces autophagy in infected macrophages, and gefitinib, an inhibitor of the Epidermal Growth Factor Receptor (EGFR), also activates autophagy and restricts growth. We demonstrate that during infection signaling through EGFR activates a p38 MAPK signaling pathway that prevents macrophages from effectively responding to infection. Inhibition of this pathway using gefitinib during in vivo infection reduces growth of M. tuberculosis in the lungs of infected mice. Our results support the concept that screening for inhibitors using intracellular models results in the identification of tool compounds for probing pathways during in vivo infection and may also result in the identification of new anti-tuberculosis agents that work by

  13. Amoxicillin haptenates intracellular proteins that can be transported in exosomes to target cells.

    PubMed

    Sánchez-Gómez, F J; González-Morena, J M; Vida, Y; Pérez-Inestrosa, E; Blanca, M; Torres, M J; Pérez-Sala, D

    2017-03-01

    Allergic reactions to β-lactams are among the most frequent causes of drug allergy and constitute an important clinical problem. Drug covalent binding to endogenous proteins (haptenation) is thought to be required for activation of the immune system. Nevertheless, neither the nature nor the role of the drug protein targets involved in this process is fully understood. Here, we aim to identify novel intracellular targets for haptenation by amoxicillin (AX) and their cellular fate. We have treated B lymphocytes with either AX or a biotinylated analog (AX-B). The identification of protein targets for haptenation by AX has been approached by mass spectrometry and immunoaffinity techniques. In addition, intercellular communication mediated by the delivery of vesicles loaded with AX-B-protein adducts has been explored by microscopy techniques. We have observed a complex pattern of AX-haptenated proteins. Several novel targets for haptenation by AX in B lymphocytes have been identified. AX-haptenated proteins were detected in cell lysates and extracellularly, either as soluble proteins or in lymphocyte-derived extracellular vesicles. Interestingly, exosomes from AX-B-treated cells showed a positive biotin signal in electron microscopy. Moreover, they were internalized by endothelial cells, thus supporting their involvement in intercellular transfer of haptenated proteins. These results represent the first identification of AX-mediated haptenation of intracellular proteins. Moreover, they show that exosomes can constitute a novel vehicle for haptenated proteins, and raise the hypothesis that they could provide antigens for activation of the immune system during the allergic response. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline–Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays*

    PubMed Central

    Ho, Yu-Hsuan; Shah, Pramod; Chen, Yi-Wen; Chen, Chien-Sheng

    2016-01-01

    Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular

  15. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays.

    PubMed

    Ho, Yu-Hsuan; Shah, Pramod; Chen, Yi-Wen; Chen, Chien-Sheng

    2016-06-01

    Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular

  16. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    PubMed Central

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoeba castellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  17. Exploring anti-bacterial compounds against intracellular Legionella.

    PubMed

    Harrison, Christopher F; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  18. Macrophage defense mechanisms against intracellular bacteria

    PubMed Central

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  19. Virus-mimetic polyplex particles for systemic and inflammation-specific targeted delivery of large genetic contents.

    PubMed

    Kang, S; Lu, K; Leelawattanachai, J; Hu, X; Park, S; Park, T; Min, I M; Jin, M M

    2013-11-01

    Systemic and target-specific delivery of large genetic contents has been difficult to achieve. Although viruses effortlessly deliver kilobase-long genome into cells, its clinical use has been hindered by serious safety concerns and the mismatch between native tropisms and desired targets. Nonviral vectors, in contrast, are limited by low gene transfer efficiency and inherent cytotoxicity. Here we devised virus-mimetic polyplex particles (VMPs) based on electrostatic self-assembly among polyanionic peptide (PAP), cationic polymer polyethyleneimine (PEI) and nucleic acids. We fused PAP to the engineered ligand-binding domain of integrin αLβ2 to target intercellular adhesion molecule-1 (ICAM-1), an inducible marker of inflammation. Fully assembled VMPs packaged large genetic contents, bound specifically to target molecules, elicited receptor-mediated endocytosis and escaped endosomal pathway, resembling intracellular delivery processes of viruses. Unlike conventional PEI-mediated transfection, molecular interaction-dependent gene delivery of VMPs was unaffected by the presence of serum and achieved higher efficiency without toxicity. By targeting overexpressed ICAM-1, VMPs delivered genes specifically to inflamed endothelial cells and macrophages both in vitro and in vivo. Simplicity and versatility of the platform and inflammation-specific delivery may open up opportunities for multifaceted gene therapy that can be translated into the clinic and treat a broad range of debilitating immune and inflammatory diseases.

  20. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid.

    PubMed

    Yin, Shaoping; Huai, Jue; Chen, Xi; Yang, Yong; Zhang, Xinxin; Gan, Yong; Wang, Guangji; Gu, Xiaochen; Li, Juan

    2015-10-01

    Polymer-drug conjugates have demonstrated application potentials in optimizing chemotherapeutics. In this study a new bioconjugate, HA-ss-PTX, was designed and synthesized with cooperative dual characteristics of active tumor targeting and selective intracellular drug release. Paclitaxel (PTX) was covalently attached to hyaluronic acid (HA) with various sizes (MW 9.5, 35, 770 kDa); a cross-linker containing disulfide bond was also used to shield drug leakage in blood circulation and to achieve rapid drug release in tumor cells in response to glutathione. Incorporation of HA to the conjugate enhanced the capabilities of drug loading, intracellular endocytosis and tumor targeting of micelles in comparison to mPEG. HA molecular weight showed significant effect on properties and antitumor efficacy of the synthesized conjugates. Intracellular uptake of HA-ss-PTX toward MCF-7 cells was mediated by CD44-caveolae-mediated endocytosis. Compared to Taxol and mPEG-ss-PTX, HA9.5-ss-PTX demonstrated improved tumor growth inhibition in vivo with a TIR of 83.27 ± 5.20%. It was concluded that HA9.5-ss-PTX achieved rapid intracellular release of PTX and enhanced its therapeutic efficacy, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics. Polymer-drug conjugates, promising nanomedicines, still face some technical challenges including a lack of specific targeting and rapid intracellular drug release at the target site. In this manuscript we designed and constructed a novel bioconjugate HA-ss-PTX, which possessed coordinated dual characteristics of active tumor targeting and selective intracellular drug release. Redox-responsive disulfide bond was introduced to the conjugate to shield drug leakage in blood circulation and to achieve rapid drug release at tumor site in response to reductant like glutathione. Paclitaxel was selected as a model drug to be covalently attached to hyaluronic acid (HA) with various sizes to

  1. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates.

    PubMed

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.

  2. Intracellular trafficking of new anticancer therapeutics: antibody–drug conjugates

    PubMed Central

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody–drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs. PMID:28814834

  3. Improved breast cancer cell-specific intracellular drug delivery and therapeutic efficacy by coupling decoration with cell penetrating peptide and SP90 peptide.

    PubMed

    Fan, Li-Qiang; Du, Guo-Xiu; Li, Peng-Fei; Li, Ming-Wei; Sun, Yao; Zhao, Li-Ming

    2016-12-01

    Lack of satisfactory specificity towards tumor cells and poor intracellular delivery efficacy are the major drawbacks with conventional cancer chemotherapy. Conjugated anticancer drugs to targeting moieties e.g. to peptides with the ability to recognize cancer cells and to cell penetrating peptide can improve these characteristics, respectively. Combining a tumor homing peptide with an appropriate cell-penetrating peptide can enhance the tumor-selective internalization efficacy of the carrying cargo molecules. In the present study, the breast cancer homing ability of SP90 peptide and the synergistic effect of SP90 with a cell-penetrating peptide(C peptide) were evaluated. SP90 and chimeric peptide SP90-C specifically targeted cargo molecule into breast cancer cells, especially triple negative MDA-MB-231 cell, in a dose- and time-dependent manner, but not normal breast cells and other cancer cells, while C peptide alone had no cell-selectivity. SP90-C increased the intracellular delivery efficiency by 12-fold or 10-fold compared to SP90 or C peptide alone, respectively. SP90 and SP90-C conjugation increased the anti-proliferative and apoptosis-inducing activity of HIV-1 Vpr, a potential novel anticancer protein drug, to breast cancer cell but not normal breast cell by arresting cells in G2/M phase. With excellent breast cancer cell-selective penetrating efficacy, SP90-C appears as a promising candidate vector for targeted anti-cancer drug delivery. SP90-VPR-C is a potential novel breast cancer-targeted anticancer agent for its high anti-tumor activity and low toxicity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. A Cu-free clickable fluorescent probe for intracellular targeting of small biomolecules.

    PubMed

    Yamagishi, Kento; Sawaki, Kazuaki; Murata, Atsushi; Takeoka, Shinji

    2015-05-07

    We synthesized a novel cyclooctyne-based clickable fluorescent probe with versatile properties such as high cell-membrane permeability and free diffusibility in the cell. Our probe "FC-DBCO" was conjugated to an azide-modified mannose via a Cu-free click reaction in living HeLa cells and displayed intracellular specific fluorescence imaging with low background signals.

  5. Targeted intracellular delivery of proteins with spatial and temporal control.

    PubMed

    Morales, Demosthenes P; Braun, Gary B; Pallaoro, Alessia; Chen, Renwei; Huang, Xiao; Zasadzinski, Joseph A; Reich, Norbert O

    2015-02-02

    While a host of methods exist to deliver genetic materials or small molecules to cells, very few are available for protein delivery to the cytosol. We describe a modular, light-activated nanocarrier that transports proteins into cells by receptor-mediated endocytosis and delivers the cargo to the cytosol by light triggered endosomal escape. The platform is based on hollow gold nanoshells (HGN) with polyhistidine tagged proteins attached through an avidity-enhanced, nickel chelation linking layer; here, we used green fluorescent protein (GFP) as a model deliverable cargo. Endosomal uptake of the GFP loaded nanocarrier was mediated by a C-end Rule (CendR) internalizing peptide fused to the GFP. Focused femtosecond pulsed-laser excitation triggered protein release from the nanocarrier and endosome disruption, and the released protein was capable of targeting the nucleoli, a model intracellular organelle. We further demonstrate the generality of the approach by loading and releasing Sox2 and p53. This method for targeting of individual cells, with resolution similar to microinjection, provides spatial and temporal control over protein delivery.

  6. Interrogation of Cellular Innate Immunity by Diamond-Nanoneedle-Assisted Intracellular Molecular Fishing.

    PubMed

    Wang, Zixun; Yang, Yang; Xu, Zhen; Wang, Ying; Zhang, Wenjun; Shi, Peng

    2015-10-14

    Understanding intracellular signaling cascades and network is one of the core topics in modern biology. Novel tools based on nanotechnologies have enabled probing and analyzing intracellular signaling with unprecedented sensitivity and specificity. In this study, we developed a minimally invasive method for in situ probing specific signaling components of cellular innate immunity in living cells. The technique was based on diamond-nanoneedle arrays functionalized with aptamer-based molecular sensors, which were inserted into cytoplasmic domain using a centrifugation controlled process to capture molecular targets. Simultaneously, these diamond-nanoneedles also facilitated the delivery of double-strand DNAs (dsDNA90) into cells to activate the pathway involving the stimulator of interferon genes (STING). We showed that the nanoneedle-based biosensors can be successfully utilized to isolate transcriptional factor, NF-κB, from intracellular regions without damaging the cells, upon STING activation. By using a reversible protocol and repeated probing in living cells, we were able to examine the singling dynamics of NF-κB, which was quickly translocated from cytoplasm to nucleus region within ∼40 min of intracellular introduction of dsDNA90 for both A549 and neuron cells. These results demonstrated a novel and versatile tool for targeted in situ dissection of intracellular signaling, providing the potential to resolve new sights into various cellular processes.

  7. MicroRNAs in the intracellular space, regulation of organelle specific pathways in health and disease.

    PubMed

    Nguyen, Thao T; Brenu, Ekua W; Staines, Don R; Marshall-Gradisnik, Sonya M

    2014-01-01

    MicroRNAs (miRNA) are small (~22 nucleotide] non-coding RNA molecules originally characterised as nonsense or junk DNA. Emerging research suggests that these molecules have diverse regulatory roles in an array of molecular, cellular and physiological processes. MiRNAs are versatile and highly stable molecules, therefore, they are able to exist as intracellular or extracellular miRNAs. The purpose of this paper is to review the function and role of miRNAs in the intracellular space with specific focus on the interactions between miRNAs and organelles such as the mitochondria and the rough endoplasmic reticulum. Understanding the role of miRNAs in the intracellular space may be vital in understanding the mechanism of certain diseases.

  8. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  9. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets.

    PubMed

    Peretti, Marta; Angelini, Marina; Savalli, Nicoletta; Florio, Tullio; Yuspa, Stuart H; Mazzanti, Michele

    2015-10-01

    In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers." Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A multifunctional nanocarrier based on nanogated mesoporous silica for enhanced tumor-specific uptake and intracellular delivery.

    PubMed

    Gao, Yaohua; Yang, Cuihong; Liu, Xue; Ma, Rujiang; Kong, Deling; Shi, Linqi

    2012-02-01

    A multifunctional drug delivery system based on MCM-41-type mesoporous silica nanoparticles is described that behaves as if nanogates were covalently attached to the outlets of the mesopores through a highly acid-sensitive benzoic-imine linker. Tumor-specific uptake and intracellular delivery results from the pH-dependent progressive hydrolysis of the benzoic-imine linkage that starts at tumor extracellular pH = 6.8 and increases with decreasing pH. The cleavage of the benzoic-imine bond leads to the removal of the polypseudorotaxane caps and subsequent release of the payload drugs at tumor sites. At the same time, the carrier surface becomes positively charged, which further facilitates cellular uptake of the nanocarriers, thus offering a tremendous potential for targeted tumor therapy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. New Verapamil Analogs Inhibit Intracellular Mycobacteria without Affecting the Functions of Mycobacterium-Specific T Cells

    PubMed Central

    Ruminiski, Peter G.; Kumar, Malkeet; Singh, Kawaljit; Hamzabegovic, Fahreta; Hoft, Daniel F.; Eickhoff, Christopher S.; Selimovic, Asmir; Campbell, Mary; Chibale, Kelly

    2015-01-01

    There is a growing interest in repurposing mycobacterial efflux pump inhibitors, such as verapamil, for tuberculosis (TB) treatment. To aid in the design of better analogs, we studied the effects of verapamil on macrophages and Mycobacterium tuberculosis-specific T cells. Macrophage activation was evaluated by measuring levels of nitric oxide, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and gamma interferon (IFN-γ). Since verapamil is a known autophagy inducer, the roles of autophagy induction in the antimycobacterial activities of verapamil and norverapamil were studied using bone marrow-derived macrophages from ATG5flox/flox (control) and ATG5flox/flox Lyz-Cre mice. Our results showed that despite the well-recognized effects of verapamil on calcium channels and autophagy, its action on intracellular M. tuberculosis does not involve macrophage activation or autophagy induction. Next, the effects of verapamil and norverapamil on M. tuberculosis-specific T cells were assessed using flow cytometry following the stimulation of peripheral blood mononuclear cells from TB-skin-test-positive donors with M. tuberculosis whole-cell lysate for 7 days in the presence or absence of drugs. We found that verapamil and norverapamil inhibit the expansion of M. tuberculosis-specific T cells. Additionally, three new verapamil analogs were found to inhibit intracellular Mycobacterium bovis BCG, and one of the three analogs (KSV21) inhibited intracellular M. tuberculosis replication at concentrations that did not inhibit M. tuberculosis-specific T cell expansion. KSV21 also inhibited mycobacterial efflux pumps to the same degree as verapamil. More interestingly, the new analog enhances the inhibitory activities of isoniazid and rifampin on intracellular M. tuberculosis. In conclusion, KSV21 is a promising verapamil analog on which to base structure-activity relationship studies aimed at identifying more effective analogs. PMID:26643325

  12. Intracellular localisation of proteins to specific cellular areas by nanocapsule mediated delivery.

    PubMed

    Wang, Huabin; Chen, Ligang; Sun, Xianchao; Fu, Ailing

    2017-09-01

    Nanocapsules are promising carriers with great potential for intracellular protein transport. Although many studies have intended to improve cell uptake efficacy, there is an increasing interest in understanding of subcellular distribution of cargoes inside cells, which is essential for purposeful delivery of biomolecules into specific sites within cells. Herein, we interrogate the intracellular localisation of exogenous proteins, including fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) and green fluorescent protein (GFP), mediated by specially designed nanocapsules. The results show that the designed nanocapsules can deliver the two types of fluorescent proteins into different cellular destinations (cytosol, nucleus or the whole cell), depending on the composition of nanocapsules. Meanwhile, several impact factors that influence the distribution of proteins in cells have also been investigated, and the results suggest that the localisation of capsule-mediated proteins in cells is strongly affected by the surface properties of nanocapsules, the types of stabilisers and proteins, and environmental temperatures. The rational control of intracellular localised delivery of exogenous proteins as we demonstrated in this study might open new avenues to obtain desired magnitude of drug effects for modulating cell activity.

  13. Targeting intracellular Staphylococcus aureus to lower recurrence of orthopaedic infection.

    PubMed

    Dusane, Devendra H; Kyrouac, Douglas; Petersen, Iris; Bushrow, Luke; Calhoun, Jason H; Granger, Jeffrey F; Phieffer, Laura S; Stoodley, Paul

    2018-04-01

    Staphylococcus aureus is often found in orthopaedic infections and may be protected from commonly prescribed antibiotics by forming biofilms or growing intracellularly within osteoblasts. To investigate the effect of non-antibiotic compounds in conjunction with antibiotics to clear intracellular and biofilm forming S. aureus causing osteomyelitis. SAOS-2 osteoblast-like cell lines were infected with S. aureus BB1279. Antibiotics (vancomycin, VAN; and dicloxacillin, DICLOX), bacterial efflux pump inhibitors (piperine, PIP; carbonyl cyanide m-chlorophenyl hydrazone, CCCP), and bone morphogenetic protein (BMP-2) were evaluated individually and in combination to kill intracellular bacteria. We present direct evidence that after gentamicin killed extracellular planktonic bacteria and antibiotics had been stopped, seeding from the infected osteoblasts grew as biofilms. VAN was ineffective in treating the intracellular bacteria even at 10× MIC; however in presence of PIP or CCCP the intracellular S. aureus was significantly reduced. Bacterial efflux pump inhibitors (PIP and CCCP) were effective in enhancing permeability of antibiotics within the osteoblasts and facilitated killing of intracellular S. aureus. Confocal laser scanning microscopy (CLSM) showed increased uptake of propidium iodide within osteoblasts in presence of PIP and CCCP. BMP-2 had no effect on growth of S. aureus either alone or in combination with antibiotics. Combined application of antibiotics and natural agents could help in the treatment of osteoblast infected intracellular bacteria and biofilms associated with osteomyelitis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1086-1092, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Identification of tissue-specific targeting peptide

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Seung-Hoon; Kim, Daejin; Park, Kisoo; Choi, Kihang; Choi, Yun-Jaie; Jung, Dong Hyun

    2012-11-01

    Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide "DKNLQLH" was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.

  15. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.

    PubMed

    Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto

    2018-05-31

    Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.

  16. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Tanyi, Janos L; Zhang, Rugang; Liu, Qin; Speicher, David W

    2013-08-26

    New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. This manuscript addresses the importance of distinguishing between protein homologs and isoforms when identifying and validating cancer biomarkers in plasma or serum. Specifically, it describes the use of targeted in-depth LC-MS/MS analysis to determine the members of two protein families, chloride intracellular channel (CLIC) and tropomyosin (TPM) proteins that are detectable in sera of ovarian cancer patients. It then establishes a multiplexed isoform- and homology-specific MRM assay to quantify all observed gene products in these two protein

  17. Functions of Intracellular Retinoid Binding-Proteins.

    PubMed

    Napoli, Joseph L

    Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.

  18. Pathogenic mechanisms of intracellular bacteria.

    PubMed

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  19. Synergistically enhanced selective intracellular uptake of anticancer drug carrier comprising folic acid-conjugated hydrogels containing magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Haneul; Jo, Ara; Baek, Seulgi; Lim, Daeun; Park, Soon-Yong; Cho, Soo Kyung; Chung, Jin Woong; Yoon, Jinhwan

    2017-01-01

    Targeted drug delivery has long been extensively researched since drug delivery and release at the diseased site with minimum dosage realizes the effective therapy without adverse side effects. In this work, to achieve enhanced intracellular uptake of anticancer drug carriers for efficient chemo-therapy, we have designed targeted multifunctional anticancer drug carrier hydrogels. Temperature-responsive poly(N-isopropylacrylamide) (PNIPAm) hydrogel core containing superparamagnetic magnetite nanoparticles (MNP) were prepared using precipitation polymerization, and further polymerized with amine-functionalized copolymer shell to facilitate the conjugation of targeting ligand. Then, folic acid, specific targeting ligand for cervical cancer cell line (HeLa), was conjugated on the hydrogel surface, yielding the ligand conjugated hybrid hydrogels. We revealed that enhanced intracellular uptake by HeLa cells in vitro was enabled by both magnetic attraction and receptor-mediated endocytosis, which were contributed by MNP and folic acid, respectively. Furthermore, site-specific uptake of the developed carrier was confirmed by incubating with several other cell lines. Based on synergistically enhanced intracellular uptake, efficient cytotoxicity and apoptotic activity of HeLa cells incubated with anticancer drug loaded hybrid hydrogels were successfully achieved. The developed dual-targeted hybrid hydrogels are expected to provide a platform for the next generation intelligent drug delivery systems.

  20. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    PubMed Central

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  1. Cystatin C Properties Crucial for Uptake and Inhibition of Intracellular Target Enzymes*

    PubMed Central

    Wallin, Hanna; Abrahamson, Magnus; Ekström, Ulf

    2013-01-01

    To elucidate the molecular requirements for cancer cell internalization of the extracellular cysteine protease inhibitor cystatin C, 12 variants of the protein were produced and used for uptake experiments in MCF-7 cells. Variants with alterations in the cysteine cathepsin binding region ((Δ1–10)-, K5A-, R8G-, (R8G,L9G,V10G)-, (R8G,L9G,V10G,W106G)-, and W106G-cystatin C) were internalized to a very low extent compared with the wild-type inhibitor. Substitutions of N39 in the legumain binding region (N39K- and N39A-cystatin C) decreased the internalization and (R24A,R25A)-cystatin C, with substitutions of charged residues not involved in enzyme inhibition, was not taken up at all. Two variants, W106F- and K75A-cystatin C, showed that the internalization can be positively affected by engineering of the cystatin molecule. Microscopy revealed vesicular co-localization of internalized cystatin C with the lysosomal marker proteins cathepsin D and legumain. Activities of both cysteine cathepsins and legumain, possible target enzymes associated with cancer cell invasion and metastasis, were down-regulated in cell homogenates following cystatin C uptake. A positive effect on regulation of intracellular enzyme activity by a cystatin variant selected from uptake properties was illustrated by incubating cells with W106F-cystatin C. This resulted in more efficient down-regulation of intracellular legumain activity than when cells were incubated with wild-type cystatin C. Uptake experiments in prostate cancer cells corroborated that the cystatin C internalization is generally relevant and confirmed an increased uptake of W106F-cystatin C, in PC3 cells. Thus, intracellular cysteine proteases involved in cancer-promoting processes might be controled by cystatin uptake. PMID:23629651

  2. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.

    PubMed

    Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon

    2015-05-20

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.

  3. Vector design for liver specific expression of multiple interfering RNAs that target hepatitis B virus transcripts

    PubMed Central

    Snyder, Lindsey L.; Esser, Jonathan M.; Pachuk, Catherine J.; Steel, Laura F.

    2008-01-01

    RNA interference (RNAi) is a process that can target intracellular RNAs for degradation in a highly sequence specific manner, making it a powerful tool that is being pursued in both research and therapeutic applications. Hepatitis B virus (HBV) is a serious public health problem in need of better treatment options, and aspects of its life cycle make it an excellent target for RNAi-based therapeutics. We have designed a vector that expresses interfering RNAs that target HBV transcripts, including both viral RNA replicative intermediates and mRNAs encoding viral proteins. Our vector design incorporates many features of endogenous microRNA (miRNA) gene organization that are proving useful for the development of reagents for RNAi. In particular, our vector contains an RNA pol II driven gene cassette that leads to tissue specific expression and efficient processing of multiple interfering RNAs from a single transcript, without the co-expression of any protein product. This vector shows potent silencing of HBV targets in cell culture models of HBV infection. The vector design will be applicable to silencing of additional cellular or disease-related genes. PMID:18499277

  4. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors

    PubMed Central

    Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L.

    2011-01-01

    Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as “helper NB-LRRs” to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop–dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals. PMID:21911370

  5. INTRACELLULAR TARGETING OF THE ONCOGENIC MUC1-C PROTEIN WITH A NOVEL GO-203 NANOPARTICLE FORMULATION

    PubMed Central

    Hasegawa, Masanori; Sinha, Raj Kumar; Kumar, Manoj; Alam, Maroof; Yin, Li; Raina, Deepak; Kharbanda, Akriti; Panchamoorthy, Govind; Gupta, Dikshi; Singh, Harpal; Kharbanda, Surender; Kufe, Donald

    2015-01-01

    Purpose The MUC1-C oncoprotein is an intracellular target that is druggable with cell-penetrating peptide inhibitors. However, development of peptidyl drugs for treating cancer has been a challenge because of unfavorable pharmacokinetic parameters and limited cell penetrating capabilities. Experimental Design Encapsulation of the MUC1-C inhibitor, GO-203, in novel polymeric nanoparticles (NPs) was studied for effects on intracellular targeting of MUC1-C signaling and function. Results Our results show that loading GO-203 into tetrablock polylactic acid (PLA)-polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG copolymers is achievable and, notably, is enhanced by increasing PEG chain length. Additionally, we found that release of GO-203 from these NPs is controllable over at least 7 days. GO-203/NP treatment of MUC1-C-positive breast and lung cancer cells in vitro was more active with less frequent dosing than that achieved with non-encapsulated GO-203. Moreover, treatment with GO-203/NPs blocked MUC1-C homodimerization, consistent with on-target effects. GO-203/NP treatment was also effective in downregulating TIGAR, disrupting redox balance and inhibiting the self-renewal capacity of cancer cells. Significantly, weekly administration of GO-203/NPs to mice bearing syngeneic or xenograft tumors was associated with regressions that were comparable to those found when dosing on a daily basis with GO-203. Conclusions These findings thus define an effective approach for (i) sustained administration of GO-203 in polymeric PLA-(PEG-PPG-PEG) NPs to target MUC1-C in cancer cells and (ii) the potential delivery of other anti-cancer peptide drugs. PMID:25712682

  6. Development of background-free tame fluorescent probes for intracellular live cell imaging

    PubMed Central

    Alamudi, Samira Husen; Satapathy, Rudrakanta; Kim, Jihyo; Su, Dongdong; Ren, Haiyan; Das, Rajkumar; Hu, Lingna; Alvarado-Martínez, Enrique; Lee, Jung Yeol; Hoppmann, Christian; Peña-Cabrera, Eduardo; Ha, Hyung-Ho; Park, Hee-Sung; Wang, Lei; Chang, Young-Tae

    2016-01-01

    Fluorescence labelling of an intracellular biomolecule in native living cells is a powerful strategy to achieve in-depth understanding of the biomolecule's roles and functions. Besides being nontoxic and specific, desirable labelling probes should be highly cell permeable without nonspecific interactions with other cellular components to warrant high signal-to-noise ratio. While it is critical, rational design for such probes is tricky. Here we report the first predictive model for cell permeable background-free probe development through optimized lipophilicity, water solubility and charged van der Waals surface area. The model was developed by utilizing high-throughput screening in combination with cheminformatics. We demonstrate its reliability by developing CO-1 and AzG-1, a cyclooctyne- and azide-containing BODIPY probe, respectively, which specifically label intracellular target organelles and engineered proteins with minimum background. The results provide an efficient strategy for development of background-free probes, referred to as ‘tame' probes, and novel tools for live cell intracellular imaging. PMID:27321135

  7. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila.

    PubMed

    Chiaraviglio, Lucius; Kirby, James E

    2015-12-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes

    PubMed Central

    2011-01-01

    Many bacterial species contain intracellular nano- and micro-compartments consisting of self-assembling proteins that form protein-only shells. These structures are built up by combinations of a reduced number of repeated elements, from 60 repeated copies of one unique structural element self-assembled in encapsulins of 24 nm to 10,000-20,000 copies of a few protein species assembled in a organelle of around 100-150 nm in cross-section. However, this apparent simplicity does not correspond to the structural and functional sophistication of some of these organelles. They package, by not yet definitely solved mechanisms, one or more enzymes involved in specific metabolic pathways, confining such reactions and sequestering or increasing the inner concentration of unstable, toxics or volatile intermediate metabolites. From a biotechnological point of view, we can use the self assembling properties of these particles for directing shell assembling and enzyme packaging, mimicking nature to design new applications in biotechnology. Upon appropriate engineering of the building blocks, they could act as a new family of self-assembled, protein-based vehicles in Nanomedicine to encapsulate, target and deliver therapeutic cargoes to specific cell types and/or tissues. This would provide a new, intriguing platform of microbial origin for drug delivery. PMID:22046962

  9. A Generalizable Platform for Interrogating Target- and Signal-Specific Consequences of Electrophilic Modifications in Redox-Dependent Cell Signaling

    PubMed Central

    Lin, Hong-Yu; Haegele, Joseph A.; Disare, Michael T.; Lin, Qishan; Aye, Yimon

    2015-01-01

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized “electrophile toolbox” with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology—T-REX (targetable reactive electrophiles & oxidants)—is established by: (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein—one of several redox-sensitive regulators of the Nrf2–ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2–ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background. PMID:25909755

  10. Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis.

    PubMed

    Wilson, Kris; Webster, Scott P; Iredale, John P; Zheng, Xiaozhong; Homer, Natalie Z; Pham, Nhan T; Auer, Manfred; Mole, Damian J

    2017-12-15

    The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.

  11. Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Kris; Webster, Scott P.; Iredale, John P.; Zheng, Xiaozhong; Homer, Natalie Z.; Pham, Nhan T.; Auer, Manfred; Mole, Damian J.

    2018-01-01

    The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.

  12. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies

    PubMed Central

    Lang, Bethan; Makuch, Mateusz; Moloney, Teresa; Dettmann, Inga; Mindorf, Swantje; Probst, Christian; Stoecker, Winfried; Buckley, Camilla; Newton, Charles R; Leite, M Isabel; Maddison, Paul; Komorowski, Lars; Adcock, Jane; Vincent, Angela; Waters, Patrick; Irani, Sarosh R

    2017-01-01

    Objectives Autoantibodies against the extracellular domains of the voltage-gated potassium channel (VGKC) complex proteins, leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-2 (CASPR2), are found in patients with limbic encephalitis, faciobrachial dystonic seizures, Morvan's syndrome and neuromyotonia. However, in routine testing, VGKC complex antibodies without LGI1 or CASPR2 reactivities (double-negative) are more common than LGI1 or CASPR2 specificities. Therefore, the target(s) and clinical associations of double-negative antibodies need to be determined. Methods Sera (n=1131) from several clinically defined cohorts were tested for IgG radioimmunoprecipitation of radioiodinated α-dendrotoxin (125I-αDTX)-labelled VGKC complexes from mammalian brain extracts. Positive samples were systematically tested for live hippocampal neuron reactivity, IgG precipitation of 125I-αDTX and 125I-αDTX-labelled Kv1 subunits, and by cell-based assays which expressed Kv1 subunits, LGI1 and CASPR2. Results VGKC complex antibodies were found in 162 of 1131 (14%) sera. 90 of these (56%) had antibodies targeting the extracellular domains of LGI1 or CASPR2. Of the remaining 72 double-negative sera, 10 (14%) immunoprecipitated 125I-αDTX itself, and 27 (38%) bound to solubilised co-expressed Kv1.1/1.2/1.6 subunits and/or Kv1.2 subunits alone, at levels proportionate to VGKC complex antibody levels (r=0.57, p=0.0017). The sera with LGI1 and CASPR2 antibodies immunoprecipitated neither preparation. None of the 27 Kv1-precipitating samples bound live hippocampal neurons or Kv1 extracellular domains, but 16 (59%) bound to permeabilised Kv1-expressing human embryonic kidney 293T cells. These intracellular Kv1 antibodies mainly associated with non-immune disease aetiologies, poor longitudinal clinical–serological correlations and a limited immunotherapy response. Conclusions Double-negative VGKC complex antibodies are often directed against cytosolic epitopes of

  13. The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis

    PubMed Central

    Basu, Piyali; Sandhu, Noor; Bhatt, Apoorva; Singh, Albel; Balhana, Ricardo; Gobe, Irene; Crowhurst, Nicola A.; Mendum, Tom A.; Gao, Liang; Ward, Jane L.; Beale, Michael H.; McFadden, Johnjoe; Beste, Dany J. V.

    2018-01-01

    Enzymes at the phosphoenolpyruvate (PEP)–pyruvate–oxaloacetate or anaplerotic (ANA) node control the metabolic flux to glycolysis, gluconeogenesis, and anaplerosis. Here we used genetic, biochemical, and 13C isotopomer analysis to characterize the role of the enzymes at the ANA node in intracellular survival of the world's most successful bacterial pathogen, Mycobacterium tuberculosis (Mtb). We show that each of the four ANA enzymes, pyruvate carboxylase (PCA), PEP carboxykinase (PCK), malic enzyme (MEZ), and pyruvate phosphate dikinase (PPDK), performs a unique and essential metabolic function during the intracellular survival of Mtb. We show that in addition to PCK, intracellular Mtb requires PPDK as an alternative gateway into gluconeogenesis. Propionate and cholesterol detoxification was also identified as an essential function of PPDK revealing an unexpected role for the ANA node in the metabolism of these physiologically important intracellular substrates and highlighting this enzyme as a tuberculosis (TB)-specific drug target. We show that anaplerotic fixation of CO2 through the ANA node is essential for intracellular survival of Mtb and that Mtb possesses three enzymes (PCA, PCK, and MEZ) capable of fulfilling this function. In addition to providing a back-up role in anaplerosis we show that MEZ also has a role in lipid biosynthesis. MEZ knockout strains have an altered cell wall and were deficient in the initial entry into macrophages. This work reveals that the ANA node is a focal point for controlling the intracellular replication of Mtb, which goes beyond canonical gluconeogenesis and represents a promising target for designing novel anti-TB drugs. PMID:29475946

  14. Label-Free Raman Microspectral Analysis for Comparison of Cellular Uptake and Distribution between Non-Targeted and EGFR-Targeted Biodegradable Polymeric Nanoparticles

    PubMed Central

    Chernenko, Tatyana; Buyukozturk, Fulden; Miljkovic, Milos; Carrier, Rebecca; Diem, Max; Amiji, Mansoor

    2013-01-01

    Active targeted delivery of nanoparticle-encapsulated agents to tumor cells in vivo is expected to enhance therapeutic effect with significantly less non-specific toxicity. Active targeting is based on surface modification of nanoparticles with ligands that bind with extracellular targets and enhance payload delivery in the cells. In this study, we have used label-free Raman micro-spectral analysis and kinetic modeling to study cellular interactions and intracellular delivery of C6-ceramide using a non-targeted and an epidermal growth factor receptor (EGFR) targeted biodegradable polymeric nano-delivery systems, in EGFR-expressing human ovarian adenocarcinoma (SKOV3) cells. The results show that EGFR peptide-modified nanoparticles were rapidly internalized in SKOV3 cells leading to significant intracellular accumulation as compared to non-specific uptake by the non-targeted nanoparticles. Raman micro-spectral analysis enables visualization and quantification of the carrier system, drug-load, and responses of the biological systems interrogated, without exogenous staining and labeling procedures. PMID:24298430

  15. Mechanisms of cellular invasion by intracellular parasites.

    PubMed

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  16. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis.

    PubMed

    Micheva-Viteva, Sofiya N; Shou, Yulin; Ganguly, Kumkum; Wu, Terry H; Hong-Geller, Elizabeth

    2017-01-01

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis , we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host-targeted

  17. Review: Intracardiac intracellular angiotensin system in diabetes

    PubMed Central

    Kumar, Rajesh; Yong, Qian Chen; Thomas, Candice M.

    2012-01-01

    The renin-angiotensin system (RAS) has mainly been categorized as a circulating and a local tissue RAS. A new component of the local system, known as the intracellular RAS, has recently been described. The intracellular RAS is defined as synthesis and action of ANG II intracellularly. This RAS appears to differ from the circulating and the local RAS, in terms of components and the mechanism of action. These differences may alter treatment strategies that target the RAS in several pathological conditions. Recent work from our laboratory has demonstrated significant upregulation of the cardiac, intracellular RAS in diabetes, which is associated with cardiac dysfunction. Here, we have reviewed evidence supporting an intracellular RAS in different cell types, ANG II's actions in cardiac cells, and its mechanism of action, focusing on the intracellular cardiac RAS in diabetes. We have discussed the significance of an intracellular RAS in cardiac pathophysiology and implications for potential therapies. PMID:22170614

  18. Intracellular targeting of isoproteins in muscle cytoarchitecture

    PubMed Central

    1988-01-01

    Part of the muscle creatine kinase (MM-CK) in skeletal muscle of chicken is localized in the M-band of myofibrils, while chicken heart cells containing myofibrils and BB-CK, but not expressing MM-CK, do not show this association. The specificity of the MM-CK interaction was tested using cultured chicken heart cells as "living test tubes" by microinjection of in vitro generated MM-CK and hybrid M-CK/B-CK mRNA with SP6 RNA polymerase. The resulting translation products were detected in injected cells with isoprotein-specific antibodies. M-CK molecules and translation products of chimeric cDNA molecules containing the head half of the B-CK and the tail half of the M-CK coding regions were localized in the M-band of the myofibrils. The tail, but not the head portion of M-CK is essential for the association of M-CK with the M-band of myofibrils. We conclude that gross biochemical properties do not always coincide with a molecule's specific functions like the participation in cell cytoarchitecture which may depend on molecular targeting even within the same cellular compartment. PMID:3283147

  19. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies.

    PubMed

    Lang, Bethan; Makuch, Mateusz; Moloney, Teresa; Dettmann, Inga; Mindorf, Swantje; Probst, Christian; Stoecker, Winfried; Buckley, Camilla; Newton, Charles R; Leite, M Isabel; Maddison, Paul; Komorowski, Lars; Adcock, Jane; Vincent, Angela; Waters, Patrick; Irani, Sarosh R

    2017-04-01

    Autoantibodies against the extracellular domains of the voltage-gated potassium channel (VGKC) complex proteins, leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-2 (CASPR2), are found in patients with limbic encephalitis, faciobrachial dystonic seizures, Morvan's syndrome and neuromyotonia. However, in routine testing, VGKC complex antibodies without LGI1 or CASPR2 reactivities (double-negative) are more common than LGI1 or CASPR2 specificities. Therefore, the target(s) and clinical associations of double-negative antibodies need to be determined. Sera (n=1131) from several clinically defined cohorts were tested for IgG radioimmunoprecipitation of radioiodinated α-dendrotoxin ( 125 I-αDTX)-labelled VGKC complexes from mammalian brain extracts. Positive samples were systematically tested for live hippocampal neuron reactivity, IgG precipitation of 125 I-αDTX and 125 I-αDTX-labelled Kv1 subunits, and by cell-based assays which expressed Kv1 subunits, LGI1 and CASPR2. VGKC complex antibodies were found in 162 of 1131 (14%) sera. 90 of these (56%) had antibodies targeting the extracellular domains of LGI1 or CASPR2. Of the remaining 72 double-negative sera, 10 (14%) immunoprecipitated 125 I-αDTX itself, and 27 (38%) bound to solubilised co-expressed Kv1.1/1.2/1.6 subunits and/or Kv1.2 subunits alone, at levels proportionate to VGKC complex antibody levels (r=0.57, p=0.0017). The sera with LGI1 and CASPR2 antibodies immunoprecipitated neither preparation. None of the 27 Kv1-precipitating samples bound live hippocampal neurons or Kv1 extracellular domains, but 16 (59%) bound to permeabilised Kv1-expressing human embryonic kidney 293T cells. These intracellular Kv1 antibodies mainly associated with non-immune disease aetiologies, poor longitudinal clinical-serological correlations and a limited immunotherapy response. Double-negative VGKC complex antibodies are often directed against cytosolic epitopes of Kv1 subunits and occasionally against

  20. Gold-carbon dots for the intracellular imaging of cancer-derived exosomes.

    PubMed

    Jiang, Xiaoyue; Zong, Shenfei; Chen, Chen; Zhang, Yizhi; Wang, Zhuyuan; Cui, Yiping

    2018-04-27

    As a novel fluorescent nanomaterial, gold-carbon quantum dots (GCDs) possess high biocompatibility and can be easily synthesized by a microwave-assisted method. Owing to their small sizes and unique optical properties, GCDs can be applied to imaging of biological targets, such as cells, exosomes and other organelles. In this study, GCDs were used for fluorescence imaging of exosomes. Tumor-specific antibodies are attached to the GCDs, forming exosome specific nanoprobes. The nanoprobes can label exosomes via immuno-reactions and thus facilitate fluorescent imaging of exosomes. When incubated with live cells, exosomes labeled with the nanoprobes can be taken up by the cells. The intracellular experiments confirmed that the majority of exosomes were endocytosed by cells and transported to lysosomes. The manner by which exosomes were taken up and the intracellular distribution of exosomes are unaffected by the GCDs. The experimental results successfully demonstrated that the presented nanoprobe can be used to study the intrinsic intracellular behavior of tumor derived exosomes. We believe that the GCDs based nanoprobe holds a great promise in the study of exosome related cellular events, such as cancer metastasis.

  1. Gold-carbon dots for the intracellular imaging of cancer-derived exosomes

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoyue; Zong, Shenfei; Chen, Chen; Zhang, Yizhi; Wang, Zhuyuan; Cui, Yiping

    2018-04-01

    As a novel fluorescent nanomaterial, gold-carbon quantum dots (GCDs) possess high biocompatibility and can be easily synthesized by a microwave-assisted method. Owing to their small sizes and unique optical properties, GCDs can be applied to imaging of biological targets, such as cells, exosomes and other organelles. In this study, GCDs were used for fluorescence imaging of exosomes. Tumor-specific antibodies are attached to the GCDs, forming exosome specific nanoprobes. The nanoprobes can label exosomes via immuno-reactions and thus facilitate fluorescent imaging of exosomes. When incubated with live cells, exosomes labeled with the nanoprobes can be taken up by the cells. The intracellular experiments confirmed that the majority of exosomes were endocytosed by cells and transported to lysosomes. The manner by which exosomes were taken up and the intracellular distribution of exosomes are unaffected by the GCDs. The experimental results successfully demonstrated that the presented nanoprobe can be used to study the intrinsic intracellular behavior of tumor derived exosomes. We believe that the GCDs based nanoprobe holds a great promise in the study of exosome related cellular events, such as cancer metastasis.

  2. Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels.

    PubMed

    Temming, Kai; Meyer, Damon L; Zabinski, Roger; Dijkers, Eli C F; Poelstra, Klaas; Molema, Grietje; Kok, Robbert J

    2006-01-01

    Induction of apoptosis in endothelial cells is considered an attractive strategy to therapeutically interfere with a solid tumor's blood supply. In the present paper, we constructed cytotoxic conjugates that specifically target angiogenic endothelial cells, thus preventing typical side effects of apoptosis-inducing drugs. For this purpose, we conjugated the potent antimitotic agent monomethyl-auristatin-E (MMAE) via a lysosomal cleavable linker to human serum albumin (HSA) and further equipped this drug-albumin conjugate with cyclic c(RGDfK) peptides for multivalent interaction with alphavbeta3-integrin. The RGD-peptides were conjugated via either an extended poly(ethylene glycol) linker or a short alkyl linker. The resulting drug-targeting conjugates RGDPEG-MMAE-HSA and RGD-MMAE-HSA demonstrated high binding affinity and specificity for alphavbeta3-integrin expressing human umbilical vein endothelial cells (HUVEC). Both types of conjugates were internalized by endothelial cells and killed the target cells at low nM concentrations. Furthermore, we observed RGD-dependent binding of the conjugates to C26 carcinoma. Upon i.v. administration to C26-tumor bearing mice, both drug-targeting conjugates displayed excellent tumor homing properties. Our results demonstrate that RGD-modified albumins are suitable carriers for cell selective intracellular delivery of cytotoxic compounds, and further studies will be conducted to assess the antivascular and tumor inhibitory potential of RGDPEG-MMAE-HSA and RGD-MMAE-HSA.

  3. The GARP Complex Is Involved in Intracellular Cholesterol Transport via Targeting NPC2 to Lysosomes.

    PubMed

    Wei, Jian; Zhang, Ying-Yu; Luo, Jie; Wang, Ju-Qiong; Zhou, Yu-Xia; Miao, Hong-Hua; Shi, Xiong-Jie; Qu, Yu-Xiu; Xu, Jie; Li, Bo-Liang; Song, Bao-Liang

    2017-06-27

    Proper intracellular cholesterol trafficking is critical for cellular function. Two lysosome-resident proteins, NPC1 and NPC2, mediate the egress of low-density lipoprotein-derived cholesterol from lysosomes. However, other proteins involved in this process remain largely unknown. Through amphotericin B-based selection, we isolated two cholesterol transport-defective cell lines. Subsequent whole-transcriptome-sequencing analysis revealed two cell lines bearing the same mutation in the vacuolar protein sorting 53 (Vps53) gene. Depletion of VPS53 or other subunits of the Golgi-associated retrograde protein (GARP) complex impaired NPC2 sorting to lysosomes and caused cholesterol accumulation. GARP deficiency blocked the retrieval of the cation-independent mannose 6-phosphate receptor (CI-MPR) to the trans-Golgi network. Further, Vps54 mutant mice displayed reduced cellular NPC2 protein levels and increased cholesterol accumulation, underscoring the physiological role of the GARP complex in cholesterol transport. We conclude that the GARP complex contributes to intracellular cholesterol transport by targeting NPC2 to lysosomes in a CI-MPR-dependent manner. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells

    PubMed Central

    Checco, James W.; Lee, Erinna F.; Evangelista, Marco; Sleebs, Nerida J.; Rogers, Kelly; Pettikiriarachchi, Anne; Kershaw, Nadia J.; Eddinger, Geoffrey A.; Belair, David G.; Wilson, Julia L.; Eller, Chelcie H.; Raines, Ronald T.; Murphy, William L.; Smith, Brian J.; Gellman, Samuel H.; Fairlie, W. Douglas

    2015-01-01

    Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of L-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and β-amino acid residues (“α/β-peptides”) manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous “α-peptides”. This report documents an extension of the α/β-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/β-peptides based on a “stapled” Bim BH3 α-peptide, which contains a hydrocarbon crosslink to enhance α-helix stability. We show that a stapled α/β-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/β-peptide is nearly 100-fold more resistant to proteolysis than is the parent α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain crosslinking to produce synergistic benefits. PMID:26317395

  5. α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells.

    PubMed

    Checco, James W; Lee, Erinna F; Evangelista, Marco; Sleebs, Nerida J; Rogers, Kelly; Pettikiriarachchi, Anne; Kershaw, Nadia J; Eddinger, Geoffrey A; Belair, David G; Wilson, Julia L; Eller, Chelcie H; Raines, Ronald T; Murphy, William L; Smith, Brian J; Gellman, Samuel H; Fairlie, W Douglas

    2015-09-09

    Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and β-amino acid residues ("α/β-peptides") manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous "α-peptides". This report documents an extension of the α/β-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/β-peptides based on a "stapled" Bim BH3 α-peptide, which contains a hydrocarbon cross-link to enhance α-helix stability. We show that a stapled α/β-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/β-peptide is nearly 100-fold more resistant to proteolysis than is the parent stapled α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain cross-linking to produce synergistic benefits.

  6. Nanomedicine as an emerging approach against intracellular pathogens

    PubMed Central

    Armstead, Andrea L; Li, Bingyun

    2011-01-01

    Diseases such as tuberculosis, hepatitis, and HIV/AIDS are caused by intracellular pathogens and are a major burden to the global medical community. Conventional treatments for these diseases typically consist of long-term therapy with a combination of drugs, which may lead to side effects and contribute to low patient compliance. The pathogens reside within intracellular compartments of the cell, which provide additional barriers to effective treatment. Therefore, there is a need for improved and more effective therapies for such intracellular diseases. This review will summarize, for the first time, the intracellular compartments in which pathogens can reside and discuss how nanomedicine has the potential to improve intracellular disease therapy by offering properties such as targeting, sustained drug release, and drug delivery to the pathogen’s intracellular location. The characteristics of nanomedicine may prove advantageous in developing improved or alternative therapies for intracellular diseases. PMID:22228996

  7. Plasmonic nanobubbles for target cell-specific gene and drug delivery and multifunctional processing of heterogeneous cell systems

    NASA Astrophysics Data System (ADS)

    Lukianova-Hleb, Ekaterina Y.; Huye, Leslie E.; Brenner, Malcolm K.; Lapotko, Dmitri O.

    2014-03-01

    Cell and gene cancer therapies require ex vivo cell processing of human grafts. Such processing requires at least three steps - cell enrichment, cell separation (destruction), and gene transfer - each of which requires the use of a separate technology. While these technologies may be satisfactory for research use, they are of limited usefulness in the clinical treatment setting because they have a low processing rate, as well as a low transfection and separation efficacy and specificity in heterogeneous human grafts. Most problematic, because current technologies are administered in multiple steps - rather than in a single, multifunctional, and simultaneous procedure - they lengthen treatment process and introduce an unnecessary level of complexity, labor, and resources into clinical treatment; all these limitations result in high losses of valuable cells. We report a universal, high-throughput, and multifunctional technology that simultaneously (1) inject free external cargo in target cells, (2) destroys unwanted cells, and (3) preserve valuable non-target cells in heterogeneous grafts. Each of these functions has single target cell specificity in heterogeneous cell system, processing rate > 45 mln cell/min, injection efficacy 90% under 96% viability of the injected cells, target cell destruction efficacy > 99%, viability of not-target cells >99% The developed technology employs novel cellular agents, called plasmonic nanobubbles (PNBs). PNBs are not particles, but transient, intracellular events, a vapor nanobubbles that expand and collapse in mere nanoseconds under optical excitation of gold nanoparticles with short picosecond laser pulses. PNBs of different, cell-specific, size (1) inject free external cargo with small PNBs, (2) Destroy other target cells mechanically with large PNBs and (3) Preserve non-target cells. The multi-functionality, precision, and high throughput of all-in-one PNB technology will tremendously impact cell and gene therapies and other

  8. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers.

    PubMed

    Greenlee, John E; Clawson, Susan A; Hill, Kenneth E; Wood, Blair; Clardy, Stacey L; Tsunoda, Ikuo; Carlson, Noel G

    2015-01-01

    Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1) Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2) whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3) whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient serum and was not

  9. Anti-Yo Antibody Uptake and Interaction with Its Intracellular Target Antigen Causes Purkinje Cell Death in Rat Cerebellar Slice Cultures: A Possible Mechanism for Paraneoplastic Cerebellar Degeneration in Humans with Gynecological or Breast Cancers

    PubMed Central

    Greenlee, John E.; Clawson, Susan A.; Hill, Kenneth E.; Wood, Blair; Clardy, Stacey L.; Tsunoda, Ikuo; Carlson, Noel G.

    2015-01-01

    Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1) Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2) whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3) whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient serum and was not

  10. Evaluation of quantitative polymerase chain reaction assays targeting Mycobacterium avium, M. intracellulare, and M. avium subspecies paratuberculosis in drinking water biofilms.

    PubMed

    Chern, Eunice C; King, Dawn; Haugland, Richard; Pfaller, Stacy

    2015-03-01

    Mycobacterium avium (MA), Mycobacterium intracellulare (MI), and Mycobacterium avium subsp. paratuberculosis (MAP) are difficult to culture due to their slow growing nature. A quantitative polymerase chain reaction (qPCR) method for the rapid detection of MA, MI, and MAP can be used to provide data supporting drinking water biofilms as potential sources of human exposure. The aim of this study was to characterize two qPCR assays targeting partial 16S rRNA gene sequences of MA and MI and use these assays, along with two previously reported MAP qPCR assays (IS900 and Target 251), to investigate Mycobacterium occurrence in kitchen faucet biofilms. MA and MI qPCR assays demonstrated 100% specificity and sensitivity when evaluated against 18 non-MA complex, 76 MA, and 17 MI isolates. Both assays detected approximately 1,000 cells from a diluted cell stock inoculated on a sampling swab 100% of the time. DNA analysis by qPCR indicated that 35.3, 56.9 and 11.8% of the 51 kitchen faucet biofilm samples collected contained MA, MI, and MAP, respectively. This study introduces novel qPCR assays designed to specifically detect MA and MI in biofilm. Results support the use of qPCR as an alternative to culture for detection and enumeration of MA, MI, and MAP in microbiologically complex samples.

