Sample records for target specific oral

  1. Target specific oral anticoagulants in the management of thromboembolic disease in the elderly.

    PubMed

    Maddula, Surekha; Ansell, Jack

    2013-08-01

    The elderly population represents a population at highest risk of thromboembolism, but also the most vulnerable to hemorrhage. In the community setting there is a general tendency to under- treat this patient group. Specific consideration must be taken with elderly patients because they have reduced renal function, co-morbidities and risk of falls, altered pharmacodynamics, and challenges with adherence. Vitamin K antagonists, most often warfarin, have been the first line choice of therapy for long-term anticoagulation and enjoyed an unopposed position in the market for the last 70 years. Recently several new oral anticoagulants have been developed and found to be equally effective as warfarin in phase III studies and may provide an optimal treatment option in the elderly population. In this review we explore the target-specific oral anticoagulants and the pharmacological differences between them with a focus on the elderly population in whom these new drugs would constitute a possible alternative to warfarin therapy.

  2. Practical considerations in emergency management of bleeding in the setting of target-specific oral anticoagulants.

    PubMed

    Miller, Michael P; Trujillo, Toby C; Nordenholz, Kristen E

    2014-04-01

    The recent arrival of the target-specific oral anticoagulants (TSOACs) offers potential advantages in the field of anticoagulation. However, there are no rapid and accurate and routinely available laboratory assays to evaluate their contribution to clinical bleeding. With the expanding clinical indications for the TSOACs, and the arrival of newer reversal agents on the market, the emergency clinician will need to be familiar with drug specifics as well as methods for anticoagulation reversal. This review offers a summary of the literature and some practical strategies for the approach to the patient taking TSOACs and the management of bleeding in these cases. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Enhancing Oral Vaccine Potency by Targeting Intestinal M Cells

    PubMed Central

    Azizi, Ali; Kumar, Ashok; Diaz-Mitoma, Francisco; Mestecky, Jiri

    2010-01-01

    The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells. PMID:21085599

  4. New Target-Specific Oral Anticoagulants and Intracranial Bleeding: Management and Outcome in a Single-Center Case Series.

    PubMed

    Senger, Sebastian; Keiner, Dörthe; Hendrix, Philipp; Oertel, Joachim

    2016-04-01

    New target-specific anticoagulants such as the direct thrombin inhibitor dabigatran and the factor Xa inhibitor rivaroxaban are used in an increasing number of patients. Several studies comparing these new oral anticoagulants with vitamin K antagonists revealed a lower risk of severe bleeding complications and reduced thromboembolic events. However, the lack of antidotes is a challenging issue in the treatment of traumatic or spontaneous intracranial hemorrhage. A retrospective analysis of patients with intracranial bleeding under new oral anticoagulants was performed; these patients were admitted to our department between January 2011 and November 2014. Treatment, reversal management of blood coagulopathy, and outcome of the patients were analyzed. Seventeen patients were included. The median age was 80.4 years. Seven patients were treated with dabigatran and 10 with rivaroxaban. Eight patients had traumatic intracranial bleeding and 9 patients had spontaneous intracranial hemorrhage. Complex perioperative hematologic treatment followed. In 9 cases, the clinical outcome was devastating with severe neurologic deficits (n = 2), comatose status (n = 4), or death (n = 3). Patients with the indication for acute surgical treatment had a high risk for a critical clinical outcome. Only a few case reports have analyzed the clinical course and the outcome after intracranial bleeding under new target-specific oral anticoagulants. Here, one of the first larger series is presented. Because of the lack of reversibility of the anticoagulative effects and the overall risks with geriatric patients, surgical treatment should be delayed as long as possible and comorbidities have to be considered. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Site-specific mouth rinsing can improve oral odor by altering bacterial counts. Blind crossover clinical study.

    PubMed

    Alqumber, Mohammed A; Arafa, Khaled A

    2014-11-01

    To determine whether site-specific mouth rinsing with oral disinfectants can improve oral odor beyond the traditional panoral mouth disinfection with mouth rinses by targeting specifically oral malodor implicated anaerobic bacteria. Twenty healthy fasting subjects volunteered for a blinded prospective, descriptive correlational crossover cross-section clinical trial conducted during the month of Ramadan between July and August 2013 in Albaha province in Saudi Arabia involving the application of Listerine Cool Mint mouth rinse by either the traditional panoral rinsing method, or a site-specific disinfection method targeting the subgingival and supragingival plaque and the posterior third of the tongue dorsum, while avoiding the remaining locations within the oral cavity. The viable anaerobic and aerobic bacterial counts, volatile sulfur compounds (VSCs) levels, organoleptic assessment of oral odor, and the tongue-coating index were compared at baseline, one, 5, and 9 hours after the treatment. The site-specific disinfection method reduced the VSCs and anaerobic bacterial loads while keeping the aerobic bacterial numbers higher than the traditional panoral rinsing method. Site-specific disinfection can more effectively maintain a healthy oral cavity by predominantly disinfecting the niches of anaerobic bacteria within the oral cavity.

  6. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo.

    PubMed

    Alexander-Bryant, Angela A; Zhang, Haiwen; Attaway, Christopher C; Pugh, William; Eggart, Laurence; Sansevere, Robert M; Andino, Lourdes M; Dinh, Lu; Cantini, Liliana P; Jakymiw, Andrew

    2017-09-01

    Despite significant advances in cancer treatment, the prognosis for oral cancer remains poor in comparison to other cancer types, including breast, skin, and prostate. As a result, more effective therapeutic modalities are needed for the treatment of oral cancer. Consequently, in the present study, we examined the feasibility of using a dual peptide carrier approach, combining an epidermal growth factor receptor (EGFR)-targeting peptide with an endosome-disruptive peptide, to mediate targeted delivery of small interfering RNAs (siRNAs) into EGFR-overexpressing oral cancer cells and induce silencing of the targeted oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A). Fluorescence microscopy, real-time PCR, Western blot analysis, and in vivo bioimaging of mice containing orthotopic xenograft tumors were used to examine the ability of the dual peptide carrier to mediate specific delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells/tissues. Co-complexation of the EGFR-targeting peptide, GE11R9, with the endosome-disruptive 599 peptide facilitated the specific uptake of siRNAs into oral cancer cells overexpressing EGFR in vitro with optimal gene silencing observed at a 60:30:1 (GE11R9:599:siRNA) molar ratio. Furthermore, when administered systemically to mice bearing xenograft oral tumors, this dual peptide complex mediated increased targeted delivery of siRNAs into tumor tissues in comparison to the 599 peptide alone and significantly enhanced CIP2A silencing. Herein we provide the first report demonstrating the clinical potential of a dual peptide strategy for siRNA-based therapeutics by synergistically mediating the effective targeting and delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Discovery of specific ligands for oral squamous carcinoma to develop anti-cancer drug loaded precise targeting nanotherapeutics.

    PubMed

    Yang, Fan; Liu, Ruiwu; Kramer, Randall; Xiao, Wenwu; Jordan, Richard; Lam, Kit S

    2012-12-01

    Oral squamous cell carcinoma has a low five-year survival rate, which may be due to late detection and a lack of effective tumor-specific therapies. Using a high throughput drug discovery strategy termed one-bead one-compound combinatorial library, the authors identified six compounds with high binding affinity to different human oral squamous cell carcinoma cell lines but not to normal cells. Current work is under way to develop these ligands to oral squamous cell carcinoma specific imaging probes or therapeutic agents.

  8. New generation of oral mucosal vaccines targeting dendritic cells

    PubMed Central

    Owen, Jennifer L.; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-01-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including B. anthracis in experimental models of disease. PMID:23835515

  9. Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma.

    PubMed

    Chen, Xiangyun; Wu, Jingjing; Chen, Yitian; Ye, Dongxia; Lei, Hu; Xu, Hanzhang; Yang, Li; Wu, Yingli; Gu, Wenli

    2016-10-01

    Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Clinical Efficacy of a Specifically Targeted Antimicrobial Peptide Mouth Rinse: Targeted Elimination of Streptococcus mutans and Prevention of Demineralization

    PubMed Central

    Sullivan, R.; Santarpia, P.; Lavender, S.; Gittins, E.; Liu, Z.; Anderson, M.H.; He, J.; Shi, W.; Eckert, R.

    2011-01-01

    Background/Aims Streptococcus mutans, the major etiological agent of dental caries, has a measurable impact on domestic and global health care costs. Though persistent in the oral cavity despite conventional oral hygiene, S. mutans can be excluded from intact oral biofilms through competitive exclusion by other microorganisms. This suggests that therapies capable of selectively eliminating S. mutans while limiting the damage to the normal oral flora might be effective long-term interventions to fight cariogenesis. To meet this challenge, we designed C16G2, a novel synthetic specifically targeted antimicrobial peptide with specificity for S. mutans. C16G2 consists of a S. mutans-selective ‘targeting region’ comprised of a fragment from S. mutans competence stimulation peptide (CSP) conjoined to a ‘killing region’ consisting of a broad-spectrum antimicrobial peptide (G2). In vitro studies have indicated that C16G2 has robust efficacy and selectivity for S. mutans, and not other oral bacteria, and affects targeted bacteria within seconds of contact. Methods In the present study, we evaluated C16G2 for clinical utility in vitro, followed by a pilot efficacy study to examine the impact of a 0.04% (w/v) C16G2 rinse in an intra-oral remineralization/demineralization model. Results and Conclusions C16G2 rinse usage was associated with reductions in plaque and salivary S. mutans, lactic acid production, and enamel demineralization. The impact on total plaque bacteria was minimal. These results suggest that C16G2 is effective against S. mutans in vivo and should be evaluated further in the clinic. PMID:21860239

  11. New developments in pediatric venous thromboembolism and anticoagulation, including the target-specific oral anticoagulants.

    PubMed

    Lyle, Courtney A; Sidonio, Robert F; Goldenberg, Neil A

    2015-02-01

    Pediatric venous thromboembolism (VTE) can affect children of all ages, requiring considerable pharmacologic intervention and is often associated with significant morbidity. Current research efforts are directed toward the development of risk-stratified VTE prevention strategies employing pharmacologic thromboprophylaxis, the optimization of conventional anticoagulation, and the investigation of the safety and efficacy of target-specific oral anticoagulants (TSOACs) in children. Recent research has considerably improved the understanding of risk factors of hospital-acquired VTE and how these factors may be employed in risk-stratified paradigms for VTE prevention in children. Additional insight has been gained in the optimization of conventional anticoagulants in special populations such as neonates and children with inflammatory conditions, and in improving the overall safety and compliance with periprocedural anticoagulation and the use of home International Normalized Ratio monitoring. Furthermore, the use of TSOACs has been described in children and is the focus of numerous ongoing clinical trials that are evaluating the safety and efficacy of these agents in children with VTE. Identification of hospital-acquired VTE risk factors may inform pediatric VTE prevention strategies. Although initial use of TSOACs may be promising, investigation of safety and efficacy in children is still underway.

  12. New generation of oral mucosal vaccines targeting dendritic cells.

    PubMed

    Owen, Jennifer L; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-12-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including Bacillus anthracis in experimental models of disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Detection and Delineation of Oral Cancer With a PARP1-Targeted Optical Imaging Agent.

    PubMed

    Kossatz, Susanne; Weber, Wolfgang; Reiner, Thomas

    2017-01-01

    More sensitive and specific methods for early detection are imperative to improve survival rates in oral cancer. However, oral cancer detection is still largely based on visual examination and histopathology of biopsy material, offering no molecular selectivity or spatial resolution. Intuitively, the addition of optical contrast could improve oral cancer detection and delineation, but so far no molecularly targeted approach has been translated. Our fluorescently labeled small-molecule inhibitor PARPi-FL binds to the DNA repair enzyme poly(ADP-ribose)polymerase 1 (PARP1) and is a potential diagnostic aid for oral cancer delineation. Based on our preclinical work, a clinical phase I/II trial opened in March 2017 to evaluate PARPi-FL as a contrast agent for oral cancer imaging. In this commentary, we discuss why we chose PARP1 as a biomarker for tumor detection and which particular characteristics make PARPi-FL an excellent candidate to image PARP1 in optically guided applications. We also comment on the potential benefits of our molecularly targeted PARPi-FL-guided imaging approach in comparison to existing oral cancer screening adjuncts and mention the adaptability of PARPi-FL imaging to other environments and tumor types.

  14. Strategies of targeting oral drug delivery systems to the colon and their potential use for the treatment of colorectal cancer.

    PubMed

    Krishnaiah, Yellela S R; Khan, Mansoor A

    2012-01-01

    Colorectal cancer (CRC) is the third most common cause of cancer-related death in both men and women. Often, surgical intervention remains the choice in treating CRC. Traditional dosage forms used for treating CRC deliver drug to wanted as well as unwanted sites of drug action resulting in several adverse side effects. Targeted oral drug delivery systems are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific delivery of a drug to colon increases its concentration at the target site, and thus requires a lower dose with reduced incidence of side effects. The major obstacle to be overcome for successful targeting of drug to colon through oral route is that drug absorption/degradation must be avoided in stomach and small intestine before the dosage form reaches colon. The review includes discussion of physiological factors that must be considered when targeting drugs directly to colorectal region, an outline on drugs used for treatment and prevention of CRC, and a brief description of various types of colon-targeted oral drug delivery systems. The focus is on the assessment of various formulation approaches being investigated for oral colon-specific delivery of drugs used in the treatment and prevention of CRC.

  15. Designing oral vaccines targeting intestinal dendritic cells.

    PubMed

    Devriendt, Bert; De Geest, Bruno G; Cox, Eric

    2011-04-01

    Most pathogens colonize and invade the host at mucosal surfaces, such as the lung and the intestine. To combat intestinal pathogens the induction of local adaptive immune responses is required, which is mainly achieved through oral vaccination. However, most vaccines are ineffective when given orally owing to the hostile environment in the gastrointestinal tract. The encapsulation of antigens in biodegradable microparticulate delivery systems enhances their immunogenicity; however, the uptake of these delivery systems by intestinal immune cells is rather poor. Surface decoration of the particulates with targeting ligands could increase the uptake and mediate the selective targeting of the vaccine to intestinal antigen-presenting cells, including dendritic cells. In this review, current knowledge on dendritic cell subsets is discussed, along with progress in the development of selective antigen targeting to these cells, in addition to focusing on data obtained in mice and, where possible, the pig, as a non-rodent animal model for humans. Moreover, the potential use and benefits of Fcγ receptor-mediated targeting of antigen delivery systems are highlighted. In conclusion, dendritic cell targeting ligands grafted on antigen carrier systems should preferably bind to a conserved endocytotic receptor, facilitating the design of a multispecies vaccine platform, which could elicit robust protective immune responses against enteric pathogens.

  16. Pharmacokinetics and metabolism of benzene in Zymbal gland and other key target tissues after oral administration in rats.

    PubMed Central

    Low, L K; Meeks, J R; Norris, K J; Mehlman, M A; Mackerer, C R

    1989-01-01

    Solid tumors have been reported in the Zymbal gland, oral and nasal cavities, and mammary gland of Sprague-Dawley rats following chronic oral administration of benzene. The cause for the specificity of such lesions remains unclear, but it is possible that tissue-specific metabolism or pharmacokinetics of benzene is responsible. Metabolism and pharmacokinetic studies were carried out in our laboratory with 14C-benzene at oral doses of 0.15 to 500 mg/kg to ascertain tissue retention, metabolite profile, and elimination kinetics in target and nontarget organs and in blood. Findings from those studies indicate the following: a) the Zymbal gland is not a sink or a site of accumulation for benzene or its metabolites even after a single high dose (500 mg/kg) or after repeated oral administration; b) the metabolite profile is quantitatively different in target tissues (e.g., Zymbal gland, nasal cavity), nontarget tissues and blood; and (c) pharmacokinetic studies show that the elimination of radioactivity from the Zymbal gland is biphasic. PMID:2792043

  17. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome.

    PubMed

    Garcia, S S; Blackledge, M S; Michalek, S; Su, L; Ptacek, T; Eipers, P; Morrow, C; Lefkowitz, E J; Melander, C; Wu, H

    2017-07-01

    Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.

  18. Review article: novel oral-targeted therapies in inflammatory bowel disease.

    PubMed

    White, J R; Phillips, F; Monaghan, T; Fateen, W; Samuel, S; Ghosh, S; Moran, G W

    2018-06-01

    There is a great unmet clinical need for efficacious, tolerable, economical and orally administrated drugs for the treatment of inflammatory bowel disease (IBD). New therapeutic avenues have become possible including the development of medications that target specific genetic pathways found to be relevant in other immune mediated diseases. To provide an overview of recent clinical trials for new generation oral targeted medications that may have a future role in IBD management. Pubmed and Medline searches were performed up to 1 March 2018 using keywords: "IBD", "UC", "CD", "inflammatory bowel disease" "ulcerative colitis", "Crohn's disease" in combination with "phase", "study", "trial" and "oral". A manual search of the clinical trial register, article reference lists, abstracts from meetings of Digestive Disease Week, United European Gastroenterology Week and ECCO congress were also conducted. In randomised controlled trials primary efficacy endpoints were met for tofacitinib (JAK 1/3 inhibitor-phase III), upadacitinib (JAK 1 inhibitor-phase II) and AJM300 (α4-integrin antagonist-phase II) in ulcerative colitis. Ozanimod (S1P receptor agonist-phase II) also demonstrated clinical remission. For Crohn's disease, filgotinib (JAK1 inhibitor-phase II) met primary endpoints and laquinimod (quinolone-3-carboxide small molecule-phase II) was also efficacious. Trials using mongersen (SMAD7 inhibitor) and vidofludimus (dihydroorotate dehydrogenase inhibitor) have been halted. This is potentially the start of an exciting new era in which multiple therapeutic options are at the disposal of physicians to treat IBD on an individualised basis. Head-to-head studies with existing treatments and longer term safety data are needed for this to be possible. © 2018 John Wiley & Sons Ltd.

  19. Specific oral tolerance induction in childhood.

    PubMed

    Peters, Rachel L; Dang, Thanh D; Allen, Katrina J

    2016-12-01

    Food allergy continues to be a significant public health concern for which there are no approved treatments and management strategies primarily include allergen avoidance and pharmacological measures for accidental exposures. Food allergy is thought to result from either a failure to establish oral tolerance or the breakdown of existing oral tolerance, and therefore, experimental preventative and treatment strategies are now aimed at inducing specific oral tolerance. This may occur in infancy prior to the development of food allergy through the optimal timing of dietary exposure (primary oral tolerance induction) or as a treatment for established food allergy through oral immunotherapy (secondary oral tolerance induction). Trials examining the effectiveness of early dietary allergen exposure to prevent food allergy have yielded promising results for peanut allergy but not so for other allergens, although the results of several trials are yet to be published. Although infant feeding guidelines no longer advise to avoid allergenic foods and exposure to food allergens orally is an important step in inducing food tolerance by the immune system, evidence regarding the optimal timing, dose and form of these foods into the infant's diet is lacking. Likewise, oral immunotherapy trials appear promising for inducing desensitization; however, the long-term efficacy in achieving sustained desensitization and optimal protocols to achieve this is unknown. More research is needed in this emerging field. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    PubMed Central

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  1. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    PubMed

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  2. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery.

    PubMed

    Zhang, Lin; Sang, Yuan; Feng, Jing; Li, Zhaoming; Zhao, Aili

    2016-08-01

    Oral colon-targeted drug delivery has attracted many researchers because of its distinct advantages of increasing the bioavailability of the drug at the target site and reducing the side effects. Polysaccharides that are precisely activated by the physiological environment of the colon hold greater promise for colon targeting. Considerable research efforts have been directed towards developing polysaccharide-based micro/nanocarriers. Types of polysaccharides for colon targeting and in vitro/in vivo assessments of polysaccharide-based carriers for oral colon-targeted drug delivery are summarised. Polysaccharide-based microspheres have gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon (colon cancer, inflammatory bowel disease (IBD), amoebiasis and irritable bowel syndrome (IBS)), but also for it's potential for the delivery of anti-rheumatoid arthritis and anti-chronic stable angina drugs. Besides, Polysaccharide-based micro/nanocarriers such as microbeads, microcapsules, microparticles, nanoparticles, nanogels and nanospheres are also introduced in this review.

  3. MiR-214 regulates oral cancer KB cell apoptosis through targeting RASSF5.

    PubMed

    Li, T K; Yin, K; Chen, Z; Bao, Y; Zhang, S X

    2017-03-08

    Ras association domain family member 5 (RASSF5), a member of the Ras association domain family, induces cell apoptosis by phosphorylating FOXO3a, which triggers target gene BIM (pro-apoptotic factor) activation. MiR-214 is overexpressed in oral cancer tissue, indicating its possible involvement in oral cancer pathogenesis. Bioinformatics analysis has revealed a complimentary sequence between miR-214 and the 3'-UTR of RASSF5 mRNA. However, whether miR-124 regulates RASSF5 in oral cancer remains poorly understood. We aimed to investigate the role of miR-214 in RASSF5 expression regulation in oral cancer. Tumor and paracarcinoma tissues were obtained from 48 oral cancer patients to examine miR-214 and RASSF5 expression. The relationship between miR-214 and RASSF5 was investigated by dual luciferase reporter gene assay. Oral cancer KB cells were cultured in vitro and divided into inhibitor NC, miR-214 inhibitor, Scramble-pMD18, RASSF5-pMD18, and miR-214 inhibitor + RASSF5-pMD18 groups. Caspase 3 activity, cell apoptosis, and total protein expression were measured by spectrophotometry, flow cytometry, and western blot, respectively. MiR-214 expression was significantly increased, while that of RASSF5 decreased in oral cancer tumor tissues compared to paracarcinoma tissues. Luciferase assay showed that miR-214 suppressed RASSF5 expression by targeting its 3'-UTR. Down-regulation of miR-214 and/or enhancement of RASSF5 expression markedly increased FOXO3a phosphorylation, BIM expression, caspase 3 activity, and apoptosis. In conclusion, miR-214 expression was elevated and RASSF5 was down-regulated in oral cancer. Moreover, miR-214 regulated KB cell apoptosis through targeted inhibition of RASSF5 expression, FOXO3a phosphorylation, and BIM expression, suggesting its possible application as a novel therapeutic oral cancer target.

  4. Orally active-targeted drug delivery systems for proteins and peptides.

    PubMed

    Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2014-09-01

    In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.

  5. Modern prodrug design for targeted oral drug delivery.

    PubMed

    Dahan, Arik; Zimmermann, Ellen M; Ben-Shabat, Shimon

    2014-10-14

    The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options.

  6. In vitro apoptotic effects of methanol extracts of Dianthus chinensis and Acalypha australis L. targeting specificity protein 1 in human oral cancer cells.

    PubMed

    Shin, Ji-Ae; Kim, Jae-Jin; Choi, Eun-Sun; Shim, Jung-Hyun; Ryu, Mi Heon; Kwon, Ki Han; Park, Hee-Min; Seo, Jin-Young; Lee, Soo-Yeon; Lim, Do-Won; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-07-01

    The aims of this study were to evaluate the apoptotic activities and molecular mechanisms of methanol extracts of Dianthus chinensis (MEDC) and Acalypha australis L. (MEAL) in human oral cancer cells. The apoptotic effects and related molecular mechanisms of MEDC and MEAL on oral cancer cells were evaluated using MTS assay, DAPI staining, immunostaining, Western blotting, and reverse transcriptase-polymerase chain reaction. Sp1 was overexpressed in oral tumor tissues compared with normal oral mucosa. Downregulation of Sp1 inhibited the growth of SCC-15 and YD-15 oral cancer cells. MEDC and MEAL inhibited cell growth and induced apoptosis in both cell lines by decreasing the expression of Sp1. In addition, treatment of cells with MEDC and MEAL decreased Mcl-1 expression, which is a downstream target of Sp1. Our results indicate that MEDC and MEAL are bioactive natural products that can potentially induce apoptosis of tumor cells that overexpress the Sp1 protein. Copyright © 2012 Wiley Periodicals, Inc.

  7. Identification of tissue-specific targeting peptide

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Seung-Hoon; Kim, Daejin; Park, Kisoo; Choi, Kihang; Choi, Yun-Jaie; Jung, Dong Hyun

    2012-11-01

    Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide "DKNLQLH" was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.

  8. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target.

    PubMed

    Retzbach, Edward P; Sheehan, Stephanie A; Nevel, Evan M; Batra, Amber; Phi, Tran; Nguyen, Angels T P; Kato, Yukinari; Baredes, Soly; Fatahzadeh, Mahnaz; Shienbaum, Alan J; Goldberg, Gary S

    2018-03-01

    Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination.

    PubMed

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaeghen, Marie-Lyse; Jerôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2009-09-01

    The presence of RGD on nanoparticles allows the targeting of beta1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of PCL-PEG and incorporated in PLGA-based nanoparticles. RGD and RGDp significantly increased the transport of nanoparticles across an in vitro model of human M cells as compared to enterocytes. RGD, LDVp, LDVd and mannose enhanced nanoparticle uptake by macrophages in vitro. The intraduodenal immunization with RGDp-, LDVd- or mannose-labeled nanoparticles elicited a higher production of IgG antibodies than the intramuscular injection of free ovalbumin or intraduodenal administration of either non-targeted or RGD-nanoparticles. Targeted formulations were also able to induce a cellular immune response. In conclusion, the in vitro transport of nanoparticles, uptake by macrophages and the immune response were positively influenced by the presence of ligands at the surface of nanoparticles. These targeted-nanoparticles could thus represent a promising delivery system for oral immunization.

  10. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination.

    PubMed

    Garinot, Marie; Fiévez, Virginie; Pourcelle, Vincent; Stoffelbach, François; des Rieux, Anne; Plapied, Laurence; Theate, Ivan; Freichels, Hélène; Jérôme, Christine; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2007-07-31

    To improve the efficiency of orally delivered vaccines, PEGylated PLGA-based nanoparticles displaying RGD molecules at their surface were designed to target human M cells. RGD grafting was performed by an original method called "photografting" which covalently linked RGD peptides mainly on the PEG moiety of the PCL-PEG, included in the formulation. First, three non-targeted formulations with size and zeta potential adapted to M cell uptake and stable in gastro-intestinal fluids, were developed. Their transport by an in vitro model of the human Follicle associated epithelium (co-cultures) was largely increased as compared to mono-cultures (Caco-2 cells). RGD-labelling of nanoparticles significantly increased their transport by co-cultures, due to interactions between the RGD ligand and the beta(1) intregrins detected at the apical surface of co-cultures. In vivo studies demonstrated that RGD-labelled nanoparticles particularly concentrated in M cells. Finally, ovalbumin-loaded nanoparticles were orally administrated to mice and induced an IgG response, attesting antigen ability to elicit an immune response after oral delivery.

  11. Specific Oral Communication Skills Desired in New Accountancy Graduates

    ERIC Educational Resources Information Center

    Gray, F. Elizabeth

    2010-01-01

    International research findings and anecdotal evidence alike suggest that new accountancy graduates often begin their careers with inadequate oral communication skills. However, there is a lack of well-grounded empirical data concerning precisely what accountancy employers mean by "oral communication" and what specific skills they value…

  12. Molecular characterization of oral squamous cell carcinoma using targeted next-generation sequencing.

    PubMed

    Er, Tze-Kiong; Wang, Yen-Yun; Chen, Chih-Chieh; Herreros-Villanueva, Marta; Liu, Ta-Chih; Yuan, Shyng-Shiou F

    2015-10-01

    Many genetic factors play an important role in the development of oral squamous cell carcinoma. The aim of this study was to assess the mutational profile in oral squamous cell carcinoma using formalin-fixed, paraffin-embedded tumors from a Taiwanese population by performing targeted sequencing of 26 cancer-associated genes that are frequently mutated in solid tumors. Next-generation sequencing was performed in 50 formalin-fixed, paraffin-embedded tumor specimens obtained from patients with oral squamous cell carcinoma. Genetic alterations in the 26 cancer-associated genes were detected using a deep sequencing (>1000X) approach. TP53, PIK3CA, MET, APC, CDH1, and FBXW7 were most frequently mutated genes. Most remarkably, TP53 mutations and PIK3CA mutations, which accounted for 68% and 18% of tumors, respectively, were more prevalent in a Taiwanese population. Other genes including MET (4%), APC (4%), CDH1 (2%), and FBXW7 (2%) were identified in our population. In summary, our study shows the feasibility of performing targeted sequencing using formalin-fixed, paraffin-embedded samples. Additionally, this study also reports the mutational landscape of oral squamous cell carcinoma in the Taiwanese population. We believe that this study will shed new light on fundamental aspects in understanding the molecular pathogenesis of oral squamous cell carcinoma and may aid in the development of new targeted therapies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells.

    PubMed

    Kumar, Nitesh; Rai, Amita; Reddy, Neetinkumar D; Raj, P Vasanth; Jain, Prateek; Deshpande, Praful; Mathew, Geetha; Kutty, N Gopalan; Udupa, Nayanabhirama; Rao, C Mallikarjuna

    2014-10-01

    Silymarin, a hepatoprotective agent, has poor oral bioavailability. However, the current dosage form of the drug does not target the liver and inflammatory cells selectively. The aim of the present study was to develop lecithin-based carrier system of silymarin by incorporating phytosomal-liposomal approach to increase its oral bioavailability and to make it target-specific to the liver for enhanced hepatoprotection. The formulation was prepared by film hydration method. Release of drug was assessed at pH 1.2 and 7.4. Formulation was assessed for in vitro hepatoprotection on Chang liver cells, lipopolysaccharide-induced reactive oxygen species (ROS) production by RAW 267.4 (murine macrophages), in vivo efficacy against paracetamol-induced hepatotoxicity and pharmacokinetic study by oral route in Wistar rat. The formulation showed maximum entrapment (55%) for a lecithin-cholesterol ratio of 6:1. Comparative release profile of formulation was better than silymarin at pH 1.2 and pH 7.4. In vitro studies showed a better hepatoprotection efficacy for formulation (one and half times) and better prevention of ROS production (ten times) compared to silymarin. In in vivo model, paracetamol showed significant hepatotoxicity in Wistar rats assessed through LFT, antioxidant markers and inflammatory markers. The formulation was found more efficacious than silymarin suspension in protecting the liver against paracetamol toxicity and the associated inflammatory conditions. The liposomal formulation yielded a three and half fold higher bioavailability of silymarin as compared with silymarin suspension. Incorporating the phytosomal form of silymarin in liposomal carrier system increased the oral bioavailability and showed better hepatoprotection and better anti-inflammatory effects compared with silymarin suspension. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. Measuring oral health during pregnancy: sensitivity and specificity of a maternal oral screening (MOS) tool.

    PubMed

    George, Ajesh; Dahlen, Hannah G; Blinkhorn, Anthony; Ajwani, Shilpi; Bhole, Sameer; Ellis, Sharon; Yeo, Anthony; Elcombe, Emma; Sadozai, Ayesha; Johnson, Maree

    2016-11-09

    Midwives can play a key role in promoting the oral health of pregnant women and assessing their oral health status. A maternal oral assessment tool (MOS) was developed and pilot tested by the study investigators to assist midwives in this role and the results were promising. The aim of this study was to undertake further sensitivity and specificity assessment of the MOS tool using two-comparison approaches- the longer oral health screening tool known as the Oral Health Impact Profile (OHIP-14) and an oral assessment by trained study dentists. Pregnant women were recruited for this study as part of a larger randomised controlled trial of a Midwifery Initiated Oral Health (MIOH) program. Pregnant women completed the MOS and OHIP-14 as part of their initial assessment undertaken by 38 trained and accredited midwives. A dental assessment was conducted for all women in the intervention group using three trained study dentists with high inter rater reliability. Two hundred and eleven pregnant women participated in the validation of the MOS tool. Results from both approaches found the MOS tool to have high sensitivity, correctly identifying 88-94 % of women at risk of poor dental health, and low specificity (14-21 %). This study has shown that the MOS tool can be successfully implemented by midwives during a woman's first antenatal visit and can identify up to 94 % of women at risk of poor oral health and needing a dental referral. The tool has the potential to be transferable to other antenatal care providers and could be incorporated into hospital obstetric database systems. ACTRN12612001271897 , 6 th Dec 2012, retrospectively registered.

  15. Induction of pneumococcal polysaccharide-specific mucosal immune responses by oral immunization.

    PubMed

    VanCott, J L; Kobayashi, T; Yamamoto, M; Pillai, S; McGhee, J R; Kiyono, H

    1996-04-01

    Liposome and cholera toxin (CT) are considered to be effective antigen delivery vehicles and adjuvants for mucosal vaccines. The effect of these antigen delivery systems on adjuvant responses to mucosally administered pneumococcal polysaccharide (Pnup) was investigated in this study. Both mucosal (e.g. oral) and systemic (i.p.) immunization of mice with purified preparations of Pnup type 23F induced antigen-specific IgM responses in sera. Interestingly, oral immunization of as little as 10 micrograms of Pnup type 23F was sufficient to induce systemic IgM responses. Pnup-specific IgM antibodies peaked by day 7 and no booster responses were evident after a second dose on day 14. In order to examine whether IgG and IgA Pnup-specific immune responses are induced by mucosal immunization, the mucosal adjuvant CT was mixed with Pnup type 23 as an oral vaccine. Co-oral administration of CT and Pnup type 23F resulted in the induction of Pnup-specific faecal IgA antibodies. These results were confirmed by detecting antigen-specific IgA-spot-forming cells in mononuclear cell suspensions prepared from the intestine of immunized mice. These findings suggest that oral immunization with Pnup in the presence of mucosal adjuvants, such as CT, could induce Pnup-specific IgA responses whereas Pnup alone did not. In an attempt to further enhance antigen-specific antibody responses, Pnup type 23F was encapsulated in liposomes and used as mucosal vaccine. However, immunogenicity of Pnup was not improved.

  16. The impact of bleeding complications in patients receiving target-specific oral anticoagulants: a systematic review and meta-analysis.

    PubMed

    Chai-Adisaksopha, Chatree; Crowther, Mark; Isayama, Tetsuya; Lim, Wendy

    2014-10-09

    Vitamin K antagonists (VKAs) have been the standard of care for treatment of thromboembolic diseases. Target-specific oral anticoagulants (TSOACs) have been developed and found to be at least noninferior to VKAs with regard to efficacy, but the risk of bleeding with TSOACs remains controversial. We performed a systematic review and meta-analysis of phase-3 randomized controlled trials (RCTs) to assess the bleeding side effects of TSOACs compared with VKAs in patients with venous thromboembolism or atrial fibrillation. We searched MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials; conference abstracts; and www.clinicaltrials.gov with no language restriction. Two reviewers independently performed study selection, data extraction, and study quality assessment. Twelve RCTs involving 102 607 patients were retrieved. TSOACs significantly reduced the risk of overall major bleeding (relative risk [RR] 0.72, P < .01), fatal bleeding (RR 0.53, P < .01), intracranial bleeding (RR 0.43, P < .01), clinically relevant nonmajor bleeding (RR 0.78, P < .01), and total bleeding (RR 0.76, P < .01). There was no significant difference in major gastrointestinal bleeding between TSOACs and VKAs (RR 0.94, P = .62). When compared with VKAs, TSOACs are associated with less major bleeding, fatal bleeding, intracranial bleeding, clinically relevant nonmajor bleeding, and total bleeding. Additionally, TSOACs do not increase the risk of gastrointestinal bleeding. © 2014 by The American Society of Hematology.

  17. Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer.

    PubMed

    Daigo, Kayo; Takano, Atsushi; Thang, Phung Manh; Yoshitake, Yoshihiro; Shinohara, Masanori; Tohnai, Iwau; Murakami, Yoshinori; Maegawa, Jiro; Daigo, Yataro

    2018-01-01

    Oral cancer has a high mortality rate, and its incidence is increasing gradually worldwide. As the effectiveness of standard treatments is still limited, the development of new therapeutic strategies is eagerly awaited. Kinesin family member 11 (KIF11) is a motor protein required for establishing a bipolar spindle in cell division. The role of KIF11 in oral cancer is unclear. Therefore, the present study aimed to assess the role of KIF11 in oral cancer and evaluate its role as a prognostic biomarker and therapeutic target for treating oral cancer. Immunohistochemical analysis demonstrated that KIF11 was expressed in 64 of 99 (64.6%) oral cancer tissues but not in healthy oral epithelia. Strong KIF11 expression was significantly associated with poor prognosis among oral cancer patients (P=0.034), and multivariate analysis confirmed its independent prognostic value. In addition, inhibition of KIF11 expression by transfection of siRNAs into oral cancer cells or treatment of cells with a KIF11 inhibitor significantly suppressed cell proliferation, probably through G2/M arrest and subsequent induction of apoptosis. These results suggest that KIF11 could be a potential prognostic biomarker and therapeutic target for oral cancer.

  18. Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer

    PubMed Central

    Daigo, Kayo; Takano, Atsushi; Thang, Phung Manh; Yoshitake, Yoshihiro; Shinohara, Masanori; Tohnai, Iwau; Murakami, Yoshinori; Maegawa, Jiro; Daigo, Yataro

    2018-01-01

    Oral cancer has a high mortality rate, and its incidence is increasing gradually worldwide. As the effectiveness of standard treatments is still limited, the development of new therapeutic strategies is eagerly awaited. Kinesin family member 11 (KIF11) is a motor protein required for establishing a bipolar spindle in cell division. The role of KIF11 in oral cancer is unclear. Therefore, the present study aimed to assess the role of KIF11 in oral cancer and evaluate its role as a prognostic biomarker and therapeutic target for treating oral cancer. Immunohistochemical analysis demonstrated that KIF11 was expressed in 64 of 99 (64.6%) oral cancer tissues but not in healthy oral epithelia. Strong KIF11 expression was significantly associated with poor prognosis among oral cancer patients (P=0.034), and multivariate analysis confirmed its independent prognostic value. In addition, inhibition of KIF11 expression by transfection of siRNAs into oral cancer cells or treatment of cells with a KIF11 inhibitor significantly suppressed cell proliferation, probably through G2/M arrest and subsequent induction of apoptosis. These results suggest that KIF11 could be a potential prognostic biomarker and therapeutic target for oral cancer. PMID:29115586

  19. Ras oncogenes in oral cancer: the past 20 years.

    PubMed

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Tsuchida, Nobuo

    2012-05-01

    Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Vesiculo-erosive oral mucosal disease--management with topical corticosteroids: (1) Fundamental principles and specific agents available.

    PubMed

    González-Moles, M A; Scully, C

    2005-04-01

    Vesiculo-erosive diseases of the oral mucosa pose a major challenge in oral medicine, because they are chronic, painful, and interfere with the daily activities and quality of life of the patients, including disturbing eating, drinking, talking, and personal relationships. Many are autoimmune diseases, and corticosteroid therapy is currently central to their treatment. These diseases present with inflammation and alterations to epithelial integrity, through cell and/or humoral immunity-mediated attack on epithelial-connective tissue targets. Until recently, despite their serious adverse effects, it was necessary to prescribe systemic corticosteroids to control severe erosive oral diseases. Now, however, many of these diseases can be controlled by high-potency topical corticosteroids, which have proved to be highly efficacious and to cause fewer adverse effects compared with systemic corticosteroids. Nevertheless, although topical corticosteroids are still the most widely used drugs in the practice of oral medicine, the scientific body of evidence for their use in the oral cavity is virtually non-existent, and therefore many of the protocols followed are, of necessity, drawn from experience of their use in a dermatological setting. This review aims to set out the key aspects of the use of topical corticosteroids in oral medicine. The issues covered include the indications and basic rules for their use, the types of corticosteroids, the drug selection, and the specific formulations.

  1. Economic Burden of Chronic Lymphocytic Leukemia in the Era of Oral Targeted Therapies in the United States

    PubMed Central

    Chen, Qiushi; Jain, Nitin; Ayer, Turgay; Wierda, William G.; Flowers, Christopher R.; O’Brien, Susan M.; Keating, Michael J.; Kantarjian, Hagop M.

    2017-01-01

    Purpose Oral targeted therapies represent a significant advance for the treatment of patients with chronic lymphocytic leukemia (CLL); however, their high cost has raised concerns about affordability and the economic impact on society. Our objective was to project the future prevalence and cost burden of CLL in the era of oral targeted therapies in the United States. Methods We developed a simulation model that evaluated the evolving management of CLL from 2011 to 2025: chemoimmunotherapy (CIT) as the standard of care before 2014, oral targeted therapies for patients with del(17p) and relapsed CLL from 2014, and for first-line treatment from 2016 onward. A comparator scenario also was simulated where CIT remained the standard of care throughout. Disease progression and survival parameters for each therapy were based on published clinical trials. Results The number of people living with CLL in the United States is projected to increase from 128,000 in 2011 to 199,000 by 2025 (55% increase) due to improved survival; meanwhile, the annual cost of CLL management will increase from $0.74 billion to $5.13 billion (590% increase). The per-patient lifetime cost of CLL treatment will increase from $147,000 to $604,000 (310% increase) as oral targeted therapies become the first-line treatment. For patients enrolled in Medicare, the corresponding total out-of-pocket cost will increase from $9,200 to $57,000 (520% increase). Compared with the CIT scenario, oral targeted therapies resulted in an incremental cost-effectiveness ratio of $189,000 per quality-adjusted life-year. Conclusion The increased benefit and cost of oral targeted therapies is projected to enhance CLL survivorship but can impose a substantial financial burden on both patients and payers. More sustainable pricing strategies for targeted therapies are needed to avoid financial toxicity to patients. PMID:27870563

  2. [Oral controlled release dosage forms].

    PubMed

    Mehuys, Els; Vervaet, Chris

    2010-06-01

    Several technologies to control drug release from oral dosage forms have been developed. Drug release can be regulated in several ways: sustained release, whereby the drug is released slowly over a prolonged period of time, postponed release, whereby drug release is delayed until passage from the stomach into the intestine (via enteric coating), and targeted release, whereby the drug is targeted to a specific location of the gastrointestinal tract. This article reviews the various oral controlled release dosage forms on the market.

  3. Identification of cancer specific ligands from one-bead one compound combinatorial libraries to develop theranostics agents against oral squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Frances Fan

    Background: Oral squamous cell carcinoma (OSCC) is one of the most prevalent disease worldwide. One-bead one-compound (OBOC) combinatorial technology is a powerful method to identify peptidomimetic ligands against a variety of receptors on cell surfaces. We therefore hypothesized that cancer specific ligands against OSCC might be identified and can be conjugated to optical dyes or nanocarriers to develop theranostic agents against OSCC. Material and methods: Different OSCC cell lines were incubated with OBOC libraries and beads with cell binding were sorted and then screened with normal human cells to identify peptide-beads binding to different OSCC cell lines but not binding to normal human cells. The molecular probes of OSCC were developed by biotinylating the carboxyl end of the ligands. OSCC theranostic agents were developed by decorating LLY13 with NPs and evaluated by using orthotopic bioluminescent oral cancer model. Results: Six OSCC specific ligands were discovered. Initial peptide-histochemistry study indicated that LLY12 and LLY13 were able to specifically detect OSCC cells grown on chamber slides at the concentration of 1 muM. In addition, LLY13 was found to penetrate into the OSCC cells and accumulate in the cytoplasm, and nucleus. After screened with a panel of integrin antibodies, only anti-alpha3 antibody was able to block most of OSCC cells binding to the LLY13 beads. OSCC theranostic agents developed using targeting LLY13 micelles (25+/- 4nm in diameter) were more efficient in binding to HSC-3 cancer cells compared to non-targeting micelles. Ex vivo images demonstrated that xenografts from the mice with targeting micelles appeared to have higher signals than the non-targeting groups. Conclusion: LLY13 has promising in vitro and in vivo targeting activity against OSCC. In addition, LLY13 is also able to penetrate into cancer cells via endocytosis. Initial study indicated that alpha3 integrin might partially be the corresponding receptor involved

  4. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis

    PubMed Central

    Kojima, Ayuchi; Nakano, Kazuhiko; Wada, Koichiro; Takahashi, Hirokazu; Katayama, Kazufumi; Yoneda, Masato; Higurashi, Takuma; Nomura, Ryota; Hokamura, Kazuya; Muranaka, Yoshinori; Matsuhashi, Nobuyuki; Umemura, Kazuo; Kamisaki, Yoshinori; Nakajima, Atsushi; Ooshima, Takashi

    2012-01-01

    Although oral bacteria-associated systemic diseases have been reported, association between Streptococcus mutans, pathogen of dental caries, and ulcerative colitis (UC) has not been reported. We investigated the effect of various S. mutans strains on dextran sodium sulfate (DSS)-induced mouse colitis. Administration of TW295, the specific strain of S. mutans, caused aggravation of colitis; the standard strain, MT8148 did not. Localization of TW295 in hepatocytes in liver was observed. Increased expression of interferon-γ in liver was also noted, indicating that the liver is target organ for the specific strain of S. mutans-mediated aggravation of colitis. The detection frequency of the specific strains in UC patients was significantly higher than in healthy subjects. Administration of the specific strains of S. mutans isolated from patients caused aggravation of colitis. Infection with highly-virulent specific types of S. mutans might be a potential risk factor in the aggravation of UC. PMID:22451861

  5. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue.

    PubMed

    Hua, Susan; Marks, Ellen; Schneider, Jennifer J; Keely, Simon

    2015-07-01

    Colon targeted drug delivery is an active area of research for local diseases affecting the colon, as it improves the efficacy of therapeutics and enables localized treatment, which reduces systemic toxicity. Targeted delivery of therapeutics to the colon is particularly advantageous for the treatment of inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease. Advances in oral drug delivery design have significantly improved the bioavailability of drugs to the colon; however in order for a drug to have therapeutic efficacy during disease, considerations must be made for the altered physiology of the gastrointestinal (GI) tract that is associated with GI inflammation. Nanotechnology has been used in oral dosage formulation design as strategies to further enhance uptake into diseased tissue within the colon. This review will describe some of the physiological challenges faced by orally administered delivery systems in IBD, the important developments in orally administered nano-delivery systems for colon targeting, and the future advances of this research. Inflammatory Bowel Disease (IBD) poses a significant problem for a large number of patients worldwide. Current medical therapy mostly aims at suppressing the active inflammatory episodes. In this review article, the authors described and discussed the various approaches current nano-delivery systems can offer in overcoming the limitations of conventional drug formulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Oral cancer preventive campaigns: are we reaching the real target?

    PubMed

    Nemoto, Renato Paladino; Victorino, Alana Asciutti; Pessoa, Gregory Bittar; Cunha, Lais Lourenção Garcia da; Silva, José Antonio Rodrigues da; Kanda, Jossi Ledo; Matos, Leandro Luongo de

    2015-01-01

    Oral cavity malignant neoplasms have a high mortality rate. For this reason, preventive campaigns have been developed, both to educate the population and to diagnose lesions at an early stage. However, there are studies that contest the validity of these endeavors, principally because the target audience of the campaigns may not conform to the group at highest risk for oral malignancy. To describe the profile of patients who avail themselves of the preventive campaign, identify the presence of oral lesions in that population, and compare that data with the epidemiological profile of patients with oral cancer. Cross-sectional historical cohort study performed by analysis of epidemiological data of the campaign "Abra a Boca para a Saúde" collected in the years from 2008 to 2013. In the years analyzed, 11,965 people were treated and 859 lesions were diagnosed, all benign. There was a female predominance (52.7%), with mean age of 44 years (±15.4 years); 26% were smokers and 29% reported alcohol consumption. It is known that the group at highest risk to develop oral cancer is 60- to 70-year-old men, who are alcoholic smokers. The population that seeks preventive campaigns is not the main risk group for the disease. This fact explains the low number of lesions and the lack of cancer detection. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  7. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41

    PubMed Central

    Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K.; Jiang, Shibo

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development. PMID:26324044

  8. Cell-specific targeting by heterobivalent ligands.

    PubMed

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  9. Cell-Specific Targeting by Heterobivalent Ligands

    PubMed Central

    Josan, Jatinder S.; Handl, Heather L.; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M.; Vagner, Josef; Mash, Eugene A.; Hruby, Victor J.; Gillies, Robert J.

    2012-01-01

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach—to specifically target combinations of cell-surface receptors using heteromultivalent ligands (“receptor combination approach”). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle4, DPhe7]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20–50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH2. Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging. PMID:21639139

  10. [More] evidence to support oral health promotion services targeted to smokers calling tobacco quitlines in the United States.

    PubMed

    McClure, Jennifer B; Riggs, Karin; St John, Jackie; Catz, Sheryl L

    2013-04-11

    Prior research demonstrated a need and opportunity to target smokers calling a free, state-funded tobacco quitline to provide behavioral counseling for oral health promotion; however, it is unclear whether these results generalize to tobacco quitline callers of higher socioeconomic status receiving services through commercially-funded quitlines. This knowledge will inform planning for a future public oral health promotion program targeted to tobacco quitline callers. We surveyed smokers (n = 455) who had recently received tobacco quitline services through their medical insurance. Participants were asked about their self-reported oral health indicators, key behavioral risk factors for oral disease, motivation for changing their oral self-care behavior, and interest in future oral health promotion services. Where applicable, results were compared against those from a representative sample of callers to a free, state-funded quitline (n = 816) in the same geographic region. Callers to a commercially-funded quitline had higher socioeconomic status, were more likely to have dental insurance, and reported better overall oral health indicators and routine self-care (oral hygiene, dental visits) than callers to a state-funded quitline. Nevertheless opportunities for oral health promotion were identified. Nearly 80% of commercial quitline callers failed to meet basic daily hygiene recommendations, 32.8% had not visited the dentist in more than a year, and 63.3% reported daily alcohol consumption (which reacts synergistically with tobacco to increase oral cancer risk). Nearly half (44%) were interested in learning how to improve their oral health status and, on average, moderately high levels of motivation for oral health care were reported. Many participants also had dental insurance, eliminating an important barrier to professional dental care. Future public oral health promotion efforts should focus on callers to both free state-supported and commercially

  11. Amixicile, a novel strategy for targeting oral anaerobic pathogens.

    PubMed

    Hutcherson, Justin A; Sinclair, Kathryn M; Belvin, Benjamin R; Gui, Qin; Hoffman, Paul S; Lewis, Janina P

    2017-09-05

    The oral microflora is composed of both health-promoting as well as disease-initiating bacteria. Many of the disease-initiating bacteria are anaerobic and include organisms such as Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Tannerella forsythia. Here we investigated a novel therapeutic, amixicile, that targets pyruvate:ferredoxin oxidoreductase (PFOR), a major metabolic enzyme involved in energy generation through oxidative decarboxylation of pyruvate. PFOR is present in these anaerobic pathogenic bacteria and thus we hypothesized that amixicile would effectively inhibit their growth. In general, PFOR is present in all obligate anaerobic bacteria, while oral commensal aerobes, including aerotolerant ones, such as Streptococcus gordonii, use pyruvate dehydrogenase to decarboxylate pyruvate. Accordingly, we observed that growth of the PFOR-containing anaerobic periodontal pathogens, grown in both monospecies as well as multispecies broth cultures was inhibited in a dose-dependent manner while that of S. gordonii was unaffected. Furthermore, we also show that amixicile is effective against these pathogens grown as monospecies and multispecies biofilms. Finally, amixicile is the first selective therapeutic agent active against bacteria internalized by host cells. Together, the results show that amixicile is an effective inhibitor of oral anaerobic bacteria and as such, is a good candidate for treatment of periodontal diseases.

  12. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    PubMed

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Induction of PrPSc-specific systemic and mucosal immune responses in white-tailed deer with an oral vaccine for chronic wasting disease

    PubMed Central

    Scruten, Erin; Woodbury, Murray; Potter, Andrew; Griebel, Philip; Tikoo, Suresh K.; Napper, Scott

    2017-01-01

    ABSTRACT The ongoing epidemic of chronic wasting disease (CWD) within cervid populations indicates the need for novel approaches for disease management. A vaccine that either reduces susceptibility to infection or reduces shedding of prions by infected animals, or a combination of both, could be of benefit for disease control. The development of such a vaccine is challenged by the unique nature of prion diseases and the requirement for formulation and delivery in an oral format for application in wildlife settings. To address the unique nature of prions, our group targets epitopes, termed disease specific epitopes (DSEs), whose exposure for antibody binding depends on disease-associated misfolding of PrPC into PrPSc. Here, a DSE corresponding to the rigid loop (RL) region, which was immunogenic following parenteral vaccination, was translated into an oral vaccine. This vaccine consists of a replication-incompetent human adenovirus expressing a truncated rabies glycoprotein G recombinant fusion with the RL epitope (hAd5:tgG-RL). Oral immunization of white-tailed deer with hAd5:tgG-RL induced PrPSc-specific systemic and mucosal antibody responses with an encouraging safety profile in terms of no adverse health effects nor prolonged vector shedding. By building upon proven strategies of formulation for wildlife vaccines, these efforts generate a particular PrPSc-specific oral vaccine for CWD as well as providing a versatile platform, in terms of carrier protein and biological vector, for generation of other oral, peptide-based CWD vaccines. PMID:28968152

  14. Colonic Immune Stimulation by Targeted Oral Vaccine

    PubMed Central

    Kathania, Mahesh; Zadeh, Mojgan; Lightfoot, Yaíma L.; Roman, Robert M.; Sahay, Bikash; Abbott, Jeffrey R.; Mohamadzadeh, Mansour

    2013-01-01

    Background Currently, sufficient data exist to support the use of lactobacilli as candidates for the development of new oral targeted vaccines. To this end, we have previously shown that Lactobacillus gasseri expressing the protective antigen (PA) component of anthrax toxin genetically fused to a dendritic cell (DC)-binding peptide (DCpep) induced efficacious humoral and T cell-mediated immune responses against Bacillus anthracis Sterne challenge. Methodology/Principal Finding In the present study, we investigated the effects of a dose dependent treatment of mice with L. gasseri expressing the PA-DCpep fusion protein on intestinal and systemic immune responses and confirmed its safety. Treatment of mice with different doses of L. gasseri expressing PA-DCpep stimulated colonic immune responses, resulting in the activation of innate immune cells, including dendritic cells, which induced robust Th1, Th17, CD4+Foxp3+ and CD8+Foxp3+ T cell immune responses. Notably, high doses of L. gasseri expressing PA-DCpep (1012 CFU) were not toxic to the mice. Treatment of mice with L. gasseri expressing PA-DCpep triggered phenotypic maturation and the release of proinflammatory cytokines by dendritic cells and macrophages. Moreover, treatment of mice with L. gasseri expressing PA-DCpep enhanced antibody immune responses, including IgA, IgG1, IgG2b, IgG2c and IgG3. L. gasseri expressing PA-DCpep also increased the gene expression of numerous pattern recognition receptors, including Toll-like receptors, C-type lectin receptors and NOD-like receptors. Conclusion/Significance These findings suggest that L. gasseri expressing PA-DCpep has substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration and may be used as a safe oral vaccine against anthrax challenge. PMID:23383086

  15. Safe Handling of Oral Antineoplastic Medications: Focus on Targeted Therapeutics in the Home Setting

    PubMed Central

    Cass, Yaakov; Connor, Thomas H.; Tabachnik, Alexander

    2017-01-01

    Introduction With the growing number of oral targeted therapies being approved for use in cancer therapy, the potential for long-term administration of these drugs to cancer patients is expanding. The use of these drugs in the home setting has the potential to expose family members and caregivers to them either through direct contact with the drugs or indirectly by exposure to the parent compounds and/or their active metabolites in contaminated patient's waste. Methods A systematic literature review was performed and the known adverse health effect of 32 oral targeted therapeutics is summarized. In particular, the carcinogenicity, genotoxicity, and embryo-foetal toxicity, along with the route of excretion were evaluated. Results Carcinogenicity testing has not been performed on most of the oral targeted therapeutics and the genotoxicity data are mixed. However, the majority of these drugs exhibit adverse reproductive effects, some of which are severe. Currently available data does not permit the possibility of a health hazard from inappropriate handling of drugs and contaminated patients waste to be ignored, especially in a long-term home setting. Further research is needed to understand these issues. Conclusions With the expanding use of targeted therapies in the home setting, family members and caregivers, especially those of reproductive risk age, are, potentially at risk. Overall basic education and related precautions should be taken to protect family members and caregivers from indirect or direct exposure from these drugs. Further investigations and discussion on this subject is warranted. PMID:27009803

  16. Targeted mass treatment for syphilis with oral azithromycin.

    PubMed

    Rekart, Michael L; Patrick, David M; Chakraborty, Bubli; Maginley, Juanita J L; Jones, H D; Bajdik, Chris D; Pourbohloul, Babak; Brunham, Robert C

    2003-01-25

    From mid 1997 to end of 1999, there was a sexually-transmitted infectious syphilis outbreak mainly in heterosexual people in British Columbia, Canada, that was concentrated in Vancouver. The rate across the province increased from less than 0.5 to 3.4 per 100000, and the rate in Vancouver reached 12.9 per 100000. We aimed to eliminate the syphillis outbreak by treating people at risk of infection. In 2000, a targeted mass treatment programme provided azithromycin (1.8 g orally) to 4384 at-risk residents in this city. After the programme, syphilis frequency fell significantly for 6 months (p=0.016), but rose again in 2001. Results from curve fitting analyses showed that the number of cases in 2001 (177) was higher than expected (0.0001targeted mass treatment for syphilis, even though feasible, should not be done routinely.

  17. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells.

    PubMed

    Mascarell, Laurent; Lombardi, Vincent; Louise, Anne; Saint-Lu, Nathalie; Chabre, Henri; Moussu, Hélène; Betbeder, Didier; Balazuc, Anne-Marie; Van Overtvelt, Laurence; Moingeon, Philippe

    2008-09-01

    A detailed characterization of oral antigen-presenting cells is critical to improve second-generation sublingual allergy vaccines. To characterize oral dendritic cells (DCs) within lingual and buccal tissues from BALB/c mice with respect to their surface phenotype, distribution, and capacity to polarize CD4(+) T-cell responses. In situ analysis of oral DCs was performed by immunohistology. Purified DCs were tested in vitro for their capacity to capture, process, and present the ovalbumin antigen to naive CD4(+) T cells. In vivo priming of ovalbumin-specific T cells adoptively transferred to BALB/c mice was analyzed by cytofluorometry in cervical lymph nodes after sublingual administration of mucoadhesive ovalbumin. Three subsets of oral DCs with a distinct tissue distribution were identified: (1) a minor subset of CD207(+) Langerhans cells located in the mucosa itself, (2) a major subpopulation of CD11b(+)CD11c(-) and CD11b(+)CD11c(+) myeloid DCs at the mucosal/submucosal interface, and (3) B220(+)120G8(+) plasmacytoid DCs found in submucosal tissues. Purified myeloid and plasmacytoid oral DCs capture and process the antigen efficiently and are programmed to elicit IFN-gamma and/or IL-10 production together with a suppressive function in naive CD4(+) T cells. Targeting the ovalbumin antigen to oral DCs in vivo by using mucoadhesive particles establishes tolerance in the absence of cell depletion through the stimulation of IFN-gamma and IL-10-producing CD4(+) regulatory T cells in cervical lymph nodes. The oral immune system is composed of various subsets of tolerogenic DCs organized in a compartmentalized manner and programmed to induce T(H)1/regulatory T-cell responses.

  18. A Target-Specific Oral Formulation of Doxorubicin-Protein Nanoparticles: Efficacy and Safety in Hepatocellular Cancer

    PubMed Central

    Golla, Kishore; Bhaskar, Cherukuvada; Ahmed, Farhan; Kondapi, Anand K.

    2013-01-01

    Background/Aims: Hepatocellular carcinoma (HCC) also known as malignant hepatoma is a most common liver cancer. Doxorubicin (Doxo) is an anti-cancer drug having activity against a wide spectrum of cancer types. Clinical Utility of doxo has been limited due to its poor bioavailability and toxicity to heart and spleen. Furthermore, cancer chemotherapeutics have limited oral absorption. Transferrin family proteins are highly abundant and plays important role in transport and storage of iron in cells and tissues. Since apotransferrin and lactoferrin receptors are highly expressed on the surface of metabolically active cancer cells, the principal objective of present study is to evaluate efficacy of doxorubicin loaded apotransferrin and lactoferrin nanoparticles (apodoxonano or lactodoxonano) in oral treatment of HCC in rats. Study Design: HCC was induced in rats by supplementing 100 mg/L of diethylnitrosamine (DENA) in drinking water for 8 weeks. A week after the last day of DENA administration, rats were divided into four groups, each group comprising of five animals. Each group was administered with one of the drug viz., saline, doxorubicin (doxo), apodoxonano and lactodoxonano (4 mg/ kg equivalent of drug). In each case, they received 8 doses of the drug orally with six day interval. One week after the last dose, anticancer activity was evaluated by counting the liver nodules, H & E analysis of tissue sections and expression levels of angiogenic and antitumor markers. Results: In rats treated with apodoxonano and lactodoxonano, the number of neoplastic nodules was significantly lower than that of rats administered with saline or with doxo. Apodoxonano and lactodoxonano did not exhibit decrease in mean body weight, which was markedly reduced by 22% in the case of doxo administered rats. In rats treated with nanoformulations, the number of liver nodules was found reduced by >93%. Both nanoformulations showed significantly high localization in liver compared to doxo

  19. Yeast Microcapsule-Mediated Targeted Delivery of Diverse Nanoparticles for Imaging and Therapy via the Oral Route.

    PubMed

    Zhou, Xing; Zhang, Xiangjun; Han, Songling; Dou, Yin; Liu, Mengyu; Zhang, Lin; Guo, Jiawei; Shi, Qing; Gong, Genghao; Wang, Ruibing; Hu, Jiang; Li, Xiaohui; Zhang, Jianxiang

    2017-02-08

    Targeting of nanoparticles to distant diseased sites after oral delivery remains highly challenging due to the existence of many biological barriers in the gastrointestinal tract. Here we report targeted oral delivery of diverse nanoparticles in multiple disease models, via a "Trojan horse" strategy based on a bioinspired yeast capsule (YC). Diverse charged nanoprobes including quantum dots (QDs), iron oxide nanoparticles (IONPs), and assembled organic fluorescent nanoparticles can be effectively loaded into YC through electrostatic force-driven spontaneous deposition, resulting in different diagnostic YC assemblies. Also, different positive nanotherapies containing an anti-inflammatory drug indomethacin (IND) or an antitumor drug paclitaxel (PTX) are efficiently packaged into YC. YCs containing either nanoprobes or nanotherapies may be rapidly endocytosed by macrophages and maintained in cells for a relatively long period of time. Post oral administration, nanoparticles packaged in YC are first transcytosed by M cells and sequentially endocytosed by macrophages, then transported to neighboring lymphoid tissues, and finally delivered to remote diseased sites of inflammation or tumor in mice or rats, all through the natural route of macrophage activation, recruitment, and deployment. For the examined acute inflammation model, the targeting efficiency of YC-delivered QDs or IONPs is even higher than that of control nanoprobes administered at the same dose via intravenous injection. Assembled IND or PTX nanotherapies orally delivered via YCs exhibit remarkably potentiated efficacies as compared to nanotherapies alone in animal models of inflammation and tumor, which is consistent with the targeting effect and enhanced accumulation of drug molecules at diseased sites. Consequently, through the intricate transportation route, nanoprobes or nanotherapies enveloped in YC can be preferentially delivered to desired targets, affording remarkably improved efficacies for the

  20. Community-based oral health promotion practices targeted at children and adolescents in Finland--developing an assessment tool.

    PubMed

    Blomqvist, Pia; Ojala, Ellinoora; Kettunen, Tarja; Poskiparta, Marita; Kasila, Kirsti

    2014-06-01

    To develop an assessment tool for evaluating oral health promotion practices and to evaluate community-based oral health promotion practices targeted at children and adolescents with this tool. A theoretical framework about health promotion planning, implementation and evaluation was made on the basis of a literature review. Then, information about Finnish community-based oral health promotion practices (n=12) targeted at children and adolescents was collected using semi-structured interviews. Also, related documents, for example action plans and reports, were collected when available. Next, an assessment tool based on the theoretical framework was developed, and the recorded and transcribed interview data and other documents were evaluated with this tool. The assessment tool proved to be practical: it pointed out the strengths and weaknesses of the practices. The tool revealed strengths in the implementation and deficiencies in the planning and evaluation of oral health promotion practices. One-quarter of the 12 practices assessed could be considered 'good practices'. There is a need to improve the planning and evaluation of oral health promotion practices. The assessment tool developed in this study might be useful for practitioners both in the field of oral health promotion and general health promotion. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Sensitivity and specificity of oral HPV detection for HPV-positive head and neck cancer.

    PubMed

    Gipson, Brooke J; Robbins, Hilary A; Fakhry, Carole; D'Souza, Gypsyamber

    2018-02-01

    The incidence of HPV-related head and neck squamous cell carcinoma (HPV-HNSCC) is increasing. Oral samples are easy and non-invasive to collect, but the diagnostic accuracy of oral HPV detection methods for classifying HPV-positive HNSCC tumors has not been well explored. In a systematic review, we identified eight studies of HNSCC patients meeting our eligibility criteria of having: (1) HPV detection in oral rinse or oral swab samples, (2) tumor HPV or p16 testing, (3) a publication date within the last 10 years (January 2007-May 2017, as laboratory methods change), and (4) at least 15 HNSCC cases. Data were abstracted from each study and a meta-analysis performed to calculate sensitivity and specificity. Eight articles meeting inclusion criteria were identified. Among people diagnosed with HNSCC, oral HPV detection has good specificity (92%, 95% CI = 82-97%) and moderate sensitivity (72%, 95% CI = 45-89%) for HPV-positive HNSCC tumor. Results were similar when restricted to studies with only oropharyngeal cancer cases, with oral rinse samples, or testing for HPV16 DNA (instead of any oncogenic HPV) in the oral samples. Among those who already have HNSCC, oral HPV detection has few false-positives but may miss one-half to one-quarter of HPV-related cases (false-negatives). Given these findings in cancer patients, the utility of oral rinses and swabs as screening tests for HPV-HNSCC among healthy populations is probably limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of Targeted Test Preparation on Scores of Two Tests of Oral English as a Second Language

    ERIC Educational Resources Information Center

    Farnsworth, Tim

    2013-01-01

    This study investigated the effect of targeted test preparation, or coaching, on oral English as a second language test scores. The tests in question were the Basic English Skills Test Plus (BEST Plus), a scripted oral interview published by the Center for Applied Linguistics, and the Versant English Test (VET), a computer-administered and…

  3. Sirtuin-3 (SIRT3), a Novel Potential Therapeutic Target for Oral Cancer

    PubMed Central

    Alhazzazi, Turki Y; Kamarajan, Pachiyappan; Joo, Nam; Huang, Jing-Yi; Verdin, Eric; D'Silva, Nisha J; Kapila, Yvonne L

    2011-01-01

    BACKGROUND Several sirtuin family members (SIRT1-7), which are evolutionarily conserved NAD-dependent deacetylases, play an important role in carcinogenesis. However, their role in oral cancer has not yet been investigated. Therefore, the objective of this study was to investigate whether sirtuins play a role in oral cancer carcinogenesis. METHODS The expression levels of all sirtuins in several oral squamous cell carcinoma (OSCC) cell lines were compared with normal human oral keratinocytes and observed that SIRT3 was highly expressed. Therefore, tissue microarrays were used to evaluate the clinical relevance of this overexpression. SIRT3 down-regulation in OSCC cell proliferation and survival was investigated and analyzed by using cell-proliferation and cell-viability assays. Ionizing radiation and cisplatin were used to investigate whether SIRT3 down-regulation could increase the sensitivity of OSCC to both treatments. To further assess the in vivo role of SIRT3 in OSCC carcinogenesis, a floor-of-mouth oral cancer murine model was used to study the effect of SIRT3 down-regulation on OSCC tumor growth in immunodeficient mice. RESULTS The current results demonstrated for the first time that SIRT3 is overexpressed in OSCC in vitro and in vivo compared with other sirtuins. Down-regulation of SIRT3 inhibited OSCC cell growth and proliferation and increased OSCC cell sensitivity to radiation and cisplatin treatments in vitro. SIRT3 down-regulation also reduced tumor burden in vivo. CONCLUSIONS The current investigation revealed a novel role for SIRT3 in oral cancer carcinogenesis as a promoter of cell proliferation and survival, thus implicating SIRT3 as a new potential therapeutic target to treat oral cancer. Cancer 2011. © 2010 American Cancer Society. PMID:21472714

  4. Abasic pivot substitution harnesses target specificity of RNA interference

    PubMed Central

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-01-01

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA–target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼80–100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications. PMID:26679372

  5. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  6. A review of economic impact of targeted oral anticancer medications.

    PubMed

    Shen, Chan; Chien, Chun-Ru; Geynisman, Daniel M; Smieliauskas, Fabrice; Shih, Ya-Chen T

    2014-02-01

    There has been a rapid increase in the use of targeted oral anticancer medications (OAMs) in the past decade. As OAMs are often expensive, economic consideration play a significant role in the decision to prescribe, receive or cover them. This paper performs a systematic review of costs or budgetary impact of targeted OAMs to better understand their economic impact on the healthcare system, patients as well as payers. We present our review in a summary table that describes the method and main findings, take into account multiple factors, such as country, analytical approach, cost type, study perspective, timeframe, data sources, study population and care setting when we interpret the results from different papers, and discuss the policy and clinical implications. Our review raises a concern regarding the role of sponsorship on findings of economic analyses as the vast majority of pharmaceutical company-sponsored studies reported cost advantages toward the sponsor's drugs.

  7. Oral heparin delivery: design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system.

    PubMed

    Schmitz, Thierry; Leitner, Verena M; Bernkop-Schnürch, Andreas

    2005-05-01

    Low molecular weight heparin (LMWH) is an agent of choice in the anti-coagulant therapy and prophylaxis of thrombosis and coronary syndromes. However, the therapeutic use is partially limited due to a poor oral bioavailability. It was therefore the aim of this study to design and evaluate a highly efficient stomach-targeted oral delivery system for LMWH. In order to appraise the influence of the molecular weight on the oral bioavailability, mini-tablets comprising 3 kDa (279 IU) and 6 kDa (300 IU) LMWH, respectively, were generated and tested in vivo in rats. The potential of the test formulations based on thiolated polycarbophil, was evaluated in comparison to hydroxyethylcellulose (HEC) as control carrier matrix. The plasma levels of LMWH after oral versus subcutaneous administration were determined in order to calculate the relative bioavailability. With the delivery system containing 3 kDa LMWH (279 IU) a relative bioavailability of 19.1% was achieved, offering a significantly (p < 0.05) better bioavailability than the control system displaying a relative bioavailability of 8.1% The 6 kDa LMWH (300 IU) formulation displayed a relative bioavailability of 10.7% in contrast to the control displaying a relative bioavailability of 2.1%. In conclusion, these results suggest that mucoadhesive thiolated polymers are a promising tool for the non-invasive stomach-targeted systemic delivery of LMWH as model for a hydrophilic macromolecular polysaccharide. Copyright 2005 Wiley-Liss, Inc

  8. Literature-based condition-specific miRNA-mRNA target prediction.

    PubMed

    Oh, Minsik; Rhee, Sungmin; Moon, Ji Hwan; Chae, Heejoon; Lee, Sunwon; Kang, Jaewoo; Kim, Sun

    2017-01-01

    miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary

  9. Aberrant expression of interleukin-22 and its targeting microRNAs in oral lichen planus: a preliminary study.

    PubMed

    Shen, Zhengyu; Du, Guanhuan; Zhou, Zengtong; Liu, Wei; Shi, Linjun; Xu, Hui

    2016-08-01

    Oral lichen planus (OLP) is a T cell-mediated autoimmune disease involving oral mucosa. Interleukin-22 (IL-22) as the signature cytokine of T helper 22 cells is increasingly recognized as a key regulator in various autoimmune diseases. Our previous study reported that IL-22 immunoexpression in OLP was significantly increased compared with the normal controls. The objective of this preliminary study was to compare the IL-22 expression levels in oral biopsies from patients with OLP (n = 50) against normal oral mucosa (n = 19) using RT-qPCR and Western blot, identify the potential targeting miRNAs of IL-22, and examine the miRNA expression levels in OLP. Interleukin-22 expression level in OLP was significantly increased compared with the normal controls. The Dual-Luciferase reporter assay system in human embryonic kidney 293 (HEK293) cells demonstrated that miR-562 and miR-203 were the target miRNAs of IL-22, which was consistent with predictions from bioinformatics software analyses. Interestingly, miR-562 expression in OLP was significantly decreased, but miR-203 expression in OLP was significantly increased compared with the normal controls. This preliminary study for the first time reported that aberrant expression levels of miR-562 and miR-203 were associated with high expression of IL-22 and demonstrated the target relationship between miRNAs and IL-22 in HEK293 cells. Our data indicated that IL-22 and its targeting miRNAs contribute to the pathogenesis of OLP. Further studies are required to investigate the regulatory pathways of IL-22 and miR-562 and miR-203 in OLP. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Polymeric drug delivery systems for intraoral site-specific chemoprevention of oral cancer.

    PubMed

    Desai, Kashappa Goud H

    2018-04-01

    Oral cancer is among the most prevalent cancers in the world. Moreover, it is one of the major health problems and causes of death in many regions of the world. The traditional treatment modalities include surgical removal, radiation therapy, systemic chemotherapy, or a combination of these methods. In recent decades, there has been significant interest in intraoral site-specific chemoprevention via local drug delivery using polymeric systems. Because of its easy accessibility and clear visibility, the oral mucosa is amenable for local drug delivery. A variety of polymeric systems-such as gels, tablets, films, patches, injectable systems (e.g., millicylindrical implants, microparticles, and in situ-forming depots), and nanosized carriers (e.g., polymeric nanoparticles, nanofibers, polymer-drug conjugates, polymeric micelles, nanoliposomes, nanoemulsions, and polymersomes)-have been developed and evaluated for the local delivery of natural and synthetic chemopreventive agents. The findings of in vitro, ex vivo, and in vivo studies and the positive outcome of clinical trials demonstrate that intraoral site-specific drug delivery is an attractive, highly effective and patient-friendly strategy for the management of oral cancer. Intraoral site-specific drug delivery provides unique therapeutic advantages when compared to systemic chemotherapy. Moreover, intraoral drug delivery systems are self-administrable and can be removed when needed, increasing patient compliance. This article covers important aspects and advances related to the design, development, and efficacy of polymeric systems for intraoral site-specific drug delivery. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1383-1413, 2018. © 2017 Wiley Periodicals, Inc.

  11. Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation

    PubMed Central

    Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.

    2005-01-01

    Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807

  12. Optical imaging for the diagnosis of oral cancer and oral potentially malignant disorders

    NASA Astrophysics Data System (ADS)

    Yoshida, K.

    2016-03-01

    Optical Imaging is being conducted as a therapeutic non-invasive. Many kinds of the light source are selected for this purpose. Recently the oral cancer screening is conducted by using light-induced tissue autofluorescence examination such as several kinds of handheld devices. However, the mechanism of its action is still not clear. Therefore basic experimental research was conducted. One of auto fluorescence Imaging (AFI) device, VELscopeTM and near-infrared (NIR) fluorescence imaging using ICG-labeled antibody as a probe were compared using oral squamous cell carcinoma (OSCC) mouse models. The experiments revealed that intracutaneous tumor was successfully visualized as low density image by VELscopeTM and high density image by NIR image. In addition, VELscopeTM showed higher sensitivity and lower specificity than that of NIR fluorescence imaging and the sensitivity of identification of carcinoma areas with the VELscopeTM was good results. However, further more studies were needed to enhance the screening and diagnostic uses, sensitivity and specificity for detecting malignant lesions and differentiation from premalignant or benign lesions. Therefore, additional studies were conducted using a new developed near infrared (NIR) fluorescence imaging method targeting podoplanine (PDPN) which consists of indocyanine green (ICG)-labeled anti-human podoplanin antibody as a probe and IVIS imaging system or a handy realtime ICG imaging device that is overexpressed in oral malignant neoplasm to improve imaging for detection of early oral malignant neoplasm. Then evaluated for its sensitivity and specificity for detection of oral malignant neoplasm in xenografted mice model and compared with VELscopeTM. The results revealed that ICG fluorescence imaging method and VELscopeTM had the almost the same sensitivity for detection of oral malignant neoplasm. The current topics of optical imaging about oral malignant neoplasm were reviewed.

  13. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at; Fullár, Alexandra, E-mail: fullarsz@gmail.com; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factormore » κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.« less

  14. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery.

    PubMed

    Situ, Wenbei; Li, Xiaoxi; Liu, Jia; Chen, Ling

    2015-04-29

    For effective oral delivery of polypeptide or protein and enhancement their oral bioavailability, a new resistant starch-glycoprotein complex bioadhesive carrier and an oral colon-targeted bioadhesive delivery microparticle system were developed. A glycoprotein, concanavalin A (Con A), was successfully conjugated to the molecules of resistant starch acetate (RSA), leading to the formation of resistant starch-glycoprotein complex. This Con A-conjugated RSA film as a coating material showed an excellent controlled-release property. In streptozotocin (STZ)-induced type II diabetic rats, the insulin-loaded microparticles coated with this Con A-conjugated RSA film exhibited good hypoglycemic response for keeping the plasma glucose level within the normal range for totally 44-52 h after oral administration with different insulin dosages. Oral glucose tolerance tests indicated that successive oral administration of these colon-targeted bioadhesive microparticles with insulin at a level of 50 IU/kg could achieve a hypoglycemic effect similar to that by injection of insulin at 35 IU/kg. Therefore, the potential of this new Con A-conjugated RSA film-coated microparticle system has been demonstrated to be capable of improving the oral bioavailability of bioactive proteins and peptides.

  15. Entrapping of Nanoparticles in Yeast Cell Wall Microparticles for Macrophage-Targeted Oral Delivery of Cabazitaxel.

    PubMed

    Ren, Tianyang; Gou, Jingxin; Sun, Wanxiao; Tao, Xiaoguang; Tan, Xinyi; Wang, Puxiu; Zhang, Yu; He, Haibing; Yin, Tian; Tang, Xing

    2018-06-13

    In this work, a nano-in-micro carrier was constructed by loading polymer-lipid hybrid nanoparticles (NPs) into porous and hollow yeast cell wall microparticles (YPs) for macrophage-targeted oral delivery of cabazitaxel (CTX). The YPs, primarily composed of natural β-1,3-d-glucan, can be recognized by the apical membrane receptor, dectin-1, which has a high expression on macrophages and intestinal M cells. By combining electrostatic force-driven self-deposition with solvent hydration/lyophilization methods, the positively charged NPs loaded with CTX or fluorescence probes were efficiently packaged into YPs, as verified by scanning electron microscope (SEM), atomic force mircoscope (AFM), and confocal laser scanning microscopy (CLSM) images. NP-loaded YPs (NYPs) showed a slower in vitro drug release and higher drug stability compared with NPs in a simulated gastrointestinal environment. Biodistribution experiments confirmed a widespread distribution and extended retention time of NYPs in the intestinal tract after oral administration. Importantly, a large amount of NYPs were primarily accumulated and transported in the intestinal Peyer's patches as visualized in distribution and absorption site studies, implying that NYPs were mainly absorbed through the lymphatic pathway. In vitro cell evaluation further demonstrated that NYPs were rapidly and efficiently taken up by macrophages via receptor dectin-1-mediated endocytosis using a mouse macrophage RAW 264.7 cell line. As expected, in the study of in vivo pharmacokinetics, the oral bioavailability of CTX was improved to 32.1% when loaded in NYPs, which is approximately 5.7 times higher than that of the CTX solution, indicating the NYPs are efficient for oral targeted delivery. Hence, this nano-in-micro carrier is believed to become a hopeful alternative strategy for increasing the oral absorption of small molecule drugs.

  16. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit.

    PubMed

    Liu, Zhongtian; Zhou, Gang; Ren, Chonghua; Xu, Kun; Yan, Qiang; Li, Xinyi; Zhang, Tingting; Zhang, Zhiying

    2016-04-29

    Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biofilms as “Connectors” for Oral and Systems Medicine: A New Opportunity for Biomarkers, Molecular Targets, and Bacterial Eradication

    PubMed Central

    Gürsoy, Ulvi Kahraman

    2016-01-01

    Abstract Oral health and systems medicine are intimately related but have remained, sadly, as isolated knowledge communities for decades. Are there veritable connector knowledge domains that can usefully link them together on the critical path to biomarker research and “one health”? In this context, it is noteworthy that bacteria form surface-attached communities on most biological surfaces, including the oral cavity. Biofilm-forming bacteria contribute to periodontal diseases and recent evidences point to roles of these bacteria in systemic diseases as well, with cardiovascular diseases, obesity, and cancer as notable examples. Interestingly, the combined mass of microorganisms such as bacteria are so large that when we combine all plants and animals on earth, the total biomass of bacteria is still bigger. They literally do colonize everywhere, not only soil and water but our skin, digestive tract, and even oral cavity are colonized by bacteria. Hence efforts to delineate biofilm formation mechanisms of oral bacteria and microorganisms and the development of small molecules to inhibit biofilm formation in the oral cavity is very timely for both diagnostics and therapeutics. Research on biofilms can benefit both oral and systems medicine. Here, we examine, review, and synthesize new knowledge on the current understanding of oral biofilm formation, the small molecule targets that can inhibit biofilm formation in the mouth. We suggest new directions for both oral and systems medicine, using various omics technologies such as SILAC and RNAseq, that could yield deeper insights, biomarkers, and molecular targets to design small molecules that selectively aim at eradication of pathogenic oral bacteria. Ultimately, devising new ways to control and eradicate bacteria in biofilms will open up novel diagnostic and therapeutic avenues for oral and systemic diseases alike. PMID:26583256

  18. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV.

    PubMed

    Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing

    2017-10-25

    Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p < 0.05) in the immune response levels were observed between probiotics expressing the COE-DCpep fusion protein and COE antigen alone, suggesting better immune efficiency of the probiotics vaccine expressing the DC-targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.

  19. Fusogenic-Oligoarginine Peptide-Mediated Delivery of siRNAs Targeting the CIP2A Oncogene into Oral Cancer Cells

    PubMed Central

    Cantini, Liliana; Attaway, Christopher C.; Butler, Betsy; Andino, Lourdes M.; Sokolosky, Melissa L.; Jakymiw, Andrew

    2013-01-01

    Despite a better understanding of the pathogenesis of oral cancer, its treatment outcome remains poor. Thus, there is a need for new therapeutic strategies to improve the prognosis of this disease. RNA interference (RNAi) appears to be a promising therapeutic tool for the treatment of many diseases, including oral cancer. However, an obstacle for RNAi-mediated therapies has been delivery, in particular, the retention of small interfering RNAs (siRNAs) in endosomes and their subsequent degradation in lysosomes, resulting in inefficient gene silencing. Thus, the current study examined the feasibility of designing and utilizing a peptide, termed 599, consisting of a synthetic influenza virus-derived endosome-disruptive fusogenic peptide sequence and a stretch of cationic cell-penetrating nona(D-arginine) residues, to deliver siRNAs into oral cancer cells and induce silencing of the therapeutic target, CIP2A, an oncoprotein overexpressed in various human malignancies including oral cancer. Increasing the 599 peptide-to-siRNA molar ratio demonstrated a higher binding capacity for siRNA molecules and enhanced siRNA delivery into the cytoplasm of oral cancer cells. In fact, quantitative measurements of siRNA delivery into cells demonstrated that a 50∶1 peptide-to-siRNA molar ratio could deliver 18-fold higher amounts of siRNAs compared to cells treated with siRNA alone with no significant long-term cytotoxic effects. Most importantly, the 599 peptide-mediated siRNA delivery promoted significant CIP2A mRNA and protein silencing which resulted in decreased oral cancer cell invasiveness and anchorage-independent growth. Together, these data demonstrate that a chimeric peptide consisting of a fusogenic sequence, in combination with cell-penetrating residues, can be used to effectively deliver siRNAs into oral cancer cells and induce the silencing of its target gene, potentially offering a new therapeutic strategy in combating oral cancer. PMID:24019920

  20. A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva

    PubMed Central

    Kawahara, Rebeca; Bollinger, James G.; Rivera, César; Ribeiro, Ana Carolina P.; Brandão, Thaís Bianca; Paes Leme, Adriana F.; MacCoss, Michael J.

    2015-01-01

    Head and neck cancers, including oral squamous cell carcinoma (OSCC), are the sixth most common malignancy in the world and are characterized by poor prognosis and a low survival rate. Saliva is oral fluid with intimate contact with OSCC. Besides non-invasive, simple, and rapid to collect, saliva is a potential source of biomarkers. In this study, we build an SRM assay that targets fourteen OSCC candidate biomarker proteins, which were evaluated in a set of clinically-derived saliva samples. Using Skyline software package, we demonstrated a statistically significant higher abundance of the C1R, LCN2, SLPI, FAM49B, TAGLN2, CFB, C3, C4B, LRG1, SERPINA1 candidate biomarkers in the saliva of OSCC patients. Furthermore, our study also demonstrated that CFB, C3, C4B, SERPINA1 and LRG1 are associated with the risk of developing OSCC. Overall, this study successfully used targeted proteomics to measure in saliva a panel of biomarker candidates for OSCC. PMID:26552850

  1. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects.

    PubMed

    Song, Zhiwang; Lin, Yun; Zhang, Xia; Feng, Chan; Lu, Yonglin; Gao, Yong; Dong, Chunyan

    2017-01-01

    Apatinib is an oral tyrosine kinase inhibitor, which selectively targets vascular endothelial growth factor receptor 2 and has the potential to treat many tumors therapeutically. Cyclic arginylglycylaspartic acid (cRGD)- and polyethylene glycol (PEG)-modified liposomes (cRGD-Lipo-PEG) were constructed to act as a targeted delivery system for the delivery of apatinib to the human colonic cancer cell line, HCT116. These cRGD-modified liposomes specifically recognized integrin α v β 3 and exhibited greater uptake efficiency with respect to delivering liposomes into HCT116 cells when compared to nontargeted liposomes (Lipo-PEG), as well as greater death of tumor cells and apoptosis. The mechanism by which cRGD-Lipo-PEG targets cells was elucidated further with competition assays. To determine the anticancer efficacy in vivo, nude mice were implanted with HCT116 xenografts and treated with apatinib-loaded liposomes or free apatinib intravenously or via intragastric administration. The active and passive targeting of cRGD-Lipo-PEG led to significant tumor treatment targeting ability, better inhibition of tumor growth, and less toxicity when compared with treatments using uncombined apatinib. The results presented strongly support the case for cRGD-Lipo-PEG representing a targeted delivery system for apatinib in the treatment of colonic cancer.

  2. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects

    PubMed Central

    Song, Zhiwang; Lin, Yun; Zhang, Xia; Feng, Chan; Lu, Yonglin; Gao, Yong; Dong, Chunyan

    2017-01-01

    Apatinib is an oral tyrosine kinase inhibitor, which selectively targets vascular endothelial growth factor receptor 2 and has the potential to treat many tumors therapeutically. Cyclic arginylglycylaspartic acid (cRGD)- and polyethylene glycol (PEG)-modified liposomes (cRGD-Lipo-PEG) were constructed to act as a targeted delivery system for the delivery of apatinib to the human colonic cancer cell line, HCT116. These cRGD-modified liposomes specifically recognized integrin αvβ3 and exhibited greater uptake efficiency with respect to delivering liposomes into HCT116 cells when compared to nontargeted liposomes (Lipo-PEG), as well as greater death of tumor cells and apoptosis. The mechanism by which cRGD-Lipo-PEG targets cells was elucidated further with competition assays. To determine the anticancer efficacy in vivo, nude mice were implanted with HCT116 xenografts and treated with apatinib-loaded liposomes or free apatinib intravenously or via intragastric administration. The active and passive targeting of cRGD-Lipo-PEG led to significant tumor treatment targeting ability, better inhibition of tumor growth, and less toxicity when compared with treatments using uncombined apatinib. The results presented strongly support the case for cRGD-Lipo-PEG representing a targeted delivery system for apatinib in the treatment of colonic cancer. PMID:28331317

  3. Effects of tetrahydrouridine on pharmacokinetics and pharmacodynamics of oral decitabine

    PubMed Central

    Lavelle, Donald; Vaitkus, Kestis; Ling, Yonghua; Ruiz, Maria A.; Mahfouz, Reda; Ng, Kwok Peng; Negrotto, Soledad; Smith, Nicola; Terse, Pramod; Engelke, Kory J.; Covey, Joseph; Chan, Kenneth K.; DeSimone, Joseph

    2012-01-01

    The deoxycytidine analog decitabine (DAC) can deplete DNA methyl-transferase 1 (DNMT1) and thereby modify cellular epigenetics, gene expression, and differentiation. However, a barrier to efficacious and accessible DNMT1-targeted therapy is cytidine deaminase, an enzyme highly expressed in the intestine and liver that rapidly metabolizes DAC into inactive uridine counterparts, severely limiting exposure time and oral bioavailability. In the present study, the effects of tetrahydrouridine (THU), a competitive inhibitor of cytidine deaminase, on the pharmacokinetics and pharmacodynamics of oral DAC were evaluated in mice and nonhuman primates. Oral administration of THU before oral DAC extended DAC absorption time and widened the concentration-time profile, increasing the exposure time for S-phase–specific depletion of DNMT1 without the high peak DAC levels that can cause DNA damage and cytotoxicity. THU also decreased interindividual variability in pharmacokinetics seen with DAC alone. One potential clinical application of DNMT1-targeted therapy is to increase fetal hemoglobin and treat hemoglobinopathy. Oral THU-DAC at a dose that would produce peak DAC concentrations of less than 0.2μM administered 2×/wk for 8 weeks to nonhuman primates was not myelotoxic, hypomethylated DNA in the γ-globin gene promoter, and produced large cumulative increases in fetal hemoglobin. Combining oral THU with oral DAC changes DAC pharmacology in a manner that may facilitate accessible noncytotoxic DNMT1-targeted therapy. PMID:22160381

  4. Differences in DNA Binding Specificity of Floral Homeotic Protein Complexes Predict Organ-Specific Target Genes.

    PubMed

    Smaczniak, Cezary; Muiño, Jose M; Chen, Dijun; Angenent, Gerco C; Kaufmann, Kerstin

    2017-08-01

    Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation. © 2017 American Society of Plant Biologists. All rights reserved.

  5. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples.

    PubMed

    Bandyopadhyay, Sanghamitra; Mitra, Ramkrishna

    2009-10-15

    Prediction of microRNA (miRNA) target mRNAs using machine learning approaches is an important area of research. However, most of the methods suffer from either high false positive or false negative rates. One reason for this is the marked deficiency of negative examples or miRNA non-target pairs. Systematic identification of non-target mRNAs is still not addressed properly, and therefore, current machine learning approaches are compelled to rely on artificially generated negative examples for training. In this article, we have identified approximately 300 tissue-specific negative examples using a novel approach that involves expression profiling of both miRNAs and mRNAs, miRNA-mRNA structural interactions and seed-site conservation. The newly generated negative examples are validated with pSILAC dataset, which elucidate the fact that the identified non-targets are indeed non-targets.These high-throughput tissue-specific negative examples and a set of experimentally verified positive examples are then used to build a system called TargetMiner, a support vector machine (SVM)-based classifier. In addition to assessing the prediction accuracy on cross-validation experiments, TargetMiner has been validated with a completely independent experimental test dataset. Our method outperforms 10 existing target prediction algorithms and provides a good balance between sensitivity and specificity that is not reflected in the existing methods. We achieve a significantly higher sensitivity and specificity of 69% and 67.8% based on a pool of 90 feature set and 76.5% and 66.1% using a set of 30 selected feature set on the completely independent test dataset. In order to establish the effectiveness of the systematically generated negative examples, the SVM is trained using a different set of negative data generated using the method in Yousef et al. A significantly higher false positive rate (70.6%) is observed when tested on the independent set, while all other factors are kept the

  6. Professional oral hygiene treatment and detailed oral hygiene instructions in patients affected by mucous membrane pemphigoid with specific gingival localization: a pilot study in 12 patients.

    PubMed

    Arduino, P G; Lopetuso, E; Carcieri, P; Giacometti, S; Carbone, M; Tanteri, C; Broccoletti, R

    2012-05-01

    The aim of this prospective case series was to assess the clinical efficiency of an oral hygiene protocol in patients affected by mucous membrane pemphigoid (MMP) with specific gingival localization, before starting any medical treatment. Patients received oral hygiene instruction followed by non-surgical periodontal therapy including oral hygiene instructions in a 3-week cohort study. Clinical outcome variables were recorded at baseline and 5 weeks after intervention and included, as periodontal parameters, full mouth plaque (FMPS) and bleeding (FMBS) scores and patient-related outcomes (visual analogue score of pain). A total of 12 patients were recruited. The mean age at presentation was 59.5 ± 14.52 years. Five weeks after finishing the oral hygiene and periodontal therapy protocol, a statistical significant reduction was observed for FMPS (P = 0.001), FMBS (P = 0.022) and reported pain (P = 0.0028). Professional oral hygiene procedures and non-surgical periodontal therapy are connected with improvement of gingival status and decrease in gingival-related pain, in female patients affected by MMP with specific gingival localization. © 2011 John Wiley & Sons A/S.

  7. In Silico Approach for SAR Analysis of the Predicted Model of DEPDC1B: A Novel Target for Oral Cancer.

    PubMed

    Ahuja, Palak; Singh, Kailash

    2016-01-01

    With the incidence rate of oral carcinogenesis increasing in the Southeast-Asian countries, due to increase in the consumption of tobacco and betel quid as well as infection from human papillomavirus, specifically type 16, it becomes crucial to predict the transition of premalignant lesion to cancerous tissue at an initial stage in order to control the process of oncogenesis. DEPDC1B, downregulated in the presence of E2 protein, was recently found to be overexpressed in oral cancer, which can possibly be explained by the disruption of the E2 open reading frame upon the integration of viral genome into the host genome. DEPDC1B mediates its effect by directly interacting with Rac1 protein, which is known to regulate important cell signaling pathways. Therefore, DEPDC1B can be a potential biomarker as well as a therapeutic target for diagnosing and curing the disease. However, the lack of 3D model of the structure makes the utilization of DEPDC1B as a therapeutic target difficult. The present study focuses on the prediction of a suitable 3D model of the protein as well as the analysis of protein-protein interaction between DEPDC1B and Rac1 protein using PatchDock web server along with the identification of allosteric or regulatory sites of DEPDC1B.

  8. Detection of total and PRRSV-specific antibodies in oral fluids collected with different rope types from PRRSV-vaccinated and experimentally infected pigs.

    PubMed

    Decorte, Inge; Van Breedam, Wander; Van der Stede, Yves; Nauwynck, Hans J; De Regge, Nick; Cay, Ann Brigitte

    2014-06-17

    Oral fluid collected by means of ropes has the potential to replace serum for monitoring and surveillance of important swine pathogens. Until now, the most commonly used method to collect oral fluid is by hanging a cotton rope in a pen. However, concerns about the influence of rope material on subsequent immunological assays have been raised. In this study, we evaluated six different rope materials for the collection of oral fluid and the subsequent detection of total and PRRSV-specific antibodies of different isotypes in oral fluid collected from PRRSV-vaccinated and infected pigs. An initial experiment showed that IgA is the predominant antibody isotype in porcine saliva. Moreover, it was found that synthetic ropes may yield higher amounts of IgA, whereas all rope types seemed to be equally suitable for IgG collection. Although IgA is the predominant antibody isotype in porcine oral fluid, the PRRSV-specific IgA-based IPMA and ELISA tests were clearly not ideal for sensitive detection of PRRSV-specific IgA antibodies. In contrast, PRRSV-specific IgG in oral fluids was readily detected in PRRSV-specific IgG-based IPMA and ELISA tests, indicating that IgG is a more reliable isotype for monitoring PRRSV-specific antibody immunity in vaccinated/infected animals via oral fluids with the currently available tests. Since PRRSV-specific IgG detection seems more reliable than PRRSV-specific IgA detection for monitoring PRRSV-specific antibody immunity via oral fluids, and since all rope types yield equal amounts of IgG, it seems that the currently used cotton ropes are an appropriate choice for sample collection in PRRSV monitoring.

  9. Growing Fixed With Age: Lay Theories of Malleability Are Target Age-Specific.

    PubMed

    Neel, Rebecca; Lassetter, Bethany

    2015-11-01

    Beliefs about whether people can change ("lay theories" of malleability) are known to have wide-ranging effects on social motivation, cognition, and judgment. Yet rather than holding an overarching belief that people can or cannot change, perceivers may hold independent beliefs about whether different people are malleable-that is, lay theories may be target-specific. Seven studies demonstrate that lay theories are target-specific with respect to age: Perceivers hold distinct, uncorrelated lay theories of people at different ages, and younger targets are considered to be more malleable than older targets. Both forms of target-specificity are consequential, as target age-specific lay theories predict policy support for learning-based senior services and the rehabilitation of old and young drug users. The implications of target age-specific lay theories for a number of psychological processes, the social psychology of aging, and theoretical frameworks of malleability beliefs are discussed. © 2015 by the Society for Personality and Social Psychology, Inc.

  10. Transcription factor HBP1 is a direct anti-cancer target of transcription factor FOXO1 in invasive oral cancer.

    PubMed

    Chan, Chien-Yi; Huang, Shih-Yi; Sheu, Jim Jinn-Chyuan; Roth, Mendel M; Chou, I-Tai; Lien, Chia-Hsien; Lee, Ming-Fen; Huang, Chun-Yin

    2017-02-28

    Either FOXO1 or HBP1 transcription factor is a downstream effector of the PI3K/Akt pathway and associated with tumorigenesis. However, the relationship between FOXO1 and HBP1 in oral cancer remains unclear. Analysis of 30 oral tumor specimens revealed that mean mRNA levels of both FOXO1 and HBP1 in non-invasive and invasive oral tumors were found to be significantly lower than that of the control tissues, and the status of low FOXO1 and HBP1 (< 0.3 fold of the control) was associated with invasiveness of oral tumors. To investigate if HBP1 is a direct transcription target of FOXO1, we searched potential FOXO1 binding sites in the HBP1 promoter using the MAPPER Search Engine, and two putative FOXO1 binding sites located in the HBP1 promoter -132 to -125 bp and -343 to -336 bp were predicted. These binding sites were then confirmed by both reporter gene assays and the in cellulo ChIP assay. In addition, Akt activity manipulated by PI3K inhibitor LY294002 or Akt mutants was shown to negatively affect FOXO1-mediated HBP1 promoter activation and gene expression. Last, the biological significance of the FOXO1-HBP1 axis in oral cancer malignancy was evaluated in cell growth, colony formation, and invasiveness. The results indicated that HBP1 knockdown potently promoted malignant phenotypes of oral cancer and the suppressive effect of FOXO1 on cell growth, colony formation, and invasion was alleviated upon HBP1 knockdown in invasive oral cancer cells. Taken together, our data provide evidence for HBP1 as a direct downstream target of FOXO1 in oral cancer malignancy.

  11. Pools of programmed death-ligand within the oral cavity tumor microenvironment: Variable alteration by targeted therapies.

    PubMed

    Shah, Sujay; Caruso, Andria; Cash, Harrison; Waes, Carter Van; Allen, Clint T

    2016-08-01

    Enhanced understanding of programmed death-ligand (PD-L) expression in oral cancer is important for establishing rational combinations of emerging immune checkpoint and molecular targeted therapies. We assessed PD-L and interferon (IFN) expression in immunogenic murine oral cancer-1 (MOC1) and poorly immunogenic MOC2 cell models after treatment with mammalian target of rapamycin (mTOR) and MEK1/2 small molecule inhibitors in vitro and in vivo. PD-L1 but not PD-L2 is expressed on MOC1 and 2 cells and is type I and II IFN-dependent. PD-L1 is differentially expressed on cancer and endothelial cells and infiltrating myeloid-derived suppressor cells, macrophages, and regulatory T cells (Tregs) in highly and poorly immunogenic tumors. PD-L1 expression is variably altered after treatment with inhibitors in vivo, with an imperfect relationship to alterations in IFN levels in the tumor microenvironment. PD-L1 expressed on cancer and infiltrating immune cells is variably altered by targeted therapies and may, in part, reflect changes in tumor IFN. © 2016 Wiley Periodicals, Inc. Head Neck 38:1176-1186, 2016. © 2016 Wiley Periodicals, Inc.

  12. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond.

    PubMed

    Washio, Jumpei; Takahashi, Nobuhiro

    2016-06-02

    Oral diseases are known to be closely associated with oral biofilm metabolism, while cancer tissue is reported to possess specific metabolism such as the 'Warburg effect'. Metabolomics might be a useful method for clarifying the whole metabolic systems that operate in oral biofilm and oral cancer, however, technical limitations have hampered such research. Fortunately, metabolomics techniques have developed rapidly in the past decade, which has helped to solve these difficulties. In vivo metabolomic analyses of the oral biofilm have produced various findings. Some of these findings agreed with the in vitro results obtained in conventional metabolic studies using representative oral bacteria, while others differed markedly from them. Metabolomic analyses of oral cancer tissue not only revealed differences between metabolomic profiles of cancer and normal tissue, but have also suggested a specific metabolic system operates in oral cancer tissue. Saliva contains a variety of metabolites, some of which might be associated with oral or systemic disease; therefore, metabolomics analysis of saliva could be useful for identifying disease-specific biomarkers. Metabolomic analyses of the oral biofilm, oral cancer, and saliva could contribute to the development of accurate diagnostic, techniques, safe and effective treatments, and preventive strategies for oral and systemic diseases.

  13. STAT3 or USF2 Contributes to HIF Target Gene Specificity

    PubMed Central

    Pawlus, Matthew R.; Wang, Liyi; Murakami, Aya; Dai, Guanhai; Hu, Cheng-Jun

    2013-01-01

    The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein. PMID:23991099

  14. Oral immunization of mice with plant-derived fimbrial adhesin FaeG induces systemic and mucosal K88ad enterotoxigenic Escherichia coli-specific immune responses.

    PubMed

    Liang, Wanqi; Huang, Yahong; Yang, Xinghong; Zhou, Zhiai; Pan, Aihu; Qian, Bingjun; Huang, Cheng; Chen, Jianxiu; Zhang, Dabing

    2006-04-01

    The importance of adhesins in pathogenicity has resulted in them being useful targets in the defense against bacterial infections. To produce edible vaccines against piglet diarrhea caused by enterotoxigenic Escherichia coli (ETEC), plants were genetically engineered to produce recombinant fimbrial adhesin FaeG. To evaluate the efficacy of the edible vaccine FaeG in mice, the soluble protein extracts were examined by about 15 microg recombinant FaeG for each oral immunization dose per mouse. After four doses of vaccination, both IgG and IgA antibodies specific to K88ad fimbriae were elicited in serum, and specific IgA antibodies were also evoked in feces of the immunized mice. Moreover, visible K88ad ETEC agglutination by the specific serum from the immunized mice was observed, implying the antibody was highly specific and effective. Results from an in vitro villous-adhesion assay further confirmed that serum antibodies of the immunized mice could inhibit K88ad ETEC from adhering to pig intestinal receptors, further demonstrating the oral immune efficacy of the plant-derived FaeG. This study provides a promising, noninvasive method for vaccinating swine by feeding supplements of transgenic plant. Moreover, the low cost and ease of delivery of this edible ETEC vaccine will facilitate its application in economically disadvantaged regions.

  15. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    PubMed

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  16. Functionalized PLA-PEG nanoparticles targeting intestinal transporter PepT1 for oral delivery of acyclovir.

    PubMed

    Gourdon, Betty; Chemin, Caroline; Moreau, Amélie; Arnauld, Thomas; Baumy, Philippe; Cisternino, Salvatore; Péan, Jean-Manuel; Declèves, Xavier

    2017-08-30

    Targeting intestinal di- and tri-peptide transporter PepT1 with prodrugs is a successful strategy to improve oral drug bioavailability, as demonstrated with valacyclovir, a prodrug of acyclovir. The aim of this new drug delivery strategy is to over-concentrate a poorly absorbed drug on the intestinal membrane surface by targeting PepT1 with functionalized polymer nanoparticles. In the present study, poly(lactic acid)-poly(ethylene glycol)-ligand (PLA-PEG-ligand) nanoparticles were obtained by nanoprecipitation. A factorial experimental design allowed us to identify size-influent parameters and to obtain optimized ≈30nm nanoparticles. Valine, Glycylsarcosine, Valine-Glycine, and Tyrosine-Valine were chemically linked to PLA-PEG. In Caco-2 cell monolayer model, competition between functionalized nanoparticles and [ 3 H]Glycylsarcosine, a strong substrate of PepT1, reduced [ 3 H]Glycylsarcosine transport from 22 to 46%. Acyclovir was encapsulated with a drug load of ≈10% in valine-functionalized nanoparticles, resulting in a 2.7-fold increase in permeability as compared to the free drug. An in vivo pharmacokinetic study in mice compared oral absorption of acyclovir after administration of 25mg/kg of valacyclovir, free or encapsulated acyclovir in functionalized nanoparticles. Acyclovir encapsulation did not statistically modify AUC or C max , but increased t 1/2 and MRT 1.3-fold as compared to free acyclovir. This new strategy is promising for poorly absorbed drugs by oral administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond

    PubMed Central

    Washio, Jumpei; Takahashi, Nobuhiro

    2016-01-01

    Oral diseases are known to be closely associated with oral biofilm metabolism, while cancer tissue is reported to possess specific metabolism such as the ‘Warburg effect’. Metabolomics might be a useful method for clarifying the whole metabolic systems that operate in oral biofilm and oral cancer, however, technical limitations have hampered such research. Fortunately, metabolomics techniques have developed rapidly in the past decade, which has helped to solve these difficulties. In vivo metabolomic analyses of the oral biofilm have produced various findings. Some of these findings agreed with the in vitro results obtained in conventional metabolic studies using representative oral bacteria, while others differed markedly from them. Metabolomic analyses of oral cancer tissue not only revealed differences between metabolomic profiles of cancer and normal tissue, but have also suggested a specific metabolic system operates in oral cancer tissue. Saliva contains a variety of metabolites, some of which might be associated with oral or systemic disease; therefore, metabolomics analysis of saliva could be useful for identifying disease-specific biomarkers. Metabolomic analyses of the oral biofilm, oral cancer, and saliva could contribute to the development of accurate diagnostic, techniques, safe and effective treatments, and preventive strategies for oral and systemic diseases. PMID:27271597

  18. Specific oral desensitization in children with IgE-mediated cow's milk allergy. Evolution in one year.

    PubMed

    Alvaro, Montserrat; Giner, Ma Teresa; Vázquez, Marta; Lozano, Jaime; Domínguez, Olga; Piquer, Mónica; Días, Marcia; Jiménez, Rosa; Martín, Ma Anunciación; Alsina, Laia; Plaza, Ana Ma

    2012-09-01

    Cow's milk allergy is the most frequent childhood food allergy. Children older than 5 who have not become tolerant have less probabilities of natural tolerance. Specific oral desensitization methods are being investigated in reference centres. The aims of our study were to assess the efficacy of our guideline of specific oral desensitization to cow's milk in children and to know its suitability for anaphylactic children. Both clinical and specific IgE outcomes were evaluated. Eighty-seven children aged 5 to 16 years with a history of cow's milk allergy were included. Prior to desensitization, skin prick test, specific IgE to cow's milk proteins and a double-blind placebo control food challenge were performed in all. Of the 87 patients, 21 had a negative challenge; they were considered tolerant, and they were told to follow a free diet. Of the positive, 44 were anaphylactic and 22 non-anaphylactic. All of them were included. In non-anaphylactic patients, 6 achieved partial and 16 maximum desensitization after 23.1 weeks. In the anaphylactic group, 7 achieved partial and 35 maximum desensitization after 26.4 weeks. Cow's milk-specific IgE levels and casein-specific IgE levels were significantly lower in the tolerant patients at baseline. One year after desensitization, the medium specific cow's milk levels and casein IgE levels had dropped significantly. Our guideline for specific oral desensitization to cow's milk is efficacious even in patients with anaphylactic reactions to cow's milk and represents a significant life change. Immunological changes in 1 year show a drop in cow's milk protein-specific IgE.

  19. Influence of quasi-specific sites on kinetics of target DNA search by a sequence-specific DNA-binding protein.

    PubMed

    Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji

    2015-11-10

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.

  20. An evaluation of a storybook targeting parental attitudes, intention, and self-efficacy to change their child's oral health behavior.

    PubMed

    O'Malley, Lucy; Adair, Pauline; Burnside, Girvan; Robinson, Louise; Coffey, Margaret; Pine, Cynthia

    2017-02-01

    Methods for reducing dental disease have traditionally focused on health education rather than targeting psychosocial determinants of the core behaviors through behavior change strategies. This study tested a novel intervention in the form of a children's story (Kitten's First Tooth) embedded with behavior change techniques (Abraham & Michie, 2008) with the aim of investigating how effective the intervention was at improving parents' efficacy and intention to enact oral health behaviors for their child. A controlled before and after study conducted in a deprived area of England (n = 149; child mean age 4 years) with an intervention and control group. Changes in task specific parental self-efficacy (PSE) and intention were measured using the Oral Health Behaviors Questionnaire (OHBQ; Adair et al., 2004) at baseline and 3 months following intervention. Of the 149 participants, 129 returned both baseline and evaluation questionnaires (retention 86.6%), 125 of these pairs of questionnaires were used in the analysis (83.4%). The OHBQ was analyzed using a general linear model (ANCOVA). A significant difference was found in favor of the intervention group for PSE related to child tooth brushing behaviors, F ( 1,1 ) = 12.04, p = .001, however no change was observed for PSE related to control of dietary sugars. A theorized children's story can be effective as an oral health promotion intervention by supporting parents to improve their child's oral health-related behavior. Change was observed for child tooth brushing but not sugar control. This may reflect story contents or may be indicative of difficulties of changing dietary behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Oral diseases associated with condition-specific oral health-related quality of life and school performance of Thai primary school children: A hierarchical approach.

    PubMed

    Kaewkamnerdpong, Issarapong; Krisdapong, Sudaduang

    2018-06-01

    To assess the hierarchical associations between children's school performance and condition-specific (CS) oral health-related quality of life (OHRQoL), school absence, oral status, sociodemographic and economic status (SDES) and social capital; and to investigate the associations between CS OHRQoL and related oral status, adjusting for SDES and social capital. Data on 925 sixth grade children in Sakaeo province, Thailand, were collected through oral examinations for dental caries and oral hygiene, social capital questionnaires, OHRQoL interviews using the Child-Oral Impacts on Daily Performances index, parental self-administered questionnaires and school documents. A hierarchical conceptual framework was developed, and independent variables were hierarchically entered into multiple logistic models for CS OHRQoL and linear regression models for school performance. After adjusting for SDES and social capital, children with high DMFT or DT scores were significantly threefold more likely to have CS impacts attributed to dental caries. However, poor oral hygiene was not significantly associated with CS impacts attributed to gingival disease. High DMFT scores were significantly associated with lower school performance, whereas high Simplified Oral Hygiene Index scores were not. The final model showed that CS impacts attributed to dental caries and school absence accounted for the association between DMFT score and school performance. Dental caries was associated with CS impacts on OHRQoL, and exerted its effect on school performance through the CS impacts and school absence. There was no association between oral hygiene and CS impacts on OHRQoL or school performance. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  3. Beneficial effects of specific natural substances on oral health

    PubMed Central

    Shaikh, Sameer; Kumar, S. Manoj

    2017-01-01

    Substances that are consumed daily or occasionally may influence an individual’s oral health. Some substances, such as alcohol, tobacco, and areca nut, adversely affect the oral region. However, some other substances, such as honey and green tea, which have antimicrobial properties, and berries, which have anticarcinogenic potential, exhibit beneficial effects on oral health. The effectiveness of synthetic drugs in maintaining oral health cannot be ignored; however, the benefits of synthetic drugs are associated with adverse effects and high costs. By contrast, the medicinal use of natural substances is associated with safety, affordability, and long-term benefits. In this paper, we review various natural substances that are potentially beneficial to oral health. PMID:29209665

  4. Nanotechnology: a promising method for oral cancer detection and diagnosis.

    PubMed

    Chen, Xiao-Jie; Zhang, Xue-Qiong; Liu, Qi; Zhang, Jing; Zhou, Gang

    2018-06-11

    Oral cancer is a common and aggressive cancer with high morbidity, mortality, and recurrence rate globally. Early detection is of utmost importance for cancer prevention and disease management. Currently, tissue biopsy remains the gold standard for oral cancer diagnosis, but it is invasive, which may cause patient discomfort. The application of traditional noninvasive methods-such as vital staining, exfoliative cytology, and molecular imaging-is limited by insufficient sensitivity and specificity. Thus, there is an urgent need for exploring noninvasive, highly sensitive, and specific diagnostic techniques. Nano detection systems are known as new emerging noninvasive strategies that bring the detection sensitivity of biomarkers to nano-scale. Moreover, compared to current imaging contrast agents, nanoparticles are more biocompatible, easier to synthesize, and able to target specific surface molecules. Nanoparticles generate localized surface plasmon resonances at near-infrared wavelengths, providing higher image contrast and resolution. Therefore, using nano-based techniques can help clinicians to detect and better monitor diseases during different phases of oral malignancy. Here, we review the progress of nanotechnology-based methods in oral cancer detection and diagnosis.

  5. Genus-specific PCR Primers Targeting Intracellular Parasite Euduboscquella (Dinoflagellata: Syndinea)

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Ho; Choi, Jung Min; Kim, Young-Ok

    2018-03-01

    We designed a genus-specific primer pair targeting the intracellular parasite Euduboscquella. To increase target specificity and inhibit untargeted PCR, two nucleotides were added at the 3' end of the reverse primer, one being a complementary nucleotide to the Euduboscquella-specific SNP (single-nucleotide polymorphism) and the other a deliberately mismatched nucleotide. Target specificity of the primer set was verified experimentally using PCR of two Euduboscquella species (positive controls) and 15 related species (negative controls composed of ciliates, diatoms and dinoflagellates), and analytical comparison with SILVA SSU rRNA gene database (release 119) in silico. In addition, we applied the Euduboscquella-specific primer set to four environmental samples previously determined by cytological staining to be either positive or negative for Euduboscquella. As expected, only positive controls and environmental samples known to contain Euduboscquella were successfully amplified by the primer set. An inferred SSU rRNA gene phylogeny placed environmental samples containing aloricate ciliates infected by Euduboscquella in a cluster discrete from Euduboscquella groups a-d previously reported from loricate, tintinnid ciliates.

  6. Initial observation of potential factors involved in the specification process of oral-aboral axis in the sand dollar Scaphechinus mirabilis.

    PubMed

    Satoh, Kanehide; Kominami, Tetsuya

    2008-10-01

    To elucidate factors involved in the oral-aboral axis specification, several observations and experiments were undertaken using the sand dollar Scaphechinus mirabilis. Unlike in Strongylcentrotus purpuratus, localization of mitochondria was not detected in unfertilized eggs. After fertilization, however, the bulk of mitochondria became localized to the opposite side of sperm entry. The first cleavage divided this mitochondrial cluster into daughter blastomeres. On the other hand, a second cleavage produced daughter blastomeres containing quite different amounts of mitochondria. To know whether such mitochondrial localization affects the oral-aboral axis specification, 4-cell-stage embryos were separated along the second cleavage plane. Although both half embryos developed into morphologically normal plutei, some differences, such as the number of pigment cells, were noticed between the siblings. In contrast, cell tracing revealed that the first cleavage separated the oral from the aboral part in most cases, indicating that the unequal distribution of mitochondria is not critical for the oral-aboral axis specification. Further, stained and non-stained half embryo fragments were combined. Such combined embryos developed into normal plutei with a single oral-aboral axis. The plane dividing labeled and non-labeled parts were incident, oblique or perpendicular to the median plane of the combined embryo, and the appearance frequencies of those labeling patterns were similar to those obtained by cell tracing in intact embryos. Interestingly, the half fragments derived from embryos inseminated earlier showed a tendency to form the oral part. These suggest that several factors as well as the localized cytoplasmic components would be involved in the specification process of oral-aboral axis.

  7. Oral Medicines for Children in the European Paediatric Investigation Plans

    PubMed Central

    van Riet – Nales, Diana A.; Römkens, Erwin G. A. W.; Saint-Raymond, Agnes; Kozarewicz, Piotr; Schobben, Alfred F. A. M.; Egberts, Toine C. G.; Rademaker, Carin M. A.

    2014-01-01

    Introduction Pharmaceutical industry is no longer allowed to develop new medicines for use in adults only, as the 2007 Paediatric Regulation requires children to be considered also. The plans for such paediatric development called Paediatric Investigation Plans (PIPs) are subject to agreement by the European Medicines Agency (EMA) and its Paediatric Committee (PDCO). The aim of this study was to evaluate the key characteristics of oral paediatric medicines in the PIPs and the changes implemented as a result of the EMA/PDCO review. Methods All PIPs agreed by 31 December 2011 were identified through a proprietary EMA-database. PIPs were included if they contained an agreed proposal to develop an oral medicine for children 0 to 11 years. Information on the therapeutic area (EMA classification system); target age range (as defined by industry) and pharmaceutical characteristics (active substance, dosage form(s) as listed in the PIP, strength of each dosage form, excipients in each strength of each dosage form) was extracted from the EMA website or the EMA/PDCO assessment reports. Results A hundred and fifty PIPs were included corresponding to 16 therapeutic areas and 220 oral dosage forms in 431 strengths/compositions. Eighty-two PIPs (37%) included tablets, 44 (20%) liquids and 35 (16%) dosage forms with a specific composition/strength that were stored as a solid but swallowed as a liquid e.g. dispersible tablets. The EMA/PDCO review resulted in an increase of 13 (207 to 220) oral paediatric dosage forms and 44 (387 to 431) dosage forms with a specific composition/strength. For many PIPs, the target age range was widened and the excipient composition and usability aspects modified. Conclusion The EMA/PDCO review realized an increase in the number of requirements for the development of oral dosage forms and a larger increase in the number of dosage forms with a specific composition/strength, both targeting younger children. Changes to their pharmaceutical design were

  8. Oral medicines for children in the European paediatric investigation plans.

    PubMed

    van Riet-Nales, Diana A; Römkens, Erwin G A W; Saint-Raymond, Agnes; Kozarewicz, Piotr; Schobben, Alfred F A M; Egberts, Toine C G; Rademaker, Carin M A

    2014-01-01

    Pharmaceutical industry is no longer allowed to develop new medicines for use in adults only, as the 2007 Paediatric Regulation requires children to be considered also. The plans for such paediatric development called Paediatric Investigation Plans (PIPs) are subject to agreement by the European Medicines Agency (EMA) and its Paediatric Committee (PDCO). The aim of this study was to evaluate the key characteristics of oral paediatric medicines in the PIPs and the changes implemented as a result of the EMA/PDCO review. All PIPs agreed by 31 December 2011 were identified through a proprietary EMA-database. PIPs were included if they contained an agreed proposal to develop an oral medicine for children 0 to 11 years. Information on the therapeutic area (EMA classification system); target age range (as defined by industry) and pharmaceutical characteristics (active substance, dosage form(s) as listed in the PIP, strength of each dosage form, excipients in each strength of each dosage form) was extracted from the EMA website or the EMA/PDCO assessment reports. A hundred and fifty PIPs were included corresponding to 16 therapeutic areas and 220 oral dosage forms in 431 strengths/compositions. Eighty-two PIPs (37%) included tablets, 44 (20%) liquids and 35 (16%) dosage forms with a specific composition/strength that were stored as a solid but swallowed as a liquid e.g. dispersible tablets. The EMA/PDCO review resulted in an increase of 13 (207 to 220) oral paediatric dosage forms and 44 (387 to 431) dosage forms with a specific composition/strength. For many PIPs, the target age range was widened and the excipient composition and usability aspects modified. The EMA/PDCO review realized an increase in the number of requirements for the development of oral dosage forms and a larger increase in the number of dosage forms with a specific composition/strength, both targeting younger children. Changes to their pharmaceutical design were less profound.

  9. Knock down of Whitefly Gut Gene Expression and Mortality by Orally Delivered Gut Gene-Specific dsRNAs.

    PubMed

    Vyas, Meenal; Raza, Amir; Ali, Muhammad Yousaf; Ashraf, Muhammad Aleem; Mansoor, Shahid; Shahid, Ahmad Ali; Brown, Judith K

    2017-01-01

    Control of the whitefly Bemisia tabaci (Genn.) agricultural pest and plant virus vector relies on the use of chemical insecticides. RNA-interference (RNAi) is a homology-dependent innate immune response in eukaryotes, including insects, which results in degradation of the corresponding transcript following its recognition by a double-stranded RNA (dsRNA) that shares 100% sequence homology. In this study, six whitefly 'gut' genes were selected from an in silico-annotated transcriptome library constructed from the whitefly alimentary canal or 'gut' of the B biotype of B. tabaci, and tested for knock down efficacy, post-ingestion of dsRNAs that share 100% sequence homology to each respective gene target. Candidate genes were: Acetylcholine receptor subunit α, Alpha glucosidase 1, Aquaporin 1, Heat shock protein 70, Trehalase1, and Trehalose transporter1. The efficacy of RNAi knock down was further tested in a gene-specific functional bioassay, and mortality was recorded in 24 hr intervals, six days, post-treatment. Based on qPCR analysis, all six genes tested showed significantly reduced gene expression. Moderate-to-high whitefly mortality was associated with the down-regulation of osmoregulation, sugar metabolism and sugar transport-associated genes, demonstrating that whitefly survivability was linked with RNAi results. Silenced Acetylcholine receptor subunit α and Heat shock protein 70 genes showed an initial low whitefly mortality, however, following insecticide or high temperature treatments, respectively, significantly increased knockdown efficacy and death was observed, indicating enhanced post-knockdown sensitivity perhaps related to systemic silencing. The oral delivery of gut-specific dsRNAs, when combined with qPCR analysis of gene expression and a corresponding gene-specific bioassay that relates knockdown and mortality, offers a viable approach for functional genomics analysis and the discovery of prospective dsRNA biopesticide targets. The approach can

  10. Colon-targeted oral drug delivery systems: design trends and approaches.

    PubMed

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.

  11. Plaque autofluorescence as potential diagnostic targets for oral malodor

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Song; Yim, Hyun-Kyung; Lee, Hyung-Suk; Choi, Jong-Hoon; Kwon, Ho-Keun; Kim, Baek-Il

    2016-08-01

    The aim of this study was to determine whether the degree of tongue and interdental plaque can be used to assess oral malodor by quantifying their fluorescence as detected using quantitative light-induced fluorescence (QLF) technology. Ninety-nine subjects who complained of oral malodor were included. The level of oral malodor was quantified using the organoleptic score (OLS) and the concentration of volatile sulfur compounds (VSCs). The fluorescence properties of tongue and interdental plaque were quantified as scores calculated by multiplying the intensity and area of fluorescence in QLF-digital images, and the combined plaque fluorescence (CPF) score was obtained by summing the scores for the two regions. The associations of the scores with malodor levels and the diagnostic accuracy of the CPF score were analyzed. The two plaque fluorescence scores and their combined score differed significantly with the level of oral malodor (p<0.001). The CPF score was moderately correlated with OLS (r=0.64) and VSC levels (r=0.54), and its area under the receiver operating characteristic curve was 0.77 for identifying subjects with definite oral malodor (OLS≥2). In conclusion, plaque fluorescence from tongue and interdental sites as detected using QLF technology can be used to assess the level of oral malodor.

  12. Effective Utilization of Oral Hypoglycemic Agents to Achieve Individualized HbA1c Targets in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Bannister, Margaret; Berlanga, Jenny

    2016-09-01

    Type 2 diabetes is a progressive condition that may require the combination of three oral treatments to achieve optimal glycemic management to prevent microvascular and macrovascular complications whilst minimizing the risk of acute complications and side effects or adverse reactions to treatments. With the widening availability of treatment options and increasing importance of individualized treatment pathways, including personalized HbA1c targets, this article will explore the mode of action of currently available oral treatments, factors to consider when individualizing HbA1c targets, the relevance of estimated glomerular filtration rate assessment, and the importance of reviewing the clinical impact of all treatment decisions.

  13. Nutrition as a mediator in the relation between oral and systemic disease: associations between specific measures of adult oral health and nutrition outcomes.

    PubMed

    Ritchie, Christine S; Joshipura, Kaumudi; Hung, Hsin-Chia; Douglass, Chester W

    2002-01-01

    Recent associations between oral health and systemic disease have led to renewed interest in the mouth and its contribution to health outcomes. Many pathways for this relationship have been postulated, among them the potential mediating role of nutrition. The link between various nutrients and systemic disease has been established, but relatively little work has been done in relating oral conditions with nutrition. We searched MEDLINE, from 1966 to July, 2001, to identify articles relating specific oral measures to nutrition outcomes. We included original articles written in English with a sample size greater than 30 that used objective oral health measures. We reviewed a total of 56 articles. Only a small proportion of these studies were methodologically sound. Although many studies were small and cross-sectional, the literature suggests that tooth loss affects dietary quality and nutrient intake in a manner that may increase the risk for several systemic diseases. The impact of tooth loss on diet may be only partially compensated for by prostheses. To date, there is little information relating periodontal disease and oral pain and nutrition. A few studies suggest poorer nutrition among individuals with xerostomia and altered taste. Further, impaired dentition may contribute to weight change, depending on age and other population characteristics. There is a paucity of well-designed studies addressing oral health and nutrition. Before we can acquire a better understanding of how nutrition and oral health interrelate, however, more studies will be required to confirm these associations-preferably longitudinal studies with larger sample sizes and better control of important confounders.

  14. Specific c-Jun target genes in malignant melanoma.

    PubMed

    Schummer, Patrick; Kuphal, Silke; Vardimon, Lily; Bosserhoff, Anja K; Kappelmann, Melanie

    2016-05-03

    A fundamental event in the development and progression of malignant melanoma is the de-regulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of melanoma progression and, thus, is the most important member of the AP-1 transcription factor family in this disease. Surprisingly, no cancer-related specific c-Jun target genes in melanoma were described in the literature, so far. Therefore, we focused on pre-existing ChIP-Seq data (Encyclopedia of DNA Elements) of 3 different non-melanoma cell lines to screen direct c-Jun target genes. Here, a specific c-Jun antibody to immunoprecipitate the associated promoter DNA was used. Consequently, we identified 44 direct c-Jun targets and a detailed analysis of 6 selected genes confirmed their deregulation in malignant melanoma. The identified genes were differentially regulated comparing 4 melanoma cell lines and normal human melanocytes and we confirmed their c-Jun dependency. Direct interaction between c-Jun and the promoter/enhancer regions of the identified genes was confirmed by us via ChIP experiments. Interestingly, we revealed that the direct regulation of target gene expression via c-Jun can be independent of the existence of the classical AP-1 (5´-TGA(C/G)TCA-3´) consensus sequence allowing for the subsequent down- or up-regulation of the expression of these cancer-relevant genes. In summary, the results of this study indicate that c-Jun plays a crucial role in the development and progression of malignant melanoma via direct regulation of cancer-relevant target genes and that inhibition of direct c-Jun targets through inhibition of c-Jun is a potential novel therapeutic option for treatment of malignant melanoma.

  15. A computational imaging target specific detectivity metric

    NASA Astrophysics Data System (ADS)

    Preece, Bradley L.; Nehmetallah, George

    2017-05-01

    Due to the large quantity of low-cost, high-speed computational processing available today, computational imaging (CI) systems are expected to have a major role for next generation multifunctional cameras. The purpose of this work is to quantify the performance of theses CI systems in a standardized manner. Due to the diversity of CI system designs that are available today or proposed in the near future, significant challenges in modeling and calculating a standardized detection signal-to-noise ratio (SNR) to measure the performance of these systems. In this paper, we developed a path forward for a standardized detectivity metric for CI systems. The detectivity metric is designed to evaluate the performance of a CI system searching for a specific known target or signal of interest, and is defined as the optimal linear matched filter SNR, similar to the Hotelling SNR, calculated in computational space with special considerations for standardization. Therefore, the detectivity metric is designed to be flexible, in order to handle various types of CI systems and specific targets, while keeping the complexity and assumptions of the systems to a minimum.

  16. MicroRNA-203 Induces Apoptosis by Targeting Bmi-1 in YD-38 Oral Cancer Cells.

    PubMed

    Kim, Jae-Sung; Choi, Dae Woo; Kim, Chun Sung; Yu, Sun-Kyoung; Kim, Heung-Joong; Go, Dae-San; Lee, Seul Ah; Moon, Sung Min; Kim, Su Gwan; Chun, Hong Sung; Kim, Jeongsun; Kim, Jong-Keun; Kim, DO Kyung

    2018-06-01

    MicroRNAs (miRNAs) are closely associated with a number of cellular processes, including cell development, differentiation, proliferation, carcinogenesis, and apoptosis. The aim of the present study was to elucidate the molecular mechanisms underlying the tumor suppressor activity of miRNA-203 (miR-203) in YD-38 human oral cancer cells. Polymerase chain reaction analysis, MTT assay, DNA fragmentation assay, fluorescence-activated cell-sorting analysis, gene array, immunoblotting, and luciferase assay were carried out in YD-38 cells. miR-203 expression was significantly down-regulated in YD-38 cells compared to expression levels in normal human oral keratinocytes. miR-203 decreased the viability of YD-38 cells in a time- and dose-dependent manner. In addition, over-expression of miR-203 significantly increased not only DNA segmentation, but also the apoptotic population of YD-38 cells. These results indicate that miR-203 overexpression induces apoptosis in YD-38 cells. Target gene array analysis revealed that the expression of the polycomb complex protein gene Bmi-1, a representative oncogene, was significantly down-regulated by miR-203 in YD-38 cells. Moreover, both mRNA and protein levels of Bmi-1 were significantly reduced in YD-38 cells transfected with miR-203. These results indicate that Bmi-1 is a target gene of miR-203. A luciferase reporter assay confirmed that miR-203 suppressed Bmi-1 expression by directly targeting the 3'-untranslated region. miR-203 induces apoptosis in YD-38 cells by directly targeting Bmi-1, which suggests its possible application as an anti-cancer therapeutic. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Oral morphosyntactic competence as a predictor of reading comprehension in children with specific language impairment.

    PubMed

    Buil-Legaz, Lucía; Aguilar-Mediavilla, Eva; Rodríguez-Ferreiro, Javier

    2016-07-01

    Children with a diagnosis of specific language impairment (SLI) present impaired oral comprehension. According to the simple view of reading, general amodal linguistic capacity accounts for both oral and reading comprehension. Considering this, we should expect SLI children to display a reading comprehension deficit. However, previous research regarding the association between reading disorders and SLI has yielded inconsistent results. To study the influence of prior oral comprehension competence over reading comprehension during the first years of reading acquisition of bilingual Catalan-Spanish children with SLI (ages 7-8). We assessed groups of bilingual Catalan-Spanish SLI and matched control children at ages 7 and 8 with standardized reading comprehension tasks including grammatical structures, sentence and text comprehension. Early oral competence and prior non-verbal intelligence were also measured and introduced into regression analyses with the participants' reading results in order to state the relation between the comprehension of oral and written material. Although we found no significant differences between the scores of our two participant groups in the reading tasks, data regarding their early oral competence, but not non-verbal intelligence measures, significantly influence their reading outcome. The results extend our knowledge regarding the course of literacy acquisition of children with SLI and provide evidence in support of the theories that assume common linguistic processes to be responsible for both oral and reading comprehension. © 2016 Royal College of Speech and Language Therapists.