  11. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  12. Intracellular hyperthermia mediated by nanoparticles in radiofrequency fields in the treatment of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Glazer, Evan Scott

    Intracellular hyperthermic therapy may prove to be a unique and novel approach to the management of pancreatic cancer. Utilizing the principle of photothermal destruction, selective killing of cancer cells with minimal injury to normal tissues may be possible. This dissertation investigated the role of antibody targeted metal nanoparticles and the cytotoxic effects of nonionizing radiofrequency fields in pancreatic cancer. Cancer cell death was induced by heat release from intracellular metal nanoparticles after radiofrequency field exposure. Fluorescent and gold nanoparticles were delivered with two antibodies, cetuximab and PAM-4, to pancreatic cancer cells in vitro and mouse xenografts in vivo. Selective delivery of these nanoparticles induced cell death in vitro and decreased tumor burden in vivo after whole animal RF field exposure. This occurred through both apoptosis and necrosis. In addition, activated caspase-3 was increased after antibody treatment and RF field exposure. Furthermore, although there was non-specific uptake by the liver and spleen in vivo, there was no evidence of acute or chronic toxicity in the animals. These results are in agreement with the principle that malignant cells are more thermally sensitive than normal cells or tissues. Selective intracellular delivery of metal nanoparticles coupled with whole body RF field exposure may be a beneficial therapy against micrometastases and unresectable pancreatic cancer in the future. Further studies are planned with more specific antibodies, other nanoparticles, and other cancer targets.

  13. Cell-specific targeting by heterobivalent ligands.

    PubMed

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  14. Cell-Specific Targeting by Heterobivalent Ligands

    PubMed Central

    Josan, Jatinder S.; Handl, Heather L.; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M.; Vagner, Josef; Mash, Eugene A.; Hruby, Victor J.; Gillies, Robert J.

    2012-01-01

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach—to specifically target combinations of cell-surface receptors using heteromultivalent ligands (“receptor combination approach”). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle4, DPhe7]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20–50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH2. Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging. PMID:21639139

  15. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Kyung oh; Biomedical Sciences, Seoul National University College of Medicine; Cancer Research Institute, Seoul National University College of Medicine

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and {sup 64}Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescencemore » signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.« less

  16. Streptavidin-mirror DNA tetrahedron hybrid as a platform for intracellular and tumor delivery of enzymes.

    PubMed

    Kim, Kyoung-Ran; Hwang, Dohyeon; Kim, Juhyeon; Lee, Chang-Yong; Lee, Wonseok; Yoon, Dae Sung; Shin, Dongyun; Min, Sun-Joon; Kwon, Ick Chan; Chung, Hak Suk; Ahn, Dae-Ro

    2018-06-28

    Despite the extremely high substrate specificity and catalytically amplified activity of enzymes, the lack of efficient cellular internalization limits their application as therapeutics. To overcome this limitation and to harness enzymes as practical biologics for targeting intracellular functions, we developed the streptavidin-mirror DNA tetrahedron hybrid as a platform for intracellular delivery of various enzymes. The hybrid consists of streptavidin, which provides a stoichiometrically controlled loading site for the enzyme cargo and an L-DNA (mirror DNA) tetrahedron, which provides the intracellular delivery potential. Due to the cell-penetrating ability of the mirror DNA tetrahedron of this hybrid, enzymes loaded on streptavidin can be efficiently delivered into the cells, intracellularly expressing their activity. In addition, we demonstrate tumor delivery of enzymes in an animal model by utilizing the potential of the hybrid to accumulate in tumors. Strikingly, the hybrid is able to transfer the apoptotic enzyme specifically into tumor cells, leading to strong suppression of tumor growth without causing significant damage to other tissues. These results suggest that the hybrid may allow anti-proliferative enzymes and proteins to be utilized as anticancer drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Tanyi, Janos L.; Zhang, Rugang; Liu, Qin; Speicher, David W.

    2013-01-01

    New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. PMID:23792823

  18. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate

    PubMed Central

    Berguig, Geoffrey Y.; Convertine, Anthony J.; Shi, Julie; Palanca-Wessels, Maria Corinna; Duvall, Craig L.; Pun, Suzie H.; Press, Oliver W.; Stayton, Patrick S.

    2012-01-01

    Ratiometric fluorescence and cellular fractionation studies were employed to characterize the intracellular trafficking dynamics of antibody-poly(propylacrylic acid) (PPAA) conjugates in CD22+ RAMOS-AW cells. The HD39 monoclonal antibody (mAb) directs CD22-dependent, receptor-mediated uptake in human B-cell lymphoma cells where it is rapidly trafficked to the lysosomal compartment. To characterize the intracellular-releasing dynamics of the polymer-mAb conjugates, HD39-streptavidin (HD39/SA) was dual-labeled with pH-insensitive Alex Fluor 488 and pH-sensitive pHrodo fluorophores. The subcellular pH-distribution of the HD39/SA-polymer conjugates were quantified as a function of time by live-cell fluorescence microscopy, and the average intracellular pH values experienced by the conjugates were also characterized as a function of time by flow cytometry. PPAA was shown to strongly alter the intracellular trafficking kinetics compared to HD39/SA alone or HD39/SA conjugates with a control polymer, poly(methacryclic acid) (PMAA). Subcellular trafficking studies revealed that after 6 hours only 11% of the HD39/SA-PPAA conjugates had been trafficked to acidic lysosomal compartments with values at or below pH 5.6. In contrast the average intracellular pH of HD39/SA alone dropped from pH 6.7 ± 0.2 at 1 hour to pH 5.6 ± 0.5 after 3 hours and pH 4.7 ± 0.6 after 6 hours. Conjugation of the control PMAA to HD39/SA showed an average pH drop similar to HD39/SA. Subcellular fractionation studies with tritium-labeled HD39/SA demonstrated that after 6 hours, 89% of HD39/SA was associated with endosomes (Rab5+) and lysosomes (Lamp2+), while 45% of HD39/SA-PPAA was translocated to the cytosol (lactate dehydrogenase+). These results demonstrate the endosomal-releasing properties of PPAA with antibody-polymer conjugates and detail their intracellular trafficking dynamics and subcellular compartmental distributions over time. PMID:23075320

  19. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate.

    PubMed

    Berguig, Geoffrey Y; Convertine, Anthony J; Shi, Julie; Palanca-Wessels, Maria Corinna; Duvall, Craig L; Pun, Suzie H; Press, Oliver W; Stayton, Patrick S

    2012-12-03

    Ratiometric fluorescence and cellular fractionation studies were employed to characterize the intracellular trafficking dynamics of antibody-poly(propylacrylic acid) (PPAA) conjugates in CD22+ RAMOS-AW cells. The HD39 monoclonal antibody (mAb) directs CD22-dependent, receptor-mediated uptake in human B-cell lymphoma cells, where it is rapidly trafficked to the lysosomal compartment. To characterize the intracellular-release dynamics of the polymer-mAb conjugates, HD39-streptavidin (HD39/SA) was dual-labeled with pH-insensitive Alexa Fluor 488 and pH-sensitive pHrodo fluorophores. The subcellular pH distribution of the HD39/SA-polymer conjugates was quantified as a function of time by live-cell fluorescence microscopy, and the average intracellular pH value experienced by the conjugates was also characterized as a function of time by flow cytometry. PPAA was shown to alter the intracellular trafficking kinetics strongly relative to HD39/SA alone or HD39/SA conjugates with a control polymer, poly(methacryclic acid) (PMAA). Subcellular trafficking studies revealed that after 6 h, only 11% of the HD39/SA-PPAA conjugates had been trafficked to acidic lysosomal compartments with values at or below pH 5.6. In contrast, the average intracellular pH of HD39/SA alone dropped from 6.7 ± 0.2 at 1 h to 5.6 ± 0.5 after 3 h and 4.7 ± 0.6 after 6 h. Conjugation of the control polymer PMAA to HD39/SA showed an average pH drop similar to that of HD39/SA. Subcellular fractionation studies with tritium-labeled HD39/SA demonstrated that after 6 h, 89% of HD39/SA was associated with endosomes (Rab5+) and lysosomes (Lamp2+), while 45% of HD39/SA-PPAA was translocated to the cytosol (lactate dehydrogenase+). These results demonstrate the endosomal-releasing properties of PPAA with antibody-polymer conjugates and detail their intracellular trafficking dynamics and subcellular compartmental distributions over time.

  20. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective

  1. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    DOE PAGES

    Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum; ...

    2017-06-07

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective

  2. Horseradish Peroxidase-Encapsulated Hollow Silica Nanospheres for Intracellular Sensing of Reactive Oxygen Species

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yi; Wu, Si-Han; Chen, Chien-Tsu; Chen, Yi-Ping; Chang, Feng-Peng; Chien, Fan-Ching; Mou, Chung-Yuan

    2018-04-01

    Reactive oxygen species (ROS) have crucial roles in cell signaling and homeostasis. Overproduction of ROS can induce oxidative damage to various biomolecules and cellular structures. Therefore, developing an approach capable of monitoring and quantifying ROS in living cells is significant for physiology and clinical diagnoses. Some cell-permeable fluorogenic probes developed are useful for the detection of ROS while in conjunction with horseradish peroxidase (HRP). Their intracellular scenario is however hindered by the membrane-impermeable property of enzymes. Herein, a new approach for intracellular sensing of ROS by using horseradish peroxidase-encapsulated hollow silica nanospheres (designated HRP@HSNs), with satisfactory catalytic activity, cell membrane permeability, and biocompatibility, was prepared via a microemulsion method. These HRP@HSNs, combined with selective probes or targeting ligands, could be foreseen as ROS-detecting tools in specific organelles or cell types. As such, dihydrorhodamine 123-coupled HRP@HSNs were used for the qualitative and semi-quantitative analysis of physiological H2O2 levels in activated RAW 264.7 macrophages. We envision that this HSNs encapsulating active enzymes can be conjugated with selective probes and targeting ligands to detect ROS in specific organelles or cell types of interest.

  3. Potent Inhibition of Human Immunodeficiency Virus Type 1 Replication by an Intracellular Anti-Rev Single-Chain Antibody

    NASA Astrophysics Data System (ADS)

    Duan, Lingxun; Bagasra, Omar; Laughlin, Mark A.; Oakes, Joseph W.; Pomerantz, Roger J.

    1994-05-01

    Human immunodeficiency virus type 1 (HIV-1) has a complex life cycle, which has made it a difficult target for conventional therapeutic modalities. A single-chain antibody moiety, directed against the HIV-1 regulatory protein Rev, which rescues unspliced viral RNA from the nucleus of infected cells, has now been developed. This anti-Rev single-chain construct (SFv) consists of both light and heavy chain variable regions of an anti-Rev monoclonal antibody, which, when expressed intracellularly within human cells, potently inhibits HIV-1 replication. This intracellular SFv molecule is demonstrated to specifically antagonize Rev function. Thus, intracellular SFv expression, against a retroviral regulatory protein, may be useful as a gene therapeutic approach to combat HIV-1 infections.

  4. INTRACELLULAR SIGNALING BY BILE ACIDS

    PubMed Central

    Anwer, Mohammed Sawkat

    2014-01-01

    Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders. PMID:25378891

  5. pH-Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin.

    PubMed

    Herranz-Blanco, Bárbara; Shahbazi, Mohammad-Ali; Correia, Alexandra R; Balasubramanian, Vimalkumar; Kohout, Tomáš; Hirvonen, Jouni; Santos, Hélder A

    2016-08-01

    Theranostic nanoparticles are emerging as potent tools for noninvasive diagnosis, treatment, and monitoring of solid tumors. Herein, an advanced targeted and multistimuli responsive theranostic platform is presented for the intracellular triggered delivery of doxorubicin. The system consists of a polymeric-drug conjugate solid nanoparticle containing encapsulated superparamagnetic iron oxide nanoparticles (IO@PNP) and decorated with a tumor homing peptide, iRGD. The production of this nanosystem is based on a pH-switch nanoprecipitation method in organic-free solvents, making it ideal for biomedical applications. The nanosystem shows sufficient magnetization saturation for magnetically guided therapy along with reduced cytotoxicity and hemolytic effects. IO@PNP are largely internalized by endothelial and metastatic cancer cells and iRGD decorated IO@PNP moderately enhance their internalization into endothelial cells, while no enhancement is found for the metastatic cancer cells. Poly(ethylene glycol)-block-poly(histidine) with pH-responsive and proton-sponge properties promotes prompt lysosomal escape once the nanoparticles are endocyted. In addition, the polymer-doxorubicin conjugate solid nanoparticles show both intracellular lysosomal escape and efficient translocation of doxorubicin to the nuclei of the cells via cleavage of the amide bond. Overall, IO@PNP-doxorubicin and the iRGD decorated counterpart demonstrate to enhance the toxicity of doxorubicin in cancer cells by improving the intracellular delivery of the drug carried in the IO@PNP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro

    NASA Astrophysics Data System (ADS)

    Ishijima, A.; Minamihata, K.; Yamaguchi, S.; Yamahira, S.; Ichikawa, R.; Kobayashi, E.; Iijima, M.; Shibasaki, Y.; Azuma, T.; Nagamune, T.; Sakuma, I.

    2017-03-01

    While chemotherapy is a major mode of cancer therapeutics, its efficacy is limited by systemic toxicities and drug resistance. Recent advances in nanomedicine provide the opportunity to reduce systemic toxicities. However, drug resistance remains a major challenge in cancer treatment research. Here we developed a nanomedicine composed of a phase-change nano-droplet (PCND) and an anti-cancer antibody (9E5), proposing the concept of ultrasound cancer therapy with intracellular vaporisation. PCND is a liquid perfluorocarbon nanoparticle with a liquid-gas phase that is transformable upon exposure to ultrasound. 9E5 is a monoclonal antibody targeting epiregulin (EREG). We found that 9E5-conjugated PCNDs are selectively internalised into targeted cancer cells and kill the cells dynamically by ultrasound-induced intracellular vaporisation. In vitro experiments show that 9E5-conjugated PCND targets 97.8% of high-EREG-expressing cancer cells and kills 57% of those targeted upon exposure to ultrasound. Furthermore, direct observation of the intracellular vaporisation process revealed the significant morphological alterations of cells and the release of intracellular contents.

  7. Host-Directed Antimicrobial Drugs with Broad-Spectrum Efficacy against Intracellular Bacterial Pathogens

    PubMed Central

    Czyż, Daniel M.; Potluri, Lakshmi-Prasad; Jain-Gupta, Neeta; Riley, Sean P.; Martinez, Juan J.; Steck, Theodore L.; Crosson, Sean; Gabay, Joëlle E.

    2014-01-01

    ABSTRACT We sought a new approach to treating infections by intracellular bacteria, namely, by altering host cell functions that support their growth. We screened a library of 640 Food and Drug Administration (FDA)-approved compounds for agents that render THP-1 cells resistant to infection by four intracellular pathogens. We identified numerous drugs that are not antibiotics but were highly effective in inhibiting intracellular bacterial growth with limited toxicity to host cells. These compounds are likely to target three kinds of host functions: (i) G protein-coupled receptors, (ii) intracellular calcium signals, and (iii) membrane cholesterol distribution. The compounds that targeted G protein receptor signaling and calcium fluxes broadly inhibited Coxiella burnetii, Legionella pneumophila, Brucella abortus, and Rickettsia conorii, while those directed against cholesterol traffic strongly attenuated the intracellular growth of C. burnetii and L. pneumophila. These pathways probably support intracellular pathogen growth so that drugs that perturb them may be therapeutic candidates. Combining host- and pathogen-directed treatments is a strategy to decrease the emergence of drug-resistant intracellular bacterial pathogens. PMID:25073644

  8. Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide

    NASA Astrophysics Data System (ADS)

    Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Koo Lee, Yong-Eun; Philbert, Martin A.; Kopelman, Raoul

    2013-10-01

    Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers. Electronic supplementary information (ESI) available: Effect of Potassium depletion on F3 peptide subcellular localization, MTT

  9. Target engagement and drug residence time can be observed in living cells with BRET

    PubMed Central

    Robers, Matthew B.; Dart, Melanie L.; Woodroofe, Carolyn C.; Zimprich, Chad A.; Kirkland, Thomas A.; Machleidt, Thomas; Kupcho, Kevin R.; Levin, Sergiy; Hartnett, James R.; Zimmerman, Kristopher; Niles, Andrew L.; Ohana, Rachel Friedman; Daniels, Danette L.; Slater, Michael; Wood, Monika G.; Cong, Mei; Cheng, Yi-Qiang; Wood, Keith V.

    2015-01-01

    The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment. PMID:26631872

  10. Short interfering RNA confers intracellular antiviral immunity in human cells.

    PubMed

    Gitlin, Leonid; Karelsky, Sveta; Andino, Raul

    2002-07-25

    Gene silencing mediated by double-stranded RNA (dsRNA) is a sequence-specific, highly conserved mechanism in eukaryotes. In plants, it serves as an antiviral defence mechanism. Animal cells also possess this machinery but its specific function is unclear. Here we demonstrate that dsRNA can effectively protect human cells against infection by a rapidly replicating and highly cytolytic RNA virus. Pre-treatment of human and mouse cells with double-stranded, short interfering RNAs (siRNAs) to the poliovirus genome markedly reduces the titre of virus progeny and promotes clearance of the virus from most of the infected cells. The antiviral effect is sequence-specific and is not attributable to either classical antisense mechanisms or to interferon and the interferon response effectors protein kinase R (PKR) and RNaseL. Protection is the result of direct targeting of the viral genome by siRNA, as sequence analysis of escape virus (resistant to siRNAs) reveals one nucleotide substitution in the middle of the targeted sequence. Thus, siRNAs elicit specific intracellular antiviral resistance that may provide a therapeutic strategy against human viruses.

  11. Intracellular Crosslinking of Filoviral Nucleoproteins with Xintrabodies Restricts Viral Packaging

    PubMed Central

    Darling, Tamarand Lee; Sherwood, Laura Jo; Hayhurst, Andrew

    2017-01-01

    Viruses assemble large macromolecular repeat structures that become part of the infectious particles or virions. Ribonucleocapsids (RNCs) of negative strand RNA viruses are a prime example where repetition of nucleoprotein (NP) along the genome creates a core polymeric helical scaffold that accommodates other nucleocapsid proteins including viral polymerase. The RNCs are transported through the cytosol for packaging into virions through association with viral matrix proteins at cell membranes. We hypothesized that RNC would be ideal targets for crosslinkers engineered to promote aberrant protein–protein interactions, thereby blocking their orderly transport and packaging. Previously, we had generated single-domain antibodies (sdAbs) against Filoviruses that have all targeted highly conserved C-terminal regions of NP known to be repetitively exposed along the length of the RNCs of Marburgvirus (MARV) and Ebolavirus (EBOV). Our crosslinker design consisted of dimeric sdAb expressed intracellularly, which we call Xintrabodies (X- for crosslinking). Electron microscopy of purified NP polymers incubated with purified sdAb constructs showed NP aggregation occurred in a genus-specific manner with dimeric and not monomeric sdAb. A virus-like particle (VLP) assay was used for initial evaluation where we found that dimeric sdAb inhibited NP incorporation into VP40-based VLPs whereas monomeric sdAb did not. Inhibition of NP packaging was genus specific. Confocal microscopy revealed dimeric sdAb was diffuse when expressed alone but focused on pools of NP when the two were coexpressed, while monomeric sdAb showed ambivalent partition. Infection of stable Vero cell lines expressing dimeric sdAb specific for either MARV or EBOV NP resulted in smaller plaques and reduced progeny of cognate virus relative to wild-type Vero cells. Though the impact was marginal at later time-points, the collective data suggest that viral replication can be reduced by crosslinking intracellular NP

  12. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  13. A novel permeabilization protocol to obtain intracellular 3D immunolabeling for electron tomography.

    PubMed

    Jiménez, Nuria; Post, Jan A

    2014-01-01

    Electron tomography (ET) is a very important high-resolution tool for 3D imaging in cell biology. By combining the technique with immunolabeling, ET can provide essential insights into both cellular architecture and dynamics. We recently developed a protocol to achieve 3D immunolabeling of intracellular antigens without the need for uncontrolled permeabilization steps that cause random, extensive cell membrane disruption. Here we describe this novel method based on well-controlled permeabilization by targeted laser cell perforation. Mechanical permeabilization of the plasma membrane can be applied at specific sites without affecting other parts of the plasma membrane and intracellular membranes. Despite the relatively small opening created in the plasma membrane, the method allows specific 3D immunolocalization of cytoplasmic antigens in cultured cells by a pre-embedment protocol. The approach is unique and leads to a superior ultrastructural preservation for transmission electron microscopy and electron tomography.

  14. Prostate-Specific Membrane Antigen Targeted Polymersomes for Delivering Mocetinostat and Docetaxel to Prostate Cancer Cell Spheroids.

    PubMed

    Karandish, Fataneh; Haldar, Manas K; You, Seungyong; Brooks, Amanda E; Brooks, Benjamin D; Guo, Bin; Choi, Yongki; Mallik, Sanku

    2016-11-30

    Prostate cancer cells overexpress the prostate-specific membrane antigen (PSMA) receptors on the surface. Targeting the PSMA receptor creates a unique opportunity for drug delivery. Docetaxel is a Food and Drug Administration-approved drug for treating metastatic and androgen-independent prostate cancer, and mocetinostat is a potent inhibitor of class I histone deacetylases. In this study, we prepared reduction-sensitive polymersomes presenting folic acid on the surface and encapsulating either docetaxel or mocetinostat. The presence of folic acid allowed efficient targeting of the PSMA receptor and subsequent internalization of the polymeric vesicles in cultured LNCaP prostate cancer cell spheroids. The intracellular reducing agents efficiently released docetaxel and mocetinostat from the polymersomes. The combination of the two drug-encapsulated polymersome formulations significantly ( p < 0.05) decreased the viability of the LNCaP cells (compared to free drugs or control) in three-dimensional spheroid cultures. The calculated combination index value indicated a synergistic effect for the combination of mocetinostat and docetaxel. Thus, our PSMA-targeted drug-encapsulated polymersomes has the potential to lead to a new direction in prostate cancer therapy that decreases the toxicity and increases the efficacy of the drug delivery systems.

  15. Prostate-Specific Membrane Antigen Targeted Polymersomes for Delivering Mocetinostat and Docetaxel to Prostate Cancer Cell Spheroids

    PubMed Central

    2016-01-01

    Prostate cancer cells overexpress the prostate-specific membrane antigen (PSMA) receptors on the surface. Targeting the PSMA receptor creates a unique opportunity for drug delivery. Docetaxel is a Food and Drug Administration-approved drug for treating metastatic and androgen-independent prostate cancer, and mocetinostat is a potent inhibitor of class I histone deacetylases. In this study, we prepared reduction-sensitive polymersomes presenting folic acid on the surface and encapsulating either docetaxel or mocetinostat. The presence of folic acid allowed efficient targeting of the PSMA receptor and subsequent internalization of the polymeric vesicles in cultured LNCaP prostate cancer cell spheroids. The intracellular reducing agents efficiently released docetaxel and mocetinostat from the polymersomes. The combination of the two drug-encapsulated polymersome formulations significantly (p < 0.05) decreased the viability of the LNCaP cells (compared to free drugs or control) in three-dimensional spheroid cultures. The calculated combination index value indicated a synergistic effect for the combination of mocetinostat and docetaxel. Thus, our PSMA-targeted drug-encapsulated polymersomes has the potential to lead to a new direction in prostate cancer therapy that decreases the toxicity and increases the efficacy of the drug delivery systems. PMID:27917408

  16. Targeted Delivery of Hyaluronan-Immobilized Magnetic Ceramic Nanocrystals.

    PubMed

    Wu, Hsi-Chin; Wang, Tzu-Wei; Hsieh, Shun-Yu; Sun, Jui-Sheng; Kang, Pei-Leun

    2016-01-01

    Effective cancer therapy relies on delivering the therapeutic agent precisely to the target site to improve the treatment outcome and to minimize side effects. Although surgery, chemotherapy, and radiotherapy are the standard methods commonly used in clinics, hyperthermia has been developed as a new and promising strategy for cancer therapy. In this study, magnetic bioceramic hydroxyapatite (mHAP) nanocrystals have been developed as heat mediator for intracellular hyperthermia. Hyaluronic acid (HA) modified mHAP nanocrystals are synthesized by a wet chemical precipitation process to achieve active targeting. The results demonstrate that the HA targeting moiety conjugated by a poly(ethylene glycol) (PEG) spacer arm is successfully immobilized on the surface of mHAP. The HA-modified mHAP possesses relatively good biocompatibility, an adequate biodegradation rate and superparamagnetic properties. The HA-modified mHAP could be localized and internalized into HA receptor-overexpressed malignant cells (e.g., MDA-MB-231 cell) and used as the heat generating agent for intracellular hyperthermia. The results from this study indicate that biocompatible HA-modified mHAP shows promise as a novel heat mediator and a specific targeting nanoagent for intracellular hyperthermia cancer therapy.

  17. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks

    PubMed Central

    Behar, Marcelo; Dohlman, Henrik G.; Elston, Timothy C.

    2007-01-01

    Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed “kinetic insulation.” In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity. PMID:17913886

  18. Molecular Mechanisms Controlling GLUT4 Intracellular Retention

    PubMed Central

    Blot, Vincent

    2008-01-01

    In basal adipocytes, glucose transporter 4 (GLUT4) is sequestered intracellularly by an insulin-reversible retention mechanism. Here, we analyze the roles of three GLUT4 trafficking motifs (FQQI, TELEY, and LL), providing molecular links between insulin signaling, cellular trafficking machinery, and the motifs in the specialized trafficking of GLUT4. Our results support a GLUT4 retention model that involves two linked intracellular cycles: one between endosomes and a retention compartment, and the other between endosomes and specialized GLUT4 transport vesicles. Targeting of GLUT4 to the former is dependent on the FQQI motif and its targeting to the latter is dependent on the TELEY motif. These two motifs act independently in retention, with the TELEY-dependent step being under the control of signaling downstream of the AS160 rab GTPase activating protein. Segregation of GLUT4 from endosomes, although positively correlated with the degree of basal retention, does not completely account for GLUT4 retention or insulin-responsiveness. Mutation of the LL motif slows return to basal intracellular retention after insulin withdrawal. Knockdown of clathrin adaptin protein complex-1 (AP-1) causes a delay in the return to intracellular retention after insulin withdrawal. The effects of mutating the LL motif and knockdown of AP-1 were not additive, establishing that AP-1 regulation of GLUT4 trafficking requires the LL motif. PMID:18550797

  19. Impact of Photosensitizers Activation on Intracellular Trafficking and Viscosity

    PubMed Central

    Aubertin, Kelly; Bonneau, Stéphanie; Silva, Amanda K. A.; Bacri, Jean-Claude; Gallet, François; Wilhelm, Claire

    2013-01-01

    The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact. PMID:24386423

  20. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells

    NASA Astrophysics Data System (ADS)

    Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  1. Structure-Specificity Relationships of an Intracellular Xylanase from Geobacillus stearothermophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon,V.; Teplitsky, A.; Shulami, S.

    2007-01-01

    Geobacillus stearothermophilus T-6 is a thermophilic Gram-positive bacterium that produces two selective family 10 xylanases which both take part in the complete degradation and utilization of the xylan polymer. The two xylanases exhibit significantly different substrate specificities. While the extracellular xylanase (XT6; MW 43.8 kDa) hydrolyzes the long and branched native xylan polymer, the intracellular xylanase (IXT6; MW 38.6 kDa) preferentially hydrolyzes only short xylo-oligosaccharides. In this study, the detailed three-dimensional structure of IXT6 is reported, as determined by X-ray crystallography. It was initially solved by molecular replacement and then refined at 1.45 {angstrom} resolution to a final R factormore » of 15.0% and an R{sub free} of 19.0%. As expected, the structure forms the classical ({alpha}/{beta}){sub 8} fold, in which the two catalytic residues (Glu134 and Glu241) are located on the inner surface of the central cavity. The structure of IXT6 was compared with the highly homologous extracellular xylanase XT6, revealing a number of structural differences between the active sites of the two enzymes. In particular, structural differences derived from the unique subdomain in the carboxy-terminal region of XT6, which is completely absent in IXT6. These structural modifications may account for the significant differences in the substrate specificities of these otherwise very similar enzymes.« less

  2. Intracellular calcium: a prerequisite for aldosterone action.

    PubMed

    Schäfer, C; Shahin, V; Albermann, L; Schillers, H; Hug, M J; Oberleithner, H

    2003-12-01

    Transport of salt and water in various tissues is under control of the mineralocorticoid hormone aldosterone. As a liphophilic hormone, aldosterone diffuses through the plasma membrane and, then, binds to cytosolic mineralocorticoid receptors in the target cells. After binding to nuclear pore complexes, the activated receptor is translocated to the nucleus where transcription processes are initiated. After a lag period of about 20 minutes hormone-specific early mRNA transcripts leave the nucleus through nuclear pores. Some of the steps in this cascade can be followed by electrophysiology in Xenopus laevis oocyte nuclei. In addition to the genomic pathway, aldosterone exerts a rapid pre-genomic response that involves an increase in intracellular calcium. In this study, we tested for the potential role of Ca(2+) in the genomic response of the hormone. We measured the electrical resistance across the nuclear envelope in response to aldosterone, in presence and absence of intracellular Ca(2+). Nuclear envelope electrical resistance reflects receptor binding to the nuclear pore complexes ("early" resistance peak, 2 minutes after aldosterone), ongoing transcription ("transient" resistance drop, 5-15 minutes after aldosterone) and mRNA export ("late" resistance peak, 20 minutes after aldosterone). Pre-injection of the Ca(2+) chelator EGTA eliminated all electrical responses evoked by aldosterone. The transient resistance drop and the late resistance peak, induced by the hormone, were prevented by the transcription inhibitor actinomycin D, coinjected with aldosterone, while the early resistance peak remained unaffected. We conclude that (i). the presence of intracellular Ca(2+) is a prerequisite for the genomic action of aldosterone. (ii). Intracellular calcium plays a role early in the signaling cascade, either in agonist-receptor interaction, or receptor transport/docking to the nuclear pore complexes.

  3. Intracellular logistics of BST-2/tetherin.

    PubMed

    Fujita, Hideaki; Fujimoto, Keiko; Tokunaga, Kenzo; Tanaka, Yoshitaka

    2012-06-01

    Bone marrow stromal antigen 2 (BST-2) is a type II membrane protein with two targeting signals, one of which is located in the cytoplasmic domain and contains a non-canonical dual tyrosine-based motif responsible for its endocytosis from the plasma membrane, and the other is a C-terminal glycosylphosphatidylinositol anchor that facilitates its association with detergent-resistant membranes/lipid rafts and targeting to the apical domain in polarized epithelial cells. Due to its unusual topology at the membrane, BST-2 takes unique and complicated trafficking routes in cells. Recently, a physiological role for BST-2 as the "tetherin" molecule for viruses, especially for HIV-1, has been extensively examined. These studies have shown that the biosynthesis, intracellular trafficking, localization, and structure of human BST-2 are closely related to its antiviral activity. This review provides an overview of the intracellular logistics of human BST-2.

  4. Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities.

    PubMed

    Au, Jessie L-S; Yeung, Bertrand Z; Wientjes, Michael G; Lu, Ze; Wientjes, M Guillaume

    2016-02-01

    Advances in molecular medicine have led to identification of worthy cellular and molecular targets located in extracellular and intracellular compartments. Effectiveness of cancer therapeutics is limited in part by inadequate delivery and transport in tumor interstitium. Parts I and II of this report give an overview on the kinetic processes in delivering therapeutics to their intended targets, the transport barriers in tumor microenvironment and extracellular matrix (TME/ECM), and the experimental approaches to overcome such barriers. Part III discusses new concepts and findings concerning nanoparticle-biocorona complex, including the effects of TME/ECM. Part IV outlines the challenges in animal-to-human translation of cancer nanotherapeutics. Part V provides an overview of the background, current status, and the roles of TME/ECM in immune checkpoint inhibition therapy, the newest cancer treatment modality. Part VI outlines the development and use of multiscale computational modeling to capture the unavoidable tumor heterogeneities, the multiple nonlinear kinetic processes including interstitial and transvascular transport and interactions between cancer therapeutics and TME/ECM, in order to predict the in vivo tumor spatiokinetics of a therapeutic based on experimental in vitro biointerfacial interaction data. Part VII provides perspectives on translational research using quantitative systems pharmacology approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA

    PubMed Central

    Zozaya-Valdés, Enrique; Porter, Jessica L.; Coventry, John; Fyfe, Janet A. M.; Carter, Glen P.; Gonçalves da Silva, Anders; Schultz, Mark B.; Seemann, Torsten; Johnson, Paul D. R.; Stewardson, Andrew J.; Bastian, Ivan; Roberts, Sally A.; Howden, Benjamin P.; Williamson, Deborah A.

    2017-01-01

    ABSTRACT Mycobacterium chimaera is an opportunistic environmental mycobacterium belonging to the Mycobacterium avium-M. intracellulare complex. Although most commonly associated with pulmonary disease, there has been growing awareness of invasive M. chimaera infections following cardiac surgery. Investigations suggest worldwide spread of a specific M. chimaera clone, associated with contaminated hospital heater-cooler units used during the surgery. Given the global dissemination of this clone, its potential to cause invasive disease, and the laboriousness of current culture-based diagnostic methods, there is a pressing need to develop rapid and accurate diagnostic assays specific for M. chimaera. Here, we assessed 354 mycobacterial genome sequences and confirmed that M. chimaera is a phylogenetically coherent group. In silico comparisons indicated six DNA regions present only in M. chimaera. We targeted one of these regions and developed a TaqMan quantitative PCR (qPCR) assay for M. chimaera with a detection limit of 100 CFU/ml in whole blood spiked with bacteria. In vitro screening against DNA extracted from 40 other mycobacterial species and 22 bacterial species from 21 diverse genera confirmed the in silico-predicted specificity for M. chimaera. Screening 33 water samples from heater-cooler units with this assay highlighted the increased sensitivity of PCR compared to culture, with 15 of 23 culture-negative samples positive by M. chimaera qPCR. We have thus developed a robust molecular assay that can be readily and rapidly deployed to screen clinical and environmental specimens for M. chimaera. PMID:28381604

  6. Charcot–Marie–Tooth disease and intracellular traffic

    PubMed Central

    Bucci, Cecilia; Bakke, Oddmund; Progida, Cinzia

    2012-01-01

    Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot–Marie–Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects. PMID:22465036

  7. Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms Tumor 1 antigen

    PubMed Central

    Rafiq, S; Purdon, TJ; Daniyan, AF; Koneru, M; Dao, T; Liu, C; Scheinberg, DA; Brentjens, RJ

    2017-01-01

    CD19-directed chimeric antigen receptor (CAR) T cells are clinically effective in a limited set of leukemia patients. However, CAR T-cell therapy thus far has been largely restricted to targeting extracellular tumor-associated antigens (TAA). Herein, we report a T-cell receptor-mimic (TCRm) CAR, termed WT1-28z, that is reactive to a peptide portion of the intracellular onco-protein Wilms Tumor 1(WT1), as it is expressed on the surface of the tumor cell in the context of HLA-A*02:01. T cells modified to express WT1-28z specifically targeted and lysed HLA-A*02:01+ WT1+ tumors and enhanced survival of mice engrafted with HLA-A*02:01+, WT1+ leukemia or ovarian tumors. This in vivo functional validation of TCRm CAR T cells provides the proof-of-concept necessary to expand the range of TAA that can be effectively targeted for immunotherapy to include attractive intracellular targets, and may hold great potential to expand on the success of CAR T-cell therapy. PMID:27924074

  8. Abasic pivot substitution harnesses target specificity of RNA interference

    PubMed Central

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-01-01

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA–target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼80–100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications. PMID:26679372

  9. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  10. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  11. Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA).

    PubMed

    Patil, Yogita; Shmeeda, Hilary; Amitay, Yasmine; Ohana, Patricia; Kumar, Saran; Gabizon, Alberto

    2018-04-19

    Folate-targeted liposomes (FTL) were tested as drug delivery vehicles to PSMA-positive cancer cells. We used FL with co-entrapped mitomycin C lipophilic prodrug (MLP) and doxorubicin (DOX), and the LNCaP prostate cancer cell line which expresses PSMA but is negative for folate receptor. A major increase in cell drug levels was observed when LNCaP cells were incubated with FTL as compared to non-targeted liposomes (NTL). MLP was activated to mitomycin C, and intracellular and nuclear fluorescence of DOX was detected, indicating FTL processing and drug bioavailability. PMPA (2-(phosphonomethyl)-pentanedioic acid), a specific inhibitor of PSMA, blocked the uptake of FTL into LNCaP cells, but did not affect the uptake of FTL into PSMA-deficient and folate receptor-positive KB cells. The cytotoxic activity of drug-loaded FTL was found significantly enhanced when compared to NTL in LNCaP cells. FTL may provide a new tool for targeted therapy of cancers that over-express the PSMA receptor. Copyright © 2018. Published by Elsevier Inc.

  12. Utilization of Fc Receptors as a Mucosal Vaccine Strategy against an Intracellular Bacterium, Francisella tularensis1

    PubMed Central

    Rawool, Deepak B.; Bitsaktsis, Constantine; Li, Ying; Gosselin, Diane R.; Lin, Yili; Kurkure, Nitin V.; Metzger, Dennis W.; Gosselin, Edmund J.

    2013-01-01

    Numerous studies have demonstrated that targeting Ag to Fc receptors (FcR) on APCs can enhance humoral and cellular immunity. However, studies are lacking that examine both the use of FcR-targeting in generating immune protection against infectious agents and the use of FcRs in the induction of mucosal immunity. Francisella tularensis is a category A intracellular mucosal pathogen. Thus, intense efforts are underway to develop a vaccine against this organism. We hypothesized that protection against mucosal infection with F. tularensis would be significantly enhanced by targeting inactivated F. tularensis live vaccine strain (iFt) to FcRs at mucosal sites, via intranasal immunization with mAb-iFt complexes. These studies demonstrate for the first time that: 1) FcR-targeted immunogen enhances immunogen-specific IgA production and protection against subsequent infection in an IgA-dependent manner, 2) FcγR and neonatal FcR are crucial to this protection, and 3) inactivated F. tularensis, when targeted to FcRs, enhances protection against the highly virulent SchuS4 strain of F. tularensis, a category A biothreat agent. In summary, these studies show for the first time the use of FcRs as a highly effective vaccination strategy against a highly virulent mucosal intracellular pathogen. PMID:18390739

  13. Induction of Intracellular Reductive Stress with a Photoactivatable Phosphine Probe.

    PubMed

    Tirla, Alina; Rivera-Fuentes, Pablo

    2018-04-25

    Reductive stress is a condition present in cells that have an increased concentration of reducing species, and it has been associated with a number of pathologies, such as neurodegenerative diseases and cancer. The tools available to study reductive stress lack both in selectivity and specific targeting and some of these shortcomings can be addressed by using photoactivatable compounds. We developed a photoactivatable phosphonium probe, which upon irradiation releases a fluorescent molecule and a trialkyphosphine. The probes can permeate through the plasma membrane and the photoreleased phosphine can induce intracellular reductive stress as proven by the detection of protein aggregates.

  14. Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids.

    PubMed

    Treyer, Andrea; Mateus, André; Wiśniewski, Jacek R; Boriss, Hinnerk; Matsson, Pär; Artursson, Per

    2018-06-04

    Intracellular unbound drug concentrations are the pharmacologically relevant concentrations for targets inside cells. Intracellular drug concentrations are determined by multiple processes, including the extent of drug binding to intracellular structures. The aim of this study was to evaluate the effect of neutral lipid (NL) and phospholipid (PL) levels on intracellular drug disposition. The NL and/or PL content of 3T3-L1 cells were enhanced, resulting in phenotypes (in terms of morphology and proteome) reminiscent of adipocytes (high NL and PL) or mild phospholipidosis (only high PL). Intracellular bioavailability ( F ic ) was then determined for 23 drugs in these cellular models and in untreated wild-type cells. A higher PL content led to higher intracellular drug binding and a lower F ic . The induction of NL did not further increase drug binding but led to altered F ic due to increased lysosomal pH. Further, there was a good correlation between binding to beads coated with pure PL and intracellular drug binding. In conclusion, our results suggest that PL content is a major determinant of drug binding in cells and that PL beads may constitute a simple alternative to estimating this parameter. Further, the presence of massive amounts of intracellular NLs did not influence drug binding significantly.

  15. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  16. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents.

    PubMed

    Xie, Shuyu; Tao, Yanfei; Pan, Yuanhu; Qu, Wei; Cheng, Guyue; Huang, Lingli; Chen, Dongmei; Wang, Xu; Liu, Zhenli; Yuan, Zonghui

    2014-08-10

    Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA.

    PubMed

    Zozaya-Valdés, Enrique; Porter, Jessica L; Coventry, John; Fyfe, Janet A M; Carter, Glen P; Gonçalves da Silva, Anders; Schultz, Mark B; Seemann, Torsten; Johnson, Paul D R; Stewardson, Andrew J; Bastian, Ivan; Roberts, Sally A; Howden, Benjamin P; Williamson, Deborah A; Stinear, Timothy P

    2017-06-01

    Mycobacterium chimaera is an opportunistic environmental mycobacterium belonging to the Mycobacterium avium - M. intracellulare complex. Although most commonly associated with pulmonary disease, there has been growing awareness of invasive M. chimaera infections following cardiac surgery. Investigations suggest worldwide spread of a specific M. chimaera clone, associated with contaminated hospital heater-cooler units used during the surgery. Given the global dissemination of this clone, its potential to cause invasive disease, and the laboriousness of current culture-based diagnostic methods, there is a pressing need to develop rapid and accurate diagnostic assays specific for M. chimaera Here, we assessed 354 mycobacterial genome sequences and confirmed that M. chimaera is a phylogenetically coherent group. In silico comparisons indicated six DNA regions present only in M. chimaera We targeted one of these regions and developed a TaqMan quantitative PCR (qPCR) assay for M. chimaera with a detection limit of 100 CFU/ml in whole blood spiked with bacteria. In vitro screening against DNA extracted from 40 other mycobacterial species and 22 bacterial species from 21 diverse genera confirmed the in silico -predicted specificity for M. chimaera Screening 33 water samples from heater-cooler units with this assay highlighted the increased sensitivity of PCR compared to culture, with 15 of 23 culture-negative samples positive by M. chimaera qPCR. We have thus developed a robust molecular assay that can be readily and rapidly deployed to screen clinical and environmental specimens for M. chimaera . Copyright © 2017 American Society for Microbiology.

  18. Literature-based condition-specific miRNA-mRNA target prediction.

    PubMed

    Oh, Minsik; Rhee, Sungmin; Moon, Ji Hwan; Chae, Heejoon; Lee, Sunwon; Kang, Jaewoo; Kim, Sun

    2017-01-01

    miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary

  19. Preparation of HIV monoclonal antibody-conjugated pulchellin in order to study its intracellular trafficking pathway in HIV-infected cells by confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sadraeian, M.; Tsutae, F. M.; Moreira, H. H. T.; Araujo, A. P. U.; Guimarães, F. E. G.; Pincus, S. H.

    2015-06-01

    Pulchellin is a type 2 of ribosome-inactivating proteins isolated from some seeds significantly growing in Brazil. It is a potent agent to inhibit the protein synthesis in cancer cells and also HIV-infected cells. Pulchellin can be conjugated to HIV monoclonal antibodies to specifically target the HIV-infected cells. To analyze the protein synthesis inhibition by Pulchellin, the intracellular localization of the immunoconjugate should be compared to Pulchellin. In this case, the intracellular trafficking of this protein in cells can be determined by confocal microscopy. In our study, we utilized Pulchellin to construct HIV monoclonal antibody-conjugated Pulchellin A chain in order to target HIV-infected lymphocyte cells. Afterward the conjugation was labeled with the superior Alexa Fluor 488 dye. As a subsequent step, we are interested in studying the intracellular trafficking pathway of this novel conjugation in HIV-infected cells by confocal microscopy. Moreover, possible quantitative methods for fluorescent labeling of the immunoconjugate during confocal microscopy will be investigated.

  20. Intracellular, genetic or congenital immunisation--transgenic approaches to increase disease resistance of farm animals.

    PubMed

    Müller, M; Brem, G

    1996-01-26

    Novel approaches to modify disease resistance or susceptibility in livestock are justified not only by economical reasons and with respect to animal welfare but also by recent advancements in molecular genetics. The control or elimination of infectious pathogens in farm animals is historically achieved by the use of vaccines and drugs and by quarantine safeguards and eradication. Currently, research on the improvement of disease resistance based on nucleic acid technology focuses on two main issues: additive gene transfer and the development of nucleic acid vaccines. The strategies aim at the stable or transient expression of components known to influence non-specific or specific host defence mechanisms against infectious pathogens. Thus, candidates for gene transfer experiments include all genes inducing or conferring innate and acquired immunity as well as specific disease resistance genes. Referring to the site and mode of action and the source of the effective agent the strategies are termed 'intracellular', 'genetic' and 'congenital' immunisation. The targeted disruption (deletive gene transfer) of disease susceptibility genes awaits the establishment of totipotential embryonic cell lineages in farm animals. The cytokine network regulates cellular viability, growth and differentiation in physiological and pathophysiological states. The identification of the JAK-STAT pathway used by many cytokines for their intracellular signal propagation has provided not only new target molecules for modulating the immune response but will also permit the further elucidation of host-pathogen interactions and resistance mechanisms.

  1. Essentially All Excess Fibroblast Cholesterol Moves from Plasma Membranes to Intracellular Compartments

    PubMed Central

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2014-01-01

    It has been shown that modestly increasing plasma membrane cholesterol beyond its physiological set point greatly increases the endoplasmic reticulum and mitochondrial pools, thereby eliciting manifold feedback responses that return cell cholesterol to its resting state. The question arises whether this homeostatic mechanism reflects the targeting of cell surface cholesterol to specific intracellular sites or its general equilibration among the organelles. We now show that human fibroblast cholesterol can be increased as much as two-fold from 2-hydroxypropyl-β-cyclodextrin without changing the size of the cell surface pool. Rather, essentially all of the added cholesterol disperses rapidly among cytoplasmic membranes, increasing their overall cholesterol content by as much as five-fold. We conclude that the level of plasma membrane cholesterol is normally at capacity and that even small increments above this physiological set point redistribute essentially entirely to intracellular membranes, perhaps down their chemical activity gradients. PMID:25014655

  2. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    PubMed Central

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-01-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish. PMID:27506155

  3. Visualization of Endoplasmic Reticulum and Mitochondria in Aurantiochytrium limacinum by the Expression of EGFP with Cell Organelle-Specific Targeting/Retaining Signals.

    PubMed

    Okino, Nozomu; Wakisaka, Hiroyoshi; Ishibashi, Yohei; Ito, Makoto

    2018-04-01

    Thraustochytrids are single cell marine eukaryotes that produce large amounts of polyunsaturated fatty acids such as docosahexaenoic acid. In the present study, we report the visualization of endoplasmic reticulum (ER) and mitochondria in a type strain of the thraustochytrid, Aurantiochytrium limacinum ATCC MYA-1381, using the enhanced green fluorescent protein (EGFP) with specific targeting/retaining signals. We expressed the egfp gene with ER targeting/retaining signals from A. limacinum calreticulin or BiP/GRP78 in the thraustochytrid, resulting in the distribution of EGFP signals at the perinuclear region and near lipid droplets. ER-Tracker™ Red, an authentic fluorescent probe for the visualization of ER in mammalian cells, also stained the same region. We observed small lipid droplets generated from the visualized ER in the early growth phase of cell culture. Expression of the egfp gene with the mitochondria targeting signal from A. limacinum cytochrome c oxidase resulted in the localization of EGFP near the plasma membrane. The distribution of EGFP signals coincided with that of MitoTracker® Red CMXRos, which is used to visualize mitochondria in eukaryotes. The ER and mitochondria of A. limacinum were visualized for the first time by EGFP with thraustochytrid cell organelle-specific targeting/retaining signals. These results will contribute to classification of the intracellular localization of proteins expressed in ER and mitochondria as well as analyses of these cell organelles in thraustochytrids.

  4. Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation

    PubMed Central

    Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.

    2005-01-01

    Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807

  5. Requirement of spatiotemporal resolution for imaging intracellular temperature distribution

    NASA Astrophysics Data System (ADS)

    Hiroi, Noriko; Tanimoto, Ryuichi; , Kaito, Ii; Ozeki, Mitsunori; Mashimo, Kota; Funahashi, Akira

    2017-04-01

    Intracellular temperature distribution is an emerging target in biology nowadays. Because thermal diffusion is rapid dynamics in comparison with molecular diffusion, we need a spatiotemporally high-resolution imaging technology to catch this phenomenon. We demonstrate that time-lapse imaging which consists of single-shot 3D volume images acquired at high-speed camera rate is desired for the imaging of intracellular thermal diffusion based on the simulation results of thermal diffusion from a nucleus to cytosol.

  6. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Belyanin, Andrey; Kashinath, Shruti; Wu, Xiangwei; Lapotko, Dmitri O.

    2012-01-01

    Cancer chemotherapies suffer from multi drug resistance, high non-specific toxicity and heterogeneity of tumors. We report a method of plasmonic nanobubble-enhanced endosomal escape (PNBEE) for the selective, fast and guided intracellular delivery of drugs through a self-assembly by cancer cells of separately targeted gold nanoparticles and encapsulated drug (Doxil). The co-localized with Doxil plasmonic nanobubbles optically generated in cancer cells released the drug into the cytoplasm thus increasing the therapeutic efficacy against these drug-resistant cells by 31-fold, reducing drug dose by 20-fold, the treatment time by 3-fold and the non-specific toxicity by 10-fold compared to standard treatment. Thus the PNBEE mechanism provided selective, safe and efficient intracellular drug delivery in heterogeneous environment opening new opportunities for drug therapies. PMID:22137124

  7. Navigating the plant cell: intracellular transport logistics in the green kingdom

    PubMed Central

    Geitmann, Anja; Nebenführ, Andreas

    2015-01-01

    Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. PMID:26416952

  8. Targeting the Intracellular Environment in Cystic Fibrosis: Restoring Autophagy as a Novel Strategy to Circumvent the CFTR Defect

    PubMed Central

    Villella, Valeria Rachela; Esposito, Speranza; Bruscia, Emanuela M.; Maiuri, Maria Chiara; Raia, Valeria; Kroemer, Guido; Maiuri, Luigi

    2013-01-01

    Cystic fibrosis (CF) patients harboring the most common deletion mutation of the CF transmembrane conductance regulator (CFTR), F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane (PM)-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the PM even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1), a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the PM. We focus on the relationship between the improvement of peripheral proteostasis and CFTR PM stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent pre-clinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation. PMID:23346057

  9. Glioma Dual-Targeting Nanohybrid Protein Toxin Constructed by Intein-Mediated Site-Specific Ligation for Multistage Booster Delivery

    PubMed Central

    Chen, Yingzhi; Zhang, Meng; Jin, Hongyue; Li, Dongdong; Xu, Fan; Wu, Aihua; Wang, Jinyu; Huang, Yongzhuo

    2017-01-01

    Malignant glioma is one of the most untreatable cancers because of the formidable blood-brain barrier (BBB), through which few therapeutics can penetrate and reach the tumors. Biologics have been booming in cancer therapy in the past two decades, but their application in brain tumor has long been ignored due to the impermeable nature of BBB against effective delivery of biologics. Indeed, it is a long unsolved problem for brain delivery of macromolecular drugs, which becomes the Holy Grail in medical and pharmaceutical sciences. Even assisting by targeting ligands, protein brain delivery still remains challenging because of the synthesis difficulties of ligand-modified proteins. Herein, we propose a rocket-like, multistage booster delivery system of a protein toxin, trichosanthin (TCS), for antiglioma treatment. TCS is a ribosome-inactivating protein with the potent activity against various solid tumors but lack of specific action and cell penetration ability. To overcome the challenge of its poor druggability and site-specific modification, intein-mediated ligation was applied, by which a gelatinase-cleavable peptide and cell-penetrating peptide (CPP)-fused recombinant TCS toxin can be site-specifically conjugated to lactoferrin (LF), thus constructing a BBB-penetrating, gelatinase-activatable cell-penetrating nanohybrid TCS toxin. This nanohybrid TCS system is featured by the multistage booster strategy for glioma dual-targeting delivery. First, LF can target to the BBB-overexpressing low-density lipoprotein receptor-related protein-1 (LRP-1), and assist with BBB penetration. Second, once reaching the tumor site, the gelatinase-cleavable peptide acts as a separator responsive to the glioma-associated matrix metalloproteinases (MMPs), thus releasing to the CPP-fused toxin. Third, CPP mediates intratumoral and intracellular penetration of TCS toxin, thereby enhancing its antitumor activity. The BBB penetration and MMP-2-activability of this delivery system were

  10. Engineering a growth sensor to select intracellular antibodies in the cytosol of mammalian cells.

    PubMed

    Nguyen, Thuy Duong; Takasuka, Hitoshi; Kaku, Yoshihiro; Inoue, Satoshi; Nagamune, Teruyuki; Kawahara, Masahiro

    2017-07-01

    Intracellular antibodies (intrabodies) are expected to function as therapeutics as well as tools for elucidating in vivo function of proteins. In this study, we propose a novel intrabody selection method in the cytosol of mammalian cells by utilizing a growth signal, induced by the interaction of the target antigen and an scFv-c-kit growth sensor. Here, we challenge this method to select specific intrabodies against rabies virus nucleoprotein (RV-N) for the first time. As a result, we successfully select antigen-specific intrabodies from a naïve synthetic library using phage panning followed by our growth sensor-based intracellular selection method, demonstrating the feasibility of the method. Additionally, we succeed in improving the response of the growth sensor by re-engineering the linker region of its construction. Collectively, the described selection method utilizing a growth sensor may become a highly efficient platform for selection of functional intrabodies in the future. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. A central role for vesicle trafficking in epithelial neoplasia: Intracellular highways to carcinogenesis

    PubMed Central

    Goldenring, James R.

    2014-01-01

    Epithelial cell carcinogenesis involves the loss of polarity, alteration of polarized protein presentation, dynamic cell morphology changes, increased proliferation and increased cell motility and invasion. Elements of membrane vesicle trafficking underlie all of these processes. Specific membrane trafficking regulators, including Rab small GTPases, through the coordinated dynamics of intracellular trafficking along cytoskeletal pathways, determine cell surface presentation of proteins and overall function of both differentiated and neoplastic cells. While mutations in vesicle trafficking proteins may not be direct drivers of transformation, elements of the machinery of vesicle movement play critical roles in the phenotypes of neoplastic cells. Therefore, the regulators of membrane vesicle trafficking decisions are critical mediators of the full spectrum of cell physiologies driving cancer cell biology, including initial loss of polarity, invasion and metastasis. Targeting of these fundamental intracellular processes may provide important points for manipulation of cancer cell behaviour. PMID:24108097

  12. Intracellular Retention of ABL Kinase Inhibitors Determines Commitment to Apoptosis in CML Cells

    PubMed Central

    Dziadosz, Marek; Schnöder, Tina; Heidel, Florian; Schemionek, Mirle; Melo, Junia V.; Kindler, Thomas; Müller-Tidow, Carsten; Koschmieder, Steffen; Fischer, Thomas

    2012-01-01

    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by high-dose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs. PMID:22815843

  13. Intracellular trafficking of hybrid gene delivery vectors.

    PubMed

    Keswani, Rahul K; Lazebnik, Mihael; Pack, Daniel W

    2015-06-10

    Viral and non-viral gene delivery vectors are in development for human gene therapy, but both exhibit disadvantages such as inadequate efficiency, lack of cell-specific targeting or safety concerns. We have recently reported the design of hybrid delivery vectors combining retrovirus-like particles with synthetic polymers or lipids that are efficient, provide sustained gene expression and are more stable compared to native retroviruses. To guide further development of this promising class of gene delivery vectors, we have investigated their mechanisms of intracellular trafficking. Moloney murine leukemia virus-like particles (M-VLPs) were complexed with chitosan (Chi) or liposomes (Lip) comprising DOTAP, DOPE and cholesterol to form the hybrid vectors (Chi/M-VLPs and Lip/M-VLPs, respectively). Transfection efficiency and cellular internalization of the vectors were quantified in the presence of a panel of inhibitors of various endocytic pathways. Intracellular transport and trafficking kinetics of the hybrid vectors were dependent on the synthetic component and used a combination of clathrin- and caveolar-dependent endocytosis and macropinocytosis. Chi/M-VLPs were slower to transfect compared to Lip/M-VLPs due to the delayed detachment of the synthetic component. The synthetic component of hybrid gene delivery vectors plays a significant role in their cellular interactions and processing and is a key parameter for the design of more efficient gene delivery vehicles. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Differences in DNA Binding Specificity of Floral Homeotic Protein Complexes Predict Organ-Specific Target Genes.

    PubMed

    Smaczniak, Cezary; Muiño, Jose M; Chen, Dijun; Angenent, Gerco C; Kaufmann, Kerstin

    2017-08-01

    Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation. © 2017 American Society of Plant Biologists. All rights reserved.

  15. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples.

    PubMed

    Bandyopadhyay, Sanghamitra; Mitra, Ramkrishna

    2009-10-15

    Prediction of microRNA (miRNA) target mRNAs using machine learning approaches is an important area of research. However, most of the methods suffer from either high false positive or false negative rates. One reason for this is the marked deficiency of negative examples or miRNA non-target pairs. Systematic identification of non-target mRNAs is still not addressed properly, and therefore, current machine learning approaches are compelled to rely on artificially generated negative examples for training. In this article, we have identified approximately 300 tissue-specific negative examples using a novel approach that involves expression profiling of both miRNAs and mRNAs, miRNA-mRNA structural interactions and seed-site conservation. The newly generated negative examples are validated with pSILAC dataset, which elucidate the fact that the identified non-targets are indeed non-targets.These high-throughput tissue-specific negative examples and a set of experimentally verified positive examples are then used to build a system called TargetMiner, a support vector machine (SVM)-based classifier. In addition to assessing the prediction accuracy on cross-validation experiments, TargetMiner has been validated with a completely independent experimental test dataset. Our method outperforms 10 existing target prediction algorithms and provides a good balance between sensitivity and specificity that is not reflected in the existing methods. We achieve a significantly higher sensitivity and specificity of 69% and 67.8% based on a pool of 90 feature set and 76.5% and 66.1% using a set of 30 selected feature set on the completely independent test dataset. In order to establish the effectiveness of the systematically generated negative examples, the SVM is trained using a different set of negative data generated using the method in Yousef et al. A significantly higher false positive rate (70.6%) is observed when tested on the independent set, while all other factors are kept the

  16. Live Cell Imaging of the Endocytosis and the Intracellular Trafficking of Multifunctional Lipid Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tieqiao; Danthi, S. N.; Xie, Jianwu

    Artificial lipid nanoparticles have drawn great attention due to their potential in medicine. Linked with targeting ligands, they can be used as probes and/or gene delivery vectors for specific types of target cells. Therefore, they are very promising agents in early detection, diagnosis and treatment of cancers and other genetic diseases. However, there are several barriers blocking the applications. Controlling the cellular uptake of the lipid nanoparticles is an important technical challenge to overcome. Understanding the mechanism of the endocytosis and the following intracellular trafficking is very important for improving the design and therefore the efficiency as a drug deliverymore » system. By using fluorescence microscopy methods, we studied the endocytosis of lipid nanoparticles by live M21 cells. The movements of the nanoparticles inside the cell were quantitatively characterized and classified based on the diffusion behavior. The trajectories of nanoparticles movement over the cell membrane revealed hop-diffusion behavior prior to the endocytosis. Fast movement in large steps is observed in intracellular trafficking and is attributed to active movement along microtubule. These observations help to understand the mechanism of the endocytosis and the pathway of the particles in cells.« less

  17. Live cell imaging of the endocytosis and the intracellular trafficking of multifunctional lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Tieqiao; Danthi, S. Narasimhan; Xie, Jianwu; Hu, Dehong; Lu, Peter; Li, King

    2006-02-01

    Artificial lipid nanoparticles have drawn great attention due to their potential in medicine. Linked with targeting ligands, they can be used as probes and/or gene delivery vectors for specific types of target cells. Therefore, they are very promising agents in early detection, diagnosis and treatment of cancers and other genetic diseases. However, there are several barriers blocking the applications. Controlling the cellular uptake of the lipid nanoparticles is an important technical challenge to overcome. Understanding the mechanism of the endocytosis and the following intracellular trafficking is very important for improving the design and therefore the efficiency as a drug delivery system. By using fluorescence microscopy methods, we studied the endocytosis of lipid nanoparticles by live M21 cells. The movements of the nanoparticles inside the cell were quantitatively characterized and classified based on the diffusion behavior. The trajectories of nanoparticles movement over the cell membrane revealed hop-diffusion behavior prior to the endocytosis. Fast movement in large steps is observed in intracellular trafficking and is attributed to active movement along microtubule. These observations help to understand the mechanism of the endocytosis and the pathway of the particles in cells.

  18. Spatial organization of the cytoskeleton enhances cargo delivery to specific target areas on the plasma membrane of spherical cells.

    PubMed

    Hafner, Anne E; Rieger, Heiko

    2016-11-15

    Intracellular transport is vital for the proper functioning and survival of a cell. Cargo (proteins, vesicles, organelles, etc) is transferred from its place of creation to its target locations via molecular motor assisted transport along cytoskeletal filaments. The transport efficiency is strongly affected by the spatial organization of the cytoskeleton, which constitutes an inhomogeneous, complex network. In cells with a centrosome microtubules grow radially from the central microtubule organizing center towards the cell periphery whereas actin filaments form a dense meshwork, the actin cortex, underneath the cell membrane with a broad range of orientations. The emerging ballistic motion along filaments is frequently interrupted due to constricting intersection nodes or cycles of detachment and reattachment processes in the crowded cytoplasm. In order to investigate the efficiency of search strategies established by the cell's specific spatial organization of the cytoskeleton we formulate a random velocity model with intermittent arrest states. With extensive computer simulations we analyze the dependence of the mean first passage times for narrow escape problems on the structural characteristics of the cytoskeleton, the motor properties and the fraction of time spent in each state. We find that an inhomogeneous architecture with a small width of the actin cortex constitutes an efficient intracellular search strategy.

  19. Spatial organization of the cytoskeleton enhances cargo delivery to specific target areas on the plasma membrane of spherical cells

    NASA Astrophysics Data System (ADS)

    Hafner, Anne E.; Rieger, Heiko

    2016-12-01

    Intracellular transport is vital for the proper functioning and survival of a cell. Cargo (proteins, vesicles, organelles, etc) is transferred from its place of creation to its target locations via molecular motor assisted transport along cytoskeletal filaments. The transport efficiency is strongly affected by the spatial organization of the cytoskeleton, which constitutes an inhomogeneous, complex network. In cells with a centrosome microtubules grow radially from the central microtubule organizing center towards the cell periphery whereas actin filaments form a dense meshwork, the actin cortex, underneath the cell membrane with a broad range of orientations. The emerging ballistic motion along filaments is frequently interrupted due to constricting intersection nodes or cycles of detachment and reattachment processes in the crowded cytoplasm. In order to investigate the efficiency of search strategies established by the cell’s specific spatial organization of the cytoskeleton we formulate a random velocity model with intermittent arrest states. With extensive computer simulations we analyze the dependence of the mean first passage times for narrow escape problems on the structural characteristics of the cytoskeleton, the motor properties and the fraction of time spent in each state. We find that an inhomogeneous architecture with a small width of the actin cortex constitutes an efficient intracellular search strategy.

  20. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Belyanin, Andrey; Kashinath, Shruti; Wu, Xiangwei; Lapotko, Dmitri O

    2012-02-01

    Cancer chemotherapies suffer from multi drug resistance, high non-specific toxicity and heterogeneity of tumors. We report a method of plasmonic nanobubble-enhanced endosomal escape (PNBEE) for the selective, fast and guided intracellular delivery of drugs through a self-assembly by cancer cells of separately targeted gold nanoparticles and encapsulated drug (Doxil). The co-localized with Doxil plasmonic nanobubbles optically generated in cancer cells released the drug into the cytoplasm thus increasing the therapeutic efficacy against these drug-resistant cells by 31-fold, reducing drug dose by 20-fold, the treatment time by 3-fold and the non-specific toxicity by 10-fold compared to standard treatment. Thus the PNBEE mechanism provided selective, safe and efficient intracellular drug delivery in heterogeneous environment opening new opportunities for drug therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Self-organization principles of intracellular pattern formation.

    PubMed

    Halatek, J; Brauns, F; Frey, E

    2018-05-26

    Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli , Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as 'activators', 'inhibitors' or 'substrate depletion'. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Authors.

  2. Intracellular magnesium detection by fluorescent indicators.

    PubMed

    Trapani, Valentina; Schweigel-Röntgen, Monika; Cittadini, Achille; Wolf, Federica I

    2012-01-01

    Magnesium is essential for a wide variety of biochemical reactions and physiological functions, but its regulatory mechanisms (both at the cellular and at the systemic level) are still poorly characterized. Not least among the reasons for this gap are the technical difficulties in sensing minor changes occurring over a high background concentration. Specific fluorescent indicators are highly sensitive tools for dynamic evaluation of intracellular magnesium concentration. We herein discuss the main criteria to consider when choosing a magnesium-specific fluorescent indicator and provide examples among commercial as well as developmental sensors. We focus on spectrofluorimetric approaches to quantify Mg(2+) concentration in cell or mitochondria suspensions, and on imaging techniques to detect intracellular magnesium distribution and fluxes by live microscopy, reporting a detailed description of standard protocols for each method. The general guidelines we provide should be applicable to specific issues by any researcher in the field. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Cell fate reprogramming by control of intracellular network dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  4. Therapeutic drug monitoring of intracellular anti-infective agents.

    PubMed

    D'Avolio, Antonio; Pensi, Debora; Baietto, Lorena; Di Perri, Giovanni

    2014-12-01

    Many microorganisms, including viruses, some bacteria and fungi, replicate within the cells. Therefore, the efficacy of therapy and the selection of resistances could be related to intracellular concentration of the drugs and to their ability to cross biological membranes and penetrate into various tissue compartments. The efficacy of treatment may be limited by pharmacological factors. Dose-response relationship exists for many agents, and failure to maintain adequate concentrations may allow the development of viral or bacterial resistance, thereby decreasing the probability of response of current and subsequent therapies. The major target of antivirals and many other anti-infective agents is within infected cells. Therefore, clinical outcome ultimately should be related to intracellular drug concentrations. Intracellular pharmacokinetics provides information regarding drug disposition in a compartment where microorganism replication occurs and combined with plasma data may be useful in understanding therapeutic failure in relation to cellular resistance. With a focus on possible methodological biases, this review reports the current state of the art in intracellular, particularly in peripheral blood mononuclear cells, therapeutic drug monitoring of the following anti-infective drugs: antivirals, antifungals and antibiotics. Although measurement of intracellular concentrations needs to be still standardized focusing on each single drug, this review showed some relationships between intracellular concentrations of few anti-infective drugs and their efficacy and/or toxicity. Such relationships should be interpreted with caution, as intracellular concentrations reflect the total amount of drug within the cell and not the effective unbound fraction. The number of clinical studies in that area is, however, rather limited, and not always adequately designed. Then, intracellular drug determination has to be considered a test for research only and not to be carried out

  5. Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling.

    PubMed

    Maltsev, Alexander V; Kokoz, Yuri M; Evdokimovskii, Edward V; Pimenov, Oleg Y; Reyes, Santiago; Alekseev, Alexey E

    2014-03-01

    Evidence suggests that intracellular Ca(2+) levels and contractility of cardiomyocytes can be modulated by targeting receptors other than already identified adrenergic or non-adrenergic sarcolemmal receptors. This study uncovers the presence in myocardial cells of adrenergic α2 (α2-AR) and imidazoline I1 (I1R) receptors. In isolated left ventricular myocytes generating stationary spontaneous Ca(2+) transients in the absence of triggered action potentials, the prototypic agonist of both receptors agmatine can activate corresponding signaling cascades with opposing outcomes on nitric oxide (NO) synthesis and intracellular Ca(2+) handling. Specifically, activation of α2-AR signaling through PI3 kinase and Akt/protein kinase B stimulates NO production and abolishes Ca(2+) transients, while targeting of I1R signaling via phosphatidylcholine-specific phospholipase C (PC-PLC) and protein kinase C (PKC) suppresses NO synthesis and elevates averaged intracellular Ca(2+). We identified that endothelial NO synthase (eNOS) is a major effector for both signaling cascades. According to the established eNOS transitions between active (Akt-dependent) and inactive (PKC-dependent) conformations, we suggest that balance between α2-AR and I1R signaling pathways sets eNOS activity, which by defining operational states of myocellular sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) can adjust Ca(2+) re-uptake and thereby cardiac inotropy. These results indicate that the conventional catalog of cardiomyocyte sarcolemmal receptors should be expanded by the α2-AR and I1R populations, unveiling previously unrecognized targets for endogenous ligands as well as for existing and potential pharmacological agents in cardiovascular medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Growing Fixed With Age: Lay Theories of Malleability Are Target Age-Specific.

    PubMed

    Neel, Rebecca; Lassetter, Bethany

    2015-11-01

    Beliefs about whether people can change ("lay theories" of malleability) are known to have wide-ranging effects on social motivation, cognition, and judgment. Yet rather than holding an overarching belief that people can or cannot change, perceivers may hold independent beliefs about whether different people are malleable-that is, lay theories may be target-specific. Seven studies demonstrate that lay theories are target-specific with respect to age: Perceivers hold distinct, uncorrelated lay theories of people at different ages, and younger targets are considered to be more malleable than older targets. Both forms of target-specificity are consequential, as target age-specific lay theories predict policy support for learning-based senior services and the rehabilitation of old and young drug users. The implications of target age-specific lay theories for a number of psychological processes, the social psychology of aging, and theoretical frameworks of malleability beliefs are discussed. © 2015 by the Society for Personality and Social Psychology, Inc.

  7. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand.

    PubMed

    Kularatne, Sumith A; Wang, Kevin; Santhapuram, Hari-Krishna R; Low, Philip S

    2009-01-01

    Prostate cancer (PCa) is a major cause of mortality and morbidity in Western society today. Current methods for detecting PCa are limited, leaving most early malignancies undiagnosed and sites of metastasis in advanced disease undetected. Major deficiencies also exist in the treatment of PCa, especially metastatic disease. In an effort to improve both detection and therapy of PCa, we have developed a PSMA-targeted ligand that delivers attached imaging and therapeutic agents selectively to PCa cells without targeting normal cells. The PSMA-targeted radioimaging agent (DUPA-(99m)Tc) was found to bind PSMA-positive human PCa cells (LNCaP cell line) with nanomolar affinity (K(D) = 14 nM). Imaging and biodistribution studies revealed that DUPA-(99m)Tc localizes primarily to LNCaP cell tumor xenografts in nu/nu mice (% injected dose/gram = 11.3 at 4 h postinjection; tumor-to-muscle ratio = 75:1). Two PSMA-targeted optical imaging agents (DUPA-FITC and DUPA-rhodamine B) were also shown to efficiently label PCa cells and to internalize and traffic to intracellular endosomes. A PSMA-targeted chemotherapeutic agent (DUPA-TubH) was demonstrated to kill PSMA-positive LNCaP cells in culture (IC(50) = 3 nM) and to eliminate established tumor xenografts in nu/nu mice with no detectable weight loss. Blockade of tumor targeting upon administration of excess PSMA inhibitor (PMPA) and the absence of targeting to PSMA-negative tumors confirmed the specificity of each of the above targeted reagents for PSMA. Tandem use of the imaging and therapeutic agents targeted to the same receptor could allow detection, staging, monitoring, and treatment of PCa with improved accuracy and efficacy.

  8. Drugs and Targets in Fibrosis

    PubMed Central

    Li, Xiaoyi; Zhu, Lixin; Wang, Beibei; Yuan, Meifei; Zhu, Ruixin

    2017-01-01

    Fibrosis contributes to the development of many diseases and many target molecules are involved in fibrosis. Currently, the majority of fibrosis treatment strategies are limited to specific diseases or organs. However, accumulating evidence demonstrates great similarities among fibroproliferative diseases, and more and more drugs are proved to be effective anti-fibrotic therapies across different diseases and organs. Here we comprehensively review the current knowledge on the pathological mechanisms of fibrosis, and divide factors mediating fibrosis progression into extracellular and intracellular groups. Furthermore, we systematically summarize both single and multiple component drugs that target fibrosis. Future directions of fibrosis drug discovery are also proposed. PMID:29218009

  9. STAT3 or USF2 Contributes to HIF Target Gene Specificity

    PubMed Central

    Pawlus, Matthew R.; Wang, Liyi; Murakami, Aya; Dai, Guanhai; Hu, Cheng-Jun

    2013-01-01

    The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein. PMID:23991099

  10. Highly specific detection of muscarinic M3 receptor, G protein interaction and intracellular trafficking in human detrusor using Proximity Ligation Assay (PLA).

    PubMed

    Berndt-Paetz, Mandy; Herbst, Luise; Weimann, Annett; Gonsior, Andreas; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2018-05-01

    Muscarinic acetylcholine receptors (mAChRs) regulate a number of important physiological functions. Alteration of mAChR expression or function has been associated in the etiology of several pathologies including functional bladder disorders (e.g bladder pain syndrome/interstitial cystitis - BPS/IC). In a previous study we found specific mAChR expression patterns associated with BPS/IC, while correlation between protein and gene expression was lacking. Posttranslational regulatory mechanisms, e.g. altered intracellular receptor trafficking, could explain those differences. In addition, alternative G protein (GP) coupling could add to the pathophysiology via modulation of muscarinic signaling. In our proof-of-principle study, we addressed these questions in situ. We established PLA in combination with confocal laserscanning microscopy (CLSM) and 3D object reconstruction for highly specific detection and analysis of muscarinic 3 receptors (M3), G protein (GP) coupling and intracellular trafficking in human detrusor samples. Paraffin sections of formalin-fixed bladder tissue (FFPE) of BPS/IC patients receiving transurethral biopsy were examined by Cy3-PLA for M3 expression, coupling of M3 to GPs (G αq/11 , G αs , G αi ) and interaction of M3 with endocytic regulator proteins. Membranes were labeled with wheat germ agglutinin-Alexa Fluor ® 488, nuclei were stained with DAPI. Object density and co-localization were analyzed in 3D-reconstruction of high resolution confocal z-stacks. Confocal image stack processing resulted in well demarcated objects. Calculated receptor densities correlated significantly with existing confocal expression data, while significantly improved specificity of M3 detection by PLA was verified using bladder tissue samples from transgenic mice. 50-60% of the M3 receptor complexes were plasma membrane associated in human bladder detrusor. Application of PLA for M3 and GPs allowed visualization of M3-GP interactions and revealed individual GP

  11. Intracellular trafficking of silicon particles and logic-embedded vectors

    NASA Astrophysics Data System (ADS)

    Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.

    2010-08-01

    Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments.Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon

  12. Fluorescent nanosensors for intracellular measurements: synthesis, characterization, calibration, and measurement

    PubMed Central

    Desai, Arpan S.; Chauhan, Veeren M.; Johnston, Angus P. R.; Esler, Tim; Aylott, Jonathan W.

    2013-01-01

    Measurement of intracellular acidification is important for understanding fundamental biological pathways as well as developing effective therapeutic strategies. Fluorescent pH nanosensors are an enabling technology for real-time monitoring of intracellular acidification. The physicochemical characteristics of nanosensors can be engineered to target specific cellular compartments and respond to external stimuli. Therefore, nanosensors represent a versatile approach for probing biological pathways inside cells. The fundamental components of nanosensors comprise a pH-sensitive fluorophore (signal transducer) and a pH-insensitive reference fluorophore (internal standard) immobilized in an inert non-toxic matrix. The inert matrix prevents interference of cellular components with the sensing elements as well as minimizing potentially harmful effects of some fluorophores on cell function. Fluorescent nanosensors are synthesized using standard laboratory equipment and are detectable by non-invasive widely accessible imaging techniques. The outcomes of studies employing this technology are dependent on reliable methodology for performing measurements. In particular, special consideration must be given to conditions for sensor calibration, uptake conditions and parameters for image analysis. We describe procedures for: (1) synthesis and characterization of polyacrylamide and silica based nanosensors, (2) nanosensor calibration and (3) performing measurements using fluorescence microscopy. PMID:24474936

  13. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    PubMed Central

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  14. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    PubMed

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Influence of quasi-specific sites on kinetics of target DNA search by a sequence-specific DNA-binding protein.

    PubMed

    Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji

    2015-11-10

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.

  16. Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry.

    PubMed

    Karkmann, U; Radbruch, A; Hölzel, V; Scheffold, A

    1999-11-19

    Flow cytometry is the method of choice for the analysis of single cells with respect to the expression of specific antigens. Antigens can be detected with specific antibodies either on the cell surface or within the cells, after fixation and permeabilization of the cell membrane. Using conventional fluorochrome-labeled antibodies several thousand antigens are required for clear-cut separation of positive and negative cells. More sensitive reagents, e.g., magnetofluorescent liposomes conjugated to specific antibodies permit the detection of less than 200 molecules per cell but cannot be used for the detection of intracellular antigens. Here, we describe an enzymatic amplification technique (intracellular tyramine-based signal amplification, ITSA) for the sensitive cytometric analysis of intracellular cytokines by immunofluorescence. This approach results in a 10 to 15-fold improvement of the signal-to-noise ratio compared to conventional fluorochrome labeled antibodies and permits the detection of as few as 300-400 intracellular antigens per cell.

  17. Prolactin-induced Subcellular Targeting of GLUT1 Glucose Transporter in Living Mammary Epithelial Cells

    PubMed Central

    Riskin, Arieh; Mond, Yehudit

    2015-01-01

    Background Studying the biological pathways involved in mammalian milk production during lactation could have many clinical implications. The mammary gland is unique in its requirement for transport of free glucose into the cell for the synthesis of lactose, the primary carbohydrate in milk. Objective To study GLUT1 trafficking and subcellular targeting in living mammary epithelial cells (MEC) in culture. Methods Immunocytochemistry was used to study GLUT1 hormonally regulated subcellular targeting in human MEC (HMEC). To study GLUT1 targeting and recycling in living mouse MEC (MMEC) in culture, we constructed fusion proteins of GLUT1 and green fluorescent protein (GFP) and expressed them in CIT3 MMEC. Cells were maintained in growth medium (GM), or exposed to secretion medium (SM), containing prolactin. Results GLUT1 in HMEC localized primarily to the plasma membrane in GM. After exposure to prolactin for 4 days, GLUT1 was targeted intracellularly and demonstrated a perinuclear distribution, co-localizing with lactose synthetase. The dynamic trafficking of GFP-GLUT1 fusion proteins in CIT3 MMEC suggested a basal constitutive GLUT1 recycling pathway between an intracellular pool and the cell surface that targets most GLUT1 to the plasma membrane in GM. Upon exposure to prolactin in SM, GLUT1 was specifically targeted intracellularly within 90–110 minutes. Conclusions Our studies suggest intracellular targeting of GLUT1 to the central vesicular transport system upon exposure to prolactin. The existence of a dynamic prolactin-induced sorting machinery for GLUT1 could be important for transport of free glucose into the Golgi for lactose synthesis during lactation. PMID:26886772

  18. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radogna, Flavia; Paternoster, Laura; Istitututo di Chimica Biologica, Universita di Urbino Carlo Bo

    Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not leadmore » to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.« less

  19. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    PubMed

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  20. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA

    NASA Astrophysics Data System (ADS)

    Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2018-02-01

    The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.

  1. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  2. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate.

    PubMed

    Kim, Sun Hwa; Jeong, Ji Hoon; Chun, Ki Woo; Park, Tae Gwan

    2005-09-13

    Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with anionic surface charge were surface coated with cationic di-block copolymer, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL) conjugate, for enhancing their site-specific intracellular delivery against folate receptor overexpressing cancer cells. The PLGA nanoparticles coated with the conjugate were characterized in terms of size, surface charge, and change in surface composition by XPS. By employing the flow cytometry method and confocal image analysis, the extent of cellular uptake was comparatively evaluated under various conditions. PLL-PEG-FOL coated PLGA nanoparticles demonstrated far greater extent of cellular uptake to KB cells, suggesting that they were mainly taken up by folate receptor-mediated endocytosis. The enhanced cellular uptake was also observed even in the presence of serum proteins, possibly due to the densely seeded PEG chains. The PLL-PEG-FOL coated PLGA nanoparticles could be potentially applied for cancer cell targeted delivery of various therapeutic agents.

  3. Oxidant-induced DNA damage of target cells.

    PubMed Central

    Schraufstätter, I; Hyslop, P A; Jackson, J H; Cochrane, C G

    1988-01-01

    In this study we examined the leukocytic oxidant species that induce oxidant damage of DNA in whole cells. H2O2 added extracellularly in micromolar concentrations (10-100 microM) induced DNA strand breaks in various target cells. The sensitivity of a specific target cell was inversely correlated to its catalase content and the rate of removal of H2O2 by the target cell. Oxidant species produced by xanthine oxidase/purine or phorbol myristate acetate-stimulated monocytes induced DNA breakage of target cells in proportion to the amount of H2O2 generated. These DNA strand breaks were prevented by extracellular catalase, but not by superoxide dismutase. Cytotoxic doses of HOCl, added to target cells, did not induce DNA strand breakage, and myeloperoxidase added extracellularly in the presence of an H2O2-generating system, prevented the formation of DNA strand breaks in proportion to its H2O2 degrading capacity. The studies also indicated that H2O2 formed hydroxyl radical (.OH) intracellularly, which appeared to be the most likely free radical responsible for DNA damage: .OH was detected in cells exposed to H2O2; the DNA base, deoxyguanosine, was hydroxylated in cells exposed to H2O2; and intracellular iron was essential for induction of DNA strand breaks. PMID:2843565

  4. Intracellular hepatitis C modeling predicts infection dynamics and viral protein mechanisms

    DOE PAGES

    Aunins, Thomas R.; Marsh, Katherine M.; Subramanya, Gitanjali; ...

    2018-03-21

    Hepatitis C virus infection is a global health problem, with nearly 2 million new infections occurring every year and up to 85% of these becoming chronic infections that pose serious long-term health risks. To effectively reduce the prevalence of HCV infection and associated diseases, it is important to understand the intracellular dynamics of the viral lifecycle. Here, we present a detailed mathematical model that represents the full hepatitis C lifecycle. It is the first full HCV model to be fit to acute intracellular infection data and the first to explore the functions of distinct viral proteins, probing multiple hypotheses ofmore » cis- and trans-acting mechanisms to provide insights for drug targeting. Model parameters were derived from the literature, experiments, and fitting to experimental intracellular viral RNA, extracellular viral titer, and HCV core and NS3 protein kinetic data from viral inoculation to steady-state. Our model predicts faster rates for protein translation and polyprotein cleavage than previous replicon models and demonstrates that the processes of translation and synthesis of viral RNA have the most influence on the levels of the species we tracked in experiments. Overall, our experimental data and the resulting mathematical infection model reveal information about the regulation of core protein during infection, produce specific insights into the roles of the viral core, NS5A, and NS5B proteins, and demonstrate the sensitivities of viral proteins and RNA to distinct reactions within the lifecycle.« less

  5. Intracellular hepatitis C modeling predicts infection dynamics and viral protein mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aunins, Thomas R.; Marsh, Katherine M.; Subramanya, Gitanjali

    Hepatitis C virus infection is a global health problem, with nearly 2 million new infections occurring every year and up to 85% of these becoming chronic infections that pose serious long-term health risks. To effectively reduce the prevalence of HCV infection and associated diseases, it is important to understand the intracellular dynamics of the viral lifecycle. Here, we present a detailed mathematical model that represents the full hepatitis C lifecycle. It is the first full HCV model to be fit to acute intracellular infection data and the first to explore the functions of distinct viral proteins, probing multiple hypotheses ofmore » cis- and trans-acting mechanisms to provide insights for drug targeting. Model parameters were derived from the literature, experiments, and fitting to experimental intracellular viral RNA, extracellular viral titer, and HCV core and NS3 protein kinetic data from viral inoculation to steady-state. Our model predicts faster rates for protein translation and polyprotein cleavage than previous replicon models and demonstrates that the processes of translation and synthesis of viral RNA have the most influence on the levels of the species we tracked in experiments. Overall, our experimental data and the resulting mathematical infection model reveal information about the regulation of core protein during infection, produce specific insights into the roles of the viral core, NS5A, and NS5B proteins, and demonstrate the sensitivities of viral proteins and RNA to distinct reactions within the lifecycle.« less

  6. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes.

    PubMed

    Derycke, Annelies S L; De Witte, Peter A M

    2002-01-01

    Over the last few decades, photodynamic therapy evolved to a promising new treating modality for cancer. The photosensitizers used, induce light sensitivity to a normal light insensitive chemical or physical process. Third generation photosensitizers are derivatives of second generation photosensitizers introduced into or attached to chemical devices. This modification increases the biological specificity to deliver photosensitizers to a defined cell type. The aim of this study was to improve the specificity of hypericin for tumor cells using transferrin-conjugated PEG-liposomes. Transferrin was used as tumor-seeking molecule, since many tumor cells, among which HeLa cells, overexpress transferrin receptors on their surface. Hypericin, a potent second generation photosensitizer, was integrated in the lipid bilayers of the liposomes. The antiproliferative effect of the targeted PEG-liposomes was determined and compared with the results of non-targeted PEG-liposomes and free hypericin. Additionally, the intracellular accumulation assay was performed. All manipulations were done on HeLa cells. To interpret the results, the data were supplemented by findings concerning embedding stability. Targeting hypericin by transferrin-conjugated PEG-liposomes did not significantly favour the photocytotoxicity and the intracellular accumulation of hypericin, in comparison with non-targeted PEG-liposomes or free hypericin. Embedding stability experiments showed only limited stable embedding. Despite of their proven efficiency as a targeting carrier system, transferrin-conjugated PEG-liposomes seem less effective in targeting hypericin to tumor cells due to the amount of hypericin leaking out of the PEG-liposomes.

  7. Differential intra-endothelial delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes

    PubMed Central

    Garnacho, Carmen; Albelda, Steven M.; Muzykantov, Vladimir R.; Muro, Silvia

    2008-01-01

    Coupling drug carriers to antibodies for targeting endothelial cells (ECs) may improve treatment of vascular and pulmonary diseases. Selecting antibodies that deliver carriers to the cell surface or intracellularly may further optimize specifcity of interventions. We studied antibody-directed targeting of nanocarriers to platelet–endothelial cell adhesion molecule (PECAM)-1, an endothelial glycoprotein containing 6 Ig-like extracellular domains. PECAM-1 antibodies bind to ECs without internalization, but ECs internalize by endocytosis nanocarriers carrying multiple copies of anti-PECAM (anti-PECAM/NCs). To determine whether binding and intracellular transport of anti-PECAM/NCs depend on the epitope engaged, we targeted five PECAM-1 epitopes: mAb35, mAb37 and mAb62 (membrane-distal Ig domain 1), mAbGi34 (Ig domains 2/3), and mAb4G6 (membrane-proximal Ig domain 6). The antibodies bound to ECs regardless of the epitope proximity to the plasmalemma, whereas 130 nm diameter nanocarriers only targeted effectively distal domains (mAb4G6/NCs did not bind to ECs). ECs internalized mAb35, mAb62, and mAbGi34 carriers regardless of their size (0.13 to 5 µm diameter), yet they did not internalize mAb37/NCs. After internalization, mAb62/NCs trafficked to lysosomes within 2–3 h, whereas mAb35/NCs had prolonged residence in pre-lysosomal vesicles. Therefore, endothelial binding, endocytosis, and intracellular transport of anti-PECAM/NCs are epitope-specific. This paradigm will guide the design of endothelial drug delivery systems providing specific cellular localizations. PMID:18606202

  8. Neoplasia Driven by Mutant c-KIT Is Mediated by Intracellular, Not Plasma Membrane, Receptor Signaling▿

    PubMed Central

    Xiang, Zhifu; Kreisel, Frederike; Cain, Jennifer; Colson, AnnaLynn; Tomasson, Michael H.

    2007-01-01

    Activating mutations in c-KIT are associated with gastrointestinal stromal tumors, mastocytosis, and acute myeloid leukemia. In attempting to establish a murine model of human KITD816V (hKITD816V)-mediated leukemia, we uncovered an unexpected relationship between cellular transformation and intracellular trafficking. We found that transport of hKITD816V protein was blocked at the endoplasmic reticulum in a species-specific fashion. We exploited these species-specific trafficking differences and a set of localization domain-tagged KIT mutants to explore the relationship between subcellular localization of mutant KIT and cellular transformation. The protein products of fully transforming KIT mutants localized to the Golgi apparatus and to a lesser extent the plasma membrane. Domain-tagged KITD816V targeted to the Golgi apparatus remained constitutively active and transforming. Chemical inhibition of intracellular transport demonstrated that Golgi localization is sufficient, but plasma membrane localization is dispensable, for downstream signaling mediated by KIT mutation. When expressed in murine bone marrow, endoplasmic reticulum-localized hKITD816V failed to induce disease in mice, while expression of either Golgi-localized HyKITD816V or cytosol-localized, ectodomain-deleted KITD816V uniformly caused fatal myeloproliferative diseases. Taken together, these data demonstrate that intracellular, non-plasma membrane receptor signaling is sufficient to drive neoplasia caused by mutant c-KIT and provide the first animal model of myelomonocytic neoplasia initiated by human KITD816V. PMID:17060458

  9. Genotyping of Mycobacterium intracellulare isolates and clinical characteristics of lung disease.

    PubMed

    Kim, S-Y; Lee, S-T; Jeong, B-H; Park, H Y; Jeon, K; Kim, J-W; Shin, S J; Koh, W-J

    2013-05-01

    Variable number of tandem repeats (VNTR) loci were recently identified in Japanese isolates of Mycobacterium intracellulare. We hypothesised that some mycobacterial genotypes are more virulent than others, resulting in particular genotypes being associated with disease phenotype and progression. To evaluate the VNTR loci of M. intracellulare in clinical isolates from Korean patients, and investigate the association between mycobacterial genotype and disease phenotype and progression. In total, 70 M. intracellulare clinical isolates were genotyped using 16 M. intracellulare VNTR loci. VNTR typing showed strong discriminatory power and genetic diversity for molecular epidemiological studies of M. intracellulare. In a phylogenetic tree, the M. intracellulare clinical isolates were divided into two clusters (A and B). Cluster A was observed more frequently (77%) than Cluster B; however, there was no association between the clinical characteristics, disease progression, drug susceptibility and clusters based on VNTR genotyping. VNTR typing could be used for epidemiological studies of M. intracellulare lung disease; however, no association was found between the specific VNTR genotypes of M. intracellulare and the clinical characteristics of Korean patients.

  10. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    PubMed

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors

    PubMed Central

    Karlsson, Hannah; Svensson, Emma; Gigg, Camilla; Jarvius, Malin; Olsson-Strömberg, Ulla; Savoldo, Barbara; Dotti, Gianpietro; Loskog, Angelica

    2015-01-01

    CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs. PMID:26700307

  12. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers

    PubMed Central

    Kebebe, Dereje; Liu, Yuanyuan; Wu, Yumei; Vilakhamxay, Maikhone; Liu, Zhidong; Li, Jiawei

    2018-01-01

    Cancer has become one of the leading causes of mortality globally. The major challenges of conventional cancer therapy are the failure of most chemotherapeutic agents to accumulate selectively in tumor cells and their severe systemic side effects. In the past three decades, a number of drug delivery approaches have been discovered to overwhelm the obstacles. Among these, nanocarriers have gained much attention for their excellent and efficient drug delivery systems to improve specific tissue/organ/cell targeting. In order to enhance targeting efficiency further and reduce limitations of nanocarriers, nanoparticle surfaces are functionalized with different ligands. Several kinds of ligand-modified nanomedicines have been reported. Cell-penetrating peptides (CPPs) are promising ligands, attracting the attention of researchers due to their efficiency to transport bioactive molecules intracellularly. However, their lack of specificity and in vivo degradation led to the development of newer types of CPP. Currently, activable CPP and tumor-targeting peptide (TTP)-modified nanocarriers have shown dramatically superior cellular specific uptake, cytotoxicity, and tumor growth inhibition. In this review, we discuss recent advances in tumor-targeting strategies using CPPs and their limitations in tumor delivery systems. Special emphasis is given to activable CPPs and TTPs. Finally, we address the application of CPPs and/or TTPs in the delivery of plant-derived chemotherapeutic agents. PMID:29563797

  13. Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research.

    PubMed

    Gruber, Ansgar; Kroth, Peter G

    2017-09-05

    Diatoms are important primary producers in the oceans and can also dominate other aquatic habitats. One reason for the success of this phylogenetically relatively young group of unicellular organisms could be the impressive redundancy and diversity of metabolic isoenzymes in diatoms. This redundancy is a result of the evolutionary origin of diatom plastids by a eukaryote-eukaryote endosymbiosis, a process that implies temporary redundancy of functionally complete eukaryotic genomes. During the establishment of the plastids, this redundancy was partially reduced via gene losses, and was partially retained via gene transfer to the nucleus of the respective host cell. These gene transfers required re-assignment of intracellular targeting signals, a process that simultaneously altered the intracellular distribution of metabolic enzymes compared with the ancestral cells. Genome annotation, the correct assignment of the gene products and the prediction of putative function, strongly depends on the correct prediction of the intracellular targeting of a gene product. Here again diatoms are very peculiar, because the targeting systems for organelle import are partially different to those in land plants. In this review, we describe methods of predicting intracellular enzyme locations, highlight findings of metabolic peculiarities in diatoms and present genome-enabled approaches to study their metabolism.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  14. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets

    PubMed Central

    Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent

    2014-01-01

    By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711

  15. Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro.

    PubMed

    Das, Sreemanti; Das, Jayeeta; Samadder, Asmita; Paul, Avijit; Khuda-Bukhsh, Anisur Rahman

    2013-11-25

    The aim of the present study was the evaluation of anti-proliferative potentials of apigenin (Ap), (a dietary flavonoid) loaded in poly (lactic-co-glycolide) nanoparticles (NAp) in A375 cells in vitro. NAp was characterized for particle size, morphology, zeta potential, drug release and encapsulation. Cellular entry and intracellular localization of NAp were assessed by transmission electron and confocal microscopies. Circular dichroic spectral analysis and stability curve for Gibb's free energy of dsDNA of A375 cells were also analyzed. DNA fragmentation, intracellular ROS accumulation, superoxide-dismutase activity, intracellular glutathione-reductase content and mitochondrial functioning through relevant markers like mitochondrial transmembrane potential, ATPase activity, ATP/ADP ratio, volume changes/swelling, cytochrome-c release, expressions of Apaf-1, bax, bcl-2, caspase-9, 3, and PARP cleavage were analyzed. NAp produced better effects due to their smaller size, faster mobility and site-specific action. Photostability studies revealed that PLGA encapsulations were efficient at preserving apigenin ultraviolet-light mediated photodegradation. NAp readily entered cancer cells, could intercalate with dsDNA, inducing conformational change. Corresponding increase in ROS accumulation and depletion of the antioxidant enzyme activities exacerbated DNA damage, mediating apoptosis through mitochondrial dysfunction. Overall results indicate that therapeutic efficacy of NAp may be enhanced by PLGA nanoparticle formulations to have better ameliorative potentials in combating skin melanoma. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Intracellular mature IL-37 suppresses tumor metastasis via inhibiting Rac1 activation.

    PubMed

    Li, Y; Zhao, M; Guo, C; Chu, H; Li, W; Chen, X; Wang, X; Li, Y; Jia, Y; Koussatidjoa, S; Zhu, F; Wang, J; Wang, X; Wang, Q; Zhao, W; Shi, Y; Chen, W; Zhang, L

    2018-02-22

    IL-37, a newly found anti-inflammatory cytokine of the IL-1 family, has both extracellular and intracellular functions. Accumulating evidences indicate that it is also involved in tumor progression. However, the mechanism and its intracellular target are unclear. In this study, clinical data from 84 patients showed that loss or reduced expression of IL-37 in lung adenocarcinoma tissues was significantly associated with tumor metastasis. We further provided evidence that IL-37 inhibited effectively tumor metastasis in vitro and in vivo. Moreover, we uncovered a novel mechanism by which IL-37 suppressed tumor cell migration via its intracellular mature form (amino acids 46-218). Intracellular mature form of IL-37, but not its extracellular form, markedly inhibited migration of multiple kinds of tumor cells through inhibiting Rac1 activation. Mechanistically, intracellular mature IL-37 directly bound to the CAAX motif in the C-terminal hypervariable region of Rac1, and then inhibited Rac1 membrane translocation and subsequent downstream signaling. Our research identifies intracellular mature IL-37 as a novel endogenous inhibitor of Rac1. Given the crucial roles of Rac1 in tumor angiogenesis and metastasis, intracellular mature IL-37 might serve as a potential strategy for the control of Rac1 activity and tumor progression.

  17. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols

    PubMed Central

    Villas-Boas, Silas G.; Aggio, Raphael

    2017-01-01

    Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells. PMID:29065530

  18. FK506 binding proteins: cellular regulators of intracellular Ca2+ signalling.

    PubMed

    MacMillan, Debbi

    2013-01-30

    In many cell types the intracellular Ca(2+) store performs a central role in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](c)), the elevation of which triggers diverse and fundamental activities from reproduction to apoptosis, as well as being the major trigger for contraction. Two distinct classes of Ca(2+) release channels, which mobilize Ca(2+) from the store, exist; the inositol 1,4,5-trisphosphate (IP(3)) receptor and the ryanodine receptor. Considerable attention has been directed towards the importance of modulatory proteins that interact with these channels including, FK506 binding proteins (FKBPs), FKBP12 and its isoform, FKBP12.6. Although FKBP12 was first identified as the principal intracellular target for the immunosuppressive drugs, FK506 and rapamycin, new insights into the role of FKBPs have since emerged. These regulatory proteins are reportedly important modulators of intracellular Ca(2+) release. FKBPs may regulate ryanodine and IP(3) receptors either directly, by binding to the cytoplasmic aspect of the channel, or indirectly via modulation of two targets, the phosphatase, calcineurin or the kinase, mammalian target of rapamycin (mTOR). Dissociation of FKBP12 or FKBP12.6 from either Ca(2+) release channel may increase, decrease or have no effect on ryanodine receptor- or IP(3) receptor-mediated Ca(2+) release. These important controversies may be attributed to FKBPs' ability to regulate the receptor indirectly via the kinase and phosphatase pathways modulated by the accessory proteins. This brief review discusses the regulation of intracellular ryanodine and IP(3) receptor Ca(2+) release channels by accessory FKBPs, with important implications for the role of FKBPs in the pathophysiology of a number of diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    NASA Astrophysics Data System (ADS)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  20. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    PubMed

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  1. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies.

    PubMed

    Avila, Jesús; Pallas, Noemí; Bolós, Marta; Sayas, C Laura; Hernandez, Felix

    2016-06-01

    Microtubule associated protein tau, a protein mainly expressed in neurons, plays an important role in several diseases related to dementia, named tauopathies. Alzheimer disease is the most relevant tauopathy. The role of tau protein in dementia is now a topic under discussion, and is the focus of this review. We have covered two major areas: tau pathology and tau as a therapeutic target. Tau pathology is mainly related to a gain of toxic function due to an abnormal accumulation, aberrant modifications (such as hyperphosphorylation and truncation, among others) and self-aggregation of tau into oligomers or larger structures. Also, tau can be found extracellularly in a toxic form. Tau-based therapy is mainly centered on avoiding the gain of these toxic functions of tau. Tau therapies are focused on lowering tau levels, mainly of modified tau species that could be toxic for neurons (phosphorylated, truncated or aggregated tau), in intracellular or extracellular form. Decreasing the levels of those toxic species is a possible therapeutic strategy.

  2. Quantification of the Influence of Extracellular Laccase and Intracellular Reactions on the Isomer-Specific Biotransformation of the Xenoestrogen Technical Nonylphenol by the Aquatic Hyphomycete Clavariopsis aquatica▿

    PubMed Central

    Martin, Claudia; Corvini, Philippe F. X.; Vinken, Ralph; Junghanns, Charles; Krauss, Gudrun; Schlosser, Dietmar

    2009-01-01

    The aquatic hyphomycete Clavariopsis aquatica was used to quantify the effects of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of technical nonylphenol (t-NP). In laccase-producing cultures, maximal removal rates of t-NP and the isomer 4-(1-ethyl-1,4-dimethylpentyl)phenol (NP112) were about 1.6- and 2.4-fold higher, respectively, than in laccase-lacking cultures. The selective suppression of either laccase or intracellular reactions resulted in essentially comparable maximal removal rates for both compounds. Evidence for an unspecific oxidation of t-NP isomers was consistently obtained from laccase-expressing fungal cultures when intracellular biotransformation was suppressed and from reaction mixtures containing isolated laccase. This observation contrasts with the selective degradation of t-NP isomers by bacteria and should prevent the enrichment of highly estrogenic isomers in remaining t-NP. In contrast with laccase reactions, intracellular fungal biotransformation caused a significant shift in the isomeric composition of remaining t-NP. As a result, certain t-NP constituents related to more estrogenic isomers were less efficiently degraded than others. In contrast to bacterial degradation via ipso-hydroxylation, the substitution pattern of the quaternary α-carbon of t-NP isomers does not seem to be very important for intracellular transformation in C. aquatica. As-yet-unknown intracellular enzymes are obviously induced by nonylphenols. Mass spectral data of the metabolites resulting from the intracellular oxidation of t-NP, NP112, and 4-(1-ethyl-1,3-dimethylpentyl)phenol indicate nonyl chain hydroxylation, further oxidation into keto or aldehyde compounds, and the subsequent formation of carboxylic acid derivatives. Further metabolites suggest nonyl chain desaturation and methylation of carboxylic acids. The phenolic moieties of the nonylphenols remained unchanged. PMID:19429559

  3. Specific c-Jun target genes in malignant melanoma.

    PubMed

    Schummer, Patrick; Kuphal, Silke; Vardimon, Lily; Bosserhoff, Anja K; Kappelmann, Melanie

    2016-05-03

    A fundamental event in the development and progression of malignant melanoma is the de-regulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of melanoma progression and, thus, is the most important member of the AP-1 transcription factor family in this disease. Surprisingly, no cancer-related specific c-Jun target genes in melanoma were described in the literature, so far. Therefore, we focused on pre-existing ChIP-Seq data (Encyclopedia of DNA Elements) of 3 different non-melanoma cell lines to screen direct c-Jun target genes. Here, a specific c-Jun antibody to immunoprecipitate the associated promoter DNA was used. Consequently, we identified 44 direct c-Jun targets and a detailed analysis of 6 selected genes confirmed their deregulation in malignant melanoma. The identified genes were differentially regulated comparing 4 melanoma cell lines and normal human melanocytes and we confirmed their c-Jun dependency. Direct interaction between c-Jun and the promoter/enhancer regions of the identified genes was confirmed by us via ChIP experiments. Interestingly, we revealed that the direct regulation of target gene expression via c-Jun can be independent of the existence of the classical AP-1 (5´-TGA(C/G)TCA-3´) consensus sequence allowing for the subsequent down- or up-regulation of the expression of these cancer-relevant genes. In summary, the results of this study indicate that c-Jun plays a crucial role in the development and progression of malignant melanoma via direct regulation of cancer-relevant target genes and that inhibition of direct c-Jun targets through inhibition of c-Jun is a potential novel therapeutic option for treatment of malignant melanoma.

  4. Internalization, Trafficking, Intracellular Processing and Actions of Antibody-Drug Conjugates.

    PubMed

    Xu, Shi

    2015-11-01

    This review discusses the molecular mechanism involved in the targeting and delivery of antibody-drug conjugates (ADCs), the new class of biopharmaceuticals mainly designed for targeted cancer therapy. this review goes over major progress in preclinical and clinical studies of ADCs, in the past 5 years. The pharmacokinetics and pharmacodynamics of ADCs involve multiple mechanisms, including internalization of ADCs by target cells, intracellular trafficking, release of conjugated drugs, and payload. These mechanisms actually jointly determine the efficacy of ADCs. Therefore, the optimization of ADCs should take them as necessary rationales.

  5. A computational imaging target specific detectivity metric

    NASA Astrophysics Data System (ADS)

    Preece, Bradley L.; Nehmetallah, George

    2017-05-01

    Due to the large quantity of low-cost, high-speed computational processing available today, computational imaging (CI) systems are expected to have a major role for next generation multifunctional cameras. The purpose of this work is to quantify the performance of theses CI systems in a standardized manner. Due to the diversity of CI system designs that are available today or proposed in the near future, significant challenges in modeling and calculating a standardized detection signal-to-noise ratio (SNR) to measure the performance of these systems. In this paper, we developed a path forward for a standardized detectivity metric for CI systems. The detectivity metric is designed to evaluate the performance of a CI system searching for a specific known target or signal of interest, and is defined as the optimal linear matched filter SNR, similar to the Hotelling SNR, calculated in computational space with special considerations for standardization. Therefore, the detectivity metric is designed to be flexible, in order to handle various types of CI systems and specific targets, while keeping the complexity and assumptions of the systems to a minimum.