  18. Potential benefits of chewing gum for the delivery of oral therapeutics and its possible role in oral healthcare.

    PubMed

    Wessel, Stefan W; van der Mei, Henny C; Maitra, Amarnath; Dodds, Michael W J; Busscher, Henk J

    2016-10-01

    Over the years, chewing gum has developed from a candy towards an oral health-promoting nutraceutical. This review summarizes evidence for the oral health benefits of chewing gum, emphasizing identification of active ingredients in gum that facilitate prevention and removal of oral biofilm. Chewing of sugar-free gum yields oral health benefits that include clearance of food debris, reduction in oral dryness, increase of biofilm pH and remineralization of enamel. These basic effects of chewing gum are attributed to increased mastication and salivation. Active ingredients incorporated in chewing gums aim to expand these effects to inhibition of extrinsic tooth stain and calculus formation, enhanced enamel remineralization, reduction of the numbers of bacteria in saliva and amount of oral biofilm, neutralization of biofilm pH, and reduction of volatile sulfur compounds. Evidence for oral-health benefits of chewing gum additives is hard to obtain due to their relatively low concentrations and rapid wash-out. Clinical effects of gum additives are overshadowed by effects of increased mastication and salivation due to the chewing of gum and require daily chewing of gum for prolonged periods of time. Future studies on active ingredients should focus on specifically targeting pathogenic bacteria, whilst leaving the healthy microbiome unaffected.

  19. Target Abundance-Based Fitness Screening (TAFiS) Facilitates Rapid Identification of Target-Specific and Physiologically Active Chemical Probes

    PubMed Central

    Butts, Arielle; DeJarnette, Christian; Peters, Tracy L.; Parker, Josie E.; Kerns, Morgan E.; Eberle, Karen E.; Kelly, Steve L.

    2017-01-01

    ABSTRACT Traditional approaches to drug discovery are frustratingly inefficient and have several key limitations that severely constrain our capacity to rapidly identify and develop novel experimental therapeutics. To address this, we have devised a second-generation target-based whole-cell screening assay based on the principles of competitive fitness, which can rapidly identify target-specific and physiologically active compounds. Briefly, strains expressing high, intermediate, and low levels of a preselected target protein are constructed, tagged with spectrally distinct fluorescent proteins (FPs), and pooled. The pooled strains are then grown in the presence of various small molecules, and the relative growth of each strain within the mixed culture is compared by measuring the intensity of the corresponding FP tags. Chemical-induced population shifts indicate that the bioactivity of a small molecule is dependent upon the target protein’s abundance and thus establish a specific functional interaction. Here, we describe the molecular tools required to apply this technique in the prevalent human fungal pathogen Candida albicans and validate the approach using two well-characterized drug targets—lanosterol demethylase and dihydrofolate reductase. However, our approach, which we have termed target abundance-based fitness screening (TAFiS), should be applicable to a wide array of molecular targets and in essentially any genetically tractable microbe. IMPORTANCE Conventional drug screening typically employs either target-based or cell-based approaches. The first group relies on biochemical assays to detect modulators of a purified target. However, hits frequently lack drug-like characteristics such as membrane permeability and target specificity. Cell-based screens identify compounds that induce a desired phenotype, but the target is unknown, which severely restricts further development and optimization. To address these issues, we have developed a second

  20. Disparities in Oral Health

    MedlinePlus

    ... and School-Linked Dental Sealant Programs Coordinate Community Water Fluoridation Programs Targeted Clinical Preventive Services & Health Systems Changes State Oral Health Plans Research & Publications Oral Health In America: Summary of the ...

  1. DNA targeting specificity of RNA-guided Cas9 nucleases.

    PubMed

    Hsu, Patrick D; Scott, David A; Weinstein, Joshua A; Ran, F Ann; Konermann, Silvana; Agarwala, Vineeta; Li, Yinqing; Fine, Eli J; Wu, Xuebing; Shalem, Ophir; Cradick, Thomas J; Marraffini, Luciano A; Bao, Gang; Zhang, Feng

    2013-09-01

    The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here, we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications, we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.

  2. microRNA-188 is downregulated in oral squamous cell carcinoma and inhibits proliferation and invasion by targeting SIX1.

    PubMed

    Wang, Lili; Liu, Hongchen

    2016-03-01

    microRNA-188 expression is downregulated in several tumors. However, its function and mechanism in human oral squamous cell carcinoma (OSCC) remains obscure. The present study aims to identify the expression pattern, biological roles, and potential mechanism by which miR-188 dysregulation is associated with oral squamous cell carcinoma. Significant downregulation of miR-188 was observed in OSCC tissues compared with paired normal tissues. In vitro, gain-of-function, loss-of-function experiments were performed to examine the impact of miR-188 on cancer cell proliferation, invasion, and cell cycle progression. Transfection of miR-188 mimics suppressed Detroit 562 cell proliferation, cell cycle progression and invasion, with downregulation of cyclin D1, MMP9, and p-ERK. Transfection of miR-188 inhibitor in FaDu cell line with high endogenous expression exhibited the opposite effects. Using fluorescence reporter assays, we confirmed that SIX1 was a direct target of miR-188 in OSCC cells. Transfection of miR-188 mimics downregulated SIX1 expression. SIX1 siRNA treatment abrogated miR-188 inhibitor-induced cyclin D1 and MMP9 upregulation. In addition, we found that SIX1 was overexpressed in 32 of 80 OSCC tissues. In conclusion, this study indicates that miR-188 downregulation might be associated with oral squamous cell carcinoma progression. miR-188 suppresses proliferation and invasion by targeting SIX1 in oral squamous cell carcinoma cells.

  3. An innovative pre-targeting strategy for tumor cell specific imaging and therapy

    NASA Astrophysics Data System (ADS)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-08-01

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging

  4. Status Differences in Target-Specific Prosocial Behavior and Aggression.

    PubMed

    Closson, Leanna M; Hymel, Shelley

    2016-09-01

    Previous studies exploring the link between social status and behavior have predominantly utilized measures that do not provide information regarding toward whom aggression or prosocial behavior is directed. Using a contextualized target-specific approach, this study examined whether high- and low-status adolescents behave differently toward peers of varying levels of status. Participants, aged 11-15 (N = 426, 53 % females), completed measures assessing aggression and prosocial behavior toward each same-sex grademate. A distinct pattern of findings emerged regarding the likeability, popularity, and dominance status of adolescents and their peer targets. Popular adolescents reported more direct aggression, indirect aggression, and prosocial behavior toward popular peers than did unpopular adolescents. Well-accepted adolescents reported more prosocial behavior toward a wider variety of peers than did rejected adolescents. Finally, compared to subordinate adolescents, dominant adolescents reported greater direct and indirect aggression toward dominant than subordinate peers. The results highlight the importance of studying target-specific behavior to better understand the status-behavior link.

  5. Micro-channel-based high specific power lithium target

    NASA Astrophysics Data System (ADS)

    Mastinu, P.; Martın-Hernández, G.; Praena, J.; Gramegna, F.; Prete, G.; Agostini, P.; Aiello, A.; Phoenix, B.

    2016-11-01

    A micro-channel-based heat sink has been produced and tested. The device has been developed to be used as a Lithium target for the LENOS (Legnaro Neutron Source) facility and for the production of radioisotope. Nevertheless, applications of such device can span on many areas: cooling of electronic devices, diode laser array, automotive applications etc. The target has been tested using a proton beam of 2.8MeV energy and delivering total power shots from 100W to 1500W with beam spots varying from 5mm2 to 19mm2. Since the target has been designed to be used with a thin deposit of lithium and since lithium is a low-melting-point material, we have measured that, for such application, a specific power of about 3kW/cm2 can be delivered to the target, keeping the maximum surface temperature not exceeding 150° C.

  6. Emerging oral targeted therapies in inflammatory bowel diseases: opportunities and challenges.

    PubMed

    Vetter, Marcel; Neurath, Markus F

    2017-10-01

    To improve quality of life and prevent long-term risks in patients with inflammatory bowel diseases (IBDs: Crohn's disease, ulcerative colitis), it is essential to suppress inflammatory activity adequately. However, corticosteroids are only suitable for therapy of acute flares and the evidence for positive effects of immunosuppressive substances like azathioprine or 6-mercapropurine is mainly limited to maintenance of remission. In addition, only subgroups of patients benefit from biologicals targeting tumour necrosis factor α or α4β7 integrins. In summary, until now the disease activity is not sufficiently controlled in a relevant fraction of the patients with IBD. Thus, there is an urge for the development of new substances in the therapy of ulcerative colitis and Crohn's disease. Fortunately, new oral and parenteral substances are in the pipeline. This review will focus on oral substances, which have already passed phase II studies successfully at this stage. In this article, we summarize data regarding AJM300, phosphatidylcholine (LT-02), mongersen, ozanimod, filgotinib and tofacitinib. AJM300 and ozanimod were tested in patients with ulcerative colitis and target lymphocyte trafficking through inhibition of the α subunit of integrin, respectively binding to the sphingosine-1-phosphate receptor (subtypes 1 and 5) on lymphocytes. Mongersen was utilized in patients with Crohn's disease and accelerates the degradation of SMAD7 mRNA, which consequently strengthens the mainly anti-inflammatory signalling pathway of transforming growth factor β1. Various Janus kinase (JAK) inhibitors were developed, which inhibit the intracellular signalling pathway of cytokines. For example, the JAK1 blocker filgotinib was tested in Crohn's disease, whereas the JAK1/3 inhibitor tofacitinib was tested in clinical trials for both Crohn's disease and ulcerative colitis. A different therapeutic approach is the substitution of phosphatidylcholine (LT-02), which might recover the

  7. Emerging oral targeted therapies in inflammatory bowel diseases: opportunities and challenges

    PubMed Central

    Vetter, Marcel; Neurath, Markus F.

    2017-01-01

    To improve quality of life and prevent long-term risks in patients with inflammatory bowel diseases (IBDs: Crohn’s disease, ulcerative colitis), it is essential to suppress inflammatory activity adequately. However, corticosteroids are only suitable for therapy of acute flares and the evidence for positive effects of immunosuppressive substances like azathioprine or 6-mercapropurine is mainly limited to maintenance of remission. In addition, only subgroups of patients benefit from biologicals targeting tumour necrosis factor α or α4β7 integrins. In summary, until now the disease activity is not sufficiently controlled in a relevant fraction of the patients with IBD. Thus, there is an urge for the development of new substances in the therapy of ulcerative colitis and Crohn’s disease. Fortunately, new oral and parenteral substances are in the pipeline. This review will focus on oral substances, which have already passed phase II studies successfully at this stage. In this article, we summarize data regarding AJM300, phosphatidylcholine (LT-02), mongersen, ozanimod, filgotinib and tofacitinib. AJM300 and ozanimod were tested in patients with ulcerative colitis and target lymphocyte trafficking through inhibition of the α subunit of integrin, respectively binding to the sphingosine-1-phosphate receptor (subtypes 1 and 5) on lymphocytes. Mongersen was utilized in patients with Crohn’s disease and accelerates the degradation of SMAD7 mRNA, which consequently strengthens the mainly anti-inflammatory signalling pathway of transforming growth factor β1. Various Janus kinase (JAK) inhibitors were developed, which inhibit the intracellular signalling pathway of cytokines. For example, the JAK1 blocker filgotinib was tested in Crohn’s disease, whereas the JAK1/3 inhibitor tofacitinib was tested in clinical trials for both Crohn’s disease and ulcerative colitis. A different therapeutic approach is the substitution of phosphatidylcholine (LT-02), which might

  8. Generator-specific targets of mitochondrial reactive oxygen species.

    PubMed

    Bleier, Lea; Wittig, Ilka; Heide, Heinrich; Steger, Mirco; Brandt, Ulrich; Dröse, Stefan

    2015-01-01

    To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for "signaling" and "damaging" ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Development of a polymerase chain reaction assay for the rapid detection of the oral pathogenic bacterium, Selenomonas noxia.

    PubMed

    Cruz, Patricia; Mehretu, Arthuro M; Buttner, Mark P; Trice, Theresa; Howard, Katherine M

    2015-08-14

    In recent studies, periodontal health has been linked to being overweight and/or obese. Among common oral bacteria, Selenomonas noxia has been implicated in converting periodontal health to disease, and Selenomonas species have also been found in gastric ulcers. The objective of this study was to develop and validate a quantitative polymerase chain reaction (qPCR) assay for the specific and rapid detection of S. noxia. Two oligonucleotide primer pairs and one probe were designed and tested to determine optimal amplification signal with three strains of S. noxia. The PCR assay was tested against fourteen non-target organisms, including closely related oral Selenomonads, one phylogenetically closely related bacterium, and two commonly isolated oral bacteria. One of the primer sets was more sensitive at detecting the target organism and was selected for optimization and validation experiments. The designed primers and probe amplified the target organism with 100% specificity. PCR inhibition was observed with an internal positive control, and inhibition was resolved by diluting the DNA extract. The qPCR assay designed in this study can be used to specifically detect S. noxia in the clinical setting and in future research involving the enhanced detection of S. noxia. The assay can also be used in epidemiological studies for understanding the role of S. noxia in disease processes including, but not limited to, oral health and obesity of infectious origin.

  10. Liver-targeting self-assembled hyaluronic acid-glycyrrhetinic acid micelles enhance hepato-protective effect of silybin after oral administration.

    PubMed

    Han, Xiaofeng; Wang, Zhe; Wang, Manyuan; Li, Jing; Xu, Yongsong; He, Rui; Guan, Hongyu; Yue, Zhujun; Gong, Muxin

    2016-06-01

    In order to enhance oral bioavailability and liver targeting delivery of silybin, two amphiphilic hyaluronic acid derivatives, hyaluronic acid-deoxycholic acid (HA-adh-DOCA) and hyaluronic acid-glycyrrhetinic acid (HA-adh-GA) conjugates, were designed and synthesized. Silybin was successfully loaded in HA-adh-DOCA and HA-adh-GA micelles with high drug-loading capacities (20.3% ± 0.5% and 20.6% ± 0.6%, respectively). The silybin-loaded micelles were spherical in shape with the average size around 130 nm. In vitro release study showed that two silybin-loaded micelles displayed similar steady continued-release pattern in simulated gastrointestinal fluids and PBS. Single-pass intestinal perfusion studies indicated that silybin-loaded micelles were absorbed in the whole intestine and transported via a passive diffusion mechanism. Compared with suspension formulation, silybin-loaded HA-adh-DOCA and HA-adh-GA micelles achieved significantly higher AUC and Cmax level. Moreover, liver targeting drug delivery of micelles was confirmed by in vivo imaging analysis. In comparison between the two micellar formulations, HA-adh-GA micelles possessed higher targeting capacity than HA-adh-DOCA micelles, owing to the active hepatic targeting properties of glycyrrhetinic acid. In the treatment of acute liver injury induced by CCl4, silybin-loaded HA-adh-GA micelles displayed better effects over suspension control and silybin-loaded HA-adh-DOCA micelles. Overall, pharmaceutical and pharmacological indicators suggested that the HA-adh-GA conjugates can be successfully utilized for liver targeting of orally administered therapeutics.

  11. Confocal Microscopy and Molecular-Specific Optical Contrast Agents for the Detection of Oral Neoplasia

    PubMed Central

    Carlson, Alicia L.; Gillenwater, Ann M.; Williams, Michelle D.; El-Naggar, Adel K.; Richards-Kortum, R. R.

    2009-01-01

    Using current clinical diagnostic techniques, it is difficult to visualize tumor morphology and architecture at the cellular level, which is necessary for diagnostic localization of pathologic lesions. Optical imaging techniques have the potential to address this clinical need by providing real-time, sub-cellular resolution images. This paper describes the use of dual mode confocal microscopy and optical molecular-specific contrast agents to image tissue architecture, cellular morphology, and sub-cellular molecular features of normal and neoplastic oral tissues. Fresh tissue slices were prepared from 33 biopsies of clinically normal and abnormal oral mucosa obtained from 14 patients. Reflectance confocal images were acquired after the application of 6% acetic acid, and fluorescence confocal images were acquired after the application of a fluorescence contrast agent targeting the epidermal growth factor receptor (EGFR). The dual imaging modes provided images similar to light microscopy of hematoxylin and eosin and immunohistochemistry staining, but from thick fresh tissue slices. Reflectance images provided information on the architecture of the tissue and the cellular morphology. The nuclear-to-cytoplasmic (N/C) ratio from the reflectance images was at least 7.5 times greater for the carcinoma than the corresponding normal samples, except for one case of highly keratinized carcinoma. Separation of carcinoma from normal and mild dysplasia was achieved using this ratio (p<0.01). Fluorescence images of EGFR expression yielded a mean fluorescence labeling intensity (FLI) that was at least 2.7 times higher for severe dysplasia and carcinoma samples than for the corresponding normal sample, and could be used to distinguish carcinoma from normal and mild dysplasia (p<0.01). Analyzed together, the N/C ratio and the mean FLI may improve the ability to distinguish carcinoma from normal squamous epithelium. PMID:17877424

  12. Changes in antigen-specific T cell number and function during oral desensitization in cow’s milk allergy enabled with omalizumab

    PubMed Central

    Bedoret, D; Singh, A K; Shaw, V; Hoyte, E G; Hamilton, R; DeKruyff, R H; Schneider, L C; Nadeau, K C; Umetsu, D T

    2012-01-01

    Food allergy is a major public health problem for which there is no effective treatment. We examined the immunological changes that occurred in a group of children with significant cow’s milk allergy undergoing a novel and rapid high dose oral desensitization protocol enabled by treatment with omalizumab (anti-IgE mAb). Within a week of treatment, the CD4+ T cell response to milk was nearly eliminated, suggesting anergy in, or deletion of, milk-specific CD4+ T cells. Over the following three months while the subjects remained on high doses of daily oral milk, the CD4+ T cell response returned, characterized by a shift from IL-4 to IFN-γ production. Desensitization was also associated with reduction in milk-specific IgE and a 15-fold increase in milk-specific IgG4. These studies suggest that high dose oral allergen desensitization may be associated with deletion of allergen-specific T cells, without the apparent development of allergen-specific Foxp3+ regulatory T cells. PMID:22318492

  13. Point detection of bacterial and viral pathogens using oral samples

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2008-04-01

    Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.

  14. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery.

    PubMed

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers.

  15. Target-cancer cell specific activatable fluorescence imaging Probes: Rational Design and in vivo Applications

    PubMed Central

    Kobayashi, Hisataka; Choyke, Peter L.

    2010-01-01

    CONSPECTUS Conventional imaging methods, such as angiography, computed tomography, magnetic resonance imaging and radionuclide imaging, rely on contrast agents (iodine, gadolinium, radioisotopes) that are “always on”. While these agents have proven clinically useful, they are not sufficiently sensitive because of the inadequate target to background ratio. A unique aspect of optical imaging is that fluorescence probes can be designed to be activatable, i.e. only “turned on” under certain conditions. These probes can be designed to emit signal only after binding a target tissue, greatly increasing sensitivity and specificity in the detection of disease. There are two basic types of activatable fluorescence probes; 1) conventional enzymatically activatable probes, which exist in the quenched state until activated by enzymatic cleavage mostly outside of the cells, and 2) newly designed target-cell specific activatable probes, which are quenched until activated in targeted cells by endolysosomal processing that results when the probe binds specific cell-surface receptors and is subsequently internalized. Herein, we present a review of the rational design and in vivo applications of target-cell specific activatable probes. Designing these probes based on their photo-chemical (e.g. activation strategy), pharmacological (e.g. biodistribution), and biological (e.g. target specificity) properties has recently allowed the rational design and synthesis of target-cell specific activatable fluorescence imaging probes, which can be conjugated to a wide variety of targeting molecules. Several different photo-chemical mechanisms have been utilized, each of which offers a unique capability for probe design. These include: self-quenching, homo- and hetero-fluorescence resonance energy transfer (FRET), H-dimer formation and photon-induced electron transfer (PeT). In addition, the repertoire is further expanded by the option for reversibility or irreversibility of the signal

  16. EDB Fibronectin Specific Peptide for Prostate Cancer Targeting.

    PubMed

    Han, Zheng; Zhou, Zhuxian; Shi, Xiaoyue; Wang, Junpeng; Wu, Xiaohui; Sun, Da; Chen, Yinghua; Zhu, Hui; Magi-Galluzzi, Cristina; Lu, Zheng-Rong

    2015-05-20

    Extradomain-B fibronectin (EDB-FN), one of the oncofetal fibronectin (onfFN) isoforms, is a high-molecular-weight glycoprotein that mediates cell adhesion and migration. The expression of EDB-FN is associated with a number of cancer-related biological processes such as tumorigenesis, angiogenesis, and epithelial-to-mesenchymal transition (EMT). Here, we report the development of a small peptide specific to EDB-FN for targeting prostate cancer. A cyclic nonapeptide, CTVRTSADC (ZD2), was identified using peptide phage display. A ZD2-Cy5 conjugate was synthesized to accomplish molecular imaging of prostate cancer in vitro and in vivo. ZD2-Cy5 demonstrated effective binding to up-regulated EDB-FN secreted by TGF-β-induced PC3 cancer cells following EMT. Following intravenous injections, the targeted fluorescent probe specifically bound to and delineated PC3-GFP prostate tumors in nude mice bearing the tumor xenografts. ZD2-Cy5 also showed stronger binding to human prostate tumor specimens with a higher Gleason score (GS9) compared to those with a lower score (GS 7), with no binding in benign prostatic hyperplasia (BPH). Thus, the ZD2 peptide is a promising strategy for molecular imaging and targeted therapy of prostate cancer.

  17. Neutral vs positive oral contrast in diagnosing acute appendicitis with contrast-enhanced CT: sensitivity, specificity, reader confidence and interpretation time

    PubMed Central

    Naeger, D M; Chang, S D; Kolli, P; Shah, V; Huang, W; Thoeni, R F

    2011-01-01

    Objective The study compared the sensitivity, specificity, confidence and interpretation time of readers of differing experience in diagnosing acute appendicitis with contrast-enhanced CT using neutral vs positive oral contrast agents. Methods Contrast-enhanced CT for right lower quadrant or right flank pain was performed in 200 patients with neutral and 200 with positive oral contrast including 199 with proven acute appendicitis and 201 with other diagnoses. Test set disease prevalence was 50%. Two experienced gastrointestinal radiologists, one fellow and two first-year residents blindly assessed all studies for appendicitis (2000 readings) and assigned confidence scores (1=poor to 4=excellent). Receiver operating characteristic (ROC) curves were generated. Total interpretation time was recorded. Each reader's interpretation with the two agents was compared using standard statistical methods. Results Average reader sensitivity was found to be 96% (range 91–99%) with positive and 95% (89–98%) with neutral oral contrast; specificity was 96% (92–98%) and 94% (90–97%). For each reader, no statistically significant difference was found between the two agents (sensitivities p-values >0.6; specificities p-values>0.08), in the area under the ROC curve (range 0.95–0.99) or in average interpretation times. In cases without appendicitis, positive oral contrast demonstrated improved appendix identification (average 90% vs 78%) and higher confidence scores for three readers. Average interpretation times showed no statistically significant differences between the agents. Conclusion Neutral vs positive oral contrast does not affect the accuracy of contrast-enhanced CT for diagnosing acute appendicitis. Although positive oral contrast might help to identify normal appendices, we continue to use neutral oral contrast given its other potential benefits. PMID:20959365

  18. Target-specific copper hybrid T7 phage particles.

    PubMed

    Dasa, Siva Sai Krishna; Jin, Qiaoling; Chen, Chin-Tu; Chen, Liaohai

    2012-12-18

    Target-specific nanoparticles have attracted significant attention recently, and have greatly impacted life and physical sciences as new agents for imaging, diagnosis, and therapy, as well as building blocks for the assembly of novel complex materials. While most of these particles are synthesized by chemical conjugation of an affinity reagent to polymer or inorganic nanoparticles, we are promoting the use of phage particles as a carrier to host organic or inorganic functional components, as well as to display the affinity reagent on the phage surface, taking advantage of the fact that some phages host well-established vectors for protein expression. An affinity reagent can be structured in a desired geometry on the surface of phage particles, and more importantly, the number of the affinity reagent molecules per phage particle can be precisely controlled. We previously have reported the use of the T7 phage capsid as a template for synthesizing target-specific metal nanoparticles. In this study herein, we reported the synthesis of nanoparticles using an intact T7 phage as a scaffold from which to extend 415 copies of a peptide that contains a hexahistidine (6His) motif for capture of copper ions and staging the conversion of copper ions to copper metal, and a cyclic Arginine-Glycine-Aspartic Acid (RGD4C) motif for targeting integrin and cancer cells. We demonstrated that the recombinant phage could load copper ions under low bulk copper concentrations without interfering with its target specificity. Further reduction of copper ions to copper metal rendered a very stable copper hybrid T7 phage, which prevents the detachment of copper from phage particles and maintains the phage structural integrity even under harsh conditions. Cancer cells (MCF-7) can selectively uptake copper hybrid T7 phage particles through ligand-mediated transmembrane transportation, whereas normal control cells (MCF-12F) uptake 1000-fold less. We further demonstrated that copper hybrid T7

  19. Sex- and Tissue-specific Functions of Drosophila Doublesex Transcription Factor Target Genes

    PubMed Central

    Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C.; Hempel, Leonie; Pavlou, Hania J.; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan; Smith, Harold E.; Przytycka, Teresa M.; Goodwin, Stephen F.; Van Doren, Mark; Oliver, Brian

    2014-01-01

    Primary sex determination “switches” evolve rapidly, but Doublesex (DSX) related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSXF and DSXM), but little is known about how dsx controls sexual development, whether DSXF and DSXM bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSXF and DSXM bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression. PMID:25535918

  20. Target Context Specification Can Reduce Costs in Nonfocal Prospective Memory

    ERIC Educational Resources Information Center

    Lourenço, Joana S.; White, Katherine; Maylor, Elizabeth A.

    2013-01-01

    Performing a nonfocal prospective memory (PM) task results in a cost to ongoing task processing, but the precise nature of the monitoring processes involved remains unclear. We investigated whether target context specification (i.e., explicitly associating the PM target with a subset of ongoing stimuli) can trigger trial-by-trial changes in task…

  1. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction

    PubMed Central

    2012-01-01

    Background Choosing appropriate primers is probably the single most important factor affecting the polymerase chain reaction (PCR). Specific amplification of the intended target requires that primers do not have matches to other targets in certain orientations and within certain distances that allow undesired amplification. The process of designing specific primers typically involves two stages. First, the primers flanking regions of interest are generated either manually or using software tools; then they are searched against an appropriate nucleotide sequence database using tools such as BLAST to examine the potential targets. However, the latter is not an easy process as one needs to examine many details between primers and targets, such as the number and the positions of matched bases, the primer orientations and distance between forward and reverse primers. The complexity of such analysis usually makes this a time-consuming and very difficult task for users, especially when the primers have a large number of hits. Furthermore, although the BLAST program has been widely used for primer target detection, it is in fact not an ideal tool for this purpose as BLAST is a local alignment algorithm and does not necessarily return complete match information over the entire primer range. Results We present a new software tool called Primer-BLAST to alleviate the difficulty in designing target-specific primers. This tool combines BLAST with a global alignment algorithm to ensure a full primer-target alignment and is sensitive enough to detect targets that have a significant number of mismatches to primers. Primer-BLAST allows users to design new target-specific primers in one step as well as to check the specificity of pre-existing primers. Primer-BLAST also supports placing primers based on exon/intron locations and excluding single nucleotide polymorphism (SNP) sites in primers. Conclusions We describe a robust and fully implemented general purpose primer design tool

  2. Target cell specific antibody-based photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rosenblum, Lauren T.; Mitsunaga, Makoto; Kakareka, John W.; Morgan, Nicole Y.; Pohida, Thomas J.; Choyke, Peter L.; Kobayashi, Hisataka

    2011-03-01

    In photodynamic therapy (PDT), localized monochromatic light is used to activate targeted photosensitizers (PS) to induce cellular damage through the generation of cytotoxic species such as singlet oxygen. While first-generation PS passively targeted malignancies, a variety of targeting mechanisms have since been studied, including specifically activatable agents. Antibody internalization has previously been employed as a fluorescence activation system and could potentially enable similar activation of PS. TAMRA, Rhodamine-B and Rhodamine-6G were conjugated to trastuzumab (brand name Herceptin), a humanized monoclonal antibody with specificity for the human epidermal growth factor receptor 2 (HER2), to create quenched PS (Tra-TAM, Tra-RhoB, and Tra-Rho6G). Specific PDT with Tra-TAM and Tra-Rho6G, which formed covalently bound H-dimers, was demonstrated in HER2+ cells: Minimal cell death (<6%) was observed in all treatments of the HER2- cell line (BALB/3T3) and in treatments the HER2+ cell line (3T3/HER2) with light or trastuzumab only. There was significant light-induced cell death in HER2 expressing cells using Tra-TAM (3% dead without light, 20% at 50 J/cm2, 46% at 100 J/cm2) and Tra-Rho6G (5% dead without light, 22% at 50 J/cm2, 46% at 100 J/cm2). No efficacy was observed in treatment with Tra-RhoB, which was also non-specifically taken up by BALB/3T3 cells and which had weaker PS-antibody interactions (as demonstrated by visualization of protein and fluorescence on SDS-PAGE).

  3. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    PubMed

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  4. Oral biopsy: oral pathologist's perspective.

    PubMed

    Kumaraswamy, K L; Vidhya, M; Rao, Prasanna Kumar; Mukunda, Archana

    2012-01-01

    Many oral lesions may need to be diagnosed by removing a sample of tissue from the oral cavity. Biopsy is widely used in the medical field, but the practice is not quite widespread in dental practice. As oral pathologists, we have found many artifacts in the tissue specimen because of poor biopsy technique or handling, which has led to diagnostic pitfalls and misery to both the patient and the clinician. This article aims at alerting the clinicians about the clinical faults arising preoperatively, intraoperatively and postoperatively while dealing with oral biopsy that may affect the histological assessment of the tissue and, therefore, the diagnosis. It also reviews the different techniques, precautions and special considerations necessary for specific lesions.

  5. Building a Pediatric Oral Health Training Curriculum for Community Health Workers.

    PubMed

    Martin, Molly; Frese, William; Lumsden, Christie; Sandoval, Anna

    Community health workers (CHWs) are a promising approach to oral health promotion in high-risk populations. This article describes the process of creating a pediatric oral health CHW training curriculum. Existing curricula were identified through outreach efforts to experts in the oral health and CHW fields, as well as PubMed and Google searches. After coding basic information, curricula were mapped to define oral health domains. Then group discussion was employed to determine final curriculum contents. United States. Curricula were included if they addressed oral health, were in English or Spanish, involved US populations, did not target dental clinicians, and whether sufficient data could be obtained. Curricula were evaluated for delivery format, number of hours, target audience, inclusion of CHWs, completeness, and oral health content. Eighteen unique curricula were identified; 14 (78%) were CHW specific. Pathologic factors, caries formation, toothbrushing basics, flossing, nutrition, sugar-sweetened beverages, oral health recommendations, baby bottle tooth decay, fluoride treatments, and fluoride were covered to some extent in 75% of curricula. More than half did not mention types of teeth, oral health during pregnancy, antifluoride, cultural humility, and special needs populations. After comparing CHW curricula with non-CHW curricula, the original 26 oral health domains were condensed into 10 CHW training domains. Using existing evidence and expert insight, an oral health CHW training curriculum outline was created that emphasizes behaviors, social support, and navigation assistance to promote preventive oral health behaviors in families of young children. This has implications beyond oral health. CHW programs are expanding to address the social determinants of health. The process of creating this curriculum and its basic elements can be applied to other disease areas. Clearly defined trainings that are made publicly available, such as this one, support

  6. Approaches for Enhancing Oral Bioavailability of Peptides and Proteins

    PubMed Central

    Renukuntla, Jwala; Vadlapudi, Aswani Dutt; Patel, Ashaben; Boddu, Sai HS.; Mitra, Ashim K

    2013-01-01

    Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1–2%). An ideal oral drug delivery system should be capable of a) maintaining the integrity of protein molecules until it reaches the site of absorption, b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules. PMID:23428883

  7. Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens

    PubMed Central

    Gubin, Matthew M.; Zhang, Xiuli; Schuster, Heiko; Caron, Etienne; Ward, Jeffrey P.; Noguchi, Takuro; Ivanova, Yulia; Hundal, Jasreet; Arthur, Cora D.; Krebber, Willem-Jan; Mulder, Gwenn E.; Toebes, Mireille; Vesely, Matthew D.; Lam, Samuel S.K.; Korman, Alan J.; Allison, James P.; Freeman, Gordon J.; Sharpe, Arlene H.; Pearce, Erika L.; Schumacher, Ton N.; Aebersold, Ruedi; Rammensee, Hans-Georg; Melief, Cornelis J. M.; Mardis, Elaine R.; Gillanders, William E.; Artyomov, Maxim N.; Schreiber, Robert D.

    2014-01-01

    The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity1–6, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion1,2,7. Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells8,9. Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies10–13. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be

  8. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer.

    PubMed

    Cirillo, N; Hassona, Y; Celentano, A; Lim, K P; Manchella, S; Parkinson, E K; Prime, S S

    2017-01-01

    The interrelationship between malignant epithelium and the underlying stroma is of fundamental importance in tumour development and progression. In the present study, we used cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), tumours that are characterized by the loss of genes such as TP53 and p16 INK4A and with extensive loss of heterozygosity, together with CAFs from their more genetically stable (GS) counterparts that have wild-type TP53 and p16 INK4A and minimal loss of heterozygosity (GS-OSCC). Using a systems biology approach to interpret the genome-wide transcriptional profile of the CAFs, we show that transforming growth factor-β (TGF-β) family members not only had biological relevance in silico but also distinguished GU-OSCC-derived CAFs from GS-OSCC CAFs and fibroblasts from normal oral mucosa. In view of the close association between TGF-β family members, we examined the expression of TGF-β1 and TGF-β2 in the different fibroblast subtypes and showed increased levels of active TGF-β1 and TGF-β2 in CAFs from GU-OSCC. CAFs from GU-OSCC, but not GS-OSCC or normal fibroblasts, induced epithelial-mesenchymal transition and down-regulated a broad spectrum of cell adhesion molecules resulting in epithelial dis-cohesion and invasion of target keratinocytes in vitro in a TGF-β-dependent manner. The results demonstrate that the TGF-β family of cytokines secreted by CAFs derived from genotype-specific oral cancer (GU-OSCC) promote, at least in part, the malignant phenotype by weakening intercellular epithelial adhesion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Surface-modified gold nanorods for specific cell targeting

    NASA Astrophysics Data System (ADS)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  10. The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: Evaluation of their potential for colon-specific delivery.

    PubMed

    Ma, Yiming; Fuchs, Adrian V; Boase, Nathan R B; Rolfe, Barbara E; Coombes, Allan G A; Thurecht, Kristofer J

    2015-08-01

    Anti-cancer drug loaded-nanoparticles (NPs) or encapsulation of NPs in colon-targeted delivery systems shows potential for increasing the local drug concentration in the colon leading to improved treatment of colorectal cancer. To investigate the potential of the NP-based strategies for colon-specific delivery, two formulations, free Eudragit® NPs and enteric-coated NP-loaded chitosan-hypromellose microcapsules (MCs) were fluorescently-labelled and their tissue distribution in mice after oral administration was monitored by multispectral small animal imaging. The free NPs showed a shorter transit time throughout the mouse digestive tract than the MCs, with extensive excretion of NPs in faeces at 5h. Conversely, the MCs showed complete NP release in the lower region of the mouse small intestine at 8h post-administration. Overall, the encapsulation of NPs in MCs resulted in a higher colonic NP intensity from 8h to 24h post-administration compared to the free NPs, due to a NP 'guarding' effect of MCs during their transit along mouse gastrointestinal tract which decreased NP excretion in faeces. These imaging data revealed that this widely-utilised colon-targeting MC formulation lacked site-precision for releasing its NP load in the colon, but the increased residence time of the NPs in the lower gastrointestinal tract suggests that it is still useful for localised release of chemotherapeutics, compared to NP administration alone. In addition, both formulations resided in the stomach of mice at considerable concentrations over 24h. Thus, adhesion of NP- or MC-based oral delivery systems to gastric mucosa may be problematic for colon-specific delivery of the cargo to the colon and should be carefully investigated for a full evaluation of particulate delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology.

    PubMed

    Guo, Lihong; McLean, Jeffrey S; Yang, Youngik; Eckert, Randal; Kaplan, Christopher W; Kyme, Pierre; Sheikh, Omid; Varnum, Brian; Lux, Renate; Shi, Wenyuan; He, Xuesong

    2015-06-16

    One major challenge to studying human microbiome and its associated diseases is the lack of effective tools to achieve targeted modulation of individual species and study its ecological function within multispecies communities. Here, we show that C16G2, a specifically targeted antimicrobial peptide, was able to selectively kill cariogenic pathogen Streptococcus mutans with high efficacy within a human saliva-derived in vitro oral multispecies community. Importantly, a significant shift in the overall microbial structure of the C16G2-treated community was revealed after a 24-h recovery period: several bacterial species with metabolic dependency or physical interactions with S. mutans suffered drastic reduction in their abundance, whereas S. mutans' natural competitors, including health-associated Streptococci, became dominant. This study demonstrates the use of targeted antimicrobials to modulate the microbiome structure allowing insights into the key community role of specific bacterial species and also indicates the therapeutic potential of C16G2 to achieve a healthy oral microbiome.

  12. Prostate Specific Membrane Antigen (PSMA) Targeted Bio-orthogonal Therapy for Metastatic Prostate Cancer

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate Cancer...Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate

  13. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses

    PubMed Central

    Trouche, Stéphanie; Sasaki, Jennifer M.; Tu, Tiffany; Reijmers, Leon G.

    2013-01-01

    SUMMARY A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. PMID:24183705

  14. The counting abilities of children with specific language impairment: a comparison of oral and gestural tasks.

    PubMed

    Fazio, B B

    1994-04-01

    This study examined the counting abilities of preschool children with specific language impairment compared to language-matched and mental-age-matched peers. In order to determine the nature of the difficulties SLI children exhibited in counting, the subjects participated in a series of oral counting tasks and a series of gestural tasks that used an invented counting system based on pointing to body parts. Despite demonstrating knowledge of many of the rules associated with counting, SLI preschool children displayed marked difficulty in counting objects. On oral counting tasks, they showed difficulty with rote counting, displayed a limited repertoire of number terms, and miscounted sets of objects. However, on gestural counting tasks, SLI children's performance was significantly better. These findings suggest that SLI children have a specific difficulty with the rote sequential aspect of learning number words.

  15. Depth-sensitive optical spectroscopy for noninvasive diagnosis of oral neoplasia

    NASA Astrophysics Data System (ADS)

    Schwarz, Richard Alan

    Oral cancer is the 11th most common cancer in the world. Cancers of the oral cavity and oropharynx account for more than 7,500 deaths each year in the United States alone. Major advances have been made in the management of oral cancer through the combined use of surgery, radiotherapy and chemotherapy, improving the quality of life for many patients; however, these advances have not led to a significant increase in survival rates, primarily because diagnosis often occurs at a late stage when treatment is more difficult and less successful. Accurate, objective, noninvasive methods for early diagnosis of oral neoplasia are needed. Here a method is presented to noninvasively evaluate oral lesions using depth-sensitive optical spectroscopy (DSOS). A ball lens coupled fiber-optic probe was developed to enable preferential targeting of different depth regions in the oral mucosa. Clinical studies of the diagnostic performance of DSOS in 157 subjects were carried out in collaboration with the University of Texas M. D. Anderson Cancer Center. An overall sensitivity of 90% and specificity of 89% were obtained for nonkeratinized oral tissue relative to histopathology. Based on these results a compact, portable version of the clinical DSOS device with real-time automated diagnostic capability was developed. The portable device was tested in 47 subjects and a sensitivity of 82% and specificity of 83% were obtained for nonkeratinized oral tissue. The diagnostic potential of multimodal platforms incorporating DSOS was explored through two pilot studies. A pilot study of DSOS in combination with widefield imaging was carried out in 29 oral cancer patients, resulting in a combined sensitivity of 94% and specificity of 69%. Widefield imaging and spectroscopy performed slightly better in combination than each method performed independently. A pilot study of DSOS in combination with the optical contrast agents 2-NBDG, EGF-Alexa 647, and proflavine was carried out in resected tissue

  16. Stomatitis associated with mammalian target of rapamycin inhibition: A review of pathogenesis, prevention, treatment, and clinical implications for oral practice in metastatic breast cancer.

    PubMed

    Chambers, Mark S; Rugo, Hope S; Litton, Jennifer K; Meiller, Timothy F

    2018-04-01

    Patients with metastatic breast cancer may develop oral morbidities that result from therapeutic interventions. Mammalian target of rapamycin (mTOR) inhibitor-associated stomatitis (mIAS) is a common adverse event (AE), secondary to mTOR inhibitor therapy, that can have a negative impact on treatment adherence, quality of life, and health care costs. A multidisciplinary team approach is important to minimize mIAS and to maximize treatment benefits to patients with breast cancer. In this review, we discuss the pathophysiology, diagnosis, and natural history of mIAS. Current and new management strategies for the prevention and treatment of mIAS are described in the context of fostering a coordinated team care approach to optimizing patient care. The authors conducted a PubMed search from 2007 through 2017 using the terms "stomatitis," "mIAS," "everolimus," "mTOR," "metastatic breast cancer," and "oral care." They selected articles published in peer-reviewed journals that reported controlled trials and evidence-based guidelines. mIAS can be distinguished from mucositis caused by cytotoxic chemotherapy or radiotherapy on the basis of cause, clinical presentation, and treatment paradigms. Specific preventive and therapeutic management strategies can be implemented across the continuum of patient oral health care. Oral health care providers are on the frontline of oral health care for patients with metastatic breast cancer and are uniquely positioned to provide patient education, advocate accurate reporting of mIAS, and support early identification, monitoring, and prompt intervention to mitigate the severity and duration of this manageable, potentially dose-limiting AE. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.

  17. Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity

    PubMed Central

    Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.

    2003-01-01

    Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889

  18. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses.

    PubMed

    Trouche, Stéphanie; Sasaki, Jennifer M; Tu, Tiffany; Reijmers, Leon G

    2013-11-20

    A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos-based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. World Workshop on Oral Medicine VI: Utilization of Oral Medicine-specific software for support of clinical care, research, and education: current status and strategy for broader implementation.

    PubMed

    Brailo, Vlaho; Firriolo, Francis John; Tanaka, Takako Imai; Varoni, Elena; Sykes, Rosemary; McCullough, Michael; Hua, Hong; Sklavounou, Alexandra; Jensen, Siri Beier; Lockhart, Peter B; Mattsson, Ulf; Jontell, Mats

    2015-08-01

    To assess the current scope and status of Oral Medicine-specific software (OMSS) utilized to support clinical care, research, and education in Oral Medicine and to propose a strategy for broader implementation of OMSS within the global Oral Medicine community. An invitation letter explaining the objectives was sent to the global Oral Medicine community. Respondents were interviewed to obtain information about different aspects of OMSS functionality. Ten OMSS tools were identified. Four were being used for clinical care, one was being used for research, two were being used for education, and three were multipurpose. Clinical software was being utilized as databases developed to integrate of different type of clinical information. Research software was designed to facilitate multicenter research. Educational software represented interactive, case-orientated technology designed for clinical training in Oral Medicine. Easy access to patient data was the most commonly reported advantage. Difficulty of use and poor integration with other software was the most commonly reported disadvantage. The OMSS presented in this paper demonstrate how information technology (IT) can have an impact on the quality of patient care, research, and education in the field of Oral Medicine. A strategy for broader implementation of OMSS is proposed. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications.

    PubMed

    Kobayashi, Hisataka; Choyke, Peter L

    2011-02-15

    Conventional imaging methods, such as angiography, computed tomography (CT), magnetic resonance imaging (MRI), and radionuclide imaging, rely on contrast agents (iodine, gadolinium, and radioisotopes, for example) that are "always on." Although these indicators have proven clinically useful, their sensitivity is lacking because of inadequate target-to-background signal ratio. A unique aspect of optical imaging is that fluorescence probes can be designed to be activatable, that is, only "turned on" under certain conditions. These probes are engineered to emit signal only after binding a target tissue; this design greatly increases sensitivity and specificity in the detection of disease. Current research focuses on two basic types of activatable fluorescence probes. The first developed were conventional enzymatically activatable probes. These fluorescent molecules exist in the quenched state until activated by enzymatic cleavage, which occurs mostly outside of the cells. However, more recently, researchers have begun designing target-cell-specific activatable probes. These fluorophores exist in the quenched state until activated within targeted cells by endolysosomal processing, which results when the probe binds specific receptors on the cell surface and is subsequently internalized. In this Account, we present a review of the rational design and in vivo applications of target-cell-specific activatable probes. In engineering these probes, researchers have asserted control over a variety of factors, including photochemistry, pharmacological profile, and biological properties. Their progress has recently allowed the rational design and synthesis of target-cell-specific activatable fluorescence imaging probes, which can be conjugated to a wide variety of targeting molecules. Several different photochemical mechanisms have been utilized, each of which offers a unique capability for probe design. These include self-quenching, homo- and hetero-fluorescence resonance

  1. Host-Microbiome Cross-talk in Oral Mucositis

    PubMed Central

    Vasconcelos, R.M.; Sanfilippo, N.; Paster, B.J.; Kerr, A.R.; Li, Y.; Ramalho, L.; Queiroz, E.L.; Smith, B.; Sonis, S.T.; Corby, P.M.

    2016-01-01

    Oral mucositis (OM) is among the most common, painful, and debilitating toxicities of cancer regimen–related treatment, resulting in the formation of ulcers, which are susceptible to increased colonization of microorganisms. Novel discoveries in OM have focused on understanding the host-microbial interactions, because current pathways have shown that major virulence factors from microorganisms have the potential to contribute to the development of OM and may even prolong the existence of already established ulcerations, affecting tissue healing. Additional comprehensive and disciplined clinical investigation is needed to carefully characterize the relationship between the clinical trajectory of OM, the local levels of inflammatory changes (both clinical and molecular), and the ebb and flow of the oral microbiota. Answering such questions will increase our knowledge of the mechanisms engaged by the oral immune system in response to mucositis, facilitating their translation into novel therapeutic approaches. In doing so, directed clinical strategies can be developed that specifically target those times and tissues that are most susceptible to intervention. PMID:27053118

  2. Future perspectives in target-specific immunotherapies of myasthenia gravis

    PubMed Central

    Dalakas, Marinos C.

    2015-01-01

    Myasthenia gravis (MG) is an autoimmune disease caused by complement-fixing antibodies against acetylcholine receptors (AChR); antigen-specific CD4+ T cells, regulatory T cells (Tregs) and T helper (Th) 17+ cells are essential in antibody production. Target-specific therapeutic interventions should therefore be directed against antibodies, B cells, complement and molecules associated with T cell signaling. Even though the progress in the immunopathogenesis of the disease probably exceeds any other autoimmune disorder, MG is still treated with traditional drugs or procedures that exert a non-antigen specific immunosuppression or immunomodulation. Novel biological agents currently on the market, directed against the following molecular pathways, are relevant and specific therapeutic targets that can be tested in MG: (a) T cell intracellular signaling molecules, such as anti-CD52, anti-interleukin (IL) 2 receptors, anti- costimulatory molecules, and anti-Janus tyrosine kinases (JAK1, JAK3) that block the intracellular cascade associated with T-cell activation; (b) B cells and their trophic factors, directed against key B-cell molecules; (c) complement C3 or C5, intercepting the destructive effect of complement-fixing antibodies; (d) cytokines and cytokine receptors, such as those targeting IL-6 which promotes antibody production and IL-17, or the p40 subunit of IL-12/1L-23 that affect regulatory T cells; and (e) T and B cell transmigration molecules associated with lymphocyte egress from the lymphoid organs. All drugs against these molecular pathways require testing in controlled trials, although some have already been tried in small case series. Construction of recombinant AChR antibodies that block binding of the pathogenic antibodies, thereby eliminating complement and antibody-depended-cell-mediated cytotoxicity, are additional novel molecular tools that require exploration in experimental MG. PMID:26600875

  3. Oral Health Disparities and the Future Face of America.

    PubMed

    Ebersole, J L; D'Souza, R; Gordon, S; Fox, C H

    2012-11-01

    The 4th Annual AADR Fall Focused Symposium (FFS), "Oral Health Disparities Research and the Future Face of America", took place on November 3-4, 2011 in Washington, DC. The FFS strategy was developed by the AADR to help provide additional opportunities for members to engage in research discussions during the year by identifying specific research topics of interest among the 21 Scientific Groups and 4 Networks of the IADR and targeting a focused topic area for the FFS. The conference attracted an international group of approximately 120 registrants, including participants from Canada, India, Mexico, and China; 4 oral sessions and 32 poster presentations were offered.

  4. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells.

    PubMed

    Stuart, Christopher H; Singh, Ravi; Smith, Thomas L; D'Agostino, Ralph; Caudell, David; Balaji, K C; Gmeiner, William H

    2016-05-01

    To evaluate the potential use of zinc chelation for prostate cancer therapy using a new liposomal formulation of the zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). TPEN was encapsulated in nontargeted liposomes or liposomes displaying an aptamer to target prostate cancer cells overexpression prostate-specific membrane antigen. The prostate cancer selectivity and therapeutic efficacy of liposomal (targeted and nontargeted) and free TPEN were evaluated in vitro and in tumor-bearing mice. TPEN chelates zinc and results in reactive oxygen species imbalance leading to cell death. Delivery of TPEN using aptamer-targeted liposomes results in specific delivery to targeted cells. In vivo experiments show that TPEN-loaded, aptamer-targeted liposomes reduce tumor growth in a human prostate cancer xenograft model.

  5. Drug Target Validation Methods in Malaria - Protein Interference Assay (PIA) as a Tool for Highly Specific Drug Target Validation.

    PubMed

    Meissner, Kamila A; Lunev, Sergey; Wang, Yuan-Ze; Linzke, Marleen; de Assis Batista, Fernando; Wrenger, Carsten; Groves, Matthew R

    2017-01-01

    The validation of drug targets in malaria and other human diseases remains a highly difficult and laborious process. In the vast majority of cases, highly specific small molecule tools to inhibit a proteins function in vivo are simply not available. Additionally, the use of genetic tools in the analysis of malarial pathways is challenging. These issues result in difficulties in specifically modulating a hypothetical drug target's function in vivo. The current "toolbox" of various methods and techniques to identify a protein's function in vivo remains very limited and there is a pressing need for expansion. New approaches are urgently required to support target validation in the drug discovery process. Oligomerisation is the natural assembly of multiple copies of a single protein into one object and this self-assembly is present in more than half of all protein structures. Thus, oligomerisation plays a central role in the generation of functional biomolecules. A key feature of oligomerisation is that the oligomeric interfaces between the individual parts of the final assembly are highly specific. However, these interfaces have not yet been systematically explored or exploited to dissect biochemical pathways in vivo. This mini review will describe the current state of the antimalarial toolset as well as the potentially druggable malarial pathways. A specific focus is drawn to the initial efforts to exploit oligomerisation surfaces in drug target validation. As alternative to the conventional methods, Protein Interference Assay (PIA) can be used for specific distortion of the target protein function and pathway assessment in vivo. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Oral health promotion and education messages in Live.Learn.Laugh. projects.

    PubMed

    Horn, Virginie; Phantumvanit, Prathip

    2014-10-01

    The FDI-Unilever Live.Learn.Laugh. phase 2 partnership involved dissemination of the key oral health message of encouraging 'twice-daily toothbrushing with fluoride toothpaste' and education of people worldwide by FDI, National Dental Associations, the Unilever Oral Care global team and local brands. The dissemination and education process used different methodologies, each targeting specific groups, namely: mother and child (Project option A); schoolchildren (Project option B); dentists and patients (Project option C); and specific communities (Project option D). Altogether, the partnership implemented 29 projects in 27 countries. These consisted of educational interventions, evaluations including (in some cases) clinical assessment, together with communication activities at both global and local levels, to increase the reach of the message to a broader population worldwide. The phase 2 experience reveals the strength of such a public-private partnership approach in tackling global oral health issues by creating synergies between partners and optimising the promotion and education process. © 2014 FDI World Dental Federation.

  7. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression

    PubMed Central

    Abruzzi, Katharine Compton; Rodriguez, Joseph; Menet, Jerome S.; Desrochers, Jennifer; Zadina, Abigail; Luo, Weifei; Tkachev, Sasha; Rosbash, Michael

    2011-01-01

    CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP–chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4–6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation. PMID:22085964

  8. Molecular concept in human oral cancer.

    PubMed

    Krishna, Akhilesh; Singh, Shraddha; Kumar, Vijay; Pal, U S

    2015-01-01

    The incidence of oral cancer remains high in both Asian and Western countries. Several risk factors associated with development of oral cancer are now well-known, including tobacco chewing, smoking, and alcohol consumption. Cancerous risk factors may cause many genetic events through chromosomal alteration or mutations in genetic material and lead to progression and development of oral cancer through histological progress, carcinogenesis. Oral squamous carcinogenesis is a multistep process in which multiple genetic events occur that alter the normal functions of proto-oncogenes/oncogenes and tumor suppressor genes. Furthermore, these gene alterations can deregulate the normal activity such as increase in the production of growth factors (transforming growth factor-α [TGF-α], TGF-β, platelet-derived growth factor, etc.) or numbers of cell surface receptors (epidermal growth factor receptor, G-protein-coupled receptor, etc.), enhanced intracellular messenger signaling and mutated production of transcription factors (ras gene family, c-myc gene) which results disturb to tightly regulated signaling pathways of normal cell. Several oncogenes and tumor suppressor genes have been implicated in oral cancer especially cyclin family, ras, PRAD-1, cyclin-dependent kinase inhibitors, p53 and RB1. Viral infections, particularly with oncogenic human papilloma virus subtype (16 and 18) and Epstein-Barr virus have tumorigenic effect on oral epithelia. Worldwide, this is an urgent need to initiate oral cancer research programs at molecular and genetic level which investigates the causes of genetic and molecular defect, responsible for malignancy. This approach may lead to development of target dependent tumor-specific drugs and appropriate gene therapy.

  9. Molecular concept in human oral cancer

    PubMed Central

    Krishna, Akhilesh; Singh, Shraddha; Kumar, Vijay; Pal, U. S.

    2015-01-01

    The incidence of oral cancer remains high in both Asian and Western countries. Several risk factors associated with development of oral cancer are now well-known, including tobacco chewing, smoking, and alcohol consumption. Cancerous risk factors may cause many genetic events through chromosomal alteration or mutations in genetic material and lead to progression and development of oral cancer through histological progress, carcinogenesis. Oral squamous carcinogenesis is a multistep process in which multiple genetic events occur that alter the normal functions of proto-oncogenes/oncogenes and tumor suppressor genes. Furthermore, these gene alterations can deregulate the normal activity such as increase in the production of growth factors (transforming growth factor-α [TGF-α], TGF-β, platelet-derived growth factor, etc.) or numbers of cell surface receptors (epidermal growth factor receptor, G-protein-coupled receptor, etc.), enhanced intracellular messenger signaling and mutated production of transcription factors (ras gene family, c-myc gene) which results disturb to tightly regulated signaling pathways of normal cell. Several oncogenes and tumor suppressor genes have been implicated in oral cancer especially cyclin family, ras, PRAD-1, cyclin-dependent kinase inhibitors, p53 and RB1. Viral infections, particularly with oncogenic human papilloma virus subtype (16 and 18) and Epstein-Barr virus have tumorigenic effect on oral epithelia. Worldwide, this is an urgent need to initiate oral cancer research programs at molecular and genetic level which investigates the causes of genetic and molecular defect, responsible for malignancy. This approach may lead to development of target dependent tumor-specific drugs and appropriate gene therapy. PMID:26668446

  10. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-04

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  11. Imatinib: A Breakthrough of Targeted Therapy in Cancer

    PubMed Central

    Iqbal, Naveed

    2014-01-01

    Deregulated protein tyrosine kinase activity is central to the pathogenesis of human cancers. Targeted therapy in the form of selective tyrosine kinase inhibitors (TKIs) has transformed the approach to management of various cancers and represents a therapeutic breakthrough. Imatinib was one of the first cancer therapies to show the potential for such targeted action. Imatinib, an oral targeted therapy, inhibits tyrosine kinases specifically BCR-ABL, c-KIT, and PDGFRA. Apart from its remarkable success in CML and GIST, Imatinib benefits various other tumors caused by Imatinib-specific abnormalities of PDGFR and c-KIT. Imatinib has also been proven to be effective in steroid-refractory chronic graft-versus-host disease because of its anti-PDGFR action. This paper is a comprehensive review of the role of Imatinib in oncology. PMID:24963404

  12. TargetLink, a new method for identifying the endogenous target set of a specific microRNA in intact living cells.

    PubMed

    Xu, Yan; Chen, Yan; Li, Daliang; Liu, Qing; Xuan, Zhenyu; Li, Wen-Hong

    2017-02-01

    MicroRNAs are small non-coding RNAs acting as posttranscriptional repressors of gene expression. Identifying mRNA targets of a given miRNA remains an outstanding challenge in the field. We have developed a new experimental approach, TargetLink, that applied locked nucleic acid (LNA) as the affinity probe to enrich target genes of a specific microRNA in intact cells. TargetLink also consists a rigorous and systematic data analysis pipeline to identify target genes by comparing LNA-enriched sequences between experimental and control samples. Using miR-21 as a test microRNA, we identified 12 target genes of miR-21 in a human colorectal cancer cell by this approach. The majority of the identified targets interacted with miR-21 via imperfect seed pairing. Target validation confirmed that miR-21 repressed the expression of the identified targets. The cellular abundance of the identified miR-21 target transcripts varied over a wide range, with some targets expressed at a rather low level, confirming that both abundant and rare transcripts are susceptible to regulation by microRNAs, and that TargetLink is an efficient approach for identifying the target set of a specific microRNA in intact cells. C20orf111, one of the novel targets identified by TargetLink, was found to reside in the nuclear speckle and to be reliably repressed by miR-21 through the interaction at its coding sequence.

  13. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting

    PubMed Central

    Rattan, Rahul; Bhattacharjee, Somnath; Zong, Hong; Swain, Corban; Siddiqui, Muneeb A.; Visovatti, Scott H.; Kanthi, Yogendra; Desai, Sajani; Pinsky, David J.; Goonewardena, Sascha N.

    2017-01-01

    The surface properties of nanoparticles (NPs) are a major factor that influences how these nanomaterials interact with biological systems. Interactions between NPs and macrophages of the reticuloendothelial system (RES) can reduce the efficacy of NP diagnostics and therapeutics. Traditionally, to limit NP clearance by the RES system, the NP surface is neutralized with molecules like poly(ethylene glycol) (PEG) which are known to resist protein adsorption and RES clearance. Unfortunately, PEG modification is not without drawbacks including difficulties with the synthesis and associations with immune reactions. To overcome some of these obstacles, we neutralized the NP surface by acetylation and compared this modification to PEGylation for RES clearance and tumor-specific targeting. We found that acetylation was comparable to PEGylation in reducing RES clearance. Additionally, we found that dendrimer acetylation did not impact folic acid (FA)-mediated targeting of tumor cells whereas PEG surface modification reduced the targeting ability of the NP. These results clarify the impact of different NP surface modifications on RES clearance and cell-specific targeting and provide insights into the design of more effective NPs. PMID:28705434

  14. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors

    PubMed Central

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-01-01

    Purpose The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer (PCa) tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in PCa cells. The junction of theTMPRSS2 and ERG derived portions of the fusion mRNA constitutes a cancer specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low toxicity treatment for PCa. Experimental Design We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (Type III or Type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of PCa cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. Results The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Conclusions Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with PCa. PMID:23052253

  15. Highly specific targeting of the TMPRSS2/ERG fusion gene using liposomal nanovectors.

    PubMed

    Shao, Longjiang; Tekedereli, Ibrahim; Wang, Jianghua; Yuca, Erkan; Tsang, Susan; Sood, Anil; Lopez-Berestein, Gabriel; Ozpolat, Bulent; Ittmann, Michael

    2012-12-15

    The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in prostate cancer cells. The junction of theTMPRSS2- and ERG-derived portions of the fusion mRNA constitutes a cancer-specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low-toxicity treatment for prostate cancer. We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (type III or type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of prostate cancer cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with prostate cancer. ©2012 AACR.

  16. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides

    PubMed Central

    Liu, Shuang

    2008-01-01

    Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888

  17. Impact of Sylvatic Plague Vaccine on Non-target Small Rodents in Grassland Ecosystems.

    PubMed

    Bron, Gebbiena M; Richgels, Katherine L D; Samuel, Michael D; Poje, Julia E; Lorenzsonn, Faye; Matteson, Jonathan P; Boulerice, Jesse T; Osorio, Jorge E; Rocke, Tonie E

    2018-05-09

    Oral vaccination is an emerging management strategy to reduce the prevalence of high impact infectious diseases within wild animal populations. Plague is a flea-borne zoonosis of rodents that often decimates prairie dog (Cynomys spp.) colonies in the western USA. Recently, an oral sylvatic plague vaccine (SPV) was developed to protect prairie dogs from plague and aid recovery of the endangered black-footed ferret (Mustela nigripes). Although oral vaccination programs are targeted toward specific species, field distribution of vaccine-laden baits can result in vaccine uptake by non-target animals and unintended indirect effects. We assessed the impact of SPV on non-target rodents at paired vaccine and placebo-treated prairie dog colonies in four US states from 2013 to 2015. Bait consumption by non-target rodents was high (70.8%, n = 3113), but anti-plague antibody development on vaccine plots was low (23.7%, n = 266). In addition, no significant differences were noted in combined deer mice (Peromyscus maniculatus) and western harvest mouse (Reithrodontomys megalotis) abundance or community evenness and richness of non-target rodents between vaccine-treated and placebo plots. In our 3-year field study, we could not detect a significant positive or negative effect of SPV application on non-target rodents.

  18. Detection of clinically relevant copy number alterations in oral cancer progression using multiplexed droplet digital PCR.

    PubMed

    Hughesman, Curtis B; Lu, X J David; Liu, Kelly Y P; Zhu, Yuqi; Towle, Rebecca M; Haynes, Charles; Poh, Catherine F

    2017-09-19

    Copy number alterations (CNAs), a common genomic event during carcinogenesis, are known to affect a large fraction of the genome. Common recurrent gains or losses of specific chromosomal regions occur at frequencies that they may be considered distinctive features of tumoral cells. Here we introduce a novel multiplexed droplet digital PCR (ddPCR) assay capable of detecting recurrent CNAs that drive tumorigenesis of oral squamous cell carcinoma. Applied to DNA extracted from oral cell lines and clinical samples of various disease stages, we found good agreement between CNAs detected by our ddPCR assay with those previously reported using comparative genomic hybridization or single nucleotide polymorphism arrays. Furthermore, we demonstrate that the ability to target specific locations of the genome permits detection of clinically relevant oncogenic events such as small, submicroscopic homozygous deletions. Additional capabilities of the multiplexed ddPCR assay include the ability to infer ploidy level, quantify the change in copy number of target loci with high-level gains, and simultaneously assess the status and viral load for high-risk human papillomavirus types 16 and 18. This novel multiplexed ddPCR assay therefore may have clinical value in differentiating between benign oral lesions from those that are at risk of progressing to oral cancer.

  19. Sensitivity, specificity, and efficiency in detecting opiates in oral fluid with the Cozart Opiate Microplate EIA and GC-MS following controlled codeine administration.

    PubMed

    Barnes, Allan J; Kim, Insook; Schepers, Raf; Moolchan, Eric T; Wilson, Lisa; Cooper, Gail; Reid, Claire; Hand, Chris; Huestis, Marilyn A

    2003-10-01

    Oral fluid specimens (N = 1406) were collected from 19 subjects prior to and up to 72 h following controlled administration of oral codeine. Volunteers provided informed consent to participate in this National Institute on Drug Abuse Institutional Review Board-approved protocol. A modification of Cozart Microplate Opiate EIA Oral Fluid Kit (Opiate ELISA), employing codeine calibrators, was used for semiquantitative analysis of opiates, followed by gas chromatography-mass spectrometry (GC-MS) for the confirmation and quantitation of codeine, norcodeine, morphine, and normorphine in oral fluid. GC-MS limits of detection and quantitation were 2.5 microg/L for all analytes. The Substance Abuse and Mental Health Services Administration (SAMHSA) has proposed a 40-microg/L opiate screening and a 40-microg/L morphine or codeine confirmation cutoff for the detection of opiate use. Oral fluid opiate screening and confirmation cutoffs of 30 micro g/L are in use in the U.K. Utilizing 2.5-, 20-, 30-, and 40-microg/L GC-MS cutoffs, 26%, 20%, 19%, and 18% of the oral fluid specimens were positive for codeine or one of its metabolites. Six Opiate ELISA/confirmation cutoff criteria (2.5/2.5, 10/2.5, 20/20, 30/20, 30/30, and 40/40 microg/L) were evaluated. Calculations for Opiate ELISA sensitivity, specificity, and efficiency were determined from the number of true-positive, true-negative, false-positive, and false-negative results at each screening/confirmation cutoff. Sensitivity, specificity, and efficiency for the lowest cutoff were 91.5%, 88.6%, and 89.3%. Application of the cutoff currently used in the U.K. yielded sensitivity, specificity, and efficiency results of 79.7%, 99.0%, and 95.4% and similar results of 76.7%, 99.1%, and 95.1% when applying the SAMHSA criteria. These data indicate that the Opiate ELISA efficiently detects oral codeine use. In addition, the data, collected following controlled oral codeine administration, may aid in the interpretation of opiate oral

  20. A Dual-Specific Targeting Approach Based on the Simultaneous Recognition of Duplex and Quadruplex Motifs.

    PubMed

    Nguyen, Thi Quynh Ngoc; Lim, Kah Wai; Phan, Anh Tuân

    2017-09-20

    Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands.