  6. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    PubMed Central

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-01-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery. PMID:27010513

  7. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  8. Autophagosomes contribute to intracellular lipid distribution in enterocytes

    PubMed Central

    Khaldoun, Salem Ait; Emond-Boisjoly, Marc-Alexandre; Chateau, Danielle; Carrière, Véronique; Lacasa, Michel; Rousset, Monique; Demignot, Sylvie; Morel, Etienne

    2014-01-01

    Enterocytes, the intestinal absorptive cells, have to deal with massive alimentary lipids upon food consumption. They orchestrate complex lipid-trafficking events that lead to the secretion of triglyceride-rich lipoproteins and/or the intracellular transient storage of lipids as lipid droplets (LDs). LDs originate from the endoplasmic reticulum (ER) membrane and are mainly composed of a triglyceride (TG) and cholesterol-ester core surrounded by a phospholipid and cholesterol monolayer and specific coat proteins. The pivotal role of LDs in cellular lipid homeostasis is clearly established, but processes regulating LD dynamics in enterocytes are poorly understood. Here we show that delivery of alimentary lipid micelles to polarized human enterocytes induces an immediate autophagic response, accompanied by phosphatidylinositol-3-phosphate appearance at the ER membrane. We observe a specific and rapid capture of newly synthesized LD at the ER membrane by nascent autophagosomal structures. By combining pharmacological and genetic approaches, we demonstrate that autophagy is a key player in TG targeting to lysosomes. Our results highlight the yet-unraveled role of autophagy in the regulation of TG distribution, trafficking, and turnover in human enterocytes. PMID:24173715

  9. Diagnostic accuracy of intracellular mycobacterium tuberculosis detection for tuberculous meningitis.

    PubMed

    Feng, Guo-dong; Shi, Ming; Ma, Lei; Chen, Ping; Wang, Bing-ju; Zhang, Min; Chang, Xiao-lin; Su, Xiu-chu; Yang, Yi-ning; Fan, Xin-hong; Dai, Wen; Liu, Ting-ting; He, Ying; Bian, Ting; Duan, Li-xin; Li, Jin-ge; Hao, Xiao-ke; Liu, Jia-yun; Xue, Xin; Song, Yun-zhang; Wu, Hai-qin; Niu, Guo-qiang; Zhang, Li; Han, Cui-juan; Lin, Hong; Lin, Zhi-hui; Liu, Jian-jun; Jian, Qian; Zhang, Jin-she; Tian, Ye; Zhou, Bai-yu; Wang, Jing; Xue, Chang-hu; Han, Xiao-fang; Wang, Jian-feng; Wang, Shou-lian; Thwaites, Guy E; Zhao, Gang

    2014-02-15

    Early diagnosis and treatment of tuberculous meningitis saves lives, but current laboratory diagnostic tests lack sensitivity. We investigated whether the detection of intracellular bacteria by a modified Ziehl-Neelsen stain and early secretory antigen target (ESAT)-6 in cerebrospinal fluid leukocytes improves tuberculous meningitis diagnosis. Cerebrospinal fluid specimens from patients with suspected tuberculous meningitis were stained by conventional Ziehl-Neelsen stain, a modified Ziehl-Neelsen stain involving cytospin slides with Triton processing, and an ESAT-6 immunocytochemical stain. Acid-fast bacteria and ESAT-6-expressing leukocytes were detected by microscopy. All tests were performed prospectively in a central laboratory by experienced technicians masked to the patients' final diagnosis. Two hundred and eighty patients with suspected tuberculous meningitis were enrolled. Thirty-seven had Mycobacterium tuberculosis cultured from cerebrospinal fluid; 40 had a microbiologically confirmed alternative diagnosis; the rest had probable or possible tuberculous meningitis according to published criteria. Against a clinical diagnostic gold standard the sensitivity of conventional Ziehl-Neelsen stain was 3.3% (95% confidence interval, 1.6-6.7%), compared with 82.9% (95% confidence interval, 77.4-87.3%) for modified Ziehl-Neelsen stain and 75.1% (95% confidence interval, 68.8-80.6%) for ESAT-6 immunostain. Intracellular bacteria were seen in 87.8% of the slides positive by the modified Ziehl-Neelsen stain. The specificity of modified Ziehl-Neelsen and ESAT-6 stain was 85.0% (95% confidence interval, 69.4-93.8%) and 90.0% (95% confidence interval, 75.4-96.7%), respectively. Enhanced bacterial detection by simple modification of the Ziehl-Neelsen stain and an ESAT-6 intracellular stain improve the laboratory diagnosis of tuberculous meningitis.

  10. Target Abundance-Based Fitness Screening (TAFiS) Facilitates Rapid Identification of Target-Specific and Physiologically Active Chemical Probes

    PubMed Central

    Butts, Arielle; DeJarnette, Christian; Peters, Tracy L.; Parker, Josie E.; Kerns, Morgan E.; Eberle, Karen E.; Kelly, Steve L.

    2017-01-01

    ABSTRACT Traditional approaches to drug discovery are frustratingly inefficient and have several key limitations that severely constrain our capacity to rapidly identify and develop novel experimental therapeutics. To address this, we have devised a second-generation target-based whole-cell screening assay based on the principles of competitive fitness, which can rapidly identify target-specific and physiologically active compounds. Briefly, strains expressing high, intermediate, and low levels of a preselected target protein are constructed, tagged with spectrally distinct fluorescent proteins (FPs), and pooled. The pooled strains are then grown in the presence of various small molecules, and the relative growth of each strain within the mixed culture is compared by measuring the intensity of the corresponding FP tags. Chemical-induced population shifts indicate that the bioactivity of a small molecule is dependent upon the target protein’s abundance and thus establish a specific functional interaction. Here, we describe the molecular tools required to apply this technique in the prevalent human fungal pathogen Candida albicans and validate the approach using two well-characterized drug targets—lanosterol demethylase and dihydrofolate reductase. However, our approach, which we have termed target abundance-based fitness screening (TAFiS), should be applicable to a wide array of molecular targets and in essentially any genetically tractable microbe. IMPORTANCE Conventional drug screening typically employs either target-based or cell-based approaches. The first group relies on biochemical assays to detect modulators of a purified target. However, hits frequently lack drug-like characteristics such as membrane permeability and target specificity. Cell-based screens identify compounds that induce a desired phenotype, but the target is unknown, which severely restricts further development and optimization. To address these issues, we have developed a second

  11. DNA targeting specificity of RNA-guided Cas9 nucleases.

    PubMed

    Hsu, Patrick D; Scott, David A; Weinstein, Joshua A; Ran, F Ann; Konermann, Silvana; Agarwala, Vineeta; Li, Yinqing; Fine, Eli J; Wu, Xuebing; Shalem, Ophir; Cradick, Thomas J; Marraffini, Luciano A; Bao, Gang; Zhang, Feng

    2013-09-01

    The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here, we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications, we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.

  12. A type IV translocated Legionella cysteine phytase counteracts intracellular growth restriction by phytate.

    PubMed

    Weber, Stephen; Stirnimann, Christian U; Wieser, Mara; Frey, Daniel; Meier, Roger; Engelhardt, Sabrina; Li, Xiaodan; Capitani, Guido; Kammerer, Richard A; Hilbi, Hubert

    2014-12-05

    The causative agent of Legionnaires' pneumonia, Legionella pneumophila, colonizes diverse environmental niches, including biofilms, plant material, and protozoa. In these habitats, myo-inositol hexakisphosphate (phytate) is prevalent and used as a phosphate storage compound or as a siderophore. L. pneumophila replicates in protozoa and mammalian phagocytes within a unique "Legionella-containing vacuole." The bacteria govern host cell interactions through the Icm/Dot type IV secretion system (T4SS) and ∼300 different "effector" proteins. Here we characterize a hitherto unrecognized Icm/Dot substrate, LppA, as a phytate phosphatase (phytase). Phytase activity of recombinant LppA required catalytically essential cysteine (Cys(231)) and arginine (Arg(237)) residues. The structure of LppA at 1.4 Å resolution revealed a mainly α-helical globular protein stabilized by four antiparallel β-sheets that binds two phosphate moieties. The phosphates localize to a P-loop active site characteristic of dual specificity phosphatases or to a non-catalytic site, respectively. Phytate reversibly abolished growth of L. pneumophila in broth, and growth inhibition was relieved by overproduction of LppA or by metal ion titration. L. pneumophila lacking lppA replicated less efficiently in phytate-loaded Acanthamoeba castellanii or Dictyostelium discoideum, and the intracellular growth defect was complemented by the phytase gene. These findings identify the chelator phytate as an intracellular bacteriostatic component of cell-autonomous host immunity and reveal a T4SS-translocated L. pneumophila phytase that counteracts intracellular bacterial growth restriction by phytate. Thus, bacterial phytases might represent therapeutic targets to combat intracellular pathogens. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Comparative proteomic analysis reveals intracellular targets for bacillomycin L to induce Rhizoctonia solani Kühn hyphal cell death.

    PubMed

    Zhang, Bao; Qin, Yuxuan; Han, Yuzhu; Dong, Chunjuan; Li, Pinglan; Shang, Qingmao

    2016-09-01

    Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activity against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. To further understand its antifungal actions, proteomes were comparatively studied within R. solani hyphal cells treated with or without bacillomycin L. The results show that 39 proteins were alternatively expressed within cells in response to this lipopeptide, which are involved in stress response, carbohydrate, amino acid and nucleotide metabolism, cellular component organization, calcium homeostasis, protein degradation, RNA processing, gene transcription, and others, suggesting that, in addition to inducing cell membrane permeabilization, iturin exhibits antibiotic activities by targeting intracellular molecules. Based on these results, a model of action of bacillomycin L against R. solani hyphal cells was proposed. Our study provides new insight into the antibiotic mechanisms of iturins. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity.

    PubMed

    Othman, Basmah A; Greenwood, Christina; Abuelela, Ayman F; Bharath, Anil A; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen S; Porter, Alexandra E

    2016-06-01

    ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn(2+) concentration prior to cell death. The response of the cells within the population to intracellular Zn(2+) is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A bacteriophage endolysin that eliminates intracellular streptococci.

    PubMed

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-03-15

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB-PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities.

  16. An innovative pre-targeting strategy for tumor cell specific imaging and therapy

    NASA Astrophysics Data System (ADS)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-08-01

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging

  17. Nanovesicular carrier-based formulation for skin cancer targeting: evaluation of cytotoxicity, intracellular uptake, and preclinical anticancer activity.

    PubMed

    Jain, Subheet Kumar; Puri, Richa; Mahajan, Mohit; Yadav, Subodh; Pathak, C M; Ganesh, N

    2015-04-01

    Skin cancer has turned into global epidemic leading to higher incidences among cancer stricken population. The aim of the present investigation is to evaluate the anticancer potential and intracellular uptake of a novel nanovesicular formulation of 5-FU. Detailed intracellular uptake study in conjunction with estimation of intracellular reactive oxygen species was done using skin melanoma cell lines (A375) along with cytotoxicity studies. To further obtain the mechanistic insights into inhibition of tumor cell proliferation, cell-cycle arrest studies were conducted. The preclinical anticancer activity was carried out employing in vivo DMBA-croton oil-induced skin cancer model in mice. Significant reduction in the number of papillomas was observed in skin cancer-bearing mice on treatment with nanovesicular formulation (51.4 ± 3.2%) in comparison with marketed formulation (21.3 ± 2.1%) of 5-FU. Tumor volume was found to be reduced to 46.3 ± 3.5% with prepared formulation, whereas the marketed formulation-treated group showed the reduction of 18.6 ± 1.8% in comparison with the control (untreated) group. The results of present study demonstrated that nanovesicular formulation of 5-FU possessed the enhanced anticancer activity which could be attributed to better intracellular uptake, cellular retention, and sustained release of drug.

  18. Status Differences in Target-Specific Prosocial Behavior and Aggression.

    PubMed

    Closson, Leanna M; Hymel, Shelley

    2016-09-01

    Previous studies exploring the link between social status and behavior have predominantly utilized measures that do not provide information regarding toward whom aggression or prosocial behavior is directed. Using a contextualized target-specific approach, this study examined whether high- and low-status adolescents behave differently toward peers of varying levels of status. Participants, aged 11-15 (N = 426, 53 % females), completed measures assessing aggression and prosocial behavior toward each same-sex grademate. A distinct pattern of findings emerged regarding the likeability, popularity, and dominance status of adolescents and their peer targets. Popular adolescents reported more direct aggression, indirect aggression, and prosocial behavior toward popular peers than did unpopular adolescents. Well-accepted adolescents reported more prosocial behavior toward a wider variety of peers than did rejected adolescents. Finally, compared to subordinate adolescents, dominant adolescents reported greater direct and indirect aggression toward dominant than subordinate peers. The results highlight the importance of studying target-specific behavior to better understand the status-behavior link.

  19. Micro-channel-based high specific power lithium target

    NASA Astrophysics Data System (ADS)

    Mastinu, P.; Martın-Hernández, G.; Praena, J.; Gramegna, F.; Prete, G.; Agostini, P.; Aiello, A.; Phoenix, B.

    2016-11-01

    A micro-channel-based heat sink has been produced and tested. The device has been developed to be used as a Lithium target for the LENOS (Legnaro Neutron Source) facility and for the production of radioisotope. Nevertheless, applications of such device can span on many areas: cooling of electronic devices, diode laser array, automotive applications etc. The target has been tested using a proton beam of 2.8MeV energy and delivering total power shots from 100W to 1500W with beam spots varying from 5mm2 to 19mm2. Since the target has been designed to be used with a thin deposit of lithium and since lithium is a low-melting-point material, we have measured that, for such application, a specific power of about 3kW/cm2 can be delivered to the target, keeping the maximum surface temperature not exceeding 150° C.

  20. Up-regulation of P-glycoprotein reduces intracellular accumulation of beta amyloid: investigation of P-glycoprotein as a novel therapeutic target for Alzheimer's disease

    PubMed Central

    Abuznait, Alaa H.; Cain, Courtney; Ingram, Drury; Burk, David; Kaddoumi, Amal

    2011-01-01

    Objectives Several studies have suggested the efflux transporter P-glycoprotein (P-gp) to play a role in the etiology of Alzheimer's disease through the clearance of amyloid beta (Aβ) from the brain. In this study, we aimed to investigate the possibility of P-gp as a potential therapeutic target for Alzheimer's disease by examining the impact of P-gp up-regulation on the clearance of Aβ, a neuropathological hallmark of Alzheimer's disease. Methods Uptake studies for 125I-radiolabelled Aβ1–40, and fluorescent immunostaining technique for P-gp and fluorescent imaging of Aβ1–40 were carried out in LS-180 cells following treatment with drugs known to induce P-gp expression. Key findings Approximately 10–35% decrease in 125I-Aβ1–40 intracellular accumulation was observed in cells treated with rifampicin, dexamethasone, caffeine, verapamil, hyperforin, β-estradiol and pentylenetetrazole compared with control. Also, fluorescent micrographs showed an inverse relationship between levels of P-gp expression and 5-carboxyfluorescein labelled Aβ (FAM-Aβ1–40) intracellular accumulation. Quantitative analysis of the micrographs revealed that the results were consistent with those of the uptake studies using 125I-Aβ1–40. Conclusions The investigated drugs were able to improve the efflux of Aβ1–40 from the cells via P-gp up-regulation compared with control. Our results elucidate the importance of targeting Aβ clearance via P-gp up-regulation, which will be effective in slowing or halting the progression of Alzheimer's disease. PMID:21718295

  1. Generator-specific targets of mitochondrial reactive oxygen species.

    PubMed

    Bleier, Lea; Wittig, Ilka; Heide, Heinrich; Steger, Mirco; Brandt, Ulrich; Dröse, Stefan

    2015-01-01

    To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for "signaling" and "damaging" ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A verotoxin 1 B subunit-lambda CRO chimeric protein specifically binds both DNA and globotriaosylceramide (Gb(3)) to effect nuclear targeting of exogenous DNA in Gb(3) positive cells.

    PubMed

    Facchini, L M; Lingwood, C A

    2001-09-10

    Inefficient nuclear incorporation of foreign DNA remains a critical roadblock in the development of effective nonviral gene delivery systems. DNA delivered by traditional protocols remains within endosomal/lysosomal vesicles, or is rapidly degraded in the cytoplasm. Verotoxin I (VT), an AB(5) subunit toxin produced by enterohaemorrhagic Escherichia coli, binds to the cell surface glycolipid, globotriaosylceramide (Gb(3)) and is internalized into preendosomes. VT is then retrograde transported to the Golgi, endoplasmic reticulum (ER), and nucleus of highly VT-sensitive cells. We have utilized this nuclear targeting of VT to design a unique delivery system which transports exogenous DNA via vesicular traffic to the nucleus. The nontoxic VT binding subunit (VTB) was fused to the lambda Cro DNA-binding repressor, generating a 14-kDa VTB-Cro chimera. VTB-Cro binds specifically via the Cro domain to a 25-bp DNA fragment containing the consensus Cro operator. VTB-Cro demonstrates simultaneous specific binding to Gb(3). Treatment of Vero cells with fluorescent-labeled Cro operator DNA in the presence of VTB-Cro, results in DNA internalization to the Golgi, ER, and nucleus, whereas fluorescent DNA alone is incorporated poorly and randomly within the cytoplasm. VTB-Cro mediated nuclear DNA transport is prevented by brefeldin A, consistent with Golgi/ER intracellular routing. Pretreatment with filipin had no effect, indicating that caveoli are not involved. This novel VTB-Cro shuttle protein may find practical applications in the fields of intracellular targeting, gene delivery, and gene therapy. Copyright 2001 Academic Press.

  3. Intracellular bacteria interfere with dendritic cell functions: role of the type I interferon pathway.

    PubMed

    Gorvel, Laurent; Textoris, Julien; Banchereau, Romain; Ben Amara, Amira; Tantibhedhyangkul, Wiwit; von Bargen, Kristin; Ka, Mignane B; Capo, Christian; Ghigo, Eric; Gorvel, Jean-Pierre; Mege, Jean-Louis

    2014-01-01

    Dendritic cells (DCs) orchestrate host defenses against microorganisms. In infectious diseases due to intracellular bacteria, the inefficiency of the immune system to eradicate microorganisms has been attributed to the hijacking of DC functions. In this study, we selected intracellular bacterial pathogens with distinct lifestyles and explored the responses of monocyte-derived DCs (moDCs). Using lipopolysaccharide as a control, we found that Orientia tsutsugamushi, the causative agent of scrub typhus that survives in the cytosol of target cells, induced moDC maturation, as assessed by decreased endocytosis activity, the ability to induce lymphocyte proliferation and the membrane expression of phenotypic markers. In contrast, Coxiella burnetii, the agent of Q fever, and Brucella abortus, the agent of brucellosis, both of which reside in vacuolar compartments, only partly induced the maturation of moDCs, as demonstrated by a phenotypic analysis. To analyze the mechanisms used by C. burnetii and B. abortus to alter moDC activation, we performed microarray and found that C. burnetii and B. abortus induced a specific signature consisting of TLR4, TLR3, STAT1 and interferon response genes. These genes were down-modulated in response to C. burnetii and B. abortus but up-modulated in moDCs activated by lipopolysaccharide and O. tsutsugamushi. This transcriptional alteration was associated with the defective interferon-β production. This study demonstrates that intracellular bacteria specifically affect moDC responses and emphasizes how C. burnetii and B. abortus interfere with moDC activation and the antimicrobial immune response. We believe that comparing infection by several bacterial species may be useful for defining new pathways and biomarkers and for developing new treatment strategies.

  4. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  5. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    2015-04-01

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  6. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    PubMed

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  7. Engineering liposomal nanoparticles for targeted gene therapy.

    PubMed

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  8. pH-Responsive Wormlike Micelles with Sequential Metastasis Targeting Inhibit Lung Metastasis of Breast Cancer.

    PubMed

    He, Xinyu; Yu, Haijun; Bao, Xiaoyue; Cao, Haiqiang; Yin, Qi; Zhang, Zhiwen; Li, Yaping

    2016-02-18

    Cancer metastasis is the main cause for the high mortality in breast cancer patients. Herein, we first report succinobucol-loaded pH-responsive wormlike micelles (PWMs) with sequential targeting capability to inhibit lung metastasis of breast cancer. PWMs can in a first step be delivered specifically to the sites of metastases in the lungs and then enable the intracellular pH-stimulus responsive drug release in cancer cells to improve the anti-metastatic effect. PWMs are identified as nanofibrillar assemblies with a diameter of 19.9 ± 1.9 nm and a length within the 50-200 nm range, and exhibited pH-sensitive drug release behavior in response to acidic intracellular environments. Moreover, PWMs can obviously inhibit the migration and invasion abilities of metastatic 4T1 breast cancer cells, and reduce the expression of the metastasis-associated vascular cell adhesion molecule-1 (VCAM-1) at 400 ng mL(-1) of succinobucol. In particular, PWMs can induce a higher specific accumulation in lung and be specifically delivered to the sites of metastases in lung, thereby leading to an 86.6% inhibition on lung metastasis of breast cancer. Therefore, the use of sequentially targeting PWMs can become an encouraging strategy for specific targeting and effective treatment of cancer metastasis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review.

    PubMed

    Kanamala, Manju; Wilson, William R; Yang, Mimi; Palmer, Brian D; Wu, Zimei

    2016-04-01

    As the mainstay in the treatment of various cancers, chemotherapy plays a vital role, but still faces many challenges, such as poor tumour selectivity and multidrug resistance (MDR). Targeted drug delivery using nanotechnology has provided a new strategy for addressing the limitations of the conventional chemotherapy. In the last decade, the volume of research published in this area has increased tremendously, especially with functional nano drug delivery systems (nanocarriers). Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for improving therapeutic outcomes. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumours. In this review, we discuss recent advances in the development of pH-sensitive nanocarriers for tumour-targeted drug delivery. The review focuses on the chemical design of pH-sensitive biomaterials, which are used to fabricate nanocarriers for extracellular and/or intracellular tumour site-specific drug release. The pH-responsive biomaterials bring forth conformational changes in these nanocarriers through various mechanisms such as protonation, charge reversal or cleavage of a chemical bond, facilitating tumour specific cell uptake or drug release. A greater understanding of these mechanisms will help to design more efficient drug delivery systems to address the challenges encountered in conventional chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Intracellular Peptide Self-Assembly: A Biomimetic Approach for in Situ Nanodrug Preparation.

    PubMed

    Du, Wei; Hu, Xiaomu; Wei, Weichen; Liang, Gaolin

    2018-04-18

    Most nanodrugs are preprepared by encapsulating or loading the drugs with nanocarriers (e.g., dendrimers, liposomes, micelles, and polymeric nanoparticles). However, besides the low bioavailability and fast excretion of the nanodrugs in vivo, nanocarriers often exhibit in vitro and in vivo cytotoxicity, oxidative stress, and inflammation. Self-assembly is a ubiquitous process in biology where it plays important roles and underlies the formation of a wide variety of complex biological structures. Inspired by some cellular nanostructures (e.g., actin filaments, microtubules, vesicles, and micelles) in biological systems which are formed via molecular self-assembly, in recent decades, scientists have utilized self-assembly of oligomeric peptide under specific physiological or pathological environments to in situ construct nanodrugs for lesion-targeted therapies. On one hand, peptide-based nanodrugs always have some excellent intrinsic chemical (specificity, intrinsic bioactivity, biodegradability) and physical (small size, conformation) properties. On the other hand, stimuli-regulated intracellular self-assembly of nanodrugs is quite an efficient way to accumulate the drugs in lesion location and can realize an in situ slow release of the drugs. In this review article, we provided an overview on recent design principles for intracellular peptide self-assembly and illustrate how these principles have been applied for the in situ preparation of nanodrugs at the lesion location. In the last part, we list some challenges underlying this strategy and their possible solutions. Moreover, we envision the future possible theranostic applications of this strategy.

  11. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery.

    PubMed

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers.

  12. Target-cancer cell specific activatable fluorescence imaging Probes: Rational Design and in vivo Applications

    PubMed Central

    Kobayashi, Hisataka; Choyke, Peter L.

    2010-01-01

    CONSPECTUS Conventional imaging methods, such as angiography, computed tomography, magnetic resonance imaging and radionuclide imaging, rely on contrast agents (iodine, gadolinium, radioisotopes) that are “always on”. While these agents have proven clinically useful, they are not sufficiently sensitive because of the inadequate target to background ratio. A unique aspect of optical imaging is that fluorescence probes can be designed to be activatable, i.e. only “turned on” under certain conditions. These probes can be designed to emit signal only after binding a target tissue, greatly increasing sensitivity and specificity in the detection of disease. There are two basic types of activatable fluorescence probes; 1) conventional enzymatically activatable probes, which exist in the quenched state until activated by enzymatic cleavage mostly outside of the cells, and 2) newly designed target-cell specific activatable probes, which are quenched until activated in targeted cells by endolysosomal processing that results when the probe binds specific cell-surface receptors and is subsequently internalized. Herein, we present a review of the rational design and in vivo applications of target-cell specific activatable probes. Designing these probes based on their photo-chemical (e.g. activation strategy), pharmacological (e.g. biodistribution), and biological (e.g. target specificity) properties has recently allowed the rational design and synthesis of target-cell specific activatable fluorescence imaging probes, which can be conjugated to a wide variety of targeting molecules. Several different photo-chemical mechanisms have been utilized, each of which offers a unique capability for probe design. These include: self-quenching, homo- and hetero-fluorescence resonance energy transfer (FRET), H-dimer formation and photon-induced electron transfer (PeT). In addition, the repertoire is further expanded by the option for reversibility or irreversibility of the signal

  13. EDB Fibronectin Specific Peptide for Prostate Cancer Targeting.

    PubMed

    Han, Zheng; Zhou, Zhuxian; Shi, Xiaoyue; Wang, Junpeng; Wu, Xiaohui; Sun, Da; Chen, Yinghua; Zhu, Hui; Magi-Galluzzi, Cristina; Lu, Zheng-Rong

    2015-05-20

    Extradomain-B fibronectin (EDB-FN), one of the oncofetal fibronectin (onfFN) isoforms, is a high-molecular-weight glycoprotein that mediates cell adhesion and migration. The expression of EDB-FN is associated with a number of cancer-related biological processes such as tumorigenesis, angiogenesis, and epithelial-to-mesenchymal transition (EMT). Here, we report the development of a small peptide specific to EDB-FN for targeting prostate cancer. A cyclic nonapeptide, CTVRTSADC (ZD2), was identified using peptide phage display. A ZD2-Cy5 conjugate was synthesized to accomplish molecular imaging of prostate cancer in vitro and in vivo. ZD2-Cy5 demonstrated effective binding to up-regulated EDB-FN secreted by TGF-β-induced PC3 cancer cells following EMT. Following intravenous injections, the targeted fluorescent probe specifically bound to and delineated PC3-GFP prostate tumors in nude mice bearing the tumor xenografts. ZD2-Cy5 also showed stronger binding to human prostate tumor specimens with a higher Gleason score (GS9) compared to those with a lower score (GS 7), with no binding in benign prostatic hyperplasia (BPH). Thus, the ZD2 peptide is a promising strategy for molecular imaging and targeted therapy of prostate cancer.

  14. Dual pH-responsive and CD44 receptor targeted multifunctional nanoparticles for anticancer intracellular delivery

    NASA Astrophysics Data System (ADS)

    Chen, Daquan; Sun, Jingfang; Lian, Shengnan; Liu, Zongliang; Sun, Kaoxiang; Liu, Wanhui; Wu, Zimei; Zhang, Qiang

    2014-11-01

    In this article, we prepared a multifunctional oligosaccharides of hyaluronan (oHA) conjugates, oHA-histidine-menthone 1,2-glycerol ketal (oHM). The oHM conjugates possess pH-sensitive menthone 1,2-glycerol ketal (MGK) as hydrophobic moieties and oHA as the target of CD44 receptor. The polymeric mPEG-Chitosan-Ketal (PCK) carrying pH-sensitive ketal group as hydrophobic moieties and PEG group as hydrophilic moieties were synthesized. The two pH-sensitive ketal derivatives were employed to fabricate nanoparticles for anti-tumor drug delivery. The oHM-PCK nanoparticles (oHPN) can spontaneously self-assemble into mixed micellar structure with nano-sized spherical shape of 100-200 nm at pH 7.4 PBS conditions. The oHPN could release encapsulated curcumin with 92.6 % at pH 5.0 compared with 55.3 % at pH 7.4. The results of cytotoxicity assay indicated that encapsulated curcumin in oHPN (Cur-oHPN) have less toxicity compared to curcumin suspension. The anti-tumor efficacy in vivo suggested that Cur-oHPN suppressed tumor growth most efficiently. These results present the promising potential of oHPN as an effective nano-sized pH-sensitive drug delivery system for intracellular delivery.

  15. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.

    PubMed

    Ngo, Anh H; Bose, Sohini; Do, Loi H

    2018-03-23

    This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Target-specific copper hybrid T7 phage particles.

    PubMed

    Dasa, Siva Sai Krishna; Jin, Qiaoling; Chen, Chin-Tu; Chen, Liaohai

    2012-12-18

    Target-specific nanoparticles have attracted significant attention recently, and have greatly impacted life and physical sciences as new agents for imaging, diagnosis, and therapy, as well as building blocks for the assembly of novel complex materials. While most of these particles are synthesized by chemical conjugation of an affinity reagent to polymer or inorganic nanoparticles, we are promoting the use of phage particles as a carrier to host organic or inorganic functional components, as well as to display the affinity reagent on the phage surface, taking advantage of the fact that some phages host well-established vectors for protein expression. An affinity reagent can be structured in a desired geometry on the surface of phage particles, and more importantly, the number of the affinity reagent molecules per phage particle can be precisely controlled. We previously have reported the use of the T7 phage capsid as a template for synthesizing target-specific metal nanoparticles. In this study herein, we reported the synthesis of nanoparticles using an intact T7 phage as a scaffold from which to extend 415 copies of a peptide that contains a hexahistidine (6His) motif for capture of copper ions and staging the conversion of copper ions to copper metal, and a cyclic Arginine-Glycine-Aspartic Acid (RGD4C) motif for targeting integrin and cancer cells. We demonstrated that the recombinant phage could load copper ions under low bulk copper concentrations without interfering with its target specificity. Further reduction of copper ions to copper metal rendered a very stable copper hybrid T7 phage, which prevents the detachment of copper from phage particles and maintains the phage structural integrity even under harsh conditions. Cancer cells (MCF-7) can selectively uptake copper hybrid T7 phage particles through ligand-mediated transmembrane transportation, whereas normal control cells (MCF-12F) uptake 1000-fold less. We further demonstrated that copper hybrid T7

  17. Sex- and Tissue-specific Functions of Drosophila Doublesex Transcription Factor Target Genes

    PubMed Central

    Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C.; Hempel, Leonie; Pavlou, Hania J.; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan; Smith, Harold E.; Przytycka, Teresa M.; Goodwin, Stephen F.; Van Doren, Mark; Oliver, Brian

    2014-01-01

    Primary sex determination “switches” evolve rapidly, but Doublesex (DSX) related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSXF and DSXM), but little is known about how dsx controls sexual development, whether DSXF and DSXM bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSXF and DSXM bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression. PMID:25535918

  18. Target Context Specification Can Reduce Costs in Nonfocal Prospective Memory

    ERIC Educational Resources Information Center

    Lourenço, Joana S.; White, Katherine; Maylor, Elizabeth A.

    2013-01-01

    Performing a nonfocal prospective memory (PM) task results in a cost to ongoing task processing, but the precise nature of the monitoring processes involved remains unclear. We investigated whether target context specification (i.e., explicitly associating the PM target with a subset of ongoing stimuli) can trigger trial-by-trial changes in task…

  19. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction

    PubMed Central

    2012-01-01

    Background Choosing appropriate primers is probably the single most important factor affecting the polymerase chain reaction (PCR). Specific amplification of the intended target requires that primers do not have matches to other targets in certain orientations and within certain distances that allow undesired amplification. The process of designing specific primers typically involves two stages. First, the primers flanking regions of interest are generated either manually or using software tools; then they are searched against an appropriate nucleotide sequence database using tools such as BLAST to examine the potential targets. However, the latter is not an easy process as one needs to examine many details between primers and targets, such as the number and the positions of matched bases, the primer orientations and distance between forward and reverse primers. The complexity of such analysis usually makes this a time-consuming and very difficult task for users, especially when the primers have a large number of hits. Furthermore, although the BLAST program has been widely used for primer target detection, it is in fact not an ideal tool for this purpose as BLAST is a local alignment algorithm and does not necessarily return complete match information over the entire primer range. Results We present a new software tool called Primer-BLAST to alleviate the difficulty in designing target-specific primers. This tool combines BLAST with a global alignment algorithm to ensure a full primer-target alignment and is sensitive enough to detect targets that have a significant number of mismatches to primers. Primer-BLAST allows users to design new target-specific primers in one step as well as to check the specificity of pre-existing primers. Primer-BLAST also supports placing primers based on exon/intron locations and excluding single nucleotide polymorphism (SNP) sites in primers. Conclusions We describe a robust and fully implemented general purpose primer design tool

  20. Target cell specific antibody-based photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rosenblum, Lauren T.; Mitsunaga, Makoto; Kakareka, John W.; Morgan, Nicole Y.; Pohida, Thomas J.; Choyke, Peter L.; Kobayashi, Hisataka

    2011-03-01

    In photodynamic therapy (PDT), localized monochromatic light is used to activate targeted photosensitizers (PS) to induce cellular damage through the generation of cytotoxic species such as singlet oxygen. While first-generation PS passively targeted malignancies, a variety of targeting mechanisms have since been studied, including specifically activatable agents. Antibody internalization has previously been employed as a fluorescence activation system and could potentially enable similar activation of PS. TAMRA, Rhodamine-B and Rhodamine-6G were conjugated to trastuzumab (brand name Herceptin), a humanized monoclonal antibody with specificity for the human epidermal growth factor receptor 2 (HER2), to create quenched PS (Tra-TAM, Tra-RhoB, and Tra-Rho6G). Specific PDT with Tra-TAM and Tra-Rho6G, which formed covalently bound H-dimers, was demonstrated in HER2+ cells: Minimal cell death (<6%) was observed in all treatments of the HER2- cell line (BALB/3T3) and in treatments the HER2+ cell line (3T3/HER2) with light or trastuzumab only. There was significant light-induced cell death in HER2 expressing cells using Tra-TAM (3% dead without light, 20% at 50 J/cm2, 46% at 100 J/cm2) and Tra-Rho6G (5% dead without light, 22% at 50 J/cm2, 46% at 100 J/cm2). No efficacy was observed in treatment with Tra-RhoB, which was also non-specifically taken up by BALB/3T3 cells and which had weaker PS-antibody interactions (as demonstrated by visualization of protein and fluorescence on SDS-PAGE).

  1. A spontaneous increase in intracellular Ca2+ in metaphase II human oocytes in vitro can be prevented by drugs targeting ATP-sensitive K+ channels

    PubMed Central

    Fernandes, Gonçalo; Dasai, Navin; Kozlova, Natalia; Mojadadi, Albaraa; Gall, Mandy; Drew, Ellen; Barratt, Evelyn; Madamidola, Oladipo A.; Brown, Sean G.; Milne, Alison M.; Martins da Silva, Sarah J.; Whalley, Katherine M.; Barratt, Christopher L.R.; Jovanović, Aleksandar

    2016-01-01

    STUDY QUESTION Could drugs targeting ATP-sensitive K+ (KATP) channels prevent any spontaneous increase in intracellular Ca2+ that may occur in human metaphase II (MII) oocytes under in vitro conditions? SUMMARY ANSWER Pinacidil, a KATP channel opener, and glibenclamide, a KATP channel blocker, prevent a spontaneous increase in intracellular Ca2+ in human MII oocytes. WHAT IS KNOWN ALREADY The quality of the oocyte and maintenance of this quality during in vitro processing in the assisted reproductive technology (ART) laboratory is of critical importance to successful embryo development and a healthy live birth. Maintenance of Ca2+ homeostasis is crucial for cell wellbeing and increased intracellular Ca2+ levels is a well-established indicator of cell stress. STUDY DESIGN, SIZE, DURATION Supernumerary human oocytes (n = 102) collected during IVF/ICSI treatment that failed to fertilize were used from October 2013 to July 2015. All experiments were performed on mature (MII) oocytes. Dynamics of intracellular Ca2+ levels were monitored in oocytes in the following experimental groups: (i) Control, (ii) Dimethyl sulfoxide (DMSO; used to dissolve pinacidil, glibenclamide and 2,4-Dinitrophenol (DNP)), (iii) Pinacidil, (iv) Glibenclamide, (v) DNP: an inhibitor of oxidative phosphorylation, (vi) Pinacidil and DNP and (vii) Glibenclamide and DNP. PARTICIPANTS/MATERIALS/SETTINGS/METHODS Oocytes were collected under sedation as part of routine treatment at an assisted conception unit from healthy women (mean ± SD) age 34.1 ± 0.6 years, n = 41. Those surplus to clinical use were donated for research. Oocytes were loaded with Fluo-3 Ca2+-sensitive dye, and monitored by laser confocal microscopy for 2 h at 10 min intervals. Time between oocyte collection and start of Ca2+ monitoring was 80.4 ± 2.1 h. MAIN RESULTS AND THE ROLE OF CHANCE Intracellular levels of Ca2+ increased under in vitro conditions with no deliberate challenge, as shown by Fluo-3 fluorescence increasing from

  2. A novel intracellular antibody against the E6 oncoprotein impairs growth of human papillomavirus 16-positive tumor cells in mouse models

    PubMed Central

    Amici, Carla; Visintin, Michela; Verachi, Francesca; Paolini, Francesca; Percario, Zulema; Di Bonito, Paola; Mandarino, Angela; Affabris, Elisabetta; Venuti, Aldo; Accardi, Luisa

    2016-01-01

    Single-chain variable fragments (scFvs) expressed as “intracellular antibodies” (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. Here we use an intrabody targeting the E6 oncoprotein of Human papillomavirus 16 (HPV16) to address the issue of a non-invasive therapy for HPV cancer patients. A scFv against the HPV16 E6 was selected by Intracellular Antibody Capture Technology and expressed as I7nuc in the nucleus of HPV16-positive SiHa, HPV-negative C33A and 293T cells. Colocalization of I7nuc and recombinant E6 was observed in different cell compartments, obtaining evidence of E6 delocalization ascribable to I7nuc. In SiHa cells, I7nuc expressed by pLNCX retroviral vector was able to partially inhibit degradation of the main E6 target p53, and induced p53 accumulation in nucleus. When analyzing in vitro activity on cell proliferation and survival, I7nuc was able to decrease growth inducing late apoptosis and necrosis of SiHa cells. Finally, I7nuc antitumor activity was demonstrated in two pre-clinical models of HPV tumors. C57BL/6 mice were injected subcutaneously with HPV16-positive TC-1 or C3 tumor cells, infected with pLNCX retroviral vector expressing or non-expressing I7nuc. All the mice injected with I7nuc-expressing cells showed a clear delay in tumor onset; 60% and 40% of mice receiving TC-1 and C3 cells, respectively, remained tumor-free for 17 weeks of follow-up, whereas 100% of the controls were tumor-bearing 20 days post-inoculum. Our data support the therapeutic potential of E6-targeted I7nuc against HPV tumors. PMID:26788990

  3. Activation of Phosphatidylcholine-Specific Phospholipase C in Breast and Ovarian Cancer: Impact on MRS-Detected Choline Metabolic Profile and Perspectives for Targeted Therapy

    PubMed Central

    Podo, Franca; Paris, Luisa; Cecchetti, Serena; Spadaro, Francesca; Abalsamo, Laura; Ramoni, Carlo; Ricci, Alessandro; Pisanu, Maria Elena; Sardanelli, Francesco; Canese, Rossella; Iorio, Egidio

    2016-01-01

    Elucidation of molecular mechanisms underlying the aberrant phosphatidylcholine cycle in cancer cells plays in favor of the use of metabolic imaging in oncology and opens the way for designing new targeted therapies. The anomalous choline metabolic profile detected in cancer by magnetic resonance spectroscopy and spectroscopic imaging provides molecular signatures of tumor progression and response to therapy. The increased level of intracellular phosphocholine (PCho) typically detected in cancer cells is mainly attributed to upregulation of choline kinase, responsible for choline phosphorylation in the biosynthetic Kennedy pathway, but can also be partly produced by activation of phosphatidylcholine-specific phospholipase C (PC-PLC). This hydrolytic enzyme, known for implications in bacterial infection and in plant survival to hostile environmental conditions, is reported to be activated in mitogen- and oncogene-induced phosphatidylcholine cycles in mammalian cells, with effects on cell signaling, cell cycle regulation, and cell proliferation. Recent investigations showed that PC-PLC activation could account for 20–50% of the intracellular PCho production in ovarian and breast cancer cells of different subtypes. Enzyme activation was associated with PC-PLC protein overexpression and subcellular redistribution in these cancer cells compared with non-tumoral counterparts. Moreover, PC-PLC coimmunoprecipitated with the human epidermal growth factor receptor-2 (HER2) and EGFR in HER2-overexpressing breast and ovarian cancer cells, while pharmacological PC-PLC inhibition resulted into long-lasting HER2 downregulation, retarded receptor re-expression on plasma membrane and antiproliferative effects. This body of evidence points to PC-PLC as a potential target for newly designed therapies, whose effects can be preclinically and clinically monitored by metabolic imaging methods. PMID:27532027

  4. Intracellular hyperthermia: Nanobubbles and their biomedical applications.

    PubMed

    Wen, Dongsheng

    2009-11-01

    Functionalised nanoparticles have been proposed as potential agents for non-invasive therapies where an external source such as a laser or an electro-magnetic wave is used to heat targeted particles for either drug release or malignant cell damage. It is desirable to have intracellular reactions to minimise the damage to health cells. However, it is still debatable from the thermal response point of view, whether intracellular hyperthermia is better than extracellular delivery due to conventional ideas of localisation of heat by nanoparticles. This work conducts an analytical study on the heating of a single nanoparticle by a pulsed laser and reveals the potential role of the formation of nanobubbles around heated particles. The rapid formation and contraction of bubbles around heated nanoparticles, associated with the propagation of pressure waves, could bring thermal-mechanical damage to surrounding cells at a dimension much larger than that of a nanoparticle. The challenges of the study of nanobubbles are highlighted and their potential healthcare implications are discussed.

  5. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    PubMed Central

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  6. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    PubMed

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  7. Intracellular recording of action potentials by nanopillar electroporation.

    PubMed

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-02-12

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action

  8. Intracellular recording of action potentials by nanopillar electroporation

    NASA Astrophysics Data System (ADS)

    Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao

    2012-03-01

    Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action

  9. A bacteriophage endolysin that eliminates intracellular streptococci

    PubMed Central

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB–PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. DOI: http://dx.doi.org/10.7554/eLife.13152.001 PMID:26978792

  10. Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli.

    PubMed

    Ishihama, Akira; Kori, Ayako; Koshio, Etsuko; Yamada, Kayoko; Maeda, Hiroto; Shimada, Tomohiro; Makinoshima, Hideki; Iwata, Akira; Fujita, Nobuyuki

    2014-08-01

    The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens

    PubMed Central

    Gubin, Matthew M.; Zhang, Xiuli; Schuster, Heiko; Caron, Etienne; Ward, Jeffrey P.; Noguchi, Takuro; Ivanova, Yulia; Hundal, Jasreet; Arthur, Cora D.; Krebber, Willem-Jan; Mulder, Gwenn E.; Toebes, Mireille; Vesely, Matthew D.; Lam, Samuel S.K.; Korman, Alan J.; Allison, James P.; Freeman, Gordon J.; Sharpe, Arlene H.; Pearce, Erika L.; Schumacher, Ton N.; Aebersold, Ruedi; Rammensee, Hans-Georg; Melief, Cornelis J. M.; Mardis, Elaine R.; Gillanders, William E.; Artyomov, Maxim N.; Schreiber, Robert D.

    2014-01-01

    The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity1–6, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion1,2,7. Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells8,9. Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies10–13. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be

  12. Surface-modified gold nanorods for specific cell targeting

    NASA Astrophysics Data System (ADS)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  13. Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries

    PubMed Central

    Hallow, Daniel M.; Mahajan, Anuj D.; Prausnitz, Mark R.

    2007-01-01

    This study tested the hypothesis that ultrasound can target intracellular uptake of drugs into vascular endothelial cells (ECs) at low to intermediate energy and into smooth muscle cells (SMCs) at high energy. Ultrasound-enhanced delivery has been shown to enhance and target intracellular drug and gene delivery in the vasculature to treat cardiovascular disease, but quantitative studies of the delivery process are lacking. Viable ex vivo porcine carotid arteries were placed in a solution containing a model drug, TO-PRO®-1, and Optison® microbubbles. Arteries were exposed to ultrasound at 1.1 MHz and acoustic energies of 5.0, 66, or 630 J/cm2. Using confocal microscopy and fluorescent labeling of cells, the artery endothelium and media were imaged to determine the localization and to quantify intracellular uptake and cell death. At low to intermediate ultrasound energy, ultrasound was shown to target intracellular delivery into viable cells that represented 9 – 24% of exposed ECs. These conditions also typically caused 7 – 25% EC death. At high energy, intracellular delivery was targeted to SMCs, which was associated with denuding or death of proximal ECs. This work represents the first known in-depth study to evaluate intracellular uptake into cells in tissue. We conclude that significant intracellular uptake of molecules can be targeted into ECs and SMCs by ultrasound-enhanced delivery suggesting possible applications for treatment of cardivascular diseases and dysfunctions. PMID:17291619

  14. Prostate Specific Membrane Antigen (PSMA) Targeted Bio-orthogonal Therapy for Metastatic Prostate Cancer

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate Cancer...Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate

  15. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses

    PubMed Central

    Trouche, Stéphanie; Sasaki, Jennifer M.; Tu, Tiffany; Reijmers, Leon G.

    2013-01-01

    SUMMARY A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. PMID:24183705

  16. Internalized compartments encapsulated nanogels for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-01

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The

  17. Simultaneous population pharmacokinetic modelling of plasma and intracellular PBMC miltefosine concentrations in New World cutaneous leishmaniasis and exploration of exposure-response relationships.

    PubMed

    Kip, Anke E; Castro, María Del Mar; Gomez, Maria Adelaida; Cossio, Alexandra; Schellens, Jan H M; Beijnen, Jos H; Saravia, Nancy Gore; Dorlo, Thomas P C

    2018-05-10

    Leishmania parasites reside within macrophages and the direct target of antileishmanial drugs is therefore intracellular. We aimed to characterize the intracellular PBMC miltefosine kinetics by developing a population pharmacokinetic (PK) model simultaneously describing plasma and intracellular PBMC pharmacokinetics. Furthermore, we explored exposure-response relationships and simulated alternative dosing regimens. A population PK model was developed with NONMEM, based on 339 plasma and 194 PBMC miltefosine concentrations from Colombian cutaneous leishmaniasis patients [29 children (2-12 years old) and 22 adults] receiving 1.8-2.5 mg/kg/day miltefosine for 28 days. A three-compartment model with miltefosine distribution into an intracellular PBMC effect compartment best fitted the data. Intracellular PBMC distribution was described with an intracellular-to-plasma concentration ratio of 2.17 [relative standard error (RSE) 4.9%] and intracellular distribution rate constant of 1.23 day-1 (RSE 14%). In exploring exposure-response relationships, both plasma and intracellular model-based exposure estimates significantly influenced probability of cure. A proposed PK target for the area under the plasma concentration-time curve (day 0-28) of >535 mg·day/L corresponded to >95% probability of cure. In linear dosing simulations, 18.3% of children compared with 2.8% of adults failed to reach 535 mg·day/L. In children, this decreased to 1.8% after allometric dosing simulation. The developed population PK model described the rate and extent of miltefosine distribution from plasma into PBMCs. Miltefosine exposure was significantly related to probability of cure in this cutaneous leishmaniasis patient population. We propose an exploratory PK target, which should be validated in a larger cohort study.

  18. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, Handan; Samaeekia, Ravand; Schnorenberg, Mathew R.

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are twomore » major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.« less

  19. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani.

    PubMed

    Kumari, Anjali; Singh, Krishn Pratap; Mandal, Abhishek; Paswan, Ranjeet Kumar; Sinha, Preeti; Das, Pradeep; Ali, Vahab; Bimal, Sanjiva; Lal, Chandra Shekhar

    2017-01-01

    Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) and Zinc Sulfate (ZnSO4). Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death. Therefore, cellular

  20. Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer

    PubMed Central

    Mahajan, Ujjwal M; Teller, Steffen; Sendler, Matthias; Palankar, Raghavendra; van den Brandt, Cindy; Schwaiger, Theresa; Kühn, Jens-Peter; Ribback, Silvia; Glöckl, Gunnar; Evert, Matthias; Weitschies, Werner; Hosten, Norbert; Dombrowski, Frank; Delcea, Mihaela; Weiss, Frank-Ulrich; Lerch, Markus M; Mayerle, Julia

    2016-01-01

    Objective Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and is projected to be the second leading cause of cancer-related death by 2030. Despite extensive knowledge and insights into biological properties and genetic aberrations of PDAC, therapeutic options remain temporary and ineffective. One plausible explanation for the futile response to therapy is an insufficient and non-specific delivery of anticancer drugs to the tumour site. Design Superparamagnetic iron oxide nanoparticles (SPIONs) coupled with siRNA directed against the cell cycle-specific serine-threonine-kinase, Polo-like kinase-1 (siPLK1-StAv-SPIONs), could serve a dual purpose for delivery of siPLK1 to the tumour and for non-invasive assessment of efficiency of delivery in vivo by imaging the tumour response. siPLK1-StAv-SPIONs were designed and synthesised as theranostics to function via a membrane translocation peptide with added advantage of driving endosomal escape for mediating transportation to the cytoplasm (myristoylated polyarginine peptides) as well as a tumour-selective peptide (EPPT1) to increase intracellular delivery and tumour specificity, respectively. Results A syngeneic orthotopic as well as an endogenous cancer model was treated biweekly with siPLK1-StAv-SPIONs and tumour growth was monitored by small animal MRI. In vitro and in vivo experiments using a syngeneic orthotopic PDAC model as well as the endogenous LSL-KrasG12D, LSL-Trp53R172H, Pdx-1-Cre model revealed significant accumulation of siPLK1-StAv-SPIONs in PDAC, resulting in efficient PLK1 silencing. Tumour-specific silencing of PLK1 halted tumour growth, marked by a decrease in tumour cell proliferation and an increase in apoptosis. Conclusions Our data suggest siPLK1-StAv-SPIONs with dual specificity residues for tumour targeting and membrane translocation to represent an exciting opportunity for targeted therapy in patients with PDAC. PMID:27196585

  1. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    PubMed Central

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-01-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity. PMID:26843283

  2. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  3. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  4. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses.

    PubMed

    Trouche, Stéphanie; Sasaki, Jennifer M; Tu, Tiffany; Reijmers, Leon G

    2013-11-20

    A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos-based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications.

    PubMed

    Kobayashi, Hisataka; Choyke, Peter L

    2011-02-15

    Conventional imaging methods, such as angiography, computed tomography (CT), magnetic resonance imaging (MRI), and radionuclide imaging, rely on contrast agents (iodine, gadolinium, and radioisotopes, for example) that are "always on." Although these indicators have proven clinically useful, their sensitivity is lacking because of inadequate target-to-background signal ratio. A unique aspect of optical imaging is that fluorescence probes can be designed to be activatable, that is, only "turned on" under certain conditions. These probes are engineered to emit signal only after binding a target tissue; this design greatly increases sensitivity and specificity in the detection of disease. Current research focuses on two basic types of activatable fluorescence probes. The first developed were conventional enzymatically activatable probes. These fluorescent molecules exist in the quenched state until activated by enzymatic cleavage, which occurs mostly outside of the cells. However, more recently, researchers have begun designing target-cell-specific activatable probes. These fluorophores exist in the quenched state until activated within targeted cells by endolysosomal processing, which results when the probe binds specific receptors on the cell surface and is subsequently internalized. In this Account, we present a review of the rational design and in vivo applications of target-cell-specific activatable probes. In engineering these probes, researchers have asserted control over a variety of factors, including photochemistry, pharmacological profile, and biological properties. Their progress has recently allowed the rational design and synthesis of target-cell-specific activatable fluorescence imaging probes, which can be conjugated to a wide variety of targeting molecules. Several different photochemical mechanisms have been utilized, each of which offers a unique capability for probe design. These include self-quenching, homo- and hetero-fluorescence resonance

  6. ApoHRP-based assay to measure intracellular regulatory heme.

    PubMed

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A; Dhahbi, Joseph M

    2015-02-01

    The majority of the heme-binding proteins possess a "heme-pocket" that stably binds to heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the "Heme-Regulatory Motifs" (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independent of the total heme (TH). The current study describes and validates a new method to measure intracellular RH. This method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent of TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β (Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ∼6% of total heme in IMR90 cells.