  1. The Oral Microbiome of Children: Development, Disease, and Implications Beyond Oral Health.

    PubMed

    Gomez, Andres; Nelson, Karen E

    2017-02-01

    In the era of applied meta-omics and personalized medicine, the oral microbiome is a valuable asset. From biomarker discovery to being a powerful source of therapeutic targets and to presenting an opportunity for developing non-invasive approaches to health care, it has become clear that oral microbes may hold the answer for understanding disease, even beyond the oral cavity. Although our understanding of oral microbiome diversity has come a long way in the past 50 years, there are still many areas that need to be fine-tuned for better risk assessment and diagnosis, especially in early developmental stages of human life. Here, we discuss the factors that impact development of the oral microbiome and explore oral markers of disease, with a focus on the early oral cavity. Our ultimate goal is to put different experimental and methodological views into perspective for better assessment of early oral and systemic disease at an early age and discuss how oral microbiomes-at the community level-could provide improved assessment in individuals and populations at risk.

  2. The Oral Microbiome of Children: Development, Disease and Implications Beyond Oral Health

    PubMed Central

    Gomez, Andres; Nelson, Karen E.

    2016-01-01

    In the era of applied meta-omics and personalized medicine, the oral microbiome is a valuable asset. From biomarker discovery to being a powerful source of therapeutic targets, and to presenting an opportunity for developing non-invasive approaches to health care, it has become clear that oral microbes may hold the answer for understanding disease, even beyond the oral cavity. Although our understanding of oral microbiome diversity has come a long way in the past 50 years, there are still many areas that need to be fine-tuned for better risk assessment and diagnosis, especially in early developmental stages of human life. Here, we discuss the factors that impact development of the oral microbiome, and explore oral markers of disease, with a focus on the early oral cavity. Our ultimate goal is to put different experimental and methodological views into perspective for better assessment of early oral and systemic disease at an early age, and discuss how oral microbiomes- at the community level, could provide improved assessment in individuals, and populations at risk. PMID:27628595

  3. Therapeutic strategies with oral fluoropyrimidine anticancer agent, S-1 against oral cancer.

    PubMed

    Harada, Koji; Ferdous, Tarannum; Ueyama, Yoshiya

    2017-08-01

    Oral cancer has been recognized as a tumor with low sensitivity to anticancer agents. However, introduction of S-1, an oral cancer agent is improving treatment outcome for patients with oral cancer. In addition, S-1, as a main drug for oral cancer treatment in Japan can be easily available for outpatients. In fact, S-1 exerts high therapeutic effects with acceptable side effects. Moreover, combined chemotherapy with S-1 shows higher efficacy than S-1 alone, and combined chemo-radiotherapy with S-1 exerts remarkable therapeutic effects. Furthermore, we should consider the combined therapy of S-1 and molecular targeting agents right now as these combinations were reportedly useful for oral cancer treatment. Here, we describe our findings related to S-1 that were obtained experimentally and clinically, and favorable therapeutic strategies with S-1 against oral cancer with bibliographic considerations.

  4. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine

    PubMed Central

    Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S.

    2015-01-01

    Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine. PMID:26536350

  5. Dual specific oral tolerance induction using interferon gamma for IgE-mediated anaphylactic food allergy and the dissociation of local skin allergy and systemic oral allergy: tolerance or desensitization?

    PubMed

    Noh, G; Jang, E H

    2014-01-01

    Specific oral tolerance induction (SOTI) for IgE-mediated food allergy (IFA) can be successfully achieved using interfero gamma (classic SOTI). In this study, a tolerable dose was introduced during tolerance induction with interferon gamma (dual SOTI), and its effectiveness was evaluated. The study population comprised 25 IFA patients. Blood samples were taken for analysis, including complete blood count with differential counts of eosinophils, serum total IgE levels, and specific IgE for allergenic foods. Skin prick tests were conducted with the allergens. Oral food challenges were performed to diagnose IFA. Ten patients received dual SOTI, 5 received classic SOTI, 5 received SOTI without interferon gamma (original SOTI), and 5 were not treated (controls). Patients treated with dual SOTI and classic SOTI using interferon gamma became tolerant to the allergenic food. The tolerable dose was introduced successfully in dual SOTI. It was difficult to proceed with the same dosing protocol used for classic SOTI in cases treated with original SOTI. Following dual SOTI, the systemic reaction to oral intake subsided, but the local skin reaction to contact with the allergenic food persisted. Dual SOTI is an improved protocol for SOTI using interferon gamma for IFA.The local skin reaction and systemic reaction to oral intake were dissociated following dual SOTI. In cases of food allergy, tolerance appears to result from desensitization to allergens.

  6. Non-conventional therapeutics for oral infections

    PubMed Central

    Allaker, Robert P; Ian Douglas, CW

    2015-01-01

    As our knowledge of host-microbial interactions within the oral cavity increases, future treatments are likely to be more targeted. For example, efforts to target a single species or key virulence factors that they produce, while maintaining the natural balance of the resident oral microbiota that acts to modulate the host immune response would be an advantage. Targeted approaches may be directed at the black-pigmented anaerobes, Porphyromonas gingivalis and Prevotella intermedia, associated with periodontitis. Such pigments provide an opportunity for targeted phototherapy with high-intensity monochromatic light. Functional inhibition approaches, including the use of enzyme inhibitors, are also being explored to control periodontitis. More general disruption of dental plaque through the use of enzymes and detergents, alone and in combination, shows much promise. The use of probiotics and prebiotics to improve gastrointestinal health has now led to an interest in using these approaches to control oral disease. More recently the potential of antimicrobial peptides and nanotechnology, through the application of nanoparticles with biocidal, anti-adhesive and delivery capabilities, has been explored. The aim of this review is to consider the current status as regards non-conventional treatment approaches for oral infections with particular emphasis on the plaque-related diseases. PMID:25668296

  7. Oral Therapies for Multiple Sclerosis.

    PubMed

    Faissner, Simon; Gold, Ralf

    2018-03-02

    Multiple sclerosis treatment faces tremendous changes owing to the approval of new medications, some of which are available as oral formulations. Until now, the four orally available medications, fingolimod, dimethylfumarate (BG-12), teriflunomide, and cladribine have received market authorization, whereas laquinimod is still under development. Fingolimod is a sphingosine-1-phosphate inhibitor, which is typically used as escalation therapy and leads to up to 60% reduction of the annualized relapse rate, but might also have neuroprotective properties. In addition, there are three more specific S1P agonists in late stages of development: siponimod, ponesimod, and ozanimod. Dimethylfumarate has immunomodulatory and cytoprotective functions and is used as baseline therapy. Teriflunomide, the active metabolite of the rheumatoid arthritis medication leflunomide, targets the dihydroorotate dehydrogenase, thus inhibiting the proliferation of lymphocytes by depletion of pyrimidines. Here we will review the mechanisms of action, clinical trial data, as well as data about safety and tolerability of the compounds. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Concurrent and Construct Validity of Oral Language Measures with School-Age Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Hoffman, LaVae M.; Loeb, Diane Frome; Brandel, Jayne; Gillam, Ronald B.

    2011-01-01

    Purpose: This study investigated the psychometric properties of 2 oral language measures that are commonly used for diagnostic purposes with school-age children who have language impairments. Method: Two hundred sixteen children with specific language impairment were assessed with the Test of Language Development--Primary, Third Edition (TOLD-P:3;…

  9. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption.

    PubMed

    Zhang, Dong; Li, Dongpo; Shang, Lei; He, Zhonggui; Sun, Jin

    2016-09-10

    Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Oral Prion Disease Pathogenesis Is Impeded in the Specific Absence of CXCR5-Expressing Dendritic Cells

    PubMed Central

    Bradford, Barry M.; Reizis, Boris

    2017-01-01

    ABSTRACT After oral exposure, the early replication of certain prion strains upon stromal cell-derived follicular dendritic cells (FDC) in the Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. However, little is known of how prions are initially conveyed from the gut lumen to establish infection on FDC. Our previous data suggest that mononuclear phagocytes such as CD11c+ conventional dendritic cells play an important role in the initial propagation of prions from the gut lumen into Peyer's patches. However, whether these cells conveyed orally acquired prions toward FDC within Peyer's patches was not known. The chemokine CXCL13 is expressed by FDC and follicular stromal cells and modulates the homing of CXCR5-expressing cells toward the FDC-containing B cell follicles. Here, novel compound transgenic mice were created in which a CXCR5 deficiency was specifically restricted to CD11c+ cells. These mice were used to determine whether CXCR5-expressing conventional dendritic cells propagate prions toward FDC after oral exposure. Our data show that in the specific absence of CXCR5-expressing conventional dendritic cells the early accumulation of prions upon FDC in Peyer's patches and the spleen was impaired, and disease susceptibility significantly reduced. These data suggest that CXCR5-expressing conventional dendritic cells play an important role in the efficient propagation of orally administered prions toward FDC within Peyer's patches in order to establish host infection. IMPORTANCE Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. Once the prions reach the brain they cause extensive neurodegeneration, which ultimately leads to death. In order for the prions to efficiently spread from the gut to the brain, they first replicate upon follicular dendritic cells within intestinal Peyer's patches. How the prions are first delivered to follicular dendritic cells to establish

  11. Evaluation of HPV-16 and HPV-18 specific antibody measurements in saliva collected in oral rinses and merocel® sponges.

    PubMed

    Parker, Katherine H; Kemp, Troy J; Pan, Yuanji; Yang, Zhen; Giuliano, Anna R; Pinto, Ligia A

    2018-05-03

    Current Human papillomavirus (HPV) L1 VLP vaccines protect against HPV-16 and HPV-18-associated cancers, in females and males. Although correlates of protection have not been identified, HPV-specific antibodies at sites of infection are thought to be the main mechanism of protection afforded by vaccination. Oral sampling has gained increased attention as a potential alternative to serum in monitoring immunity to vaccination and understanding local immunity in oral cancers. Serum was collected via venipuncture, and saliva was collected via oral rinses and Merocel® sponges from healthy volunteers: 16 unvaccinated females, 6 females (ages 24-41) and 6 mid-adult aged males (ages 27-45) recipients of three doses of the HPV-16/18/6/11 vaccine (Gardasil®). Mid-adult male vaccine trial participants were compared to female participants. Samples were tested for anti-HPV-16 and anti-HPV-18 immunoglobulin G levels by an L1 virus-like particle-based enzyme-linked immunosorbent assay (ELISA). All vaccinated participants had detectable serum anti-HPV-16 and anti-HPV-18 antibodies. Optimal standard concentration range and sample serial dilutions for oral rinses were determined. The standard curve was not affected by the type of solution examined. Reproducibility of HPV-16 and HPV-18 antibody titers in mouthwash (overall CV < 10%) or in Merocel® extraction buffer was robust (CV < 13%). Excellent assay linearity (R 2  > 0.9) was observed for sera spiked controls in both solutions. HPV-16 and HPV-18 specific antibodies were detectable in saliva from vaccine recipients, both in mouthwash and in Merocel® sponges but levels were several logs lower than those in serum. This study confirms the application of HPV-16 and HPV-18 ELISAs currently used in sero-epidemiological studies of immunogenicity of HPV vaccines for use with oral samples. Oral samples may be a useful resource for the detection of HPV-16 and HPV-18-specific antibodies in saliva following vaccination

  12. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    PubMed Central

    2011-01-01

    Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of

  13. Single-Cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells.

    PubMed

    Shembekar, Nachiket; Hu, Hongxing; Eustace, David; Merten, Christoph A

    2018-02-20

    Monoclonal antibodies are a main player in modern drug discovery. Many antibody screening formats exist, each with specific advantages and limitations. Nonetheless, it remains challenging to screen antibodies for the binding of cell-surface receptors (the most important class of all drug targets) or for the binding to target cells rather than purified proteins. Here, we present a high-throughput droplet microfluidics approach employing dual-color normalized fluorescence readout to detect antibody binding. This enables us to obtain quantitative data on target cell recognition, using as little as 33 fg of IgG per assay. Starting with an excess of hybridoma cells releasing unspecific antibodies, individual clones secreting specific binders (of target cells co-encapsulated into droplets) could be enriched 220-fold after sorting 80,000 clones in a single experiment. This opens the way for therapeutic antibody discovery, especially since the single-cell approach is in principle also applicable to primary human plasma cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation

    PubMed Central

    Sekine, Sayaka U; Haraguchi, Shuka; Chao, Kinhong; Kato, Tomoko; Luo, Liqun; Miura, Masayuki; Chihara, Takahiro

    2016-01-01

    Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic screen in Drosophila melanogaster. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins, including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in meigo mutant flies, and ephrin knockdown caused a similar projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin N-glycosylation, which was required for its optimal function in vivo. Thus, Meigo, an ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein N-glycosylation. Furthermore, Ephrin appears to be an important substrate that mediates Meigo’s function in refinement of glomerular targeting. PMID:23624514

  15. Intake of Diet Including 1% Ovomucoid for 4 Weeks Induces Oral Desensitization in Ovomucoid-Specific Allergic Mouse Model.

    PubMed

    Maeta, Akihiro; Sakamoto, Yoko; Yuki, Sayo; Takahashi, Kyoko

    2017-01-01

    We propose a new oral immunotherapy (OIT) method that includes a small amount of a food allergen in the diet. However, it is not clear whether this method will induce oral desensitization and immune tolerance. Therefore, we investigated the therapeutic effectiveness using a 1% food allergen diet in an allergic mouse model. C3H/HeJ mice were sensitized to ovomucoid (OM) in alum four times at 12-d intervals. Sensitized mice were divided into two groups: the OIT group (19% casein diet with 1% OM) and the non-treated group (20% casein diet without OM). The non-sensitized mice served as the non-allergy group. The OIT treatment was performed for 4 wk. To assess desensitization and immune tolerance, we performed oral and intraperitoneal OM challenges, assessed vascular permeability of the dorsal skin, and measured allergic biomarkers. The OIT group exhibited significantly lower oral symptom scores and vascular permeability than the non-treated group, but the two groups did not differ in intraperitoneal allergy symptom scores. Furthermore, the OIT group had significantly higher OM-specific IgA levels in their plasma than the non-treated group. However, the plasma levels of OM-specific IgE, IgG1, and IgG2a were not significantly different between the OIT and the non-treated groups. These results suggest that the proposed OIT using an OM-supplemented diet may induce desensitization, but not immune tolerance, in an OM allergic mouse model.

  16. Acute oral administration of low doses of methylphenidate targets calretinin neurons in the rat septal area

    PubMed Central

    García-Avilés, Álvaro; Albert-Gascó, Héctor; Arnal-Vicente, Isabel; Elhajj, Ebtisam; Sanjuan-Arias, Julio; Sanchez-Perez, Ana María; Olucha-Bordonau, Francisco

    2015-01-01

    Methylphenidate (MPD) is a commonly administered drug to treat children suffering from attention deficit hyperactivity disorder (ADHD). Alterations in septal driven hippocampal theta rhythm may underlie attention deficits observed in these patients. Amongst others, the septo-hippocampal connections have long been acknowledged to be important in preserving hippocampal function. Thus, we wanted to ascertain if MPD administration, which improves attention in patients, could affect septal areas connecting with hippocampus. We used low and orally administered MPD doses (1.3, 2.7 and 5 mg/Kg) to rats what mimics the dosage range in humans. In our model, we observed no effect when using 1.3 mg/Kg MPD; whereas 2.7 and 5 mg/Kg induced a significant increase in c-fos expression specifically in the medial septum (MS), an area intimately connected to the hippocampus. We analyzed dopaminergic areas such as nucleus accumbens and striatum, and found that only 5 mg/Kg induced c-fos levels increase. In these areas tyrosine hydroxylase correlated well with c-fos staining, whereas in the MS the sparse tyrosine hydroxylase fibers did not overlap with c-fos positive neurons. Double immunofluorescence of c-fos with neuronal markers in the septal area revealed that co-localization with choline acethyl transferase, parvalbumin, and calbindin with c-fos did not change with MPD treatment; whereas, calretinin and c-fos double labeled neurons increased after MPD administration. Altogether, these results suggest that low and acute doses of methylphenidate primary target specific populations of caltretinin medial septal neurons. PMID:25852493

  17. Examining General and Specific Factors in the Dimensionality of Oral Language and Reading in 4th–10th Grades

    PubMed Central

    Foorman, Barbara R.; Koon, Sharon; Petscher, Yaacov; Mitchell, Alison; Truckenmiller, Adrea

    2015-01-01

    The objective of this study was to explore dimensions of oral language and reading and their influence on reading comprehension in a relatively understudied population—adolescent readers in 4th through 10th grades. The current study employed latent variable modeling of decoding fluency, vocabulary, syntax, and reading comprehension so as to represent these constructs with minimal error and to examine whether residual variance unaccounted for by oral language can be captured by specific factors of syntax and vocabulary. A 1-, 3-, 4-, and bifactor model were tested with 1,792 students in 18 schools in 2 large urban districts in the Southeast. Students were individually administered measures of expressive and receptive vocabulary, syntax, and decoding fluency in mid-year. At the end of the year students took the state reading test as well as a group-administered, norm-referenced test of reading comprehension. The bifactor model fit the data best in all 7 grades and explained 72% to 99% of the variance in reading comprehension. The specific factors of syntax and vocabulary explained significant unique variance in reading comprehension in 1 grade each. The decoding fluency factor was significantly correlated with the reading comprehension and oral language factors in all grades, but, in the presence of the oral language factor, was not significantly associated with the reading comprehension factor. Results support a bifactor model of lexical knowledge rather than the 3-factor model of the Simple View of Reading, with the vast amount of variance in reading comprehension explained by a general oral language factor. PMID:26346839

  18. Search guidance is proportional to the categorical specificity of a target cue.

    PubMed

    Schmidt, Joseph; Zelinsky, Gregory J

    2009-10-01

    Visual search studies typically assume the availability of precise target information to guide search, often a picture of the exact target. However, search targets in the real world are often defined categorically and with varying degrees of visual specificity. In five target preview conditions we manipulated the availability of target visual information in a search task for common real-world objects. Previews were: a picture of the target, an abstract textual description of the target, a precise textual description, an abstract + colour textual description, or a precise + colour textual description. Guidance generally increased as information was added to the target preview. We conclude that the information used for search guidance need not be limited to a picture of the target. Although generally less precise, to the extent that visual information can be extracted from a target label and loaded into working memory, this information too can be used to guide search.

  19. Allergen-specific oral immunotherapy for peanut allergy.

    PubMed

    Nurmatov, Ulugbek; Venderbosch, Iris; Devereux, Graham; Simons, F Estelle R; Sheikh, Aziz

    2012-09-12

    Peanut allergy is one of the most common forms of food allergy encountered in clinical practice.  In most cases, it does not spontaneously resolve; furthermore, it is frequently implicated in acute life-threatening reactions. The current management of peanut allergy centres on meticulous avoidance of peanuts and peanut-containing foods. Allergen-specific oral immunotherapy (OIT) for peanut allergy aims to induce desensitisation and then tolerance to peanut, and has the potential to revolutionise the management of peanut allergy. However, at present there is still considerable uncertainty about the effectiveness and safety of this approach. To establish the effectiveness and safety of OIT in people with IgE-mediated peanut allergy who develop symptoms after peanut ingestion. We searched in the following databases: AMED, BIOSIS, CAB, CINAHL, The Cochrane Library, EMBASE, Global Health, Google Scholar, IndMed, ISI Web of Science, LILACS, MEDLINE, PakMediNet and TRIP. We also searched registers of on-going and unpublished trials. The date of the most recent search was January 2012. Randomised controlled trials (RCTs), quasi-RCTs or controlled clinical trials involving children or adults with clinical features indicative of IgE-mediated peanut allergy treated with allergen-specific OIT, compared with control group receiving either placebo or no treatment, were eligible for inclusion. Two review authors independently checked and reviewed titles and abstracts of identified studies and assessed risk of bias. The full text of potentially relevant trials was assessed. Data extraction was independently performed by two reviewers with disagreements resolved through discussion. We found one small RCT, judged to be at low risk of bias, that enrolled 28 children aged 1 to 16 years with evidence of sensitisation to peanut and a clinical history of reaction to peanut within 60 minutes of exposure. The study did not include children who had moderate to severe asthma or who had a

  20. Prostate-specific membrane antigen for prostate cancer theranostics: from imaging to targeted therapy.

    PubMed

    Arsenault, Frédéric; Beauregard, Jean-Mathieu; Pouliot, Frédéric

    2018-06-22

    In recent years, major advances in molecular imaging of prostate cancers (PCa) were made with the development and clinical validation of highly accurate PET tracers to stage and restage the disease. Prostate-specific membrane antigen (PSMA) is a transmembrane protein highly expressed in PCa, and its expression has led to the development of PSMA-binding radiopharmaceuticals for molecular imaging or radioligand therapy (RLT). We herein review the recent literature published on diagnostic and therapeutic (i.e. theranostic) PSMA tracers. Development in small PSMA-targeted molecules labeled with gallium-68 and fluorine-18 show promising results for primary staging and detection of disease at biochemical recurrence using PET/computed tomography (PET/CT). Studies show a higher sensitivity and specificity, along with an improved detection rate over conventional imaging (CT scan and bone scan) or choline PET tracers, especially for restaging after prostate-specific antigen failure following loco-regional therapy. In addition, some PSMA tracers can be labeled with beta-minus and alpha particle emitters, yielding encouraging response rates and low toxicity, and potentially offering a new line of targeted therapy for metastatic castration-resistant PCa. PSMA-targeted tracers have shown unprecedented accuracy to stage and restage PCa using PET/CT. Given their specific biodistribution toward PCa tissue, PSMA RLT now offers new therapeutic possibilities to target metastatic PCa. Prospective multicenter randomized studies investigating the clinical impact management impacts of PSMA-targeted molecules are urgently needed.

  1. Economic globalization and oral health.

    PubMed

    Hobdell, M H

    2001-05-01

    To briefly review the origins of economic globalization and examine the evidence available concerning its possible impact on oral health. Based on Medline searches 1966-1999 and review of Health Wrights: Politics of Health database. SPECIFIC ORAL DISEASES: Dental caries, destructive periodontal diseases, cancrum oris and oral cancer. The reported growing disparity between rich and poor populations, both internationally and nationally, is arguably being exacerbated by economic globalization. Increasing levels of the above specific oral diseases might be attributed, in part, to this economic phenomenon.

  2. Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers

    PubMed Central

    D’Addio, Suzanne M.; Baldassano, Steven; Shi, Lei; Cheung, Lila; Adamson, Douglas H.; Bruzek, Matthew; Anthony, John E.; Laskin, Debra L.; Sinko, Patrick J.; Prud’homme, Robert K.

    2013-01-01

    Treatment of tuberculosis is impaired by poor drug bioavailability, systemic side effects, patient non-compliance, and pathogen resistance to existing therapies. The mannose receptor (MR) is known to be involved in the recognition and internalization of Mycobacterium tuberculosis. We present a new assembly process to produce nanocarriers with variable surface densities of mannose targeting ligands in a single step, using kinetically-controlled, block copolymer-directed assembly. Nanocarrier association with murine macrophage J774 cells expressing the MR is examined as a function of incubation time and temperature, nanocarrier size, dose, and PEG corona properties. Amphiphilic diblock copolymers are prepared with terminal hydroxyl, methoxy, or mannoside functionality and incorporated into nanocarrier formulations at specific ratios by Flash NanoPrecipitation. Association of nanocarriers protected by a hydroxyl-terminated PEG corona with J774 cells is size dependent, while nanocarriers with methoxy-terminated PEG coronas do not associate with cells, regardless of size. Specific targeting of the MR is investigated using nanocarriers having 0-75% mannoside-terminated PEG chains in the PEG corona. This is a wider range of mannose densities than has been previously studied. Maximum nanocarrier association is attained with 9% mannoside-terminated PEG chains, increasing uptake more than 3-fold compared to non-targeted nanocarriers with a 5 kg mol−1 methoxy-terminated PEG corona. While a 5 kg mol−1 methoxy-terminated PEG corona prevents non-specific uptake, a 1.8 kg mol−1 methoxy-terminated PEG corona does not sufficiently protect the nanocarriers from nonspecific association. There is continuous uptake of MR-targeted nanocarriers at 37°C, but a saturation of association at 4°C. The majority of targeted nanocarriers associate with J774E cells are internalized at 37°C and uptake is receptor-dependent, diminishing with competitive inhibition by dextran. This

  3. Target-specific stigma change: a strategy for impacting mental illness stigma.

    PubMed

    Corrigan, Patrick W

    2004-01-01

    In the past decade, mental health advocates and researchers have sought to better understand stigma so that the harm it causes can be erased. In this paper, we propose a target-specific stigma change model to organize the diversity of information into a cogent framework. "Target" here has a double meaning: the power groups that have some authority over the life goals of people with mental illness and specific discriminatory behaviors which power groups might produce that interfere with these goals. Key power groups in the model include landlords, employers, health care providers, criminal justice professionals, policy makers, and the media. Examples are provided of stigmatizing attitudes that influence the discriminatory behavior and social context in which the power group interacts with people with mental illness. Stigma change is most effective when it includes all the components that describe how a specific power group impacts people with mental illness.

  4. Surface-Modified P(HEMA-co-MAA) Nanogel Carriers for Oral Vaccine Delivery: Design, Characterization, and In Vitro Targeting Evaluation

    PubMed Central

    Durán-Lobato, Matilde; Carrillo-Conde, Brenda; Khairandish, Yasmine; Peppas, Nicholas A.

    2015-01-01

    Oral drug delivery is a route of choice for vaccine administration because of its noninvasive nature and thus efforts have focused on efficient delivery of vaccine antigens to mucosal sites. An effective oral vaccine delivery system must protect the antigen from degradation upon mucosal delivery, penetrate mucosal barriers, and control the release of the antigen and costimulatory and immunomodulatory agents to specific immune cells (i.e., APCs). In this paper, mannan-modified pH-responsive P(HEMA-co-MAA) nanogels were synthesized and assessed as carriers for oral vaccination. The nanogels showed pH-sensitive properties, entrapping and protecting the loaded cargo at low pH values, and triggered protein release after switching to intestinal pH values. Surface decoration with mannan as carbohydrate moieties resulted in enhanced internalization by macrophages as well as increasing the expression of relevant costimulatory molecules. These findings indicate that mannan-modified P(HEMA-co-MAA) nanogels are a promising approach to a more efficacious oral vaccination regimen. PMID:24955658

  5. Semiconductor nanocrystal-aptamer bioconjugate probes for specific prostate carcinoma cell targeting

    NASA Astrophysics Data System (ADS)

    Shieh, Felice; Lavery, Laura; Chu, Chitai T.; Richards-Kortum, Rebecca; Ellington, Andrew D.; Korgel, Brian A.

    2005-04-01

    Cancer of the prostate affects approximately 1 in 11 men. Current early screening for prostate cancer utilizes digital rectal examinations to detect anomalies in the prostate gland and blood test screenings for upregulated levels of prostate specific antigen (PSA). Many of these tests are invasive and can often be inconclusive as PSA levels may be heightened due to benign factors. Prostate specific membrane antigen (PSMA), a well-characterized integral membrane protein, is expressed in virtually all prostate cancers and often correlates with cancer aggressiveness. Therefore, it may be used as an indicator of cancer growth and metastases. PSMA-specific antibodies have been identified and conjugated to fluorescent markers for cancer cell targeting; however, both the antibodies and markers possess significant limitations in their pharmaceutical and diagnostic value. Here we report the use of semiconductor nanocrystals bioconjugated to PSMA-specific aptamer recognition molecules for prostate carcinoma cell targeting. The nanocrystal/aptamer bioconjugates are small biocompatible probes with the potential for color-tunability for multicolor imaging. Ongoing in vitro and in vivo research seeks to introduce these nanoparticle bioconjugates into medical diagnostics.

  6. Specifically targeted delivery of protein to phagocytic macrophages

    PubMed Central

    Yu, Min; Chen, Zeming; Guo, Wenjun; Wang, Jin; Feng, Yupeng; Kong, Xiuqi; Hong, Zhangyong

    2015-01-01

    Macrophages play important roles in the pathogenesis of various diseases, and are important potential therapeutic targets. Furthermore, macrophages are key antigen-presenting cells and important in vaccine design. In this study, we report on the novel formulation (bovine serum albumin [BSA]-loaded glucan particles [GMP-BSA]) based on β-glucan particles from cell walls of baker’s yeast for the targeted delivery of protein to macrophages. Using this formulation, chitosan, tripolyphosphate, and alginate were used to fabricate colloidal particles with the model protein BSA via electrostatic interactions, which were caged and incorporated BSA very tightly within the β-glucan particle shells. The prepared GMP-BSA exhibited good protein-release behavior and avoided protein leakage. The particles were also highly specific to phagocytic macrophages, such as Raw 264.7 cells, primary bone marrow-derived macrophages, and peritoneal exudate macrophages, whereas the particles were not taken up by nonphagocytic cells, including NIH3T3, AD293, HeLa, and Caco-2. We hypothesize that these tightly encapsulated protein-loaded glucan particles deliver various types of proteins to macrophages with notably high selectivity, and may have broad applications in targeted drug delivery or vaccine design against macrophages. PMID:25784802

  7. Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging

    NASA Astrophysics Data System (ADS)

    Retnakumari, Archana; Setua, Sonali; Menon, Deepthy; Ravindran, Prasanth; Muhammed, Habeeb; Pradeep, Thalappil; Nair, Shantikumar; Koyakutty, Manzoor

    2010-02-01

    Molecular-receptor-targeted imaging of folate receptor positive oral carcinoma cells using folic-acid-conjugated fluorescent Au25 nanoclusters (Au NCs) is reported. Highly fluorescent Au25 clusters were synthesized by controlled reduction of Au+ ions, stabilized in bovine serum albumin (BSA), using a green-chemical reducing agent, ascorbic acid (vitamin-C). For targeted-imaging-based detection of cancer cells, the clusters were conjugated with folic acid (FA) through amide linkage with the BSA shell. The bioconjugated clusters show excellent stability over a wide range of pH from 4 to 14 and fluorescence efficiency of ~5.7% at pH 7.4 in phosphate buffer saline (PBS), indicating effective protection of nanoclusters by serum albumin during the bioconjugation reaction and cell-cluster interaction. The nanoclusters were characterized for their physico-chemical properties, toxicity and cancer targeting efficacy in vitro. X-ray photoelectron spectroscopy (XPS) suggests binding energies correlating to metal Au 4f7/2~83.97 eV and Au 4f5/2~87.768 eV. Transmission electron microscopy and atomic force microscopy revealed the formation of individual nanoclusters of size ~1 nm and protein cluster aggregates of size ~8 nm. Photoluminescence studies show bright fluorescence with peak maximum at ~674 nm with the spectral profile covering the near-infrared (NIR) region, making it possible to image clusters at the 700-800 nm emission window where the tissue absorption of light is minimum. The cell viability and reactive oxygen toxicity studies indicate the non-toxic nature of the Au clusters up to relatively higher concentrations of 500 µg ml-1. Receptor-targeted cancer detection using Au clusters is demonstrated on FR+ve oral squamous cell carcinoma (KB) and breast adenocarcinoma cell MCF-7, where the FA-conjugated Au25 clusters were found internalized in significantly higher concentrations compared to the negative control cell lines. This study demonstrates the potential of using

  8. Autophagy and its implication in human oral diseases.

    PubMed

    Tan, Ya-Qin; Zhang, Jing; Zhou, Gang

    2017-02-01

    Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.

  9. Autophagy and its implication in human oral diseases

    PubMed Central

    Tan, Ya-Qin; Zhang, Jing; Zhou, Gang

    2017-01-01

    ABSTRACT Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis. PMID:27764582

  10. Retrospective Audit: Does Prior Assessment by Oral and Maxillofacial Surgeons Reduce the Risk of Osteonecrosis of The Jaw in Patients Receiving Bone-Targeted Therapies for Metastatic Cancers to the Skeleton?--Part II.

    PubMed

    Turner, Bruce; Ali, Sacha; Pati, Jhumur; Nargund, Vinod; Ali, Enamul; Cheng, Leo; Wells, Paula

    2016-01-01

    Men who receive bone-targeted therapy for metastatic prostate cancer are at increased risk of osteonecrosis of the jaw (ONJ). Development of ONJ has been associated with the administration of bone-targeted therapies in association with other risk factors. ONJ can be distressing for a patient because it can cause pain, risk of jaw fracture, body image disturbance, difficultly eating, and difficulty maintaining good oral hygiene. The aim of this article is to report results of an audit of prior assessment by oral and maxillofacial surgeons (OMFS) before initiation of bone-targeted therapies and whether it may reduce the risk of ONJ in patients receiving bone-targeted therapies for advanced cancers.

  11. The Potential of Past Tense Marking in Oral Reading as a Clinical Marker of Specific Language Impairment in School-Age Children

    ERIC Educational Resources Information Center

    Werfel, Krystal L.; Hendricks, Alison Eisel; Schuele, C. Melanie

    2017-01-01

    Purpose: The purpose of this study was twofold. The first aim was to explore differences in profiles of past tense marking in oral reading of school-age children with specific language impairment (SLI). The second aim was to explore the potential of past tense marking in oral reading as a clinical marker of SLI in school-age children. Method: This…

  12. Chemotherapy- and radiotherapy-induced oral mucositis: review of preventive strategies and treatment.

    PubMed

    Saadeh, Claire E

    2005-04-01

    Oral mucositis is a frequently encountered and potentially severe complication associated with administration of chemotherapy and radiotherapy. Although many pharmacologic interventions have been used for the prevention and treatment of oral mucositis, there is not one universally accepted strategy for its management. Most preventive and treatment strategies are based on limited, often anecdotal, clinical data. Basic oral hygiene and comprehensive patient education are important components of care for any patient with cancer at risk for development of oral mucositis. Nonpharmacologic approaches for the prevention of oral mucositis include oral cryotherapy for patients receiving chemotherapy with bolus 5-fluorouracil, and low-level laser therapy for patients undergoing hematopoietic stem cell transplantation. Chlorhexidine, amifostine, hematologic growth factors, pentoxifylline, glutamine, and several other agents have all been investigated for prevention of oral mucositis. Results have been conflicting, inconclusive, or of limited benefit. Treatment of established mucositis remains a challenge and focuses on a palliative management approach. Topical anesthetics, mixtures (also called cocktails), and mucosal coating agents have been used despite the lack of experimental evidence supporting their efficacy. Investigational agents are targeting the specific mechanisms of mucosal injury; among the most promising of these is recombinant human keratinocyte growth factor.

  13. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time.

    PubMed

    Kooijmans, S A A; Fliervoet, L A L; van der Meel, R; Fens, M H A M; Heijnen, H F G; van Bergen En Henegouwen, P M P; Vader, P; Schiffelers, R M

    2016-02-28

    Extracellular vesicles (EVs) are increasingly being recognized as candidate drug delivery systems due to their ability to functionally transfer biological cargo between cells. However, the therapeutic applicability of EVs may be limited due to a lack of cell-targeting specificity and rapid clearance of exogenous EVs from the circulation. In order to improve EV characteristics for drug delivery to tumor cells, we have developed a novel method for decorating EVs with targeting ligands conjugated to polyethylene glycol (PEG). Nanobodies specific for the epidermal growth factor receptor (EGFR) were conjugated to phospholipid (DMPE)-PEG derivatives to prepare nanobody-PEG-micelles. When micelles were mixed with EVs derived from Neuro2A cells or platelets, a temperature-dependent transfer of nanobody-PEG-lipids to the EV membranes was observed, indicative of a 'post-insertion' mechanism. This process did not affect EV morphology, size distribution, or protein composition. After introduction of PEG-conjugated control nanobodies to EVs, cellular binding was compromised due to the shielding properties of PEG. However, specific binding to EGFR-overexpressing tumor cells was dramatically increased when EGFR-specific nanobodies were employed. Moreover, whereas unmodified EVs were rapidly cleared from the circulation within 10min after intravenous injection in mice, EVs modified with nanobody-PEG-lipids were still detectable in plasma for longer than 60min post-injection. In conclusion, we propose post-insertion as a novel technique to confer targeting capacity to isolated EVs, circumventing the requirement to modify EV-secreting cells. Importantly, insertion of ligand-conjugated PEG-derivatized phospholipids in EV membranes equips EVs with improved cell specificity and prolonged circulation times, potentially increasing EV accumulation in targeted tissues and improving cargo delivery. Copyright © 2015. Published by Elsevier B.V.

  14. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    PubMed

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  15. Metagenomic Analysis of Nitrate-Reducing Bacteria in the Oral Cavity: Implications for Nitric Oxide Homeostasis

    PubMed Central

    Hyde, Embriette R.; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K.; Torregrossa, Ashley C.; Tribble, Gena; Kaplan, Heidi B.; Petrosino, Joseph F.; Bryan, Nathan S.

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812

  16. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ambrosio, Steven M.; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Han, Chunhua

    2011-06-10

    Highlights: {yields} The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). {yields} Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). {yields} Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. {yields} The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. {yields} Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like thosemore » found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but

  17. New approach for food allergy management using low-dose oral food challenges and low-dose oral immunotherapies.

    PubMed

    Yanagida, Noriyuki; Okada, Yu; Sato, Sakura; Ebisawa, Motohiro

    2016-04-01

    A number of studies have suggested that a large subset of children (approximately 70%) who react to unheated milk or egg can tolerate extensively heated forms of these foods. A diet that includes baked milk or egg is well tolerated and appears to accelerate the development of regular milk or egg tolerance when compared with strict avoidance. However, the indications for an oral food challenge (OFC) using baked products are limited for patients with high specific IgE values or large skin prick test diameters. Oral immunotherapies (OITs) are becoming increasingly popular for the management of food allergies. However, the reported efficacy of OIT is not satisfactory, given the high frequency of symptoms and requirement for long-term therapy. With food allergies, removing the need to eliminate a food that could be consumed in low doses could significantly improve quality of life. This review discusses the importance of an OFC and OIT that use low doses of causative foods as the target volumes. Utilizing an OFC or OIT with a low dose as the target volume could be a novel approach for accelerating the tolerance to causative foods. Copyright © 2015 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  18. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    PubMed Central

    Wang, Bin; Zhou, Jiangfeng

    2003-01-01

    The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined. PMID:14614774

  19. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy

    PubMed Central

    Javan, Bita; Shahbazi, Majid

    2017-01-01

    Transcriptional targeting is the best approach for specific gene therapy. Hypoxia is a common feature of the tumour microenvironment. Therefore, targeting gene expression in hypoxic cells by placing transgene under the control of a hypoxia-responsive promoter can be a good strategy for cancer-specific gene therapy. The hypoxia-inducible gene expression system has been investigated more in suicide gene therapy and it can also be of great help in knocking down cancer gene therapy with siRNAs. However, this system needs to be optimised to have maximum efficacy with minimum side effects in normal tissues. The combination of tissue-/tumour-specific promoters with HRE core sequences has been found to enhance the specificity and efficacy of this system. In this review, hypoxia-inducible gene expression system as well as gene therapy strategies targeting tumour hypoxia will be discussed. This review will also focus on hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation systems developed for cancer-specific gene therapy. PMID:28798809

  20. Intercepting moving targets: does memory from practice in a specific condition of target displacement affect movement timing?

    PubMed

    de Azevedo Neto, Raymundo Machado; Teixeira, Luis Augusto

    2011-05-01

    This investigation aimed at assessing the extent to which memory from practice in a specific condition of target displacement modulates temporal errors and movement timing of interceptive movements. We compared two groups practicing with certainty of future target velocity either in unchanged target velocity or in target velocity decrease. Following practice, both experimental groups were probed in the situations of unchanged target velocity and target velocity decrease either under the context of certainty or uncertainty about target velocity. Results from practice showed similar improvement of temporal accuracy between groups, revealing that target velocity decrease did not disturb temporal movement organization when fully predictable. Analysis of temporal errors in the probing trials indicated that both groups had higher timing accuracy in velocity decrease in comparison with unchanged velocity. Effect of practice was detected by increased temporal accuracy of the velocity decrease group in situations of decreased velocity; a trend consistent with the expected effect of practice was observed for temporal errors in the unchanged velocity group and in movement initiation at a descriptive level. An additional point of theoretical interest was the fast adaptation in both groups to a target velocity pattern different from that practiced. These points are discussed under the perspective of integration of vision and motor control by means of an internal forward model of external motion.

  1. Oral health-related quality of life after prosthetic rehabilitation in patients with oral cancer: A longitudinal study with the Liverpool Oral Rehabilitation Questionnaire version 3 and Oral Health Impact Profile-14 questionnaire.

    PubMed

    Dholam, K P; Chouksey, G C; Dugad, J

    2016-01-01

    Prosthodontic rehabilitation helps to improve the oral health-related quality of life (OHRQOL). The Liverpool Oral Rehabilitation Questionnaire (LORQ) and Oral Health Impact Profile (OHIP) are specific tools that measure OHRQOL. The primary objective of this study was to assess the impact of oral rehabilitation on patients' OHRQOL following treatment for cancer of oral cavity using LORQ version 3 (LORQv3) and OHIP-14 questionnaire. Secondary objectives were to identify issues specific to oral rehabilitation, patients compliance to prosthetic rehabilitation, the effect of radiation treatment on prosthetic rehabilitation, to achieve meaningful differences over a time before & after prosthetic intervention, to carryout and document specific patient-deprived problem. Seventy-five oral cancer patients were studied. Patients were asked to rate their experience of dental problems before fabrication of prosthesis and after 1 year using LORQv3 and OHIP-14. The responses were compared on Likert scale. Patients reported with extreme problems before rehabilitation. After 1 year of prosthetic rehabilitation, there was improvement noticed in all the domain of LORQv3 and OHIP-14. Complete compliance to the use of prosthetic appliances for 1 year study period was noted. In response to the question no. 40 (LORQv3), only 15 patients who belonged to the obturator group, brought to notice the problems which were not addressed in the LORQv3 questionnaire. The study showed that the oral cancer patients coped well and adapted to near normal oral status after prosthetic rehabilitation. This contributed to the improved overall health-related quality of life.

  2. Gender- and ethnicity-specific survival trends of oral cavity and oropharyngeal cancers in British Columbia.

    PubMed

    Auluck, Ajit; Hislop, Greg; Bajdik, Chris; Hay, John; Bottorff, Joan L; Zhang, Lewei; Rosin, Miriam P

    2012-12-01

    A shift in etiology of oral cancers has been associated with a rise in incidence for oropharyngeal cancers (OPC) and decrease for oral cavity cancers (OCC); however, there is limited information about population-based survival trends. We report epidemiological transitions in survival for both OPC and OCC from a population-based cancer registry, focusing upon gender and ethnic differences. All primary oral cancers diagnosed between 1980 and 2005 were identified from the British Columbia Cancer Registry and regrouped into OPC and OCC by topographical subsites, time periods (1980-1993 and 1994-2005), stage at diagnosis, and ethnicity. Cases were then followed up to December 2009. Using gender-based analysis, actuarial life tables were used to calculate survival rates, which were compared using Kaplan-Meier curves and log-rank tests. For OPC, survival improved, significant for tonsil and base of tongue in men and marginally significant at base of tongue in women. This improvement occurred in spite of an increase in late-stage diagnosis for OPC in both genders. Interestingly, there was no difference in survival for early- and late-stage disease for OPC in men. For OCC, there was a decrease in survival for floor of mouth cancers in both genders although significant in women only. South Asians had the poorest survival for OCC in both genders. Survival for OPC improved, more dramatically in men than women, in spite of late-stage diagnosis and increasing nodal involvement. Given the poor survival rates and need for early detection, targeted OCC screening programs are required for South Asians.

  3. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin.

    PubMed

    Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung

    2017-11-17

    With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.

  4. A male contraceptive targeting germ cell adhesion.

    PubMed

    Mruk, Dolores D; Wong, Ching-Hang; Silvestrini, Bruno; Cheng, C Yan

    2006-11-01

    Throughout spermatogenesis, developing germ cells remain attached to Sertoli cells via testis-specific anchoring junctions. If adhesion between these cell types is compromised, germ cells detach from the seminiferous epithelium and infertility often results. Previously, we reported that Adjudin is capable of inducing germ cell loss from the epithelium. In a small subset of animals, however, oral administration of Adjudin (50 mg per kg body weight (b.w.) for 29 d) resulted in adverse effects such as liver inflammation and muscle atrophy. Here, we report a novel approach in which Adjudin is specifically targeted to the testis by conjugating Adjudin to a recombinant follicle-stimulating hormone (FSH) mutant, which serves as its 'carrier'. Using this approach, infertility was induced in adult rats when 0.5 microg Adjudin per kg b.w. was administered intraperitoneally, which was similar to results when 50 mg per kg b.w. was given orally. This represents a substantial increase in Adjudin's selectivity and efficacy as a male contraceptive.

  5. Target-specific contrast agents for magnetic resonance microscopy

    PubMed Central

    Blackwell, Megan L.; Farrar, Christian T.; Fischl, Bruce; Rosen, Bruce R.

    2009-01-01

    High-resolution ex vivo magnetic resonance (MR) imaging can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. To aid MR sensitivity to cell density and myelination, we have begun the development of target-specific paramagnetic contrast agents. This work details the first application of luxol fast blue (LFB), an optical stain for myelin, as a white matter-selective MR contrast agent for human ex vivo brain tissue. Formalin-fixed human visual cortex was imaged with an isotropic resolution between 80 and 150 μm at 4.7 and 14 T before and after en bloc staining with LFB. Longitudinal (R1) and transverse (R2) relaxation rates in LFB-stained tissue increased proportionally with myelination at both field strengths. Changes in R1 resulted in larger contrast-to-noise ratios (CNR), per unit time, on T1-weighted images between more myelinated cortical layers (IV–VI) and adjacent, superficial layers (I–III) at both field strengths. Specifically, CNR for LFB-treated samples increased by 229±13% at 4.7 T and 269±25% at 14 T when compared to controls. Also, additional cortical layers (IVca, IVd, and Va) were resolvable in 14T-MR images of LFB-treated samples but not in control samples. After imaging, samples were sliced in 40-micron sections, mounted, and photographed. Both the macroscopic and microscopic distributions of LFB were found to mimic those of traditional histological preparations. Our results suggest target-specific contrast agents will enable more detailed MR images with applications in imaging pathological ex vivo samples and constructing better MR atlases from ex vivo brains. PMID:19385012

  6. Target specific compound identification using a support vector machine.

    PubMed

    Plewczynski, Dariusz; von Grotthuss, Marcin; Spieser, Stephane A H; Rychlewski, Leszek; Wyrwicz, Lucjan S; Ginalski, Krzysztof; Koch, Uwe

    2007-03-01

    In many cases at the beginning of an HTS-campaign, some information about active molecules is already available. Often known active compounds (such as substrate analogues, natural products, inhibitors of a related protein or ligands published by a pharmaceutical company) are identified in low-throughput validation studies of the biochemical target. In this study we evaluate the effectiveness of a support vector machine applied for those compounds and used to classify a collection with unknown activity. This approach was aimed at reducing the number of compounds to be tested against the given target. Our method predicts the biological activity of chemical compounds based on only the atom pairs (AP) two dimensional topological descriptors. The supervised support vector machine (SVM) method herein is trained on compounds from the MDL drug data report (MDDR) known to be active for specific protein target. For detailed analysis, five different biological targets were selected including cyclooxygenase-2, dihydrofolate reductase, thrombin, HIV-reverse transcriptase and antagonists of the estrogen receptor. The accuracy of compound identification was estimated using the recall and precision values. The sensitivities for all protein targets exceeded 80% and the classification performance reached 100% for selected targets. In another application of the method, we addressed the absence of an initial set of active compounds for a selected protein target at the beginning of an HTS-campaign. In such a case, virtual high-throughput screening (vHTS) is usually applied by using a flexible docking procedure. However, the vHTS experiment typically contains a large percentage of false positives that should be verified by costly and time-consuming experimental follow-up assays. The subsequent use of our machine learning method was found to improve the speed (since the docking procedure was not required for all compounds from the database) and also the accuracy of the HTS hit lists (the

  7. Knowledge-based approach for generating target system specifications from a domain model

    NASA Technical Reports Server (NTRS)

    Gomaa, Hassan; Kerschberg, Larry; Sugumaran, Vijayan

    1992-01-01

    Several institutions in industry and academia are pursuing research efforts in domain modeling to address unresolved issues in software reuse. To demonstrate the concepts of domain modeling and software reuse, a prototype software engineering environment is being developed at George Mason University to support the creation of domain models and the generation of target system specifications. This prototype environment, which is application domain independent, consists of an integrated set of commercial off-the-shelf software tools and custom-developed software tools. This paper describes the knowledge-based tool that was developed as part of the environment to generate target system specifications from a domain model.

  8. Impact of oral silymarin on virus- and non-virus-specific T-cells responses in chronic hepatitis C infection

    PubMed Central

    Adeyemo, Oluwasayo; Doi, Hiroyoshi; Reddy, K. Rajender; Kaplan, David E.

    2013-01-01

    Silymarin displays anti-inflammatory effects on T-lymphocytes in vitro. The immunomodulatory properties of oral silymarin in vivo in humans with chronic hepatitis C have not previously been characterized. We hypothesized that silymarin would suppress T-cell proliferation and pro-inflammatory cytokine production of virus- and non-virus-specific T-cells while increasing anti-inflammatory IL-10 production in vivo. Patients from one site of the SyNCH-HCV double-masked, placebo-controlled study of oral silymarin in prior interferon non-responders with chronic hepatitis C provided blood samples at baseline and treatment week 20. Mononuclear cells were stimulated with recombinant HCV proteins and controls in 3H-thymidine proliferation assays, IFNγ Elispot and IL-10 Elispot. The frequency of CD4+CD25hi and CD4+foxp3+ regulatory T-cells, serum cytokine levels, serum IP-10 and lymphocyte interferon-stimulated gene expression were also quantified at baseline and week 20. Thirty-two patients were recruited (10; placebo, 11; 420mg three times a day, 11; 700mg three times a day). Serum ALT and HCV RNA titers did not change in any group. HCV-specific CD4+ T-cell proliferation and the frequency of IFNγ– and IL-10-producing T-cells were not significantly changed in silymarin-treated subjects. However, C. albicans-induced T-cell IFNγ and phytohemagglutinin-induced T-cell proliferation were suppressed by silymarin therapy. A trend towards augmentation of interferon-induced ISG15 expression was present in the high-dose silymarin group. While no effect on HCV-specific T-cells was identified, these data confirm that high-dose oral silymarin exerts modest non-specific immunomodulatory effects in vivo. The impact of this anti-inflammatory effect on long-term liver health in chronic hepatitis C merits future clinical investigation. PMID:23730838

  9. Oral health information systems--towards measuring progress in oral health promotion and disease prevention.

    PubMed Central

    Petersen, Poul Erik; Bourgeois, Denis; Bratthall, Douglas; Ogawa, Hiroshi

    2005-01-01

    This article describes the essential components of oral health information systems for the analysis of trends in oral disease and the evaluation of oral health programmes at the country, regional and global levels. Standard methodology for the collection of epidemiological data on oral health has been designed by WHO and used by countries worldwide for the surveillance of oral disease and health. Global, regional and national oral health databanks have highlighted the changing patterns of oral disease which primarily reflect changing risk profiles and the implementation of oral health programmes oriented towards disease prevention and health promotion. The WHO Oral Health Country/Area Profile Programme (CAPP) provides data on oral health from countries, as well as programme experiences and ideas targeted to oral health professionals, policy-makers, health planners, researchers and the general public. WHO has developed global and regional oral health databanks for surveillance, and international projects have designed oral health indicators for use in oral health information systems for assessing the quality of oral health care and surveillance systems. Modern oral health information systems are being developed within the framework of the WHO STEPwise approach to surveillance of noncommunicable, chronic disease, and data stored in the WHO Global InfoBase may allow advanced health systems research. Sound knowledge about progress made in prevention of oral and chronic disease and in health promotion may assist countries to implement effective public health programmes to the benefit of the poor and disadvantaged population groups worldwide. PMID:16211160

  10. Invasion-Related Factors as Potential Diagnostic and Therapeutic Targets in Oral Squamous Cell Carcinoma—A Review

    PubMed Central

    Siriwardena, Samadarani B. S. M.; Tsunematsu, Takaaki; Qi, Guangying; Ishimaru, Naozumi; Kudo, Yasusei

    2018-01-01

    It is well recognized that the presence of cervical lymph node metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC). In solid epithelial cancer, the first step during the process of metastasis is the invasion of cancer cells into the underlying stroma, breaching the basement membrane (BM)—the natural barrier between epithelium and the underlying extracellular matrix (ECM). The ability to invade and metastasize is a key hallmark of cancer progression, and the most complicated and least understood. These topics continue to be very active fields of cancer research. A number of processes, factors, and signaling pathways are involved in regulating invasion and metastasis. However, appropriate clinical trials for anti-cancer drugs targeting the invasion of OSCC are incomplete. In this review, we summarize the recent progress on invasion-related factors and emerging molecular determinants which can be used as potential for diagnostic and therapeutic targets in OSCC. PMID:29758011

  11. [Study of testicular cancer gene expression in samples of oral leukoplakia and squamous cell carcinoma of the mouth].

    PubMed

    Skorodumova, L O; Muraev, A A; Zakharova, E S; Shepelev, M V; Korobko, I V; Zaderenko, I A; Ivanov, S Iu; Gnuchev, N V; Georgiev, G P; Larin, S S

    2012-01-01

    Cancer-testis (CT) antigens are normally expressed mostly in human germ cells, there is also an aberrant expression in some tumor cells. This expression profile makes them potential tumor growth biomarkers and a promising target for tumor immunotherapy. Specificity of CT genes expression in oral malignant and potentially malignant diseases, e.g. oral leukoplakia, is not yet studied. Data on CT genes expression profile in leukoplakia would allow developing new diagnostic methods with potential value for immunotherapy and prophylaxis of leukoplakia malignization. In our study we compared CT genes expression in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. We are the first to describe CT genes expression in oral leukoplakia without dysplasia. This findings make impossible differential diagnosis of oral leukoplakia and squamous cell carcinoma on the basis of CT genes expression. The prognostic value of CT genes expression is still unclear, therefore the longitudinal studies are necessary.

  12. Oral delivery of dsRNA by microbes: Beyond pest control.

    PubMed

    Abrieux, Antoine; Chiu, Joanna C

    2016-01-01

    RNA interference (RNAi) by oral delivery of dsRNA in insects has great potential as a tool for integrated pest management (IPM), especially with respect to addressing the need to reduce off-target effect and slow down resistance development to chemical insecticides. Employing the natural association existing between insect and yeast, we developed a novel method to enable the knock down of vital genes in the pest insect Drosophila suzukii through oral delivery of species-specific dsRNA using genetically modified Saccharomyces cerevisae. D. suzukii that were fed with our "yeast biopesticide" showed a significant decrease in fitness. In this perspective article, we postulate that this approach could be adapted to a large number of species, given the great diversity of symbiotic interactions involving microorganisms and host species. Furthermore, we speculate that beyond its application as biopesticide, dsRNA delivery by genetically modified microbes can also serve to facilitate reverse genetic applications, specifically in non-model organisms.

  13. Targeted Killing of Streptococcus mutans by a Pheromone-Guided “Smart” Antimicrobial Peptide

    PubMed Central

    Eckert, Randal ; He, Jian; Yarbrough, Daniel K.; Qi, Fengxia; Anderson, Maxwell H.; Shi, Wenyuan

    2006-01-01

    Within the repertoire of antibiotics available to a prescribing clinician, the majority affect a broad range of microorganisms, including the normal flora. The ecological disruption resulting from antibiotic treatment frequently results in secondary infections or other negative clinical consequences. To address this problem, our laboratory has recently developed a new class of pathogen-selective molecules, called specifically (or selectively) targeted antimicrobial peptides (STAMPs), based on the fusion of a species-specific targeting peptide domain with a wide-spectrum antimicrobial peptide domain. In the current study, we focused on achieving targeted killing of Streptococcus mutans, a cavity-causing bacterium that resides in a multispecies microbial community (dental plaque). In particular, we explored the possibility of utilizing a pheromone produced by S. mutans, namely, the competence stimulating peptide (CSP), as a STAMP targeting domain to mediate S. mutans-specific delivery of an antimicrobial peptide domain. We discovered that STAMPs constructed with peptides derived from CSP were potent against S. mutans grown in liquid or biofilm states but did not affect other oral streptococci tested. Further studies showed that an 8-amino-acid region within the CSP sequence is sufficient for targeted delivery of the antimicrobial peptide domain to S. mutans. The STAMPs presented here are capable of eliminating S. mutans from multispecies biofilms without affecting closely related noncariogenic oral streptococci, indicating the potential of these molecules to be developed into “probiotic” antibiotics which could selectively eliminate pathogens while preserving the protective benefits of a healthy normal flora. PMID:17060534

  14. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    PubMed

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  15. Oral candidosis in relation to oral immunity.

    PubMed

    Feller, L; Khammissa, R A G; Chandran, R; Altini, M; Lemmer, J

    2014-09-01

    Symptomatic oral infection with Candida albicans is characterized by invasion of the oral epithelium by virulent hyphae that cause tissue damage releasing the inflammatory mediators that initiate and sustain local inflammation. Candida albicans triggers pattern-recognition receptors of keratinocytes, macrophages, monocytes and dendritic cells, stimulating the production of IL-1β, IL-6 and IL-23. These cytokines induce the differentiation of Th17 cells and the generation of IL-17- and/or IL-22-mediated antifungal protective immuno-inflammatory responses in infected mucosa. Some immune cells including NKT cells, γδ T cells and lymphoid cells that are innate to the oral mucosa have the capacity to produce large quantities of IL-17 in response to C. albicans, sufficient to mediate effective protective immunity against C. albicans. On the other hand, molecular structures of commensal C. albicans blastoconidia, although detected by pattern-recognition receptors, are avirulent, do not invade the oral epithelium, do not elicit inflammatory responses in a healthy host, but induce regulatory immune responses that maintain tissue tolerance to the commensal fungi. The type, specificity and sensitivity of the protective immune response towards C. albicans is determined by the outcome of the integrated interactions between the intracellular signalling pathways of specific combinations of activated pattern-recognition receptors (TLR2, TLR4, Dectin-1 and Dectin-2). IL-17-mediated protective immune response is essential for oral mucosal immunity to C. albicans infection. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Oral language and narrative skills in children with specific language impairment with and without literacy delay: a three-year longitudinal study.

    PubMed

    Vandewalle, Ellen; Boets, Bart; Boons, Tinne; Ghesquière, Pol; Zink, Inge

    2012-01-01

    This longitudinal study compared the development of oral language and more specifically narrative skills (storytelling and story retelling) in children with specific language impairment (SLI) with and without literacy delay. Therefore, 18 children with SLI and 18 matched controls with normal literacy were followed from the last year of kindergarten (mean age=5 years 5 months) until the beginning of grade 3 (mean age=8 years 1 month). Oral language tests measuring vocabulary, morphology, sentence and text comprehension and narrative skills were administered yearly. Based on first and third grade reading and spelling achievement, both groups were divided into a group with and a group without literacy problems. Results showed that the children with SLI and literacy delay had persistent oral language problems across all assessed language domains. The children with SLI and normal literacy skills scored also persistently low on vocabulary, morphology and story retelling skills. Only on listening comprehension and storytelling, they evolved towards the level of the control group. In conclusion, oral language skills in children with SLI and normal literacy skills remained in general poor, despite their intact literacy development during the first years of literacy instruction. Only for listening comprehension and storytelling, they improved, probably as a result of more print exposure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging

    PubMed Central

    2008-01-01

    Targeted metallic nanoparticles have shown potential as a platform for development of molecular-specific contrast agents. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In this study, we investigated the development of aptamer-based gold nanoparticles as contrast agents, using aptamers as targeting agents and gold nanoparticles as imaging agents. We devised a novel conjugation approach using an extended aptamer design where the extension is complementary to an oligonucleotide sequence attached to the surface of the gold nanoparticles. The chemical and optical properties of the aptamer−gold conjugates were characterized using size measurements and oligonucleotide quantitation assays. We demonstrate this conjugation approach to create a contrast agent designed for detection of prostate-specific membrane antigen (PSMA), obtaining reflectance images of PSMA(+) and PSMA(−) cell lines treated with the anti-PSMA aptamer−gold conjugates. This design strategy can easily be modified to incorporate multifunctional agents as part of a multimodal platform for reflectance imaging applications. PMID:18512972

  18. The treatment of mouse colorectal cancer by oral delivery tumor-targeting Salmonella

    PubMed Central

    Wang, Wei-Kuang; Lu, Meng-Fan; Kuan, Yu-Diao; Lee, Che-Hsin

    2015-01-01

    Systemic administration of Salmonella to tumor-bearing mice leads to its preferential accumulation in tumor sites, the enhancement of host immunity, and the inhibition of tumor growth. However, the underlying mechanism for Salmonella-induced antitumor immune response via oral delivery remained uncertain. Herein, we used mouse colorectal cancer (CT26) as tumor model to study the therapeutic effects after oral delivery of Salmonella. When orally administered into tumor-bearing mice, Salmonella significantly accumulated in the tumor sites, inhibited tumor growth and extended the survival of mice. No obvious toxicity was observed during orally administered Salmonella by examining body weight and inflammatory cytokines. As indoleamine 2, 3-dioxygenase 1 (IDO) is a crucial mediator for tumor-mediated immune tolerance, we examined the expression of IDO. We demonstrated that Salmonella inhibited IDO expression in mouse cancer cells. Furthermore, immunohistochemical studies of the tumors revealed the infiltration of neutrophils and T cells in mice treated with Salmonella. In conclusion, our results indicate that Salmonella exerts its tumoricidal effects and stimulates T cell activities by inhibiting IDO expression. Oral delivery of Salmonella may, represent a potential strategy for the treatment of tumor. PMID:26328252

  19. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy.

    PubMed

    Wüstemann, Till; Haberkorn, Uwe; Babich, John; Mier, Walter

    2018-05-17

    The high incidence rates of prostate cancer (PCa) raise demand for improved therapeutic strategies. Prostate tumors specifically express the prostate-specific membrane antigen (PSMA), a membrane-bound protease. As PSMA is highly overexpressed on malignant prostate tumor cells and as its expression rate correlates with the aggressiveness of the disease, this tumor-associated biomarker provides the possibility to develop new strategies for diagnostics and therapy of PCa. Major advances have been made in PSMA targeting, ranging from immunotherapeutic approaches to therapeutic small molecules. This review elaborates the diversity of PSMA targeting agents while focusing on the radioactively labeled tracers for diagnosis and endoradiotherapy. A variety of radionuclides have been shown to either enable precise diagnosis or efficiently treat the tumor with minimal effects to nontargeted organs. Most small molecules with affinity for PSMA are based on either a phosphonate or a urea-based binding motif. Based on these pharmacophores, major effort has been made to identify modifications to achieve ideal pharmacokinetics while retaining the specific targeting of the PSMA binding pocket. Several tracers have now shown excellent clinical usability in particular for molecular imaging and therapy as proven by the efficiency of theranostic approaches in current studies. The archetypal expression profile of PSMA may be exploited for the treatment with alpha emitters to break radioresistance and thus to bring the power of systemic therapy to higher levels. © 2018 Wiley Periodicals, Inc.

  20. Virus-mimetic polyplex particles for systemic and inflammation-specific targeted delivery of large genetic contents.

    PubMed

    Kang, S; Lu, K; Leelawattanachai, J; Hu, X; Park, S; Park, T; Min, I M; Jin, M M

    2013-11-01

    Systemic and target-specific delivery of large genetic contents has been difficult to achieve. Although viruses effortlessly deliver kilobase-long genome into cells, its clinical use has been hindered by serious safety concerns and the mismatch between native tropisms and desired targets. Nonviral vectors, in contrast, are limited by low gene transfer efficiency and inherent cytotoxicity. Here we devised virus-mimetic polyplex particles (VMPs) based on electrostatic self-assembly among polyanionic peptide (PAP), cationic polymer polyethyleneimine (PEI) and nucleic acids. We fused PAP to the engineered ligand-binding domain of integrin αLβ2 to target intercellular adhesion molecule-1 (ICAM-1), an inducible marker of inflammation. Fully assembled VMPs packaged large genetic contents, bound specifically to target molecules, elicited receptor-mediated endocytosis and escaped endosomal pathway, resembling intracellular delivery processes of viruses. Unlike conventional PEI-mediated transfection, molecular interaction-dependent gene delivery of VMPs was unaffected by the presence of serum and achieved higher efficiency without toxicity. By targeting overexpressed ICAM-1, VMPs delivered genes specifically to inflamed endothelial cells and macrophages both in vitro and in vivo. Simplicity and versatility of the platform and inflammation-specific delivery may open up opportunities for multifaceted gene therapy that can be translated into the clinic and treat a broad range of debilitating immune and inflammatory diseases.

  1. Design of the hairpin ribozyme for targeting specific RNA sequences.

    PubMed

    Hampel, A; DeYoung, M B; Galasinski, S; Siwkowski, A

    1997-01-01

    The following steps should be taken when designing the hairpin ribozyme to cleave a specific target sequence: 1. Select a target sequence containing BN*GUC where B is C, G, or U. 2. Select the target sequence in areas least likely to have extensive interfering structure. 3. Design the conventional hairpin ribozyme as shown in Fig. 1, such that it can form a 4 bp helix 2 and helix 1 lengths up to 10 bp. 4. Synthesize this ribozyme from single-stranded DNA templates with a double-stranded T7 promoter. 5. Prepare a series of short substrates capable of forming a range of helix 1 lengths of 5-10 bp. 6. Identify these by direct RNA sequencing. 7. Assay the extent of cleavage of each substrate to identify the optimal length of helix 1. 8. Prepare the hairpin tetraloop ribozyme to determine if catalytic efficiency can be improved.