  7. New intracellular activities of matrix metalloproteinases shine in the moonlight.

    PubMed

    Jobin, Parker G; Butler, Georgina S; Overall, Christopher M

    2017-11-01

    Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells.

    PubMed

    Stuart, Christopher H; Singh, Ravi; Smith, Thomas L; D'Agostino, Ralph; Caudell, David; Balaji, K C; Gmeiner, William H

    2016-05-01

    To evaluate the potential use of zinc chelation for prostate cancer therapy using a new liposomal formulation of the zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). TPEN was encapsulated in nontargeted liposomes or liposomes displaying an aptamer to target prostate cancer cells overexpression prostate-specific membrane antigen. The prostate cancer selectivity and therapeutic efficacy of liposomal (targeted and nontargeted) and free TPEN were evaluated in vitro and in tumor-bearing mice. TPEN chelates zinc and results in reactive oxygen species imbalance leading to cell death. Delivery of TPEN using aptamer-targeted liposomes results in specific delivery to targeted cells. In vivo experiments show that TPEN-loaded, aptamer-targeted liposomes reduce tumor growth in a human prostate cancer xenograft model.

  9. Drug Target Validation Methods in Malaria - Protein Interference Assay (PIA) as a Tool for Highly Specific Drug Target Validation.

    PubMed

    Meissner, Kamila A; Lunev, Sergey; Wang, Yuan-Ze; Linzke, Marleen; de Assis Batista, Fernando; Wrenger, Carsten; Groves, Matthew R

    2017-01-01

    The validation of drug targets in malaria and other human diseases remains a highly difficult and laborious process. In the vast majority of cases, highly specific small molecule tools to inhibit a proteins function in vivo are simply not available. Additionally, the use of genetic tools in the analysis of malarial pathways is challenging. These issues result in difficulties in specifically modulating a hypothetical drug target's function in vivo. The current "toolbox" of various methods and techniques to identify a protein's function in vivo remains very limited and there is a pressing need for expansion. New approaches are urgently required to support target validation in the drug discovery process. Oligomerisation is the natural assembly of multiple copies of a single protein into one object and this self-assembly is present in more than half of all protein structures. Thus, oligomerisation plays a central role in the generation of functional biomolecules. A key feature of oligomerisation is that the oligomeric interfaces between the individual parts of the final assembly are highly specific. However, these interfaces have not yet been systematically explored or exploited to dissect biochemical pathways in vivo. This mini review will describe the current state of the antimalarial toolset as well as the potentially druggable malarial pathways. A specific focus is drawn to the initial efforts to exploit oligomerisation surfaces in drug target validation. As alternative to the conventional methods, Protein Interference Assay (PIA) can be used for specific distortion of the target protein function and pathway assessment in vivo. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  11. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery

    PubMed Central

    Kesharwani, Prashant; Iyer, Arun K.

    2015-01-01

    Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. Dendrimers having properties resembling biomolecules, with well-defined 3D nanopolymeric architectures, are emerging as a highly attractive class of drug and gene delivery vector. The presence of numerous peripheral functional groups on hyperbranched dendrimers affords efficient conjugation of targeting ligands and biomarkers that can recognize and bind to receptors overexpressed on cancer cells for tumor-cell-specific delivery. The present review compiles the recent advances in dendrimer-mediated drug and gene delivery to tumors by passive and active targeting principles with illustrative examples. PMID:25555748

  12. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression

    PubMed Central

    Abruzzi, Katharine Compton; Rodriguez, Joseph; Menet, Jerome S.; Desrochers, Jennifer; Zadina, Abigail; Luo, Weifei; Tkachev, Sasha; Rosbash, Michael

    2011-01-01

    CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP–chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4–6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation. PMID:22085964

  13. Dual Targeting of Intracellular Pathogenic Bacteria with a Cleavable Conjugate of Kanamycin and an Antibacterial Cell-Penetrating Peptide.

    PubMed

    Brezden, Anna; Mohamed, Mohamed F; Nepal, Manish; Harwood, John S; Kuriakose, Jerrin; Seleem, Mohamed N; Chmielewski, Jean

    2016-08-31

    Bacterial infection caused by intracellular pathogens, such as Mycobacterium, Salmonella, and Brucella, is a burgeoning global health epidemic that necessitates urgent action. However, the therapeutic value of a number of antibiotics, including aminoglycosides, against intracellular pathogenic bacteria is compromised due to their inability to traverse eukaryotic membranes. For this significant problem to be addressed, a cleavable conjugate of the antibiotic kanamycin and a nonmembrane lytic, broad-spectrum antimicrobial peptide with efficient mammalian cell penetration, P14LRR, was prepared. This approach allows kanamycin to enter mammalian cells as a conjugate linked via a tether that breaks down in the reducing environment within cells. Potent antimicrobial activity of the P14KanS conjugate was demonstrated in vitro, and this reducible conjugate effectively cleared intracellular pathogenic bacteria within macrophages more potently than that of a conjugate lacking the disulfide moiety. Notably, successful clearance of Mycobacterium tuberculosis within macrophages was observed with the dual antibiotic conjugate, and Salmonella levels were significantly reduced in an in vivo Caenorhabditis elegans model.

  14. Caveolins: targeting pro-survival signaling in the heart and brain

    PubMed Central

    Stary, Creed M.; Tsutsumi, Yasuo M.; Patel, Piyush M.; Head, Brian P.; Patel, Hemal H.; Roth, David M.

    2012-01-01

    The present review discusses intracellular signaling moieties specific to membrane lipid rafts (MLRs) and the scaffolding proteins caveolin and introduces current data promoting their potential role in the treatment of pathologies of the heart and brain. MLRs are discreet microdomains of the plasma membrane enriched in gylcosphingolipids and cholesterol that concentrate and localize signaling molecules. Caveolin proteins are necessary for the formation of MLRs, and are responsible for coordinating signaling events by scaffolding and enriching numerous signaling moieties in close proximity. Specifically in the heart and brain, caveolins are necessary for the cytoprotective phenomenon termed ischemic and anesthetic preconditioning. Targeted overexpression of caveolin in the heart and brain leads to induction of multiple pro-survival and pro-growth signaling pathways; thus, caveolins represent a potential novel therapeutic target for cardiac and neurological pathologies. PMID:23060817

  15. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    PubMed

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Intergenotypic replacement of lyssavirus matrix proteins demonstrates the role of lyssavirus M proteins in intracellular virus accumulation.

    PubMed

    Finke, Stefan; Granzow, Harald; Hurst, Jose; Pollin, Reiko; Mettenleiter, Thomas C

    2010-02-01

    Lyssavirus assembly depends on the matrix protein (M). We compared lyssavirus M proteins from different genotypes for their ability to support assembly and egress of genotype 1 rabies virus (RABV). Transcomplementation of M-deficient RABV with M from European bat lyssavirus (EBLV) types 1 and 2 reduced the release of infectious virus. Stable introduction of the heterogenotypic M proteins into RABV led to chimeric viruses with reduced virus release and intracellular accumulation of virus genomes. Although the chimeras indicated genotype-specific evolution of M, rapid selection of a compensatory mutant suggested conserved mechanisms of lyssavirus assembly and the requirement for only few adaptive mutations to fit the heterogenotypic M to a RABV backbone. Whereas the compensatory mutant replicated to similar infectious titers as RABV M-expressing virus, ultrastructural analysis revealed that both nonadapted EBLV M chimeras and the compensatory mutant differed from RABV M expressing viruses in the lack of intracellular viruslike structures that are enveloped and accumulate in cisterna of the degranulated and dilated rough endoplasmic reticulum compartment. Moreover, all viruses were able to bud at the plasma membrane. Since the lack of the intracellular viruslike structures correlated with the type of M protein but not with the efficiency of virus release, we hypothesize that the M proteins of EBLV-1 and RABV differ in their target membranes for virus assembly. Although the biological function of intracellular assembly and accumulation of viruslike structures in the endoplasmic reticulum remain unclear, the observed differences could contribute to diverse host tropism or pathogenicity.

  17. Pursuing Intracellular Pathogens with Hyaluronan. From a 'Pro-Infection' Polymer to a Biomaterial for 'Trojan Horse' Systems.

    PubMed

    Montanari, Elita; Di Meo, Chiara; Oates, Angela; Coviello, Tommasina; Matricardi, Pietro

    2018-04-18

    Hyaluronan (HA) is among the most important bioactive polymers in mammals, playing a key role in a number of biological functions. In the last decades, it has been increasingly studied as a biomaterial for drug delivery systems, thanks to its physico-chemical features and ability to target and enter certain cells. The most important receptor of HA is ‘Cluster of Differentiation 44’ (CD44), a cell surface glycoprotein over-expressed by a number of cancers and heavily involved in HA endocytosis. Moreover, CD44 is highly expressed by keratinocytes, activated macrophages and fibroblasts, all of which can act as ‘reservoirs’ for intracellular pathogens. Interestingly, both CD44 and HA appear to play a key role for the invasion and persistence of such microorganisms within the cells. As such, HA is increasingly recognised as a potential target for nano-carriers development, to pursuit and target intracellular pathogens, acting as a ‘Trojan Horse’. This review describes the biological relationship between HA, CD44 and the entry and survival of a number of pathogens within the cells and the subsequent development of HA-based nano-carriers for enhancing the intracellular activity of antimicrobials.

  18. TargetLink, a new method for identifying the endogenous target set of a specific microRNA in intact living cells.

    PubMed

    Xu, Yan; Chen, Yan; Li, Daliang; Liu, Qing; Xuan, Zhenyu; Li, Wen-Hong

    2017-02-01

    MicroRNAs are small non-coding RNAs acting as posttranscriptional repressors of gene expression. Identifying mRNA targets of a given miRNA remains an outstanding challenge in the field. We have developed a new experimental approach, TargetLink, that applied locked nucleic acid (LNA) as the affinity probe to enrich target genes of a specific microRNA in intact cells. TargetLink also consists a rigorous and systematic data analysis pipeline to identify target genes by comparing LNA-enriched sequences between experimental and control samples. Using miR-21 as a test microRNA, we identified 12 target genes of miR-21 in a human colorectal cancer cell by this approach. The majority of the identified targets interacted with miR-21 via imperfect seed pairing. Target validation confirmed that miR-21 repressed the expression of the identified targets. The cellular abundance of the identified miR-21 target transcripts varied over a wide range, with some targets expressed at a rather low level, confirming that both abundant and rare transcripts are susceptible to regulation by microRNAs, and that TargetLink is an efficient approach for identifying the target set of a specific microRNA in intact cells. C20orf111, one of the novel targets identified by TargetLink, was found to reside in the nuclear speckle and to be reliably repressed by miR-21 through the interaction at its coding sequence.

  19. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.

    PubMed

    Wu, Hui; Shi, Yinfeng; Huang, Chusen; Zhang, Yang; Wu, Jiahui; Shen, Hebai; Jia, Nengqin

    2014-04-01

    RNA interference-mediated gene silencing relating to disease has recently emerged as a powerful method in gene therapy. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. Halloysites are cheap and naturally available aluminosilicate clay nanotubes with high mechanical strength and biocompatibility. In this study, a novel multifunctional nanocarrier based on functionalized halloysite nanotubes (f-HNTs) has been developed via electrostatic layer-by-layer assembling approach for loading and intracellular delivery of therapeutic antisurvivin siRNA and simultaneously tracking their intracellular transport, in which PEI-modified HNTs are used as gene vector, antisurvivin siRNA as gene therapeutic agent, and mercaptoacetic acid-capped CdSe quantum dots as fluorescent labeling probes. The successful assembly of the f-HNTs-siRNA complexes was systematically characterized by transmission electron microscopy (TEM), UV-visible spectrophotometry, Zeta potential measurement, fluorescence spectrophotometry, and electrochemical impedance spectroscopy. Confocal microscopy, biological TEM, and flow cytometry studies revealed that the complexes enabled the efficient intracellular delivery of siRNA for cell-specific gene silencing. MTT assays exhibited that the complexes can enhance antitumor activity. Furthermore, Western blot analysis showed that f-HNTs-mediated siRNA delivery effectively knocked down gene expression of survivin and thereby decreased the levels of target proteins of PANC-1 cells. Therefore, this study suggested that the synthesized f-HNTs were a new effective drug delivery system for potential application in cancer gene therapy.

  20. Cell Fate Reprogramming by Control of Intracellular Network Dynamics

    PubMed Central

    Zañudo, Jorge G. T.; Albert, Réka

    2015-01-01

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell’s fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method’s potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. PMID:25849586

  1. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting

    PubMed Central

    Rattan, Rahul; Bhattacharjee, Somnath; Zong, Hong; Swain, Corban; Siddiqui, Muneeb A.; Visovatti, Scott H.; Kanthi, Yogendra; Desai, Sajani; Pinsky, David J.; Goonewardena, Sascha N.

    2017-01-01

    The surface properties of nanoparticles (NPs) are a major factor that influences how these nanomaterials interact with biological systems. Interactions between NPs and macrophages of the reticuloendothelial system (RES) can reduce the efficacy of NP diagnostics and therapeutics. Traditionally, to limit NP clearance by the RES system, the NP surface is neutralized with molecules like poly(ethylene glycol) (PEG) which are known to resist protein adsorption and RES clearance. Unfortunately, PEG modification is not without drawbacks including difficulties with the synthesis and associations with immune reactions. To overcome some of these obstacles, we neutralized the NP surface by acetylation and compared this modification to PEGylation for RES clearance and tumor-specific targeting. We found that acetylation was comparable to PEGylation in reducing RES clearance. Additionally, we found that dendrimer acetylation did not impact folic acid (FA)-mediated targeting of tumor cells whereas PEG surface modification reduced the targeting ability of the NP. These results clarify the impact of different NP surface modifications on RES clearance and cell-specific targeting and provide insights into the design of more effective NPs. PMID:28705434

  2. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors

    PubMed Central

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-01-01

    Purpose The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer (PCa) tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in PCa cells. The junction of theTMPRSS2 and ERG derived portions of the fusion mRNA constitutes a cancer specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low toxicity treatment for PCa. Experimental Design We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (Type III or Type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of PCa cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. Results The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Conclusions Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with PCa. PMID:23052253

  3. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors.

    PubMed

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-12-15

    The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in prostate cancer cells. The junction of theTMPRSS2- and ERG-derived portions of the fusion mRNA constitutes a cancer-specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low-toxicity treatment for prostate cancer. We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (type III or type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of prostate cancer cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with prostate cancer. ©2012 AACR.

  4. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides

    PubMed Central

    Liu, Shuang

    2008-01-01

    Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888

  5. Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies

    PubMed Central

    Ersvaer, Elisabeth; Hatfield, Kimberley J.; Reikvam, Håkon; Bruserud, Øystein

    2011-01-01

    The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects. PMID:22046566

  6. A Dual-Specific Targeting Approach Based on the Simultaneous Recognition of Duplex and Quadruplex Motifs.

    PubMed

    Nguyen, Thi Quynh Ngoc; Lim, Kah Wai; Phan, Anh Tuân

    2017-09-20

    Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands.

  7. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses

    PubMed Central

    Siafaka, Panoraia I.; Üstündağ Okur, Neslihan; Karavas, Evangelos; Bikiaris, Dimitrios N.

    2016-01-01

    Nanocarriers, due to their unique features, are of increased interest among researchers working with pharmaceutical formulations. Polymeric nanoparticles and nanocapsules, involving non-toxic biodegradable polymers, liposomes, solid lipid nanoparticles, and inorganic–organic nanomaterials, are among the most used carriers for drugs for a broad spectrum of targeted diseases. In fact, oral, injectable, transdermal-dermal and ocular formulations mainly consist of the aforementioned nanomaterials demonstrating promising characteristics such as long circulation, specific targeting, high drug loading capacity, enhanced intracellular penetration, and so on. Over the last decade, huge advances in the development of novel, safer and less toxic nanocarriers with amended properties have been made. In addition, multifunctional nanocarriers combining chemical substances, vitamins and peptides via coupling chemistry, inorganic particles coated by biocompatible materials seem to play a key role considering that functionalization can enhance characteristics such as biocompatibility, targetability, environmental friendliness, and intracellular penetration while also have limited side effects. This review aims to summarize the “state of the art” of drug delivery carriers in nanosize, paying attention to their surface functionalization with ligands and other small or polymeric compounds so as to upgrade active and passive targeting, different release patterns as well as cell targeting and stimuli responsibility. Lastly, future aspects and potential uses of nanoparticulated drug systems are outlined. PMID:27589733

  8. Intracellular origin and ultrastructure of platelet-derived microparticles.

    PubMed

    Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Rauova, L; Litvinov, R I; Weisel, J W

    2017-08-01

    Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific

  9. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity.

    PubMed

    Tacken, Paul J; Zeelenberg, Ingrid S; Cruz, Luis J; van Hout-Kuijer, Maaike A; van de Glind, Gerline; Fokkink, Remco G; Lambeck, Annechien J A; Figdor, Carl G

    2011-12-22

    Effective vaccines consist of 2 components: immunodominant antigens and effective adjuvants. Whereas it has been demonstrated that targeted delivery of antigens to dendritic cells (DCs) improves vaccine efficacy, we report here that co-targeting of TLR ligands (TLRLs) to DCs strongly enhances adjuvanticity and immunity. We encapsulated ligands for intracellular TLRs within biodegradable nanoparticles coated with Abs recognizing DC-specific receptors. Targeted delivery of TLRLs to human DCs enhanced the maturation and production of immune stimulatory cytokines and the Ag-specific activation of naive CD8(+) T cells. In vivo studies demonstrated that nanoparticles carrying Ag induced cytotoxic T-lymphocyte responses at 100-fold lower adjuvant dose when TLRLs were co-encapsulated instead of administered in soluble form. Moreover, the efficacy of these targeted TLRLs reduced the serum cytokine storm and related toxicity that is associated with administration of soluble TLRLs. We conclude that the targeted delivery of adjuvants may improve the efficacy and safety of DC-based vaccines.

  10. Targeting aging for disease modification in osteoarthritis.

    PubMed

    Collins, John A; Diekman, Brian O; Loeser, Richard F

    2018-01-01

    Age is a key risk factor for the development of osteoarthritis and age-related changes within the joint might represent targets for therapy. The recent literature was reviewed to find studies that provide new insight into the role of aging in osteoarthritis, with a focus on the potential for disease modification. Preclinical studies using isolated cells and animal models provide evidence that two hallmarks of aging (cellular senescence and mitochondrial dysfunction) contribute to the development of osteoarthritis. Senescent cells secrete pro-inflammatory mediators and matrix degrading enzymes, and killing these cells with 'senolytic' compounds has emerged as a potential disease-modifying therapy. Mitochondrial dysfunction is associated with increased levels of reactive oxygen species (ROS) that can promote osteoarthritis by disrupting homeostatic intracellular signaling. Reducing ROS production in the mitochondria, stimulating antioxidant gene expression through Nrf2 activation, or inhibiting specific redox-sensitive signaling proteins represent additional approaches to disease modification in osteoarthritis that require further investigation. Although no human clinical trials for osteoarthritis have specifically targeted aging, preclinical studies suggest that targeting cellular senescence and/or mitochondrial dysfunction and the effects of excessive ROS may lead to novel interventions that could slow the progression of osteoarthritis.

  11. GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthase activity, protein levels and dimerisation.

    PubMed

    Cai, Shijie; Alp, Nicholas J; McDonald, Denise; Smith, Ian; Kay, Jonathan; Canevari, Laura; Heales, Simon; Channon, Keith M

    2002-09-01

    Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) activity. BH4 levels are regulated by de novo biosynthesis; the rate-limiting enzyme is GTP cyclohydrolase I (GTPCH). BH4 activates and promotes homodimerisation of purified eNOS protein, but the intracellular mechanisms underlying BH4-mediated eNOS regulation in endothelial cells remain less clear. We aimed to investigate the role of BH4 levels in intracellular eNOS regulation, by targeting the BH4 synthetic pathway as a novel strategy to modulate intracellular BH4 levels. We constructed a recombinant adenovirus, AdGCH, encoding human GTPCH. We infected human endothelial cells with AdGCH, investigated the changes in intracellular biopterin levels, and determined the effects on eNOS enzymatic activity, protein levels and dimerisation. GTPCH gene transfer in EAhy926 endothelial cells increased BH4 >10-fold compared with controls (cells alone or control adenovirus infection), and greatly enhanced NO production in a dose-dependent, eNOS-specific manner. We found that eNOS was principally monomeric in control cells, whereas GTPCH gene transfer resulted in a striking increase in eNOS homodimerisation. Furthermore, the total amounts of both native eNOS protein and a recombinant eNOS-GFP fusion protein were significantly increased following GTPCH gene transfer. These findings suggest that GTPCH gene transfer is a valid approach to increase BH4 levels in human endothelial cells, and provide new evidence for the relative importance of different mechanisms underlying BH4-mediated eNOS regulation in intact human endothelial cells. Additionally, these observations suggest that GTPCH may be a rational target to augment endothelial BH4 and normalise eNOS activity in endothelial dysfunction states.

  12. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors.

    PubMed

    Fang, Shenglin; Yu, Xiaonan; Ding, Haoxuan; Han, Jianan; Feng, Jie

    2018-06-11

    Iron overload causes many diseases, while the underlying etiologies of these diseases are unclear. Cell death processes including apoptosis, necroptosis, cyclophilin D-(CypD)-dependent necrosis and a recently described additional form of regulated cell death called ferroptosis, are dependent on iron or iron-dependent reactive oxygen species (ROS). However, whether the accumulation of intracellular iron itself induces ferroptosis or other forms of cell death is largely elusive. In present study, we study the role of intracellular iron overload itself-induced cell death mechanisms by using ferric ammonium citrate (FAC) and a membrane-permeable Ferric 8-hydroxyquinoline complex (Fe-8HQ) respectively. We show that FAC-induced intracellular iron overload causes ferroptosis. We also identify 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor GSK2334470 as a potent ferroptosis inhibitor. Whereas, Fe-8HQ-induced intracellular iron overload causes unregulated necrosis, but partially activates PARP-1 dependent parthanatos. Interestingly, we identify many phenolic compounds as potent inhibitors of Fe-8HQ-induced cell death. In conclusion, intracellular iron overload-induced cell death form might be dependent on the intracellular iron accumulation rate, newly identified cell death inhibitors in our study that target ferroptosis and unregulated oxidative cell death represent potential therapeutic strategies against iron overload related diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    PubMed

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  14. Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state.

    PubMed

    Zahid, Mohammad U; Ma, Liang; Lim, Sung Jun; Smith, Andrew M

    2018-05-08

    Inefficient delivery of macromolecules and nanoparticles to intracellular targets is a major bottleneck in drug delivery, genetic engineering, and molecular imaging. Here we apply live-cell single-quantum-dot imaging and tracking to analyze and classify nanoparticle states after intracellular delivery. By merging trajectory diffusion parameters with brightness measurements, multidimensional analysis reveals distinct and heterogeneous populations that are indistinguishable using single parameters alone. We derive new quantitative metrics of particle loading, cluster distribution, and vesicular release in single cells, and evaluate intracellular nanoparticles with diverse surfaces following osmotic delivery. Surface properties have a major impact on cell uptake, but little impact on the absolute cytoplasmic numbers. A key outcome is that stable zwitterionic surfaces yield uniform cytosolic behavior, ideal for imaging agents. We anticipate that this combination of quantum dots and single-particle tracking can be widely applied to design and optimize next-generation imaging probes, nanoparticle therapeutics, and biologics.

  15. Single-Cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells.

    PubMed

    Shembekar, Nachiket; Hu, Hongxing; Eustace, David; Merten, Christoph A

    2018-02-20

    Monoclonal antibodies are a main player in modern drug discovery. Many antibody screening formats exist, each with specific advantages and limitations. Nonetheless, it remains challenging to screen antibodies for the binding of cell-surface receptors (the most important class of all drug targets) or for the binding to target cells rather than purified proteins. Here, we present a high-throughput droplet microfluidics approach employing dual-color normalized fluorescence readout to detect antibody binding. This enables us to obtain quantitative data on target cell recognition, using as little as 33 fg of IgG per assay. Starting with an excess of hybridoma cells releasing unspecific antibodies, individual clones secreting specific binders (of target cells co-encapsulated into droplets) could be enriched 220-fold after sorting 80,000 clones in a single experiment. This opens the way for therapeutic antibody discovery, especially since the single-cell approach is in principle also applicable to primary human plasma cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation

    PubMed Central

    Sekine, Sayaka U; Haraguchi, Shuka; Chao, Kinhong; Kato, Tomoko; Luo, Liqun; Miura, Masayuki; Chihara, Takahiro

    2016-01-01

    Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic screen in Drosophila melanogaster. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins, including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in meigo mutant flies, and ephrin knockdown caused a similar projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin N-glycosylation, which was required for its optimal function in vivo. Thus, Meigo, an ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein N-glycosylation. Furthermore, Ephrin appears to be an important substrate that mediates Meigo’s function in refinement of glomerular targeting. PMID:23624514

  17. Search guidance is proportional to the categorical specificity of a target cue.

    PubMed

    Schmidt, Joseph; Zelinsky, Gregory J

    2009-10-01

    Visual search studies typically assume the availability of precise target information to guide search, often a picture of the exact target. However, search targets in the real world are often defined categorically and with varying degrees of visual specificity. In five target preview conditions we manipulated the availability of target visual information in a search task for common real-world objects. Previews were: a picture of the target, an abstract textual description of the target, a precise textual description, an abstract + colour textual description, or a precise + colour textual description. Guidance generally increased as information was added to the target preview. We conclude that the information used for search guidance need not be limited to a picture of the target. Although generally less precise, to the extent that visual information can be extracted from a target label and loaded into working memory, this information too can be used to guide search.

  18. Prostate-specific membrane antigen for prostate cancer theranostics: from imaging to targeted therapy.

    PubMed

    Arsenault, Frédéric; Beauregard, Jean-Mathieu; Pouliot, Frédéric

    2018-06-22

    In recent years, major advances in molecular imaging of prostate cancers (PCa) were made with the development and clinical validation of highly accurate PET tracers to stage and restage the disease. Prostate-specific membrane antigen (PSMA) is a transmembrane protein highly expressed in PCa, and its expression has led to the development of PSMA-binding radiopharmaceuticals for molecular imaging or radioligand therapy (RLT). We herein review the recent literature published on diagnostic and therapeutic (i.e. theranostic) PSMA tracers. Development in small PSMA-targeted molecules labeled with gallium-68 and fluorine-18 show promising results for primary staging and detection of disease at biochemical recurrence using PET/computed tomography (PET/CT). Studies show a higher sensitivity and specificity, along with an improved detection rate over conventional imaging (CT scan and bone scan) or choline PET tracers, especially for restaging after prostate-specific antigen failure following loco-regional therapy. In addition, some PSMA tracers can be labeled with beta-minus and alpha particle emitters, yielding encouraging response rates and low toxicity, and potentially offering a new line of targeted therapy for metastatic castration-resistant PCa. PSMA-targeted tracers have shown unprecedented accuracy to stage and restage PCa using PET/CT. Given their specific biodistribution toward PCa tissue, PSMA RLT now offers new therapeutic possibilities to target metastatic PCa. Prospective multicenter randomized studies investigating the clinical impact management impacts of PSMA-targeted molecules are urgently needed.

  19. Gene silencing in the therapy of influenza and other respiratory diseases: Targeting to RNase P by use of External Guide Sequences (EGS)

    PubMed Central

    Dreyfus, David H; Tompkins, S Mark; Fuleihan, Ramsay; Ghoda, Lucy Y

    2007-01-01

    Respiratory diseases provide an attractive target for gene silencing using small nucleic acids since the respiratory epithelium can be reached by inhalation therapy. Natural surfactant appears to facilitate the uptake and distribution of these types of molecules making aerosolized nucleic acids a possible new class of therapeutics. This article will review the rationale for the use of External Guide Sequence (EGS) in targeting specific mRNA molecules for RNase P-mediated intracellular destruction. Specific destruction of target mRNA results in gene-specific silencing similar to that instigated by siRNA via the RISC complex. The application of EGS molecules specific for influenza genes are discussed as well as the potential for synergy with siRNA. Furthermore, EGS could be adapted to target other respiratory diseases of viral etiology as well as conditions such as asthma. PMID:19707312

  20. Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers

    PubMed Central

    D’Addio, Suzanne M.; Baldassano, Steven; Shi, Lei; Cheung, Lila; Adamson, Douglas H.; Bruzek, Matthew; Anthony, John E.; Laskin, Debra L.; Sinko, Patrick J.; Prud’homme, Robert K.

    2013-01-01

    Treatment of tuberculosis is impaired by poor drug bioavailability, systemic side effects, patient non-compliance, and pathogen resistance to existing therapies. The mannose receptor (MR) is known to be involved in the recognition and internalization of Mycobacterium tuberculosis. We present a new assembly process to produce nanocarriers with variable surface densities of mannose targeting ligands in a single step, using kinetically-controlled, block copolymer-directed assembly. Nanocarrier association with murine macrophage J774 cells expressing the MR is examined as a function of incubation time and temperature, nanocarrier size, dose, and PEG corona properties. Amphiphilic diblock copolymers are prepared with terminal hydroxyl, methoxy, or mannoside functionality and incorporated into nanocarrier formulations at specific ratios by Flash NanoPrecipitation. Association of nanocarriers protected by a hydroxyl-terminated PEG corona with J774 cells is size dependent, while nanocarriers with methoxy-terminated PEG coronas do not associate with cells, regardless of size. Specific targeting of the MR is investigated using nanocarriers having 0-75% mannoside-terminated PEG chains in the PEG corona. This is a wider range of mannose densities than has been previously studied. Maximum nanocarrier association is attained with 9% mannoside-terminated PEG chains, increasing uptake more than 3-fold compared to non-targeted nanocarriers with a 5 kg mol−1 methoxy-terminated PEG corona. While a 5 kg mol−1 methoxy-terminated PEG corona prevents non-specific uptake, a 1.8 kg mol−1 methoxy-terminated PEG corona does not sufficiently protect the nanocarriers from nonspecific association. There is continuous uptake of MR-targeted nanocarriers at 37°C, but a saturation of association at 4°C. The majority of targeted nanocarriers associate with J774E cells are internalized at 37°C and uptake is receptor-dependent, diminishing with competitive inhibition by dextran. This

  1. The dual role of paramagnetic particles for integrated lysis and measurement in a rapid immunoassay for intracellular proteins.

    PubMed

    Sharif, Elham; Kiely, Janice; Wraith, Patrick; Luxton, Richard

    2013-05-01

    A novel, integrated lysis and immunoassay methodology and system for intracellular protein measurement are described. The method uses paramagnetic particles both as a lysis agent and assay label resulting in a rapid test requiring minimal operator intervention, the test being homogeneous and completed in less than 10 min. A design study highlights the critical features of the magnetic detection system used to quantify the paramagnetic particles and a novel frequency-locked loop-based magnetometer is presented. A study of paramagnetic particle enhanced lysis demonstrates that the technique is more than twice as efficient at releasing intracellular protein as ultrasonic lysis alone. Results are presented for measurements of intracellular prostate specific antigen in an LNCAP cell line. This model was selected to demonstrate the rapidity and efficiency of intracellular protein quantification. It was shown that, on average, LNCAP cells contained 0.43 fg of prostate specific antigen. This system promises an attractive solution for applications that require a rapid determination of intracellular proteins.

  2. Target-specific stigma change: a strategy for impacting mental illness stigma.

    PubMed

    Corrigan, Patrick W

    2004-01-01

    In the past decade, mental health advocates and researchers have sought to better understand stigma so that the harm it causes can be erased. In this paper, we propose a target-specific stigma change model to organize the diversity of information into a cogent framework. "Target" here has a double meaning: the power groups that have some authority over the life goals of people with mental illness and specific discriminatory behaviors which power groups might produce that interfere with these goals. Key power groups in the model include landlords, employers, health care providers, criminal justice professionals, policy makers, and the media. Examples are provided of stigmatizing attitudes that influence the discriminatory behavior and social context in which the power group interacts with people with mental illness. Stigma change is most effective when it includes all the components that describe how a specific power group impacts people with mental illness.

  3. Semiconductor nanocrystal-aptamer bioconjugate probes for specific prostate carcinoma cell targeting

    NASA Astrophysics Data System (ADS)

    Shieh, Felice; Lavery, Laura; Chu, Chitai T.; Richards-Kortum, Rebecca; Ellington, Andrew D.; Korgel, Brian A.

    2005-04-01

    Cancer of the prostate affects approximately 1 in 11 men. Current early screening for prostate cancer utilizes digital rectal examinations to detect anomalies in the prostate gland and blood test screenings for upregulated levels of prostate specific antigen (PSA). Many of these tests are invasive and can often be inconclusive as PSA levels may be heightened due to benign factors. Prostate specific membrane antigen (PSMA), a well-characterized integral membrane protein, is expressed in virtually all prostate cancers and often correlates with cancer aggressiveness. Therefore, it may be used as an indicator of cancer growth and metastases. PSMA-specific antibodies have been identified and conjugated to fluorescent markers for cancer cell targeting; however, both the antibodies and markers possess significant limitations in their pharmaceutical and diagnostic value. Here we report the use of semiconductor nanocrystals bioconjugated to PSMA-specific aptamer recognition molecules for prostate carcinoma cell targeting. The nanocrystal/aptamer bioconjugates are small biocompatible probes with the potential for color-tunability for multicolor imaging. Ongoing in vitro and in vivo research seeks to introduce these nanoparticle bioconjugates into medical diagnostics.

  4. The fibrous form of intracellular inclusion bodies in recombinant variant fibrinogen-producing cells is specific to the hepatic fibrinogen storage disease-inducible variant fibrinogen.

    PubMed

    Arai, Shinpei; Ogiwara, Naoko; Mukai, Saki; Takezawa, Yuka; Sugano, Mitsutoshi; Honda, Takayuki; Okumura, Nobuo

    2017-06-01

    Fibrinogen storage disease (FSD) is a rare disorder that is characterized by the accumulation of fibrinogen in hepatocytes and induces liver injury. Six mutations in the γC domain (γG284R, γT314P, γD316N, the deletion of γG346-Q350, γG366S, and γR375W) have been identified for FSD. Our group previously established γ375W fibrinogen-producing Chinese hamster ovary (CHO) cells and observed aberrant large granular and fibrous forms of intracellular inclusion bodies. The aim of this study was to investigate whether fibrous intracellular inclusion bodies are specific to FSD-inducible variant fibrinogen. Thirteen expression vectors encoding the variant γ-chain were stably or transiently transfected into CHO cells expressing normal fibrinogen Aα- and Bβ-chains or HuH-7 cells, which were then immunofluorescently stained. Six CHO and HuH-7 cell lines that transiently produced FSD-inducible variant fibrinogen presented the fibrous (3.2-22.7 and 2.1-24.5%, respectively) and large granular (5.4-25.5 and 7.7-23.9%) forms of intracellular inclusion bodies. Seven CHO and HuH-7 cell lines that transiently produced FSD-non-inducible variant fibrinogen only exhibit the large granular form. These results demonstrate that transiently transfected variant fibrinogen-producing CHO cells and inclusion bodies of the fibrous form may be useful in non-invasive screening for FSD risk factors for FSD before its onset.

  5. Specifically targeted delivery of protein to phagocytic macrophages

    PubMed Central

    Yu, Min; Chen, Zeming; Guo, Wenjun; Wang, Jin; Feng, Yupeng; Kong, Xiuqi; Hong, Zhangyong

    2015-01-01

    Macrophages play important roles in the pathogenesis of various diseases, and are important potential therapeutic targets. Furthermore, macrophages are key antigen-presenting cells and important in vaccine design. In this study, we report on the novel formulation (bovine serum albumin [BSA]-loaded glucan particles [GMP-BSA]) based on β-glucan particles from cell walls of baker’s yeast for the targeted delivery of protein to macrophages. Using this formulation, chitosan, tripolyphosphate, and alginate were used to fabricate colloidal particles with the model protein BSA via electrostatic interactions, which were caged and incorporated BSA very tightly within the β-glucan particle shells. The prepared GMP-BSA exhibited good protein-release behavior and avoided protein leakage. The particles were also highly specific to phagocytic macrophages, such as Raw 264.7 cells, primary bone marrow-derived macrophages, and peritoneal exudate macrophages, whereas the particles were not taken up by nonphagocytic cells, including NIH3T3, AD293, HeLa, and Caco-2. We hypothesize that these tightly encapsulated protein-loaded glucan particles deliver various types of proteins to macrophages with notably high selectivity, and may have broad applications in targeted drug delivery or vaccine design against macrophages. PMID:25784802

  6. Importance of Branched-Chain Amino Acid Utilization in Francisella Intracellular Adaptation

    PubMed Central

    Gesbert, Gael; Ramond, Elodie; Tros, Fabiola; Dairou, Julien; Frapy, Eric; Barel, Monique

    2014-01-01

    Intracellular bacterial pathogens have adapted their metabolism to optimally utilize the nutrients available in infected host cells. We recently reported the identification of an asparagine transporter required specifically for cytosolic multiplication of Francisella. In the present work, we characterized a new member of the major super family (MSF) of transporters, involved in isoleucine uptake. We show that this transporter (here designated IleP) plays a critical role in intracellular metabolic adaptation of Francisella. Inactivation of IleP severely impaired intracellular F. tularensis subsp. novicida multiplication in all cell types tested and reduced bacterial virulence in the mouse model. To further establish the importance of the ileP gene in F. tularensis pathogenesis, we constructed a chromosomal deletion mutant of ileP (ΔFTL_1803) in the F. tularensis subsp. holarctica live vaccine strain (LVS). Inactivation of IleP in the F. tularensis LVS provoked comparable intracellular growth defects, confirming the critical role of this transporter in isoleucine uptake. The data presented establish, for the first time, the importance of isoleucine utilization for efficient phagosomal escape and cytosolic multiplication of Francisella and suggest that virulent F. tularensis subspecies have lost their branched-chain amino acid biosynthetic pathways and rely exclusively on dedicated uptake systems. This loss of function is likely to reflect an evolution toward a predominantly intracellular life style of the pathogen. Amino acid transporters should be thus considered major players in the adaptation of intracellular pathogens. PMID:25332124

  7. Self-focusing therapeutic gene delivery with intelligent gene vector swarms: intra-swarm signalling through receptor transgene expression in targeted cells.

    PubMed

    Tolmachov, Oleg E

    2015-01-01

    Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo

  8. Targeting of herbal bioactives through folate receptors: a novel concept to enhance intracellular drug delivery in cancer therapy.

    PubMed

    Gupta, Anshita; Kaur, Chanchal Deep; Saraf, Shailendra; Saraf, Swarnlata

    2017-06-01

    Targeted drug delivery through folate receptor (FR) has emerged as a most biocompatible, target oriented, and non-immunogenic cargoes for the delivery of anticancer drugs. FRs are highly overexpressed in many tumor cells (like ovarian, lung, breast, kidney, brain, endometrial, and colon cancer), and targeting them through conjugates bearing specific ligand with encapsulated nanodrug moiety is undoubtedly, a promising approach toward tumor targeting. Folate, being an endogenous ligand, can be exploited well to affect various cellular events occurring during the progress of tumor, in a more natural and definite way. Thus, the aim of the review lies in summarizing the advancements taken place in the drug delivery system of different therapeutics through FRs and to refine its role as an endogenous ligand, in targeting of synthetic as well as natural bioactives. The review also provides an update on the patents received on the folate-based drug delivery system.

  9. Navigating the plant cell: intracellular transport logistics in the green kingdom.

    PubMed

    Geitmann, Anja; Nebenführ, Andreas

    2015-10-01

    Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin-myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. © 2015 Geitmann and Nebenführ. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Killing cancer cells by targeted drug-carrying phage nanomedicines

    PubMed Central

    Bar, Hagit; Yacoby, Iftach; Benhar, Itai

    2008-01-01

    Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177

  11. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time.

    PubMed

    Kooijmans, S A A; Fliervoet, L A L; van der Meel, R; Fens, M H A M; Heijnen, H F G; van Bergen En Henegouwen, P M P; Vader, P; Schiffelers, R M

    2016-02-28

    Extracellular vesicles (EVs) are increasingly being recognized as candidate drug delivery systems due to their ability to functionally transfer biological cargo between cells. However, the therapeutic applicability of EVs may be limited due to a lack of cell-targeting specificity and rapid clearance of exogenous EVs from the circulation. In order to improve EV characteristics for drug delivery to tumor cells, we have developed a novel method for decorating EVs with targeting ligands conjugated to polyethylene glycol (PEG). Nanobodies specific for the epidermal growth factor receptor (EGFR) were conjugated to phospholipid (DMPE)-PEG derivatives to prepare nanobody-PEG-micelles. When micelles were mixed with EVs derived from Neuro2A cells or platelets, a temperature-dependent transfer of nanobody-PEG-lipids to the EV membranes was observed, indicative of a 'post-insertion' mechanism. This process did not affect EV morphology, size distribution, or protein composition. After introduction of PEG-conjugated control nanobodies to EVs, cellular binding was compromised due to the shielding properties of PEG. However, specific binding to EGFR-overexpressing tumor cells was dramatically increased when EGFR-specific nanobodies were employed. Moreover, whereas unmodified EVs were rapidly cleared from the circulation within 10min after intravenous injection in mice, EVs modified with nanobody-PEG-lipids were still detectable in plasma for longer than 60min post-injection. In conclusion, we propose post-insertion as a novel technique to confer targeting capacity to isolated EVs, circumventing the requirement to modify EV-secreting cells. Importantly, insertion of ligand-conjugated PEG-derivatized phospholipids in EV membranes equips EVs with improved cell specificity and prolonged circulation times, potentially increasing EV accumulation in targeted tissues and improving cargo delivery. Copyright © 2015. Published by Elsevier B.V.

  12. An Odor-Specific Threshold Deficit Implicates Abnormal Intracellular Cyclic AMP Signaling in Schizophrenia

    PubMed Central

    Turetsky, Bruce I.; Moberg, Paul J.

    2012-01-01

    Objective Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Method Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. Results There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. Conclusions This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients’ unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dys-regulated in schizophrenia. PMID:19074977

  13. An odor-specific threshold deficit implicates abnormal intracellular cyclic AMP signaling in schizophrenia.

    PubMed

    Turetsky, Bruce I; Moberg, Paul J

    2009-02-01

    Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients' unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dysregulated in schizophrenia.

  14. Semiconductor quantum dots as Förster resonance energy transfer donors for intracellularly-based biosensors

    NASA Astrophysics Data System (ADS)

    Field, Lauren D.; Walper, Scott A.; Susumu, Kimihiro; Oh, Eunkeu; Medintz, Igor L.; Delehanty, James B.

    2017-02-01

    Förster resonance energy transfer (FRET)-based assemblies currently comprise a significant portion of intracellularly based sensors. Although extremely useful, the fluorescent protein pairs typically utilized in such sensors are still plagued by many photophysical issues including significant direct acceptor excitation, small changes in FRET efficiency, and limited photostability. Luminescent semiconductor nanocrystals or quantum dots (QDs) are characterized by many unique optical properties including size-tunable photoluminescence, broad excitation profiles coupled to narrow emission profiles, and resistance to photobleaching, which can cumulatively overcome many of the issues associated with use of fluorescent protein FRET donors. Utilizing QDs for intracellular FRET-based sensing still requires significant development in many areas including materials optimization, bioconjugation, cellular delivery and assay design and implementation. We are currently developing several QD-based FRET sensors for various intracellular applications. These include sensors targeting intracellular proteolytic activity along with those based on theranostic nanodevices for monitoring drug release. The protease sensor is based on a unique design where an intracellularly expressed fluorescent acceptor protein substrate assembles onto a QD donor following microinjection, forming an active complex that can be monitored in live cells over time. In the theranostic configuration, the QD is conjugated to a carrier protein-drug analogue complex to visualize real-time intracellular release of the drug from its carrier in response to an external stimulus. The focus of this talk will be on the design, properties, photophysical characterization and cellular application of these sensor constructs.

  15. Assembly and intracellular delivery of quantum dot-fluorescent protein bioconjugates

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Pons, Thomas; Delehanty, James B.; Susumu, Kimihiro; Dawson, Philip E.; Mattoussi, Hedi

    2008-02-01

    We have previously assembled semiconductor quantum dot (QD)-based fluorescence resonance energy transfer (FRET) sensors that can specifically detect nutrients, explosives or enzymatic activity. These sensors utilized the inherent benefits of QDs as FRET donors to optimize signal transduction. In this report we functionalize QDs with the multi-subunit multi-chromophore b-phycoerythrin (b-PE) light harvesting complex using biotin-Streptavidin binding. FRET and gel electrophoretic analyses were used to characterize and confirm the QD-b-PE self-assembly. We found that immobilizing additional cell-penetrating peptides on the nanocrystal surface along with the b-PE was the key factor allowing the mixed surface QD-cargos to undergo endocytosis and intracellular delivery. Our findings on the intracellular uptake promoted by CPP were compared to those collected using microinjection technique, where QD-assemblies were delivered directly into the cytoplasm; this strategy allows bypassing of the endocytic uptake pathway. Intracellular delivery of multifunctional QD-fluorescent protein assemblies has potential applications for use in protein tracking, sensing and diagnostics.

  16. Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer.

    PubMed

    Liu, Hong; Xu, Yiyang; Xiang, Jingyi; Long, Li; Green, Shon; Yang, Zhiyuan; Zimdahl, Bryan; Lu, Jingwei; Cheng, Neal; Horan, Lucas H; Liu, Bin; Yan, Su; Wang, Pei; Diaz, Juan; Jin, Lu; Nakano, Yoko; Morales, Javier F; Zhang, Pengbo; Liu, Lian-Xing; Staley, Binnaz K; Priceman, Saul J; Brown, Christine E; Forman, Stephen J; Chan, Vivien W; Liu, Cheng

    2017-01-15

    The majority of tumor-specific antigens are intracellular and/or secreted and therefore inaccessible by conventional chimeric antigen receptor (CAR) T-cell therapy. Given that all intracellular/secreted proteins are processed into peptides and presented by class I MHC on the surface of tumor cells, we used alpha-fetoprotein (AFP), a specific liver cancer marker, as an example to determine whether peptide-MHC complexes can be targets for CAR T-cell therapy against solid tumors. We generated a fully human chimeric antigen receptor, ET1402L1-CAR (AFP-CAR), with exquisite selectivity and specificity for the AFP 158-166 peptide complexed with human leukocyte antigen (HLA)-A*02:01. We report that T cells expressing AFP-CAR selectively degranulated, released cytokines, and lysed liver cancer cells that were HLA-A*02:01 + /AFP + while sparing cells from multiple tissue types that were negative for either expressed proteins. In vivo, intratumoral injection of AFP-CAR T cells significantly regressed both Hep G2 and AFP 158 -expressing SK-HEP-1 tumors in SCID-Beige mice (n = 8 for each). Moreover, intravenous administration of AFP-CAR T cells in Hep G2 tumor-bearing NSG mice lead to rapid and profound tumor growth inhibition (n = 6). Finally, in an established intraperitoneal liver cancer xenograft model, AFP-CAR T cells showed robust antitumor activity (n = 6). This study demonstrates that CAR T-cell immunotherapy targeting intracellular/secreted solid tumor antigens can elicit a potent antitumor response. Our approach expands the spectrum of antigens available for redirected T-cell therapy against solid malignancies and offers a promising new avenue for liver cancer immunotherapy. Clin Cancer Res; 23(2); 478-88. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. The interaction between AMPKβ2 and the PP1-targeting subunit R6 is dynamically regulated by intracellular glycogen content.

    PubMed

    Oligschlaeger, Yvonne; Miglianico, Marie; Dahlmans, Vivian; Rubio-Villena, Carla; Chanda, Dipanjan; Garcia-Gimeno, Maria Adelaida; Coumans, Will A; Liu, Yilin; Voncken, J Willem; Luiken, Joost J F P; Glatz, Jan F C; Sanz, Pascual; Neumann, Dietbert

    2016-04-01

    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing kinase. We previously showed that glucose deprivation induces autophosphorylation of AMPKβ at Thr-148, which prevents the binding of AMPK to glycogen. Furthermore, in MIN6 cells, AMPKβ1 binds to R6 (PPP1R3D), a glycogen-targeting subunit of protein phosphatase type 1 (PP1), thereby regulating the glucose-induced inactivation of AMPK. In the present study, we further investigated the interaction of R6 with AMPKβ and the possible dependency on Thr-148 phosphorylation status. Yeast two-hybrid (Y2H) analyses and co-immunoprecipitation (IP) of the overexpressed proteins in human embryonic kidney (HEK) 293T) cells revealed that both AMPKβ1 and AMPK-β2 wild-type (WT) isoforms bind to R6. The AMPKβ-R6 interaction was stronger with the muscle-specific AMPKβ2-WT and required association with the substrate-binding motif of R6. When HEK293T cells or C2C12 myotubes were cultured in high-glucose medium, AMPKβ2-WT and R6 weakly interacted. In contrast, glycogen depletion significantly enhanced this protein interaction. Mutation of AMPKβ2 Thr-148 prevented the interaction with R6 irrespective of the intracellular glycogen content. Treatment with the AMPK activator oligomycin enhanced the AMPKβ2-R6 interaction in conjunction with increased Thr-148 phosphorylation in cells grown in low-glucose medium. These data are in accordance with R6 binding directly to AMPKβ2 when both proteins detach from the diminishing glycogen particle, which is simultaneous with increased AMPKβ2 Thr-148 autophosphorylation. Such a model points to a possible control of AMPK by PP1-R6 upon glycogen depletion in muscle. © 2016 Authors; published by Portland Press Limited.

  18. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    PubMed Central

    Wang, Bin; Zhou, Jiangfeng

    2003-01-01

    The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined. PMID:14614774

  19. A Sensitive Membrane-Targeted Biosensor for Monitoring Changes in Intracellular Chloride in Neuronal Processes

    PubMed Central

    Watts, Spencer D.; Suchland, Katherine L.; Amara, Susan G.; Ingram, Susan L.

    2012-01-01

    Background Regulation of chloride gradients is a major mechanism by which excitability is regulated in neurons. Disruption of these gradients is implicated in various diseases, including cystic fibrosis, neuropathic pain and epilepsy. Relatively few studies have addressed chloride regulation in neuronal processes because probes capable of detecting changes in small compartments over a physiological range are limited. Methodology/Principal Findings In this study, a palmitoylation sequence was added to a variant of the yellow fluorescent protein previously described as a sensitive chloride indicator (YFPQS) to target the protein to the plasma membrane (mbYFPQS) of cultured midbrain neurons. The reporter partitions to the cytoplasmic face of the cellular membranes, including the plasma membrane throughout the neurons and fluorescence is stable over 30–40 min of repeated excitation showing less than 10% decrease in mbYFPQS fluorescence compared to baseline. The mbYFPQS has similar chloride sensitivity (k50 =  41 mM) but has a shifted pKa compared to the unpalmitoylated YFPQS variant (cytYFPQS) that remains in the cytoplasm when expressed in midbrain neurons. Changes in mbYFPQS fluorescence were induced by the GABAA agonist muscimol and were similar in the soma and processes of the midbrain neurons. Amphetamine also increased mbYFPQS fluorescence in a subpopulation of cultured midbrain neurons that was reversed by the selective dopamine transporter (DAT) inhibitor, GBR12909, indicating that mbYFPQS is sensitive enough to detect endogenous DAT activity in midbrain dopamine (DA) neurons. Conclusions/Significance The mbYFPQS biosensor is a sensitive tool to study modulation of intracellular chloride levels in neuronal processes and is particularly advantageous for simultaneous whole-cell patch clamp and live-cell imaging experiments. PMID:22506078

  20. Quantitative imaging of intracellular signaling for personalized pancreatic cancer therapy in an in vivo avatar (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Schultz, Emily; Park, Yeonjae; Fischer, Dawn; Pogue, Brian W.; Smith, Kerrington; Tichauer, Kenneth M.; Gibbs, Summer L.