  2. Oral Language and Narrative Skills in Children with Specific Language Impairment with and without Literacy Delay: A Three-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Vandewalle, Ellen; Boets, Bart; Boons, Tinne; Ghesquiere, Pol; Zink, Inge

    2012-01-01

    This longitudinal study compared the development of oral language and more specifically narrative skills (storytelling and story retelling) in children with specific language impairment (SLI) with and without literacy delay. Therefore, 18 children with SLI and 18 matched controls with normal literacy were followed from the last year of…

  3. Adverse drug events in the oral cavity.

    PubMed

    Yuan, Anna; Woo, Sook-Bin

    2015-01-01

    Adverse reactions to medications are common and may have a variety of clinical presentations in the oral cavity. Targeted therapies and the new biologic agents have revolutionized the treatment of cancers, autoimmune diseases, and inflammatory and rheumatologic diseases but have also been associated with adverse events in the oral cavity. Some examples include osteonecrosis, seen with not only bisphosphonates but also antiangiogenic agents, and the distinctive ulcers caused by mammalian target of rapamycin inhibitors. As newer therapeutic agents are approved, it is likely that more adverse drug events will be encountered. This review describes the most common clinical presentations of oral mucosal reactions to medications, namely, xerostomia, lichenoid reactions, ulcers, bullous disorders, pigmentation, fibrovascular hyperplasia, white lesions, dysesthesia, osteonecrosis, infection, angioedema, and malignancy. Oral health care providers should be familiar with such events, as they will encounter them in their practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer.

    PubMed

    Randhawa, Vinay; Kumar Singh, Anil; Acharya, Vishal

    2015-12-01

    Systems-biology inspired identification of drug targets and machine learning-based screening of small molecules which modulate their activity have the potential to revolutionize modern drug discovery by complementing conventional methods. To utilize the effectiveness of such pipelines, we first analyzed the dysregulated gene pairs between control and tumor samples and then implemented an ensemble-based feature selection approach to prioritize targets in oral squamous cell carcinoma (OSCC) for therapeutic exploration. Based on the structural information of known inhibitors of CXCR4-one of the best targets identified in this study-a feature selection was implemented for the identification of optimal structural features (molecular descriptor) based on which a classification model was generated. Furthermore, the CXCR4-centered descriptor-based classification model was finally utilized to screen a repository of plant derived small-molecules to obtain potential inhibitors. The application of our methodology may assist effective selection of the best targets which may have previously been overlooked, that in turn will lead to the development of new oral cancer medications. The small molecules identified in this study can be ideal candidates for trials as potential novel anti-oral cancer agents. Importantly, distinct steps of this whole study may provide reference for the analysis of other complex human diseases.

  5. Comparison of taxon-specific versus general locus sets for targeted sequence capture in plant phylogenomics.

    PubMed

    Chau, John H; Rahfeldt, Wolfgang A; Olmstead, Richard G

    2018-03-01

    Targeted sequence capture can be used to efficiently gather sequence data for large numbers of loci, such as single-copy nuclear loci. Most published studies in plants have used taxon-specific locus sets developed individually for a clade using multiple genomic and transcriptomic resources. General locus sets can also be developed from loci that have been identified as single-copy and have orthologs in large clades of plants. We identify and compare a taxon-specific locus set and three general locus sets (conserved ortholog set [COSII], shared single-copy nuclear [APVO SSC] genes, and pentatricopeptide repeat [PPR] genes) for targeted sequence capture in Buddleja (Scrophulariaceae) and outgroups. We evaluate their performance in terms of assembly success, sequence variability, and resolution and support of inferred phylogenetic trees. The taxon-specific locus set had the most target loci. Assembly success was high for all locus sets in Buddleja samples. For outgroups, general locus sets had greater assembly success. Taxon-specific and PPR loci had the highest average variability. The taxon-specific data set produced the best-supported tree, but all data sets showed improved resolution over previous non-sequence capture data sets. General locus sets can be a useful source of sequence capture targets, especially if multiple genomic resources are not available for a taxon.

  6. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier

    2015-02-01

    Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles

  7. Salivary bacterial fingerprints of established oral disease revealed by the Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS) technique

    PubMed Central

    Belstrøm, Daniel; Paster, Bruce J.; Fiehn, Nils-Erik; Bardow, Allan; Holmstrup, Palle

    2016-01-01

    Background and objective The composition of the salivary microbiota, as determined using various molecular methods, has been reported to differentiate oral health from diseases. Thus, the purpose of this study was to utilize the newly developed molecular technique HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing) for comparison of the salivary microbiota in patients with periodontitis, patients with dental caries, and orally healthy individuals. The hypothesis was that this method could add on to the existing knowledge on salivary bacterial profiles in oral health and disease. Design Stimulated saliva samples (n=30) were collected from 10 patients with untreated periodontitis, 10 patients with untreated dental caries, and 10 orally healthy individuals. Salivary microbiota was analyzed using HOMINGS and statistical analysis was performed using Kruskal–Wallis test with Benjamini–Hochberg's correction. Results From a total of 30 saliva samples, a mean number of probe targets of 205 (range 120–353) were identified, and a statistically significant higher mean number of targets was registered in samples from patients with periodontitis (mean 220, range 143–306) and dental caries (mean 221, range 165–353) as compared to orally healthy individuals (mean 174, range 120–260) (p=0.04 and p=0.04). Nine probe targets were identified with a different relative abundance between groups (p<0.05). Conclusions Cross-sectional comparison of salivary bacterial profiles by means of HOMINGS analysis showed that different salivary bacterial profiles were associated with oral health and disease. Future large-scale prospective studies are needed to evaluate if saliva-based screening for disease-associated oral bacterial profiles may be used for identification of patients at risk of acquiring periodontitis and dental caries. PMID:26782357

  8. Agrin and Perlecan Mediate Tumorigenic Processes in Oral Squamous Cell Carcinoma

    PubMed Central

    Kawahara, Rebeca; Granato, Daniela C.; Carnielli, Carolina M.; Cervigne, Nilva K.; Oliveria, Carine E.; Martinez, César A. R.; Yokoo, Sami; Fonseca, Felipe P.; Lopes, Marcio; Santos-Silva, Alan R.; Graner, Edgard; Coletta, Ricardo D.; Leme, Adriana Franco Paes

    2014-01-01

    Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels. PMID:25506919

  9. Engineered Cpf1 variants with altered PAM specificities increase genome targeting range

    PubMed Central

    Gao, Linyi; Cox, David B.T.; Yan, Winston X.; Manteiga, John C.; Schneider, Martin W.; Yamano, Takashi; Nishimasu, Hiroshi; Nureki, Osamu; Crosetto, Nicola; Zhang, Feng

    2017-01-01

    The RNA-guided endonuclease Cpf1 is a promising tool for genome editing in eukaryotic cells1–7. However, the utility of the commonly used Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) and Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1) is limited by their requirement of a TTTV protospacer adjacent motif (PAM) in the DNA substrate. To address this limitation, we performed a structure-guided mutagenesis screen to increase the targeting range of Cpf1. We engineered two AsCpf1 variants carrying the mutations S542R/K607R and S542R/K548V/N552R, which recognize TYCV and TATV PAMs, respectively, with enhanced activities in vitro and in human cells. Genome-wide assessment of off-target activity using BLISS7 assay indicated that these variants retain high DNA targeting specificity, which we further improved by introducing an additional non-PAM-interacting mutation. Introducing the identified mutations at their corresponding positions in LbCpf1 similarly altered its PAM specificity. Together, these variants increase the targeting range of Cpf1 by approximately three-fold in human coding sequences to one cleavage site per ~11 bp. PMID:28581492

  10. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature

    PubMed Central

    Patronis, Alexander; Richardson, Robin A.; Schmieschek, Sebastian; Wylie, Brian J. N.; Nash, Rupert W.; Coveney, Peter V.

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow. PMID:29725303

  11. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature.

    PubMed

    Patronis, Alexander; Richardson, Robin A; Schmieschek, Sebastian; Wylie, Brian J N; Nash, Rupert W; Coveney, Peter V

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  12. Characteristics and predictors of oral cancer knowledge in a predominantly African American community.

    PubMed

    Osazuwa-Peters, Nosayaba; Adjei Boakye, Eric; Hussaini, Adnan S; Sujijantarat, Nanthiya; Ganesh, Rajan N; Snider, Matthew; Thompson, Devin; Varvares, Mark A

    2017-01-01

    To characterize smoking and alcohol use, and to describe predictors of oral cancer knowledge among a predominantly African-American population. A cross-sectional study was conducted between September, 2013 among drag racers and fans in East St. Louis. Oral cancer knowledge was derived from combining questionnaire items to form knowledge score. Covariates examined included age, sex, race, marital status, education status, income level, insurance status, tobacco and alcohol use. Adjusted linear regression analysis measured predictors of oral cancer knowledge. Three hundred and four participants completed questionnaire; 72.7% were African Americans. Smoking rate was 26.7%, alcohol use was 58.3%, and mean knowledge score was 4.60 ± 2.52 out of 17. In final adjusted regression model, oral cancer knowledge was associated with race and education status. Compared with Caucasians, African Americans were 29% less likely to have high oral cancer knowledge (β = -0.71; 95% CI: -1.35, -0.07); and participants with a high school diploma or less were 124% less likely to have high oral cancer knowledge compared with college graduates (β = -1.24; 95% CI: -2.44, -0.41). There was lower oral cancer knowledge among African Americans and those with low education. The prevalence of smoking was also very high. Understanding predictors of oral cancer knowledge is important in future design of educational interventions specifically targeted towards high-risk group for oral cancer.

  13. Tumor-targeting CTL expressing a single-chain Fv specific for VEGFR2.

    PubMed

    Kanagawa, Naoko; Yanagawa, Tatsuya; Mukai, Yohei; Yoshioka, Yasuo; Okada, Naoki; Nakagawa, Shinsaku

    2010-03-26

    Cytotoxic T lymphocytes (CTL) are critical effector cells in tumor immunity. Adoptive transfer therapy with in vitro-expanded tumor-specific CTL is a promising approach for preventing cancer metastasis and recurrence. Transferred CTL are not effective in clinical trials, however, due to inadequate tumor-infiltration. Therefore, the development of functionally modified CTL, such as tumor-targeting CTL, is widely desired. Here, we designed the tumor-targeting CTL expressing a single-chain antibody fragment (scFv-CTL) specific for vascular endothelial growth factor receptor 2 (VEGFR2/flk1) by transducing the CTL with a retroviral vector. The scFv-CTL bound to VEGFR2/flk1-expressing cells and retained their cytotoxic activity against tumor cells. In addition, adoptive transfer of scFv-CTL into tumor-bearing mice effectively suppressed tumor growth due to the augmented accumulation of the transferred CTL in the tumor tissue. These findings indicate that the creation of CTL capable of targeting tumor vascular endothelial cells by scFv-expression technique is considerably promising for improvement of efficacy in adoptive immunotherapy. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Sequential Axon-derived Signals Couple Target Survival and Layer Specificity in the Drosophila Visual System

    PubMed Central

    Pecot, Matthew Y.; Chen, Yi; Akin, Orkun; Chen, Zhenqing; Tsui, C.Y. Kimberly; Zipursky, S. Lawrence

    2015-01-01

    SUMMARY Neural circuit formation relies on interactions between axons and cells within the target field. While it is well established that target-derived signals act on axons to regulate circuit assembly, the extent to which axon-derived signals control circuit formation is not known. In the Drosophila visual system, anterograde signals numerically match R1–R6 photoreceptors with their targets by controlling target proliferation and neuronal differentiation. Here we demonstrate that additional axon-derived signals selectively couple target survival with layer-specificity. We show that Jelly belly (Jeb) produced by R1–R6 axons interacts with its receptor, anaplastic lymphoma kinase (Alk), on budding dendrites to control survival of L3 neurons, one of three postsynaptic targets. L3 axons then produce Netrin, which regulates the layer-specific targeting of another neuron within the same circuit. We propose that a cascade of axon-derived signals, regulating diverse cellular processes, provides a strategy for coordinating circuit assembly across different regions of the nervous system. PMID:24742459

  15. Targeted prodrugs in oral drug delivery: the modern molecular biopharmaceutical approach.

    PubMed

    Dahan, Arik; Khamis, Mustafa; Agbaria, Riad; Karaman, Rafik

    2012-08-01

    The molecular revolution greatly impacted the field of drug design and delivery in general, and the utilization of the prodrug approach in particular. The increasing understanding of membrane transporters has promoted a novel 'targeted-prodrug' approach utilizing carrier-mediated transport to increase intestinal permeability, as well as specific enzymes to promote activation to the parent drug. This article provides the reader with a concise overview of this modern approach to prodrug design. Targeting the oligopeptide transporter PEPT1 for absorption and the serine hydrolase valacyclovirase for activation will be presented as examples for the successful utilization of this approach. Additionally, the use of computational approaches, such as DFT and ab initio molecular orbital methods, in modern prodrugs design will be discussed. Overall, in the coming years, more and more information will undoubtedly become available regarding intestinal transporters and potential enzymes that may be exploited for the targeted modern prodrug approach. Hence, the concept of prodrug design can no longer be viewed as merely a chemical modification to solve problems associated with parent compounds. Rather, it opens promising opportunities for precise and efficient drug delivery, as well as enhancement of treatment options and therapeutic efficacy.

  16. Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane.

    PubMed

    Carel, Clément; Marcoux, Julien; Réat, Valérie; Parra, Julien; Latgé, Guillaume; Laval, Françoise; Demange, Pascal; Burlet-Schiltz, Odile; Milon, Alain; Daffé, Mamadou; Tropis, Maryelle G; Renault, Marie A M

    2017-04-18

    The outer membranes (OMs) of members of the Corynebacteriales bacterial order, also called mycomembranes, harbor mycolic acids and unusual outer membrane proteins (OMPs), including those with α-helical structure. The signals that allow precursors of such proteins to be targeted to the mycomembrane remain uncharacterized. We report here the molecular features responsible for OMP targeting to the mycomembrane of Corynebacterium glutamicum , a nonpathogenic member of the Corynebacteriales order. To better understand the mechanisms by which OMP precursors were sorted in C. glutamicum , we first investigated the partitioning of endogenous and recombinant PorA, PorH, PorB, and PorC between bacterial compartments and showed that they were both imported into the mycomembrane and secreted into the extracellular medium. A detailed investigation of cell extracts and purified proteins by top-down MS, NMR spectroscopy, and site-directed mutagenesis revealed specific and well-conserved posttranslational modifications (PTMs), including O -mycoloylation, pyroglutamylation, and N -formylation, for mycomembrane-associated and -secreted OMPs. PTM site sequence analysis from C. glutamicum OMP and other O -acylated proteins in bacteria and eukaryotes revealed specific patterns. Furthermore, we found that such modifications were essential for targeting to the mycomembrane and sufficient for OMP assembly into mycolic acid-containing lipid bilayers. Collectively, it seems that these PTMs have evolved in the Corynebacteriales order and beyond to guide membrane proteins toward a specific cell compartment.

  17. Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane

    PubMed Central

    Carel, Clément; Réat, Valérie; Parra, Julien; Latgé, Guillaume; Laval, Françoise; Burlet-Schiltz, Odile; Milon, Alain; Daffé, Mamadou; Tropis, Maryelle G.; Renault, Marie A. M.

    2017-01-01

    The outer membranes (OMs) of members of the Corynebacteriales bacterial order, also called mycomembranes, harbor mycolic acids and unusual outer membrane proteins (OMPs), including those with α-helical structure. The signals that allow precursors of such proteins to be targeted to the mycomembrane remain uncharacterized. We report here the molecular features responsible for OMP targeting to the mycomembrane of Corynebacterium glutamicum, a nonpathogenic member of the Corynebacteriales order. To better understand the mechanisms by which OMP precursors were sorted in C. glutamicum, we first investigated the partitioning of endogenous and recombinant PorA, PorH, PorB, and PorC between bacterial compartments and showed that they were both imported into the mycomembrane and secreted into the extracellular medium. A detailed investigation of cell extracts and purified proteins by top-down MS, NMR spectroscopy, and site-directed mutagenesis revealed specific and well-conserved posttranslational modifications (PTMs), including O-mycoloylation, pyroglutamylation, and N-formylation, for mycomembrane-associated and -secreted OMPs. PTM site sequence analysis from C. glutamicum OMP and other O-acylated proteins in bacteria and eukaryotes revealed specific patterns. Furthermore, we found that such modifications were essential for targeting to the mycomembrane and sufficient for OMP assembly into mycolic acid-containing lipid bilayers. Collectively, it seems that these PTMs have evolved in the Corynebacteriales order and beyond to guide membrane proteins toward a specific cell compartment. PMID:28373551

  18. Prostate-Specific and Tumor-Specific Targeting of an Oncolytic HSV-1 Amplicon/Helper Virus for Prostate Cancer Treatment

    DTIC Science & Technology

    2009-11-01

    that differentially expressed tumor suppressor miRNAs can be utilized to control the replication of an oncolytic DNA virus in a tumor-specific...demonstrated that the utilization of the tissue-specific promoter and the miRNA-mediated 3’UTRs in a targeted virotherapy is a viable approach with...elements into the whole HSV-1 viral genome should increase the safety margin substantially. The major advantage of the amplicon/helper system is its

  19. Application of Oral Fluid Assays in Support of Mumps, Rubella and Varicella Control Programs.

    PubMed

    Maple, Peter A C

    2015-12-09

    Detection of specific viral antibody or nucleic acid produced by infection or immunization, using oral fluid samples, offers increased potential for wider population uptake compared to blood sampling. This methodology is well established for the control of HIV and measles infections, but can also be applied to the control of other vaccine preventable infections, and this review describes the application of oral fluid assays in support of mumps, rubella and varicella national immunization programs. In England and Wales individuals with suspected mumps or rubella, based on clinical presentation, can have an oral fluid swab sample taken for case confirmation. Universal varicella immunization of children has led to a drastic reduction of chickenpox in those countries where it is used; however, in England and Wales such a policy has not been instigated. Consequently, in England and Wales most children have had chickenpox by age 10 years; however, small, but significant, numbers of adults remain susceptible. Targeted varicella zoster virus (VZV) immunization of susceptible adolescents offers the potential to reduce the pool of susceptible adults and oral fluid determination of VZV immunity in adolescents is a potential means of identifying susceptible individuals in need of VZV vaccination. The main application of oral fluid testing is in those circumstances where blood sampling is deemed not necessary, or is undesirable, and when the documented sensitivity and specificity of the oral fluid assay methodology to be used is considered sufficient for the purpose intended.

  20. Effects of human oral mucosal tissue, saliva and oral microflora on intraoral metabolism and bioactivation of black raspberry anthocyanins

    PubMed Central

    Mallery, Susan R.; Budendorf, Deric E.; Larsen, Matthew P.; Pei, Ping; Tong, Meng; Holpuch, Andrew S.; Larsen, Peter E.; Stoner, Gary D.; Fields, Henry W.; Chan, Kenneth K.; Ling, Yonghua; Liu, Zhongfa

    2011-01-01

    Our oral cancer chemoprevention trial data implied that patient-specific differences in local retention and metabolism of freeze-dried black raspberries' (BRB) components affected therapeutic responsiveness. Subsequent studies have confirmed that anthocyanins are key contributors to BRB's chemopreventive effects. Consequently, functional assays, immunoblotting and immunohistochemical analyses to evaluate levels and distribution of BRB anthocyanin-relevant metabolic enzymes in human oral tissues were performed. LC-MS/MS analyses of time course saliva samples collected following BRB rinses were conducted to assess local pharmacokinetics and compare the capacities of three different BRB rinse formulations to provide sustained intraoral levels of anthocyanins. Protein profiles demonstrated the presence of key metabolic enzymes in all 15 oral mucosal tissues evaluated while immunohistochemistry confirmed these enzymes were distributed within surface oral epithelia and terminal salivary ducts. β-glucosidase assays confirmed that whole and microflora-reduced saliva can deglycosylate BRB anthocyanins, enabling generation of the bioactive aglycone, cyanidin. LC-MS/MS analyses demonstrated retention of parent anthocyanins and their functional, stable metabolite, protocatechuic acid, in saliva for up to 4 hours after rinsing. Furthermore, post-rinse saliva samples contained glucuronidated anthocyanin conjugates, consistent with intracellular uptake and Phase II conversion of BRB anthocyanins into forms amenable to local recycling. Our data demonstrate that comparable to the small intestine, the requisite hydrolytic, Phase II and efflux transporting enzymes necessary for local enteric recycling are present and functional in human oral mucosa. Notably, inter-patient differences in anthocyanin bioactivation and capacities for enteric recycling would impact treatment as retention of bioactivated chemopreventives at the target site would sustain therapeutic effectiveness. PMID

  1. Immunological mechanisms of sublingual allergen-specific immunotherapy.

    PubMed

    Novak, Natalija; Bieber, T; Allam, J-P

    2011-06-01

    Within the last 100 years of allergen-specific immunotherapy, many clinical and scientific efforts have been made to establish alternative noninvasive allergen application strategies. Thus, intra-oral allergen delivery to the sublingual mucosa has been proven to be safe and effective. As a consequence, to date, sublingual immunotherapy (SLIT) is widely accepted by most allergists as an alternative to conventional subcutaneous immunotherapy. Although immunological mechanisms remain to be elucidated in detail, several studies in mice and humans within recent years provided deeper insights into local as well as systemic immunological features in response to SLIT. First of all, it was shown that the target organ, the oral mucosa, harbours a sophisticated immunological network as an important prerequisite for SLIT, which contains among other cells, local antigen-presenting cells (APC), such as dendritic cells (DCs), with a constitutive disposition to enforce tolerogenic mechanisms. Further on, basic research on local DCs within the oral mucosa gave rise to possible alternative strategies to deliver the allergens to other mucosal regions than sublingual tissue, such as the vestibulum oris. Moreover, characterization of oral DCs led to the identification of target structures for both allergens as well as adjuvants, which could be applied during SLIT. Altogether, SLIT came a long way since its very beginning in the last century and some, but not all questions about SLIT could be answered so far. However, recent research efforts as well as clinical approaches paved the way for another exciting 100 years of SLIT. © 2011 John Wiley & Sons A/S.

  2. Essentials of oral cancer

    PubMed Central

    Rivera, César

    2015-01-01

    Oral cancer is one of the 10 most common cancers in the world, with a delayed clinical detection, poor prognosis, without specific biomarkers for the disease and expensive therapeutic alternatives. This review aims to present the fundamental aspects of this cancer, focused on squamous cell carcinoma of the oral cavity (OSCC), moving from its definition and epidemiological aspects, addressing the oral carcinogenesis, oral potentially malignant disorders, epithelial precursor lesions and experimental methods for its study, therapies and future challenges. Oral cancer is a preventable disease, risk factors and natural history is already being known, where biomedical sciences and dentistry in particular are likely to improve their poor clinical indicators. PMID:26617944

  3. Essentials of oral cancer.

    PubMed

    Rivera, César

    2015-01-01

    Oral cancer is one of the 10 most common cancers in the world, with a delayed clinical detection, poor prognosis, without specific biomarkers for the disease and expensive therapeutic alternatives. This review aims to present the fundamental aspects of this cancer, focused on squamous cell carcinoma of the oral cavity (OSCC), moving from its definition and epidemiological aspects, addressing the oral carcinogenesis, oral potentially malignant disorders, epithelial precursor lesions and experimental methods for its study, therapies and future challenges. Oral cancer is a preventable disease, risk factors and natural history is already being known, where biomedical sciences and dentistry in particular are likely to improve their poor clinical indicators.

  4. Sensory-specific anomic aphasia following left occipital lesions: Data from free oral descriptions of concrete word meanings

    PubMed Central

    Mårtensson, F.; Roll, M.; Lindgren, M.; Apt, P.; Horne, M.

    2013-01-01

    The present study investigated hierarchical lexical semantic structure in oral descriptions of concrete word meanings produced by a subject (ZZ) diagnosed with anomic aphasia due to left occipital lesions. The focus of the analysis was production of a) nouns at different levels of semantic specificity (e.g., “robin”–“bird”–“animal”) and b) words describing sensory or motor experiences (e.g., “blue,” “soft,” “fly”). Results show that in contrast to healthy and aphasic controls, who produced words at all levels of specificity and mainly vision-related sensory information, ZZ produced almost exclusively nouns at the most non-specific levels and words associated with sound and movement. PMID:23425233

  5. Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers.

    PubMed

    Tian, Cihui; Asghar, Sajid; Wu, Yifan; Chen, Zhipeng; Jin, Xin; Yin, Lining; Huang, Lin; Ping, Qineng; Xiao, Yanyu

    2017-01-01

    The expression of multiple receptors on intestinal epithelial cells enables an actively targeted carrier to significantly enhance the oral delivery of payloads. Conjugating the receptors' ligands on the surfaces of a particulate-delivery system allows site-specific targeting. Here, we used taurocholic acid (TCA) as a ligand for uptake of nanostructured lipid carriers (NLCs) mediated by a bile-acid transporter to improve oral bioavailability of curcumin (Cur). First, synthesis of TCA-polyethylene glycol 100-monostearate (S100-TCA) was carried out. Then, the physical and chemical properties of S100-TCA-modified Cur-loaded NLCs (Cur-TCA NLCs) with varying levels of S100-TCA modifications were investigated. Small particle size (<150 nm), high drug encapsulation (>90%), drug loading (about 3%), negative ζ-potential (-7 to -3 mV), and sustained release were obtained. In situ intestinal perfusion studies demonstrated improved absorption rate and permeability coefficient of Cur-TCA NLCs. Depending on the degree of modification, Cur-TCA NLCs displayed about a five- to 15-fold higher area under the curve in rats after oral administration than unmodified Cur NLCs, which established that the addition of S100-TCA to the NLCs boosted absorption of Cur. Further investigations of TCA NLCs might reveal a bright future for effective oral delivery of poorly bioavailable drugs.

  6. Single nucleotide polymorphism-specific regulation of matrix metalloproteinase-9 by multiple miRNAs targeting the coding exon

    PubMed Central

    Duellman, Tyler; Warren, Christopher; Yang, Jay

    2014-01-01

    Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221

  7. In vivo targeted peripheral nerve imaging with a nerve-specific nanoscale magnetic resonance probe.

    PubMed

    Zheng, Linfeng; Li, Kangan; Han, Yuedong; Wei, Wei; Zheng, Sujuan; Zhang, Guixiang

    2014-11-01

    Neuroimaging plays a pivotal role in clinical practice. Currently, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, and positron emission tomography (PET) are applied in the clinical setting as neuroimaging modalities. There is no optimal imaging modality for clinical peripheral nerve imaging even though fluorescence/bioluminescence imaging has been used for preclinical studies on the nervous system. Some studies have shown that molecular and cellular MRI (MCMRI) can be used to visualize and image the cellular and molecular level of the nervous system. Other studies revealed that there are different pathological/molecular changes in the proximal and distal sites after peripheral nerve injury (PNI). Therefore, we hypothesized that in vivo peripheral nerve targets can be imaged using MCMRI with specific MRI probes. Specific probes should have higher penetrability for the blood-nerve barrier (BNB) in vivo. Here, a functional nanometre MRI probe that is based on nerve-specific proteins as targets, specifically, using a molecular antibody (mAb) fragment conjugated to iron nanoparticles as an MRI probe, was constructed for further study. The MRI probe allows for imaging the peripheral nerve targets in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Sensitivity and specificity of modified 100-g oral glucose tolerance tests for diagnosis of gestational diabetes mellitus.

    PubMed

    Hansarikit, Jarunee; Manotaya, Saknan

    2011-05-01

    To study the sensitivity and specificity of the modified 100-g oral glucose tolerance test for diagnosis of gestational diabetes mellitus (GDM). Medical records of pregnant women attending the antenatal clinic of King Chulalongkorn Memorial Hospital, Thailand, who underwent a 100-g oral glucose tolerance test (OGTT) during March 2004 to September 2009, were retrospectively reviewed. Three modified criteria were proposed for diagnosis of GDM. The screening efficacy of the modified criteria were assessed, using the National Diabetes Data Group (NDDG) criterion as gold standard. A total of 729 records were reviewed, 511 were included for analysis. Using the NDDG criterion as the gold standard, the modified II criterion has the highest sensitivity of 96.8%, and the highest accuracy of 90.8%. The modified II criterion can detect the same proportion of maternal and neonatal complications, compared to the NDDG criterion. The modified II criterion, using the fasting plasma glucose and 2-hour plasma glucose measurements, showed high sensitivity and accuracy, with moderate specificity for diagnosis of GDM. Its potential use as an alternative to standard 100-g OGTT should be evaluated in the prospective study.

  9. Virulence of oral Candida isolated from HIV-positive women with oral candidiasis and asymptomatic carriers.

    PubMed

    Owotade, Foluso J; Patel, Mrudula

    2014-10-01

    This study compared the virulence of oral Candida species isolated from human immunodeficiency virus (HIV)-positive women with and without oral candidiasis. Candida species were isolated from 197 women, and their virulence attributes were measured. Of the 197 women, 117 (59.4%) carried Candida. Of these, 15 (12.8%) had symptoms of oral candidiasis. Among highly active antiretroviral therapy (HAART)-naive patients, 33% were diagnosed with oral candidiasis, whereas 5.9% were asymptomatic carriers (P < .01). C. albicans was the predominant species, with higher virulence attributes than non-albicans Candida. Women diagnosed with oral candidiasis had higher levels of Candida (P = .02) than asymptomatic carriers. There was no difference in the CD4 counts and the virulence attributes of Candida from both the groups. This study indicates that oral candidiasis is mainly caused by high counts of C. albicans and suggests the importance of therapies targeting Candida counts in the oral cavity even in patients on HAART to reduce the development of infections. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Orally Targeted Delivery of Tripeptide KPV via Hyaluronic Acid-Functionalized Nanoparticles Efficiently Alleviates Ulcerative Colitis.

    PubMed

    Xiao, Bo; Xu, Zhigang; Viennois, Emilie; Zhang, Yuchen; Zhang, Zhan; Zhang, Mingzhen; Han, Moon Kwon; Kang, Yuejun; Merlin, Didier

    2017-07-05

    Overcoming adverse effects and selectively delivering drug to target cells are two major challenges in the treatment of ulcerative colitis (UC). Lysine-proline-valine (KPV), a naturally occurring tripeptide, has been shown to attenuate the inflammatory responses of colonic cells. Here, we loaded KPV into hyaluronic acid (HA)-functionalized polymeric nanoparticles (NPs). The resultant HA-KPV-NPs had a desirable particle size (∼272.3 nm) and a slightly negative zeta potential (∼-5.3 mV). These NPs successfully mediated the targeted delivery of KPV to key UC therapy-related cells (colonic epithelial cells and macrophages). In addition, these KPV-loaded NPs appear to be nontoxic and biocompatible with intestinal cells. Intriguingly, we found that HA-KPV-NPs exert combined effects against UC by both accelerating mucosal healing and alleviating inflammation. Oral administration of HA-KPV-NPs encapsulated in a hydrogel (chitosan/alginate) exhibited a much stronger capacity to prevent mucosa damage and downregulate TNF-α, thus they showed a much better therapeutic efficacy against UC in a mouse model, compared with a KPV-NP/hydrogel system. These results collectively demonstrate that our HA-KPV-NP/hydrogel system has the capacity to release HA-KPV-NPs in the colonic lumen and that these NPs subsequently penetrate into colitis tissues and enable KPV to be internalized into target cells, thereby alleviating UC. Copyright © 2016 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  11. Does targeted, disease-specific public research funding influence pharmaceutical innovation?

    PubMed

    Blume-Kohout, Margaret E

    2012-01-01

    Public funding for biomedical research is often justified as a means to encourage development of more (and better) treatments for disease. However, few studies have investigated the relationship between these expenditures and downstream pharmaceutical innovation. In particular, although recent analyses have shown a clear contribution of federally funded research to drug development, there exists little evidence to suggest that increasing targeted public research funding for any specific disease will result in increased development of drugs to treat that disease. This paper evaluates the impact of changes in the allocation of U. S. National Institutes of Health (NIH) extramural research grant funding across diseases on the number of drugs entering clinical testing to treat those diseases, using new longitudinal data on NIH extramural research grants awarded by disease for years 1975 through 2006. Results from a variety of distributed lag models indicate that a sustained 10 percent increase in targeted, disease-specific NIH funding yields approximately a 4. 5 percent increase in the number of related drugs entering clinical testing (phase I trials) after a lag of up to 12 years, reflecting the continuing influence of NIH funding on discovery and testing of new molecular entities. In contrast, we do not see evidence that increases in NIH extramural grant funding for research focused on specific diseases will increase the number of related treatments investigated in the more expensive, late-stage (phase III) trials.

  12. Oral Microbiome and Nitric Oxide: the Missing Link in the Management of Blood Pressure.

    PubMed

    Bryan, Nathan S; Tribble, Gena; Angelov, Nikola

    2017-04-01

    Having high blood pressure puts you at risk for heart disease and stroke, which are leading causes of death in the USA and worldwide. One out of every three Americans has hypertension, and it is estimated that despite aggressive treatment with medications, only about half of those medicated have managed blood pressure. Recent discoveries of the oral microbiome that reduces inorganic nitrate to nitrite and nitric oxide provide a new therapeutic target for the management of hypertension. The presence or absence of select and specific bacteria may determine steady-state blood pressure levels. Eradication of oral bacteria through antiseptic mouthwash or overuse of antibiotics causes blood pressure to increase. Allowing recolonization of nitrate- and nitrite-reducing bacteria can normalize blood pressure. This review will provide evidence of the link between oral microbiota and the production of nitric oxide and regulation of systemic blood pressure. Management of systemic hypertension through maintenance of the oral microbiome is a completely new paradigm in cardiovascular medicine.

  13. Postoperative PET/CT and target delineation before adjuvant radiotherapy in patients with oral cavity squamous cell carcinoma.

    PubMed

    Dutta, Pinaki R; Riaz, Nadeem; McBride, Sean; Morris, Luc G; Patel, Snehal; Ganly, Ian; Wong, Richard J; Palmer, Frank; Schöder, Heiko; Lee, Nancy

    2016-04-01

    The purpose of this study was for us to present our evaluation of the effectiveness of positron emission tomography (PET)/CT imaging in postoperative patients with oral cavity squamous cell carcinoma (SCC) before initiating adjuvant radiation therapy. Treatment planning PET/CT scans were obtained in 44 patients with oral cavity SCC receiving adjuvant radiation. We identified target areas harboring macroscopic disease requiring higher radiation doses or additional surgery. Fourteen PET/CT scans were abnormal. Thirteen patients underwent surgery and/or biopsy, increased radiation dose, and/or addition of chemotherapy. Eleven patients received higher radiation doses. Patients undergoing imaging >8 weeks were more likely to have abnormal results (p = .01). One-year distant metastases-free survival was significantly worse in patients with positive PET/CT scans (61.5% vs 92.7%; p = .01). The estimated positive predictive value (PPV) was 38% for postoperative PET/CT scanning. We demonstrated that 32% of patients have abnormal PET/CT scans resulting in management changes. Patients may benefit from postoperative PET/CT imaging to optimize adjuvant radiation treatment planning. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1285-E1293, 2016. © 2015 Wiley Periodicals, Inc.

  14. Task Design for L2 Oral Practice in Audioblogs

    ERIC Educational Resources Information Center

    Appel, Christine; Borges, Federico

    2012-01-01

    The development of oral skills poses a challenge in language teaching whether this takes place face-to-face, through distance education or in blended learning contexts. Two main problems arise: first of all students don't have enough opportunity to use their target language orally, and secondly, students oral performance is mostly unrecorded and…

  15. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.

    PubMed

    Safavi-Sohi, Reihaneh; Maghari, Shokoofeh; Raoufi, Mohammad; Jalali, Seyed Amir; Hajipour, Mohammad J; Ghassempour, Alireza; Mahmoudi, Morteza

    2016-09-07

    Surface functionalization strategies for targeting nanoparticles (NP) to specific organs, cells, or organelles, is the foundation for new applications of nanomedicine to drug delivery and biomedical imaging. Interaction of NPs with biological media leads to the formation of a biomolecular layer at the surface of NPs so-called as "protein corona". This corona layer can shield active molecules at the surface of NPs and cause mistargeting or unintended scavenging by the liver, kidney, or spleen. To overcome this corona issue, we have designed biotin-cysteine conjugated silica NPs (biotin was employed as a targeting molecule and cysteine was used as a zwitterionic ligand) to inhibit corona-induced mistargeting and thus significantly enhance the active targeting capability of NPs in complex biological media. To probe the targeting yield of our engineered NPs, we employed both modified silicon wafer substrates with streptavidin (i.e., biotin receptor) to simulate a target and a cell-based model platform using tumor cell lines that overexpress biotin receptors. In both cases, after incubation with human plasma (thus forming a protein corona), cellular uptake/substrate attachment of the targeted NPs with zwitterionic coatings were significantly higher than the same NPs without zwitterionic coating. Our results demonstrated that NPs with a zwitterionic surface can considerably facilitate targeting yield of NPs and provide a promising new type of nanocarriers in biological applications.

  16. Oral pathology in inflammatory bowel disease

    PubMed Central

    Muhvić-Urek, Miranda; Tomac-Stojmenović, Marija; Mijandrušić-Sinčić, Brankica

    2016-01-01

    The incidence of inflammatory bowel diseases (IBD) - Crohn’s disease (CD) and ulcerative colitis (UC) - has been increasing on a global scale, and progressively, more gastroenterologists will be included in the diagnosis and treatment of IBD. Although IBD primarily affects the intestinal tract, extraintestinal manifestations of the disease are often apparent, including in the oral cavity, especially in CD. Specific oral manifestations in patients with CD are as follows: indurate mucosal tags, cobblestoning and mucogingivitis, deep linear ulcerations and lip swelling with vertical fissures. The most common non-specific manifestations, such as aphthous stomatitis and angular cheilitis, occur in both diseases, while pyostomatitis vegetans is more pronounced in patients with UC. Non-specific lesions in the oral cavity can also be the result of malnutrition and drugs. Malnutrition, followed by anemia and mineral and vitamin deficiency, affects the oral cavity and teeth. Furthermore, all of the drug classes that are applied to the treatment of inflammatory bowel diseases can lead to alterations in the oral cavity due to the direct toxic effects of the drugs on oral tissues, as well as indirect immunosuppressive effects with a risk of developing opportunistic infections or bone marrow suppression. There is a higher occurrence of malignant diseases in patients with IBD, which is related to the disease itself and to the IBD-related therapy with a possible oral pathology. Treatment of oral lesions includes treatment of the alterations in the oral cavity according to the etiology together with treatment of the primary intestinal disease, which requires adequate knowledge and a strong cooperation between gastroenterologists and specialists in oral medicine. PMID:27433081

  17. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    PubMed

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons.

    PubMed

    Prouty, Eric W; Chandler, Daniel J; Waterhouse, Barry D

    2017-11-15

    Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles

    PubMed Central

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping

    2015-01-01

    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  20. Dissortativity and duplications in oral cancer

    NASA Astrophysics Data System (ADS)

    Shinde, Pramod; Yadav, Alok; Rai, Aparna; Jalan, Sarika

    2015-08-01

    More than 300 000 new cases worldwide are being diagnosed with oral cancer annually. Complexity of oral cancer renders designing drug targets very difficult. We analyse protein-protein interaction network for the normal and oral cancer tissue and detect crucial changes in the structural properties of the networks in terms of the interactions of the hub proteins and the degree-degree correlations. Further analysis of the spectra of both the networks, while exhibiting universal statistical behaviour, manifest distinction in terms of the zero degeneracy, providing insight to the complexity of the underlying system.

  1. Characteristics and predictors of oral cancer knowledge in a predominantly African American community

    PubMed Central

    Adjei Boakye, Eric; Hussaini, Adnan S.; Sujijantarat, Nanthiya; Ganesh, Rajan N.; Snider, Matthew; Thompson, Devin; Varvares, Mark A.

    2017-01-01

    Purpose To characterize smoking and alcohol use, and to describe predictors of oral cancer knowledge among a predominantly African-American population. Methods A cross-sectional study was conducted between September, 2013 among drag racers and fans in East St. Louis. Oral cancer knowledge was derived from combining questionnaire items to form knowledge score. Covariates examined included age, sex, race, marital status, education status, income level, insurance status, tobacco and alcohol use. Adjusted linear regression analysis measured predictors of oral cancer knowledge. Results Three hundred and four participants completed questionnaire; 72.7% were African Americans. Smoking rate was 26.7%, alcohol use was 58.3%, and mean knowledge score was 4.60 ± 2.52 out of 17. In final adjusted regression model, oral cancer knowledge was associated with race and education status. Compared with Caucasians, African Americans were 29% less likely to have high oral cancer knowledge (β = -0.71; 95% CI: -1.35, -0.07); and participants with a high school diploma or less were 124% less likely to have high oral cancer knowledge compared with college graduates (β = -1.24; 95% CI: -2.44, -0.41). Conclusions There was lower oral cancer knowledge among African Americans and those with low education. The prevalence of smoking was also very high. Understanding predictors of oral cancer knowledge is important in future design of educational interventions specifically targeted towards high-risk group for oral cancer. PMID:28545057

  2. Combination therapy of potential gene to enhance oral cancer therapeutic effect

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hsien; Hsu, Yih-Chih

    2015-03-01

    The epidermal growth factor receptor (EGFR) over-regulation related to uncontrolled cell division and promotes progression in tumor. Over-expression of human epidermal growth factor receptor (EGFR) has been detected in oral cancer cells. EGFR-targeting agents are potential therapeutic modalities for treating oral cancer based on our in vitro study. Liposome nanotechnology is used to encapsulate siRNA and were modified with target ligand to receptors on the surface of tumor cells. We used EGFR siRNA to treat oral cancer in vitro.

  3. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.

    PubMed

    Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon

    2015-05-20

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.

  4. Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice

    PubMed Central

    Zhang, Baozhen; Tan, Lunbo; Yu, Yan; Wang, Baobei; Chen, Zhilong; Han, Jinyu; Li, Mengxia; Chen, Jie; Xiao, Tianxia; Ambati, Balamurali K; Cai, Lintao; Yang, Qing; Nayak, Nihar R; Zhang, Jian; Fan, Xiujun

    2018-01-01

    Rationale: The availability of therapeutics to treat pregnancy complications is severely lacking, mainly due to the risk of harm to the fetus. In placental malaria, Plasmodium falciparum-infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) on the surfaces of trophoblasts. Based on this principle, we have developed a method for targeted delivery of payloads to the placenta using a synthetic placental CSA-binding peptide (plCSA-BP) derived from VAR2CSA, a CSA-binding protein expressed on IEs. Methods: A biotinylated plCSA-BP was used to examine the specificity of plCSA-BP binding to mouse and human placental tissue in tissue sections in vitro. Different nanoparticles, including plCSA-BP-conjugated nanoparticles loaded with indocyanine green (plCSA-INPs) or methotrexate (plCSA-MNPs), were administered intravenously to pregnant mice to test their efficiency at drug delivery to the placenta in vivo. The tissue distribution and localization of the plCSA-INPs were monitored in live animals using an IVIS imaging system. The effect of plCSA-MNPs on fetal and placental development and pregnancy outcome were examined using a small-animal high-frequency ultrasound (HFUS) imaging system, and the concentrations of methotrexate in fetal and placental tissues were measured using high-performance liquid chromatography (HPLC). Results: plCSA-BP binds specifically to trophoblasts and not to other cell types in the placenta or to CSA-expressing cells in other tissues. Moreover, we found that intravenously administered plCSA-INPs accumulate in the mouse placenta, and ex vivo analysis of the fetuses and placentas confirmed placenta-specific delivery of these nanoparticles. We also demonstrate successful delivery of methotrexate specifically to placental cells by plCSA-BP-conjugated nanoparticles, resulting in dramatic impairment of placental and fetal development. Importantly, plCSA-MNPs treatment had no apparent adverse effects on maternal

  5. Oral lichen planus to oral lichenoid lesions: Evolution or revolution

    PubMed Central

    Dudhia, Bhavin B; Dudhia, Sonal B; Patel, Purv S; Jani, Yesha V

    2015-01-01

    The diagnosis between different diseases may be impaired by clinical and histopathologic similarities, as observed in the oral lichen planus (OLP) and oral lichenoid lesion (OLL). Inspite of similar clinicopathological features; etiology, diagnosis and prognosis differ which mandates separation of OLL from OLP. Hence, it is essential for the oral physician and oral pathologist to be familiarized with the individual variations among clinicopathological features of OLP and OLL as well as to obtain a thorough history and perform a complete mucocutaneous examination in addition to specific diagnostic testing. The difficulties faced to establish the diagnosis between these two pathologies are widely investigated in the literature with a lack of definite conclusion. This review is an attempt to throw some light on these clinicopathologic entities with the aim to resolve the diagnostic dilemma. PMID:26980966

  6. A marketing campaign to promote screening for oral cancer.

    PubMed

    Ismail, Amid I; Jedele, Jenefer M; Lim, Sungwoo; Tellez, Marisol

    2012-09-01

    Organizers of the Detroit Oral Cancer Prevention Project at the University of Michigan, Ann Arbor, launched a multifaceted media campaign targeted toward a high-risk population to raise awareness about oral cancer, educate the public regarding the importance of early detection and increase screening rates. The authors present data about the effectiveness of the campaign with regard to the screening behaviors of medical and dental providers. Before the start of the campaign and during each of the three years of the campaign, the authors mailed surveys to random samples of physicians and dentists practicing in targeted and non-targeted areas. More dentists than physicians reported screening patients routinely, and dentists reported that they referred more patients for biopsy or further evaluation compared with physicians. A larger proportion of dentists and physicians in the targeted area than in the nontargeted area reported that their patients had seen or heard the advertisements. A larger proportion of dentists in the targeted area than in the nontargeted area reported an increase in patients' questions and requests for screening, even after the authors accounted for demographic characteristics (adjusted odds ratio = 2.47). The survey findings show that the media campaign was effective in influencing providers' screening for signs and symptoms of oral cancer. An increase in patients' requests for screening as a result of the implementation of mass media campaigns may promote oral cancer screening and improve patients' chances of survival.

  7. Targeting of Survivin Pathways by YM155 Inhibits Cell Death and Invasion in Oral Squamous Cell Carcinoma Cells.

    PubMed

    Zhang, Wei; Liu, Yuan; Li, Yu Feng; Yue, Yun; Yang, Xinghua; Peng, Lin

    2016-01-01

    Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer therapy. The small molecule compound YM155 has been described as the first "Survivin suppressant" but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. Survivin protein plays critical roles in oral squamous cell carcinoma (OSCC), suggesting that YM155 would be extremely valuable for OSCC. In this study, we tested our hypothesis whether YM155 could be an effective inhibitor of cell growth, invasion and angiogenesis in oral squamous cell carcinoma (OSCC) cells. SCC9 and SCC25 were treated with different concentration of YM155 for indicated time. Using MTT assay and flow cytometry analysis to detect cell growth and apoptosis; Using transwell and Wound healing assay to detect migration and invasion; Using reverse transcription-PCR, Western blotting and electrophoretic mobility shift assay for measuring gene and protein expression, and DNA binding activity of NF-x03BA;B. YM155 inhibited survivin-rich expressed SCC9 cell growth in a dose- and time dependent manner. This was accompanied by increased apoptosis and concomitant attenuation of NF-x03BA;B and downregulation of NF-x03BA;B downstream genes MMP-9, resulting in the inhibition of SCC9 cell migration and invasion in vitro and caused antitumor activity and anti metastasis in vivo. YM155 treatment did not affect cell growth, apoptosis and invasion of surviving-poor expressed SCC25 cells in vitro. YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin signaling processes. Our findings provide evidence showing that YM155 could act as a small molecule survivin inhibitor on survivin-rich expressed SCC9 cells in culture as well as when grown as tumor in a xenograft model. We also suggest that survivin could be further developed as a potential therapeutic agent for the treatment of survivin-rich expressed

  8. Targeted Nanodiamonds as Phenotype Specific Photoacoustic Contrast Agents for Breast Cancer

    PubMed Central

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird

    2015-01-01

    Aim The aim is to develop irradiated nanodiamonds (INDs) as a molecularly-targeted contrast agent for high resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. Materials & Methods The surface of acid treated radiation-damaged nanodiamonds was grafted with polyethylene glycol (PEG) to improve its stability and circulation time in blood, followed by conjugation to an anti-Human epidermal growth factor receptor-2 (HER2) peptide (KCCYSL) with a final nanoparticle size of ca. 92 nm. Immunocompetent mice bearing orthotopic HER2 positive or negative tumors were administered INDs and PA imaged using an 820-nm near infrared laser. Results PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 hours. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are non-toxic. Conclusions PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high resolution (sub-mm) and phenotype specific monitoring of cancer growth. PMID:25723091

  9. Supervised oral HIV self-testing is accurate in rural KwaZulu-Natal, South Africa.

    PubMed

    Martínez Pérez, Guillermo; Steele, Sarah J; Govender, Indira; Arellano, Gemma; Mkwamba, Alec; Hadebe, Menzi; van Cutsem, Gilles

    2016-06-01

    To achieve UNAIDS 90-90-90 targets, alternatives to conventional HIV testing models are necessary in South Africa to increase population awareness of their HIV status. One of the alternatives is oral mucosal transudates-based HIV self-testing (OralST). This study describes implementation of counsellor-introduced supervised OralST in a high HIV prevalent rural area. Cross-sectional study conducted in two government-run primary healthcare clinics and three Médecins Sans Frontières-run fixed-testing sites in uMlalazi municipality, KwaZulu-Natal. Lay counsellors sampled and recruited eligible participants, sought informed consent and demonstrated the use of the OraQuick(™) OralST. The participants used the OraQuick(™) in front of the counsellor and underwent a blood-based Determine(™) and a Unigold(™) rapid diagnostic test as gold standard for comparison. Primary outcomes were user error rates, inter-rater agreement, sensitivity, specificity and predictive values. A total of 2198 participants used the OraQuick(™) , of which 1005 were recruited at the primary healthcare clinics. Of the total, 1457 (66.3%) were women. Only two participants had to repeat their OraQuick(™) . Inter-rater agreement was 99.8% (Kappa 0.9925). Sensitivity for the OralST was 98.7% (95% CI 96.8-99.6), and specificity was 100% (95% CI 99.8-100). This study demonstrates high inter-rater agreement, and high accuracy of supervised OralST. OralST has the potential to increase uptake of HIV testing and could be offered at clinics and community testing sites in rural South Africa. Further research is necessary on the potential of unsupervised OralST to increase HIV status awareness and linkage to care. © 2016 John Wiley & Sons Ltd.

  10. Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry

    PubMed Central

    Zlitni, Aimen; Yin, Melissa; Janzen, Nancy; Chatterjee, Samit; Lisok, Ala; Gabrielson, Kathleen L.; Nimmagadda, Sridhar; Pomper, Martin G.; Foster, F. Stuart

    2017-01-01

    Prostate specific membrane antigen (PSMA) targeted microbubbles (MBs) were developed using bioorthogonal chemistry. Streptavidin-labeled MBs were treated with a biotinylated tetrazine (MBTz) and targeted to PSMA expressing cells using trans-cyclooctene (TCO)-functionalized anti-PSMA antibodies (TCO-anti-PSMA). The extent of MB binding to PSMA positive cells for two different targeting strategies was determined using an in vitro flow chamber. The initial approach involved pretargeting, where TCO-anti-PSMA was first incubated with PSMA expressing cells and followed by MBTz, which subsequently showed a 2.8 fold increase in the number of bound MBs compared to experiments performed in the absence of TCO-anti-PSMA. Using direct targeting, where TCO-anti-PSMA was linked to MBTz prior to initiation of the assay, a 5-fold increase in binding compared to controls was observed. The direct targeting approach was subsequently evaluated in vivo using a human xenograft tumor model and two different PSMA-targeting antibodies. The US signal enhancements observed were 1.6- and 5.9-fold greater than that for non-targeted MBs. The lead construct was also evaluated in a head-to-head study using mice bearing both PSMA positive or negative tumors in separate limbs. The human PSMA expressing tumors exhibited a 2-fold higher US signal compared to those tumors deficient in human PSMA. The results demonstrate both the feasibility of preparing PSMA-targeted MBs and the benefits of using bioorthogonal chemistry to create targeted US probes. PMID:28472168

  11. A Generalizable Platform for Interrogating Target- and Signal-Specific Consequences of Electrophilic Modifications in Redox-Dependent Cell Signaling

    PubMed Central

    Lin, Hong-Yu; Haegele, Joseph A.; Disare, Michael T.; Lin, Qishan; Aye, Yimon

    2015-01-01

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized “electrophile toolbox” with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology—T-REX (targetable reactive electrophiles & oxidants)—is established by: (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein—one of several redox-sensitive regulators of the Nrf2–ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2–ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background. PMID:25909755

  12. Oral and maxillofacial surgery: what are the French specificities?

    PubMed

    Herlin, Christian; Goudot, Patrick; Jammet, Patrick; Delaval, Christophe; Yachouh, Jacques

    2011-05-01

    Oral and maxillofacial surgery has expanded rapidly over the past century. Recognition in France has grown since the first face transplantation in the world performed by Professor Bernard Devauchelle. This speciality, which seems to correspond to a narrow scope of services, actually involves oral, plastic, reconstructive, and cosmetic surgeries of the face. French training for maxillofacial surgeons differs from the Anglo-Saxon course of study. After examining surveys carried out in Great Britain, the United States, and Brazil, the perception of this speciality in the general public and among regular correspondents (general practitioners and dental practitioners) was ascertained. More than 4,000 questionnaires were sent to health care workers and patients attending dental practices. The returned questionnaires concerning recognition of this profession in France were analyzed. Evaluating awareness of maxillofacial surgery among practitioners and the public was of particular interest because it can overlap with several other specialities (ear, nose, and throat; plastic surgery; odontology). The questionnaire included the 20 items used in other similar studies so the results could be compared. Several fields of expertise were identified in maxillofacial surgery, in particular traumatology, surgery for facial birth defects, and orthognathic surgery. Moreover, dental practitioners were found to be the most regular correspondents of maxillofacial surgeons compared with general practitioners. Compared with Anglo-Saxon and Brazilian peers, French recognition of maxillofacial surgery was better. Despite encouraging results, maxillofacial surgery remains a somewhat obscure speciality for health care workers and the general public. Better awareness is necessary for this speciality to become the reference in facial surgery. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Diets Supplemented with 1% Egg White Induce Oral Desensitization and Immune Tolerance in an Egg White-Specific Allergic Mouse Model.

    PubMed

    Maeta, Akihiro; Matsushima, Marin; Katahira, Risako; Sakamoto, Natsumi; Takahashi, Kyoko

    2018-05-30

    The objective of this study was to determine the required concentration of egg white (EW) in the diet to induce oral desensitization and/or immune tolerance within 4 weeks of oral immunotherapy (OIT) in an EW allergic mouse model. Female BALB/c mice were systemically sensitized to EW by intraperitoneal injections and subsequently subjected to oral allergen gavage. Sensitized mice were provided 4 weeks of OIT by supplementing with 0 (non-OIT), 0.01, 0.1, or 1% EW in a 20% casein diet. Nonsensitized mice served as the nonallergy group. We performed oral and intraperitoneal EW challenges, assessed vascular permeability in the dorsal skin, and measured allergic biomarkers. The change in rectal temperature after oral challenge was not significantly different between the nonallergy and 1% EW groups, and the frequency of diarrhea in the 1% EW group was lower than that in the non-OIT group. The levels of plasma ovomucoid-specific IgE, IgA, and IgG2a in the 1% EW group at the study endpoint were significantly lower than those in the non-OIT group. IFN-γ and IL-10 secretions of spleen lymphocytes in the 1% EW group were significantly higher than those in the non-OIT group, and the percentage of CD4+Foxp3+ cells in the 1% EW group was higher than that in the non-OIT group. These results suggested that diet supplemented with 1% EW can induce oral desensitization and immune tolerance in the EW allergic mouse model. © 2018 S. Karger AG, Basel.

  14. Chitosan microparticles loaded with yeast-derived PCV2 virus-like particles elicit antigen-specific cellular immune response in mice after oral administration.

    PubMed

    Bucarey, Sergio A; Pujol, Myriam; Poblete, Joaquín; Nuñez, Ignacio; Tapia, Cecilia V; Neira-Carrillo, Andrónico; Martinez, Jonatán; Bassa, Oliver

    2014-08-20

    Porcine circovirus type 2 (PCV2)-associated diseases are a major problem for the swine industry worldwide. In addition to improved management and husbandry practices, the availability of several anti-PCV2 vaccines provides an efficient immunological option for reducing the impact of these diseases. Most anti-PCV2 vaccines are marketed as injectable formulations. Although these are effective, there are problems associated with the use of injectable products, including laborious and time-consuming procedures, the induction of inflammatory responses at the injection site, and treatment-associated stress to the animals. Oral vaccines represent an improvement in antigen delivery technology; they overcome the problems associated with injection management and facilitate antigen boosting when an animals' immunity falls outside the protective window. Chitosan microparticles were used as both a vehicle and mucosal adjuvant to deliver yeast-derived PCV2 virus-like particles (VLPs) in an attempt to develop an oral vaccine. The physical characteristics of the microparticles, including size, Zeta potential, and polydispersity, were examined along with the potential to induce PCV2-specific cellular immune responses in mice after oral delivery. Feeding mice with PCV2 VLP-loaded, positively-charged chitosan microparticles with an average size of 2.5 μm induced the proliferation of PCV2-specific splenic CD4+/CD8+ lymphocytes and the subsequent production of IFN-γ to levels comparable with those induced by an injectable commercial formulation. Chitosan microparticles appear to be a safe, simple system on which to base PCV2 oral vaccines. Oral chitosan-mediated antigen delivery is a novel strategy that efficiently induces anti-PCV2 cellular responses in a mouse model. Further studies in swine are warranted.

  15. Associations between adult attachment and: oral health-related quality of life, oral health behaviour, and self-rated oral health.

    PubMed

    Meredith, Pamela; Strong, Jenny; Ford, Pauline; Branjerdporn, Grace

    2016-02-01

    Although adult attachment theory has been revealed as a useful theoretical framework for understanding a range of health parameters, the associations between adult attachment patterns and a range of oral health parameters have not yet been examined. The aim of this study was to examine potential associations between attachment insecurity and: (1) oral health-related quality of life (OHRQoL), (2) oral health behaviours, and (3) self-rated oral health. In association with this aim, sample characteristics were compared with normative data. The sample in this cross-sectional study was comprised of 265 healthy adults, recruited via convenience sampling. Data were collected on attachment patterns (Experiences in Close Relationships Scale-Short Form, ECR-S), OHRQoL (Oral Health Impact Profile-14, OHIP-14), oral health behaviours (modified Dental Neglect Scale, m-DNS), and self-rated oral health (one-item global rating of oral health). Multivariate regression models were performed. Both dimensions of attachment insecurity were associated with lowered use of favourable dental visiting behaviours, as well as decreased OHRQoL for both overall well-being and specific aspects of OHRQoL. Attachment avoidance was linked with diminished self-rated oral health. This study supports the potential value of an adult attachment framework for understanding a range of oral health parameters. The assessment of a client's attachment pattern may assist in the identification of people who are at risk of diminished OHRQoL, less adaptive dental visiting behaviours, or poorer oral health. Further research in this field may inform ways in which attachment approaches can enhance oral health-related interventions.

  16. Heterobivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen (PSMA) and Hepsin

    DTIC Science & Technology

    2014-11-01

    Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin PRINCIPAL INVESTIGATOR: Youngjoo Byun, Ph. D. CONTRACTING ORGANIZATION: Korea...Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin 5b. GRANT NUMBER W81XWH-10-1-0189 5c. PROGRAM ELEMENT NUMBER 6...heterobivalent conjugates of PSMA /hepsin-binding ligands labeled with optical dyes or radionuclides. The sensitivity and accuracy of prostate cancer

  17. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  18. Design specification for the European Spallation Source neutron generating target element

    NASA Astrophysics Data System (ADS)

    Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J. M.; Martinez, J. L.; Bermejo, F. J.

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  19. Theories in Developing Oral Communication for Specific Learner Group

    ERIC Educational Resources Information Center

    Hadi, Marham Jupri

    2016-01-01

    The current article presents some key theories most relevant to the development of oral communication skills in an Indonesian senior high school. Critical analysis on the learners' background is employed to figure out their strengths and weaknesses. The brief overview of the learning context and learners' characteristic are used to identify which…

  20. Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting

    PubMed Central

    Wang, Qi; Heizer, Esley; Rosa, Bruce A.; Wildman, Scott A.; Janetka, James W.; Mitreva, Makedonka

    2016-01-01

    Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3,000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite’s protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented that illustrate the close proximity of the indel to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. The study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. PMID:26829384

  1. Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting.

    PubMed

    Wang, Qi; Heizer, Esley; Rosa, Bruce A; Wildman, Scott A; Janetka, James W; Mitreva, Makedonka

    2016-04-01

    Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite's protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented illustrating the close proximity of some indels to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. This study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Targeting epigenetics for the treatment of prostate cancer: recent progress and future directions.

    PubMed

    Lin, Jianqing; Wang, Chenguang; Kelly, Wm Kevin

    2013-06-01

    Epigenetic aberrations contribute to prostate cancer carcinogenesis and disease progression. Efforts have been made to target DNA methyltransferase and histone deacetylases (HDACs) in prostate cancer and other solid tumors but have not had the success that was seen in the hematologic malignancies. Oral, less toxic, and more specific agents are being developed in solid tumors including prostate cancer. Combinations of epigenetic agents alone or with a targeted agent such as androgen receptor signaling inhibitors are promising approaches and will be discussed further. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Post-licensure deployment of oral cholera vaccines: a systematic review

    PubMed Central

    Martin, Stephen; Lopez, Anna Lena; Bellos, Anna; Ali, Mohammad; Alberti, Kathryn; Anh, Dang Duc; Costa, Alejandro; Grais, Rebecca F; Legros, Dominique; Luquero, Francisco J; Ghai, Megan B; Perea, William; Sack, David A

    2014-01-01

    Abstract Objective To describe and analyse the characteristics of oral cholera vaccination campaigns; including location, target population, logistics, vaccine coverage and delivery costs. Methods We searched PubMed, the World Health Organization (WHO) website and the Cochrane database with no date or language restrictions. We contacted public health personnel, experts in the field and in ministries of health and did targeted web searches. Findings A total of 33 documents were included in the analysis. One country, Viet Nam, incorporates oral cholera vaccination into its public health programme and has administered approximately 10.9 million vaccine doses between 1997 and 2012. In addition, over 3 million doses of the two WHO pre-qualified oral cholera vaccines have been administered in more than 16 campaigns around the world between 1997 and 2014. These campaigns have either been pre-emptive or reactive and have taken place under diverse conditions, such as in refugee camps or natural disasters. Estimated two-dose coverage ranged from 46 to 88% of the target population. Approximate delivery cost per fully immunized person ranged from 0.11–3.99 United States dollars. Conclusion Experience with oral cholera vaccination campaigns continues to increase. Public health officials may draw on this experience and conduct oral cholera vaccination campaigns more frequently. PMID:25552772

  4. The community care model of the Intercountry Centre for Oral Health at Chiangmai, Thailand.

    PubMed

    Anumanrajadhon, T; Rajchagool, S; Nitisiri, P; Phantumvanit, P; Songpaisan, Y; Barmes, D E; Sardo-Infirri, J; Davies, G N; Møller, I J; Pilot, T

    1996-08-01

    The Intercountry Centre for Oral Health opened in Chiangmai, Thailand, in November, 1981. In 1984, as part of its mandate to promote new approaches to the delivery of oral health care, it initiated a demonstration project known as the Community Care Model for Oral Health. Logistic, financial and organisational difficulties prevented the full implementation of the original plan. Nevertheless, consideration of the strengths and weaknesses of the Model has provided valuable suggestions for adoption by national and international health agencies interested in adopting a primary health care approach to the delivery of oral health services. Important features which could be appropriate for disadvantaged communities include: integration into the existing health service infrastructure; emphasis on health promotion and prevention; minimal clinical interventions; an in-built monitoring and evaluation system based on epidemiological principles, full community participation in planning and implementation; the establishment of specific targets and goals; the instruction of all health personnel, teachers and senior students in the basic principles of the recognition, prevention and control of oral diseases and conditions; the application of relevant principles of Performance Logic to training; and the provision of a clear career path for all health personnel.

  5. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    PubMed Central

    D’Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Kinghorn, A. Douglas; Ding, Haiming

    2011-01-01

    Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003), was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compound 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. PMID:21596018

  6. Hypermethylated ZNF582 and PAX1 genes in mouth rinse samples as biomarkers for oral dysplasia and oral cancer detection.