    2017-02-01

    Pancreatic ductal adenocarcinomas (PDAC) are notoriously difficult to treat and in general, molecular targeted therapies have failed even when the targeted protein is overexpressed in the tumor tissue. Genetic mutations in extracellular receptors and downstream signaling proteins (i.e., RAS signaling pathway) and convoluted intracellular cross-talk between cell signaling pathways are likely reasons that these promising therapies fail. Monitoring the complex relationship between intracellular protein signaling is difficult and to-date, standard techniques that are used (Western blot, flow cytometry, immunohistochemistry, etc.) are invasive, static and do not accurately represent in vivo structure-function relationships. Here, we describe the development of an in ovo avatar using patient derived tumors grown on the chicken chorioallantoic membrane (CAM) and the novel fluorescence-based Quantitative Protein Expression Tracking (QUIET) methodology to bridge the gap between oncology, genomics and patient outcomes. Previously developed paired-agent imaging, was extended to a three-compartment model system in QUIET, which utilizes three types of imaging agents: novel fluorophore conjugated cell permeable targeted and untargeted small molecule paired-agents, in addition to a tumor perfusion agent that is not cell membrane permeable. We have demonstrated the ability to quantify the intracellular binding domain of a trans-membrane protein in vitro using cell permeable fluorescent agents (erlotinib-TRITC and control isotype-BODIPY FL). In addition, we have demonstrated imaging protocols to simultaneously image up to 6 spectrally distinct organic fluorophores in in ovo avatars using the Nuance EX (Perkin Elmer) and established proof-of-principle intracellular and extracellular protein concentrations of epidermal growth factor receptor using QUIET and traditional paired-agent imaging.

  1. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy

    PubMed Central

    Javan, Bita; Shahbazi, Majid

    2017-01-01

    Transcriptional targeting is the best approach for specific gene therapy. Hypoxia is a common feature of the tumour microenvironment. Therefore, targeting gene expression in hypoxic cells by placing transgene under the control of a hypoxia-responsive promoter can be a good strategy for cancer-specific gene therapy. The hypoxia-inducible gene expression system has been investigated more in suicide gene therapy and it can also be of great help in knocking down cancer gene therapy with siRNAs. However, this system needs to be optimised to have maximum efficacy with minimum side effects in normal tissues. The combination of tissue-/tumour-specific promoters with HRE core sequences has been found to enhance the specificity and efficacy of this system. In this review, hypoxia-inducible gene expression system as well as gene therapy strategies targeting tumour hypoxia will be discussed. This review will also focus on hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation systems developed for cancer-specific gene therapy. PMID:28798809

  2. Intercepting moving targets: does memory from practice in a specific condition of target displacement affect movement timing?

    PubMed

    de Azevedo Neto, Raymundo Machado; Teixeira, Luis Augusto

    2011-05-01

    This investigation aimed at assessing the extent to which memory from practice in a specific condition of target displacement modulates temporal errors and movement timing of interceptive movements. We compared two groups practicing with certainty of future target velocity either in unchanged target velocity or in target velocity decrease. Following practice, both experimental groups were probed in the situations of unchanged target velocity and target velocity decrease either under the context of certainty or uncertainty about target velocity. Results from practice showed similar improvement of temporal accuracy between groups, revealing that target velocity decrease did not disturb temporal movement organization when fully predictable. Analysis of temporal errors in the probing trials indicated that both groups had higher timing accuracy in velocity decrease in comparison with unchanged velocity. Effect of practice was detected by increased temporal accuracy of the velocity decrease group in situations of decreased velocity; a trend consistent with the expected effect of practice was observed for temporal errors in the unchanged velocity group and in movement initiation at a descriptive level. An additional point of theoretical interest was the fast adaptation in both groups to a target velocity pattern different from that practiced. These points are discussed under the perspective of integration of vision and motor control by means of an internal forward model of external motion.

  3. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    PubMed

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  4. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    PubMed Central

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes. Images PMID:2682656

  5. Intracellular Calcium Decreases Upon Hyper Gravity-Treatment of Arabidopsis Thaliana Cell Cultures

    NASA Astrophysics Data System (ADS)

    Neef, Maren; Denn, Tamara; Ecke, Margret; Hampp, Rüdiger

    2016-06-01

    Cell cultures of Arabidopsis thaliana ( A. t.) respond to changes in the gravitational field strength with fluctuations of the amount of cytosolic calcium (Ca2+). In parabolic flight experiments, where hyper- and μg phases follow each other, μg clearly increased Ca2+, while hyper-g caused a slight reduction. Since the latter observation had not been reported before, we studied this effect in more detail. Using a special centrifuge for heavy items (ZARM, Bremen, Germany), we determined the hyper-g-dependent intracellular Ca2+ level with transgenic cell lines expressing the Ca2+ sensor, cameleon. This sensor exhibits a shift in fluorescence from 480 to 530 nm in response to Ca2+ binding. The data show a drop in the intracellular Ca2+ concentration with a threshold gravity of around 3 g. This is above hypergravity levels achieved during parabolic flights (1.8 g). The use of mutants with different sub-cellular targets of cameleon expression (nucleus, tonoplast, plasma membrane) gave the same results, i.e. Ca2+ is obviously exported from several intracellular compartments.

  6. Polysilicon-chromium-gold intracellular chips for multi-functional biomedical applications

    NASA Astrophysics Data System (ADS)

    Patiño, Tania; Soriano, Jorge; Amirthalingam, Ezhil; Durán, Sara; González-Campo, Arántzazu; Duch, Marta; Ibáñez, Elena; Barrios, Leonardo; Plaza, Jose Antonio; Pérez-García, Lluïsa; Nogués, Carme

    2016-04-01

    The development of micro- and nanosystems for their use in biomedicine is a continuously growing field. One of the major goals of such platforms is to combine multiple functions in a single entity. However, achieving the design of an efficient and safe micro- or nanoplatform has shown to be strongly influenced by its interaction with the biological systems, where particle features or cell types play a critical role. In this work, the feasibility of using multi-material pSi-Cr-Au intracellular chips (MMICCs) for multifunctional applications by characterizing their interactions with two different cell lines, one tumorigenic and one non-tumorigenic, in terms of biocompatibility, internalization and intracellular fate, has been explored. Moreover, the impact of MMICCs on the induction of an inflammatory response has been assessed by evaluating TNFα, IL1b, IL6, and IL10 human inflammatory cytokines secretion by macrophages. Results show that MMICCs are biocompatible and their internalization efficiency is strongly dependent on the cell type. Finally as a proof-of-concept, MMICCs have been dually functionalized with transferrin and pHrodo™ Red, SE to target cancer cells and detect intracellular pH, respectively. In conclusion, MMICCs can be used as multi-functional devices due to their high biocompatibility, non-inflammatory properties and the ability of developing multiple functions.

  7. Polysilicon-chromium-gold intracellular chips for multi-functional biomedical applications.

    PubMed

    Patiño, Tania; Soriano, Jorge; Amirthalingam, Ezhil; Durán, Sara; González-Campo, Arántzazu; Duch, Marta; Ibáñez, Elena; Barrios, Leonardo; Plaza, Jose Antonio; Pérez-García, Lluïsa; Nogués, Carme

    2016-04-28

    The development of micro- and nanosystems for their use in biomedicine is a continuously growing field. One of the major goals of such platforms is to combine multiple functions in a single entity. However, achieving the design of an efficient and safe micro- or nanoplatform has shown to be strongly influenced by its interaction with the biological systems, where particle features or cell types play a critical role. In this work, the feasibility of using multi-material pSi-Cr-Au intracellular chips (MMICCs) for multifunctional applications by characterizing their interactions with two different cell lines, one tumorigenic and one non-tumorigenic, in terms of biocompatibility, internalization and intracellular fate, has been explored. Moreover, the impact of MMICCs on the induction of an inflammatory response has been assessed by evaluating TNFα, IL1b, IL6, and IL10 human inflammatory cytokines secretion by macrophages. Results show that MMICCs are biocompatible and their internalization efficiency is strongly dependent on the cell type. Finally as a proof-of-concept, MMICCs have been dually functionalized with transferrin and pHrodo™ Red, SE to target cancer cells and detect intracellular pH, respectively. In conclusion, MMICCs can be used as multi-functional devices due to their high biocompatibility, non-inflammatory properties and the ability of developing multiple functions.

  8. Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging.

    PubMed

    Zhang, Liang; Habib, Amyn A; Zhao, Dawen

    2016-06-21

    Phosphatidylserine (PS), which is normally intracellular, becomes exposed on the outer surface of viable endothelial cells (ECs) of tumor vasculature. Utilizing a PS-targeting antibody, we have recently established a PS-targeted liposomal (PS-L) nanoplatform that has demonstrated to be highly tumor-selective. Because of the vascular lumen-exposed PS that is immediately accessible without a need to penetrate the intact blood brain barrier (BBB), we hypothesize that the systemically administered PS-L binds specifically to tumor vascular ECs, becomes subsequently internalized into the cells and then enables its cargos to be efficiently delivered to glioma parenchyma. To test this, we exploited the dual MRI/optical imaging contrast agents-loaded PS-L and injected it intravenously into mice bearing intracranial U87 glioma. At 24 h, both in vivo optical imaging and MRI depicted enhanced tumor contrast, distinct from the surrounding normal brain. Intriguingly, longitudinal MRI revealed temporal and spatial intratumoral distribution of the PS-L by following MRI contrast changes, which appeared punctate in tumor periphery at an earlier time point (4 h), but became clustering and disseminated throughout the tumor at 24 h post injection. Importantly, glioma-targeting specificity of the PS-L was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the glioma. Together, these results indicate that the PS-L nanoplatform enables the enhanced, glioma-targeted delivery of imaging contrast agents by crossing the tumor BBB efficiently, which may also serve as a useful nanoplatform for anti-glioma drugs.

  9. Insecticide resistance and intracellular proteases.

    PubMed

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Fatty Acid-binding Proteins (FABPs) Are Intracellular Carriers for Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD)*

    PubMed Central

    Elmes, Matthew W.; Kaczocha, Martin; Berger, William T.; Leung, KwanNok; Ralph, Brian P.; Wang, Liqun; Sweeney, Joseph M.; Miyauchi, Jeremy T.; Tsirka, Stella E.; Ojima, Iwao; Deutsch, Dale G.

    2015-01-01

    Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. PMID:25666611

  11. Target-specific contrast agents for magnetic resonance microscopy

    PubMed Central

    Blackwell, Megan L.; Farrar, Christian T.; Fischl, Bruce; Rosen, Bruce R.

    2009-01-01

    High-resolution ex vivo magnetic resonance (MR) imaging can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. To aid MR sensitivity to cell density and myelination, we have begun the development of target-specific paramagnetic contrast agents. This work details the first application of luxol fast blue (LFB), an optical stain for myelin, as a white matter-selective MR contrast agent for human ex vivo brain tissue. Formalin-fixed human visual cortex was imaged with an isotropic resolution between 80 and 150 μm at 4.7 and 14 T before and after en bloc staining with LFB. Longitudinal (R1) and transverse (R2) relaxation rates in LFB-stained tissue increased proportionally with myelination at both field strengths. Changes in R1 resulted in larger contrast-to-noise ratios (CNR), per unit time, on T1-weighted images between more myelinated cortical layers (IV–VI) and adjacent, superficial layers (I–III) at both field strengths. Specifically, CNR for LFB-treated samples increased by 229±13% at 4.7 T and 269±25% at 14 T when compared to controls. Also, additional cortical layers (IVca, IVd, and Va) were resolvable in 14T-MR images of LFB-treated samples but not in control samples. After imaging, samples were sliced in 40-micron sections, mounted, and photographed. Both the macroscopic and microscopic distributions of LFB were found to mimic those of traditional histological preparations. Our results suggest target-specific contrast agents will enable more detailed MR images with applications in imaging pathological ex vivo samples and constructing better MR atlases from ex vivo brains. PMID:19385012

  12. Target specific compound identification using a support vector machine.

    PubMed

    Plewczynski, Dariusz; von Grotthuss, Marcin; Spieser, Stephane A H; Rychlewski, Leszek; Wyrwicz, Lucjan S; Ginalski, Krzysztof; Koch, Uwe

    2007-03-01

    In many cases at the beginning of an HTS-campaign, some information about active molecules is already available. Often known active compounds (such as substrate analogues, natural products, inhibitors of a related protein or ligands published by a pharmaceutical company) are identified in low-throughput validation studies of the biochemical target. In this study we evaluate the effectiveness of a support vector machine applied for those compounds and used to classify a collection with unknown activity. This approach was aimed at reducing the number of compounds to be tested against the given target. Our method predicts the biological activity of chemical compounds based on only the atom pairs (AP) two dimensional topological descriptors. The supervised support vector machine (SVM) method herein is trained on compounds from the MDL drug data report (MDDR) known to be active for specific protein target. For detailed analysis, five different biological targets were selected including cyclooxygenase-2, dihydrofolate reductase, thrombin, HIV-reverse transcriptase and antagonists of the estrogen receptor. The accuracy of compound identification was estimated using the recall and precision values. The sensitivities for all protein targets exceeded 80% and the classification performance reached 100% for selected targets. In another application of the method, we addressed the absence of an initial set of active compounds for a selected protein target at the beginning of an HTS-campaign. In such a case, virtual high-throughput screening (vHTS) is usually applied by using a flexible docking procedure. However, the vHTS experiment typically contains a large percentage of false positives that should be verified by costly and time-consuming experimental follow-up assays. The subsequent use of our machine learning method was found to improve the speed (since the docking procedure was not required for all compounds from the database) and also the accuracy of the HTS hit lists (the

  13. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy.

    PubMed

    Paliwal, Shivani R; Paliwal, Rishi; Pal, Harish C; Saxena, Ajeet K; Sharma, Pradyumana R; Gupta, Prem N; Agrawal, Govind P; Vyas, Suresh P

    2012-01-01

    The present investigation reports the development of nanoengineered estrogen receptor (ER) targeted pH-sensitive liposome for the site-specific intracellular delivery of doxorubicin (DOX) for breast cancer therapy. Estrone, a bioligand, was anchored on the surface of pH-sensitive liposome for drug targeting to ERs. The estrone-anchored pH-sensitive liposomes (ES-pH-sensitive-SL) showed fusogenic potential at acidic pH (5.5). In vitro cytotoxicity studies carried out on ER-positive MCF-7 breast carcinoma cells revealed that ES-pH-sensitive-SL formulation was more cytotoxic than non-pH-sensitive targeted liposomes (ES-SL). The flow cytometry analysis confirmed significant enhanced uptake (p < 0.05) of ES-pH-sensitive-SL by MCF-7 cells. Intracellular delivery and nuclear localization of the DOX was confirmed by fluorescence microscopy. The mechanism for higher cytotoxicity shown by estrone-anchored pH-sensitive liposomal-DOX was elucidated using reactive oxygen species (ROS) determination. The in vivo biodistribution studies and antitumor activities of formulations were evaluated on tumor bearing female Balb/c mice followed by intravenous administration. The ES-pH-sensitive-SL efficiently suppressed the breast tumor growth in comparison to both ES-SL and free DOX. Serum enzyme activities such as LDH and CPK levels were assayed for the evaluation of DOX induced cardiotoxicity. The ES-pH-sensitive-SL accelerated the intracellular trafficking of encapsulated DOX, thus increasing the therapeutic efficacy. The findings support that estrone-anchored pH-sensitive liposomes could be one of the promising nanocarriers for the targeted intracellular delivery of anticancer agents to breast cancer with reduced systemic side effects.

  14. Knowledge-based approach for generating target system specifications from a domain model

    NASA Technical Reports Server (NTRS)

    Gomaa, Hassan; Kerschberg, Larry; Sugumaran, Vijayan

    1992-01-01

    Several institutions in industry and academia are pursuing research efforts in domain modeling to address unresolved issues in software reuse. To demonstrate the concepts of domain modeling and software reuse, a prototype software engineering environment is being developed at George Mason University to support the creation of domain models and the generation of target system specifications. This prototype environment, which is application domain independent, consists of an integrated set of commercial off-the-shelf software tools and custom-developed software tools. This paper describes the knowledge-based tool that was developed as part of the environment to generate target system specifications from a domain model.

  15. A New Cell Separation Method Based on Antibody-Immobilized Nanoneedle Arrays for the Detection of Intracellular Markers.

    PubMed

    Kawamura, Ryuzo; Miyazaki, Minami; Shimizu, Keita; Matsumoto, Yuta; Silberberg, Yaron R; Sathuluri, Ramachandra Rao; Iijima, Masumi; Kuroda, Shun'ichi; Iwata, Futoshi; Kobayashi, Takeshi; Nakamura, Chikashi

    2017-11-08

    Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.

  16. HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling

    PubMed Central

    Dirk, Brennan S.; Pawlak, Emily N.; Johnson, Aaron L.; Van Nynatten, Logan R.; Jacob, Rajesh A.; Heit, Bryan; Dikeakos, Jimmy D.

    2016-01-01

    A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in the endocytosis and eventual sequestration of MHC-I within the cell. In the current report, we utilized the intracellular protein-protein interaction reporter system, bimolecular fluorescence complementation (BiFC), in combination with super-resolution microscopy, to track the Nef/MHC-I interaction and determine its subcellular localization in cells. We demonstrate that this interaction occurs upon Nef binding the MHC-I cytoplasmic tail early during endocytosis in a Rab5-positive endosome. Disruption of early endosome regulation inhibited Nef-dependent MHC-I downregulation, demonstrating that Nef hijacks the early endosome to sequester MHC-I within the cell. Furthermore, super-resolution imaging identified that the Nef:MHC-I BiFC complex transits through both early and late endosomes before ultimately residing at the trans-Golgi network. Together we demonstrate the importance of the early stages of the endocytic network in the removal of MHC-I from the cell surface and its re-localization within the cell, which allows HIV-1 to optimally evade host immune responses. PMID:27841315

  17. Mapping intracellular mechanics on micropatterned substrates

    PubMed Central

    Mandal, Kalpana; Asnacios, Atef; Goud, Bruno; Manneville, Jean-Baptiste

    2016-01-01

    The mechanical properties of cells impact on their architecture, their migration, intracellular trafficking, and many other cellular functions and have been shown to be modified during cancer progression. We have developed an approach to map the intracellular mechanical properties of living cells by combining micropatterning and optical tweezers-based active microrheology. We optically trap micrometer-sized beads internalized in cells plated on crossbow-shaped adhesive micropatterns and track their displacement following a step displacement of the cell. The local intracellular complex shear modulus is measured from the relaxation of the bead position assuming that the intracellular microenvironment of the bead obeys power-law rheology. We also analyze the data with a standard viscoelastic model and compare with the power-law approach. We show that the shear modulus decreases from the cell center to the periphery and from the cell rear to the front along the polarity axis of the micropattern. We use a variety of inhibitors to quantify the spatial contribution of the cytoskeleton, intracellular membranes, and ATP-dependent active forces to intracellular mechanics and apply our technique to differentiate normal and cancer cells. PMID:27799529

  18. Intracellular Trafficking of Silicon Particles and Logic-Embedded Vectors

    PubMed Central

    Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.

    2010-01-01

    Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments. PMID:20820744

  19. Development of viral nanoparticles for efficient intracellular delivery

    NASA Astrophysics Data System (ADS)

    Wu, Zhuojun; Chen, Kevin; Yildiz, Ibrahim; Dirksen, Anouk; Fischer, Rainer; Dawson, Philip E.; Steinmetz, Nicole F.

    2012-05-01

    Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5.Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform

  20. Engineering intracellular active transport systems as in vivo biomolecular tools.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptionalmore » regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications

  1. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    PubMed

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  2. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro

    2014-06-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further

  3. Fluorescence imaging and dynamics of intracellular ionic concentrations in single living cells: application to pHi and Mgi variations

    NASA Astrophysics Data System (ADS)

    Viallet, Pierre M.; Yassine, Mohamed; Salmon, Jean-Marie; Vigo, Jean

    1996-05-01

    The intracellular concentration of ions such as H+, Hg2+, Ca2+ is known to monitor the activity of many intracellular enzymes. Furthermore these ions are considered as intracellular messengers involved in signal transducing. Moreover recent technological progresses gave rise to the feeling that accurate data are instantly accessible on microvolumes. So the determination of ionic intracellular concentrations has been achieved using fluorescent specific probes and different equipments (Microspectrofluorometer, Flow Cytometer, Numerical Image Analyzer with or without Confocal system), without taking care of the physico-chemical properties of the probe. Unfortunately fluorescent probes are supposed to fill up conflicting requirements in terms of ionic affinity, specificity, fluorescence quantum yield of the free and ion-bound probe, absence of fading and diffusibility out of the cell. Because most of the probes are not so specific than it is claimed, unexpected interactions may obscure the interpretation of results and even make it difficult to get an intracellular calibration curve. Such a situation generally precludes the use of the popular simplest methods of data acquisition and treatment. The scope of this presentation is to point out some underestimated difficulties, to discuss different ways for bypassing some of them and to rationale the use of Videomicrofluorometry.

  4. Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging

    PubMed Central

    2008-01-01

    Targeted metallic nanoparticles have shown potential as a platform for development of molecular-specific contrast agents. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In this study, we investigated the development of aptamer-based gold nanoparticles as contrast agents, using aptamers as targeting agents and gold nanoparticles as imaging agents. We devised a novel conjugation approach using an extended aptamer design where the extension is complementary to an oligonucleotide sequence attached to the surface of the gold nanoparticles. The chemical and optical properties of the aptamer−gold conjugates were characterized using size measurements and oligonucleotide quantitation assays. We demonstrate this conjugation approach to create a contrast agent designed for detection of prostate-specific membrane antigen (PSMA), obtaining reflectance images of PSMA(+) and PSMA(−) cell lines treated with the anti-PSMA aptamer−gold conjugates. This design strategy can easily be modified to incorporate multifunctional agents as part of a multimodal platform for reflectance imaging applications. PMID:18512972

  5. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy.

    PubMed

    Wüstemann, Till; Haberkorn, Uwe; Babich, John; Mier, Walter

    2018-05-17

    The high incidence rates of prostate cancer (PCa) raise demand for improved therapeutic strategies. Prostate tumors specifically express the prostate-specific membrane antigen (PSMA), a membrane-bound protease. As PSMA is highly overexpressed on malignant prostate tumor cells and as its expression rate correlates with the aggressiveness of the disease, this tumor-associated biomarker provides the possibility to develop new strategies for diagnostics and therapy of PCa. Major advances have been made in PSMA targeting, ranging from immunotherapeutic approaches to therapeutic small molecules. This review elaborates the diversity of PSMA targeting agents while focusing on the radioactively labeled tracers for diagnosis and endoradiotherapy. A variety of radionuclides have been shown to either enable precise diagnosis or efficiently treat the tumor with minimal effects to nontargeted organs. Most small molecules with affinity for PSMA are based on either a phosphonate or a urea-based binding motif. Based on these pharmacophores, major effort has been made to identify modifications to achieve ideal pharmacokinetics while retaining the specific targeting of the PSMA binding pocket. Several tracers have now shown excellent clinical usability in particular for molecular imaging and therapy as proven by the efficiency of theranostic approaches in current studies. The archetypal expression profile of PSMA may be exploited for the treatment with alpha emitters to break radioresistance and thus to bring the power of systemic therapy to higher levels. © 2018 Wiley Periodicals, Inc.

  6. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, C.; Ebbinghaus, M.; Santen, L.

    2015-09-01

    Cells are the elementary units of living organisms, which are able to carry out many vital functions. These functions rely on active processes on a microscopic scale. Therefore, they are strongly out-of-equilibrium systems, which are driven by continuous energy supply. The tasks that have to be performed in order to maintain the cell alive require transportation of various ingredients, some being small, others being large. Intracellular transport processes are able to induce concentration gradients and to carry objects to specific targets. These processes cannot be carried out only by diffusion, as cells may be crowded, and quite elongated on molecular scales. Therefore active transport has to be organized. The cytoskeleton, which is composed of three types of filaments (microtubules, actin and intermediate filaments), determines the shape of the cell, and plays a role in cell motion. It also serves as a road network for a special kind of vehicles, namely the cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated. The interest for this type of question was enhanced when it was discovered that intracellular transport breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. Our review includes on the one hand an overview of biological facts, obtained from experiments, and on the other hand a presentation of some modeling attempts based on cellular automata. We present some background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the

  7. Label-free imaging of intracellular motility by low-coherent quantitative phase microscope in reflection geometry

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2011-11-01

    We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.

  8. Design of the hairpin ribozyme for targeting specific RNA sequences.

    PubMed

    Hampel, A; DeYoung, M B; Galasinski, S; Siwkowski, A

    1997-01-01

    The following steps should be taken when designing the hairpin ribozyme to cleave a specific target sequence: 1. Select a target sequence containing BN*GUC where B is C, G, or U. 2. Select the target sequence in areas least likely to have extensive interfering structure. 3. Design the conventional hairpin ribozyme as shown in Fig. 1, such that it can form a 4 bp helix 2 and helix 1 lengths up to 10 bp. 4. Synthesize this ribozyme from single-stranded DNA templates with a double-stranded T7 promoter. 5. Prepare a series of short substrates capable of forming a range of helix 1 lengths of 5-10 bp. 6. Identify these by direct RNA sequencing. 7. Assay the extent of cleavage of each substrate to identify the optimal length of helix 1. 8. Prepare the hairpin tetraloop ribozyme to determine if catalytic efficiency can be improved.

  9. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  10. Comparison of taxon-specific versus general locus sets for targeted sequence capture in plant phylogenomics.

    PubMed

    Chau, John H; Rahfeldt, Wolfgang A; Olmstead, Richard G

    2018-03-01

    Targeted sequence capture can be used to efficiently gather sequence data for large numbers of loci, such as single-copy nuclear loci. Most published studies in plants have used taxon-specific locus sets developed individually for a clade using multiple genomic and transcriptomic resources. General locus sets can also be developed from loci that have been identified as single-copy and have orthologs in large clades of plants. We identify and compare a taxon-specific locus set and three general locus sets (conserved ortholog set [COSII], shared single-copy nuclear [APVO SSC] genes, and pentatricopeptide repeat [PPR] genes) for targeted sequence capture in Buddleja (Scrophulariaceae) and outgroups. We evaluate their performance in terms of assembly success, sequence variability, and resolution and support of inferred phylogenetic trees. The taxon-specific locus set had the most target loci. Assembly success was high for all locus sets in Buddleja samples. For outgroups, general locus sets had greater assembly success. Taxon-specific and PPR loci had the highest average variability. The taxon-specific data set produced the best-supported tree, but all data sets showed improved resolution over previous non-sequence capture data sets. General locus sets can be a useful source of sequence capture targets, especially if multiple genomic resources are not available for a taxon.

  11. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier

    2015-02-01

    Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles

  12. Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI.

    PubMed

    Ali, Ahmed Atef Ahmed; Hsu, Fei-Ting; Hsieh, Chia-Ling; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Wei, Zung-Hang; Chen, Cheng-Yu; Huang, Hsu-Shan

    2016-11-11

    We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR-ERK-NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T 2 -weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles.

  13. Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI

    NASA Astrophysics Data System (ADS)

    Ali, Ahmed Atef Ahmed; Hsu, Fei-Ting; Hsieh, Chia-Ling; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Wei, Zung-Hang; Chen, Cheng-Yu; Huang, Hsu-Shan

    2016-11-01

    We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR-ERK-NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T2-weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles.

  14. Liver as a target for oligonucleotide therapeutics.

    PubMed

    Sehgal, Alfica; Vaishnaw, Akshay; Fitzgerald, Kevin

    2013-12-01

    Oligonucleotide-based therapeutics are an emerging class of drugs that hold the promise for silencing "un-druggable" targets,thus creating unique opportunities for innovative medicines. As opposed to gene therapy, oligonucleotides are considered to be more akin to small molecule therapeutics because they are small,completely synthetic in origin, do not integrate into the host genome,and have a defined duration of therapeutic activity after which effects recover to baseline. They offer a high degree of specificity at the genetic level, thereby reducing off-target effects.At the same time, they provide a strategy for targeting any gene in the genome, including transcripts that produce mutated proteins.Oligonucleotide-based therapeutics include short interfering RNA (siRNA), that degrade target mRNA through RISC mediated RNAi; anti-miRs, that target miRNAs; miRNA mimics, that regulate target mRNA; antisense oligonucleotides, that may be working through RNAseH mediated mRNA decay; mRNA upregulation,by targeting long non-coding RNAs; and oligonucleotides induced alternative splicing [1]. All these approaches require some minimal degree of homology at the nucleic acid sequence level for them to be functional. The different mechanisms of action and their relevant activity are outlined in Fig. 1. Besides homology,RNA secondary structure has also been exploited in the case of ribozymes and aptamers, which act by binding to nucleic acids or proteins, respectively. While there have been many reports of gene knockdown and gene modulation in cell lines and mice with all these methods, very few have advanced to clinical stages.The main obstacle to date has been the safe and effective intracellular delivery of these compounds in higher species, including humans. Indeed, their action requires direct interaction with DNA/RNA within the target cell so even when one solves the issues of tissue and cellular access, intracellular/intranuclear location represents yet another barrier to

  15. Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy.

    PubMed

    Zhang, Jinxie; Zhang, Xudong; Liu, Gan; Chang, Danfeng; Liang, Xin; Zhu, Xianbing; Tao, Wei; Mei, Lin

    2016-01-01

    The inner membrane vesicle system is a complex transport system that includes endocytosis, exocytosis and autophagy. However, the details of the intracellular trafficking pathway of nanoparticles in cells have been poorly investigated. Here, we investigate in detail the intracellular trafficking pathway of protein nanocapsules using more than 30 Rab proteins as markers of multiple trafficking vesicles in endocytosis, exocytosis and autophagy. We observed that FITC-labeled protein nanoparticles were internalized by the cells mainly through Arf6-dependent endocytosis and Rab34-mediated micropinocytosis. In addition to this classic pathway: early endosome (EEs)/late endosome (LEs) to lysosome, we identified two novel transport pathways: micropinocytosis (Rab34 positive)-LEs (Rab7 positive)-lysosome pathway and EEs-liposome (Rab18 positive)-lysosome pathway. Moreover, the cells use slow endocytosis recycling pathway (Rab11 and Rab35 positive vesicles) and GLUT4 exocytosis vesicles (Rab8 and Rab10 positive) transport the protein nanocapsules out of the cells. In addition, protein nanoparticles are observed in autophagosomes, which receive protein nanocapsules through multiple endocytosis vesicles. Using autophagy inhibitor to block these transport pathways could prevent the degradation of nanoparticles through lysosomes. Using Rab proteins as vesicle markers to investigation the detail intracellular trafficking of the protein nanocapsules, will provide new targets to interfere the cellular behaver of the nanoparticles, and improve the therapeutic effect of nanomedicine.

  16. Intracellular trafficking of the β-secretase and processing of amyloid precursor protein.

    PubMed

    Zhi, Pei; Chia, Pei Zhi Cheryl; Chia, Cheryl; Gleeson, Paul A

    2011-09-01

    The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  17. Intracellular Transport of Plant Viruses: Finding the Door out of the Cell

    PubMed Central

    Schoelz, James E.; Harries, Phillip A.; Nelson, Richard S.

    2011-01-01

    Plant viruses are a class of plant pathogens that specialize in movement from cell to cell. As part of their arsenal for infection of plants, every virus encodes a movement protein (MP), a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell. As our knowledge of intercellular transport has increased, it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD. Just as viruses are too large to fit through an unmodified plasmodesma, they are also too large to be freely diffused through the cytoplasm of the cell. Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP, including viral proteins originally associated with replication or gene expression. In this review, we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD, in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread. PMID:21896501

  18. DNA-Aptamer Targeting Vimentin for Tumor Therapy In Vivo

    PubMed Central

    Zamay, Tatyana N.; Kolovskaya, Olga S.; Glazyrin, Yury E.; Zamay, Galina S.; Kuznetsova, Svetlana A.; Spivak, Ekaterina A.; Wehbe, Mohamed; Savitskaya, Anna G.; Zubkova, Olga A.; Kadkina, Anastasia; Wang, Xiaoyan; Muharemagic, Darija; Dubynina, Anna; Sheina, Yuliya; Salmina, Alla B.; Berezovski, Maxim V.

    2014-01-01

    In recent years, new prospects for the use of nucleic acids as anticancer drugs have been discovered. Aptamers for intracellular targets can regulate cellular functions and cause cell death or proliferation. However, intracellular aptamers have limited use for therapeutic applications due to their low bioavailability. In this work, we selected DNA aptamers to cell organelles and nucleus of cancer cells, and showed that an aptamer NAS-24 binds to vimentin and causes apoptosis of mouse ascites adenocarcinoma cells in vitro and in vivo. To deliver the aptamer NAS-24 inside cells, natural polysaccharide arabinogalactan was used as a carrier reagent. The mixture of arabinogalactan and NAS-24 was injected intraperitonealy for 5 days into mice with adenocarcinoma and inhibited adenocarcinoma growth more effectively than free arabinogalactan or the aptamer alone. The use of aptamers to intracellular targets together with arabinogalactan becomes a promising approach for anticancer therapy. PMID:24410722

  19. Unravelling ``off-target'' effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Beretta, Giovanni L.; Folini, Marco; Cavalieri, Francesca; Yan, Yan; Fresch, Enrico; Kaliappan, Subramanian; Hasenöhrl, Christoph; Richardson, Joseph J.; Tinelli, Stella; Fery, Andreas; Caruso, Frank; Zaffaroni, Nadia

    2015-03-01

    Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell lines. This suggests that the simultaneous action of carboxyl and disulfide groups in PMASH polymer or capsules may play a role in mediating the intracellular off-target effects. Our work provides evidence that the rational design of redox-active carriers for therapeutic-related application should be guided by a careful investigation on potential disturbance of the cellular machineries related to the carrier association.Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell

  20. Engineered Cpf1 variants with altered PAM specificities increase genome targeting range

    PubMed Central

    Gao, Linyi; Cox, David B.T.; Yan, Winston X.; Manteiga, John C.; Schneider, Martin W.; Yamano, Takashi; Nishimasu, Hiroshi; Nureki, Osamu; Crosetto, Nicola; Zhang, Feng

    2017-01-01

    The RNA-guided endonuclease Cpf1 is a promising tool for genome editing in eukaryotic cells1–7. However, the utility of the commonly used Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) and Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1) is limited by their requirement of a TTTV protospacer adjacent motif (PAM) in the DNA substrate. To address this limitation, we performed a structure-guided mutagenesis screen to increase the targeting range of Cpf1. We engineered two AsCpf1 variants carrying the mutations S542R/K607R and S542R/K548V/N552R, which recognize TYCV and TATV PAMs, respectively, with enhanced activities in vitro and in human cells. Genome-wide assessment of off-target activity using BLISS7 assay indicated that these variants retain high DNA targeting specificity, which we further improved by introducing an additional non-PAM-interacting mutation. Introducing the identified mutations at their corresponding positions in LbCpf1 similarly altered its PAM specificity. Together, these variants increase the targeting range of Cpf1 by approximately three-fold in human coding sequences to one cleavage site per ~11 bp. PMID:28581492

  1. Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride

    PubMed Central

    Batti, Laura; Mukhtarov, Marat; Audero, Enrica; Ivanov, Anton; Paolicelli, Rosa Chiara; Zurborg, Sandra; Gross, Cornelius; Bregestovski, Piotr; Heppenstall, Paul A.

    2013-01-01

    Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo. PMID:23734096

  2. [Intracellular signaling mechanisms in thyroid cancer].

    PubMed

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  3. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature

    PubMed Central

    Patronis, Alexander; Richardson, Robin A.; Schmieschek, Sebastian; Wylie, Brian J. N.; Nash, Rupert W.; Coveney, Peter V.

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow. PMID:29725303

  4. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature.

    PubMed

    Patronis, Alexander; Richardson, Robin A; Schmieschek, Sebastian; Wylie, Brian J N; Nash, Rupert W; Coveney, Peter V

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  5. Inflammatory targets of therapy in sickle cell disease

    PubMed Central

    Owusu-Ansah, Amma; Ihunnah, Chibueze A.; Walker, Aisha L.; Ofori-Acquah, Solomon F.

    2015-01-01

    Sickle cell disease (SCD) is a monogenic globin disorder characterized by the production of a structurally abnormal hemoglobin (Hb) variant Hb S, which causes severe hemolytic anemia, episodic painful vaso-occlusion and ultimately end-organ damage. The primary disease pathophysiology is intracellular Hb S polymerization and consequent sickling of erythrocytes. It has become evident over several decades that a more complex disease process contributes to the myriad of clinical complications seen in SCD patients with inflammation playing a central role. Drugs targeting specific inflammatory pathways therefore offer an attractive therapeutic strategy to ameliorate many of the clinical events in SCD. In addition they are useful tools to dissecting the molecular and cellular mechanisms that promote individual clinical events, and for developing improved therapeutics to address more challenging clinical dilemmas such as refractoriness to opioids or hyperalgesia. Here, we discuss the prospect of targeting multiple inflammatory pathways implicated in the pathogenesis of SCD with a focus on new therapeutics, striving to link the actions of the anti-inflammatory agents to a defined pathobiology, and specific clinical manifestations of SCD. We also review the anti-inflammatory attributes and the cognate inflammatory targets of hydroxyurea, the only FDA approved drug for SCD. PMID:26226206

  6. Dose enhancement effects of gold nanoparticles specifically targeting RNA in breast cancer cells

    PubMed Central

    Metzler, Philipp; Pilarczyk, Götz; Bobu, Vladimir; Kriz, Wilhelm; Hosser, Hiltraud; Fleckenstein, Jens; Krufczik, Matthias; Bestvater, Felix; Wenz, Frederik; Hausmann, Michael

    2018-01-01

    Localization microscopy has shown to be capable of systematic investigations on the arrangement and counting of cellular uptake of gold nanoparticles (GNP) with nanometer resolution. In this article, we show that the application of specially modified RNA targeting gold nanoparticles (“SmartFlares”) can result in ring like shaped GNP arrangements around the cell nucleus. Transmission electron microscopy revealed GNP accumulation in vicinity to the intracellular membrane structures including them of the endoplasmatic reticulum. A quantification of the radio therapeutic dose enhancement as a proof of principle was conducted with γH2AX foci analysis: The application of both—SmartFlares and unmodified GNPs—lead to a significant dose enhancement with a factor of up to 1.2 times the dose deposition compared to non-treated breast cancer cells. This enhancement effect was even more pronounced for SmartFlares. Furthermore, it was shown that a magnetic field of 1 Tesla simultaneously applied during irradiation has no detectable influence on neither the structure nor the dose enhancement dealt by gold nanoparticles. PMID:29346397

  7. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug.

    PubMed

    Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M; Frick, David N; Bolognesi, Martino; Milani, Mario

    2012-08-01

    Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC₅₀ values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV.

  8. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    PubMed

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-03

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Tumor-targeting CTL expressing a single-chain Fv specific for VEGFR2.

    PubMed

    Kanagawa, Naoko; Yanagawa, Tatsuya; Mukai, Yohei; Yoshioka, Yasuo; Okada, Naoki; Nakagawa, Shinsaku

    2010-03-26

    Cytotoxic T lymphocytes (CTL) are critical effector cells in tumor immunity. Adoptive transfer therapy with in vitro-expanded tumor-specific CTL is a promising approach for preventing cancer metastasis and recurrence. Transferred CTL are not effective in clinical trials, however, due to inadequate tumor-infiltration. Therefore, the development of functionally modified CTL, such as tumor-targeting CTL, is widely desired. Here, we designed the tumor-targeting CTL expressing a single-chain antibody fragment (scFv-CTL) specific for vascular endothelial growth factor receptor 2 (VEGFR2/flk1) by transducing the CTL with a retroviral vector. The scFv-CTL bound to VEGFR2/flk1-expressing cells and retained their cytotoxic activity against tumor cells. In addition, adoptive transfer of scFv-CTL into tumor-bearing mice effectively suppressed tumor growth due to the augmented accumulation of the transferred CTL in the tumor tissue. These findings indicate that the creation of CTL capable of targeting tumor vascular endothelial cells by scFv-expression technique is considerably promising for improvement of efficacy in adoptive immunotherapy. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Sequential Axon-derived Signals Couple Target Survival and Layer Specificity in the Drosophila Visual System

    PubMed Central

    Pecot, Matthew Y.; Chen, Yi; Akin, Orkun; Chen, Zhenqing; Tsui, C.Y. Kimberly; Zipursky, S. Lawrence

    2015-01-01

    SUMMARY Neural circuit formation relies on interactions between axons and cells within the target field. While it is well established that target-derived signals act on axons to regulate circuit assembly, the extent to which axon-derived signals control circuit formation is not known. In the Drosophila visual system, anterograde signals numerically match R1–R6 photoreceptors with their targets by controlling target proliferation and neuronal differentiation. Here we demonstrate that additional axon-derived signals selectively couple target survival with layer-specificity. We show that Jelly belly (Jeb) produced by R1–R6 axons interacts with its receptor, anaplastic lymphoma kinase (Alk), on budding dendrites to control survival of L3 neurons, one of three postsynaptic targets. L3 axons then produce Netrin, which regulates the layer-specific targeting of another neuron within the same circuit. We propose that a cascade of axon-derived signals, regulating diverse cellular processes, provides a strategy for coordinating circuit assembly across different regions of the nervous system. PMID:24742459

  11. Functional characterization of transmembrane intracellular pH regulators and mechanism of alcohol-induced intracellular acidosis in human umbilical cord blood stem cell-like cells.

    PubMed

    Tsai, Yi-Ting; Liu, Jah-Yao; Lee, Chung-Yi; Tsai, Chien-Sung; Chen, Ming-Hurng; Ou, Chien-Chih; Chen, Wei-Hwa; Loh, Shih-Hurng

    2011-12-01

    Changing intracellular pH (pHi) exerts considerable influence on many cellular functions. Different pHi regulators, such as the Na-H exchanger (NHE), Na/(Equation is included in full-text article.)symporter, and Cl/OH exchanger (CHE), have been identified in mature mammalian cells. The aims of the present study were to investigate the physiological mechanisms of pHi recovery and to further explore the effects of alcohol on the pHi in human umbilical cord blood CD34 stem cell-like cells (HUCB-CD34STs). HUCB-CD34STs were loaded with the pH-sensitive dye, 2',7'-bis(2-carboxethyl)-5(6)-carboxyfluorescein, to examine pHi. In isolated HUCB-CD34STs, we found that (1) the resting pHi is 7.03 ± 0.02; (2) 2 Na-dependent acid extruders and a Cl-dependent acid loading carrier exist and are functional; (3) alcohol functions in a concentration-dependent manner to reduce pHi and increase NHE activity, but it does not affect CHE activity; and (4) fomepizole, a specific alcohol dehydrogenase inhibitor, does not change the intracellular acidosis and NHE activity-induced by alcohol, whereas 3-amino-1, 2,4-trizole, a specific catalase inhibitor, entirely abolishes these effects. In conclusion, we demonstrate that 2 acid extruders and 1 acid loader (most likely NHE, NBC, and CHE, respectively) functionally existed in HUCB-CD34STs. Additionally, the intracellular acidosis is mainly caused by catalase-mediated alcohol metabolites, which provoke the activity of NHE.

  12. Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane.

    PubMed

    Carel, Clément; Marcoux, Julien; Réat, Valérie; Parra, Julien; Latgé, Guillaume; Laval, Françoise; Demange, Pascal; Burlet-Schiltz, Odile; Milon, Alain; Daffé, Mamadou; Tropis, Maryelle G; Renault, Marie A M

    2017-04-18

    The outer membranes (OMs) of members of the Corynebacteriales bacterial order, also called mycomembranes, harbor mycolic acids and unusual outer membrane proteins (OMPs), including those with α-helical structure. The signals that allow precursors of such proteins to be targeted to the mycomembrane remain uncharacterized. We report here the molecular features responsible for OMP targeting to the mycomembrane of Corynebacterium glutamicum , a nonpathogenic member of the Corynebacteriales order. To better understand the mechanisms by which OMP precursors were sorted in C. glutamicum , we first investigated the partitioning of endogenous and recombinant PorA, PorH, PorB, and PorC between bacterial compartments and showed that they were both imported into the mycomembrane and secreted into the extracellular medium. A detailed investigation of cell extracts and purified proteins by top-down MS, NMR spectroscopy, and site-directed mutagenesis revealed specific and well-conserved posttranslational modifications (PTMs), including O -mycoloylation, pyroglutamylation, and N -formylation, for mycomembrane-associated and -secreted OMPs. PTM site sequence analysis from C. glutamicum OMP and other O -acylated proteins in bacteria and eukaryotes revealed specific patterns. Furthermore, we found that such modifications were essential for targeting to the mycomembrane and sufficient for OMP assembly into mycolic acid-containing lipid bilayers. Collectively, it seems that these PTMs have evolved in the Corynebacteriales order and beyond to guide membrane proteins toward a specific cell compartment.

  13. Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane

    PubMed Central

    Carel, Clément; Réat, Valérie; Parra, Julien; Latgé, Guillaume; Laval, Françoise; Burlet-Schiltz, Odile; Milon, Alain; Daffé, Mamadou; Tropis, Maryelle G.; Renault, Marie A. M.

    2017-01-01

    The outer membranes (OMs) of members of the Corynebacteriales bacterial order, also called mycomembranes, harbor mycolic acids and unusual outer membrane proteins (OMPs), including those with α-helical structure. The signals that allow precursors of such proteins to be targeted to the mycomembrane remain uncharacterized. We report here the molecular features responsible for OMP targeting to the mycomembrane of Corynebacterium glutamicum, a nonpathogenic member of the Corynebacteriales order. To better understand the mechanisms by which OMP precursors were sorted in C. glutamicum, we first investigated the partitioning of endogenous and recombinant PorA, PorH, PorB, and PorC between bacterial compartments and showed that they were both imported into the mycomembrane and secreted into the extracellular medium. A detailed investigation of cell extracts and purified proteins by top-down MS, NMR spectroscopy, and site-directed mutagenesis revealed specific and well-conserved posttranslational modifications (PTMs), including O-mycoloylation, pyroglutamylation, and N-formylation, for mycomembrane-associated and -secreted OMPs. PTM site sequence analysis from C. glutamicum OMP and other O-acylated proteins in bacteria and eukaryotes revealed specific patterns. Furthermore, we found that such modifications were essential for targeting to the mycomembrane and sufficient for OMP assembly into mycolic acid-containing lipid bilayers. Collectively, it seems that these PTMs have evolved in the Corynebacteriales order and beyond to guide membrane proteins toward a specific cell compartment. PMID:28373551

  14. Prostate-Specific and Tumor-Specific Targeting of an Oncolytic HSV-1 Amplicon/Helper Virus for Prostate Cancer Treatment

    DTIC Science & Technology

    2009-11-01

    that differentially expressed tumor suppressor miRNAs can be utilized to control the replication of an oncolytic DNA virus in a tumor-specific...demonstrated that the utilization of the tissue-specific promoter and the miRNA-mediated 3’UTRs in a targeted virotherapy is a viable approach with...elements into the whole HSV-1 viral genome should increase the safety margin substantially. The major advantage of the amplicon/helper system is its

  15. A Specific Transitory Increase in Intracellular Calcium Induced by Progesterone Promotes Acrosomal Exocytosis in Mouse Sperm1

    PubMed Central

    Romarowski, Ana; Sánchez-Cárdenas, Claudia; Ramírez-Gómez, Héctor V.; Puga Molina, Lis del C.; Treviño, Claudia L.; Hernández-Cruz, Arturo; Darszon, Alberto; Buffone, Mariano G

    2016-01-01

    During capacitation, sperm acquire the ability to undergo the acrosome reaction (AR), an essential step in fertilization. Progesterone produced by cumulus cells has been associated with various physiological processes in sperm, including stimulation of AR. An increase in intracellular Ca2+ ([Ca2+]i) is necessary for AR to occur. In this study, we investigated the spatiotemporal correlation between the changes in [Ca2+]i and AR in single mouse spermatozoa in response to progesterone. We found that progesterone stimulates an [Ca2+]i increase in five different patterns: gradual increase, oscillatory, late transitory, immediate transitory, and sustained. We also observed that the [Ca2+]i increase promoted by progesterone starts at either the flagellum or the head. We validated the use of FM4-64 as an indicator for the occurrence of the AR by simultaneously detecting its fluorescence increase and the loss of EGFP in transgenic EGFPAcr sperm. For the first time, we have simultaneously visualized the rise in [Ca2+]i and the process of exocytosis in response to progesterone and found that only a specific transitory increase in [Ca2+]i originating in the sperm head promotes the initiation of AR. PMID:26819478

  16. Single nucleotide polymorphism-specific regulation of matrix metalloproteinase-9 by multiple miRNAs targeting the coding exon

    PubMed Central

    Duellman, Tyler; Warren, Christopher; Yang, Jay

    2014-01-01

    Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221

  17. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins.

    PubMed

    Bedi, Deepa; Gillespie, James W; Petrenko, Vasily A; Ebner, Andreas; Leitner, Michael; Hinterdorfer, Peter; Petrenko, Valery A

    2013-02-04

    Nucleic acids, including antisense oligonucleotides, small interfering RNA (siRNA), aptamers, and rybozymes, emerged as versatile therapeutics due to their ability to interfere in a well-planned manner with the flow of genetic information from DNA to protein. However, a systemic use of NAs is hindered by their instability in physiological liquids and inability of intracellular accumulation in the site of action. We first evaluated the potential of cancer specific phage fusion proteins as targeting ligands that provide encapsulation, protection, and navigation of siRNA to the target cell. The tumor-specific proteins were isolated from phages that were affinity selected from a landscape phage library against target breast cancer cells. It was found that fusion phage coat protein fpVIII displaying cancer-targeting peptides can effectively encapsulate siRNAs and deliver them into the cells leading to specific silencing of the model gene GAPDH. Complexes of siRNA and phage protein form nanoparticles (nanophages), which were characterized by atomic force microscopy and ELISA, and their stability was demonstrated by resistance of encapsulated siRNA to degradation by serum nucleases. The phage protein/siRNA complexes can make a new type of highly selective, stable, active, and physiologically acceptable cancer nanomedicine.

  18. In vivo targeted peripheral nerve imaging with a nerve-specific nanoscale magnetic resonance probe.

    PubMed

    Zheng, Linfeng; Li, Kangan; Han, Yuedong; Wei, Wei; Zheng, Sujuan; Zhang, Guixiang

    2014-11-01

    Neuroimaging plays a pivotal role in clinical practice. Currently, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, and positron emission tomography (PET) are applied in the clinical setting as neuroimaging modalities. There is no optimal imaging modality for clinical peripheral nerve imaging even though fluorescence/bioluminescence imaging has been used for preclinical studies on the nervous system. Some studies have shown that molecular and cellular MRI (MCMRI) can be used to visualize and image the cellular and molecular level of the nervous system. Other studies revealed that there are different pathological/molecular changes in the proximal and distal sites after peripheral nerve injury (PNI). Therefore, we hypothesized that in vivo peripheral nerve targets can be imaged using MCMRI with specific MRI probes. Specific probes should have higher penetrability for the blood-nerve barrier (BNB) in vivo. Here, a functional nanometre MRI probe that is based on nerve-specific proteins as targets, specifically, using a molecular antibody (mAb) fragment conjugated to iron nanoparticles as an MRI probe, was constructed for further study. The MRI probe allows for imaging the peripheral nerve targets in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Dopamine Synthesis and D3 Receptor Activation in Pancreatic β-Cells Regulates Insulin Secretion and Intracellular [Ca2+] Oscillations

    PubMed Central

    Ustione, Alessandro

    2012-01-01

    Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca2+] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca2+] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes. PMID:22918877

  20. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    PubMed

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  1. Rapid Endolysosomal Escape and Controlled Intracellular Trafficking of Cell Surface Mimetic Quantum-Dots-Anchored Peptides and Glycopeptides.

    PubMed

    Tan, Roger S; Naruchi, Kentaro; Amano, Maho; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2015-09-18

    A novel strategy for the development of a high performance nanoparticules platform was established by means of cell surface mimetic quantum-dots (QDs)-anchored peptides/glycopeptides, which was developed as a model system for nanoparticle-based drug delivery (NDD) vehicles with defined functions helping the specific intracellular trafficking after initial endocytosis. In this paper, we proposed a standardized protocol for the preparation of multifunctional QDs that allows for efficient cellular uptake and rapid escaping from the endolysosomal system and subsequent cytoplasmic molecular delivery to the target cellular compartment. Chemoselective ligation of the ketone-functionalized hexahistidine derivative facilitated both efficient endocytic entry and rapid endolysosomal escape of the aminooxy/phosphorylcholine self-assembled monolayer-coated QDs (AO/PCSAM-QDs) to the cytosol in various cell lines such as human normal and cancer cells, while modifications of these QDs with cell-penetrating arginine-rich peptides showed poor cellular uptake and induced self-aggregation of AO/PCSAM-QDs. Combined use of hexahistidylated AO/PCSAM-QDs with serglycine-like glycopeptides, namely synthetic proteoglycan initiators (PGIs), elicited the entry and controlled intracellular trafficking, Golgi localization, and also excretion of these nanoparticles, which suggested that the present approach would provide an ideal platform for the design of high performance NDD systems.