    PubMed

    Cheng, Shih-Jung; Chang, Chi-Feng; Ko, Hui-Hsin; Lee, Jang-Jaer; Chen, Hsin-Ming; Wang, Huei-Jen; Lin, Hsiao-Shan; Chiang, Chun-Pin

    2018-02-01

    Effective biomarkers for oral cancer screening are important for early diagnosis and treatment of oral cancer. Oral epithelial cell samples collected by mouth rinse were obtained from 65 normal control subjects, 108 patients with oral potentially malignant disorders, and 94 patients with oral squamous cell carcinoma (OSCC). Methylation levels of zinc-finger protein 582 (ZNF582) and paired-box 1 (PAX1) genes were quantified by real-time methylation-specific polymerase chain reaction after bisulfite conversion. An abrupt increase in methylated ZNF582 (ZNF582 m ) and PAX1 (PAX1 m ) levels and positive rates from mild dysplasia to moderate/severe dysplasia, indicating that both ZNF582 m and PAX1 m are effective biomarkers for differentiating moderate dysplasia or worse (MODY+) oral lesions. When ZNF582 m /PAX1 m tests were used for identifying MODY+ oral lesions, the sensitivity, specificity, and odds ratio (OR) were 0.65/0.64, 0.75/0.82, and 5.6/8.0, respectively. Hypermethylated ZNF582 and PAX1 genes in oral epithelial cells collected by mouth rinse are effective biomarkers for the detection of oral dysplasia and oral cancer. © 2017 Wiley Periodicals, Inc.

  7. Charomers-Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery.

    PubMed

    Hahn, Ulrich

    2017-12-06

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2'-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers-in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  8. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation.

    PubMed

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-12-01

    Therapeutic peptides are conventionally administered via subcutaneous injection. Chitosan-based nanoparticles are gaining increased attention for their ability to serve as a carrier for oral delivery of peptides and vaccination. They offered superior biocompatibiltiy, controlled drug release profile and facilitated gastrointestinal (GI) absorption. The encapsulated peptides can withstand enzymatic degradation and various pH. Chitosan-based nanoparticles can also be modified by ligand conjugation to the surface of nanoparticle for transcellular absorption and specific-targeted delivery of macromolecules to the tissue of interest. Current research suggests that chitosan-based nanoparticles can deliver therapeutic peptide for the treatment of several medical conditions such as diabetes, bacterial infection and cancer. This review summarises the role of chitosan in oral nanoparticle delivery and identifies the clinical application of peptide-loaded chitosan-based nanoparticles.

  9. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    NASA Technical Reports Server (NTRS)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  10. Combined determination of circulating miR-196a and miR-196b levels produces high sensitivity and specificity for early detection of oral cancer.

    PubMed

    Lu, Ya-Ching; Chang, Joseph Tung-Chieh; Huang, Yu-Chen; Huang, Chi-Che; Chen, Wen-Ho; Lee, Li-Yu; Huang, Bing-Shen; Chen, Yin-Ju; Li, Hsiao-Fang; Cheng, Ann-Joy

    2015-02-01

    The aim of this study was to determine whether the oncogenic microRNA family members miR-196a and miR-196b can be circulating biomarkers for the early detection of oral cancer. To determine the stability of circulating miRNA, the blood sample was aliquot and stored at different temperature conditions for analysis. To assess the diagnostic efficacy, we determined the levels of miR-196s in plasma samples, including 53 from healthy individuals, 16 from pre-cancer patients, and 90 from oral cancer patients. In general, circulating miRNA was very stable when storing plasma samples at -20°C or below. In clinical study, both circulating miR-196a and miR-196b were substantially up-regulated in patients with oral pre-cancer lesions (5.9- and 14.8-fold, respectively; P < 0.01), as well as in oral cancer patients (9.3- and 17.0-fold, respectively; P < 0.01). These results show prominent discrimination between normal and pre-cancer patients (AUC = 0.764 or 0.840, miR-196a or miR-196b, respectively), and between normal and cancer patients (AUC = 0.864 or 0.960, miR-196a or miR-196b, respectively). The combined determination of miR-196a and miR-196b levels produces excellent sensitivity and specificity in the diagnosis of patients with oral pre-cancer (AUC = 0.845) or oral cancer (AUC = 0.963), as well as in the prediction of potential malignancy (AUC = 0.950, sensitivity = 91%, specificity = 85%). Combined determination of circulating miR-196a and miR-196b levels may serve as panel plasma biomarkers for the early detection of oral cancer. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. Nanomedicine, an emerging therapeutic strategy for oral cancer therapy.

    PubMed

    Marcazzan, Sabrina; Varoni, Elena Maria; Blanco, Elvin; Lodi, Giovanni; Ferrari, Mauro

    2018-01-01

    Oral cavity and oropharyngeal carcinomas (oral cancer) represents a significant cause of morbidity and mortality. Despite efforts in improving early diagnosis and treatment, the 5-year survival rate of advanced stage of the disease is less than 63%. The field of nanomedicine has offered promising diagnostic and therapeutic advances in cancer. Indeed, several platforms have been clinically approved for cancer therapy, while other promising systems are undergoing exploration in clinical trials. With its ability to deliver drugs, nucleic acids, and MRI contrast agents with high efficiency, nanomedicine platforms offer the potential to improve drug efficacy and tolerability. The aim of the present mini-review is to summarize the current preclinical status of nanotechnology systems for oral cancer therapy. The nanoplatforms for delivery of chemopreventive agents presented herein resulted in significantly higher anti-tumor activity than free forms of the drug, even against a chemo-resistant cell line. Impressive results have also been obtained using nanoparticles to deliver chemotherapeutics, resulting in reduced toxicity both in vitro and in vivo. Nanoparticles have also led to improvements in efficacy of photodynamic therapies through the development of targeted magnetic nanoparticles. Finally, gene therapy using nanoparticles demonstrated promising results specifically with regards to inhibition of gene expression. Of the few in vivo studies that have been reported, many of these used animal models with several limitations, which will be discussed herein. Lastly, we will discuss several future perspectives in oral cancer nanoparticle-based therapy and the development of appropriate animal models, distinguishing between oral cavity and oropharyngeal carcinoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Oral cancer screening: serum Raman spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Sahu, Aditi K.; Dhoot, Suyash; Singh, Amandeep; Sawant, Sharada S.; Nandakumar, Nikhila; Talathi-Desai, Sneha; Garud, Mandavi; Pagare, Sandeep; Srivastava, Sanjeeva; Nair, Sudhir; Chaturvedi, Pankaj; Murali Krishna, C.

    2015-11-01

    Serum Raman spectroscopy (RS) has previously shown potential in oral cancer diagnosis and recurrence prediction. To evaluate the potential of serum RS in oral cancer screening, premalignant and cancer-specific detection was explored in the present study using 328 subjects belonging to healthy controls, premalignant, disease controls, and oral cancer groups. Spectra were acquired using a Raman microprobe. Spectral findings suggest changes in amino acids, lipids, protein, DNA, and β-carotene across the groups. A patient-wise approach was employed for data analysis using principal component linear discriminant analysis. In the first step, the classification among premalignant, disease control (nonoral cancer), oral cancer, and normal samples was evaluated in binary classification models. Thereafter, two screening-friendly classification approaches were explored to further evaluate the clinical utility of serum RS: a single four-group model and normal versus abnormal followed by determining the type of abnormality model. Results demonstrate the feasibility of premalignant and specific cancer detection. The normal versus abnormal model yields better sensitivity and specificity rates of 64 and 80% these rates are comparable to standard screening approaches. Prospectively, as the current screening procedure of visual inspection is useful mainly for high-risk populations, serum RS may serve as a useful adjunct for early and specific detection of oral precancers and cancer.

  13. Impact of oral rehabilitation on patients with head and neck cancer: A study using the Liverpool Oral Rehabilitation Questionnaire and the Oral Health Impact Profile-14.

    PubMed

    Dholam, Kanchan P; Dugad, Jinesh A; Sadashiva, Karthik M

    2017-04-01

    The treatment of oral cancers affects oral functions and quality of life (QOL). Dental rehabilitation is a major step toward enhancing quality of life after controlling the disease. The effects of the disease, treatment, and rehabilitation need to be evaluated to assess oral health-related QOL. The Liverpool Oral Rehabilitation Questionnaire version 3 (LORQv3) and Oral Health Impact Profile-14 (OHIP-14) are specific assessment questionnaires of oral rehabilitation. The purpose of this study was to assess the impact of oral rehabilitation on patients with head and neck cancer by using the LORQv3 and OHIP-14 questionnaires and to discover and document specific patient-derived problems related to the issues of oral rehabilitation. The LORQv3 and OHIP-14 questionnaires were administered to 60 participants with oral cancer, who were in need of oral rehabilitation. They were asked to rate their dental problems on a Likert scale before fabrication of their prostheses (baseline) and at the 3-month follow-up visit after prosthetic rehabilitation. Paired comparison was done using the Wilcoxon signed rank test according to the distribution, and Cronbach alpha was used to assess internal consistency. Subscale scores were determined by mean value (α=.05). For the LORQv3 questionnaire, a 10% to 27% improvement was found in the domain of oral function, and a 20% improvement in orofacial appearance, with improvement in patient satisfaction with the prosthesis. Using the OHIP-14 questionnaire, a 45% to 67% improvement was generally seen in all domains. After assessment using the LORQv3 and OHIP-14 questionnaires, prosthetic rehabilitation was seen to contribute to the betterment of patients with head and neck cancer. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells.

    PubMed

    Shen, Zheyu; Wu, Hao; Yang, Sugeun; Ma, Xuehua; Li, Zihou; Tan, Mingqian; Wu, Aiguo

    2015-11-01

    One big challenge with active targeting of nanocarriers is non-specific binding between targeting molecules and non-target moieties expressed on non-cancerous cells, which leads to non-specific uptake of nanocarriers by non-cancerous cells. Here, we propose a novel Trojan-horse targeting strategy to hide or expose the targeting molecules of nanocarriers on-demand. The non-specific uptake by non-cancerous cells can be reduced because the targeting molecules are hidden in hydrophilic polymers. The nanocarriers are still actively targetable to cancer cells because the targeting molecules can be exposed on-demand at tumor regions. Typically, Fe3O4 nanocrystals (FN) as magnetic resonance imaging (MRI) contrast agents were encapsulated into albumin nanoparticles (AN), and then folic acid (FA) and pH-sensitive polymers (PP) were grafted onto the surface of AN-FN to construct PP-FA-AN-FN nanoparticles. Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), transmission electron microscope (TEM) and gel permeation chromatography (GPC) results confirm successful construction of PP-FA-AN-FN. According to difference of nanoparticle-cellular uptake between pH 7.4 and 5.5, the weight ratio of conjugated PP to nanoparticle FA-AN-FN (i.e. graft density) and the molecular weight of PP (i.e. graft length) are optimized to be 1.32 and 5.7 kDa, respectively. In vitro studies confirm that the PP can hide ligand FA to prevent it from binding to cells with FRα at pH 7.4 and shrink to expose FA at pH 5.5. In vivo studies demonstrate that our Trojan-horse targeting strategy can reduce the non-specific uptake of the PP-FA-AN-FN by non-cancerous cells. Therefore, our PP-FA-AN-FN might be used as an accurately targeted MRI contrast agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy.

    PubMed

    Wang, Kun; Fan, Daoqing; Liu, Yaqing; Wang, Erkang

    2015-11-15

    Simple, rapid, sensitive and specific detection of cancer cells is of great importance for early and accurate cancer diagnostics and therapy. By coupling nanotechnology and dual-aptamer target binding strategies, we developed a colorimetric assay for visually detecting cancer cells with high sensitivity and specificity. The nanotechnology including high catalytic activity of PtAuNP and magnetic separation & concentration plays a vital role on the signal amplification and improvement of detection sensitivity. The color change caused by small amount of target cancer cells (10 cells/mL) can be clearly distinguished by naked eyes. The dual-aptamer target binding strategy guarantees the detection specificity that large amount of non-cancer cells and different cancer cells (10(4) cells/mL) cannot cause obvious color change. A detection limit as low as 10 cells/mL with detection linear range from 10 to 10(5) cells/mL was reached according to the experimental detections in phosphate buffer solution as well as serum sample. The developed enzyme-free and cost effective colorimetric assay is simple and no need of instrument while still provides excellent sensitivity, specificity and repeatability, having potential application on point-of-care cancer diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets

    PubMed Central

    Mohan, Nimmy; AP, Sudheesh; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S.

    2015-01-01

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3′-end processing. PMID:26138484

  17. Epidemiology of oral HPV in the oral mucosa in women without signs of oral disease from Yucatan, Mexico

    PubMed Central

    Gonzalez-Losa, María del Refugio; Barrera, Ernesto Soria; Herrera-Pech, Verónica; Conde-Ferráez, Laura; Puerto-Solís, Marylin; Ayora-Talavera, Guadalupe

    2015-01-01

    High-risk human papillomaviruses (HR-HPV) are considered necessary for the development of cervical cancer. Furthermore, there is no doubt that some types of oral squamous cell carcinoma are associated with HR-HPV. The epidemiology of oral HPV infections in healthy subjects remains unclear due to a lack of knowledge. The objective of this study was to investigate the epidemiology of human papillomavirus infections of the oral mucosa without pathology. A cross-sectional study was performed; samples from 390 women seeking prenatal care, Pap smears, family planning or gynecological diseases were studied. Oral cells were collected by direct swab sampling. Information regarding sociodemographic status, sexual behavior, infectious diseases, contraceptive history and tobacco and alcohol consumption were obtained through direct interviews. HPV and genotypes were detected by type-specific polymerase chain reaction. Our results revealed that 14% of the women studied had an oral HPV infection. Women ≤ 20 years of age had the highest HPV prevalence (24.5%). In total, seven genotypes were identified, including the high-risk genotypes 16, 18, 58 and 59 and the low-risk genotypes 6, 81 and 13, the latter of which is a type exclusive to oral mucosa. Sexual behavior was not associated with the presence of genital HPV types in the oral mucosa. Genital HPV types were present in the oral mucosa of women without associated clinical manifestations; however, sexual behavior was not associated with infection, and therefore others routes of transmission should be explored. PMID:26221121

  18. A shorter and more specific oral sensitization-based experimental model of food allergy in mice.

    PubMed

    Bailón, Elvira; Cueto-Sola, Margarita; Utrilla, Pilar; Rodríguez-Ruiz, Judith; Garrido-Mesa, Natividad; Zarzuelo, Antonio; Xaus, Jordi; Gálvez, Julio; Comalada, Mònica

    2012-07-31

    Cow's milk protein allergy (CMPA) is one of the most prevalent human food-borne allergies, particularly in children. Experimental animal models have become critical tools with which to perform research on new therapeutic approaches and on the molecular mechanisms involved. However, oral food allergen sensitization in mice requires several weeks and is usually associated with unspecific immune responses. To overcome these inconveniences, we have developed a new food allergy model that takes only two weeks while retaining the main characters of allergic response to food antigens. The new model is characterized by oral sensitization of weaned Balb/c mice with 5 doses of purified cow's milk protein (CMP) plus cholera toxin (CT) for only two weeks and posterior challenge with an intraperitoneal administration of the allergen at the end of the sensitization period. In parallel, we studied a conventional protocol that lasts for seven weeks, and also the non-specific effects exerted by CT in both protocols. The shorter protocol achieves a similar clinical score as the original food allergy model without macroscopically affecting gut morphology or physiology. Moreover, the shorter protocol caused an increased IL-4 production and a more selective antigen-specific IgG1 response. Finally, the extended CT administration during the sensitization period of the conventional protocol is responsible for the exacerbated immune response observed in that model. Therefore, the new model presented here allows a reduction not only in experimental time but also in the number of animals required per experiment while maintaining the features of conventional allergy models. We propose that the new protocol reported will contribute to advancing allergy research. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric; ...

    2017-08-18

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the

  20. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the

  1. Impact of high-flux haemodialysis on the probability of target attainment for oral amoxicillin/clavulanic acid combination therapy.

    PubMed

    Hui, Katrina; Patel, Kashyap; Kong, David C M; Kirkpatrick, Carl M J

    2017-07-01

    Clearance of small molecules such as amoxicillin and clavulanic acid is expected to increase during high-flux haemodialysis, which may result in lower concentrations and thus reduced efficacy. To date, clearance of amoxicillin/clavulanic acid (AMC) during high-flux haemodialysis remains largely unexplored. Using published pharmacokinetic parameters, a two-compartment model with first-order input was simulated to investigate the impact of high-flux haemodialysis on the probability of target attainment (PTA) of orally administered AMC combination therapy. The following pharmacokinetic/pharmacodynamic targets were used to calculate the PTA. For amoxicillin, the time that the free concentration remains above the minimum inhibitory concentration (MIC) of ≥50% of the dosing period (≥50%ƒT >MIC ) was used. For clavulanic acid, the time that the free concentration was >0.1 mg/L of ≥45% of the dosing period (≥45%ƒT >0.1 mg/L ) was used. Dialysis clearance reported in low-flux haemodialysis for both compounds was doubled to represent the likely clearance during high-flux haemodialysis. Monte Carlo simulations were performed to produce concentration-time profiles over 10 days in 1000 virtual patients. Seven different regimens commonly seen in clinical practice were explored. When AMC was dosed twice daily, the PTA was mostly ≥90% for both compounds regardless of when haemodialysis commenced. When administered once daily, the PTA was 20-30% for clavulanic acid and ≥90% for amoxicillin. The simulations suggest that once-daily orally administered AMC in patients receiving high-flux haemodialysis may result in insufficient concentrations of clavulanic acid to effectively treat infections, especially on days when haemodialysis occurs. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  2. Aberrant DNA methylation of tumor-related genes in oral rinse: a noninvasive method for detection of oral squamous cell carcinoma.

    PubMed

    Nagata, Satoshi; Hamada, Tomofumi; Yamada, Norishige; Yokoyama, Seiya; Kitamoto, Sho; Kanmura, Yuji; Nomura, Masahiro; Kamikawa, Yoshiaki; Yonezawa, Suguru; Sugihara, Kazumasa

    2012-09-01

    The early detection of oral squamous cell carcinoma (OSCC) is important, and a screening test with high sensitivity and specificity is urgently needed. Therefore, in this study, the authors investigated the methylation status of tumor-related genes with the objective of establishing a noninvasive method for the detection of OSCC. Oral rinse samples were obtained from 34 patients with OSCC and from 24 healthy individuals (controls). The methylation status of 13 genes was determined by using methylation-specific polymerase chain reaction analysis and was quantified using a microchip electrophoresis system. Promoter methylation in each participant was screened by receiver operating characteristic analysis, and the utility of each gene's methylation status, alone and in combination with other genes, was evaluated as a tool for oral cancer detection. Eight of the 13 genes had significantly higher levels of DNA methylation in samples from patients with OSCC than in controls. The genes E-cadherin (ECAD), transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2), retinoic acid receptor beta (RARβ), and O-6 methylguanine DNA methyltransferase (MGMT) had high sensitivity (>75%) and specificity for the detection of oral cancer. OSCC was detected with 100% sensitivity and 87.5% specificity using a combination of ECAD, TMEFF2, RARβ, and MGMT and with 97.1% sensitivity and 91.7% specificity using a combination of ECAD, TMEFF2, and MGMT. The aberrant methylation of a combination of marker genes present in oral rinse samples was used to detect OSCC with >90% sensitivity and specificity. The detection of methylated marker genes from oral rinse samples has great potential for the noninvasive detection of OSCC. Copyright © 2012 American Cancer Society.

  3. High Accuracy of Common HIV-Related Oral Disease Diagnoses by Non-Oral Health Specialists in the AIDS Clinical Trial Group.

    PubMed

    Shiboski, Caroline H; Chen, Huichao; Secours, Rode; Lee, Anthony; Webster-Cyriaque, Jennifer; Ghannoum, Mahmoud; Evans, Scott; Bernard, Daphné; Reznik, David; Dittmer, Dirk P; Hosey, Lara; Sévère, Patrice; Aberg, Judith A

    2015-01-01

    Many studies include oral HIV-related endpoints that may be diagnosed by non-oral-health specialists (non-OHS) like nurses or physicians. Our objective was to assess the accuracy of clinical diagnoses of HIV-related oral lesions made by non-OHS compared to diagnoses made by OHS. A5254, a cross-sectional study conducted by the Oral HIV/AIDS Research Alliance within the AIDS Clinical Trial Group, enrolled HIV-1-infected adults participants from six clinical trial units (CTU) in the US (San Francisco, New York, Chapel Hill, Cleveland, Atlanta) and Haiti. CTU examiners (non-OHS) received standardized training on how to perform an oral examination and make clinical diagnoses of specific oral disease endpoints. Diagnoses by calibrated non-OHS were compared to those made by calibrated OHS, and sensitivity and specificity computed. Among 324 participants, the majority were black (73%), men (66%), and the median CD4+ cell count 138 cells/mm(3). The overall frequency of oral mucosal disease diagnosed by OHS was 43% in US sites, and 90% in Haiti. Oral candidiasis (OC) was detected in 153 (47%) by OHS, with erythematous candidiasis (EC) the most common type (39%) followed by pseudomembranous candidiasis (PC; 26%). The highest prevalence of OC (79%) was among participants in Haiti, and among those with CD4+ cell count ≤ 200 cells/mm(3) and HIV-1 RNA > 1000 copies/mL (71%). The sensitivity and specificity of OC diagnoses by non-OHS were 90% and 92% (for EC: 81% and 94%; PC: 82% and 95%). Sensitivity and specificity were also high for KS (87% and 94%, respectively), but sensitivity was < 60% for HL and oral warts in all sites combined. The Candida culture confirmation of OC clinical diagnoses (as defined by ≥ 1 colony forming unit per mL of oral/throat rinse) was ≥ 93% for both PC and EC. Trained non-OHS showed high accuracy of clinical diagnoses of OC in comparison with OHS, suggesting their usefulness in studies in resource-poor settings, but detection of less common

  4. Generating target system specifications from a domain model using CLIPS

    NASA Technical Reports Server (NTRS)

    Sugumaran, Vijayan; Gomaa, Hassan; Kerschberg, Larry

    1991-01-01

    The quest for reuse in software engineering is still being pursued and researchers are actively investigating the domain modeling approach to software construction. There are several domain modeling efforts reported in the literature and they all agree that the components that are generated from domain modeling are more conducive to reuse. Once a domain model is created, several target systems can be generated by tailoring the domain model or by evolving the domain model and then tailoring it according to the specified requirements. This paper presents the Evolutionary Domain Life Cycle (EDLC) paradigm in which a domain model is created using multiple views, namely, aggregation hierarchy, generalization/specialization hierarchies, object communication diagrams and state transition diagrams. The architecture of the Knowledge Based Requirements Elicitation Tool (KBRET) which is used to generate target system specifications is also presented. The preliminary version of KBRET is implemented in the C Language Integrated Production System (CLIPS).

  5. Novel quantitative analysis of autofluorescence images for oral cancer screening.

    PubMed

    Huang, Tze-Ta; Huang, Jehn-Shyun; Wang, Yen-Yun; Chen, Ken-Chung; Wong, Tung-Yiu; Chen, Yi-Chun; Wu, Che-Wei; Chan, Leong-Perng; Lin, Yi-Chu; Kao, Yu-Hsun; Nioka, Shoko; Yuan, Shyng-Shiou F; Chung, Pau-Choo

    2017-05-01

    VELscope® was developed to inspect oral mucosa autofluorescence. However, its accuracy is heavily dependent on the examining physician's experience. This study was aimed toward the development of a novel quantitative analysis of autofluorescence images for oral cancer screening. Patients with either oral cancer or precancerous lesions and a control group with normal oral mucosa were enrolled in this study. White light images and VELscope® autofluorescence images of the lesions were taken with a digital camera. The lesion in the image was chosen as the region of interest (ROI). The average intensity and heterogeneity of the ROI were calculated. A quadratic discriminant analysis (QDA) was utilized to compute boundaries based on sensitivity and specificity. 47 oral cancer lesions, 54 precancerous lesions, and 39 normal oral mucosae controls were analyzed. A boundary of specificity of 0.923 and a sensitivity of 0.979 between the oral cancer lesions and normal oral mucosae were validated. The oral cancer and precancerous lesions could also be differentiated from normal oral mucosae with a specificity of 0.923 and a sensitivity of 0.970. The novel quantitative analysis of the intensity and heterogeneity of VELscope® autofluorescence images used in this study in combination with a QDA classifier can be used to differentiate oral cancer and precancerous lesions from normal oral mucosae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Target Specificity of the E3 Ligase LUBAC for Ubiquitin and NEMO Relies on Different Minimal Requirements*

    PubMed Central

    Smit, Judith J.; van Dijk, Willem J.; El Atmioui, Dris; Merkx, Remco; Ovaa, Huib; Sixma, Titia K.

    2013-01-01

    The ubiquitination of NEMO with linear ubiquitin chains by the E3-ligase LUBAC is important for the activation of the canonical NF-κB pathway. NEMO ubiquitination requires a dual target specificity of LUBAC, priming on a lysine on NEMO and chain elongation on the N terminus of the priming ubiquitin. Here we explore the minimal requirements for these specificities. Effective linear chain formation requires a precise positioning of the ubiquitin N-terminal amine in a negatively charged environment on the top of ubiquitin. Whereas the RBR-LDD region on HOIP is sufficient for targeting the ubiquitin N terminus, the priming lysine modification on NEMO requires catalysis by the RBR domain of HOIL-1L as well as the catalytic machinery of the RBR-LDD domains of HOIP. Consequently, target specificity toward NEMO is determined by multiple LUBAC components, whereas linear ubiquitin chain elongation is realized by a specific interplay between HOIP and ubiquitin. PMID:24030825

  7. Impact of Oral Health Education on Oral Health Knowledge of Private School Children in Riyadh City, Saudi Arabia

    PubMed Central

    Al Saffan, Abdulrahman Dahham; Baseer, Mohammad Abdul; Alshammary, Abdul Aziz; Assery, Mansour; Kamel, Ashraf; Rahman, Ghousia

    2017-01-01

    Aims and Objectives: To assess the early effect of oral health education on oral health knowledge of primary and intermediate school students of private schools by utilizing pre/post questionnaires data from oral health educational projects in Riyadh city, Saudi Arabia. Second, to examine topic-specific knowledge differences between genders, nationalities, and educational levels of the students. Materials and Methods: Cross-sectional oral health educational data of private school students (n = 1279) in primary and intermediate levels were extracted from the King Salman Centre for Children's Health (KSCCH) projects undertaken by Riyadh Colleges of Dentistry and Pharmacy. Student's pre- and post-test data were analyzed for changes in oral health knowledge. Overall knowledge score and topic-specific knowledge scores were calculated and the differences between gender, nationality, and educational level were examined using Mann–Whitney U-test. Pre/post change in the oral health knowledge was evaluated by Wilcoxon's sign rank test. Results: Immediately, after oral health educational session high knowledge score category showed an increase of 25.6%, medium and low knowledge score categories showed −3.2% and −22.3% decrease, and this change was statistically significant (P < 0.001). Comparison of correct responses between pre- and post-test showed statistically significant (P < 0.05) increase in all the questions except for the timing of tooth brushing. Females, non-Saudi nationals and students in primary level of education showed significantly high mean knowledge (P < 0.001) at posttest assessment. Conclusion: Primary and intermediate private school student's overall, and topic-specific oral health knowledge improved immediately after educational intervention provided by KSCCH. High knowledge gain was observed among female non-Saudi primary school students. PMID:29285475

  8. Analysis of illegitimate genomic integration mediated by zinc-finger nucleases: implications for specificity of targeted gene correction

    PubMed Central

    2010-01-01

    Background Formation of site specific genomic double strand breaks (DSBs), induced by the expression of a pair of engineered zinc-finger nucleases (ZFNs), dramatically increases the rates of homologous recombination (HR) between a specific genomic target and a donor plasmid. However, for the safe use of ZFN induced HR in practical applications, possible adverse effects of the technology such as cytotoxicity and genotoxicity need to be well understood. In this work, off-target activity of a pair of ZFNs has been examined by measuring the ratio between HR and illegitimate genomic integration in cells that are growing exponentially, and in cells that have been arrested in the G2/M phase. Results A reporter cell line that contained consensus ZFN binding sites in an enhanced green fluorescent protein (EGFP) reporter gene was used to measure ratios between HR and non-homologous integration of a plasmid template. Both in human cells (HEK 293) containing the consensus ZFN binding sites and in cells lacking the ZFN binding sites, a 3.5 fold increase in the level of illegitimate integration was observed upon ZFN expression. Since the reporter gene containing the consensus ZFN target sites was found to be intact in cells where illegitimate integration had occurred, increased rates of illegitimate integration most likely resulted from the formation of off-target genomic DSBs. Additionally, in a fraction of the ZFN treated cells the co-occurrence of both specific HR and illegitimate integration was observed. As a mean to minimize unspecific effects, cell cycle manipulation of the target cells by induction of a transient G2/M cell cycle arrest was shown to stimulate the activity of HR while having little effect on the levels of illegitimate integration, thus resulting in a nearly eight fold increase in the ratio between the two processes. Conclusions The demonstration that ZFN expression, in addition to stimulating specific gene targeting by HR, leads to increased rates of

  9. Signal regulatory protein α associated with the progression of oral leukoplakia and oral squamous cell carcinoma regulates phenotype switch of macrophages.

    PubMed

    Ye, Xiaojing; Zhang, Jing; Lu, Rui; Zhou, Gang

    2016-12-06

    Signal regulatory protein α (SIRPα) is a cell-surface protein expressed on macrophages that are regarded as an important component of the tumor microenvironment. The expression of SIRPα in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), and further explored the role of SIRPα on the phenotype, phagocytosis ability, migration, and invasion of macrophages in OSCC were investigated. The expression of SIRPα in OLK was higher than in OSCC, correlating with the expression of CD68 and CD163 on macrophages. After cultured with the conditioned media of oral cancer cells, the expression of SIRPα on THP-1 cells was decreased gradually. In co-culture system, macrophages were induced into M2 phenotype by oral cancer cells. Blockade of SIRPα inhibited phagocytosis ability and IL-6, TNF-α productions of macrophages. In addition, the proliferation, migration, and IL-10, TGF-β productions of macrophages were upregulated after blockade of SIRPα. Macrophages upregulated the expression of SIRPα and phagocytosis ability, and inhibited the migration and invasion when the activation of NF-κB was inhibited by pyrrolidine dithiocarbamate ammonium (PDTC). Hence, SIRPα might play an important role in the progression of OLK and oral cancer, and could be a pivotal therapeutic target in OSCC by regulating the phenotype of macrophages via targeting NF-κB.

  10. Charomers—Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery

    PubMed Central

    2017-01-01

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld. PMID:29211023

  11. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane.

    PubMed

    James, Scott E; Greenberg, Philip D; Jensen, Michael C; Lin, Yukang; Wang, Jinjuan; Till, Brian G; Raubitschek, Andrew A; Forman, Stephen J; Press, Oliver W

    2008-05-15

    We have targeted CD22 as a novel tumor-associated Ag for recognition by human CTL genetically modified to express chimeric TCR (cTCR) recognizing this surface molecule. CD22-specific cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR(+) CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR(+) CTL exhibited lower levels of maximum lysis and lower Ag sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of Ag engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope, but constructed as a truncated CD22 molecule to approximate the length of a TCR:peptide-MHC complex. The reduced sensitivity of CD22-specific cTCR(+) CTL for Ag-induced triggering of effector functions has potential therapeutic applications, because such cells selectively lysed B cell lymphoma lines expressing high levels of CD22, but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength, and consequently Ag sensitivity, can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate Ag density.

  12. Antigen-specific, CD4+CD25+ regulatory T cell clones induced in Peyer's patches.

    PubMed

    Tsuji, Noriko M; Mizumachi, Koko; Kurisaki, Jun-Ichi

    2003-04-01

    Since intestine is exposed to numerous exogenous antigens such as food and commensal bacteria, the organ bears efficient mechanisms for establishment of tolerance and induction of regulatory T cells (T(reg)). Intestinal and inducible T(reg) include T(r)1-like and T(h)3 cells whose major effector molecules are IL-10 and transforming growth factor (TGF)-beta. These antigen-specific T(reg) are expected to become clinical targets to modify the inflammatory immune response associated with allergy, autoimmune diseases and transplantation. In the present study, we characterized the antigen-specific T(reg) induced in the intestine by orally administering high-dose beta-lactoglobulin (BLG) to BALB/c mice. Seven days after feeding, only Peyer's patch (PP) cells among different organs exerted significant suppressive effect on antibody production upon in vitro BLG stimulation. This suppressive effect was also prominent in six BLG-specific CD4(+) T cell clones (OPP1-6) established from PP from mice orally administered with high doses of BLG and was partially reversed by antibodies to TGF-beta. Intravenous transfer of OPP2 efficiently suppressed BLG-specific IgG1 production in serum following immunization, indicating the role of such T(reg) in the systemic tolerance after oral administration of antigen (oral tolerance). OPP clones secrete TGF-beta, IFN-gamma and low levels of IL-10, a cytokine pattern similar to that secreted by anergic T cells. OPP clones bear a CD4(+)CD25(+) phenotype and show significantly lower proliferative response compared to T(h)0 clones. This lower response is recovered by the addition of IL-2. Thus, antigen-specific CD4(+)CD25(+) T(reg), which have characteristics of anergic cells and actively suppress antibody production are induced in PP upon oral administration of protein antigen.

  13. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay

    PubMed Central

    Yilmaz, Özlem

    2009-01-01

    The microbiota of the human oral mucosa consists of a myriad of bacterial species that normally exist in commensal harmony with the host. Porphyromonas gingivalis, an aetiological agent in severe forms of periodontitis (a chronic inflammatory disease), is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. This Gram-negative anaerobe can also exist within the host epithelium without the existence of overt disease. Gingival epithelial cells, the outer lining of the gingival mucosa, which function as an important part of the innate immune system, are among the first host cells colonized by P. gingivalis. This review describes recent studies implicating the co-existence and intracellular adaptation of the organism in these target host cells. Specifically, recent findings on the putative mechanisms of persistence, intercellular dissemination and opportunism are highlighted. These new findings may also represent an original and valuable model for mechanistic characterization of other successful host-adapted, self-limiting, persistent intracellular bacteria in human epithelial tissues. PMID:18832296

  14. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay.

    PubMed

    Yilmaz, Ozlem

    2008-10-01

    The microbiota of the human oral mucosa consists of a myriad of bacterial species that normally exist in commensal harmony with the host. Porphyromonas gingivalis, an aetiological agent in severe forms of periodontitis (a chronic inflammatory disease), is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. This Gram-negative anaerobe can also exist within the host epithelium without the existence of overt disease. Gingival epithelial cells, the outer lining of the gingival mucosa, which function as an important part of the innate immune system, are among the first host cells colonized by P. gingivalis. This review describes recent studies implicating the co-existence and intracellular adaptation of the organism in these target host cells. Specifically, recent findings on the putative mechanisms of persistence, intercellular dissemination and opportunism are highlighted. These new findings may also represent an original and valuable model for mechanistic characterization of other successful host-adapted, self-limiting, persistent intracellular bacteria in human epithelial tissues.

  15. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach

    PubMed Central

    Abi-Ghanem, Josephine; Chusainow, Janet; Karimova, Madina; Spiegel, Christopher; Hofmann-Sieber, Helga; Hauber, Joachim; Buchholz, Frank; Pisabarro, M. Teresa

    2013-01-01

    Site-specific recombinases (SSRs) can perform DNA rearrangements, including deletions, inversions and translocations when their naive target sequences are placed strategically into the genome of an organism. Hence, in order to employ SSRs in heterologous hosts, their target sites have to be introduced into the genome of an organism before the enzyme can be practically employed. Engineered SSRs hold great promise for biotechnology and advanced biomedical applications, as they promise to extend the usefulness of SSRs to allow efficient and specific recombination of pre-existing, natural genomic sequences. However, the generation of enzymes with desired properties remains challenging. Here, we use substrate-linked directed evolution in combination with molecular modeling to rationally engineer an efficient and specific recombinase (sTre) that readily and specifically recombines a sequence present in the HIV-1 genome. We elucidate the role of key residues implicated in the molecular recognition mechanism and we present a rationale for sTre’s enhanced specificity. Combining evolutionary and rational approaches should help in accelerating the generation of enzymes with desired properties for use in biotechnology and biomedicine. PMID:23275541

  16. Sex specific impact of perinatal bisphenol A (BPA) exposure over a range of orally administered doses on rat hypothalamic sexual differentiation

    PubMed Central

    McCaffrey, Katherine A.; Jones, Brian; Mabrey, Natalie; Weiss, Bernard; Swan, Shanna H.; Patisaul, Heather B.

    2013-01-01

    Bisphenol A (BPA) is a high volume production chemical used in polycarbonate plastics, epoxy resins, thermal paper receipts, and other household products. The neural effects of early life BPA exposure, particularly to low doses administered orally, remain unclear. Thus, to better characterize the dose range over which BPA alters sex specific neuroanatomy, we examined the impact of perinatal BPA exposure on two sexually dimorphic regions in the anterior hypothalamus, the sexually dimorphic nucleus of the preoptic area (SDN-POA) and the anterioventral periventricular (AVPV) nucleus. Both are sexually differentiated by estradiol and play a role in sex specific reproductive physiology and behavior. Long Evans rats were prenatally exposed to 10, 100, 1000, 10,000 mg/kg bw/day BPA through daily, noninvasive oral administration of dosed-cookies to the dams. Offspring were reared to adulthood. Their brains were collected and immunolabeled for tyrosine hydroxylase (TH) in the AVPV and calbindin (CALB) in the SDN-POA. We observed decreased TH-ir cell numbers in the female AVPV across all exposure groups, an effect indicative of masculinization. In males, AVPV TH-ir cell numbers were significantly reduced in only the BPA 10 and BPA 10,000 groups. SDN-POA endpoints were unaltered in females but in males SDN-POA volume was significantly lower in all BPA exposure groups. CALB-ir was significantly lower in all but the BPA 1000 group. These effects are consistent with demasculinization. Collectively these data demonstrate that early life oral exposure to BPA at levels well below the current No Observed Adverse Effect Level (NOAEL) of 50 mg/kg/day can alter sex specific hypothalamic morphology in the rat. PMID:23500335

  17. Reducing Oral Health Disparities: A Focus on Social and Cultural Determinants

    PubMed Central

    Patrick, Donald L; Lee, Rosanna Shuk Yin; Nucci, Michele; Grembowski, David; Jolles, Carol Zane; Milgrom, Peter

    2006-01-01

    Oral health is essential to the general health and well-being of individuals and the population. Yet significant oral health disparities persist in the U.S. population because of a web of influences that include complex cultural and social processes that affect both oral health and access to effective dental health care. This paper introduces an organizing framework for addressing oral health disparities. We present and discuss how the multiple influences on oral health and oral health disparities operate using this framework. Interventions targeted at different causal pathways bring new directions and implications for research and policy in reducing oral health disparities. PMID:16934121

  18. Prostate-Specific Membrane Antigen Targeted Therapy of Prostate Cancer Using a DUPA-Paclitaxel Conjugate.

    PubMed

    Lv, Qingzhi; Yang, Jincheng; Zhang, Ruoshi; Yang, Zimeng; Yang, Zhengtao; Wang, Yongjun; Xu, Youjun; He, Zhonggui

    2018-05-07

    Prostate cancer (PCa) is the most prevalent cancer among men in the United States and remains the second-leading cause of cancer mortality in men. Paclitaxel (PTX) is the first line chemotherapy for PCa treatment, but its therapeutic efficacy is greatly restricted by the nonspecific distribution in vivo. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of most PCa cells, and its expression level increases with cancer aggressiveness, while being present at low levels in normal cells. The high expression level of PSMA in PCa cells offers an opportunity for target delivery of nonspecific cytotoxic drugs to PCa cells, thus improving therapeutic efficacy and reducing toxicity. PSMA has high affinity for DUPA, a glutamate urea ligand. Herein, a novel DUPA-PTX conjugate is developed using DUPA as the targeting ligand to deliver PTX specifically for treatment of PSMA expressing PCa. The targeting ligand DUPA enhances the transport capability and selectivity of PTX to tumor cells via PSMA mediated endocytosis. Besides, DUPA is conjugated with PTX via a disulfide bond, which facilitates the rapid and differential drug release in tumor cells. The DUPA-PTX conjugate exhibits potent cytotoxicity in PSMA expressing cell lines and induces a complete cessation of tumor growth with no obvious toxicity. Our findings give new insight into the PSMA-targeted delivery of chemotherapeutics and provide an opportunity for the development of novel active targeting drug delivery systems for PCa therapy.

  19. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis

    PubMed Central

    Unciti-Broceta, Juan D.; Arias, José L.; Maceira, José; Soriano, Miguel; Ortiz-González, Matilde; Hernández-Quero, José; Muñóz-Torres, Manuel; de Koning, Harry P.; Magez, Stefan; Garcia-Salcedo, José A.

    2015-01-01

    African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs. PMID:26110623

  20. Oral Hypersensitivity Reactions

    MedlinePlus

    ... of substances. The most common causes are food, food additives, drugs, oral hygiene products, and dental materials. Q: Are there any specific foods that are more commonly implicated in intraoral hypersensitivity ...

  1. Preclinical Evaluation to Specifically Target Ovarian Cancer with Folic Acid conjugated Nanoceria

    DTIC Science & Technology

    2013-06-01

    function (creatinine; urea ; albumin, uric acid ) in plasma collected, showed no significant difference in the untreated and treated mice. All values were...Transaminase), AST (Aspartate Transaminase), Albumin, Creatinine, urea and uric acid . groups (Fig 9). These data show that FA-NCe treatment...Specifically Target Ovarian Cancer with Folic Acid conjugated Nanoceria. PRINCIPAL INVESTIGATOR: Ramandeep Rattan, PhD CONTRACTING ORGANIZATION

  2. Preclinical Pharmacokinetics and Pharmacodynamic Target of SCY-078, a First-in-Class Orally Active Antifungal Glucan Synthesis Inhibitor, in Murine Models of Disseminated Candidiasis.

    PubMed

    Wring, Stephen A; Randolph, Ryan; Park, SeongHee; Abruzzo, George; Chen, Qing; Flattery, Amy; Garrett, Graig; Peel, Michael; Outcalt, Russell; Powell, Kendall; Trucksis, Michelle; Angulo, David; Borroto-Esoda, Katyna

    2017-04-01

    SCY-078 (MK-3118) is a novel, semisynthetic derivative of enfumafungin and represents the first compound of the triterpene class of antifungals. SCY-078 exhibits potent inhibition of β-(1,3)-d-glucan synthesis, an essential cell wall component of many pathogenic fungi, including Candida spp. and Aspergillus spp. SCY-078 is currently in phase 2 clinical development for the treatment of invasive fungal diseases. In vitro disposition studies to assess solubility, intestinal permeability, and metabolic stability were predictive of good oral bioavailability. Preclinical pharmacokinetic studies were consistent with once-daily administration to humans. After intravenous delivery, plasma clearance in rodents and dogs was low, representing <15% and <25% of hepatic blood flow, respectively. The terminal elimination-phase half-life was 5.5 to 8.7 h in rodents, and it was ∼9.3 h in dogs. The volume of distribution at steady-state was high (4.7 to 5.3 liters/kg), a finding suggestive of extensive tissue distribution. Exposure of SCY-078 in kidney tissue, a target organ for invasive fungal disease such as candidiasis, exceeded plasma by 20- to 25-fold for the area under the concentration-time curve from 0 h to infinity (AUC 0-∞ ) and C max SCY-078 achieved efficacy endpoints following oral delivery across multiple murine models of disseminated candidiasis. The pharmacokinetic/pharmacodynamic indices C max /MIC and AUC/MIC correlated with outcome. Target therapeutic exposure, expressed as the plasma AUC 0-24 , was comparable across models, with an upper value of 11.2 μg·h/ml (15.4 μM·h); the corresponding mean value for free drug AUC/MIC was ∼0.75. Overall, these results demonstrate that SCY-078 has the oral and intravenous (i.v.) pharmacokinetic properties and potency in murine infection models of disseminated candidiasis to support further investigation as a novel i.v. and oral treatment for invasive fungal diseases. Copyright © 2017 Wring et al.

  3. Preclinical Pharmacokinetics and Pharmacodynamic Target of SCY-078, a First-in-Class Orally Active Antifungal Glucan Synthesis Inhibitor, in Murine Models of Disseminated Candidiasis

    PubMed Central

    Randolph, Ryan; Park, SeongHee; Abruzzo, George; Chen, Qing; Flattery, Amy; Garrett, Graig; Peel, Michael; Outcalt, Russell; Powell, Kendall; Trucksis, Michelle; Angulo, David; Borroto-Esoda, Katyna

    2017-01-01

    ABSTRACT SCY-078 (MK-3118) is a novel, semisynthetic derivative of enfumafungin and represents the first compound of the triterpene class of antifungals. SCY-078 exhibits potent inhibition of β-(1,3)-d-glucan synthesis, an essential cell wall component of many pathogenic fungi, including Candida spp. and Aspergillus spp. SCY-078 is currently in phase 2 clinical development for the treatment of invasive fungal diseases. In vitro disposition studies to assess solubility, intestinal permeability, and metabolic stability were predictive of good oral bioavailability. Preclinical pharmacokinetic studies were consistent with once-daily administration to humans. After intravenous delivery, plasma clearance in rodents and dogs was low, representing <15% and <25% of hepatic blood flow, respectively. The terminal elimination-phase half-life was 5.5 to 8.7 h in rodents, and it was ∼9.3 h in dogs. The volume of distribution at steady-state was high (4.7 to 5.3 liters/kg), a finding suggestive of extensive tissue distribution. Exposure of SCY-078 in kidney tissue, a target organ for invasive fungal disease such as candidiasis, exceeded plasma by 20- to 25-fold for the area under the concentration-time curve from 0 h to infinity (AUC0–∞) and Cmax. SCY-078 achieved efficacy endpoints following oral delivery across multiple murine models of disseminated candidiasis. The pharmacokinetic/pharmacodynamic indices Cmax/MIC and AUC/MIC correlated with outcome. Target therapeutic exposure, expressed as the plasma AUC0–24, was comparable across models, with an upper value of 11.2 μg·h/ml (15.4 μM·h); the corresponding mean value for free drug AUC/MIC was ∼0.75. Overall, these results demonstrate that SCY-078 has the oral and intravenous (i.v.) pharmacokinetic properties and potency in murine infection models of disseminated candidiasis to support further investigation as a novel i.v. and oral treatment for invasive fungal diseases. PMID:28137806

  4. The Effect of Oral Medication on Wound Healing.

    PubMed

    Levine, Jeffrey M

    2017-03-01

    The purpose of this learning activity is to provide information about the effects of oral medications on wound healing. This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Identify oral medications that aid in wound healing.2. Recognize oral medications that interfere with wound healing. Given the accelerated medical discoveries of recent decades, there is a surprising lack of oral medications that directly improve wound healing. Of the oral medications available, most target ancillary aspects of wound care such as pain management, infection mitigation, and nutrition. This article describes oral pharmacologic agents intended to build new tissue and aid in wound healing, as well as an introduction to oral medications that interfere with wound healing. This review will not discuss the pharmacology of pain management or treatment of infection, nor will it address nutritional supplements.

  5. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames.

    PubMed

    Liang, Xue-Hai; Shen, Wen; Crooke, Stanley T

    2017-01-01

    A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.

  6. Ethnicity and oral cancer.

    PubMed

    Scully, C; Bedi, R

    2000-09-01

    Oral squamous-cell carcinoma, the main type of oral cancer, is among the ten most common cancers in the world. The aims of this paper were first, to consider whether there was evidence of marked ethnic variations in the incidence, management, and survival of oral cancer, and then, to review possible explanations for these variations. Evidence from the literature suggests that there is marked, inter-country variation in both the incidence and mortality from oral cancer. There is also growing evidence of intracountry ethnic differences, mostly reported in the UK and USA. These variations among ethnic groups have been attributed mainly to specific risk factors, such as alcohol and tobacco (smoking and smokeless), but dietary factors and the existence of genetic predispositions may also play a part. Variations in access to care services are also an apparent factor. The extent of ethnic differences in oral cancer is masked by the scarcity of information available. Where such data are accessible, there are clear disparities in both incidence and mortality of oral cancer between ethnic groups.

  7. Oral Combination Vaccine, Comprising Bifidobacterium Displaying Hepatitis C Virus Nonstructural Protein 3 and Interferon-α, Induces Strong Cellular Immunity Specific to Nonstructural Protein 3 in Mice.

    PubMed

    Kitagawa, Koichi; Omoto, Chika; Oda, Tsugumi; Araki, Ayame; Saito, Hiroki; Shigemura, Katsumi; Katayama, Takane; Hotta, Hak; Shirakawa, Toshiro

    2017-04-01

    We previously generated an oral hepatitis C virus (HCV) vaccine using Bifidobacterium displaying the HCV nonstructural protein 3 (NS3) polypeptide. NS3-specific cellular immunity is important for viral clearance and recovery from HCV infection. In this study, we enhanced the cellular immune responses induced by our oral HCV vaccine, Bifidobacterium longum 2165 (B. longum 2165), by combining interferon-α (IFN-α) as an adjuvant with the vaccine in a mouse experimental model. IFN-α is a widely used cytokine meeting the standard of care (SOC) for HCV infection and plays various immunoregulatory roles. We treated C57BL/6N mice with B. longum 2165 every other day and/or IFN-α twice a week for a month and then analyzed the immune responses using spleen cells. We determined the induction of NS3-specific cellular immunity by cytokine quantification, intracellular cytokine staining, and a cytotoxic T lymphocyte (CTL) assay targeting EL4 tumor cells expressing NS3/4A protein (EL4-NS3/4A). We also treated mice bearing EL4-NS3/4A tumor with the combination therapy in vivo. The results confirmed that the combination therapy of B. longum 2165 and IFN-α induced significantly higher IFN-γ secretion, higher population of CD4 + T and CD8 + T cells secreting IFN-γ, and higher CTL activity against EL4-NS3/4A cells compared with the control groups of phosphate-buffered saline, B. longum 2165 alone, and IFN-α alone (p < 0.05). We also confirmed that the combination therapy strongly enhanced tumor growth inhibitory effects in vivo with no serious adverse effects (p < 0.05). These results suggest that the combination of B. longum 2165 and IFN-α could induce a strong cellular immunity specific to NS3 protein as a combination therapy augmenting the current SOC immunotherapy against chronic HCV infection.

  8. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway.

    PubMed

    D'Ambrosio, Steven M; Han, Chunhua; Pan, Li; Kinghorn, A Douglas; Ding, Haiming

    2011-06-10

    Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of the EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Targeted Delivery of LXR Agonist Using a Site-Specific Antibody-Drug Conjugate.

    PubMed

    Lim, Reyna K V; Yu, Shan; Cheng, Bo; Li, Sijia; Kim, Nam-Jung; Cao, Yu; Chi, Victor; Kim, Ji Young; Chatterjee, Arnab K; Schultz, Peter G; Tremblay, Matthew S; Kazane, Stephanie A

    2015-11-18

    Liver X receptor (LXR) agonists have been explored as potential treatments for atherosclerosis and other diseases based on their ability to induce reverse cholesterol transport and suppress inflammation. However, this therapeutic potential has been hindered by on-target adverse effects in the liver mediated by excessive lipogenesis. Herein, we report a novel site-specific antibody-drug conjugate (ADC) that selectively delivers a LXR agonist to monocytes/macrophages while sparing hepatocytes. The unnatural amino acid para-acetylphenylalanine (pAcF) was site-specifically incorporated into anti-CD11a IgG, which binds the α-chain component of the lymphocyte function-associated antigen 1 (LFA-1) expressed on nearly all monocytes and macrophages. An aminooxy-modified LXR agonist was conjugated to anti-CD11a IgG through a stable, cathepsin B cleavable oxime linkage to afford a chemically defined ADC. The anti-CD11a IgG-LXR agonist ADC induced LXR activation specifically in human THP-1 monocyte/macrophage cells in vitro (EC50-27 nM), but had no significant effect in hepatocytes, indicating that payload delivery is CD11a-mediated. Moreover, the ADC exhibited higher-fold activation compared to a conventional synthetic LXR agonist T0901317 (Tularik) (3-fold). This novel ADC represents a fundamentally different strategy that uses tissue targeting to overcome the limitations of LXR agonists for potential use in treating atherosclerosis.

  10. Phosphorylation regulates the Star-PAP-PIPKIα interaction and directs specificity toward mRNA targets.

    PubMed

    Mohan, Nimmy; Sudheesh, A P; Francis, Nimmy; Anderson, Richard; Laishram, Rakesh S

    2015-08-18

    Star-PAP is a nuclear non-canonical poly(A) polymerase (PAP) that shows specificity toward mRNA targets. Star-PAP activity is stimulated by lipid messenger phosphatidyl inositol 4,5 bisphoshate (PI4,5P2) and is regulated by the associated Type I phosphatidylinositol-4-phosphate 5-kinase that synthesizes PI4,5P2 as well as protein kinases. These associated kinases act as coactivators of Star-PAP that regulates its activity and specificity toward mRNAs, yet the mechanism of control of these interactions are not defined. We identified a phosphorylated residue (serine 6, S6) on Star-PAP in the zinc finger region, the domain required for PIPKIα interaction. We show that S6 is phosphorylated by CKIα within the nucleus which is required for Star-PAP nuclear retention and interaction with PIPKIα. Unlike the CKIα mediated phosphorylation at the catalytic domain, Star-PAP S6 phosphorylation is insensitive to oxidative stress suggesting a signal mediated regulation of CKIα activity. S6 phosphorylation together with coactivator PIPKIα controlled select subset of Star-PAP target messages by regulating Star-PAP-mRNA association. Our results establish a novel role for phosphorylation in determining Star-PAP target mRNA specificity and regulation of 3'-end processing. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Portable multispectral imaging system for oral cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Fang; Ou-Yang, Mang; Lee, Cheng-Chung

    2013-09-01

    This study presents the portable multispectral imaging system that can acquire the image of specific spectrum in vivo for oral cancer diagnosis. According to the research literature, the autofluorescence of cells and tissue have been widely applied to diagnose oral cancer. The spectral distribution is difference for lesions of epithelial cells and normal cells after excited fluorescence. We have been developed the hyperspectral and multispectral techniques for oral cancer diagnosis in three generations. This research is the third generation. The excited and emission spectrum for the diagnosis are acquired from the research of first generation. The portable system for detection of oral cancer is modified for existing handheld microscope. The UV LED is used to illuminate the surface of oral cavity and excite the cells to produce fluorescent. The image passes through the central channel and filters out unwanted spectrum by the selection of filter, and focused by the focus lens on the image sensor. Therefore, we can achieve the specific wavelength image via fluorescence reaction. The specificity and sensitivity of the system are 85% and 90%, respectively.

  12. Specificity in the interaction of natural products with their target proteins--a biochemical and structural insight.

    PubMed

    Venkatraman, Prasanna

    2010-06-01

    Natural products are an abundant source of anti cancer agents. They act as cytotoxic drugs, and inhibitors of apoptosis, transcription, cell proliferation and angiogenesis. While pathways targeted by natural products have been well studied, there is paucity of information about the in vivo molecular target/s of these compounds. This review summarizes some of the natural compounds for which the molecular targets, mechanism of action and structural basis of specificity have been well documented. These examples illustrate that 'off target' binding can be explained on the basis of diversity inherent to biomolecular interactions. There is enough evidence to suggest that natural compounds are potent and versatile warheads that can be optimized for a multi targeted therapeutic intervention in cancer.

  13. Relating French Immersion Teacher Practices to Better Student Oral Production

    ERIC Educational Resources Information Center

    Haj-Broussard, Michelle; Olson Beal, Heather K.; Boudreaux, Nicole

    2017-01-01

    This study examined seven Louisiana kindergarten immersion teachers' practices to evaluate students' oral target language production and compare the oral production elicited when different instructional practices were used over a single semester. Three rounds of three 20-minute observations in three different contexts--circle time, direct…

  14. Overexpression of COX-2 in Rat Oral Cancers and Prevention of Oral Carcinogenesis in Rats by Selective and Non-Selective COX Inhibitors

    PubMed Central

    McCormick, David L.; Phillips, Jonathan M.; Horn, Thomas L.; Johnson, William D.; Steele, Vernon E.; Lubet, Ronald A.

    2009-01-01

    Oral squamous cell carcinomas induced in rats by 4-nitroquinoline-1-oxide (NQO) demonstrate substantial overexpression of cyclooxygenase-2 (COX-2) when compared to adjacent phenotypically normal oral tissues. By contrast, neither 5-lipoxygenase (5-LOX) nor 12-lipoxygenase (12-LOX) is overexpressed in rat oral cancers. Two chemoprevention studies were performed to test the resulting hypothesis that COX-2 is a useful target for oral cancer chemoprevention in the rat. In both studies, male F344 rats received drinking water exposure to NQO (20 ppm) for 10 weeks, followed by administration of chemopreventive agents from week 10 until study termination at week 26. In the first study, groups of rats were fed basal diet (control), or basal diet supplemented with the selective COX-2 inhibitor, celecoxib (500 or 1500 mg/kg diet); the non-selective COX inhibitor, piroxicam (50 or 150 mg/kg diet); or the 5-LOX inhibitor, zileuton (2000 mg/kg diet). In the second study, rats were fed basal diet (control) or basal diet supplemented with NO-Naproxen (180 or 90 mg/kg diet), a non-selective COX inhibitor that demonstrates reduced gastrointestinal toxicity. When compared to dietary controls, celecoxib decreased oral cancer incidence, cancer invasion score, and cancer-related mortality. Piroxicam decreased cancer-related mortality and cancer invasion score, while NO-naproxen decreased oral cancer incidence and cancer invasion score. By contrast, zileuton demonstrated no chemopreventive activity by any parameter assessed. These data demonstrate that both selective and non-selective inhibitors of COX-2 can prevent NQO-induced oral carcinogenesis in rats. The chemopreventive activity of COX inhibitors may be linked to overexpression of their enzymatic target in incipient oral neoplasms. PMID:20051374

  15. Oral syringe use survey.

    PubMed

    Baldwin, J N; Wedemeyer, H F

    1980-09-01

    Use of oral syringes at children's and ASHP-accredited residency hospitals in the United States was surveyed. Questionnaires were mailed to 131 hospitals; 117 (89.3%) were returned. Of the responding hospitals, 54.5% of children's hospitals and 67.1% of residency hospitals used oral syringes. There was no definite preference for a particular brand or type (glass vs. plastic) of syringe. Patients who often required liquid dosage forms, including pediatric and geriatric patients and patients with nasogastric tubes, were most frequently included in oral syringe distribution systems. Twenty-six of the 73 hospitals utilizing oral syringes used them for most unit dose liquids in all drug distribution systems. The remainder reported use for specific medications or circumstances. Expiration dating policies varied from 24 hours to one year to the manufacturer's expiration dating. The survey indicates widespread use of oral syringes and identifies a need for evaluation of medication stability in these devices.

  16. Sensitive and specific radioimmunoassay for fialuridine: initial assessment of pharmacokinetics after single oral doses to healthy volunteers.

    PubMed Central

    Bowsher, R R; Compton, J A; Kirkwood, J A; Place, G D; Jones, C D; Mabry, T E; Hyslop, D L; Hatcher, B L; DeSante, K A

    1994-01-01

    Fialuridine (FIAU) is a halogen-substituted analog of thymidine that was undergoing clinical investigation as a drug for the treatment of chronic hepatitis B viral infection. However, clinical trials of FIAU were terminated after adverse events occurred following chronic oral administration. Prior to the termination of clinical trials, a sensitive assay was needed for the measurement of FIAU because of the anticipated low dose administered to patients. We therefore undertook the development of a radioimmunoassay (RIA). A specific antiserum was raised in rabbits following immunization with a 5'-O-hemisuccinate analog of FIAU coupled to keyhole limpet hemocyanin. Radiolabeled FIAU was synthesized by a destannylation procedure by using sodium [125I]iodide. We developed a competitive-binding procedure and used precipitation with polyethylene glycol as the method for separating the bound and free forms of FIAU. The RIA is sensitive (0.2 ng/ml), specific (negligible interference from known metabolites and endogenous nucleosides), and reproducible (interassay coefficients of variation range from 5 to 19.7% for serum controls). We used the RIA to assess the pharmacokinetics of FIAU in healthy adult volunteers following administration of a single 5-mg oral dose. The sensitivity of the RIA permitted the detection of a prolonged elimination phase for FIAU in healthy volunteers and dogs, with mean elimination half-lives of 29.3 and 35.3 h, respectively. We conclude the RIA is a valid method for the quantification of FIAU in biological fluids. PMID:7811032

  17. MiRNA-101 inhibits oral squamous-cell carcinoma growth and metastasis by targeting zinc finger E-box binding homeobox 1

    PubMed Central

    Wu, Baolei; Lei, Delin; Wang, Lei; Yang, Xinjie; Jia, Sen; Yang, Zihui; Shan, Chun; Yang, Xi; Zhang, Chenping; Lu, Bin

    2016-01-01

    MicroRNAs (miRNAs) are implicated in the pathogenesis of oral squamous-cell carcinoma (OSCC). miR-101 is involved in the development and progression of OSCC, but the biological functions and underlying molecular mechanisms of this miRNA remain largely unknown. In this study, we showed that miR-101 was underexpressed in OSCC tissues and cell lines. miR-101 downregulation was inversely correlated with zinc finger E-box binding homeobox 1 (ZEB1) expression, lymph-node metastasis, and poor prognosis in OSCC patients. Enhanced expression of miR-101 significantly inhibited OSCC cell proliferation, apoptosis resistance, migration and invasion in vitro, and suppressed tumor growth and lung metastasis in vivo. Bioinformatics analyses showed that miR-101 directly targeted ZEB1, as confirmed by a dual-luciferase reporter assay. The inhibitory effects of miR-101 on OSCC growth and metastasis were attenuated and phenocopied by ZEB1 overexpression and knockdown, respectively. Overall, our findings indicated that miRNA-101 reduced OSCC growth and metastasis by targeting ZEB1 and provided new evidence of miR-101 as a potential therapeutic target for OSCC patients. PMID:27429852

  18. Depression and Rural Environment are Associated With Poor Oral Health Among Pregnant Women in Northern Appalachia.

    PubMed

    McNeil, Daniel W; Hayes, Sarah E; Randall, Cameron L; Polk, Deborah E; Neiswanger, Kathy; Shaffer, John R; Weyant, Robert J; Foxman, Betsy; Kao, Elizabeth; Crout, Richard J; Chapman, Stella; Brown, Linda J; Maurer, Jennifer L; Marazita, Mary L

    2016-01-01

    Both oral health problems and depression among pregnant women contribute to maternal-infant health outcomes. Little is known, however, about the potential effects of clinically significant depression on the oral health status of pregnant women. The purpose of the present study was to determine the influence of clinically significant depression and rural- or urban-dwelling status on oral health outcomes among pregnant women. Pregnant women (N = 685) in rural (i.e., West Virginia) and urban (i.e., Pittsburgh, PA) areas of northern Appalachia were assessed by calibrated examiners regarding gingivitis, oral hygiene, and DMFT (decayed, missing, and filled teeth), completed the Center for Epidemiologic Studies-Depression Scale (CES-D) and provided demographics. Participants were categorized based on clinically significant depressive symptoms (CES-D ≥ 16) and rural/urban domicile. Women with depression and those living in rural areas had worse oral health on all three indices than their non-depressed and urban counterparts. Depression, particularly among women in rural areas, affects certain oral health indices and represents a modifiable target for intervention. Moreover, treatments designed specifically for rural populations may be of particular utility. Women who are pregnant or planning to become pregnant may benefit from regular depression screenings from their dental and medical health care providers. © The Author(s) 2015.

  19. Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models

    PubMed Central

    Yang, Cheng-Yu; Lin, Chih-Kung; Tsao, Chang-Huei; Hsieh, Cheng-Chih; Lin, Gu-Jiun; Ma, Kuo-Hsing; Shieh, Yi-Shing; Sytwu, Huey-Kang; Chen, Yuan-Wu

    2017-01-01

    Aberrant activation of histone lysine-specific demethylase (LSD1) increases tumorigenicity; hence, LSD1 is considered a therapeutic target for various human cancers. Although melatonin, an endogenously produced molecule, may defend against various cancers, the precise mechanism involved in its anti-oral cancer effect remains unclear. Patient-derived tumor xenograft (PDTX) models are preclinical models that can more accurately reflect human tumor biology compared with cell line xenograft models. Here, we evaluated the anticancer activity of melatonin by using LSD1-overexpressing oral cancer PDTX models. By assessing oral squamous cell carcinoma (OSCC) tissue arrays through immunohistochemistry, we examined whether aberrant LSD1 overexpression in OSCC is associated with poor prognosis. We also evaluated the action mechanism of melatonin against OSCC with lymphatic metastases by using the PDTX models. Our results indicated that melatonin, at pharmacological concentrations, significantly suppresses cell proliferation in a dose- and time-dependent manner. The observed suppression of proliferation was accompanied by the melatonin-mediated inhibition of LSD1 in oral cancer PDTXs and oral cancer cell lines. In conclusion, we determined that the beneficial effects of melatonin in reducing oral cancer cell proliferation are associated with reduced LSD1 expression in vivo and in vitro. PMID:28422711

  20. Target-specific porphyrin-loaded hybrid nanoparticles to improve photodynamic therapy for cancer treatment

    NASA Astrophysics Data System (ADS)

    Vivero-Escoto, Juan L.; Vega, Daniel L.