  2. Targeting mammalian organelles with internalizing phage (iPhage) libraries

    PubMed Central

    Rangel, Roberto; Dobroff, Andrey S.; Guzman-Rojas, Liliana; Salmeron, Carolina C.; Gelovani, Juri G.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2015-01-01

    Techniques largely used for protein interaction studies and discovery of intracellular receptors, such as affinity capture complex purification and yeast two-hybrid, may produce inaccurate datasets due to protein insolubility, transient or weak protein interactions, or irrelevant intracellular context. A versatile tool to overcome these limitations as well as to potentially create vaccines and engineer peptides and antibodies as targeted diagnostic and therapeutic agents, is the phage display technique. We have recently developed a new technology for screening internalizing phage (iPhage) vectors and libraries utilizing a ligand/receptor-independent mechanism to penetrate eukaryotic cells. iPhage particles provide a unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their corresponding receptors and to fingerprint functional protein domains in living cells. Here we explain the design, cloning, construction, and production of iPhage-based vectors and libraries, along with basic ligand-receptor identification and validation methodologies for organelle receptors. An iPhage library screening can be performed in ~8 weeks. PMID:24030441

  3. Increased efficacy of photodynamic therapy via sequential targeting

    NASA Astrophysics Data System (ADS)

    Kessel, David; Aggarwal, Neha; Sloane, Bonnie F.

    2014-03-01

    Photokilling depends on the generation of death signals after photosensitized cells are irradiated. A variety of intracellular organelles can be targeted for photodamage, often with a high degree of specificity. We have discovered that a low level of photodamage directed against lysosomes can sensitize both a murine hepatoma cell line (in 2D culture) and an inflammatory breast cancer line of human origin (in a 3D model) to subsequent photodamage directed at mitochondria. Additional studies were carried out with hepatoma cells to explore possible mechanisms. The phototoxic effect of the `sequential targeting' approach was associated with an increased apoptotic response. The low level of lysosomal photodamage did not lead to any detectable migration of Fe++ from lysosomes to mitochondria or increased reactive oxygen species (ROS) formation after subsequent mitochondrial photodamage. Instead, there appears to be a signal generated that can amplify the pro-apoptotic effect of subsequent mitochondrial photodamage.

  4. Does targeted, disease-specific public research funding influence pharmaceutical innovation?

    PubMed

    Blume-Kohout, Margaret E

    2012-01-01

    Public funding for biomedical research is often justified as a means to encourage development of more (and better) treatments for disease. However, few studies have investigated the relationship between these expenditures and downstream pharmaceutical innovation. In particular, although recent analyses have shown a clear contribution of federally funded research to drug development, there exists little evidence to suggest that increasing targeted public research funding for any specific disease will result in increased development of drugs to treat that disease. This paper evaluates the impact of changes in the allocation of U. S. National Institutes of Health (NIH) extramural research grant funding across diseases on the number of drugs entering clinical testing to treat those diseases, using new longitudinal data on NIH extramural research grants awarded by disease for years 1975 through 2006. Results from a variety of distributed lag models indicate that a sustained 10 percent increase in targeted, disease-specific NIH funding yields approximately a 4. 5 percent increase in the number of related drugs entering clinical testing (phase I trials) after a lag of up to 12 years, reflecting the continuing influence of NIH funding on discovery and testing of new molecular entities. In contrast, we do not see evidence that increases in NIH extramural grant funding for research focused on specific diseases will increase the number of related treatments investigated in the more expensive, late-stage (phase III) trials.

  5. Intracellular chromobody delivery by mesoporous silica nanoparticles for antigen targeting and visualization in real time

    PubMed Central

    Chiu, Hsin-Yi; Deng, Wen; Engelke, Hanna; Helma, Jonas; Leonhardt, Heinrich; Bein, Thomas

    2016-01-01

    Chromobodies have recently drawn great attention as bioimaging nanotools. They offer high antigen binding specificity and affinity comparable to conventional antibodies, but much smaller size and higher stability. Chromobodies can be used in live cell imaging for specific spatio-temporal visualization of cellular processes. To date, functional application of chromobodies requires lengthy genetic manipulation of the target cell. Here, we develop multifunctional large-pore mesoporous silica nanoparticles (MSNs) as nanocarriers to directly transport chromobodies into living cells for antigen-visualization in real time. The multifunctional large-pore MSNs feature high loading capacity for chromobodies, and are efficiently taken up by cells. By functionalizing the internal MSN surface with nitrilotriacetic acid-metal ion complexes, we can control the release of His6-tagged chromobodies from MSNs in acidified endosomes and observe successful chromobody-antigen binding in the cytosol. Hence, by combining the two nanotools, chromobodies and MSNs, we establish a new powerful approach for chromobody applications in living cells. PMID:27173765

  6. Antisense phosphorothioate oligonucleotides: selective killing of the intracellular parasite Leishmania amazonensis.

    PubMed

    Ramazeilles, C; Mishra, R K; Moreau, S; Pascolo, E; Toulmé, J J

    1994-08-16

    We targeted the mini-exon sequence, present at the 5' end of every mRNA of the protozoan parasite Leishmania amazonensis, by phosphorothioate oligonucleotides. A complementary 16-mer (16PS) was able to kill amastigotes--the intracellular stage of the parasite--in murine macrophages in culture. After 24 hr of incubation with 10 microM 16PS, about 30% infected macrophages were cured. The oligomer 16PS acted through antisense hybridization in a sequence-dependent way; no effect on parasites was observed with noncomplementary phosphorothioate oligonucleotides. The antisense oligonucleotide 16PS was a selective killer of the protozoans without any detrimental effect to the host macrophage. Using 16PS linked to a palmitate chain, which enabled it to complex with low density lipoproteins, improved the leishmanicidal efficiency on intracellular amastigotes, probably due to increased endocytosis. Phosphorothioate oligonucleotides complementary to the intron part of the mini-exon pre-RNA were also effective, suggesting that antisense oligomers could prevent trans-splicing in these parasites.

  7. Organelle-specific Subunit Interactions of the Vertebrate Two-pore Channel Family*

    PubMed Central

    Ogunbayo, Oluseye A.; Zhu, Yingmin; Shen, Bing; Agbani, Ejaife; Li, Jie; Ma, Jianjie; Zhu, Michael X.; Evans, A. Mark

    2015-01-01

    The organellar targeting of two-pore channels (TPCs) and their capacity to associate as homo- and heterodimers may be critical to endolysosomal signaling. A more detailed understanding of the functional association of vertebrate TPC1–3 is therefore necessary. We report here that when stably expressed in HEK293 cells, human (h) TPC1 and chicken (c) TPC3 were specifically targeted to different subpopulations of endosomes, hTPC2 was specifically targeted to lysosomes, and rabbit (r) TPC3 was specifically targeted to both endosomes and lysosomes. Intracellular dialysis of NAADP evoked a Ca2+ transient in HEK293 cells that stably overexpressed hTPC1, hTPC2, and rTPC3, but not in cells that stably expressed cTPC3. The Ca2+ transients induced in cells that overexpressed endosome-targeted hTPC1 were abolished upon depletion of acidic Ca2+ stores by bafilomycin A1, but remained unaffected following depletion of endoplasmic reticulum stores by thapsigargin. In contrast, Ca2+ transients induced via lysosome-targeted hTPC2 and endolysosome-targeted rTPC3 were abolished by bafilomycin A1 and markedly attenuated by thapsigargin. NAADP induced marked Ca2+ transients in HEK293 cells that stably coexpressed hTPC2 with hTPC1 or cTPC3, but failed to evoke any such response in cells that coexpressed interacting hTPC2 and rTPC3 subunits. We therefore conclude that 1) all three TPC subtypes may support Ca2+ signaling from their designate acidic stores, and 2) lysosome-targeted (but not endosome-targeted) TPCs support coupling to the endoplasmic reticulum. PMID:25451935

  8. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.

    PubMed

    Safavi-Sohi, Reihaneh; Maghari, Shokoofeh; Raoufi, Mohammad; Jalali, Seyed Amir; Hajipour, Mohammad J; Ghassempour, Alireza; Mahmoudi, Morteza

    2016-09-07

    Surface functionalization strategies for targeting nanoparticles (NP) to specific organs, cells, or organelles, is the foundation for new applications of nanomedicine to drug delivery and biomedical imaging. Interaction of NPs with biological media leads to the formation of a biomolecular layer at the surface of NPs so-called as "protein corona". This corona layer can shield active molecules at the surface of NPs and cause mistargeting or unintended scavenging by the liver, kidney, or spleen. To overcome this corona issue, we have designed biotin-cysteine conjugated silica NPs (biotin was employed as a targeting molecule and cysteine was used as a zwitterionic ligand) to inhibit corona-induced mistargeting and thus significantly enhance the active targeting capability of NPs in complex biological media. To probe the targeting yield of our engineered NPs, we employed both modified silicon wafer substrates with streptavidin (i.e., biotin receptor) to simulate a target and a cell-based model platform using tumor cell lines that overexpress biotin receptors. In both cases, after incubation with human plasma (thus forming a protein corona), cellular uptake/substrate attachment of the targeted NPs with zwitterionic coatings were significantly higher than the same NPs without zwitterionic coating. Our results demonstrated that NPs with a zwitterionic surface can considerably facilitate targeting yield of NPs and provide a promising new type of nanocarriers in biological applications.

  9. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons.

    PubMed

    Prouty, Eric W; Chandler, Daniel J; Waterhouse, Barry D

    2017-11-15

    Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dendritic cell targeted vaccines: Recent progresses and challenges

    PubMed Central

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-01-01

    ABSTRACT Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches. PMID:26513200

  11. Human Parainfluenza Virus-3 can be Targeted by Rapidly ex vivo Expanded T-Lymphocytes

    PubMed Central

    McLaughlin, Lauren P.; Lang, Haili; Williams, Elizabeth; Wright, Kaylor E.; Powell, Allison; Cruz, Conrad R; Colberg-Poley, Anamaris M.; Barese, Cecilia; Hanley, Patrick J.; Bollard, Catherine M.; Keller, Michael D.

    2016-01-01

    Background Human Parainfluenza virus-3 (HPIV) is a common cause of respiratory infection in immunocompromised patients, and presently has no effective therapies. Virus-specific T-cell therapy has been successful for the treatment or prevention of viral infections in immunocompromised patients, but requires determination of T-cell antigens on targeted viruses. Methods HPIV3-specific T cells were expanded from peripheral blood of healthy donors using a rapid generation protocol targeting four HPIV3 proteins. Immunophenotyping was performed by flow cytometry. Viral specificity was determined by IFN-γ ELISpot, intracellular cytokine staining, and cytokine measurements from culture supernatants by Luminex assay. Cytotoxic activity was tested by 51Cr release and CD107a mobilization assays. Virus-specific T-cells targeting 6 viruses were then produced by rapid protocol, and the phenotype of HPIV3-specific T-cells was determined by immunomagnetic sorting for IFN-γ producing cells. Results HPIV3-specific T cells were expanded from 13 healthy donors. HPIV3-specific T-cells showed a CD4+ predominance (mean CD4:CD8 ratio 2.89), and demonstrated specificity for multiple HPIV3 antigens. The expanded T-cells were polyfunctional based on cytokine production, but only had a minor cytotoxic component. T cells targeting six viruses in a single product similarly showed HPIV3 specificity, with a predominant effector memory phenotype (CD3+/CD45RA-/CCR7-) in responder cells. Discussion HPIV3-specific T cells can be produced using a rapid ex vivo protocol from healthy donors and are predominantly CD4+ T-cells with Th1 activity. HPIV3 epitopes can also be successfully targeted alongside multiple other viral epitopes in production of 6-virus T-cells, without loss of HPIV3 specificity. These products may be clinically beneficial to combat HPIV3 infections by adoptive T-cell therapy in immune compromised patients. PMID:27692559

  12. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles

    PubMed Central

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping

    2015-01-01

    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  13. Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells.

    PubMed

    Xu, Chenke; Wang, Wei; Zhong, Jin; Lei, Fan; Xu, Naihan; Zhang, Yaou; Xie, Weidong

    2018-06-01

    Canagliflozin (CAN) regulates intracellular glucose metabolism by targeting sodium-glucose co-transporter 2 (SGLT2) and intracellular glucose metabolism affects inflammation. In this study, we hypothesized that CAN might exert anti-inflammatory effects. The anti-inflammatory effects and action mechanisms of CAN were assayed in lipopolysaccharide (LPS)-induced RAW264.7 and THP-1 cells and NIH mice. Results showed that CAN significantly inhibited the production and release of interleukin (IL)-1, IL-6, or tumor necrosis factor-α (TNF-α) in the LPS-induced RAW264.7 and THP-1 cells, and mice. CAN also significantly inhibited intracellular glucose metabolism and 6-phosphofructo-2-kinase (PFK2) expression. CAN increased the levels of sequestosome-1 (SQSTM1/p62), upregulated the ratios of microtubule-associated protein 1A/1B-light chain 3 (LC3) II to I, promoted the formation of LC3 puncta, and enhanced the activities of lysosome. The inhibition of autophagy by 3-methyladenine (3-MA) reversed the effects of CAN on IL-1α levels. Increased autophagy might be associated with increased AMP-activated protein kinase (AMPK) phosphorylation. Interestingly, p62 demonstrated good co-localization with IL-1α and possibly mediated IL-1α degradation. CAN-induced increase in p62 was dependent on the nuclear factor kappa B (NFκB) signaling pathway. These results indicated that CAN might exert anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy. Attenuated glucose metabolism by PFK2, increased autophagy flow by AMPK, and increased p62 levels by NFκB might be responsible for the molecular mechanisms of CAN. This drug might serve as a new promising anti-inflammatory drug for acute or chronic inflammatory diseases via independent hypoglycemic mechanisms. This drug might also be used as an important reference for similar drug research and development by targeting intracellular glucose metabolism and autophagy in immune cells. Copyright

  14. [Transient expression and characterization of intracellular single chain Fv against the nucleocapsid protein of Hantavirus].

    PubMed

    Bai, Wen-tao; Xu, Zhi-kai; Zhang, Fang-lin; Luo, Wen; Liu, Yong; Wu, Xing-an; Yan, Yan

    2004-11-01

    To transiently express an intracellular single chain Fv of monoclonal antibody 1A8 against nucleocapsid protein of Hantavirus and characterize the immunological activities of the expressed products. COS-7 cells were transfected with mammalian expression vector 1A8-scFv-Ckappa/pCI-neo via lipofectin. The expressed product was identified by indirect immunofluorescence and immunoprecipitation. A diffuse pattern fluorescence was observed in less than 1% cytoplasm of transfected COS-7 cells. The binding of intracellular antibody fragments to NP antigen was confirmed by immunoprecipitation analysis. Transiently expressed single chain intrabodies can effectively target NP antigen in the cytoplasm. The present study may provide a new approach for treatment of Hantavirus.

  15. Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes.

    PubMed

    Paolino, Donatella; Cosco, Donato; Gaspari, Marco; Celano, Marilena; Wolfram, Joy; Voce, Pasquale; Puxeddu, Efisio; Filetti, Sebastiano; Celia, Christian; Ferrari, Mauro; Russo, Diego; Fresta, Massimo

    2014-08-01

    Various tissue-specific antibodies have been attached to nanoparticles to obtain targeted delivery. In particular, nanodelivery systems with selectivity for breast, prostate and cancer tissue have been developed. Here, we have developed a nanodelivery system that targets the thyroid gland. Nanoliposomes have been conjugated to the thyroid-stimulating hormone (TSH), which binds to the TSH receptor (TSHr) on the surface of thyrocytes. The results indicate that the intracellular uptake of TSH-nanoliposomes is increased in cells expressing the TSHr. The accumulation of targeted nanoliposomes in the thyroid gland following intravenous injection was 3.5-fold higher in comparison to untargeted nanoliposomes. Furthermore, TSH-nanoliposomes encapsulated with gemcitabine showed improved anticancer efficacy in vitro and in a tumor model of follicular thyroid carcinoma. This drug delivery system could be used for the treatment of a broad spectrum of thyroid diseases to reduce side effects and improve therapeutic efficacy. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Valosin-containing protein VCP/p97 is essential for the intracellular development of Leishmania and its survival under heat stress.

    PubMed

    Guedes Aguiar, Bruno; Padmanabhan, Prasad K; Dumas, Carole; Papadopoulou, Barbara

    2018-06-12

    Valosin-containing protein (VCP)/p97/Cdc48 is one of the best-characterised type II cytosolic AAA+ ATPases most known for their role in ubiquitin-dependent protein quality control. Here, we provide functional insights into the role of the Leishmania VCP/p97 homologue (LiVCP) in the parasite intracellular development. We demonstrate that although LiVCP is an essential gene, Leishmania infantum promastigotes can grow with less VCP. In contrast, growth of axenic and intracellular amastigotes is dramatically affected upon decreased LiVCP levels in heterozygous and temperature sensitive (ts) LiVCP mutants or the expression of dominant negative mutants known to specifically target the second conserved VCP ATPase domain, a major contributor of the VCP overall ATPase activity. Interestingly, these VCP mutants are also unable to survive heat stress, and a ts VCP mutant is defective in amastigote growth. Consistent with LiVCP's essential function in amastigotes, LiVCP messenger ribonucleic acid undergoes 3'Untranslated Region (UTR)-mediated developmental regulation, resulting in higher VCP expression in amastigotes. Furthermore, we show that parasite mutant lines expressing lower VCP levels or dominant negative VCP forms exhibit high accumulation of polyubiquitinated proteins and increased sensitivity to proteotoxic stress, supporting the ubiquitin-selective chaperone function of LiVCP. Together, these results emphasise the crucial role LiVCP plays under heat stress and during the parasite intracellular development. © 2018 John Wiley & Sons Ltd.

  17. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release.

    PubMed

    Aw, M S; Paniwnyk, L

    2017-09-26

    One of the pivotal matters of concern in intracellular drug delivery is the preparation of biomaterials containing drugs that are compatible with the host target. Nanocapsules for oral delivery are found to be suitable candidates for targeting Toxoplasma gondii (T. gondii), a maneuvering and smart protozoic parasite found across Europe and America that causes a subtle but deadly infection. To overcome this disease, there is much potential of integrating protein-based cells into bioinspired nanocompartments such as via biodegradable cross-linked disulfide polyelectrolyte nanoparticles. The inner membrane vesicle system of these protein-drugs is not as simple as one might think. It is a complex transport network that includes sequential pathways, namely, endocytosis, exocytosis and autophagy. Unfortunately, the intracellular trafficking routes for nanoparticles in cells have not been extensively and intensively investigated. Hence, there lies the need to create robust protein nanocapsules for precise tracing and triggering of drug release to combat this protozoic disease. Protein nanocapsules have the advantage over other biomaterials due to their biocompatibility, use of natural ingredients, non-invasiveness, patient compliance, cost and time effectiveness. They also offer low maintenance, non-toxicity to healthy cells and a strictly defined route toward intracellular elimination through controlled drug delivery within the therapeutic window. This review covers the unprecedented opportunities that exist for constructing advanced nanocapsules to meet the growing needs arising from many therapeutic fields. Their versatile use includes therapeutic ultrasound for tumor imaging, recombinant DNA, ligand and functional group binding, the delivery of drugs and peptides via protein nanocapsules and polyelectrolytes, ultrasound-(US)-aided drug release through the gastrointestinal (GI) tract, and the recent progress in targeting tumor cells and a vast range of cancer therapies

  18. An effective intracellular delivery system of monoclonal antibody for treatment of tumors: erythrocyte membrane-coated self-associated antibody nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Lipeng; Han, Lin; Ding, Xiaoling; Xu, Jiaojiao; Wang, Jing; Zhu, Jianzhong; Lu, Weiyue; Sun, Jihong; Yu, Lei; Yan, Zhiqiang; Wang, Yiting

    2017-08-01

    Antibody-based drugs have attracted much attention for their targeting ability, high efficacy and low toxicity. But it is difficult for those intrabodies, a kind of antibody whose targets are intracellular biomarkers, to become effective drugs due to the lack of intracellular delivery strategy and their short circulation time in blood. Human telomerase reverse transcriptase (hTERT), an important biomarker for tumors, is expressed only in cytoplasm instead of on cell membrane. In this study, the anti-hTERT blocking monoclonal antibody (mAb), as the model intrabody, was used to prepare nanoparticles (NPs), followed by the encapsulation of erythrocyte membrane (EM), to obtain the EM-coated anti-hTERT mAb NPs delivery system. The final NPs showed a z-average hydrodynamic diameter of about 197.3 nm. The in vitro cellular uptake by HeLa cells confirmed that compared with free anti-hTERT mAb, the EM-coated anti-hTERT mAb NPs exhibited a significantly increased uptake by tumor cells. Besides, the pharmacokinetic study confirmed that the EM encapsulation can remarkably prolong the circulation time and increase the area under curve (AUC) of NPs in blood. The EM-coated anti-hTERT mAb NPs exhibited a remarkably decreased uptake by macrophages than uncoated NPs, which may be responsible for the prolonged circulation time and increased AUC. Furthermore, the frozen section of tumor tissue was performed and proved that the EM-coated anti-hTERT mAb NPs can be more effectively accumulated in tumor tissues than the free mAb and uncoated NPs. In summary, this study indicated that EM-coated anti-hTERT mAb NPs are an effective delivery system for the long circulation and intracellular delivery of an intrabody, and make it possible for the intracellular biomarkers to become the potential targets of drugs.

  19. MRP8/14 induces autophagy to eliminate intracellular Mycobacterium bovis BCG.

    PubMed

    Wang, Jinli; Huang, Chunyu; Wu, Minhao; Zhong, Qiu; Yang, Kun; Li, Miao; Zhan, Xiaoxia; Wen, Jinsheng; Zhou, Lin; Huang, Xi

    2015-04-01

    To explore the role of myeloid-related protein 8/14 in mycobacterial infection. The mRNA and protein expression levels of MRP8 or MRP14 were measured by real-time PCR and flow cytometry, respectively. Role of MRP8/14 was tested by overexpression or RNA interference assays. Flow cytometry and colony forming unit were used to test the phagocytosis and the survival of intracellular Mycobacterium bovis BCG (BCG), respectively. Autophagy mediated by MRP8/14 was detected by Western blot and immunofluorescence. The colocalization of BCG phagosomes with autophagosomes or lysosomes was by detected by confocal microscopy. ROS production was detected by flow cytometry. MRP8/14 expressions were up-regulated in human monocytic THP1 cells and primary macrophages after mycobacterial challenge. Silencing of MRP8/14 suppressed bacterial killing, but had no influence on the phagocytosis of BCG. Importantly, silencing MRP8/14 decreased autophagy and BCG phagosome maturation in THP1-derived macrophages, thereby increasing the BCG survival. Additionally, we demonstrated that MRP8/14 promoted autophagy in a ROS-dependent manner. The present study revealed a novel role of MRP8/14 in the autophagy-mediated elimination of intracellular BCG by promoting ROS generation, which may provide a promising therapeutic target for tuberculosis and other intracellular bacterial infectious diseases. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. When intracellular logistics fails--genetic defects in membrane trafficking.

    PubMed

    Olkkonen, Vesa M; Ikonen, Elina

    2006-12-15

    The number of human genetic disorders shown to be due to defects in membrane trafficking has greatly increased during the past five years. Defects have been identified in components involved in sorting of cargo into transport carriers, vesicle budding and scission, movement of vesicles along cytoskeletal tracks, as well as in vesicle tethering, docking and fusion at the target membrane. The nervous system is extremely sensitive to such disturbances of the membrane trafficking machinery, and the majority of these disorders display neurological defects--particularly diseases affecting the motility of transport carriers along cytoskeletal tracks. In several disorders, defects in a component that represents a fundamental part of the trafficking machinery fail to cause global transport defects but result in symptoms limited to specific cell types and transport events; this apparently reflects the redundancy of the transport apparatus. In groups of closely related diseases such as Hermansky-Pudlak and Griscelli syndromes, identification of the underlying gene defects has revealed groups of genes in which mutations lead to similar phenotypic consequences. New functionally linked trafficking components and regulatory mechanisms have thus been discovered. Studies of the gene defects in trafficking disorders therefore not only open avenues for new therapeutic approaches but also significantly contribute to our knowledge of the fundamental mechanisms of intracellular membrane transport.

  1. Streptozotocin-Induced Autophagy Reduces Intracellular Insulin in Insulinoma INS-1E Cells.

    PubMed

    Yoo, Yeong-Min; Park, Yung Chul

    2018-03-01

    Streptozotocin (STZ), a glucose analog, induces diabetes in experimental animals by inducing preferential cytotoxicity in pancreatic beta cells. We investigated whether STZ reduced the production of intracellular insulin through autophagy in insulinoma INS-1E cells. Typically, 2 mM STZ treatment for 24 h significantly decreased cell survival. STZ treatment led to significant decrease in phospho-AMP-activated protein kinase (p-AMPK) level; reduction in levels of phospho-protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α); significant reduction in levels of p85α, p110, phospho-serine and threonine kinase/protein kinase B (p-Akt/PKB) (Ser473), phospho-extracellular-regulated kinase (p-ERK), and phospho-mammalian target of rapamycin (p-mTOR); increase in levels of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase; decrease in B-cell lymphoma 2 (Bcl-2) expression; increase in Bcl-2-associated X protein (Bax) expression; increase in levels of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1; and reduction in production of intracellular insulin. These results suggest that insulin synthesis during STZ treatment involves autophagy in INS-1E cells and, subsequently, results in a decrease in intracellular production of insulin.

  2. Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy.

    PubMed

    Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter

    2017-02-10

    One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.

  3. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  4. Gamma band activity in the RAS-intracellular mechanisms.

    PubMed

    Garcia-Rill, E; Kezunovic, N; D'Onofrio, S; Luster, B; Hyde, J; Bisagno, V; Urbano, F J

    2014-05-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus, intralaminar parafascicular nucleus, and pontine SubCoeruleus nucleus dorsalis all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high-threshold, voltage-dependent P/Q-type calcium channels, or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries: an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking versus during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking versus REM sleep after sleep or REM sleep deprivation?

  5. Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism.

    PubMed

    Smith, Desirée E C; Hornstra, Jacqueline M; Kok, Robert M; Blom, Henk J; Smulders, Yvo M

    2013-08-01

    In randomized trails, folic acid (FA) lowered plasma homocysteine, but failed to reduce cardiovascular risk. We hypothesize this is due to a discrepancy between plasma and intracellular effects of FA. In a double-blind trial, 50 volunteers were randomized to received 500 µg FA daily for 8 weeks, or placebo. Plasma and peripheral blood mononuclear cell (PBMC) concentrations of homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine, methionine, cystathionine and 5-methyltetrahydrofolate (bioactive folate) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). PBMCs were used as a cellular model since they display the full spectrum of one-carbon (1C) enzymes and reactions. At baseline, plasma concentrations were a poor reflection of intracellular concentrations for most 1C metabolites, except 5-methyltetrahydrofolate (R=0.33, p=0.02), homocysteine (Hcy) (R=0.35, p=0.01), and cystathionine (R=0.45, p=0.001). FA significantly lowered plasma homocysteine (p=0.00), but failed to lower intracellular homocysteine or change the concentrations of any of the other PBMC 1C metabolites. At baseline, PBMC homocysteine concentrations correlated to PBMC SAM. After FA supplementation, PBMC homocysteine no longer correlated with PBMC SAM, suggesting a loss of SAM's regulatory function. In vitro experiments in lymphoblasts confirmed that at higher folate substrate concentrations, physiological concentrations of SAM no longer effectively inhibit the key regulatory enzyme methylenetetrahydrofolate reductase (MTHFR). FA supplementation does not reduce intracellular concentrations of Hcy or any of its closely related substances. Rather, FA may disturb physiological regulation of intracellular 1C metabolism by interfering with SAM's inhibitory effect on MTHFR activity.

  6. Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice

    PubMed Central

    Zhang, Baozhen; Tan, Lunbo; Yu, Yan; Wang, Baobei; Chen, Zhilong; Han, Jinyu; Li, Mengxia; Chen, Jie; Xiao, Tianxia; Ambati, Balamurali K; Cai, Lintao; Yang, Qing; Nayak, Nihar R; Zhang, Jian; Fan, Xiujun

    2018-01-01

    Rationale: The availability of therapeutics to treat pregnancy complications is severely lacking, mainly due to the risk of harm to the fetus. In placental malaria, Plasmodium falciparum-infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) on the surfaces of trophoblasts. Based on this principle, we have developed a method for targeted delivery of payloads to the placenta using a synthetic placental CSA-binding peptide (plCSA-BP) derived from VAR2CSA, a CSA-binding protein expressed on IEs. Methods: A biotinylated plCSA-BP was used to examine the specificity of plCSA-BP binding to mouse and human placental tissue in tissue sections in vitro. Different nanoparticles, including plCSA-BP-conjugated nanoparticles loaded with indocyanine green (plCSA-INPs) or methotrexate (plCSA-MNPs), were administered intravenously to pregnant mice to test their efficiency at drug delivery to the placenta in vivo. The tissue distribution and localization of the plCSA-INPs were monitored in live animals using an IVIS imaging system. The effect of plCSA-MNPs on fetal and placental development and pregnancy outcome were examined using a small-animal high-frequency ultrasound (HFUS) imaging system, and the concentrations of methotrexate in fetal and placental tissues were measured using high-performance liquid chromatography (HPLC). Results: plCSA-BP binds specifically to trophoblasts and not to other cell types in the placenta or to CSA-expressing cells in other tissues. Moreover, we found that intravenously administered plCSA-INPs accumulate in the mouse placenta, and ex vivo analysis of the fetuses and placentas confirmed placenta-specific delivery of these nanoparticles. We also demonstrate successful delivery of methotrexate specifically to placental cells by plCSA-BP-conjugated nanoparticles, resulting in dramatic impairment of placental and fetal development. Importantly, plCSA-MNPs treatment had no apparent adverse effects on maternal

  7. A Caveolin Dominant Negative Mutant Associates with Lipid Bodies and Induces Intracellular Cholesterol Imbalance

    PubMed Central

    Pol, Albert; Luetterforst, Robert; Lindsay, Margaret; Heino, Sanna; Ikonen, Elina; Parton, Robert G.

    2001-01-01

    Recent studies have indicated a role for caveolin in regulating cholesterol-dependent signaling events. In the present study we have analyzed the role of caveolins in intracellular cholesterol cycling using a dominant negative caveolin mutant. The mutant caveolin protein, cav-3DGV, specifically associates with the membrane surrounding large lipid droplets. These structures contain neutral lipids, and are accessed by caveolin 1–3 upon overexpression. Fluorescence, electron, and video microscopy observations are consistent with formation of the membrane-enclosed lipid rich structures by maturation of subdomains of the ER. The caveolin mutant causes the intracellular accumulation of free cholesterol (FC) in late endosomes, a decrease in surface cholesterol and a decrease in cholesterol efflux and synthesis. The amphiphile U18666A acts synergistically with cavDGV to increase intracellular accumulation of FC. Incubation of cells with oleic acid induces a significant accumulation of full-length caveolins in the enlarged lipid droplets. We conclude that caveolin can associate with the membrane surrounding lipid droplets and is a key component involved in intracellular cholesterol balance and lipid transport in fibroblasts. PMID:11238460

  8. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles

    NASA Astrophysics Data System (ADS)

    Aumiller, William M.; Keating, Christine D.

    2016-02-01

    Biological cells are highly organized, with numerous subcellular compartments. Phosphorylation has been hypothesized as a means to control the assembly/disassembly of liquid-like RNA- and protein-rich intracellular bodies, or liquid organelles, that lack delimiting membranes. Here, we demonstrate that charge-mediated phase separation, or complex coacervation, of RNAs with cationic peptides can generate simple model liquid organelles capable of reversibly compartmentalizing biomolecules. Formation and dissolution of these liquid bodies was controlled by changes in peptide phosphorylation state using a kinase/phosphatase enzyme pair. The droplet-generating phase transition responded to modification of even a single serine residue. Electrostatic interactions between the short cationic peptides and the much longer polyanionic RNAs drove phase separation. Coacervates were also formed on silica beads, a primitive model for localization at specific intracellular sites. This work supports phosphoregulation of complex coacervation as a viable mechanism for dynamic intracellular compartmentalization in membraneless organelles.

  9. Activatable clinical fluorophore-quencher antibody pairs as dual molecular probes for the enhanced specificity of image-guided surgery

    NASA Astrophysics Data System (ADS)

    Obaid, Girgis; Spring, Bryan Q.; Bano, Shazia; Hasan, Tayyaba

    2017-12-01

    The emergence of fluorescently labeled therapeutic antibodies has given rise to molecular probes for image-guided surgery. However, the extraneous interstitial presence of an unbound and nonspecifically accumulated probe gives rise to false-positive detection of tumor tissue and margins. Thus, the concept of tumor-cell activation of smart probes provides a potentially superior mechanism of delineating tumor margins as well as small tumor deposits. The combination of molecular targeting with intracellular activation circumvents the presence of extracellular, nonspecific signals of targeted probe accumulation. Here, we present a demonstration of the clinical antibodies cetuximab (cet, anti-EGFR mAb) and trastuzumab (trast, anti-HER-2 mAb) conjugated to Alexa Fluor molecules and IRDye QC-1 quencher optimized at the ratio of 1∶2∶6 to provide the greatest degree of proteolytic fluorescence activation, synonymous with intracellular lysosomal degradation. The cet-AF-Q-C1 conjugate (1∶2∶6) provides up to 9.8-fold proteolytic fluorescence activation. By preparing a spectrally distinct, irrelevant sham IgG-AF-QC-1 conjugate, a dual-activatable probe approach is shown to enhance the specificity of imaging within an orthotopic AsPC-1 pancreatic cancer xenograft model. The dual-activatable approach warrants expedited clinical translation to improve the specificity of image-guided surgery by spectrally decomposing specific from nonspecific probe accumulation, binding, and internalization.

  10. Targeted Nanodiamonds as Phenotype Specific Photoacoustic Contrast Agents for Breast Cancer

    PubMed Central

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird

    2015-01-01

    Aim The aim is to develop irradiated nanodiamonds (INDs) as a molecularly-targeted contrast agent for high resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. Materials & Methods The surface of acid treated radiation-damaged nanodiamonds was grafted with polyethylene glycol (PEG) to improve its stability and circulation time in blood, followed by conjugation to an anti-Human epidermal growth factor receptor-2 (HER2) peptide (KCCYSL) with a final nanoparticle size of ca. 92 nm. Immunocompetent mice bearing orthotopic HER2 positive or negative tumors were administered INDs and PA imaged using an 820-nm near infrared laser. Results PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 hours. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are non-toxic. Conclusions PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high resolution (sub-mm) and phenotype specific monitoring of cancer growth. PMID:25723091

  11. Aminopyrazinamides: novel and specific GyrB inhibitors that kill replicating and nonreplicating Mycobacterium tuberculosis.

    PubMed

    Shirude, Pravin S; Madhavapeddi, Prashanti; Tucker, Julie A; Murugan, Kannan; Patil, Vikas; Basavarajappa, Halesha; Raichurkar, Anandkumar V; Humnabadkar, Vaishali; Hussein, Syeed; Sharma, Sreevalli; Ramya, V K; Narayan, Chandan B; Balganesh, Tanjore S; Sambandamurthy, Vasan K

    2013-03-15

    Aminopyrazinamides originated from a high throughput screen targeting the Mycobacterium smegmatis (Msm) GyrB ATPase. This series displays chemical tractability, robust structure-activity relationship, and potent antitubercular activity. The crystal structure of Msm GyrB in complex with one of the aminopyrazinamides revealed promising attributes of specificity against other broad spectrum pathogens and selectivity against eukaryotic kinases due to novel interactions at hydrophobic pocket, unlike other known GyrB inhibitors. The aminopyrazinamides display excellent mycobacterial kill under in vitro, intracellular, and hypoxic conditions.

  12. Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry

    PubMed Central

    Zlitni, Aimen; Yin, Melissa; Janzen, Nancy; Chatterjee, Samit; Lisok, Ala; Gabrielson, Kathleen L.; Nimmagadda, Sridhar; Pomper, Martin G.; Foster, F. Stuart

    2017-01-01

    Prostate specific membrane antigen (PSMA) targeted microbubbles (MBs) were developed using bioorthogonal chemistry. Streptavidin-labeled MBs were treated with a biotinylated tetrazine (MBTz) and targeted to PSMA expressing cells using trans-cyclooctene (TCO)-functionalized anti-PSMA antibodies (TCO-anti-PSMA). The extent of MB binding to PSMA positive cells for two different targeting strategies was determined using an in vitro flow chamber. The initial approach involved pretargeting, where TCO-anti-PSMA was first incubated with PSMA expressing cells and followed by MBTz, which subsequently showed a 2.8 fold increase in the number of bound MBs compared to experiments performed in the absence of TCO-anti-PSMA. Using direct targeting, where TCO-anti-PSMA was linked to MBTz prior to initiation of the assay, a 5-fold increase in binding compared to controls was observed. The direct targeting approach was subsequently evaluated in vivo using a human xenograft tumor model and two different PSMA-targeting antibodies. The US signal enhancements observed were 1.6- and 5.9-fold greater than that for non-targeted MBs. The lead construct was also evaluated in a head-to-head study using mice bearing both PSMA positive or negative tumors in separate limbs. The human PSMA expressing tumors exhibited a 2-fold higher US signal compared to those tumors deficient in human PSMA. The results demonstrate both the feasibility of preparing PSMA-targeted MBs and the benefits of using bioorthogonal chemistry to create targeted US probes. PMID:28472168

  13. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug

    PubMed Central

    Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M.; Frick, David N.; Bolognesi, Martino; Milani, Mario

    2012-01-01

    Objectives Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Methods Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Results Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC50 values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. Conclusions The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV. PMID:22535622

  14. Receptor-Mediated Uptake and Intracellular Sorting of Multivalent Lipid Nanoparticles Against the Epidermal Growth Factor Receptor (EGFR) and the Human EGFR 2 (HER2)

    NASA Astrophysics Data System (ADS)

    Tran, David Tu

    In the area of receptor-targeted lipid nanoparticles for drug delivery, efficiency has been mainly focused on cell-specificity, endocytosis, and subsequently effects on bioactivity such as cell growth inhibition. Aspects of targeted liposomal uptake and intracellular sorting are not well defined. This dissertation assessed a series of ligands as targeted functional groups against HER2 and EGFR for liposomal drug delivery. Receptor-mediated uptake, both mono-targeted and dual-targeted to multiple receptors of different ligand valence, and the intracellular sorting of lipid nanoparticles were investigated to improve the delivery of drugs to cancer cells. Lipid nanoparticles were functionalized through a new sequential micelle transfer---conjugation method, while the micelle transfer method was extended to growth factors. Through a combination of both techniques, anti-HER2 and anti-EGFR dual-targeted immunoliposomes with different combinations of ligand valence were developed for comparative studies. With the array of lipid nanoparticles, the uptake and cytotoxicity of lipid nanoparticles in relationship to ligand valence, both mono-targeting and dual-targeting, were evaluated on a small panel of breast cancer cell lines that express HER2 and EGFR of varying levels. Comparable uptake ratios of ligand to expressed receptor and apparent cooperativity were observed. For cell lines that express both receptors, additive dose-uptake effects were also observed with dual-targeted immunoliposomes, which translated to marginal improvements in cell growth inhibition with doxorubicin delivery. Colocalization analysis revealed that ligand-conjugated lipid nanoparticles settle to endosomal compartments similar to their attached ligands. Pathway transregulation and pathway saturation were also observed to affect trafficking. In the end, liposomes routed to the recycling endosomes were never observed to traffic beyond the endosomes nor to be exocytose like recycled ligands. Based on

  15. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.

    PubMed

    Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen

    2014-10-15

    In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Targeting Plasmodium PI(4)K to eliminate malaria.

    PubMed

    McNamara, Case W; Lee, Marcus Cs; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Simon, Oliver; Yeung, Bryan Ks; Chatterjee, Arnab K; McCormack, Susan L; Manary, Micah J; Zeeman, Anne-Marie; Dechering, Koen J; Kumar, Tr Santha; Henrich, Philipp P; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L; Fischli, Christoph; Nagle, Advait; Rottmann, Matthias; Plouffe, David M; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C; Kocken, Clemens Hm; Glynne, Richard J; Bodenreider, Christophe; Fidock, David A; Diagana, Thierry T; Winzeler, Elizabeth A

    2013-12-12

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  17. Targeting Plasmodium PI(4)K to eliminate malaria

    NASA Astrophysics Data System (ADS)

    McNamara, Case W.; Lee, Marcus C. S.; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K. S.; Chatterjee, Arnab K.; McCormack, Susan L.; Manary, Micah J.; Zeeman, Anne-Marie; Dechering, Koen J.; Kumar, T. R. Santha; Henrich, Philipp P.; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L.; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M.; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W.; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C.; Kocken, Clemens H. M.; Glynne, Richard J.; Bodenreider, Christophe; Fidock, David A.; Diagana, Thierry T.; Winzeler, Elizabeth A.

    2013-12-01

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  18. Intracellular GPCRs Play Key Roles in Synaptic Plasticity.

    PubMed

    Jong, Yuh-Jiin I; Harmon, Steven K; O'Malley, Karen L

    2018-02-16

    The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.

  19. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  20. Function-specific intracellular signaling pathways downstream of heparin-binding EGF-like growth factor utilized by human trophoblasts.

    PubMed

    Jessmon, Philip; Kilburn, Brian A; Romero, Roberto; Leach, Richard E; Armant, D Randall

    2010-05-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1-2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation.

  1. Heterobivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen (PSMA) and Hepsin

    DTIC Science & Technology

    2014-11-01

    Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin PRINCIPAL INVESTIGATOR: Youngjoo Byun, Ph. D. CONTRACTING ORGANIZATION: Korea...Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin 5b. GRANT NUMBER W81XWH-10-1-0189 5c. PROGRAM ELEMENT NUMBER 6...heterobivalent conjugates of PSMA /hepsin-binding ligands labeled with optical dyes or radionuclides. The sensitivity and accuracy of prostate cancer

  2. Different glycoforms of prostate-specific membrane antigen are intracellularly transported through their association with distinct detergent-resistant membranes.

    PubMed

    Castelletti, Deborah; Alfalah, Marwan; Heine, Martin; Hein, Zeynep; Schmitte, Ruth; Fracasso, Giulio; Colombatti, Marco; Naim, Hassan Y

    2008-01-01

    Hormone-refractory prostate carcinomas as well as the neovasculature of different tumours express high levels of PSMA (prostate-specific membrane antigen). PSMA is a type II-transmembrane glycoprotein and a potential tumour marker for both diagnosis and passive immunotherapy. Here, we report on the association of PSMA with DRMs (detergent-resistant membranes) at different stages of the protein maturation pathway in human prostate carcinoma LNCaP cells. At least three PSMA glycoforms were biochemically identified based on their extractability behaviour in different non-ionic detergents. In particular, one precursor glycoform of PSMA is associated with Tween 20-insoluble DRMs, whereas the complex glycosylated protein segregates into membrane structures that are insoluble in Lubrol WX and display a different lipid composition. Association of PSMA with these membranes occurs in the Golgi compartment together with the acquisition of a native conformation. PSMA homodimers reach the plasma membrane of LNCaP cells in Lubrol WX-insoluble lipid/protein complexes. At the steady state, the majority of PSMA remains within these membrane microdomains at the cell surface. We conclude that the intracellular transport of PSMA occurs through populations of DRMs distinct for each biosynthetic form and cellular compartment.

  3. Design specification for the European Spallation Source neutron generating target element

    NASA Astrophysics Data System (ADS)

    Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J. M.; Martinez, J. L.; Bermejo, F. J.

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  4. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides.

    PubMed

    Dissanayake, Shama; Denny, William A; Gamage, Swarna; Sarojini, Vijayalekshmi

    2017-03-28

    Efficient intracellular trafficking and targeted delivery to the site of action are essential to overcome the current drawbacks of cancer therapeutics. Cell Penetrating Peptides (CPPs) offer the possibility of efficient intracellular trafficking, and, therefore the development of drug delivery systems using CPPs as cargo carriers is an attractive strategy to address the current drawbacks of cancer therapeutics. Additionally, the possibility of incorporating Tumor Targeting Peptides (TTPs) into the delivery system provides the necessary drug targeting effect. Therefore the conjugation of CPPs and/or TTPs with therapeutics provides a potentially efficient method of improving intracellular drug delivery mechanisms. Peptides used as cargo carriers in DDS have been shown to enhance the cellular uptake of drugs and thereby provide an efficient therapeutic benefit over the drug on its own. After providing a brief overview of various drug targeting approaches, this review focusses on peptides as carriers and targeting moieties in drug-peptide covalent conjugates and summarizes the most recent literature examples where CPPs on their own or CPPs together with TTPs have been conjugated to anticancer drugs such as Doxorubicin, Methotrexate, Paclitaxel, Chlorambucil etc. A short section on CPPs used in multicomponent drug delivery systems is also included. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Targeted protein degradation by PROTACs.

    PubMed

    Neklesa, Taavi K; Winkler, James D; Crews, Craig M

    2017-06-01

    Targeted protein degradation using the PROTAC technology is emerging as a novel therapeutic method to address diseases driven by the aberrant expression of a disease-causing protein. PROTAC molecules are bifunctional small molecules that simultaneously bind a target protein and an E3-ubiquitin ligase, thus causing ubiquitination and degradation of the target protein by the proteasome. Like small molecules, PROTAC molecules possess good tissue distribution and the ability to target intracellular proteins. Herein, we highlight the advantages of protein degradation using PROTACs, and provide specific examples where degradation offers therapeutic benefit over classical enzyme inhibition. Foremost, PROTACs can degrade proteins regardless of their function. This includes the currently "undruggable" proteome, which comprises approximately 85% of all human proteins. Other beneficial aspects of protein degradation include the ability to target overexpressed and mutated proteins, as well as the potential to demonstrate prolonged pharmacodynamics effect beyond drug exposure. Lastly, due to their catalytic nature and the pre-requisite ubiquitination step, an exquisitely potent molecules with a high degree of degradation selectivity can be designed. Impressive preclinical in vitro and in vivo PROTAC data have been published, and these data have propelled the development of clinically viable PROTACs. With the molecular weight falling in the 700-1000Da range, the delivery and bioavailability of PROTACs remain the largest hurdles on the way to the clinic. Solving these issues and demonstrating proof of concept clinical data will be the focus of many labs over the next few years. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Intracellular delivery of peptide cargos using iron oxide based nanoparticles: studies on antitumor efficacy of a BCL-2 converting peptide, NuBCP-9

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Singh, Gurpal; Sharma, Sapna; Gupta, Dikshi; Bansal, Vivek; Arora, Vikas; Bhat, Madhusudan; Srivastava, Sandeep K.; Sapra, Sameer; Kharbanda, Surender; Dinda, Amit K.; Singh, Harpal

    2014-11-01

    Delivering peptides into cells targeting the undruggable oncoproteins is an emerging area in cancer therapeutics. Here we report a novel nanoparticle-based delivery system that can transport therapeutic cargos to the intracellular sites without the need for a cell transduction or penetration domain (CPP). In the present study, we have used iron oxide nanoparticles to deliver an oncopeptide, NuBCP-9, targeting the BCL-2 BH3 domain. Citric acid/2-bromo 2-methylpropanoic acid (CA/BMPA)-capped SPIONs were used to immobilize and deliver the NuBCP-9 peptide to the cancer cells without any noticeable off-target effects. Our results have demonstrated that NuBCP-9-SPIONs efficiently penetrate into cancer cells and bind to its intracellular target protein BCL-2. Moreover, significant inhibition of proliferation and substantial induction of cell death were observed when cancer cells were treated with NuBCP-9-SPIONs at different time intervals. Importantly, the IC50 values for killing of breast cancer cells with NuBCP-9-SPIONs were much lower compared to cells treated with the NuBCP-9 peptide linked with a CPP (Arg-8; NuBCP-9-R8). Molecular and biochemical analyses further supported that NuBCP-9-SPIONs killed breast cancer cells by apoptosis-mediated mechanisms. Furthermore, our data demonstrated that administration of NuBCP-9-SPIONs to mice bearing Ehrlich ascites tumors (EAT) was associated with loss of tumorigenicity and extensive apoptosis in tumor tissues. Taken together, these findings show that a non-CPP-tagged peptide can be successfully delivered to undruggable intracellular oncotargets using SPIONs.Delivering peptides into cells targeting the undruggable oncoproteins is an emerging area in cancer therapeutics. Here we report a novel nanoparticle-based delivery system that can transport therapeutic cargos to the intracellular sites without the need for a cell transduction or penetration domain (CPP). In the present study, we have used iron oxide nanoparticles to

  7. Inhibition of protease-inhibitor resistant hepatitis C virus replicons and infectious virus by intracellular intrabodies

    PubMed Central

    Gal-Tanamy, Meital; Zemel, Romy; Bachmatov, Larissa; Jangra, Rohit K.; Shapira, Assaf; Villanueva, Rodrigo; Yi, MinKyung; Lemon, Stanley M.; Benhar, Itai; Tur-Kaspa, Ran

    2015-01-01

    Hepatitis C virus (HCV) infection is a common cause of chronic liver disease and a serious threat to human health. The HCV NS3/4A serine protease is necessary for viral replication and innate immune evasion, and represents a well-validated target for specific antiviral therapy. We previously reported the isolation of single-chain antibodies (scFvs) that inhibit NS3/4A protease activity in vitro. Expressed intracellularly (intrabodies), these scFvs blocked NS3-mediated proliferation of NS3-transfected cells. Here we show that anti-NS3 scFvs suppress HCV RNA replication when expressed intracellularly in Huh7 hepatoma cells bearing either subgenomic or genome-length HCV RNA replicons. The expression of intrabodies directed against NS3 inhibited the autonomous amplification of HCV replicons resistant to small molecule inhibitors of the NS3/4A protease, and replicons derived from different HCV genotypes. The combination of intrabodies and interferon-α had an additive inhibitory effect on RNA replication in the replicon model. Intrabody expression also inhibited production of infectious HCV in a cell culture system. The NS3 protease activity was inhibited by the intrabodies in NS3-expressing cells. In contrast, cell-free synthesis of HCV RNA by preformed replicase complexes was not inhibited by intrabodies, suggesting that the major mode of inhibition of viral replication is inhibition of NS3/4A protease activity and subsequent suppression of viral polyprotein processing. PMID:20705106

  8. Extracellular and Intracellular Mechanisms Mediating Metastatic Activity of Exogenous Osteopontin

    PubMed Central

    Mandelin, Jami; Lin, Emme C. K.; Hu, Dana D.; Knowles, Susan K.; Do, Kim-Anh; Wang, Xuemei; Sage, E. Helene; Smith, Jeffrey W.; Arap, Wadih; Pasqualini, Renata

    2009-01-01

    BACKGROUND Osteopontin affects several steps of the metastatic cascade. Despite direct correlation with metastasis in experimental systems and in patient studies, the extracellular and intracellular basis for these observations remains unsolved. We used human melanoma and sarcoma cell lines to evaluate the effects of soluble osteopontin on metastasis. METHODS Exogenous osteopontin or negative controls, including a site-directed mutant osteopontin, were used in functional assays in vitro, ex vivo, and in vivo designed to test extracellular and intracellular mechanisms involved in experimental metastasis. RESULTS In the extracellular environment, we confirm that soluble osteopontin is required for its pro-metastatic effects; this phenomenon is specific, RGD-dependent, and evident in experimental models of metastasis. In the intracellular environment, osteopontin initially induces rapid Tyr-418 dephosphorylation of c-Src, with decreases in actin stress fibers and increased binding to the vascular endothelium. This heretofore undescribed Tyr dephosphorylation is followed by a tandem c-Src phosphorylation after tumor cell attachment to the metastatic site. CONCLUSION Our results reveal a complex molecular interaction as well as a dual role for osteopontin in metastasis that is dependent on whether tumor cells are in circulation or attached. Such context-dependent functional insights may contribute to anti-metastasis strategies. PMID:19224553

  9. Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release

    PubMed Central

    Sun, Huanli; Cheng, Ru; Deng, Chao

    2014-01-01

    Abstract Significance: The therapeutic effects of current micellar and vesicular drug formulations are restricted by slow and inefficient drug release at the pathological site. The development of smart polymeric nanocarriers that release drugs upon arriving at the target site has received a tremendous amount of attention for cancer therapy. Recent Advances: Taking advantage of a high reducing potential in the tumor tissues and in particular inside the tumor cells, various reduction-sensitive polymeric micelles and vesicles have been designed and explored for triggered anticancer drug release. These reduction-responsive nanosystems have demonstrated several unique features, such as good stability under physiological conditions, fast response to intracellular reducing environment, triggering drug release right in the cytosol and cell nucleus, and significantly improved antitumor activity, compared to traditional reduction-insensitive counterparts. Critical Issues: Although reduction-sensitive micelles and polymersomes have accomplished rapid intracellular drug release and enhanced in vitro antitumor effect, their fate inside the cells including the mechanism, site, and rate of reduction reaction remains unclear. Moreover, the systemic fate and performance of reduction-sensitive polymeric drug formulations have to be investigated. Future Directions: Biophysical studies should be carried out to gain insight into the degradation and drug release behaviors of reduction-responsive nanocarriers inside the tumor cells. Furthermore, novel ligand-decorated reduction-sensitive nanoparticulate drug formulations should be designed and explored for targeted cancer therapy in vivo. Antioxid. Redox Signal. 21, 755–767. PMID:24279980

  10. Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting

    PubMed Central

    Wang, Qi; Heizer, Esley; Rosa, Bruce A.; Wildman, Scott A.; Janetka, James W.; Mitreva, Makedonka

    2016-01-01

    Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3,000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite’s protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented that illustrate the close proximity of the indel to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. The study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. PMID:26829384

  11. Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting.