    2017-02-01

    Photodynamic therapy (PDT) has emerged as an alternative approach to chemotherapy and radiotherapy for cancer treatment. The photosensitizer (PS) is perhaps the most critical component of PDT, and continues to be an area of intense scientific research. Traditionally, PS molecules like porphyrins have dominated the field. Nevertheless, these PS agents have several disadvantages, with low water solubility, poor light absorption, and reduced selectivity for targeted tissues being some of the main drawbacks. Polysilsesquioxane (PSilQ) nanoparticles provide an interesting platform for developing PS-loaded hybrid nanocarriers. Several advantages can be foreseen by using this platform such as carrying a large payload of PS molecules; their surface and composition can be tailored to develop multifunctional systems (e.g. target-specific); and due to their small size, nanoparticles can penetrate deep into tissues and be readily internalized by cells. In this work, porphyrin-loaded PSilQ nanoparticles with a high payload of photosensitizers were synthesized, characterized, and applied in vitro. The network of this nanomaterial is formed by porphyrin-based photosensitizers chemically connected via a redox-responsive linker. Under reducing environment such as the one found in cancer cells the nanoparticles can be degraded to efficiently release single photosensitizers in the cytoplasm. The platform was further functionalized with polyethylene glycol (PEG) and folic acid as targeting ligand to improve its biocompatibility and target specificity toward cancer cells overexpressing folate receptors. The effectiveness of this porphyrin-based hybrid nanomaterial was successfully demonstrated in vitro using MDA-MB-231 breast cancer cell line.

  1. Whole-body multicolor spectrally resolved fluorescence imaging for development of target-specific optical contrast agents using genetically engineered probes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.

    2007-02-01

    Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.

  2. Specific Retrograde Transduction of Spinal Motor Neurons Using Lentiviral Vectors Targeted to Presynaptic NMJ Receptors

    PubMed Central

    Eleftheriadou, I; Trabalza, A; Ellison, SM; Gharun, K; Mazarakis, ND

    2014-01-01

    To understand how receptors are involved in neuronal trafficking and to be able to utilize them for specific targeting via the peripheral route would be of great benefit. Here, we describe the generation of novel lentiviral vectors with tropism to motor neurons that were made by coexpressing onto the lentiviral surface a fusogenic glycoprotein (mutated sindbis G) and an antibody against a cell-surface receptor (Thy1.1, p75NTR, or coxsackievirus and adenovirus receptor) on the presynaptic terminal of the neuromuscular junction. These vectors exhibit binding specificity and efficient transduction of receptor positive cell lines and primary motor neurons in vitro. Targeting of each of these receptors conferred to these vectors the capability of being transported retrogradely from the axonal tip, leading to transduction of motor neurons in vitro in compartmented microfluidic cultures. In vivo delivery of coxsackievirus and adenovirus receptor-targeted vectors in leg muscles of mice resulted in predicted patterns of motor neuron labeling in lumbar spinal cord. This opens up the clinical potential of these vectors for minimally invasive administration of central nervous system-targeted therapeutics in motor neuron diseases. PMID:24670531

  3. Preclinical Evaluation to Specifically Target Ovarian Cancer with Folic Acid-Conjugated Nanoceria

    DTIC Science & Technology

    2014-08-01

    cancer . Our experimental nanoparticle is Nanoceria (NCe), a cerium oxide nanoparticle . Nanotechnology -based tools and techniques are rapidly... cancer we proposed the present work, where we are integrating the field of nanotechnology with ovarian cancer cell’s unique property of...overexpressing folic acid receptor alpha (FR-a) to specifically target ovarian cancer . A cerium oxide nanoparticle , called Nanoceria (NCe), that has the ability

  4. Peroxisome Proliferator-Activated Receptor Subtype- and Cell-Type-Specific Activation of Genomic Target Genes upon Adenoviral Transgene Delivery

    PubMed Central

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G.; Mandrup, Susanne

    2006-01-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARγ2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARγ2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (α, γ, and β/δ), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci. PMID:16847324

  5. Low-dose oral microemulsion ciclosporin for severe, refractory ulcerative colitis.

    PubMed

    de Saussure, P; Soravia, C; Morel, P; Hadengue, A

    2005-08-01

    The optimal modalities of treatment with oral microemulsion ciclosporin in patients with severe, steroid-refractory ulcerative colitis are uncertain. To assess the applicability, in terms of efficacy and tolerability, of a standard oral microemulsion ciclosporin treatment protocol targeting relatively low blood ciclosporin concentrations, in patients with severe, steroid-resistant ulcerative colitis. Patients with a severe attack of ulcerative colitis and no satisfactory response to intravenous corticosteroids were started on oral microemulsion ciclosporin. Dosages were adapted according to a standard protocol, targeting a blood predose ciclosporin concentration (C0) of 100-200 ng/mL. Patients without a clinical response on day 8 were scheduled for colectomy. Sixteen patients were enrolled. A clinical response was observed in 14/16 (88%). The mean clinical activity index scores and concentrations of C-reactive protein on days 0, 4 and 8 were 11.8, 6.7 and 4.1, and 50.3, 19.3 and 9.7 mg/L respectively. The mean C0 (days 0-8) was 149 pg/mL. The mean creatinine clearance rates on days 0 and 8 were 88 and 96 mL/min. One patient had an acute elevation of transaminases that resulted in discontinuing ciclosporin. Even when dosed for a target C0 of 100-200 ng/mL, oral microemulsion ciclosporin for severe, steroid-refractory ulcerative colitis achieves an efficacy similar to that attained with higher, potentially more toxic levels. The oral route should replace intravenous treatment in this clinical setting.

  6. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends

    PubMed Central

    Sohail, Muhammad Farhan; Rehman, Mubashar; Sarwar, Hafiz Shoaib; Naveed, Sara; Salman, Omer; Bukhari, Nadeem Irfan; Hussain, Irshad; Webster, Thomas J; Shahnaz, Gul

    2018-01-01

    The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research. PMID:29922053

  7. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends.

    PubMed

    Sohail, Muhammad Farhan; Rehman, Mubashar; Sarwar, Hafiz Shoaib; Naveed, Sara; Salman, Omer; Bukhari, Nadeem Irfan; Hussain, Irshad; Webster, Thomas J; Shahnaz, Gul

    2018-01-01

    The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research.

  8. Auditory processing and speech perception in children with specific language impairment: relations with oral language and literacy skills.

    PubMed

    Vandewalle, Ellen; Boets, Bart; Ghesquière, Pol; Zink, Inge

    2012-01-01

    This longitudinal study investigated temporal auditory processing (frequency modulation and between-channel gap detection) and speech perception (speech-in-noise and categorical perception) in three groups of 6 years 3 months to 6 years 8 months-old children attending grade 1: (1) children with specific language impairment (SLI) and literacy delay (n = 8), (2) children with SLI and normal literacy (n = 10) and (3) typically developing children (n = 14). Moreover, the relations between these auditory processing and speech perception skills and oral language and literacy skills in grade 1 and grade 3 were analyzed. The SLI group with literacy delay scored significantly lower than both other groups on speech perception, but not on temporal auditory processing. Both normal reading groups did not differ in terms of speech perception or auditory processing. Speech perception was significantly related to reading and spelling in grades 1 and 3 and had a unique predictive contribution to reading growth in grade 3, even after controlling reading level, phonological ability, auditory processing and oral language skills in grade 1. These findings indicated that speech perception also had a unique direct impact upon reading development and not only through its relation with phonological awareness. Moreover, speech perception seemed to be more associated with the development of literacy skills and less with oral language ability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis.

    PubMed

    Marks, Ellen; Goggins, Bridie J; Cardona, Jocelle; Cole, Siobhan; Minahan, Kyra; Mateer, Sean; Walker, Marjorie M; Shalwitz, Robert; Keely, Simon

    2015-02-01

    Pharmacological induction of hypoxia-inducible factor (HIF), a global transcriptional regulator of the hypoxic response, by prolyl hydroxylase inhibitors (PHDi) is protective in murine models of colitis, and epithelial cells are critical for the observed therapeutic efficacy. Because systemic HIF activation may lead to potentially negative off-target effects, we hypothesized that targeting epithelial HIF through oral delivery of PHDi would be sufficient to protect against colitis in a mouse model. Using a chemically induced trinitrobenzene sulfonic acid murine model of colitis, we compared the efficacy of oral and intraperitoneal (i.p.) delivery of the PHDi; AKB-4924 in preventing colitis, as measured by endoscopy, histology, barrier integrity, and immune profiling. Furthermore, we measured potential off-target effects, examining HIF and HIF target genes in the heart and kidney, as well as erythropoietin and hematocrit levels. Oral administration of AKB-4924 exhibited mucosal protection comparable i.p. dosing. Oral delivery of PHDi led to reduced colonic epithelial HIF stabilization compared with i.p. delivery, but this was still sufficient to induce transcription of downstream HIF targets. Furthermore, oral delivery of PHDi led to reduced stabilization of HIF and activation of HIF targets in extraintestinal organs. Oral delivery of PHDi therapies to this intestinal mucosa protects against colitis in animal models and represents a potential therapeutic strategy for inflammatory bowel disease, which also precludes unwanted extraintestinal effects.

  10. Observer's Interface for Solar System Target Specification

    NASA Astrophysics Data System (ADS)

    Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.

    2016-10-01

    When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.

  11. Observer's Interface for Solar System Target Specification

    NASA Astrophysics Data System (ADS)

    Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.

    2016-01-01

    When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.

  12. Sex specific impact of perinatal bisphenol A (BPA) exposure over a range of orally administered doses on rat hypothalamic sexual differentiation.

    PubMed

    McCaffrey, Katherine A; Jones, Brian; Mabrey, Natalie; Weiss, Bernard; Swan, Shanna H; Patisaul, Heather B

    2013-05-01

    Bisphenol A (BPA) is a high volume production chemical used in polycarbonate plastics, epoxy resins, thermal paper receipts, and other household products. The neural effects of early life BPA exposure, particularly to low doses administered orally, remain unclear. Thus, to better characterize the dose range over which BPA alters sex specific neuroanatomy, we examined the impact of perinatal BPA exposure on two sexually dimorphic regions in the anterior hypothalamus, the sexually dimorphic nucleus of the preoptic area (SDN-POA) and the anterioventral periventricular (AVPV) nucleus. Both are sexually differentiated by estradiol and play a role in sex specific reproductive physiology and behavior. Long Evans rats were prenatally exposed to 10, 100, 1000, 10,000μg/kg bw/day BPA through daily, non-invasive oral administration of dosed-cookies to the dams. Offspring were reared to adulthood. Their brains were collected and immunolabeled for tyrosine hydroxylase (TH) in the AVPV and calbindin (CALB) in the SDN-POA. We observed decreased TH-ir cell numbers in the female AVPV across all exposure groups, an effect indicative of masculinization. In males, AVPV TH-ir cell numbers were significantly reduced in only the BPA 10 and BPA 10,000 groups. SDN-POA endpoints were unaltered in females but in males SDN-POA volume was significantly lower in all BPA exposure groups. CALB-ir was significantly lower in all but the BPA 1000 group. These effects are consistent with demasculinization. Collectively these data demonstrate that early life oral exposure to BPA at levels well below the current No Observed Adverse Effect Level (NOAEL) of 50mg/kg/day can alter sex specific hypothalamic morphology in the rat. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling

    PubMed Central

    Gibert, Yann; Bernard, Laure; Debiais-Thibaud, Melanie; Bourrat, Franck; Joly, Jean-Stephane; Pottin, Karen; Meyer, Axel; Retaux, Sylvie; Stock, David W.; Jackman, William R.; Seritrakul, Pawat; Begemann, Gerrit; Laudet, Vincent

    2010-01-01

    One of the goals of evolutionary developmental biology is to link specific adaptations to changes in developmental pathways. The dentition of cypriniform fishes, which in contrast to many other teleost fish species possess pharyngeal teeth but lack oral teeth, provides a suitable model to study the development of feeding adaptations. Here, we have examined the involvement of retinoic acid (RA) in tooth development and show that RA is specifically required to induce the pharyngeal tooth developmental program in zebrafish. Perturbation of RA signaling at this stage abolished tooth induction without affecting the development of tooth-associated ceratobranchial bones. We show that this inductive event is dependent on RA synthesis from aldh1a2 in the ventral posterior pharynx. Fibroblast growth factor (FGF) signaling has been shown to be critical for tooth induction in zebrafish, and its loss has been associated with oral tooth loss in cypriniform fishes. Pharmacological treatments targeting the RA and FGF pathways revealed that both pathways act independently during tooth induction. In contrast, we find that in Mexican tetra and medaka, species that also possess oral teeth, both oral and pharyngeal teeth are induced independently of RA. Our analyses suggest an evolutionary scenario in which the gene network controlling tooth development obtained RA dependency in the lineage leading to the cypriniforms. The loss of pharyngeal teeth in this group was cancelled out through a shift in aldh1a2 expression, while oral teeth might have been lost ultimately due to deficient RA signaling in the oral cavity.—Gibert, Y., Bernard, L., Debiais-Thibaud, M., Bourrat, F., Joly, J.-S., Pottin, K., Meyer, A., Retaux, S., Stock, D. W., Jackman, W. R., Seritrakul, P., Begemann, G., Laudet, V. Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling. PMID:20445074

  14. Drug Resistance and Gene Transfer Mechanisms in Respiratory/Oral Bacteria.

    PubMed

    Jiang, S; Zeng, J; Zhou, X; Li, Y

    2018-06-01

    Growing evidence suggests the existence of new antibiotic resistance mechanisms. Recent studies have revealed that quorum-quenching enzymes, such as MacQ, are involved in both antibiotic resistance and cell-cell communication. Furthermore, some small bacterial regulatory RNAs, classified into RNA attenuators and small RNAs, modulate the expression of resistance genes. For example, small RNA sprX, can shape bacterial resistance to glycopeptide antibiotics via specific downregulation of protein SpoVG. Moreover, some bacterial lipocalins capture antibiotics in the extracellular space, contributing to severe multidrug resistance. But this defense mechanism may be influenced by Agr-regulated toxins and liposoluble vitamins. Outer membrane porin proteins and efflux pumps can influence intracellular concentrations of antibiotics. Alterations in target enzymes or antibiotics prevent binding to targets, which act to confer high levels of resistance in respiratory/oral bacteria. As described recently, horizontal gene transfer, including conjugation, transduction and transformation, is common in respiratory/oral microflora. Many conjugative transposons and plasmids discovered to date encode antibiotic resistance proteins and can be transferred from donor bacteria to transient recipient bacteria. New classes of mobile genetic elements are also being identified. For example, nucleic acids that circulate in the bloodstream (circulating nucleic acids) can integrate into the host cell genome by up-regulation of DNA damage and repair pathways. With multidrug resistant bacteria on the rise, new drugs have been developed to combate bacterial antibiotic resistance, such as innate defense regulators, reactive oxygen species and microbial volatile compounds. This review summaries various aspects and mechanisms of antibiotic resistance in the respiratory/oral microbiota. A better understanding of these mechanisms will facilitate minimization of the emergence of antibiotic resistance.

  15. Point-of-care oral-based diagnostics

    PubMed Central

    Hart, RW; Mauk, MG; Liu, C; Qiu, X; Thompson, JA; Chen, D; Malamud, D; Abrams, WR; Bau, HH

    2014-01-01

    Many of the target molecules that reside in blood are also present in oral fluids, albeit at lower concentrations. Oral fluids are, however, relatively easy and safe to collect without the need for specialized equipment and training. Thus, oral fluids provide convenient samples for medical diagnostics. Recent advances in lab-on-a-chip technologies have made minute, fully integrated diagnostic systems practical for an assortment of point-of-care tests. Such systems can perform either immunoassays or molecular diagnostics outside centralized laboratories within time periods ranging from minutes to an hour. The article briefly reviews recent advances in devices for point-of-care testing with a focus on work that has been carried out by the authors as part of a NIH program. PMID:21521419

  16. Trends in the Cost and Use of Targeted Cancer Therapies for the Privately Insured Nonelderly: 2001 to 2011

    PubMed Central

    Shih, Ya-Chen Tina; Smieliauskas, Fabrice; Geynisman, Daniel M.; Kelly, Ronan J.; Smith, Thomas J.

    2015-01-01

    Purpose This study sought to define and identify drivers of trends in cost and use of targeted therapeutics among privately insured nonelderly patients with cancer receiving chemotherapy between 2001 and 2011. Methods We classified oncology drugs as targeted oral anticancer medications, targeted intravenous anticancer medications, and all others. Using the LifeLink Health Plan Claims Database, we studied and disaggregated trends in use and in insurance and out-of-pocket payments per patient per month and during the first year of chemotherapy. Results We found a large increase in the use of targeted intravenous anticancer medications and a gradual increase in targeted oral anticancer medications; targeted therapies accounted for 63% of all chemotherapy expenditures in 2011. Insurance payments per patient per month and in the first year of chemotherapy for targeted oral anticancer medications more than doubled in 10 years, surpassing payments for targeted intravenous anticancer medications, which remained fairly constant throughout. Substitution toward targeted therapies and growth in drug prices both at launch and postlaunch contributed to payer spending growth. Out-of-pocket spending for targeted oral anticancer medications was ≤ half of the amount for targeted intravenous anticancer medications. Conclusion Targeted therapies now dominate anticancer drug spending. More aggressive management of pharmacy benefits for targeted oral anticancer medications and payment reform for injectable drugs hold promise. Restraining the rapid rise in spending will require more than current oral drug parity laws, such as value-based insurance that makes the benefits and costs transparent and involves the patient directly in the choice of treatment. PMID:25987701

  17. The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail.

    PubMed

    Chen, Su-Ren; Batool, Aalia; Wang, Yu-Qian; Hao, Xiao-Xia; Chang, Chawn-Shang; Cheng, C Yan; Liu, Yi-Xun

    2016-11-10

    Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms 'spermiogenesis failure', 'globozoospermia', 'spermatid-specific', 'acrosome', 'infertile', 'manchette', 'sperm connecting piece', 'sperm annulus', 'sperm ADAMs', 'flagellar abnormalities', 'sperm motility loss', 'sperm ion exchanger' and 'contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific factors in controlling

  18. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Cheng-Chia; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulatemore » ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  19. Strain-specific detection of orally administered canine jejunum-dominated Lactobacillus acidophilus LAB20 in dog faeces by real-time PCR targeted to the novel surface layer protein.

    PubMed

    Tang, Y; Saris, P E J

    2013-10-01

    Lactobacillus acidophilus LAB20 has potential to be a probiotic strain because it can be present at high numbers in the jejunum of dog. To specifically detect LAB20 from dog faecal samples, a real-time PCR protocol was developed targeting the novel surface (S) layer protein gene of LAB20. The presence of S-layer protein was verified by N-terminal sequencing of the approximately 50-kDa major band from SDS-PAGE gel. The corresponding S-layer gene was amplified by inverse PCR using homology to known S-layers and sequenced. This novel S-layer protein has low sequence similarity to other S-layer proteins in the N-terminal region (32-211 aa, 7-39%). This enabled designing strain-specific PCR primers. The primer set was utilized to study intestinal persistence of LAB20 in dog that was fed with LAB20 fermented milk for 5 days. The results showed that LAB20 can be detected from dog faecal sample after 6 weeks with 10(4·53)  DNA copies g(-1) postadministration. It suggested that LAB20 could be a good candidate to study the mechanism behind its persistence and dominance in dog intestine and maybe utilize it as a probiotic for canine. A real-time PCR method was developed to detect Lactobacillus acidophilus LAB20, a strain that was previously found dominant in canine gastrointestinal (GI) tract. The quantitative detection was based on targeting to variation region of a novel S-layer protein found in LAB20, allowing to specifically enumerate LAB20 from dog faeces. The results showed that the real-time PCR method was sensitive enough to be used in later intervention studies. Interestingly, LAB20 was found to persist in dog GI tract for 6 weeks. Therefore, LAB20 could be a good candidate to study its colonization and potentially utilize as a canine probiotic. © 2013 The Society for Applied Microbiology.

  20. Didymin: an orally active citrus flavonoid for targeting neuroblastoma

    PubMed Central

    Singhal, Sharad S.; Singhal, Sulabh; Singhal, Preeti; Singhal, Jyotsana; Horne, David; Awasthi, Sanjay

    2017-01-01

    Neuroblastoma, a rapidly growing yet treatment responsive cancer, is the third most common cancer of children and the most common solid tumor in infants. Unfortunately, neuroblastoma that has lost p53 function often has a highly treatment-resistant phenotype leading to tragic outcomes. In the context of neuroblastoma, the functions of p53 and MYCN (which is amplified in ~25% of neuroblastomas) are integrally linked because they are mutually transcriptionally regulated, and because they together regulate the catalytic activity of RNA polymerases. Didymin is a citrus-derived natural compound that kills p53 wild-type as well as drug-resistant p53-mutant neuroblastoma cells in culture. In addition, orally administered didymin causes regression of neuroblastoma xenografts in mouse models, without toxicity to non-malignant cells, neural tissues, or neural stem cells. RKIP is a Raf-inhibitory protein that regulates MYCN activation, is transcriptionally upregulated by didymin, and appears to play a key role in the anti-neuroblastoma actions of didymin. In this review, we discuss how didymin overcomes drug-resistance in p53-mutant neuroblastoma through RKIP-mediated inhibition of MYCN and its effects on GRK2, PKCs, Let-7 micro-RNA, and clathrin-dependent endocytosis by Raf-dependent and -independent mechanisms. In addition, we will discuss studies supporting potential clinical impact and translation of didymin as a low cost, safe, and effective oral agent that could change the current treatment paradigm for refractory neuroblastoma. PMID:28187004

  1. Didymin: an orally active citrus flavonoid for targeting neuroblastoma.

    PubMed

    Singhal, Sharad S; Singhal, Sulabh; Singhal, Preeti; Singhal, Jyotsana; Horne, David; Awasthi, Sanjay

    2017-04-25

    Neuroblastoma, a rapidly growing yet treatment responsive cancer, is the third most common cancer of children and the most common solid tumor in infants. Unfortunately, neuroblastoma that has lost p53 function often has a highly treatment-resistant phenotype leading to tragic outcomes. In the context of neuroblastoma, the functions of p53 and MYCN (which is amplified in ~25% of neuroblastomas) are integrally linked because they are mutually transcriptionally regulated, and because they together regulate the catalytic activity of RNA polymerases. Didymin is a citrus-derived natural compound that kills p53 wild-type as well as drug-resistant p53-mutant neuroblastoma cells in culture. In addition, orally administered didymin causes regression of neuroblastoma xenografts in mouse models, without toxicity to non-malignant cells, neural tissues, or neural stem cells. RKIP is a Raf-inhibitory protein that regulates MYCN activation, is transcriptionally upregulated by didymin, and appears to play a key role in the anti-neuroblastoma actions of didymin. In this review, we discuss how didymin overcomes drug-resistance in p53-mutant neuroblastoma through RKIP-mediated inhibition of MYCN and its effects on GRK2, PKCs, Let-7 micro-RNA, and clathrin-dependent endocytosis by Raf-dependent and -independent mechanisms. In addition, we will discuss studies supporting potential clinical impact and translation of didymin as a low cost, safe, and effective oral agent that could change the current treatment paradigm for refractory neuroblastoma.

  2. Comparative genome analysis identifies novel nucleic acid diagnostic targets for use in the specific detection of Haemophilus influenzae.

    PubMed

    Coughlan, Helena; Reddington, Kate; Tuite, Nina; Boo, Teck Wee; Cormican, Martin; Barrett, Louise; Smith, Terry J; Clancy, Eoin; Barry, Thomas

    2015-10-01

    Haemophilus influenzae is recognised as an important human pathogen associated with invasive infections, including bloodstream infection and meningitis. Currently used molecular-based diagnostic assays lack specificity in correctly detecting and identifying H. influenzae. As such, there is a need to develop novel diagnostic assays for the specific identification of H. influenzae. Whole genome comparative analysis was performed to identify putative diagnostic targets, which are unique in nucleotide sequence to H. influenzae. From this analysis, we identified 2H. influenzae putative diagnostic targets, phoB and pstA, for use in real-time PCR diagnostic assays. Real-time PCR diagnostic assays using these targets were designed and optimised to specifically detect and identify all 55H. influenzae strains tested. These novel rapid assays can be applied to the specific detection and identification of H. influenzae for use in epidemiological studies and could also enable improved monitoring of invasive disease caused by these bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Insulin 70/30 mix plus metformin versus triple oral therapy in the treatment of type 2 diabetes after failure of two oral drugs: efficacy, safety, and cost analysis.

    PubMed

    Schwartz, Sherwyn; Sievers, Richard; Strange, Poul; Lyness, William H; Hollander, Priscilla

    2003-08-01

    Subjects (n = 188) with type 2 diabetes and inadequate response to two oral medications (A1C >8.0%) were randomly assigned to treatment with either a third oral medication or an insulin 70/30 mix b.i.d. plus metformin for a comparison of efficacy, safety, and cost. The protocol called for aggressive dose titration to achieve target values of fasting blood glucose (80-120 mg/dl), postprandial glucose (<160 mg/dl), and A1C (<7%). These efficacy parameters were evaluated at weeks 2, 6, 12, and 24 of therapy. If dose adjustments failed to achieve targeted glycemic control, subjects were switched to an alternate therapy. At the end of study (week 24 of therapy), A1C and fasting plasma glucose (FPG) values showed comparable decreases in the two treatment groups. Only 31% (oral therapy) and 32% (insulin plus metformin) of subjects achieved target values of A1C (<7%). A total of 10 of the 98 subjects randomized to triple oral therapy (10.2%) who failed to improve sufficiently were switched to insulin therapy. An additional four subjects dropped out of the oral treatment group due to adverse events felt to be potentially drug related. Only two of the subjects randomized to insulin plus metformin had to be switched to basal-bolus regimens (regular insulin and NPH insulin). Cost analysis determined that insulin plus metformin (mean cost 3.20 dollars/day) provided efficacy equal to that of a triple oral drug regimen (10.40 dollars/day). Insulin 70/30 mix plus metformin was as effective as triple oral therapy in lowering A1C and FPG values. The triple oral regimen was not as cost effective, and a high percentage of subjects (total of 16.3%) did not complete this regimen due to lack of efficacy or side effects.

  4. Generic and oral quality of life is affected by oral mucosal diseases

    PubMed Central

    2012-01-01

    Background The generic and oral health-related quality of life (QoL) has provided opportunity for investigation of the interrelations among generic health, oral health, and related outcomes. The purpose of this study was to identify the generic and oral QoL in the patients with oral mucosal disease (OMD). Methods Five hundred and thirty-eight OMDs were recruited in this study. The instruments applied were Chinese version of the 36-item short form health survey (SF-36) and the short-form of Oral Health Impact Profile (OHIP-14). Results The mean score of sum OHIP-14 was significantly higher in the patients with OMD (10.81 ± 9.01) compared with those in the healthy subjects (HS) (6.55 ± 6.73) (p < 0.001, Mann-Whitney U test). 56.51% of the OMD patients and 12.94% of the HS reported at least one oral negative impact (p < 0.001, Chi-square test). The overall mean score of SF-36 was significantly lower in the patients with OMD (74.54 ± 12.77) compared with those in the HS (77.97 ± 12.39) (p = 0.021, t-test). Conclusions Administration of specific and generic questionnaires of QoL can provide us a detailed picture of the impact of OMDs on patients, and both generic and oral QoL were impaired in the patients with OMD. PMID:22225834

  5. Role of micronucleus in oral exfoliative cytology

    PubMed Central

    Shashikala, R.; Indira, A. P.; Manjunath, G. S.; rao, K. Arathi; Akshatha, B. K.

    2015-01-01

    In the last few years, the interest for oral cytology as a diagnostic and prognostic methodology, for monitoring patients in oral potentially malignant disorders and oral cancer has re-emerged substantially. In 1983, buccal mucosal micronuclei assay was first proposed to evaluate genetic instability. There are biomarkers that predict if a potentially malignant disorder is likely to develop into an aggressive tumor. These genotoxic and carcinogenic chemicals have been reported to be potent clastogenic and mutagenic agents which are thought to be responsible for the induction of chromatid/chromosomal aberrations resulting in the production of micronuclei. Various studies have concluded that the gradual increase in micronucleus (MN) counts from normal oral mucosa to potentially malignant disorders to oral carcinoma suggested a link of this biomarker with neoplastic progression. MN scoring can be used as a biomarker to identify different preneoplastic conditions much earlier than the manifestations of clinical features and might specifically be exploited in the screening of high-risk population for a specific cancer. Hence, it can be used as a screening prognostic and educational tool in community centers of oral cancer. PMID:26538888

  6. Recall of "The Real Cost" Anti-Smoking Campaign Is Specifically Associated With Endorsement of Campaign-Targeted Beliefs.

    PubMed

    Kranzler, Elissa C; Gibson, Laura A; Hornik, Robert C

    2017-10-01

    Though previous research suggests the FDA's "The Real Cost" anti-smoking campaign has reduced smoking initiation, the theorized pathway of effects (through targeted beliefs) has not been evaluated. This study assesses the relationship between recall of campaign television advertisements and ad-specific anti-smoking beliefs. Respondents in a nationally representative survey of nonsmoking youths age 13-17 (n = 4,831) reported exposure to four The Real Cost advertisements and a fake ad, smoking-relevant beliefs, and nonsmoking intentions. Analyses separately predicted each targeted belief from specific ad recall, adjusting for potential confounders and survey weights. Parallel analyses with non-targeted beliefs showed smaller effects, strengthening claims of campaign effects. Recall of four campaign ads (but not the fake ad) significantly predicted endorsement of the ad-targeted belief (Mean β = .13). Two-sided sign tests indicated stronger ad recall associations with the targeted belief relative to the non-targeted belief (p < .05). Logistic regression analyses indicated that respondents who endorsed campaign-targeted beliefs were more likely to have no intention to smoke (p < .01). This study is the first to demonstrate a relationship between recall of ads from The Real Cost campaign and the theorized pathway of effects (through targeted beliefs). These analyses also provide a methodological template for showing campaign effects despite limitations of available data.

  7. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice.

    PubMed

    Rodriguez-Cuenca, Sergio; Cochemé, Helena M; Logan, Angela; Abakumova, Irina; Prime, Tracy A; Rose, Claudia; Vidal-Puig, Antonio; Smith, Anthony C; Rubinsztein, David C; Fearnley, Ian M; Jones, Bruce A; Pope, Simon; Heales, Simon J R; Lam, Brian Y H; Neogi, Sudeshna Guha; McFarlane, Ian; James, Andrew M; Smith, Robin A J; Murphy, Michael P

    2010-01-01

    The mitochondria-targeted quinone MitoQ protects mitochondria in animal studies of pathologies in vivo and is being developed as a therapy for humans. However, it is unclear whether the protective action of MitoQ is entirely due to its antioxidant properties, because long-term MitoQ administration may alter whole-body metabolism and gene expression. To address this point, we administered high levels of MitoQ orally to wild-type C57BL/6 mice for up to 28 weeks and investigated the effects on whole-body physiology, metabolism, and gene expression, finding no measurable deleterious effects. In addition, because antioxidants can act as pro-oxidants under certain conditions in vitro, we examined the effects of MitoQ administration on markers of oxidative damage. There were no changes in the expression of mitochondrial or antioxidant genes as assessed by DNA microarray analysis. There were also no increases in oxidative damage to mitochondrial protein, DNA, or cardiolipin, and the activities of mitochondrial enzymes were unchanged. Therefore, MitoQ does not act as a pro-oxidant in vivo. These findings indicate that mitochondria-targeted antioxidants can be safely administered long-term to wild-type mice. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Mucoadhesive Fenretinide Patches for Site-specific Chemoprevention of Oral Cancer: Enhancement of Oral Mucosal Permeation of Fenretinide by Co-incorporation of Propylene Glycol and Menthol

    PubMed Central

    Wu, Xiao; Desai, Kashappa-Goud H.; Mallery, Susan R.; Holpuch, Andrew S.; Phelps, Maynard P.; Schwendeman, Steven P.

    2012-01-01

    The objective of this study was to enhance oral mucosal permeation of fenretinide by co-incorporation of propylene glycol (PG) and menthol in fenretinide/Eudragit® RL PO mucoadhesive patches. Fenretinide is an extremely hydrophobic chemopreventive compound with poor tissue permeability. Co-incorporation of 5-10 wt% PG (mean Js = 16-23 μg cm−2 h−1; 158-171 μg fenretinide/g tissue) or 1-10 wt% PG + 5 wt% menthol (mean Js = 18-40 μg cm−2 h−1; 172-241 μg fenretinide/g tissue) in fenretinide/Eudragit® RL PO patches led to significant ex vivo fenretinide permeation enhancement (p < 0.001). Addition of PG above 2.5 wt% in the patch resulted in significant cellular swelling in the buccal mucosal tissues. These alterations were ameliorated by combining both enhancers and reducing PG level. After buccal administration of patches in rabbits, in vivo permeation of fenretinide across the oral mucosa was greater (~43 μg fenretinide/g tissue) from patches that contained optimized permeation enhancer content (2.5 wt% PG + 5 wt% menthol) relative to permeation obtained from enhancer-free patch (~ 17 μg fenretinide/g tissue) (p < 0.001). In vitro and in vivo release of fenretinide from patch was not significantly increased by co-incorporation of permeation enhancers, indicating that mass transfer across the tissue, and not the patch, largely determined the permeation rate control in vivo. As a result of its improved permeation and its lack of deleterious local effects, the mucoadhesive fenretinide patch co-incorporated with 2.5 wt% PG + 5 wt% menthol represents an important step in the further preclinical evaluation of oral site-specific chemoprevention strategies with fenretinide. PMID:22280430

  9. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles.

    PubMed

    Lin, Run; Li, Yuancheng; MacDonald, Tobey; Wu, Hui; Provenzale, James; Peng, Xingui; Huang, Jing; Wang, Liya; Wang, Andrew Y; Yang, Jianyong; Mao, Hui

    2017-02-01

    Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×10 5 non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads ® ). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An oral colon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets.

    PubMed

    Pu, Huayin; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Yu, Long; Li, Lin

    2011-05-25

    An oral colon-targeting controlled release system based on resistant starch acetate (RSA) as a film-coating material was developed. The RSA was successfully synthesized, and its digestion resistibility could be improved by increasing the degree of substitution (DS), which was favorable for the colon-targeting purpose. As a delivery carrier material, the characteristics of RSA were investigated by polarized light microscopy, FTIR spectroscopy, and X-ray diffraction. The results revealed a decrease of the crystallinity of RSA and a change of its crystalline structure from B + V hydrid type to V type. To evaluate the colon-targeting release performance, the RSA film-coated pellets loaded with different bioactive components were prepared by extrusion-spheronization and then by fluid bed coating. The effects of the DS, plasticizer content, and coating thickness of the RSA film and those of the content and molecular weight of the loaded bioactive component on the colon-targeting release performance of the resulting delivery system were investigated. By adjusting the DS, the coating thickness, and the plasticizer content of the RSA film, either the pellets loaded with a small molecular bioactive component such as 5-aminosalicylic acid or those with a macromolecular bioactive peptide or protein such as bovine serum albumin, hepatocyte growth-promoting factor, or insulin showed a desirable colon-targeting release performance. The release percentage was less than 12% in simulated upper gastrointestinal tract and went up to 70% over a period of 40 h in simulated colonic fluid. This suggests that the delivery system based on RSA film has an excellent colon-targeting release performance and the universality for a wide range of bioactive components.

  11. [Oral healthcare for the persons with special needs.

    PubMed

    Morisaki, Ichijiro

    The field of special care dentistry is rapidly gaining recognition as a service that should be provided to the persons with physical, mental or intellectual disabilities by general practitioner, pediatric or geriatric dentists as well as dental hygienists. Because the oral healthcare and dental treatments are given in the narrow space of oral cavity and also accompanying technical difficulties with high risk of injury, the special needs patients are treated under being controlled their behavior or body motion by applying psychological, physical or pharmacological techniques. Those persons also manifest specific oral signs and symptoms such as dental caries, periodontal diseases as well as high incidence of dental hypoplasia, oro-facial trauma or drug-induced gingival overgrowth. The children with developmental disorders especially such as autism spectrum disorder(ASD), attention-deficit/hyperactivity disorder(AD/HD), or specific learning disorder(LD), and those with medical care needs at all times are also increasing relatively in Japan with declining birthrate. Those children have specific dental problems and require the special oral healthcare. This article presents the current status of oral healthcare for the persons with special needs.

  12. Decreased Diversity of the Oral Microbiota of Patients with Hepatitis B Virus-Induced Chronic Liver Disease: A Pilot Project

    PubMed Central

    Ling, Zongxin; Liu, Xia; Cheng, Yiwen; Jiang, Xiawei; Jiang, Haiyin; Wang, Yuezhu; Li, Lanjuan

    2015-01-01

    Increasing evidence suggests that altered gut microbiota is implicated in the pathogenesis of hepatitis B virus-induced chronic liver disease (HBV-CLD). However, the structure and composition of the oral microbiota of patients with HBV-CLD remains unclear. High-throughput pyrosequencing showed that decreased oral bacterial diversity was found in patients with HBV-CLD. The Firmicutes/Bacteroidetes ratio was increased significantly, which indicated that dysbiosis of the oral microbiota participated in the process of HBV-CLD development. However, the changing patterns of the oral microbiota in patients with HBV-induced liver cirrhosis (LC) were almost similar to patients with chronic hepatitis B (CHB). HBV infection resulted in an increase in potential H2S- and CH3SH-producing phylotypes such as Fusobacterium, Filifactor, Eubacterium, Parvimonas and Treponema, which might contribute to the increased oral malodor. These key oral-derived phylotypes might invade into the gut as opportunistic pathogens and contribute to altering the composition of the gut microbiota. This study provided important clues that dysbiosis of the oral microbiota might be involved in the development of HBV-CLD. Greater understanding of the relationships between the dysbiosis of oral microbiota and the development of HBV-CLD might facilitate the development of non-invasive differential diagnostic procedures and targeted treatments of HBV-CLD patients harbouring specific oral phylotypes. PMID:26606973

  13. A General Strategy for Targeting Drugs to Bone.

    PubMed

    Jahnke, Wolfgang; Bold, Guido; Marzinzik, Andreas L; Ofner, Silvio; Pellé, Xavier; Cotesta, Simona; Bourgier, Emmanuelle; Lehmann, Sylvie; Henry, Chrystelle; Hemmig, René; Stauffer, Frédéric; Hartwieg, J Constanze D; Green, Jonathan R; Rondeau, Jean-Michel

    2015-11-23

    Targeting drugs to their desired site of action can increase their safety and efficacy. Bisphosphonates are prototypical examples of drugs targeted to bone. However, bisphosphonate bone affinity is often considered too strong and cannot be significantly modulated without losing activity on the enzymatic target, farnesyl pyrophosphate synthase (FPPS). Furthermore, bisphosphonate bone affinity comes at the expense of very low and variable oral bioavailability. FPPS inhibitors were developed with a monophosphonate as a bone-affinity tag that confers moderate affinity to bone, which can furthermore be tuned to the desired level, and the relationship between structure and bone affinity was evaluated by using an NMR-based bone-binding assay. The concept of targeting drugs to bone with moderate affinity, while retaining oral bioavailability, has broad application to a variety of other bone-targeted drugs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Addressing Adolescent Oral Health: A Review.

    PubMed

    Silk, Hugh; Kwok, Amy

    2017-02-01

    Oral health is one of the most unmet health care needs of adolescents. Oral disease can have a profound effect on overall health, including pain, missed school, heart disease, and even death. Adolescents have specific needs pertaining to oral health in addition to the usual lifelong issues of caries management, sports injury prevention, and dental referrals. Teen years are a higher risk time for oral piercings, increased sugar intake, nicotine initiation, and orthodontic considerations. Adolescents need a unique approach to motivate them about their oral health issues. This is particularly important because lifelong health habits are created during these formative years, and prevention opportunities for sealants and varnish are only available at this age. © American Academy of Pediatrics, 2017. All rights reserved.

  15. Interventions for preventing oral mucositis in patients with cancer receiving treatment: oral cryotherapy.

    PubMed

    Riley, Philip; Glenny, Anne-Marie; Worthington, Helen V; Littlewood, Anne; Clarkson, Jan E; McCabe, Martin G

    2015-12-23

    Oral mucositis is a side effect of chemotherapy, head and neck radiotherapy, and targeted therapy, affecting over 75% of high risk patients. Ulceration can lead to severe pain and difficulty eating and drinking, which may necessitate opioid analgesics, hospitalisation and nasogastric or intravenous nutrition. These complications may lead to interruptions or alterations to cancer therapy, which may reduce survival. There is also a risk of death from sepsis if pathogens enter the ulcers of immunocompromised patients. Ulcerative oral mucositis can be costly to healthcare systems, yet there are few preventive interventions proven to be beneficial. Oral cryotherapy is a low-cost, simple intervention which is unlikely to cause side-effects. It has shown promise in clinical trials and warrants an up-to-date Cochrane review to assess and summarise the international evidence. To assess the effects of oral cryotherapy for preventing oral mucositis in patients with cancer who are receiving treatment. We searched the following databases: the Cochrane Oral Health Group Trials Register (to 17 June 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (Cochrane Library 2015, Issue 5), MEDLINE via Ovid (1946 to 17 June 2015), EMBASE via Ovid (1980 to 17 June 2015), CANCERLIT via PubMed (1950 to 17 June 2015) and CINAHL via EBSCO (1937 to 17 June 2015). We searched the US National Institutes of Health Trials Registry, and the WHO Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching databases. We included parallel-design randomised controlled trials (RCTs) assessing the effects of oral cryotherapy in patients with cancer receiving treatment. We used outcomes from a published core outcome set registered on the COMET website. Two review authors independently screened the results of electronic searches, extracted data and assessed risk of bias. We contacted study authors for information

  16. Efficacy and safety of oral desensitization in children with cow's milk allergy according to their serum specific IgE level.

    PubMed

    García-Ara, Carmen; Pedrosa, María; Belver, María Teresa; Martín-Muñoz, María Flor; Quirce, Santiago; Boyano-Martínez, Teresa

    2013-04-01

    Oral desensitization in children allergic to cow's milk proteins is not risk free. The analysis of factors that may influence the outcome is of utmost importance. To analyze the efficacy and safety of the oral desensitization according to specific IgE (sIgE) level and adverse events during the maintenance phase. Thirty-six patients allergic to cow's milk (mean age, 7 years) were included in an oral desensitization protocol. Patients were grouped according to sIgE levels (ImmunoCAP) into groups 1 (sIgE <3.5 kU/L), 2 (3.5-17 kU/L), and 3 (>17-50 kU/L). Nineteen children were included as a control group. Serum sIgE levels to cow's milk and its proteins were determined at inclusion and 6 and 12 months after finishing the desensitization protocol. Thirty-three of 36 patients were successfully desensitized (200 mL): 100% of group 1 and 88% of groups 2 and 3. Desensitization was achieved in a median of 3 months (range, 1-12 months); 90% of the patients in group 1, 50% of the patients in group 2, and 30% of the patients in group 3 achieved tolerance in less than 3 months (P = .04). In the control group only 1 child tolerated milk in oral food challenge after 1 year. During the induction phase, there were 53 adverse events in 27 patients (75%). Patients of groups 2 and 3 had more severe adverse events compared with group 1. During the maintenance phase, 20 of 33 patients (60%) had an adverse event. Oral desensitization is efficacious. Tolerance is achieved earlier when sIgE is lower. Severe adverse events are frequent, especially in patients with higher sIgE levels. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Practical aspects of treatment with target specific anticoagulants: initiation, payment and current market, transitions, and venous thromboembolism treatment.

    PubMed

    Mahan, Charles E

    2015-04-01

    Target specific anticoagulants (TSOACs) have recently been introduced to the US market for multiple indications including venous thromboembolism (VTE) prevention in total hip and knee replacement surgeries, VTE treatment and reduction in the risk of stroke in patients with non-valvular atrial fibrillation (NVAF). Currently, three TSOACs are available including rivaroxaban, apixaban, and dabigatran with edoxaban currently under Food and Drug Administration review for VTE treatment and stroke prevention in NVAF. The introduction of these agents has created a paradigm shift in anticoagulation by considerably simplifying treatment and anticoagulant initiation for patients by giving clinicians the opportunity to use a rapid onset, rapid offset, oral agent. The availability of these rapid onset TSOACs is allowing for outpatient treatment of low risk pulmonary embolism and deep vein thrombosis which can greatly reduce healthcare costs by avoiding inpatient hospitalizations and treatment for the disease. Additionally with this practice, the complications of an inpatient hospitalization may also be avoided such as nosocomial infections. Single-agent approaches with TSOACs represent a paradigm shift in the treatment of VTE versus the complicated overlap of a parenteral agent with warfarin. Transitions between anticoagulants, including TSOACs, are a high-risk period for the patient, and clinicians must carefully consider patient characteristics such as renal function as well as the agents that are being transitioned. TSOAC use appears to be growing slowly with improved payment coverage throughout the US.

  18. Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma

    PubMed Central

    Meads, MB; Fang, B; Mathews, L; Gemmer, J; Nong, L; Rosado-Lopez, I; Nguyen, T; Ring, JE; Matsui, W; MacLeod, AR; Pachter, JA; Hazlehurst, LA; Koomen, JM; Shain, KH

    2015-01-01

    Multiple myeloma (MM) remains an incurable malignancy due, in part, to the influence of the bone marrow microenvironment on survival and drug response. Identification of microenvironment-specific survival signaling determinants is critical for the rational design of therapy and elimination of MM. Previously, we have shown that collaborative signaling between β1 integrin-mediated adhesion to fibronectin and interleukin-6 confers a more malignant phenotype via amplification of signal transducer and activator of transcription 3 (STAT3) activation. Further characterization of the events modulated under these conditions with quantitative phosphotyrosine profiling identified 193 differentially phosphorylated peptides. Seventy-seven phosphorylations were upregulated upon adhesion, including PYK2/FAK2, Paxillin, CASL and p130CAS consistent with focal adhesion (FA) formation. We hypothesized that the collaborative signaling between β1 integrin and gp130 (IL-6 beta receptor, IL-6 signal transducer) was mediated by FA formation and proline-rich tyrosine kinase 2 (PYK2) activity. Both pharmacological and molecular targeting of PYK2 attenuated the amplification of STAT3 phosphorylation under co-stimulatory conditions. Co-culture of MM cells with patient bone marrow stromal cells (BMSC) showed similar β1 integrin-specific enhancement of PYK2 and STAT3 signaling. Molecular and pharmacological targeting of PYK2 specifically induced cell death and reduced clonogenic growth in BMSC-adherent myeloma cell lines, aldehyde dehydrogenase-positive MM cancer stem cells and patient specimens. Finally, PYK2 inhibition similarly attenuated MM progression in vivo. These data identify a novel PYK2-mediated survival pathway in MM cells and MM cancer stem cells within the context of microenvironmental cues, providing preclinical support for the use of the clinical stage FAK/PYK2 inhibitors for treatment of MM, especially in a minimal residual disease setting. PMID:26387544

  19. Laminar- and Target-Specific Amygdalar Inputs in Rat Primary Gustatory Cortex.

    PubMed

    Haley, Melissa S; Fontanini, Alfredo; Maffei, Arianna

    2016-03-02

    The primary gustatory cortex (GC) receives projections from the basolateral nucleus of the amygdala (BLA). Behavioral and electrophysiological studies demonstrated that this projection is involved in encoding the hedonic value of taste and is a source of anticipatory activity in GC. Anatomically, this projection is largest in the agranular portion of GC; however, its synaptic targets and synaptic properties are currently unknown. In vivo electrophysiological recordings report conflicting evidence about BLA afferents either selectively activating excitatory neurons or driving a compound response consistent with the activation of inhibitory circuits. Here we demonstrate that BLA afferents directly activate excitatory neurons and two distinct populations of inhibitory neurons in both superficial and deep layers of rat GC. BLA afferents recruit different proportions of excitatory and inhibitory neurons and show distinct patterns of circuit activation in the superficial and deep layers of GC. These results provide the first circuit-level analysis of BLA inputs to a sensory area. Laminar- and target-specific differences of BLA inputs likely explain the complexity of amygdalocortical interactions during sensory processing. Projections from the basolateral nucleus of the amygdala (BLA) to the cortex convey information about the emotional value and the expectation of a sensory stimulus. Although much work has been done to establish the behavioral role of BLA inputs to sensory cortices, very little is known about the circuit organization of BLA projections. Here we provide the first in-depth analysis of connectivity and synaptic properties of the BLA input to the gustatory cortex. We show that BLA afferents activate excitatory and inhibitory circuits in a layer-specific and pattern-specific manner. Our results provide important new information about how neural circuits establishing the hedonic value of sensory stimuli and driving anticipatory behaviors are organized at the

  20. Oral Anticoagulant Therapy

    PubMed Central

    Gallus, Alexander S.; Wittkowsky, Ann; Crowther, Mark; Hylek, Elaine M.; Palareti, Gualtiero

    2012-01-01

    Background: The objective of this article is to summarize the published literature concerning the pharmacokinetics and pharmacodynamics of oral anticoagulant drugs that are currently available for clinical use and other aspects related to their management. Methods: We carried out a standard review of published articles focusing on the laboratory and clinical characteristics of the vitamin K antagonists; the direct thrombin inhibitor, dabigatran etexilate; and the direct factor Xa inhibitor, rivaroxaban Results: The antithrombotic effect of each oral anticoagulant drug, the interactions, and the monitoring of anticoagulation intensity are described in detail and discussed without providing specific recommendations. Moreover, we describe and discuss the clinical applications and optimal dosages of oral anticoagulant therapies, practical issues related to their initiation and monitoring, adverse events such as bleeding and other potential side effects, and available strategies for reversal. Conclusions: There is a large amount of evidence on laboratory and clinical characteristics of vitamin K antagonists. A growing body of evidence is becoming available on the first new oral anticoagulant drugs available for clinical use, dabigatran and rivaroxaban. PMID:22315269

  1. In Vitro Targeted Photodynamic Therapy with a Pyropheophorbide-a Conjugated Inhibitor of Prostate Specific Membrane Antigen

    PubMed Central

    Liu, Tiancheng; Wu, Lisa Y.; Choi, Joseph K.; Berkman, Clifford E.

    2009-01-01

    BACKROUND The lack of specific delivery of photosensitizers (PSs), represents a significant limitation of photodynamic therapy (PDT) of cancer. The biomarker prostate-specific membrane antigen (PSMA) has attracted considerable attention as a target for imaging and therapeutic applications for prostate cancer. Although recent efforts have been made to conjugate inhibitors of PSMA with imaging agents, there have been no reports on photosensitizer-conjugated PSMA inhibitors for targeted PDT of prostate cancer. The present study focuses on the use of a PSMA inhibitor-conjugate of pyropheophorbide-a (Ppa-conjugate 2) for targeted PDT to achieve apoptosis in PSMA+ LNCaP cells. METHODS Confocal laser scanning microscopy with a combination of nuclear staining and immunofluorescence methods were employed to monitor the specific imaging and PDT-mediated apoptotic effects on PSMA-positive LNCaP and PSMA-negative (PC-3) cells. RESULTS Our results demonstrated that PDT-mediated effects by Ppa-conjugate 2 were specific to LNCaP cells, but not PC-3 cells. Cell permeability was detected as early as 2 h by HOE33342/PI double-staining, becoming more intense by 4 h. Evidence for the apoptotic caspase cascade being activated was based on the appearance of PARP p85 fragment. TUNEL assay detected DNA fragmentation 16 h post-PDT, confirming apoptotic events. CONCLUSIONS Cell permeability by HOE33342/PI double-staining as well as PARP p85 fragment and TUNEL assays confirm cellular apoptosis in PSMA+ cells when treated with PS-inhibitor conjugate 2 and subsequently irradiated. It is expected that the PSMA targeting small-molecule of this conjugate can serve as a delivery vehicle for PDT and other therapeutic applications for prostate cancer. PMID:19142895

  2. Plasmonic nanobubbles for target cell-specific gene and drug delivery and multifunctional processing of heterogeneous cell systems

    NASA Astrophysics Data System (ADS)

    Lukianova-Hleb, Ekaterina Y.; Huye, Leslie E.; Brenner, Malcolm K.; Lapotko, Dmitri O.

    2014-03-01

    Cell and gene cancer therapies require ex vivo cell processing of human grafts. Such processing requires at least three steps - cell enrichment, cell separation (destruction), and gene transfer - each of which requires the use of a separate technology. While these technologies may be satisfactory for research use, they are of limited usefulness in the clinical treatment setting because they have a low processing rate, as well as a low transfection and separation efficacy and specificity in heterogeneous human grafts. Most problematic, because current technologies are administered in multiple steps - rather than in a single, multifunctional, and simultaneous procedure - they lengthen treatment process and introduce an unnecessary level of complexity, labor, and resources into clinical treatment; all these limitations result in high losses of valuable cells. We report a universal, high-throughput, and multifunctional technology that simultaneously (1) inject free external cargo in target cells, (2) destroys unwanted cells, and (3) preserve valuable non-target cells in heterogeneous grafts. Each of these functions has single target cell specificity in heterogeneous cell system, processing rate > 45 mln cell/min, injection efficacy 90% under 96% viability of the injected cells, target cell destruction efficacy > 99%, viability of not-target cells >99% The developed technology employs novel cellular agents, called plasmonic nanobubbles (PNBs). PNBs are not particles, but transient, intracellular events, a vapor nanobubbles that expand and collapse in mere nanoseconds under optical excitation of gold nanoparticles with short picosecond laser pulses. PNBs of different, cell-specific, size (1) inject free external cargo with small PNBs, (2) Destroy other target cells mechanically with large PNBs and (3) Preserve non-target cells. The multi-functionality, precision, and high throughput of all-in-one PNB technology will tremendously impact cell and gene therapies and other

  3. Vaccine specific immune response to an inactivated oral cholera vaccine and EPI vaccines in a high and low arsenic area in Bangladeshi children.

    PubMed

    Saha, Amit; Chowdhury, Mohiul I; Nazim, Mohammad; Alam, Mohammad Murshid; Ahmed, Tanvir; Hossain, Mohammad Bakhtiar; Hore, Samar Kumar; Sultana, Gazi Nurun Nahar; Svennerholm, Ann-Mari; Qadri, Firdausi

    2013-01-11

    Immune responses to the inactivated oral whole cell cholera toxin B (CTB) subunit cholera vaccine, Dukoral(®), as well as three childhood vaccines in the national immunization system were compared in children living in high and low arsenic contaminated areas in Bangladesh. In addition, serum complement factors C3 and C4 levels were evaluated among children in the two areas. VACCINATIONS: Toddlers (2-5 years) were orally immunized with two doses of Dukoral 14 days apart. Study participants had also received diphtheria, tetanus and measles vaccines according to the Expanded Program on Immunization (EPI) in Bangladesh. The mean level of arsenic in the urine specimens in the children of the high arsenic area (HAA, Shahrasti, Chandpur) was 291.8μg/L while the level was 6.60μg/L in the low arsenic area (LAA, Mirpur, Dhaka). Cholera specific vibriocidal antibody responses were significantly increased in the HAA (87%, P<0.001) and the LAA (75%, P<0.001) children after vaccination with Dukoral, but no differences were found between the two groups. Levels of CTB specific IgA and IgG antibodies were comparable between the two groups, whereas LPS specific IgA and IgG were higher in the LAA group, although response rates were comparable. Diphtheria and tetanus vaccine specific IgG responses were significantly higher in the HAA compared to the LAA group (P<0.001, P=0.048 respectively), whereas there were no differences in the measles specific IgG responses between the groups. Complement C3 and C4 levels in sera were higher in participants from the HAA than the LAA groups (P<0.001, P=0.049 respectively). The study demonstrates that the oral cholera vaccine as well as the EPI vaccines studied are immunogenic in children in high and low arsenic areas in Bangladesh. The results are encouraging for the potential use of cholera vaccines as well as the EPI vaccines in arsenic endemic areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Targeting cancer stem cell-specific markers and/or associated signaling pathways for overcoming cancer drug resistance.

    PubMed

    Ranji, Peyman; Salmani Kesejini, Tayyebali; Saeedikhoo, Sara; Alizadeh, Ali Mohammad

    2016-10-01

    Cancer stem cells (CSCs) are a small subpopulation of tumor cells with capabilities of self-renewal, dedifferentiation, tumorigenicity, and inherent chemo-and-radio therapy resistance. Tumor resistance is believed to be caused by CSCs that are intrinsically challenging to common treatments. A number of CSC markers including CD44, CD133, receptor tyrosine kinase, aldehyde dehydrogenases, epithelial cell adhesion molecule/epithelial specific antigen, and ATP-binding cassette subfamily G member 2 have been proved as the useful targets for defining CSC population in solid tumors. Furthermore, targeting CSC markers through new therapeutic strategies will ultimately improve treatments and overcome cancer drug resistance. Therefore, the identification of novel strategies to increase sensitivity of CSC markers has major clinical implications. This review will focus on the innovative treatment methods such as nano-, immuno-, gene-, and chemotherapy approaches for targeting CSC-specific markers and/or their associated signaling pathways.

  5. Oral health knowledge and practice of 12 to 14-year-old Almajaris in Nigeria: A problem of definition and a call to action.

    PubMed

    Idowu, Enoch Abiodun; Afolabi, Adedapo Olanrewaju; Nwhator, Solomon Olusegun

    2016-05-01

    We studied oral health knowledge and practices of 12 to 14-year-old Almajiri boys in northern Nigeria because we found few studies on their health, and none on their oral health. We present our study after explaining the desperate life circumstances and context of Nigeria's approximately 10 million Almajiri youth. Our results, when compared with those of previously studied populations (those most similar in terms of environment, age range, and oral health characteristics) show that the Almajiris fare poorly. Although the international community has paid some attention to the Nigerian Almajiri children's educational needs, there has been little support for health, and none for oral health. We argue that the World Health Organization could better assist Nigeria and these children by assuring that the Almajiris are not excluded from programs targeting children classified as 'street children', and make specific recommendations.

  6. Rotifer rDNA-specific R9 retrotransposable elements generate an exceptionally long target site duplication upon insertion.

    PubMed

    Gladyshev, Eugene A; Arkhipova, Irina R

    2009-12-15

    Ribosomal DNA genes in many eukaryotes contain insertions of non-LTR retrotransposable elements belonging to the R2 clade. These elements persist in the host genomes by inserting site-specifically into multicopy target sites, thereby avoiding random disruption of single-copy host genes. Here we describe R9 retrotransposons from the R2 clade in the 28S RNA genes of bdelloid rotifers, small freshwater invertebrate animals best known for their long-term asexuality and for their ability to survive repeated cycles of desiccation and rehydration. While the structural organization of R9 elements is highly similar to that of other members of the R2 clade, they are characterized by two distinct features: site-specific insertion into a previously unreported target sequence within the 28S gene, and an unusually long target site duplication of 126 bp. We discuss the implications of these findings in the context of bdelloid genome organization and the mechanisms of target-primed reverse transcription.

  7. [Oral ecosystem in elderly people].

    PubMed

    Lacoste-Ferré, Marie-Hélène; Hermabessière, Sophie; Jézéquel, Fabienne; Rolland, Yves

    2013-06-01

    The mouth is a complex natural cavity which constitutes the initial segment of the digestive tract. It is an essential actor of the vital functions as nutrition, language, communication. The whole mouth (teeth, periodontium, mucous membranes, tongue) is constantly hydrated and lubricated by the saliva. At any age, a balance becomes established between the bacterial proliferations, the salivary flow, the adapted tissular answer: it is the oral ecosystem. The regulation of this ecosystem participates in the protection of the oral complex against current inflammatory and infectious pathologies (caries, gingivitis, periodontitis, candidiasis). In elderly, the modification of the salivary flow, the appearance of specific pathologies (root caries, edentulism, periodontitis), the local conditions (removable dentures), the development of general pathologies, the development of general pathologies (diabetes, hypertension, immunosuppression, the insufficient oral care are so many elements which are going to destabilize the oral ecosystem, to favor the formation of the dental plaque and to weaken oral tissues. The preservation of this ecosystem is essential for elderly: it allows to eat in good conditions and so to prevent the risks of undernutrition. The authors describe the oral physiopathology (oral microflora, salivary secretion) and the strategies to be adopted to protect the balance of the oral ecosystem in geriatric population.

  8. siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs.

    PubMed

    Vickers, Timothy A; Crooke, Stanley T

    2012-07-01

    While most siRNAs induce sequence-specific target mRNA cleavage and degradation in a process mediated by Ago2/RNA-induced silencing complex (RISC), certain siRNAs have also been demonstrated to direct target RNA reduction through deadenylation and subsequent degradation of target transcripts in a process which involves Ago1/RISC and P-bodies. In the current study, we present data suggesting that a third class of siRNA exist, which are capable of promoting target RNA reduction that is independent of both Ago and RISC. These siRNAs bind the target messenger RNA at the polyA signal and are capable of redirecting a small amount of polyadenylation to downstream polyA sites when present, however, the majority of the activity appears to be due to inhibition of polyadenylation or deadenylation of the transcript, followed by exosomal degradation of the immature mRNA.

  9. Oral biomarkers in exercise-induced neuroplasticity in Parkinson's disease.

    PubMed

    Mougeot, J-Lc; Hirsch, M A; Stevens, C B; Mougeot, Fkb

    2016-11-01

    In this article, we review candidate biomarkers for Parkinson's disease (PD) in oral cavity, potential of oral biomarkers as markers of neuroplasticity, and literature on the effects of exercise on oral cavity biomarkers in PD. We first describe how pathophysiological pathways of PD may be transduced from brain stem and ganglia to oral cavity through the autonomic nervous system or transduced by a reverse path. Next we describe the effects of exercise in PD and potential impact on oral cavity. We propose that biomarkers in oral cavity may be useful targets for describing exercise-induced brain neuroplasticity in PD. Nevertheless, much research remains to be carried out before applying these biomarkers for the determination of disease state and therapeutic response to develop strategies to mitigate motor or non-motor symptoms in PD. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. 21 CFR 520.390c - Chloramphenicol palmitate oral suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chloramphenicol palmitate oral suspension. 520... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390c Chloramphenicol palmitate oral suspension. (a) Specifications. Each milliliter contains chloramphenicol palmitate...

  11. A dendritic cell targeted vaccine induces long-term HIV-specific immunity within the gastrointestinal tract.

    PubMed

    Ruane, D; Do, Y; Brane, L; Garg, A; Bozzacco, L; Kraus, T; Caskey, M; Salazar, A; Trumpheller, C; Mehandru, S

    2016-09-01

    Despite significant therapeutic advances for HIV-1 infected individuals, a preventative HIV-1 vaccine remains elusive. Studies focusing on early transmission events, including the observation that there is a profound loss of gastrointestinal (GI) CD4(+) T cells during acute HIV-1 infection, highlight the importance of inducing HIV-specific immunity within the gut. Here we report on the generation of cellular and humoral immune responses in the intestines by a mucosally administered, dendritic cell (DC) targeted vaccine. Our results show that nasally delivered α-CD205-p24 vaccine in combination with polyICLC, induced polyfunctional immune responses within naso-pulmonary lymphoid sites that disseminated widely to systemic and mucosal (GI tract and the vaginal epithelium) sites. Qualitatively, while α-CD205-p24 prime-boost immunization generated CD4(+) T-cell responses, heterologous prime-boost immunization with α-CD205-p24 and NYVAC gag-p24 generated high levels of HIV-specific CD4(+) and CD8(+) T cells within the GI tract. Finally, DC-targeting enhanced the amplitude and longevity of vaccine-induced immune responses in the GI tract. This is the first report of a nasally delivered, DC-targeted vaccine to generate HIV-specific immune responses in the GI tract and will potentially inform the design of preventative approaches against HIV-1 and other mucosal infections.

  12. Is Weak Oral Language Associated with Poor Spelling in School-Age Children with Specific Language Impairment, Dyslexia, or Both?

    PubMed Central

    McCarthy, Jillian H.; Hogan, Tiffany P.; Catts, Hugh W.

    2013-01-01

    The purpose of this study was to test the hypothesis that word reading accuracy, not oral language, is associated with spelling performance in school-age children. We compared fourth grade spelling accuracy in children with specific language impairment (SLI), dyslexia, or both (SLI/dyslexia) to their typically developing grade-matched peers. Results of the study revealed that children with SLI performed similarly to their typically developing peers on a single word spelling task. Alternatively, those with dyslexia and SLI/dyslexia evidenced poor spelling accuracy. Errors made by both those with dyslexia and SLI/dyslexia were characterized by numerous phonologic, orthographic, and semantic errors. Cumulative results support the hypothesis that word reading accuracy, not oral language, is associated with spelling performance in typically developing school-age children and their peers with SLI and dyslexia. Findings are provided as further support for the notion that SLI and dyslexia are distinct, yet co-morbid, developmental disorders. PMID:22876769

  13. An Exquisitely Specific PDZ/Target Recognition Revealed by the Structure of INAD PDZ3 in Complex with TRP Channel Tail.

    PubMed

    Ye, Fei; Liu, Wei; Shang, Yuan; Zhang, Mingjie

    2016-03-01

    The vast majority of PDZ domains are known to bind to a few C-terminal tail residues of target proteins with modest binding affinities and specificities. Such promiscuous PDZ/target interactions are not compatible with highly specific physiological functions of PDZ domain proteins and their targets. Here, we report an unexpected PDZ/target binding occurring between the scaffold protein inactivation no afterpotential D (INAD) and transient receptor potential (TRP) channel in Drosophila photoreceptors. The C-terminal 15 residues of TRP are required for the specific interaction with INAD PDZ3. The INAD PDZ3/TRP peptide complex structure reveals that only the extreme C-terminal Leu of TRP binds to the canonical αB/βB groove of INAD PDZ3. The rest of the TRP peptide, by forming a β hairpin structure, binds to a surface away from the αB/βB groove of PDZ3 and contributes to the majority of the binding energy. Thus, the INAD PDZ3/TRP channel interaction is exquisitely specific and represents a new mode of PDZ/target recognitions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors.