    PubMed

    Wang, Qi; Heizer, Esley; Rosa, Bruce A; Wildman, Scott A; Janetka, James W; Mitreva, Makedonka

    2016-04-01

    Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite's protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented illustrating the close proximity of some indels to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. This study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. In silico prediction of escherichia coli proteins targeting the host cell nucleus, with special reference to their role in colon cancer etiology.

    PubMed

    Khan, Abdul Arif

    2014-06-01

    The potential role of Escherichia coli in the development of colorectal carcinoma (CRC) has been investigated in many studies. Although the exact mechanism is not clear, chronic inflammation caused by E. coli and other related events are suggested as possible causes behind E. coli-induced colon cancer. It has been found that CRC cells, but not normal cells, are colonized by an intracellular form of E. coli. We predicted nuclear targeting of bacterial proteins in the host cell through computational tools nuclear localization signal (NLS) mapper and balanced subcellular localization predictor (BaCeILo). During intracellular E. coli residence, such targeting is highly likely and may have a possible role in colon cancer etiology. We observed that several gene expression-associated proteins of E. coli can migrate to the host nucleus during intracellular infections. This situation provides an opportunity for competitive interaction of host and pathogen proteins with similar cellular substrates, thereby increasing the chances of development of colon cancer. Moreover, the results indicated that proteins localized in the membrane of E. coli mostly act as secretary proteins in host cells. No exact correlation was observed between NLS prediction and nuclear localization prediction by BaCeILo. This is partly because of a number of reasons, including that only 30% of nuclear proteins carry NLS and that proteins <40 kDa molecular weight can passively target the host nucleus. This study concludes that detection of gene expression-specific E. coli proteins and their targeting of the nucleus may have a profound impact on CRC etiology.

  13. Intracellular pH in sperm physiology.

    PubMed

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. An enhanced functional interrogation/manipulation of intracellular signaling pathways with the peptide 'stapling' technology.

    PubMed

    He, Y; Chen, D; Zheng, W

    2015-11-12

    Specific protein-protein interactions (PPIs) constitute a key underlying mechanism for the presence of a multitude of intracellular signaling pathways, which are essential for the survival of normal and cancer cells. Specific molecular blockers for a crucial PPI would therefore be invaluable tools for an enhanced functional interrogation of the signaling pathway harboring this particular PPI. On the other hand, if a particular PPI is essential for the survival of cancer cells but is absent in or dispensable for the survival of normal cells, its specific molecular blockers could potentially be developed into effective anticancer therapeutics. Due to the flat and extended PPI interface, it would be conceivably difficult for small molecules to achieve an effective blockade, a problem which could be potentially circumvented with peptides or proteins. However, the well-documented proteolytic instability and cellular impermeability of peptides and proteins in general would make their developing into effective intracellular PPI blockers quite a challenge. With the advent of the peptide 'stapling' technology which was demonstrated to be able to stabilize the α-helical conformation of a peptide via bridging two neighboring amino-acid side chains with a 'molecular staple', a linear parent peptide could be transformed into a stronger PPI blocker with enhanced proteolytic stability and cellular permeability. This review will furnish an account on the peptide 'stapling' technology and its exploitation in efforts to achieve an enhanced functional interrogation or manipulation of intracellular signaling pathways especially those that are cancer relevant.

  15. Inhibitors of Intracellular Signaling Pathways that Lead to Stimulated Epidermal Pigmentation: Perspective of Anti-Pigmenting Agents

    PubMed Central

    Imokawa, Genji; Ishida, Koichi

    2014-01-01

    Few anti-pigmenting agents have been designed and developed according to their known hyperpigmentation mechanisms and corresponding intracellular signaling cascades. Most anti-pigmenting agents developed so far are mechanistically involved in the interruption of constitutional melanogenic mechanisms by which skin color is maintained at a normal and unstimulated level. Thus, owing to the difficulty of confining topical application to a specific hyperpigmented skin area, potent anti-pigmenting agents capable of attenuating the natural unstimulated pigmentation process have the risk of leading to hypopigmentation. Since intracellular signaling pathways within melanocytes do not function substantially in maintaining normal skin color and are activated only by environmental stimuli such as UV radiation, specifically down-regulating the activation of melanogenesis to the constitutive level would be an appropriate strategy to develop new potent anti-pigmenting agents with a low risk of hypopigmentation. In this article, we review the hyperpigmentation mechanisms and intracellular signaling pathways that lead to the stimulation of melanogenesis. We also discuss a screening and evaluation system to select candidates for new anti-melanogenic substances by focusing on inhibitors of endothelin-1 or stem cell factor-triggered intracellular signaling cascades. From this viewpoint, we show that extracts of the herbs Withania somnifera and Melia toosendan and the natural chemicals Withaferin A and Astaxanthin are new candidates for potent anti-pigmenting substances that avoid the risk of hypopigmentation. PMID:24823877

  16. cDNA cloning of an intracellular form of the human interleukin 1 receptor antagonist associated with epithelium.

    PubMed Central

    Haskill, S; Martin, G; Van Le, L; Morris, J; Peace, A; Bigler, C F; Jaffe, G J; Hammerberg, C; Sporn, S A; Fong, S

    1991-01-01

    A cDNA encoding a receptor antagonist of interleukin 1 (IL-1ra), secreted from human monocytes, has recently been isolated and sequenced [Eisenberg, S. P., Evans, R. J., Arend, W. P., Verderber, E., Brewer, M. T., Hannum, C. H. & Thompson, R. C. (1990) Nature (London) 343, 341-346]. We have identified another version of this IL-1ra, which is predominantly expressed in epithelial cells. This IL-1ra lacks a leader sequence and, thus, is probably intracellular. Both proteins are derived from the same gene through use of an alternative transcriptional start site and internal splice-acceptor site. Expression of intracellular IL-1ra cDNA in COS cells demonstrated that the intracellular product specifically inhibited exogenous interleukin 1-dependent responses. Keratinocytes were shown to contain significant amounts of nonsecreted IL-1ra protein. Constitutive expression of the intracellular IL-1ra may be an intracellular defensive mechanism in exposed epithelial cells and/or may serve to regulate autocrine interleukin 1-mediated pathways of differentiation. Images PMID:1827201

  17. Real-time particle tracking for studying intracellular trafficking of pharmaceutical nanocarriers.

    PubMed

    Huang, Feiran; Watson, Erin; Dempsey, Christopher; Suh, Junghae

    2013-01-01

    Real-time particle tracking is a technique that combines fluorescence microscopy with object tracking and computing and can be used to extract quantitative transport parameters for small particles inside cells. Since the success of a nanocarrier can often be determined by how effectively it delivers cargo to the target organelle, understanding the complex intracellular transport of pharmaceutical nanocarriers is critical. Real-time particle tracking provides insight into the dynamics of the intracellular behavior of nanoparticles, which may lead to significant improvements in the design and development of novel delivery systems. Unfortunately, this technique is not often fully understood, limiting its implementation by researchers in the field of nanomedicine. In this chapter, one of the most complicated aspects of particle tracking, the mean square displacement (MSD) calculation, is explained in a simple manner designed for the novice particle tracker. Pseudo code for performing the MSD calculation in MATLAB is also provided. This chapter contains clear and comprehensive instructions for a series of basic procedures in the technique of particle tracking. Instructions for performing confocal microscopy of nanoparticle samples are provided, and two methods of determining particle trajectories that do not require commercial particle-tracking software are provided. Trajectory analysis and determination of the tracking resolution are also explained. By providing comprehensive instructions needed to perform particle-tracking experiments, this chapter will enable researchers to gain new insight into the intracellular dynamics of nanocarriers, potentially leading to the development of more effective and intelligent therapeutic delivery vectors.

  18. Charomers-Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery.

    PubMed

    Hahn, Ulrich

    2017-12-06

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2'-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers-in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  19. Laser selective microablation of sensitized intracellular components within auditory receptor cells

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Evans, Burt N.; Santos-Sacchi, Joseph

    1995-05-01

    A laser system can be coupled to a light microscope for laser microbeam ablation and trapping of single cells in vitro. We have extended this technology by sensitization of target structures with vital dyes to provide selective ablation of specific subcellular components. Isolated auditory receptor cells (outer hair cells, OHCs) are known to elongate and contract in response to electrical, chemical and mechanical stimulation. Various intracellular structures are candidate components mediating motility of OHCs, but the exact mechanism(s) is currently unknown. In ongoing studies of OHC motility, we have used the microbeam for selective ablation of lateral wall components and of an axial cytoskeletal core that extends from the nucleus to the cell apex. Both the area beneath the subsurface cistemae of the lateral wall and the core are rich in mitochondria. OHCs isolated from guinea pig cochlea are suspended in L- 15 medium containing 2.0 (mu) M Rhodamine 123, a porphyrin with an affinity for mitochondria. A spark-pumped nitrogen laser pumping a dye cell (Coumarin 500) was aligned on the optical axis of a Nikon Optiphot-2 to produce a 3 ns, 0.5 - 10 micrometers spot (diameter above ablation threshold w/50X water immersion, N.A. 0.8), and energy at the target approximately equals 10 (mu) J/pulse. At short incubation times in Rh123 irradiation caused local blebbing or bulging of cytoplastic membrane and thus loss of the OHC's cylindrical shape. At longer Rh123 incubation times when the central axis of the cell was targeted we observed cytoplasmic clearing, immediate cell elongation (approximately equals 5%) and clumping of core material at nuclear and apical attachments. Experiments are underway to examine the significance of these preliminary observations.

  20. Intracellular formation of "undisruptable" dimers of inducible nitric oxide synthase.

    PubMed

    Kolodziejski, Pawel J; Rashid, Mohammad B; Eissa, N Tony

    2003-11-25

    Overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer. Dimerization of iNOS represents a potentially critical target for therapeutic intervention. In this study, we show that intracellular iNOS forms dimers that are "undisruptable" by boiling, denaturants, or reducing agents. Undisruptable (UD) dimers are clearly distinguishable from the easily dissociated dimers formed by iNOS in vitro. UD dimers do not form in Escherichia coli-expressed iNOS and could not be assembled in vitro, which suggests that an in vivo cellular process is required for their formation. iNOS UD dimers are not affected by intracellular depletion of H4B. However, the mutation of Cys-115 (critical for zinc binding) greatly affects the formation of UD dimers. This study reveals insight into the mechanisms of in vivo iNOS dimer formation. UD dimers represent a class of iNOS dimers that had not been suspected. This unanticipated finding revises our understanding of the mechanisms of iNOS dimerization and lays the groundwork for future studies aimed at modulating iNOS activity in vivo.

  1. Comparison of fluorescence probes for intracellular sodium imaging in prostate cancer cell lines.

    PubMed

    Iamshanova, Oksana; Mariot, Pascal; Lehen'kyi, V'yacheslav; Prevarskaya, Natalia

    2016-10-01

    Sodium (Na + ) ions are known to regulate many signaling pathways involved in both physiological and pathological conditions. In particular, alterations in intracellular concentrations of Na + and corresponding changes in membrane potential are known to be major actors of cancer progression to metastatic phenotype. Though the functionality of Na + channels and the corresponding Na + currents can be investigated using the patch-clamp technique, the latter is rather invasive and a technically difficult method to study intracellular Na + transients compared to Na + fluorescence imaging. Despite the fact that Na + signaling is considered an important controller of cancer progression, only few data using Na + imaging approaches are available so far, suggesting the persisting challenge within the scientific community. In this study, we describe in detail the approach for application of Na + imaging technique to measure intracellular Na + variations in human prostate cancer cells. Accordingly, we used three Na + -specific fluorescent dyes-Na + -binding benzofuran isophthalate (SBFI), CoroNa™ Green (Corona) and Asante NaTRIUM Green-2 (ANG-2). These dyes have been assessed for optimal loading conditions, dissociation constant and working range after different calibration methods, and intracellular Na + sensitivity, in order to determine which probe can be considered as the most reliable to visualize Na + fluctuations in vitro.

  2. Engineering tumor cell targeting in nanoscale amyloidal materials

    NASA Astrophysics Data System (ADS)

    Unzueta, Ugutz; Seras-Franzoso, Joaquin; Virtudes Céspedes, María; Saccardo, Paolo; Cortés, Francisco; Rueda, Fabián; Garcia-Fruitós, Elena; Ferrer-Miralles, Neus; Mangues, Ramon; Vázquez, Esther; Villaverde, Antonio

    2017-01-01

    Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.

  3. Effective modification of cell death-inducing intracellular peptides by means of a photo-cleavable peptide array-based screening system.

    PubMed

    Kozaki, Ikko; Shimizu, Kazunori; Honda, Hiroyuki

    2017-08-01

    Intracellular functional peptides that play a significant role inside cells have been receiving a lot of attention as regulators of cellular activity. Previously, we proposed a novel screening system for intracellular functional peptides; it combined a photo-cleavable peptide array system with cell-penetrating peptides (CPPs). Various peptides can be delivered into cells and intracellular functions of the peptides can be assayed by means of our system. The aim of the present study was to demonstrate that the proposed screening system can be used for assessing the intracellular activity of peptides. The cell death-inducing peptide (LNLISKLF) identified in a mitochondria-targeting domain (MTD) of the Noxa protein served as an original peptide sequence for screening of peptides with higher activity via modification of the peptide sequence. We obtained 4 peptides with higher activity, in which we substituted serine (S) at the fifth position with phenylalanine (F), valine (V), tryptophan (W), or tyrosine (Y). During analysis of the mechanism of action, the modified peptides induced an increase in intracellular calcium concentration, which was caused by the treatment with the original peptide. Higher capacity for cell death induction by the modified peptides may be caused by increased hydrophobicity or an increased number of aromatic residues. Thus, the present work suggests that the intracellular activity of peptides can be assessed using the proposed screening system. It could be used for identifying intracellular functional peptides with higher activity through comprehensive screening. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella.

    PubMed

    Xie, Shuyu; Yang, Fei; Tao, Yanfei; Chen, Dongmei; Qu, Wei; Huang, Lingli; Liu, Zhenli; Pan, Yuanhu; Yuan, Zonghui

    2017-01-23

    Enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) with different physicochemical properties were developed to enhance activity against intracellular Salmonella. Their cellular uptake, intracellular elimination and antibacterial activity were studied in RAW 264.7 cells. During the experimental period, SLN-encapsulated enrofloxacin accumulated in the cells approximately 27.06-37.71 times more efficiently than free drugs at the same extracellular concentration. After incubation for 0.5 h, the intracellular enrofloxacin was enhanced from 0.336 to 1.147 μg/mg of protein as the sizes of nanoparticles were increased from 150 to 605 nm, and from 0.960 to 1.147 μg/mg of protein when the charge was improved from -8.1 to -24.9 mv. The cellular uptake was more significantly influenced by the size than it was by the charge, and was not affected by whether the charge was positive or negative. The elimination of optimal SLN-encapsulated enrofloxacin from the cells was significantly slower than that of free enrofloxacin after removing extracellular drug. The inhibition effect against intracellular Salmonella CVCC541 of 0.24 and 0.06 μg/mL encapsulated enrofloxacin was stronger than 0.6 μg/mL free drug after all of the incubation periods and at 48 h, respectively. Docosanoic acid SLNs are thus considered as a promising carrier for intracellular bacterial treatment.

  5. A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells.

    PubMed

    Shen, Zheyu; Wu, Hao; Yang, Sugeun; Ma, Xuehua; Li, Zihou; Tan, Mingqian; Wu, Aiguo

    2015-11-01

    One big challenge with active targeting of nanocarriers is non-specific binding between targeting molecules and non-target moieties expressed on non-cancerous cells, which leads to non-specific uptake of nanocarriers by non-cancerous cells. Here, we propose a novel Trojan-horse targeting strategy to hide or expose the targeting molecules of nanocarriers on-demand. The non-specific uptake by non-cancerous cells can be reduced because the targeting molecules are hidden in hydrophilic polymers. The nanocarriers are still actively targetable to cancer cells because the targeting molecules can be exposed on-demand at tumor regions. Typically, Fe3O4 nanocrystals (FN) as magnetic resonance imaging (MRI) contrast agents were encapsulated into albumin nanoparticles (AN), and then folic acid (FA) and pH-sensitive polymers (PP) were grafted onto the surface of AN-FN to construct PP-FA-AN-FN nanoparticles. Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), transmission electron microscope (TEM) and gel permeation chromatography (GPC) results confirm successful construction of PP-FA-AN-FN. According to difference of nanoparticle-cellular uptake between pH 7.4 and 5.5, the weight ratio of conjugated PP to nanoparticle FA-AN-FN (i.e. graft density) and the molecular weight of PP (i.e. graft length) are optimized to be 1.32 and 5.7 kDa, respectively. In vitro studies confirm that the PP can hide ligand FA to prevent it from binding to cells with FRα at pH 7.4 and shrink to expose FA at pH 5.5. In vivo studies demonstrate that our Trojan-horse targeting strategy can reduce the non-specific uptake of the PP-FA-AN-FN by non-cancerous cells. Therefore, our PP-FA-AN-FN might be used as an accurately targeted MRI contrast agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The MUC1 Ectodomain: A Novel and Efficient Target for Gold Nanoparticle Clustering and Vapor Nanobubble Generation

    PubMed Central

    Danysh, Brian P.; Constantinou, Pamela E.; Lukianova-Hleb, Ekaterina Y.; Lapotko, Dmitri O.; Carson, Daniel D.

    2012-01-01

    MUC1 is a large, heavily glycosylated transmembrane glycoprotein that is proposed to create a protective microenvironment in many adenocarcinomas. Here we compare MUC1 and the well studied cell surface receptor target, EGFR, as gold nanoparticle (AuNP) targets and their subsequent vapor nanobubble generation efficacy in the human epithelial cell line, HES. Although EGFR and MUC1 were both highly expressed in these cells, TEM and confocal images revealed MUC1 as a superior target for nanoparticle intracellular accumulation and clustering. The MUC1-targeted AuNP intracellular clusters also generated significantly larger vapor nanobubbles. Our results demonstrate the promising opportunities MUC1 offers to improve the efficacy of targeted nanoparticle based approaches. PMID:22916077

  7. A cell-penetrating peptide analogue, P7, exerts antimicrobial activity against Escherichia coli ATCC25922 via penetrating cell membrane and targeting intracellular DNA.

    PubMed

    Li, Lirong; Shi, Yonghui; Cheng, Xiangrong; Xia, Shufang; Cheserek, Maureen Jepkorir; Le, Guowei

    2015-01-01

    The antibacterial activities and mechanism of a new P7 were investigated in this study. P7 showed antimicrobial activities against five harmful microorganisms which contaminate and spoil food (MIC=4-32 μM). Flow cytometry and scanning electron microscopy analyses demonstrated that P7 induced pore-formation on the cell surface and led to morphological changes but did not lyse cell. Confocal fluorescence microscopic observations and flow cytometry analysis expressed that P7 could penetrate the Escherichia coli cell membrane and accumulate in the cytoplasm. Moreover, P7 possessed a strong DNA binding affinity. Further cell cycle analysis and change in gene expression analysis suggested that P7 induced a decreased expression in the genes involved in DNA replication. Up-regulated expression genes encoding DNA damage repair. This study suggests that P7 could be applied as a candidate for the development of new food preservatives as it exerts its antibacterial activities by penetrating cell membranes and targets intracellular DNA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy.

    PubMed

    Wang, Kun; Fan, Daoqing; Liu, Yaqing; Wang, Erkang

    2015-11-15

    Simple, rapid, sensitive and specific detection of cancer cells is of great importance for early and accurate cancer diagnostics and therapy. By coupling nanotechnology and dual-aptamer target binding strategies, we developed a colorimetric assay for visually detecting cancer cells with high sensitivity and specificity. The nanotechnology including high catalytic activity of PtAuNP and magnetic separation & concentration plays a vital role on the signal amplification and improvement of detection sensitivity. The color change caused by small amount of target cancer cells (10 cells/mL) can be clearly distinguished by naked eyes. The dual-aptamer target binding strategy guarantees the detection specificity that large amount of non-cancer cells and different cancer cells (10(4) cells/mL) cannot cause obvious color change. A detection limit as low as 10 cells/mL with detection linear range from 10 to 10(5) cells/mL was reached according to the experimental detections in phosphate buffer solution as well as serum sample. The developed enzyme-free and cost effective colorimetric assay is simple and no need of instrument while still provides excellent sensitivity, specificity and repeatability, having potential application on point-of-care cancer diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A viral peptide for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania

    2012-10-01

    Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.

  10. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets

    PubMed Central

    Mohan, Nimmy; AP, Sudheesh; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S.

    2015-01-01

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3′-end processing. PMID:26138484

  11. Targeting of glutamine transporter ASCT2 and glutamine synthetase suppresses gastric cancer cell growth.

    PubMed

    Ye, Jianxin; Huang, Qiang; Xu, Jie; Huang, Jinsheng; Wang, Jinzhou; Zhong, Wenjing; Chen, Wannan; Lin, Xinjian; Lin, Xu

    2018-05-01

    Glutamine (Gln) is essential for the proliferation of most cancer cells, making it an appealing target for cancer therapy. However, the role of Gln in gastric cancer (GC) metabolism is unknown and Gln-targeted therapy against GC remains scarce. The aim of this study was to investigate the relevance of Gln in GC growth and targeting. Expression of Gln transporter ASCT2 and glutamine synthetase (GS) in the parental and molecularly engineered GC cells or in human GC specimens was determined by RT-PCR and western blot analysis or immunohistochemistry. Cell proliferation and survival was assessed by CCK-8 assay and colony formation assay. Intracellular Gln content was measured by a HPLC system. Effects of ASCT2 and/or GS inhibitor on tumor growth were investigated in xenograft models. A significant heterogeneity of GC cells was observed with respect to their response to the treatment of ASCT2 inhibitor benzylserine (BenSer). Gln deprivation did not affect the BenSer-resistant cell growth due to endogenous GS expression, whose inhibition remarkably reduced cell proliferation. The differential in vitro sensitivity correlated with overall intracellular Gln content. Combined therapy with both ASCT2 and GS inhibitors produced a greater therapeutic efficacy than the treatment of either inhibitor alone. Furthermore, 77% human GC tissues were found to express moderate and high levels of ASCT2, 12% of which also co-expressed relatively high levels of GS. Gln mediates GC growth and the therapeutic efficacy of Gln-targeted treatment relies on distinct ASCT2 and GS expression pattern in specific gastric cancer groups.

  12. Functional characterization of intracellular pH regulators responsible for acid extrusion in human radial artery smooth muscle cells.

    PubMed

    Lee, Chung-Yi; Tsai, Yi-Ting; Chang, Chung-Yi; Chang, Yi-Yu; Cheng, Tzu-Hurng; Tsai, Chien-Sung; Loh, Shih-Hurng

    2014-10-31

    Intracellular pH (pHi) is a critical factor influencing many important cellular functions. Acid extrusion carriers such as an Na⁺/H⁺ exchanger (NHE) Na⁺/HCO₃⁻ cotransporter (NBC) and monocarboxylate transporters (MCT) can be activated when cells are in an acidic condition (pHi < 7.1). Human radial artery smooth muscle cells (HRASMC) is an important conduit in coronary artery bypass graft surgery. However, such far, the pHi regulators have not been characterized in HRASMCs. We therefore investigated the mechanism of pHi recovery from intracellular acidosis and alkalosis, induced by NH₄Cl-prepulse and Na-acetate-prepulse, respectively, using intracellular 2',7'-bis(2-carboxethyl)-5(6)- carboxy-fluorescein (BCECF)-fluorescence in HRASMCs. Cultured HRASMCs were derived from the segments of human radial artery that were obtained from patients undergoing bypass grafting. The resting pHi is 7.22 ± 0.03 and 7.17 ± 0.02 for HEPES- (nominally HCO₃⁻-free) and CO₂/HCO₃⁻- buffered solution, respectively. In HEPES-buffered solution, a pHi recovery from induced intracellular acidosis could be blocked completely by 30 μM HOE 694 (3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride) a specific NHE inhibitor, or by removing [Na⁺]₀. In 3% CO₂/HCO₃⁻-buffered solution, HOE 694 slowed the pHi recovery from the induced intracellular acidosis only, while adding together with DIDS (a specific NBC inhibitor) or removal of [Na⁺]₀ entirely inhibited the acid extrusion. Moreover, α-cyano-4-hydroxycinnamate (CHC; a specific blocker of MCT) blocked the lactate-induced pHi changes. In conclusion, we demonstrate, for the first time, that 3 different pHi regulators responsible for acid extruding, i.e. NHE and NBC, and MCT, are functionally co-existed in cultured HRASMCs.

  13. Targeting the proteasome pathway.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2009-05-01

    The ubiquitin-proteasome pathway functions as a main pathway in intracellular protein degradation and plays a vital role in almost all cellular events. Various inhibitors of this pathway have been developed for research purposes. The recent approval of bortezomib (PS-341, Velcade, a proteasome inhibitor, for the treatment of multiple myeloma has opened the way to the discovery of drugs targeting the proteasome and other components of the ubiquitin-proteasome pathway. We review the current understanding of the ubiquitin-proteasome pathway and inhibitors targeting this pathway, including proteasome inhibitors, as candidate drugs for chemical therapy. Preclinical and clinical data for inhibitors of the proteasome and the ubiquitin-proteasome pathway are discussed. The proteasome and other members in the ubiquitin-proteasome pathway have emerged as novel therapeutic targets.

  14. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric; ...

    2017-08-18

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the

  15. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the

  16. Targeted delivery of antigen processing inhibitors to antigen presenting cells via mannose receptors.

    PubMed

    Raiber, Eun-Ang; Tulone, Calogero; Zhang, Yanjing; Martinez-Pomares, Luisa; Steed, Emily; Sponaas, Anna M; Langhorne, Jean; Noursadeghi, Mahdad; Chain, Benjamin M; Tabor, Alethea B

    2010-05-21

    Improved chemical inhibitors are required to dissect the role of specific antigen processing enzymes and to complement genetic models. In this study we explore the in vitro and in vivo properties of a novel class of targeted inhibitor of aspartic proteinases, in which pepstatin is coupled to mannosylated albumin (MPC6), creating an inhibitor with improved solubility and the potential for selective cell tropism. Using these compounds, we have demonstrated that MPC6 is taken up via mannose receptor facilitated endocytosis, leading to a slow but continuous accumulation of inhibitor within large endocytic vesicles within dendritic cells and a parallel inhibition of intracellular aspartic proteinase activity. Inhibition of intracellular proteinase activity is associated with reduction in antigen processing activity, but this is epitope-specific, preferentially inhibiting processing of T cell epitopes buried within compact proteinase-resistant protein domains. Unexpectedly, we have also demonstrated, using quenched fluorescent substrates, that little or no cleavage of the disulfide linker takes place within dendritic cells. This does not appear to affect the activity of MPC6 as an inhibitor of cathepsins D and E in vitro and in vivo. Finally, we have shown that MPC6 selectively targets dendritic cells and macrophages in spleen in vivo. Preliminary results suggest that access to nonlymphoid tissues is very limited in the steady state but is strongly enhanced at local sites of inflammation. The strategy adopted for MPC6 synthesis may therefore represent a more general way to deliver chemical inhibitors to cells of the innate immune system, especially at sites of inflammation.

  17. Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease.

    PubMed

    Chen, Justin L; Walton, Kelly L; Hagg, Adam; Colgan, Timothy D; Johnson, Katharine; Qian, Hongwei; Gregorevic, Paul; Harrison, Craig A

    2017-06-27

    The transforming growth factor-β (TGF-β) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-β proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle.

  18. Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease

    PubMed Central

    Chen, Justin L.; Walton, Kelly L.; Hagg, Adam; Colgan, Timothy D.; Johnson, Katharine; Qian, Hongwei; Gregorevic, Paul; Harrison, Craig A.

    2017-01-01

    The transforming growth factor-β (TGF-β) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-β proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle. PMID:28607086

  19. Uptake and intracellular processing of PEG-liposomes and PEG-immunoliposomes by kupffer cells in vitro 1 *.

    PubMed

    Koning, G A; Morselt, H W; Kamps, J A; Scherphof, G L

    2001-01-01

    Specific targeting of drugs to for instance tumors or sites of inflammation may be achieved by means of immunoliposomes carrying site-specific antibodies on their surface. The presence of these antibodies may adversely affect the circulation kinetics of such liposomes as a result of interactions with cells of the mononuclear phagocyte system (MPS), mainly represented by macrophages in liver and spleen. The additional insertion of poly(ethylene glycol) chains on the surface of the immunoliposomes may, however, attenuate this effect. We investigated the influence of surface-coupled rat or rabbit antibodies and of PEG on the uptake of liposomes by rat Kupffer cells in culture with (3)H-cholesteryloleyl ether as a metabolically stable marker. Additionally, we assessed the effects of surface-bound IgG and PEG on the intracellular processing of the liposomes by the Kupffer cells, based on a double-label assay using the (3)H-cholesteryl ether as an absolute measure for liposome uptake and the hydrolysis of the degradable marker cholesteryl-(14)C-oleate as relative measure of degradation. Attachment of both rat and rabbit antibodies to PEG-free liposomes caused a several-fold increase in apparent size. The uptake by Kupffer cells, however, was 3-4 fold higher for the rat than for the rabbit IgG liposomes. The presence of PEG drastically reduced the difference between these liposome types. Uptake of liposomes without antibodies amounted to only about 10% (non-PEGylated) or less (PEGylated) of that of the immunoliposomes. In contrast to the marked effects of IgG and PEG on Kupffer cell uptake, the rate of intracellular processing of the liposomes remained virtually unaffected by the presence of these substances on the liposomal surface. These observations are discussed with respect to the design of optimally formulated liposomal drug preparations, combining maximal therapeutic efficacy with minimal toxicity.

  20. Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders.

    PubMed

    Ron, Dorit; Berger, Anthony

    2018-06-01

    In recent years, research has identified the molecular and neural substrates underlying the transition of moderate "social" consumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD.

  1. Generating target system specifications from a domain model using CLIPS

    NASA Technical Reports Server (NTRS)

    Sugumaran, Vijayan; Gomaa, Hassan; Kerschberg, Larry

    1991-01-01

    The quest for reuse in software engineering is still being pursued and researchers are actively investigating the domain modeling approach to software construction. There are several domain modeling efforts reported in the literature and they all agree that the components that are generated from domain modeling are more conducive to reuse. Once a domain model is created, several target systems can be generated by tailoring the domain model or by evolving the domain model and then tailoring it according to the specified requirements. This paper presents the Evolutionary Domain Life Cycle (EDLC) paradigm in which a domain model is created using multiple views, namely, aggregation hierarchy, generalization/specialization hierarchies, object communication diagrams and state transition diagrams. The architecture of the Knowledge Based Requirements Elicitation Tool (KBRET) which is used to generate target system specifications is also presented. The preliminary version of KBRET is implemented in the C Language Integrated Production System (CLIPS).

  2. Target Specificity of the E3 Ligase LUBAC for Ubiquitin and NEMO Relies on Different Minimal Requirements*

    PubMed Central

    Smit, Judith J.; van Dijk, Willem J.; El Atmioui, Dris; Merkx, Remco; Ovaa, Huib; Sixma, Titia K.

    2013-01-01

    The ubiquitination of NEMO with linear ubiquitin chains by the E3-ligase LUBAC is important for the activation of the canonical NF-κB pathway. NEMO ubiquitination requires a dual target specificity of LUBAC, priming on a lysine on NEMO and chain elongation on the N terminus of the priming ubiquitin. Here we explore the minimal requirements for these specificities. Effective linear chain formation requires a precise positioning of the ubiquitin N-terminal amine in a negatively charged environment on the top of ubiquitin. Whereas the RBR-LDD region on HOIP is sufficient for targeting the ubiquitin N terminus, the priming lysine modification on NEMO requires catalysis by the RBR domain of HOIL-1L as well as the catalytic machinery of the RBR-LDD domains of HOIP. Consequently, target specificity toward NEMO is determined by multiple LUBAC components, whereas linear ubiquitin chain elongation is realized by a specific interplay between HOIP and ubiquitin. PMID:24030825

  3. Analysis of illegitimate genomic integration mediated by zinc-finger nucleases: implications for specificity of targeted gene correction

    PubMed Central

    2010-01-01

    Background Formation of site specific genomic double strand breaks (DSBs), induced by the expression of a pair of engineered zinc-finger nucleases (ZFNs), dramatically increases the rates of homologous recombination (HR) between a specific genomic target and a donor plasmid. However, for the safe use of ZFN induced HR in practical applications, possible adverse effects of the technology such as cytotoxicity and genotoxicity need to be well understood. In this work, off-target activity of a pair of ZFNs has been examined by measuring the ratio between HR and illegitimate genomic integration in cells that are growing exponentially, and in cells that have been arrested in the G2/M phase. Results A reporter cell line that contained consensus ZFN binding sites in an enhanced green fluorescent protein (EGFP) reporter gene was used to measure ratios between HR and non-homologous integration of a plasmid template. Both in human cells (HEK 293) containing the consensus ZFN binding sites and in cells lacking the ZFN binding sites, a 3.5 fold increase in the level of illegitimate integration was observed upon ZFN expression. Since the reporter gene containing the consensus ZFN target sites was found to be intact in cells where illegitimate integration had occurred, increased rates of illegitimate integration most likely resulted from the formation of off-target genomic DSBs. Additionally, in a fraction of the ZFN treated cells the co-occurrence of both specific HR and illegitimate integration was observed. As a mean to minimize unspecific effects, cell cycle manipulation of the target cells by induction of a transient G2/M cell cycle arrest was shown to stimulate the activity of HR while having little effect on the levels of illegitimate integration, thus resulting in a nearly eight fold increase in the ratio between the two processes. Conclusions The demonstration that ZFN expression, in addition to stimulating specific gene targeting by HR, leads to increased rates of

  4. The intracellular carboxyl tail of the PAR-2 receptor controls intracellular signaling and cell death.

    PubMed

    Zhu, Zhihui; Stricker, Rolf; Li, Rong yu; Zündorf, Gregor; Reiser, Georg

    2015-03-01

    The protease-activated receptors are a group of unique G protein-coupled receptors, including PAR-1, PAR-2, PAR-3 and PAR-4. PAR-2 is activated by multiple trypsin-like serine proteases, including trypsin, tryptase and coagulation proteases. The clusters of phosphorylation sites in the PAR-2 carboxyl tail are suggested to be important for the binding of adaptor proteins to initiate intracellular signaling to Ca(2+) and mitogen-activated protein kinases. To explore the functional role of PAR-2 carboxyl tail in controlling intracellular Ca(2+), ERK and AKT signaling, a series of truncated mutants containing different clusters of serines/threonines were generated and expressed in HEK293 cells. Firstly, we observed that lack of the complete C-terminus of PAR-2 in a mutated receptor gave a relatively low level of localization on the cell plasma membrane. Secondly, the shortened carboxyl tail containing 13 amino acids was sufficient for receptor internalization. Thirdly, the cells expressing truncation mutants showed deficits in their capacity to couple to intracellular Ca(2+) and ERK and AKT signaling upon trypsin challenge. In addition, HEK293 cells carrying different PAR-2 truncation mutants displayed decreased levels of cell survival after long-lasting trypsin stimulation. In summary, the PAR-2 carboxyl tail was found to control the receptor localization, internalization, intracellular Ca(2+) responses and signaling to ERK and AKT. The latter can be considered to be important for cell death control.

  5. Making cell-permeable antibodies (Transbody) through fusion of protein transduction domains (PTD) with single chain variable fragment (scFv) antibodies: potential advantages over antibodies expressed within the intracellular environment (Intrabody).

    PubMed

    Heng, Boon Chin; Cao, Tong

    2005-01-01

    Over the past decade, there has been growing interest in the use of antibodies against intracellular targets. This is currently achieved through recombinant expression of the single chain variable fragment (scFv) antibody format within the cell, which is commonly referred to as an intrabody. This possesses a number of inherent advantages over RNA interference (iRNA). Firstly, the high specificity and affinity of intrabodies to target antigens is well-established, whereas iRNA has been frequently shown to exert multiple non-specific effects. Secondly, intrabodies being proteins possess a much longer active half-life compared to iRNA. Thirdly, when the active half-life of the intracellular target molecule is long, gene silencing through iRNA would be slow to yield any effect, whereas the effects of intrabody expression would be almost instantaneous. Lastly, it is possible to design intrabodies to block certain binding interactions of a particular target molecule, while sparing others. There is, however, various technical challenges faced with intrabody expression through the application of recombinant DNA technology. In particular, protein conformational folding and structural stability of the newly-synthesized intrabody within the cell is affected by reducing conditions of the intracellular environment. Also, there are overwhelming safety concerns surrounding the application of transfected recombinant DNA in human clinical therapy, which is required to achieve intrabody expression within the cell. Of particular concern are the various viral-based vectors that are commonly-used in genetic manipulation. A novel approach around these problems would be to look at the possibility of fusing protein transduction domains (PTD) to scFv antibodies, to create a 'cell-permeable' antibody or 'Transbody'. PTD are short peptide sequences that enable proteins to translocate across the cell membrane and be internalized within the cytosol, through atypical secretory and

  6. Charomers—Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery

    PubMed Central

    2017-01-01

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld. PMID:29211023

  7. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane.

    PubMed

    James, Scott E; Greenberg, Philip D; Jensen, Michael C; Lin, Yukang; Wang, Jinjuan; Till, Brian G; Raubitschek, Andrew A; Forman, Stephen J; Press, Oliver W

    2008-05-15

    We have targeted CD22 as a novel tumor-associated Ag for recognition by human CTL genetically modified to express chimeric TCR (cTCR) recognizing this surface molecule. CD22-specific cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR(+) CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR(+) CTL exhibited lower levels of maximum lysis and lower Ag sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of Ag engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope, but constructed as a truncated CD22 molecule to approximate the length of a TCR:peptide-MHC complex. The reduced sensitivity of CD22-specific cTCR(+) CTL for Ag-induced triggering of effector functions has potential therapeutic applications, because such cells selectively lysed B cell lymphoma lines expressing high levels of CD22, but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength, and consequently Ag sensitivity, can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate Ag density.

  8. Intracellular uptake and behavior of two types zinc protoporphyrin (ZnPP) micelles, SMA-ZnPP and PEG-ZnPP as anticancer agents; unique intracellular disintegration of SMA micelles.

    PubMed

    Nakamura, Hideaki; Fang, Jun; Gahininath, Bharate; Tsukigawa, Kenji; Maeda, Hiroshi

    2011-11-07

    SMA-ZnPP and PEG-ZnPP are micellar drugs, encapsulating zinc protoporphyrin IX (ZnPP) with styrene maleic acid copolymer (SMA) and covalent conjugate of ZnPP with polyethylene glycol (PEG) respectively. Their intracellular uptake rate and subcellular localization were investigated. We found SMA-ZnPP showed higher and more efficient (about 2.5 times) intracellular uptake rate than PEG-ZnPP, although both SMA-ZnPP and PEG-ZnPP micelles were localized at endoplasmic reticulum (ER) and inhibited the target enzyme heme oxygenase 1 (HO-1) similarly. Both micellar ZnPP were taken up into the tumor cells by endocytosis. Furthermore SMA-ZnPP and PEG-ZnPP were examined for their drug releasing mechanisms. Liberation of ZnPP from the SMA micelle appears to depend on cellular amphiphilic components such as lecithin, while that for PEG-ZnPP depends on hydrolytic cleavage. These results indicate that these micelle formulations make water insoluble ZnPP to water soluble practical anticancer agents. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

    PubMed

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno

    2015-11-01

    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Targeting Activation of Specific NF-κB Subunits Prevents Stress-Dependent Atherothrombotic Gene Expression

    PubMed Central

    Djuric, Zdenka; Kashif, Muhammed; Fleming, Thomas; Muhammad, Sajjad; Piel, David; von Bauer, Rüdiger; Bea, Florian; Herzig, Stephan; Zeier, Martin; Pizzi, Marina; Isermann, Berend; Hecker, Markus; Schwaninger, Markus; Bierhaus, Angelika; Nawroth, Peter P

    2012-01-01

    Psychosocial stress has been shown to be a contributing factor in the development of atherosclerosis. Although the underlying mechanisms have not been elucidated entirely, it has been shown previously that the transcription factor nuclear factor-κB (NF-κB) is an important component of stress-activated signaling pathway. In this study, we aimed to decipher the mechanisms of stress-induced NF-κB-mediated gene expression, using an in vitro and in vivo model of psychosocial stress. Induction of stress led to NF-κB-dependent expression of proinflammatory (tissue factor, intracellular adhesive molecule 1 [ICAM-1]) and protective genes (manganese superoxide dismutase [MnSOD]) via p50, p65 or cRel. Selective inhibition of the different subunits and the respective kinases showed that inhibition of cRel leads to the reduction of atherosclerotic lesions in apolipoprotein−/− (ApoE−/−) mice via suppression of proinflammatory gene expression. This observation may therefore provide a possible explanation for ineffectiveness of antioxidant therapies and suggests that selective targeting of cRel activation may provide a novel approach for the treatment of stress-related inflammatory vascular disease. PMID:23114885

  11. Novel actions of IGFBP-3 on intracellular signaling pathways of insulin-secreting cells

    PubMed Central

    Chen, Xiaoyan; Ferry, Robert J.

    2011-01-01

    Understanding mechanisms underlying apoptotic destruction of insulin-secreting cells is critical to validate therapeutic targets for type 1 diabetes mellitus. We recently reported insulin-like growth factor binding protein-3 (IGFBP-3) as a novel mediator of apoptosis in insulin-secreting cells. In light of emerging IGF-independent roles for IGFBP-3, we investigated the mechanisms underlying actions of the novel, recombinant human mutant G56G80G81-IGFBP-3, which lacks intrinsic IGF binding affinity. Using the rat insulinoma RINm5F cell line, we report the first studies in insulin-secreting cells that IGFBP-3 selectively suppresses multiple, key intracellular phosphorelays. By immunoblot, we demonstrate that G56G80G81-IGFBP-3 suppresses phosphorylation of c-raf-MEK-ERK pathway and p38 kinase in time-dependent and dose-dependent manners. SAPK/JNK signaling was unaffected. These data delineate several novel intracellular sites of action for IGFBP-3 in insulin-secreting cells. PMID:16275148

  12. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach

    PubMed Central

    Abi-Ghanem, Josephine; Chusainow, Janet; Karimova, Madina; Spiegel, Christopher; Hofmann-Sieber, Helga; Hauber, Joachim; Buchholz, Frank; Pisabarro, M. Teresa

    2013-01-01

    Site-specific recombinases (SSRs) can perform DNA rearrangements, including deletions, inversions and translocations when their naive target sequences are placed strategically into the genome of an organism. Hence, in order to employ SSRs in heterologous hosts, their target sites have to be introduced into the genome of an organism before the enzyme can be practically employed. Engineered SSRs hold great promise for biotechnology and advanced biomedical applications, as they promise to extend the usefulness of SSRs to allow efficient and specific recombination of pre-existing, natural genomic sequences. However, the generation of enzymes with desired properties remains challenging. Here, we use substrate-linked directed evolution in combination with molecular modeling to rationally engineer an efficient and specific recombinase (sTre) that readily and specifically recombines a sequence present in the HIV-1 genome. We elucidate the role of key residues implicated in the molecular recognition mechanism and we present a rationale for sTre’s enhanced specificity. Combining evolutionary and rational approaches should help in accelerating the generation of enzymes with desired properties for use in biotechnology and biomedicine. PMID:23275541

  13. Stronger T Cell Immunogenicity of Ovalbumin Expressed Intracellularly in Gram-Negative than in Gram-Positive Bacteria

    PubMed Central

    Martner, Anna; Östman, Sofia; Lundin, Samuel; Rask, Carola; Björnsson, Viktor; Telemo, Esbjörn; Collins, L. Vincent; Axelsson, Lars; Wold, Agnes E.

    2013-01-01

    This study aimed to clarify whether Gram-positive (G+) and Gram-negative (G−) bacteria affect antigen-presenting cells differently and thereby influence the immunogenicity of proteins they express. Lactobacilli, lactococci and Escherichia coli strains were transformed with plasmids conferring intracellular ovalbumin (OVA) production. Murine splenic antigen presenting cells (APCs) were pulsed with washed and UV-inactivated OVA-producing bacteria, control bacteria, or soluble OVA. The ability of the APCs to activate OVA-specific DO11.10 CD4+ T cells was assessed by measurments of T cell proliferation and cytokine (IFN-γ, IL-13, IL-17, IL-10) production. OVA expressed within E. coli was strongly immunogenic, since 500 times higher concentrations of soluble OVA were needed to achieve a similar level of OVA-specific T cell proliferation. Furthermore, T cells responding to soluble OVA produced mainly IL-13, while T cells responding to E. coli-expressed OVA produced high levels of both IFN-γ and IL-13. Compared to E. coli, G+ lactobacilli and lactococci were poor inducers of OVA-specific T cell proliferation and cytokine production, despite efficient intracellular expression and production of OVA and despite being efficiently phagocytosed. These results demonstrate a pronounced difference in immunogenicity of intracellular antigens in G+ and G− bacteria and may be relevant for the use of bacterial carriers in vaccine development. PMID:23741469

  14. Function-Specific Intracellular Signaling Pathways Downstream of Heparin-Binding EGF-Like Growth Factor Utilized by Human Trophoblasts1

    PubMed Central

    Jessmon, Philip; Kilburn, Brian A.; Romero, Roberto; Leach, Richard E.; Armant, D. Randall

    2010-01-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1–2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation. PMID:20130271

  15. Prostate-Specific Membrane Antigen Targeted Therapy of Prostate Cancer Using a DUPA-Paclitaxel Conjugate.

    PubMed

    Lv, Qingzhi; Yang, Jincheng; Zhang, Ruoshi; Yang, Zimeng; Yang, Zhengtao; Wang, Yongjun; Xu, Youjun; He, Zhonggui

    2018-05-07

    Prostate cancer (PCa) is the most prevalent cancer among men in the United States and remains the second-leading cause of cancer mortality in men. Paclitaxel (PTX) is the first line chemotherapy for PCa treatment, but its therapeutic efficacy is greatly restricted by the nonspecific distribution in vivo. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of most PCa cells, and its expression level increases with cancer aggressiveness, while being present at low levels in normal cells. The high expression level of PSMA in PCa cells offers an opportunity for target delivery of nonspecific cytotoxic drugs to PCa cells, thus improving therapeutic efficacy and reducing toxicity. PSMA has high affinity for DUPA, a glutamate urea ligand. Herein, a novel DUPA-PTX conjugate is developed using DUPA as the targeting ligand to deliver PTX specifically for treatment of PSMA expressing PCa. The targeting ligand DUPA enhances the transport capability and selectivity of PTX to tumor cells via PSMA mediated endocytosis. Besides, DUPA is conjugated with PTX via a disulfide bond, which facilitates the rapid and differential drug release in tumor cells. The DUPA-PTX conjugate exhibits potent cytotoxicity in PSMA expressing cell lines and induces a complete cessation of tumor growth with no obvious toxicity. Our findings give new insight into the PSMA-targeted delivery of chemotherapeutics and provide an opportunity for the development of novel active targeting drug delivery systems for PCa therapy.

  16. Immunotherapy Targets in Pediatric Cancer

    PubMed Central

    Orentas, Rimas J.; Lee, Daniel W.; Mackall, Crystal

    2011-01-01

    Immunotherapy for cancer has shown increasing success and there is ample evidence to expect that progress gleaned in immune targeting of adult cancers can be translated to pediatric oncology. This manuscript reviews principles that guide selection of targets for immunotherapy of cancer, emphasizing the similarities and distinctions between oncogene-inhibition targets and immune targets. It follows with a detailed review of molecules expressed by pediatric tumors that are already under study as immune targets or are good candidates for future studies of immune targeting. Distinctions are made between cell surface antigens that can be targeted in an MHC independent manner using antibodies, antibody derivatives, or chimeric antigen receptors versus intracellular antigens which must be targeted with MHC restricted T cell therapies. Among the most advanced immune targets for childhood cancer are CD19 and CD22 on hematologic malignancies, GD2 on solid tumors, and NY-ESO-1 expressed by a majority of synovial sarcomas, but several other molecules reviewed here also have properties which suggest that they too could serve as effective targets for immunotherapy of childhood cancer. PMID:22645714

  17. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis

    PubMed Central

    Unciti-Broceta, Juan D.; Arias, José L.; Maceira, José; Soriano, Miguel; Ortiz-González, Matilde; Hernández-Quero, José; Muñóz-Torres, Manuel; de Koning, Harry P.; Magez, Stefan; Garcia-Salcedo, José A.

    2015-01-01

    African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs. PMID:26110623

  18. Preclinical Evaluation to Specifically Target Ovarian Cancer with Folic Acid conjugated Nanoceria

    DTIC Science & Technology

    2013-06-01

    function (creatinine; urea ; albumin, uric acid ) in plasma collected, showed no significant difference in the untreated and treated mice. All values were...Transaminase), AST (Aspartate Transaminase), Albumin, Creatinine, urea and uric acid . groups (Fig 9). These data show that FA-NCe treatment...Specifically Target Ovarian Cancer with Folic Acid conjugated Nanoceria. PRINCIPAL INVESTIGATOR: Ramandeep Rattan, PhD CONTRACTING ORGANIZATION

  19. Application of flow cytometry with a fluorescent dye to measurement of intracellular nitric oxide in plant cells.

    PubMed

    Kępczyński, Jan; Cembrowska-Lech, Danuta

    2018-04-27

    A simple and rapid method involving flow cytometry and NO-specific probe (DAF-FM DA) proved useful for detection and determination of intracellular NO production in Medicago truncatula suspension cells and leaves as well as in cells of Avena fatua, Amaranthus retroflexus embryos and leaves. The measurement of nitric oxide (NO) in plant material is important for examining the regulatory roles of endogenous NO in various physiological processes. The possibility of detecting and determining intracellular NO production by flow cytometry (FCM) with 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA), an NO-specific probe in Medicago truncatula cells in suspension and leaves as well as in cells of embryos and leaves of Avena fatua L. or Amaranthus retroflexus L. was explored. To detect and measure NO production by cell suspension or embryos and leaves, the recommended DAF-FM DA concentration is 5 or 10 µM, respectively, applied for 30 min. Exogenous NO increased the intensity of the fluorescent signal in embryos and leaves of both plants, while carboxy-PTIO (cPTIO), an NO scavenger, decreased it. Thus, these results demonstrate that NO can be detected and an increase and a decrease of its intracellular level can be estimated. Wounding was observed to increase the fluorescence signal, indicating an increase in the intracellular NO level. In addition, the levels of exogenous and endogenous ascorbic acid were demonstrated to have no effect on the NO-related fluorescence signal, indicating the signal's specificity only in relation with NO. The applicability of the proposed method for detection and determination of NO was confirmed (1) by in situ NO imaging in cell suspensions and (2) by determining the NO concentration in embryos and leaves using the Griess reagent. In view of the data obtained, FCM is recommended as a rapid and simple method with which to detect and determine intracellular NO production in plant cells.

  20. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames.

    PubMed

    Liang, Xue-Hai; Shen, Wen; Crooke, Stanley T

    2017-01-01

    A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.