    PubMed

    Ahmed, Nabil; Salsman, Vita S; Kew, Yvonne; Shaffer, Donald; Powell, Suzanne; Zhang, Yi J; Grossman, Robert G; Heslop, Helen E; Gottschalk, Stephen

    2010-01-15

    Glioblastoma multiforme (GBM) is the most aggressive human primary brain tumor and is currently incurable. Immunotherapies have the potential to target GBM stem cells, which are resistant to conventional therapies. Human epidermal growth factor receptor 2 (HER2) is a validated immunotherapy target, and we determined if HER2-specific T cells can be generated from GBM patients that will target autologous HER2-positive GBMs and their CD133-positive stem cell compartment. HER2-specific T cells from 10 consecutive GBM patients were generated by transduction with a retroviral vector encoding a HER2-specific chimeric antigen receptor. The effector function of HER2-specific T cells against autologous GBM cells, including CD133-positive stem cells, was evaluated in vitro and in an orthotopic murine xenograft model. Stimulation of HER2-specific T cells with HER2-positive autologous GBM cells resulted in T-cell proliferation and secretion of IFN-gamma and interleukin-2 in a HER2-dependent manner. Patients' HER2-specific T cells killed CD133-positive and CD133-negative cells derived from primary HER2-positive GBMs, whereas HER2-negative tumor cells were not killed. Injection of HER2-specific T cells induced sustained regression of autologous GBM xenografts established in the brain of severe combined immunodeficient mice. Gene transfer allows the reliable generation of HER2-specific T cells from GBM patients, which have potent antitumor activity against autologous HER2-positive tumors including their putative stem cells. Hence, the adoptive transfer of HER2-redirected T cells may be a promising immunotherapeutic approach for GBM.

  15. Oral manifestation in inflammatory bowel disease: A review

    PubMed Central

    Lankarani, Kamran B; Sivandzadeh, Gholam Reza; Hassanpour, Shima

    2013-01-01

    Inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative colitis, not only affect the intestinal tract but also have an extraintestinal involvement within the oral cavity. These oral manifestations may assist in the diagnosis and the monitoring of disease activity, whilst ignoring them may lead to an inaccurate diagnosis and useless and expensive workups. Indurated tag-like lesions, cobblestoning, and mucogingivitis are the most common specific oral findings encountered in CD cases. Aphthous stomatitis and pyostomatitis vegetans are among non-specific oral manifestations of IBD. In differential diagnosis, side effects of drugs, infections, nutritional deficiencies, and other inflammatory conditions should also be considered. Treatment usually involves managing the underlying intestinal disease. In severe cases with local symptoms, topical and/or systemic steroids and immunosuppressive drugs might be used. PMID:24379574

  16. Oral and non oral diseases and conditions associated with bad breath.

    PubMed

    Migliario, M; Rimondini, L

    2011-03-01

    The causes of bad breath are numerous and related to conditions dependent or not on oral and general health. The aim of our observational study is the assessment of the simultaneous relationships between halitosis, oral and/or nonoral diseases, and lifestyles using the principal components analysis of categorical data (CATPCA) to identify the main components involved in the detection of the symptom. A sample of 192 patients, who requested general dental examination at the Dental Clinic, participated at the study. Alimentary and voluptuary habits, general health information, drugs assumption, the status of teeth and intraoral medical devices including fillers, lesions of the oral mucosa, tongue coating score (TCS), plaque index (PI), probing bleeding index (PBI) and organoleptic tests were all evaluated. Data were analysed using CATPCA model. A strong relationship between halitosis and plaque, probing bleeding and tongue coating indexes was observed, whereas incongruous fillers, prostheses, systemic pathologies or diet were not clearly associated with halitosis probably because their effects on breath were clinically sheltered by the periodontal condition. The data of our observational study confirm that halitosis is more indicative of tongue coating and periodontal disease, rather than other oral and non oral associated conditions, like systemic pathologies or specific habits of life.

  17. Development of a mobile application for oral cancer screening.

    PubMed

    Gomes, Mayra Sousa; Bonan, Paulo Rogério Ferreti; Ferreira, Vitor Yuri Nicolau; de Lucena Pereira, Laudenice; Correia, Ricardo João Cruz; da Silva Teixeira, Hélder Bruno; Pereira, Daniel Cláudio; Bonan, Paulo

    2017-01-01

    To develop a mobile application (app) for oral cancer screening. The app was developed using Android system version 4.4.2, with JAVA language. Information concerning sociodemographic data and risk factors for oral cancer development, e.g., tobacco and alcohol use, sun exposure and other contributing factors, such as unprotected oral sex, oral pain and denture use, were included. We surveyed a population at high risk for oral cancer development and then evaluated the sensitivity/specificity/accuracy and predictive values of clinical oral diagnosis between two blinded trained examiners, who used movies and data from the app, and in loco oral examination as gold-standard. A total of 55 individuals at high risk for oral cancer development were surveyed. Of these, 31% presented homogeneous/heterogeneous white lesions with potential of malignancy. The clinical diagnoses performed by the two examiners using videos were found to have sensitivity of 82%-100% (average 91%), specificity of 81%-100% (average 90.5%), and accuracy of 87.27%-95.54% (average 90.90%), as compared with the gold-standard. The Kappa agreement value between the gold-standard and the examiner with the best agreement was 0.597. Mobile apps including videos and data collection interfaces could be an interesting alternative in oral cancer research development.

  18. In Vivo Visualization of Bacterial Colonization, Antigen Expression, and Specific T-Cell Induction following Oral Administration of Live Recombinant Salmonella enterica Serovar Typhimurium

    PubMed Central

    Bumann, Dirk

    2001-01-01

    Live attenuated Salmonella strains that express a foreign antigen are promising oral vaccine candidates. Numerous genetic modifications have been empirically tested, but their effects on immunogenicity are difficult to interpret since important in vivo properties of recombinant Salmonella strains such as antigen expression and localization are incompletely characterized and the crucial early inductive events of an immune response to the foreign antigen are not fully understood. Here, methods were developed to directly localize and quantitate the in situ expression of an ovalbumin model antigen in recombinant Salmonella enterica serovar Typhimurium using two-color flow cytometry and confocal microscopy. In parallel, the in vivo activation, blast formation, and division of ovalbumin-specific CD4+ T cells were followed using a well-characterized transgenic T-cell receptor mouse model. This combined approach revealed a biphasic induction of ovalbumin-specific T cells in the Peyer's patches that followed the local ovalbumin expression of orally administered recombinant Salmonella cells in a dose- and time-dependent manner. Interestingly, intact Salmonella cells and cognate T cells seemed to remain in separate tissue compartments throughout induction, suggesting a transport of killed Salmonella cells from the colonized subepithelial dome area to the interfollicular inductive sites. The findings of this study will help to rationally optimize recombinant Salmonella strains as efficacious live antigen carriers for oral vaccination. PMID:11402006

  19. Virus Capsids as Targeted Nanoscale Delivery Vessels of Photoactive Compounds for Site-Specific Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Cohen, Brian A.

    The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed by external modification of the capsid with cancer cell-targeting G-quadruplex DNA aptamers to generate a tumor-specific photosensitizing agent. First, a cationic porphyrin is loaded into the capsids via nucleotide-driven packaging, a process that involves charge interaction between the porphyrin and the RNA inside the capsid. Results show that over 250 porphyrin molecules associate with the RNA within each MS2 capsid. Removal of RNA from the capsid severely inhibits the packaging of the cationic porphyrins. Porphyrin-virus constructs were then shown to photogenerate singlet oxygen, and cytotoxicity in non-targeted photodynamic treatment experiments. Next, each porphyrin-loaded capsid is externally modified with approximately 60 targeting DNA aptamers by employing a heterobifunctional crosslinking agent. The targeting aptamer is known to bind the protein nucleolin, a ubiquitous protein that is overexpressed on the cell surface by many cancer cell types. MCF-7 human breast carcinoma cells and MCF-10A human mammary epithelial cells were selected as an in vitro model for breast cancer and normal tissue, respectively. Fluorescently tagged virus-aptamer constructs are shown to selectively target MCF-7 cells versus MCF-10A cells. Finally, results are shown in which porphyrin

  20. Fine Specificity Mapping of Autoantigens Targeted by Anti-Centromere Autoantibodies

    PubMed Central

    Akbarali, Yasmin; Matousek-Ronck, Jennifer; Hunt, Laura; Staudt, Leslie; Reichlin, Morris; Guthridge, Joel M.; James, Judith A

    2007-01-01

    Summary Autoantibodies to centromeric proteins are commonly found in sera of limited scleroderma and other rheumatic disease patients. To better understand the inciting events and possible pathogenic mechanisms of these autoimmune responses, this study identified the common antigenic targets of CENP-A in scleroderma patient sera. Utilizing samples from 263 anti-centromere immunofluorescence positive patients, 93.5% were found to have anti-CENP-A reactivity and 95.4% had anti-CENP-B reactivity by ELISA. Very few patient samples exclusively targeted CENP-A (2.7%) or CENP-B (4.2%). Select patient sera were tested for reactivity with solid phase overlapping decapeptides of CENP-A. Four distinct epitopes of CENP-A were identified. Epitopes 2 and 3 were confirmed by additional testing of 263 patient sera by ELISA for reactivity with these sequences constructed as multiple antigenic peptides. Inhibition CENP-A Western blots also confirmed the specificity of these humoral peptide immune responses in a subset of patient sera. The first three arginine residues (aa 4-6) of CENP-A appear essential for antibody recognition, as replacing these arginines with glycine residues reduced antibody binding to the expressed CENP-A protein by an average of 93.2% (range 80-100%). In selected patients with serial samples spanning nearly a decade, humoral epitope binding patterns were quite stable and showed no epitope spreading over time. This epitope mapping study identifies key antigenic targets of the anti-centromere response and establishes that the majority of the responses depend on key amino-terminal residues. PMID:17210244

  1. FDI-Unilever Brush Day & Night partnership: 12 years of improving behaviour for better oral health.

    PubMed

    Kell, Kathryn; Aymerich, Marie-Anne; Horn, Virginie

    2018-05-01

    Twelve years ago, FDI World Dental Federation and Unilever Oral Care began a partnership to raise awareness of oral health globally. This aim reflects FDI's mission to "lead the world to optimal oral health", and one of the goals set by the Unilever Sustainable Living Plan "to improve health and well-being for more than 1 billion" by 2020. This partnership has developed a series of public health programmes to improve the brushing habits of targeted populations through health promotion and educational campaigns worldwide. Building on the success of the first two phases of the partnership, the third phase (Phase III), named Brush Day & Night, aimed to educate children in brushing twice-daily with fluoride toothpaste via a 21 Day school programme. This article reports the main outcomes of the past 12 years of this partnership, in particular the key outreach and figures of Phase III evaluation. School programmes were implemented in 10 countries, where local teams collected data from children aged between 2 and 12 years to monitor their oral health behaviours using specific indicators. In addition to the school programme, the World Oral Health Day was used as a vehicle to convey oral health awareness to influential governing bodies and the public. As a result, over 4 million people were directly reached by the programme in 2016. © 2018 FDI World Dental Federation.

  2. Combined Use of Self-Efficacy Scale for Oral Health Behaviour and Oral Health Questionnaire: A Pilot Study

    ERIC Educational Resources Information Center

    Soutome, Sakiko; Kajiwara, Kazumi; Oho, Takahiko

    2012-01-01

    Objective: To examine whether the combined use of a task-specific self-efficacy scale for oral health behaviour (SEOH) and an oral health questionnaire (OHQ) would be useful for evaluating subjects' behaviours and cognitions. Design: Questionnaires. Methods: One hundred and eighty-five students completed the SEOH and OHQ. The 30-item OHQ uses a…

  3. The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail

    PubMed Central

    Chen, Su-Ren; Batool, Aalia; Wang, Yu-Qian; Hao, Xiao-Xia; Chang, Chawn-Shang; Cheng, C Yan; Liu, Yi-Xun

    2016-01-01

    Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms ‘spermiogenesis failure', ‘globozoospermia', ‘spermatid-specific', ‘acrosome', ‘infertile', ‘manchette', ‘sperm connecting piece', ‘sperm annulus', ‘sperm ADAMs', ‘flagellar abnormalities', ‘sperm motility loss', ‘sperm ion exchanger' and ‘contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific

  4. Vector design for liver specific expression of multiple interfering RNAs that target hepatitis B virus transcripts

    PubMed Central

    Snyder, Lindsey L.; Esser, Jonathan M.; Pachuk, Catherine J.; Steel, Laura F.

    2008-01-01

    RNA interference (RNAi) is a process that can target intracellular RNAs for degradation in a highly sequence specific manner, making it a powerful tool that is being pursued in both research and therapeutic applications. Hepatitis B virus (HBV) is a serious public health problem in need of better treatment options, and aspects of its life cycle make it an excellent target for RNAi-based therapeutics. We have designed a vector that expresses interfering RNAs that target HBV transcripts, including both viral RNA replicative intermediates and mRNAs encoding viral proteins. Our vector design incorporates many features of endogenous microRNA (miRNA) gene organization that are proving useful for the development of reagents for RNAi. In particular, our vector contains an RNA pol II driven gene cassette that leads to tissue specific expression and efficient processing of multiple interfering RNAs from a single transcript, without the co-expression of any protein product. This vector shows potent silencing of HBV targets in cell culture models of HBV infection. The vector design will be applicable to silencing of additional cellular or disease-related genes. PMID:18499277

  5. Associations among Life Events, Empathic Concern, and Adolescents' Prosocial and Aggressive Behaviors Toward Specific Targets.

    PubMed

    Davis, Alexandra N; Luce, Haley; Davalos, Natasha

    2018-05-25

    The goal of the present study was to examine the links between life events and adolescents' social behaviors (prosocial and aggressive behaviors) toward specific targets and to examine how empathic concern may play a role in these associations. The study examined two hypotheses: both the mediating role of empathic concern and the moderating role of empathic concern. The sample included 311 high school students from the Midwest (M age = 16.10 years; age range = 14-19 years; 58.7% girls; 82.7% White, 13.6% Latino). The results demonstrated support for the moderation model as well as complex links between life events and prosocial and aggressive behaviors toward specific targets. The discussion focuses on the role of empathic concern in understanding how life events are ultimately associated with adolescents' social development.

  6. Rapamycin enhances the anti-angiogenesis and anti-proliferation ability of YM155 in oral squamous cell carcinoma.

    PubMed

    Li, Kong-Liang; Wang, Yu-Fan; Qin, Jia-Ruo; Wang, Feng; Yang, Yong-Tao; Zheng, Li-Wu; Li, Ming-Hua; Kong, Jie; Zhang, Wei; Yang, Hong-Yu

    2017-06-01

    YM155, a small molecule inhibitor of survivin, has been studied in many tumors. It has been shown that YM155 inhibited oral squamous cell carcinoma through promoting apoptosis and autophagy and inhibiting proliferation. It was found that YM155 also inhibited the oral squamous cell carcinoma-mediated angiogenesis through the inactivation of the mammalian target of rapamycin pathway. Rapamycin, a mammalian target of rapamycin inhibitor, played an important role in the proliferation and angiogenesis of oral squamous cell carcinoma cell lines. In our study, cell proliferation assay, transwell assay, tube formation assay, and western blot assay were used to investigate the synergistic effect of rapamycin on YM155 in oral squamous cell carcinoma. Either in vitro or in vivo, rapamycin and YM155 exerted a synergistic effect on the inhibition of survivin and vascular endothelial growth factor through mammalian target of rapamycin pathway. Overall, our results revealed that low-dose rapamycin strongly promoted the sensitivity of oral squamous cell carcinoma cell lines to YM155.

  7. The oral-systemic connection: role of salivary diagnostics

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2013-05-01

    Utilizing saliva instead of blood for diagnosis of both local and systemic health is a rapidly emerging field. Recognition of oral-systemic interrelationships for many diseases has fostered collaborations between medicine and dentistry, and many of these collaborations rely on salivary diagnostics. The oral cavity is easily accessed and contains most of the analytes present in blood. Saliva and mucosal transudate are generally utilized for oral diagnostics, but gingival crevicular fluid, buccal swabs, dental plaque and volatiles may also be useful depending on the analyte being studied. Examples of point-of-care devices capable of detecting HIV, TB, and Malaria targets are being developed and discussed in this overview.

  8. Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice.

    PubMed

    Laguía-Becher, Melina; Martín, Valentina; Kraemer, Mauricio; Corigliano, Mariana; Yacono, María L; Goldman, Alejandra; Clemente, Marina

    2010-07-15

    Codon optimization and subcellular targeting were studied with the aim to increase the expression levels of the SAG178-322 antigen of Toxoplasma gondii in tobacco leaves. The expression of the tobacco-optimized and native versions of the SAG1 gene was explored by transient expression from the Agrobacterium tumefaciens binary expression vector, which allows targeting the recombinant protein to the endoplasmic reticulum (ER) and the apoplast. Finally, mice were subcutaneously and orally immunized with leaf extracts-SAG1 and the strategy of prime boost with rSAG1 expressed in Escherichia coli was used to optimize the oral immunization with leaf extracts-SAG1. Leaves agroinfiltrated with an unmodified SAG1 gene accumulated 5- to 10-fold more than leaves agroinfiltrated with a codon-optimized SAG1 gene. ER localization allowed the accumulation of higher levels of native SAG1. However, no significant differences were observed between the mRNA accumulations of the different versions of SAG1. Subcutaneous immunization with leaf extracts-SAG1 (SAG1) protected mice against an oral challenge with a non-lethal cyst dose, and this effect could be associated with the secretion of significant levels of IFN-gamma. The protection was increased when mice were ID boosted with rSAG1 (SAG1+boost). This group elicited a significant Th1 humoral and cellular immune response characterized by high levels of IFN-gamma. In an oral immunization assay, the SAG1+boost group showed a significantly lower brain cyst burden compared to the rest of the groups. Transient agroinfiltration was useful for the expression of all of the recombinant proteins tested. Our results support the usefulness of endoplasmic reticulum signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The results showed that this plant-produced protein has potential for use as vaccine and provides a potential means for protecting humans and animals against toxoplasmosis.

  9. The Role of Specificity, Targeted Learning Activities, and Prior Knowledge for the Effects of Relevance Instructions

    ERIC Educational Resources Information Center

    Roelle, Julian; Lehmkuhl, Nina; Beyer, Martin-Uwe; Berthold, Kirsten

    2015-01-01

    In 2 experiments we examined the role of (a) specificity, (b) the type of targeted learning activities, and (c) learners' prior knowledge for the effects of relevance instructions on learning from instructional explanations. In Experiment 1, we recruited novices regarding the topic of atomic structure (N = 80) and found that "specific"…

  10. The relation between societal factors and different forms of prejudice: A cross-national approach on target-specific and generalized prejudice.

    PubMed

    Meeusen, Cecil; Kern, Anna

    2016-01-01

    The goal of this paper was to investigate the generalizability of prejudice across contexts by analyzing associations between different types of prejudice in a cross-national perspective and by investigating the relation between country-specific contextual factors and target-specific prejudices. Relying on the European Social Survey (2008), results indicated that prejudices were indeed positively associated, confirming the existence of a generalized prejudice component. Next to substantial cross-national differences in associational strength, also within country variance in target-specific associations was observed. This suggested that the motivations for prejudice largely vary according to the intergroup context. Two aspects of the intergroup context - economic conditions and cultural values - showed to be related to generalized and target-specific components of prejudice. Future research on prejudice and context should take an integrative approach that considers both the idea of generalized and specific prejudice simultaneously. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus.

    PubMed

    Martin, E Anne; Muralidhar, Shruti; Wang, Zhirong; Cervantes, Diégo Cordero; Basu, Raunak; Taylor, Matthew R; Hunter, Jennifer; Cutforth, Tyler; Wilke, Scott A; Ghosh, Anirvan; Williams, Megan E

    2015-11-17

    Synaptic target specificity, whereby neurons make distinct types of synapses with different target cells, is critical for brain function, yet the mechanisms driving it are poorly understood. In this study, we demonstrate Kirrel3 regulates target-specific synapse formation at hippocampal mossy fiber (MF) synapses, which connect dentate granule (DG) neurons to both CA3 and GABAergic neurons. Here, we show Kirrel3 is required for formation of MF filopodia; the structures that give rise to DG-GABA synapses and that regulate feed-forward inhibition of CA3 neurons. Consequently, loss of Kirrel3 robustly increases CA3 neuron activity in developing mice. Alterations in the Kirrel3 gene are repeatedly associated with intellectual disabilities, but the role of Kirrel3 at synapses remained largely unknown. Our findings demonstrate that subtle synaptic changes during development impact circuit function and provide the first insight toward understanding the cellular basis of Kirrel3-dependent neurodevelopmental disorders.

  12. Developmental Specificity in Targeting and Teaching Play Activities to Children with Pervasive Developmental Disorders

    ERIC Educational Resources Information Center

    Lifter, Karin; Ellis, James; Cannon, Barbara; Anderson, Stephen R.

    2005-01-01

    Developmentally specific play programs were designed for three children with pervasive developmental disorders being served in a home-based program. Using the Developmental Play Assessment, six activities for each of three adjacent developmentally sequenced play categories were targeted for direct instruction using different toy sets. A modified…

  13. Pharmacokinetics of oral amantadine in greyhound dogs.

    PubMed

    Norkus, C; Rankin, D; Warner, M; KuKanich, B

    2015-06-01

    This study reports the pharmacokinetics of amantadine in greyhound dogs after oral administration. Five healthy greyhound dogs were used. A single oral dose of 100 mg amantadine hydrochloride (mean dose 2.8 mg/kg as amantadine hydrochloride) was administered to nonfasted subjects. Blood samples were collected at predetermined time points from 0 to 24 h after administration, and plasma concentrations of amantadine were measured by liquid chromatography with triple quadrupole mass spectrometry. Noncompartmental pharmacokinetic analyses were performed. Amantadine was well tolerated in all dogs with no adverse effects observed. The mean (range) amantadine CMAX was 275 ng/mL (225-351 ng/mL) at 2.6 h (1-4 h) with a terminal half-life of 4.96 h (4.11-6.59 h). The results of this study can be used to design dosages to assess multidose pharmacokinetics and dosages designed to achieve targeted concentrations in order to assess the clinical effects of amantadine in a variety of conditions including chronic pain. Further studies should also assess the pharmacokinetics of amantadine in other dog breeds or using population pharmacokinetics studies including multiple dog breeds to assess potential breed-specific differences in the pharmacokinetics of amantadine in dogs. © 2014 John Wiley & Sons Ltd.

  14. In vitro targeted photodynamic therapy with a pyropheophorbide--a conjugated inhibitor of prostate-specific membrane antigen.

    PubMed

    Liu, Tiancheng; Wu, Lisa Y; Choi, Joseph K; Berkman, Clifford E

    2009-05-01

    The lack of specific delivery of photosensitizers (PSs), represents a significant limitation of photodynamic therapy (PDT) of cancer. The biomarker prostate-specific membrane antigen (PSMA) has attracted considerable attention as a target for imaging and therapeutic applications for prostate cancer. Although recent efforts have been made to conjugate inhibitors of PSMA with imaging agents, there have been no reports on PS-conjugated PSMA inhibitors for targeted PDT of prostate cancer. The present study focuses on the use of a PSMA inhibitor-conjugate of pyropheophorbide-a (Ppa-conjugate 2) for targeted PDT to achieve apoptosis in PSMA+ LNCaP cells. Confocal laser scanning microscopy with a combination of nuclear staining and immunofluorescence methods were employed to monitor the specific imaging and PDT-mediated apoptotic effects on PSMA-positive LNCaP and PSMA-negative (PC-3) cells. Our results demonstrated that PDT-mediated effects by Ppa-conjugate 2 were specific to LNCaP cells, but not PC-3 cells. Cell permeability was detected as early as 2 hr by HOE33342/PI double staining, becoming more intense by 4 hr. Evidence for the apoptotic caspase cascade being activated was based on the appearance of poly-ADP-ribose polymerase (PARP) p85 fragment. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay detected DNA fragmentation 16 hr post-PDT, confirming apoptotic events. Cell permeability by HOE33342/PI double staining as well as PARP p85 fragment and TUNEL assays confirm cellular apoptosis in PSMA+ cells when treated with PS-inhibitor conjugate 2 and subsequently irradiated. It is expected that the PSMA targeting small-molecule of this conjugate can serve as a delivery vehicle for PDT and other therapeutic applications for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  15. Huntingtin Haplotypes Provide Prioritized Target Panels for Allele-specific Silencing in Huntington Disease Patients of European Ancestry

    PubMed Central

    Kay, Chris; Collins, Jennifer A; Skotte, Niels H; Southwell, Amber L; Warby, Simon C; Caron, Nicholas S; Doty, Crystal N; Nguyen, Betty; Griguoli, Annamaria; Ross, Colin J; Squitieri, Ferdinando; Hayden, Michael R

    2015-01-01

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder. PMID:26201449

  16. The efficacy of oral and subcutaneous antigen-specific immunotherapy in murine cow's milk- and peanut allergy models.

    PubMed

    Vonk, Marlotte M; Wagenaar, Laura; Pieters, Raymond H H; Knippels, Leon M J; Willemsen, Linette E M; Smit, Joost J; van Esch, Betty C A M; Garssen, Johan

    2017-01-01

    Antigen-specific immunotherapy (AIT) is a promising therapeutic approach for both cow's milk allergy (CMA) and peanut allergy (PNA), but needs optimization in terms of efficacy and safety. Compare oral immunotherapy (OIT) and subcutaneous immunotherapy (SCIT) in murine models for CMA and PNA and determine the dose of allergen needed to effectively modify parameters of allergy. Female C3H/HeOuJ mice were sensitized intragastrically (i.g.) to whey or peanut extract with cholera toxin. Mice were treated orally (5 times/week) or subcutaneously (3 times/week) for three consecutive weeks. Hereafter, the acute allergic skin response, anaphylactic shock symptoms and body temperature were measured upon intradermal (i.d.) and intraperitoneal (i.p.) challenge, and mast cell degranulation was measured upon i.g. challenge. Allergen-specific IgE, IgG1 and IgG2a were measured in serum at different time points. Single cell suspensions derived from lymph organs were stimulated with allergen to induce cytokine production and T cell phenotypes were assessed using flow cytometry. Both OIT and SCIT decreased clinically related signs upon challenge in the CMA and PNA model. Interestingly, a rise in allergen-specific IgE was observed during immunotherapy, hereafter, treated mice were protected against the increase in IgE caused by allergen challenge. Allergen-specific IgG1 and IgG2a increased due to both types of AIT. In the CMA model, SCIT and OIT reduced the percentage of activated Th2 cells and increased the percentage of activated Th1 cells in the spleen. OIT increased the percentage of regulatory T cells (Tregs) and activated Th2 cells in the MLN. Th2 cytokines IL-5, IL-13 and IL-10 were reduced after OIT, but not after SCIT. In the PNA model, no differences were observed in percentages of T cell subsets. SCIT induced Th2 cytokines IL-5 and IL-10, whereas OIT had no effect. We have shown clinical protection against allergic manifestations after OIT and SCIT in a CMA and PNA model

  17. Maintaining women's oral health.

    PubMed

    McCann, A L; Bonci, L

    2001-07-01

    Women must adopt health-promoting strategies for both general health and the oral cavity, because the health of a woman's body and oral cavity are bidirectional. For general health-maintenance strategies, dental practitioners should actively advise women to minimize alcohol use, abstain from or cease smoking, stay physically active, and choose the right foods to nourish both the body and mind. For oral health-maintenance strategies, dental practitioners should advise women on how to prevent or control oral infections, particularly dental caries and periodontal diseases. Specifically, women need to know how to remove plaque from the teeth mechanically, use appropriate chemotherapeutic agents and dentifrices, use oral irrigation, and control halitosis. Dental practitioners also need to stress the importance of regular maintenance visits for disease prevention. Adolescent women are more prone to gingivitis and aphthous ulcers when they begin their menstrual cycles and need advice about cessation of tobacco use, mouth protection during athletic activities, cleaning orthodontic appliances, developing good dietary habits, and avoiding eating disorders. Women in early to middle adulthood may be pregnant or using oral contraceptives with concomitant changes in oral tissues. Dental practitioners need to advise them how to take care of the oral cavity during these changes and how to promote the health of their infants, including good nutrition. Older women experience the onset of menopause and increased vulnerability to osteoporosis. They may also experience xerostomia and burning mouth syndrome. Dental practitioners need to help women alleviate these symptoms and encourage them to continue good infection control and diet practices.

  18. Detection of Human Papillomavirus 16-Specific IgG and IgM Antibodies in Patient Sera: A Potential Indicator of Oral Squamous Cell Carcinoma Risk Factor

    PubMed Central

    Kerishnan, Jesinda P.; Gopinath, Subash C.B.; Kai, Sia Bik; Tang, Thean-Hock; Ng, Helen Lee-Ching; Rahman, Zainal Ariff Abdul; Hashim, Uda; Chen, Yeng

    2016-01-01

    The association between human papillomavirus type 16 (HPV16) and oral cancer has been widely reported. However, detecting anti-HPV antibodies in patient sera to determine risk for oral squamous cell carcinoma (OSCC) has not been well studied. In the present investigation, a total of 206 OSCC serum samples from the Malaysian Oral Cancer Database & Tissue Bank System, with 134 control serum samples, were analyzed by enzyme-linked immunosorbant assay (ELISA) to detect HPV16-specific IgG and IgM antibodies. In addition, nested PCR analysis using comprehensive consensus primers (PGMY09/11 and GP5+/6+) was used to confirm the presence of HPV. Furthermore, we have evaluated the association of various additional causal factors (e.g., smoking, alcohol consumption, and betel quid chewing) in HPV-infected OSCC patients. Statistical analysis of the Malaysian population indicated that OSCC was more prevalent in female Indian patients that practices betel quid chewing. ELISA revealed that HPV16 IgG, which demonstrates past exposure, could be detected in 197 (95.6%) OSCC patients and HPV16-specific IgM was found in a total of 42 (20.4%) OSCC patients, indicating current exposure. Taken together, our study suggest that HPV infection may play a significant role in OSCC (OR: 13.6; 95% CI: 3.89-47.51) and HPV16-specific IgG and IgM antibodies could represent a significant indicator of risk factors in OSCC patients. PMID:27279791

  19. Detection of Human Papillomavirus 16-Specific IgG and IgM Antibodies in Patient Sera: A Potential Indicator of Oral Squamous Cell Carcinoma Risk Factor.

    PubMed

    Kerishnan, Jesinda P; Gopinath, Subash C B; Kai, Sia Bik; Tang, Thean-Hock; Ng, Helen Lee-Ching; Rahman, Zainal Ariff Abdul; Hashim, Uda; Chen, Yeng

    2016-01-01

    The association between human papillomavirus type 16 (HPV16) and oral cancer has been widely reported. However, detecting anti-HPV antibodies in patient sera to determine risk for oral squamous cell carcinoma (OSCC) has not been well studied. In the present investigation, a total of 206 OSCC serum samples from the Malaysian Oral Cancer Database & Tissue Bank System, with 134 control serum samples, were analyzed by enzyme-linked immunosorbant assay (ELISA) to detect HPV16-specific IgG and IgM antibodies. In addition, nested PCR analysis using comprehensive consensus primers (PGMY09/11 and GP5(+)/6(+)) was used to confirm the presence of HPV. Furthermore, we have evaluated the association of various additional causal factors (e.g., smoking, alcohol consumption, and betel quid chewing) in HPV-infected OSCC patients. Statistical analysis of the Malaysian population indicated that OSCC was more prevalent in female Indian patients that practices betel quid chewing. ELISA revealed that HPV16 IgG, which demonstrates past exposure, could be detected in 197 (95.6%) OSCC patients and HPV16-specific IgM was found in a total of 42 (20.4%) OSCC patients, indicating current exposure. Taken together, our study suggest that HPV infection may play a significant role in OSCC (OR: 13.6; 95% CI: 3.89-47.51) and HPV16-specific IgG and IgM antibodies could represent a significant indicator of risk factors in OSCC patients.

  20. Applications of Polymers as Pharmaceutical Excipients in Solid Oral Dosage Forms.

    PubMed

    Debotton, Nir; Dahan, Arik

    2017-01-01

    Over the last few decades, polymers have been extensively used as pharmaceutical excipients in drug delivery systems. Pharmaceutical polymers evolved from being simply used as gelatin shells comprising capsule to offering great formulation advantages including enabling controlled/slow release and specific targeting of drugs to the site(s) of action (the "magic bullets" concept), hence hold a significant clinical promise. Oral administration of solid dosage forms (e.g., tablets and capsules) is the most common and convenient route of drug administration. When formulating challenging molecules into solid oral dosage forms, polymeric pharmaceutical excipients permit masking undesired physicochemical properties of drugs and consequently, altering their pharmacokinetic profiles to improve the therapeutic effect. As a result, the number of synthetic and natural polymers available commercially as pharmaceutical excipients has increased dramatically, offering potential solutions to various difficulties. For instance, the different polymers may allow increased solubility, swellability, viscosity, biodegradability, advanced coatings, pH dependency, mucodhesion, and inhibition of crystallization. The aim of this article is to provide a wide angle prospect of the different uses of pharmaceutical polymers in solid oral dosage forms. The various types of polymeric excipients are presented, and their distinctive role in oral drug delivery is emphasized. The comprehensive know-how provided in this article may allow scientists to use these polymeric excipients rationally, to fully exploit their different features and potential influence on drug delivery, with the overall aim of making better drug products. © 2016 Wiley Periodicals, Inc.

  1. Prostate-specific membrane antigen as a target for cancer imaging and therapy

    PubMed Central

    KIESS, A. P.; BANERJEE, S. R.; MEASE, R. C.; ROWE, S. P.; RAO, A.; FOSS, C. A.; CHEN, Y.; YANG, X.; CHO, S. Y.; NIMMAGADDA, S.; POMPER, M. G.

    2016-01-01

    The prostate-specific membrane antigen (PSMA) is a molecular target whose use has resulted in some of the most productive work toward imaging and treating prostate cancer over the past two decades. A wide variety of imaging agents extending from intact antibodies to low-molecular-weight compounds permeate the literature. In parallel there is a rapidly expanding pool of antibody-drug conjugates, radiopharmaceutical therapeutics, small-molecule drug conjugates, theranostics and nanomedicines targeting PSMA. Such productivity is motivated by the abundant expression of PSMA on the surface of prostate cancer cells and within the neovasculature of other solid tumors, with limited expression in most normal tissues. Animating the field is a variety of small-molecule scaffolds upon which the radionuclides, drugs, MR-detectable species and nanoparticles can be placed with relative ease. Among those, the urea-based agents have been most extensively leveraged, with expanding clinical use for detection and more recently for radiopharmaceutical therapy of prostate cancer, with surprisingly little toxicity. PSMA imaging of other cancers is also appearing in the clinical literature, and may overtake FDG for certain indications. Targeting PSMA may provide a viable alternative or first-line approach to managing prostate and other cancers. PMID:26213140

  2. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults.

    PubMed

    Matias, Wilfredo R; Falkard, Brie; Charles, Richelle C; Mayo-Smith, Leslie M; Teng, Jessica E; Xu, Peng; Kováč, Pavol; Ryan, Edward T; Qadri, Firdausi; Franke, Molly F; Ivers, Louise C; Harris, Jason B

    2016-06-01

    The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC) responses following vaccination. We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14). We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21). Peripheral blood mononuclear cells (PBMCs) were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs) and Inaba (9.5 cells per million PBMCs) OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001), but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS) antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety. Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area.

  3. A multi-centre evaluation of oral cancer in Southern and Western Nigeria: an African oral pathology research consortium initiative.

    PubMed

    Omitola, Olufemi Gbenga; Soyele, Olujide Oladele; Sigbeku, Opeyemi; Okoh, Dickson; Akinshipo, Abdulwarith Olaitan; Butali, Azeez; Adeola, Henry Ademola

    2017-01-01

    Oral cancer is a leading cause of cancer deaths among African populations. Lack of standard cancer registries and under-reporting has inaccurately depicted its magnitude in Nigeria. Development of multi-centre collaborative oral pathology networks such as the African Oral Pathology Research Consortium (AOPRC) facilitates skill and expertise exchange and fosters a robust and systematic investigation of oral diseases across Africa. In this descriptive cross-sectional study, we have leveraged the auspices of the AOPRC to examine the burden of oral cancer in Nigeria, using a multi-centre approach. Data from 4 major tertiary health institutions in Western and Southern Nigeria was generated using a standardized data extraction format and analysed using the SPSS data analysis software (version 20.0; SPSS Inc. Chicago, IL). Of the 162 cases examined across the 4 centres, we observed that oral squamous cell carcinomas (OSCC) occurred mostly in the 6 th and 7 th decades of life and maxillary were more frequent than mandibular OSCC lesions. Regional variations were observed both for location, age group and gender distribution. Significant regional differences was found between poorly, moderately and well differentiated OSCC (p value = 0.0071). A multi-centre collaborative oral pathology research approach is an effective way to achieve better insight into the patterns and distribution of various oral diseases in men of African descent. The wider outlook for AOPRC is to employ similar approaches to drive intensive oral pathology research targeted at addressing the current morbidity and mortality of various oral diseases across Africa.

  4. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    PubMed

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  5. Prostate-specific membrane antigen-directed nanoparticle targeting for extreme nearfield ablation of prostate cancer cells.

    PubMed

    Lee, Seung S; Roche, Philip Jr; Giannopoulos, Paresa N; Mitmaker, Elliot J; Tamilia, Michael; Paliouras, Miltiadis; Trifiro, Mark A

    2017-03-01

    Almost all biological therapeutic interventions cannot overcome neoplastic heterogeneity. Physical ablation therapy is immune to tumor heterogeneity, but nearby tissue damage is the limiting factor in delivering lethal doses. Multi-walled carbon nanotubes offer a number of unique properties: chemical stability, photonic properties including efficient light absorption, thermal conductivity, and extensive surface area availability for covalent chemical ligation. When combined together with a targeting moiety such as an antibody or small molecule, one can deliver highly localized temperature increases and cause extensive cellular damage. We have functionalized multi-walled carbon nanotubes by conjugating an antibody against prostate-specific membrane antigen. In our in vitro studies using prostate-specific membrane antigen-positive LNCaP prostate cancer cells, we have effectively demonstrated cell ablation of >80% with a single 30-s exposure to a 2.7-W, 532-nm laser for the first time without bulk heating. We also confirmed the specificity and selectivity of prostate-specific membrane antigen targeting by assessing prostate-specific membrane antigen-null PC3 cell lines under the same conditions (<10% cell ablation). This suggests that we can achieve an extreme nearfield cell ablation effect, thus restricting potential tissue damage when transferred to in vivo clinical applications. Developing this new platform will introduce novel approaches toward current therapeutic modalities and will usher in a new age of effective cancer treatment squarely addressing tumoral heterogeneity.

  6. [Research & development and evaluation of oral films].

    PubMed

    Ren, Lian-Jie; Liu, Juan; Ma, Jun-Wei; Yan, Jia-Chen; Yin, Li-Fang

    2017-10-01

    Oral film is a new type of oral preparation. Due to portability, simple preparation process and good clinical compliance, oral films have become the focus of novel drug delivery system in recent years. Meanwhile, oral films have been gradually used in the development of Chinese medicine preparations. According to the application and approval situation of different types of oral films both at home and abroad in recent years, their research and development status was analyzed, including the basic concept, formulation, manufacturing process and quality control, as well as related progress and development prospects of oral films applied in traditional Chinese medicine. Some suggestions on the technical evaluation of oral films were put forward by considering specific requirements from regulatory agencies. This paper could provide some references for the development and evaluation of oral films. Due to the complexity of the drug substances and the particularity of the drug product, the development and application of oral films in traditional Chinese medicine are still faced with opportunity and challenges. Copyright© by the Chinese Pharmaceutical Association.

  7. The SAMI Galaxy Survey: instrument specification and target selection

    NASA Astrophysics Data System (ADS)

    Bryant, J. J.; Owers, M. S.; Robotham, A. S. G.; Croom, S. M.; Driver, S. P.; Drinkwater, M. J.; Lorente, N. P. F.; Cortese, L.; Scott, N.; Colless, M.; Schaefer, A.; Taylor, E. N.; Konstantopoulos, I. S.; Allen, J. T.; Baldry, I.; Barnes, L.; Bauer, A. E.; Bland-Hawthorn, J.; Bloom, J. V.; Brooks, A. M.; Brough, S.; Cecil, G.; Couch, W.; Croton, D.; Davies, R.; Ellis, S.; Fogarty, L. M. R.; Foster, C.; Glazebrook, K.; Goodwin, M.; Green, A.; Gunawardhana, M. L.; Hampton, E.; Ho, I.-T.; Hopkins, A. M.; Kewley, L.; Lawrence, J. S.; Leon-Saval, S. G.; Leslie, S.; McElroy, R.; Lewis, G.; Liske, J.; López-Sánchez, Á. R.; Mahajan, S.; Medling, A. M.; Metcalfe, N.; Meyer, M.; Mould, J.; Obreschkow, D.; O'Toole, S.; Pracy, M.; Richards, S. N.; Shanks, T.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-03-01

    The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107-1012 M⊙, and environments from isolated field galaxies through groups to clusters of ˜1015 M⊙.

  8. Synthesis of fluorescent dye-doped silica nanoparticles for target-cell-specific delivery and intracellular microRNA imaging.

    PubMed

    Li, Henan; Mu, Yawen; Qian, Shanshan; Lu, Jusheng; Wan, Yakun; Fu, Guodong; Liu, Songqin

    2015-01-21

    MicroRNA (miRNA) is found to be up-regulated in many kinds of cancer and therefore is classified as an oncomiR. Herein, we design a multifunctional fluorescent nanoprobe (FSiNP-AS/MB) with the AS1411 aptamer and a molecular beacon (MB) co-immobilized on the surface of the fluorescent dye-doped silica nanoparticles (FSiNPs) for target-cell-specific delivery and intracellular miRNA imaging. The FSiNPs were prepared by a facile reverse microemulsion method from tetraethoxysilane and silane derivatized coumarin that was previously synthesized by click chemistry. The as-prepared FSiNPs possess uniform size distribution, good optical stability and biocompatibility. In addition, there is a remarkable affinity interaction between the AS1411 aptamer and the nucleolin protein on the cancer cell surface. Thus, a target-cell-specific delivery system by the FSiNP-AS/MB is proposed for effectively transferring a MB into the cancer cells to recognize the target miRNA. Using miRNA-21 in MCF-7 cells (a human breast cancer cell line) as a model, the proposed multifunctional nanosystems not only allow target-cell-specific delivery with the binding affinity of AS1411, but also can track simultaneously the transfected cells and detect intracellular miRNA in situ. The proposed multifunctional nanosystems are a promising platform for a highly sensitive luminescent nonviral vector in biomedical and clinical research.

  9. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes.

    PubMed

    Weber, David; Heisig, Julia; Kneitz, Susanne; Wolf, Elmar; Eilers, Martin; Gessler, Manfred

    2015-02-01

    Hey bHLH transcription factors are critical effectors of Notch signaling. During mammalian heart development they are expressed in atrial and ventricular cardiomyocytes and in the developing endocardium. Hey knockout mice suffer from lethal cardiac defects, such as ventricular septum defects, valve defects and cardiomyopathy. Despite this functional relevance, little is known about the regulation of downstream targets in relevant cell types. The objective of this study was to elucidate the regulatory mechanisms by which Hey proteins affect gene expression in a cell type specific manner. We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey proteins generally correlates with the extent of Hey-binding to target promoters, Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These also lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Ectopic Nkx2-5 overexpression in ESC blocks Hey-mediated repression of these genes. Thus, Hey proteins mechanistically repress target genes via Hdac recruitment and histone deacetylation. In CM Hey-repression is counteracted by cardiac activators, which recruit histone acetylases and prevent Hey mediated deacetylation and subsequent repression for a subset of genes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Epigenetic Disregulation in Oral Cancer

    PubMed Central

    Mascolo, Massimo; Siano, Maria; Ilardi, Gennaro; Russo, Daniela; Merolla, Francesco; De Rosa, Gaetano; Staibano, Stefania

    2012-01-01

    Squamous cell carcinoma of the oral region (OSCC) is one of the most common and highly aggressive malignancies worldwide, despite the fact that significant results have been achieved during the last decades in its detection, prevention and treatment. Although many efforts have been made to define the molecular signatures that identify the clinical outcome of oral cancers, OSCC still lacks reliable prognostic molecular markers. Scientific evidence indicates that transition from normal epithelium to pre-malignancy, and finally to oral carcinoma, depends on the accumulation of genetic and epigenetic alterations in a multistep process. Unlike genetic alterations, epigenetic changes are heritable and potentially reversible. The most common examples of such changes are DNA methylation, histone modification, and small non-coding RNAs. Although several epigenetic changes have been currently linked to OSCC initiation and progression, they have been only partially characterized. Over the last decade, it has been demonstrated that especially aberrant DNA methylation plays a critical role in oral cancer. The major goal of the present paper is to review the recent literature about the epigenetic modifications contribution in early and later phases of OSCC malignant transformation; in particular we point out the current evidence of epigenetic marks as novel markers for early diagnosis and prognosis as well as potential therapeutic targets in oral cancer. PMID:22408457

  11. Preclinical development of a non-toxic oral formulation of monoethanolamine, a lipid precursor, for prostate cancer treatment

    PubMed Central

    Saxena, Roopali; Yang, Chunhua; Rao, Mukkavilli; Turaga, Ravi Chakra; Garlapati, Chakravarthy; Gundala, Sushma Reddy; Myers, Kimberly; Ghareeb, Ahmed; Bhattarai, Shristi; Kamilinia, Golnaz; Bristi, Sangina; Su, Dan; Gadda, Giovanni; Rida, Padmashree C. G.; Cantuaria, Guilherme H.; Aneja, Ritu

    2018-01-01

    Purpose Most currently-available chemotherapeutic agents target rampant cell division in cancer cells, thereby affecting rapidly-dividing normal cells resulting in toxic side-effects. This non-specificity necessitates identification of novel cellular pathways that are reprogrammed selectively in cancer cells and can be exploited to develop pharmacologically superior and less-toxic therapeutics. Despite growing awareness on dysregulation of lipid metabolism in cancer cells, targeting lipid biosynthesis is still largely uncharted territory. Herein, we report development of a novel non-toxic orally-deliverable anticancer formulation of monoethanolamine (Etn), for prostate cancer by targeting the Kennedy pathway of phosphatidylethanolamine (PE) lipid biosynthesis. Experimental Design We first evaluated GI-tract stability, drug-drug interaction liability, pharmacokinetic and toxicokinetic properties of Etn to evaluate its suitability as a non-toxic orally-deliverable agent. We next performed in vitro and in vivo experiments to investigate efficacy and mechanism of action. Results Our data demonstrate that Etn exhibits excellent bioavailability, GI-tract stability, and no drug-drug interaction liability. Remarkably, orally-fed Etn inhibited tumor growth in four weeks by ~67% in mice bearing human prostate cancer PC-3 xenografts without any apparent toxicity. Mechanistically, Etn exploits selective overexpression of choline kinase in cancer cells, resulting in accumulation of phosphoethanolamine (PhosE), accompanied by downregulation of HIF-1α that induces metabolic stress culminating into cell death. Conclusions Our study provides first evidence for the superior anticancer activity of Etn, a simple lipid precursor formulation, whose non-toxicity conforms to FDA-approved standards, compelling its clinical development for prostate cancer management. PMID:28167510

  12. Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction.

    PubMed

    Liu, Chia-Ming; Peng, Chih-Yu; Liao, Yi-Wen; Lu, Ming-Yi; Tsai, Meng-Lun; Yeh, Jung-Chun; Yu, Chuan-Hang; Yu, Cheng-Chia

    2017-01-01

    Cancer stem cells (CSCs) are deemed as the driving force of tumorigenesis in oral squamous cell carcinomas (OSCCs). In this study, we investigated the chemotherapeutic effect of sulforaphane, a dietary component from broccoli sprouts, on targeting OSCC-CSCs. The effect of sulforaphane on normal oral epithelial cells (SG) and sphere-forming OSCC-CSCs isolated from SAS and GNM cells was examined. ALDH1 activity and CD44 positivity of OSCC-CSCs with sulforaphane treatment was assessed by flow cytometry analysis. In vitro and in vivo tumorigenicity assays of OSCC-CSCs with sulforaphane treatment were presented. We observed that the sulforaphane dose-dependently eliminated the proliferation rate of OSCC-CSCs, whereas the inhibition on SG cells proliferation was limited. Cancer stemness properties including self-renewal, CD44 positivity, and ALDH1 activity were also decreased in OSCC-CSCs with different doses of sulforaphane treatment. Moreover, sulforaphane treatment of OSCC-CSCs decreased the migration, invasion, clonogenicity, and in vivo tumorigenicity of xenograghts. Sulforaphane treatment resulted in a dose-dependent increase in the levels of tumor suppressive miR200c. These lines of evidence suggest that sulforaphane can suppress the cancer stemness and tumor-initiating properties in OSCC-CSCs both in vitro and in vivo. Copyright © 2016. Published by Elsevier B.V.

  13. Methotrexate transport mechanisms: the basis for targeted drug delivery and ß-folate-receptor-specific treatment.

    PubMed

    Fiehn, C

    2010-01-01

    Methotrexate (MTX) plays a pivotal role in the treatment of rheumatoid arthritis (RA). The transport mechanisms with which MTX reaches is target after application are an important part of MTX pharmacology and its concentration in target tissue such as RA synovial membrane might strongly influence the effectiveness of the drug. Physiological plasma protein binding of MTX to albumin is important for the distribution of MTX in the body and relative high concentrations of the drug are found in the liver. However, targeted drug delivery into inflamed joints and increased anti-arthritic efficiency can be obtained by covalent coupling of MTX ex-vivo to human serum albumin (MTX-HSA) or in-vivo to endogenous albumin mediated through the MTX-pro-drug AWO54. High expression of the folate receptor β (FR-β) on synovial macrophages of RA patients and its capacity to mediate binding and uptake of MTX has been demonstrated. To further improve drug treatment of RA, FR-β specific drugs have been developed and were characterised for their therapeutic potency in synovial inflammation. Therefore, different approaches to improve folate inhibitory and FR-β specific therapy of RA beyond MTX are in development and will be described.

  14. Is the Quantification of Antigen-Specific Basophil Activation a Useful Tool for Monitoring Oral Tolerance Induction in Children With Egg Allergy?

    PubMed

    Gamboa, P M; Garcia-Lirio, E; Gonzalez, C; Gonzalez, A; Martinez-Aranguren R M; Sanz María, L

    2016-01-01

    To assess modifications in baseline specific IgE- and anti-IgE- and antigen-specific-mediated basophil activation in egg-allergic children. The values were compared before and after the children completed specific oral tolerance induction (SOTI) with egg. We studied 28 egg-allergic children who completed SOTI with egg. The basophil activation test and specific IgE determinations with egg white, ovalbumin, and ovomucoid were performed in all 28 children. A decrease in antigen-specific activation with egg white, ovalbumin, and ovomucoid was observed only at the 2 lowest concentrations used (5 and 0.05 ng/mL). Baseline activation was higher in patients with multiple food allergies and in those who developed anaphylaxis during SOTI; this activation decreased in both groups after completion of SOTI. A significant decrease was also observed in specific IgE values for egg white, ovalbumin, and ovomucoid after tolerance induction. Food tolerance induction is a specific process for each food that can be mediated by immunologic changes such as a decrease in specific IgE values and in specific and spontaneous basophil activation.

  15. Specific and selective target detection of supra-genome 21 Mers Salmonella via silicon nanowires biosensor

    NASA Astrophysics Data System (ADS)

    Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.

    2017-09-01

    The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.

  16. Tumor-specific RNA interference targeting Pokemon suppresses tumor growth and induces apoptosis in prostate cancer.

    PubMed

    Li, Yining; Xu, Shuxiong; Wang, Xiangwei; Shi, Hua; Sun, Zhaolin; Yang, Zhao

    2013-02-01

    To explore the exact mechanism of Pokemon in prostate cancer. Pokemon is a member of the POK family of transcriptional repressors. Its main function is suppression of the p14ARF (alternate reading frame) tumor suppressor gene. Although Pokemon expression has been found to be increased in various types of lymphoma, the exact mechanism of the gene in prostate cancer is not clear. In the present study, prostate cancer cells were transfected with the specific short hairpin ribonucleic acid (RNA) expression vector targeting Pokemon. The expression of Pokemon messenger RNA and its protein was detected by semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively. The cell growth and cell apoptosis were also examined using the methyl thiazolyl tetrazolium assay and flow cytometry. The results demonstrated that specific RNA interference (RNAi) could decrease the expression levels of Pokemon gene messenger RNA and protein in prostate cancer cells. In addition, that specific RNAi significantly inhibited the cell proliferation and increased the apoptotic rate. In vivo experiments showed that specific RNAi inhibited the tumorigenicity of prostate cancer cells and significantly suppressed tumor growth. Therefore, an RNAi-targeted Pokemon gene strategy could be a potential approach to prostate cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. A Novel Method for Gene-Specific Enhancement of Protein Translation by Targeting 5’UTRs of Selected Tumor Suppressors

    PubMed Central

    Master, Adam; Wójcicka, Anna; Giżewska, Kamilla; Popławski, Piotr; Williams, Graham R.; Nauman, Alicja

    2016-01-01

    Background Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. Findings We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5’-untranslated region (5’UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5’UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5’UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5’UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5’UTRs of complex structure. Significance This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5’UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene

  18. Enhanced blood-brain barrier transport of vinpocetine by oral delivery of mixed micelles in combination with a message guider.

    PubMed

    Ding, Jiaojiao; Sun, Yujiao; Li, Jinfeng; Wang, Huimin; Mao, Shirui

    2017-07-01

    The blood-brain barrier represents an insurmountable obstacle for the therapy of central nervous system related diseases. Polymeric micelles have many desirable properties for brain targeting by oral delivery, but the stability and targeting efficiency needs to be improved. In this study, it was demonstrated that binary micelle system can compensate the drawbacks of mono system by preparing mixed micelles in combination with PEG-based copolymers. Here, we explored a brain targeting drug delivery system via facile approaches using P123 based mixed micelles in combination with a message guider from traditional Chinese medicine, borneol, for oral delivery. With higher drug-loading, improved stability, prolonged in vitro release profile, increased bioavailability and enhanced brain targeting effect was achieved after peroral delivery of the mixed micelles. More importantly, without extra structure modification for active targeting, it was demonstrated for the first time that oral delivery of vinpocetine loaded mixed micelles together with borneol is an effective way to increase drug concentration in the brain and the targeting efficiency is borneol dose dependent. Such a "simple but effective" modality may shed light on the potential use of polymeric micelles in combination with a message drug to achieve drug brain targeting or other targeting sites via oral delivery.

  19. Culture-Independent Identification of Periodontitis-Associated Porphyromonas and Tannerella Populations by Targeted Molecular Analysis

    PubMed Central

    de Lillo, A.; Booth, V.; Kyriacou, L.; Weightman, A. J.; Wade, W. G.

    2004-01-01

    Periodontitis is the commonest bacterial disease of humans and is the major cause of adult tooth loss. About half of the oral microflora is unculturable; and 16S rRNA PCR, cloning, and sequencing techniques have demonstrated the high level of species richness of the oral microflora. In the present study, a PCR primer set specific for the genera Porphyromonas and Tannerella was designed and used to analyze the bacterial populations in subgingival plaque samples from inflamed shallow and deep sites in subjects with periodontitis and shallow sites in age- and sex-matched controls. A total of 308 clones were sequenced and found to belong to one of six Porphyromonas or Tannerella species or phylotypes, one of which, Porphyromonas P3, was novel. Tannerella forsythensis was found in significantly higher proportions in patients than in controls. Porphyromonas catoniae and Tannerella phylotype BU063 appeared to be associated with shallow sites. Targeted culture-independent molecular ecology studies have a valuable role to play in the identification of bacterial targets for further investigations of the pathogenesis of bacterial infections. PMID:15583276

  20. Vowel category dependence of the relationship between palate height, tongue height, and oral area.

    PubMed

    Hasegawa-Johnson, Mark; Pizza, Shamala; Alwan, Abeer; Cha, Jul Setsu; Haker, Katherine

    2003-06-01

    This article evaluates intertalker variance of oral area, logarithm of the oral area, tongue height, and formant frequencies as a function of vowel category. The data consist of coronal magnetic resonance imaging (MRI) sequences and acoustic recordings of 5 talkers, each producing 11 different vowels. Tongue height (left, right, and midsagittal), palate height, and oral area were measured in 3 coronal sections anterior to the oropharyngeal bend and were subjected to multivariate analysis of variance, variance ratio analysis, and regression analysis. The primary finding of this article is that oral area (between palate and tongue) showed less intertalker variance during production of vowels with an oral place of articulation (palatal and velar vowels) than during production of vowels with a uvular or pharyngeal place of articulation. Although oral area variance is place dependent, percentage variance (log area variance) is not place dependent. Midsagittal tongue height in the molar region was positively correlated with palate height during production of palatal vowels, but not during production of nonpalatal vowels. Taken together, these results suggest that small oral areas are characterized by relatively talker-independent vowel targets and that meeting these talker-independent targets is important enough that each talker adjusts his or her own tongue height to compensate for talker-dependent differences in constriction anatomy. Computer simulation results are presented to demonstrate that these results may be explained by an acoustic control strategy: When talkers with very different anatomical characteristics try to match talker-independent formant targets, the resulting area variances are minimized near the primary vocal tract constriction.

  1. The relationship between oral and written language.

    PubMed

    de Montfort Supple, M

    1998-01-01

    It has been agreed for some time now that reading is primarily a language-based activity and that deficits in oral language will be reflected in deficits in reading ability. This paper explores the association between specific aspects of oral and written language as reflected in current literature and research.

  2. Effects of pre-feeding oral stimulation on oral feeding in preterm infants: a randomized clinical trial.

    PubMed

    Bache, Manon; Pizon, Emmanuelle; Jacobs, Julien; Vaillant, Michel; Lecomte, Aline

    2014-03-01

    To evaluate the effect of early oral stimulation before the introduction of oral feeding, over the duration of concomitant tube feeding ("transition period"), the length of hospital stay and the breastfeeding rates upon discharge in preterm infants. Preterm infants born between 26 and 33 weeks gestational age (n=86), were randomized into an intervention and control group. Infants in the intervention group received an oral stimulation program consisting in stimulation of the oral structures for 15 min at least for 10 days, before introduction of oral feeding. Oral feeding was introduced at 34 weeks GA in both groups. Breastfeeding rates upon discharge were significantly higher in the intervention than in the control group (70% versus 45.6%, p=0.02). There was no statistical difference between the two groups in terms of the length of the transition period or the length of the hospital stay. The need for prolonged CPAP support (HR=0.937, p=0.030) and small size for gestational age at birth (HR=0.338, p=0.016) were shown to be risk factors for a prolonged transition period. A pre-feeding oral stimulation program improves breastfeeding rates in preterm infants. The study results suggest that oral stimulation, as used in our specific population, does not shorten the transition period to full oral feeding neither the length of hospital stay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Quantitative prediction of oral cancer risk in patients with oral leukoplakia.

    PubMed

    Liu, Yao; Li, Yicheng; Fu, Yue; Liu, Tong; Liu, Xiaoyong; Zhang, Xinyan; Fu, Jie; Guan, Xiaobing; Chen, Tong; Chen, Xiaoxin; Sun, Zheng

    2017-07-11

    Exfoliative cytology has been widely used for early diagnosis of oral squamous cell carcinoma. We have developed an oral cancer risk index using DNA index value to quantitatively assess cancer risk in patients with oral leukoplakia, but with limited success. In order to improve the performance of the risk index, we collected exfoliative cytology, histopathology, and clinical follow-up data from two independent cohorts of normal, leukoplakia and cancer subjects (training set and validation set). Peaks were defined on the basis of first derivatives with positives, and modern machine learning techniques were utilized to build statistical prediction models on the reconstructed data. Random forest was found to be the best model with high sensitivity (100%) and specificity (99.2%). Using the Peaks-Random Forest model, we constructed an index (OCRI2) as a quantitative measurement of cancer risk. Among 11 leukoplakia patients with an OCRI2 over 0.5, 4 (36.4%) developed cancer during follow-up (23 ± 20 months), whereas 3 (5.3%) of 57 leukoplakia patients with an OCRI2 less than 0.5 developed cancer (32 ± 31 months). OCRI2 is better than other methods in predicting oral squamous cell carcinoma during follow-up. In conclusion, we have developed an exfoliative cytology-based method for quantitative prediction of cancer risk in patients with oral leukoplakia.

  4. Applied Genomics: Data Mining Reveals Species-Specific Malaria Diagnostic Targets More Sensitive than 18S rRNA▿†‡

    PubMed Central

    Demas, Allison; Oberstaller, Jenna; DeBarry, Jeremy; Lucchi, Naomi W.; Srinivasamoorthy, Ganesh; Sumari, Deborah; Kabanywanyi, Abdunoor M.; Villegas, Leopoldo; Escalante, Ananias A.; Kachur, S. Patrick; Barnwell, John W.; Peterson, David S.; Udhayakumar, Venkatachalam; Kissinger, Jessica C.

    2011-01-01

    Accurate and rapid diagnosis of malaria infections is crucial for implementing species-appropriate treatment and saving lives. Molecular diagnostic tools are the most accurate and sensitive method of detecting Plasmodium, differentiating between Plasmodium species, and detecting subclinical infections. Despite available whole-genome sequence data for Plasmodium falciparum and P. vivax, the majority of PCR-based methods still rely on the 18S rRNA gene targets. Historically, this gene has served as the best target for diagnostic assays. However, it is limited in its ability to detect mixed infections in multiplex assay platforms without the use of nested PCR. New diagnostic targets are needed. Ideal targets will be species specific, highly sensitive, and amenable to both single-step and multiplex PCRs. We have mined the genomes of P. falciparum and P. vivax to identify species-specific, repetitive sequences that serve as new PCR targets for the detection of malaria. We show that these targets (Pvr47 and Pfr364) exist in 14 to 41 copies and are more sensitive than 18S rRNA when utilized in a single-step PCR. Parasites are routinely detected at levels of 1 to 10 parasites/μl. The reaction can be multiplexed to detect both species in a single reaction. We have examined 7 P. falciparum strains and 91 P. falciparum clinical isolates from Tanzania and 10 P. vivax strains and 96 P. vivax clinical isolates from Venezuela, and we have verified a sensitivity and specificity of ∼100% for both targets compared with a nested 18S rRNA approach. We show that bioinformatics approaches can be successfully applied to identify novel diagnostic targets and improve molecular methods for pathogen detection. These novel targets provide a powerful alternative molecular diagnostic method for the detection of P. falciparum and P. vivax in conventional or multiplex PCR platforms. PMID:21525225

  5. A Novel Molecular Targeting of a Tumor-Specific Oncogenic Mutant Receptor in Human Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    in cells and can generate dominant negative mutant (15). Hammerhead ribozymes are self-cleaving RNAs whose catalytic activity has been mapped to a...specific ribozyme targeted at the fusion junction of EGFRvIII. This specific EGFRvIII ribozyme is able to effectively cleave EGFRvIII mRNA under...physiological conditions in a cell-free system. While expressing this EGFRvIII- ribozyme in 32D/EGFRvIII cell, EGFRvIII- ribozyme is capable of down-regulating

  6. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells.

    PubMed

    Sadeqzadeh, Elham; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J; Parhamifar, Ladan; Moghimi, S Moein

    2011-11-30

    We provide evidence for combining a single domain antibody (nanobody)-based targeting approach with transcriptional targeting as a safe way to deliver lethal transgenes to MUC1 over-expressing cancer cells. From a nanobody immune library, we have isolated an anti-DF3/Mucin1 (MUC1) nanobody with high specificity for the MUC1 antigen, which is an aberrantly glycosylated glycoprotein over-expressed in tumours of epithelial origin. The anti-MUC1 nanobody was covalently linked to the distal end of poly(ethylene glycol)(3500) (PEG(3500)) in PEG(3500)-25kDa polyethylenimine (PEI) conjugates and the resultant macromolecular entity successfully condensed plasmids coding a transcriptionally targeted truncated-Bid (tBid) killer gene under the control of the cancer-specific MUC1 promoter. The engineered polyplexes exhibited favourable physicochemical characteristics for transfection and dramatically elevated the level of Bid/tBid expression in both MUC1 over-expressing caspase 3-deficient (MCF7 cells) and caspase 3-positive (T47D and SKBR3) tumour cell lines and, concomitantly, induced considerable cell death. Neither transgene expression nor cell death occurred when the MUC1 promoter was replaced with the CNS-specific synapsin I promoter. Since PEGylated PEI was only responsible for DNA compaction and played no significant role in direct transfection and cell killing, our attempts overcome previously reported PEI-mediated apoptotic and necrotic cell death, which is advantageous for future in vivo transcriptional targeting as this will minimize (or eliminate) non-targeted cell damage. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Preclinical PET imaging of EGFR levels: pairing a targeting with a non-targeting Sel-tagged Affibody-based tracer to estimate the specific uptake.

    PubMed

    Cheng, Qing; Wållberg, Helena; Grafström, Jonas; Lu, Li; Thorell, Jan-Olov; Hägg Olofsson, Maria; Linder, Stig; Johansson, Katarina; Tegnebratt, Tetyana; Arnér, Elias S J; Stone-Elander, Sharon; Ahlzén, Hanna-Stina Martinsson; Ståhl, Stefan

    2016-12-01

    Though overexpression of epidermal growth factor receptor (EGFR) in several forms of cancer is considered to be an important prognostic biomarker related to poor prognosis, clear correlations between biomarker assays and patient management have been difficult to establish. Here, we utilize a targeting directly followed by a non-targeting tracer-based positron emission tomography (PET) method to examine some of the aspects of determining specific EGFR binding in tumors. The EGFR-binding Affibody molecule ZEGFR:2377 and its size-matched non-binding control ZTaq:3638 were recombinantly fused with a C-terminal selenocysteine-containing Sel-tag (ZEGFR:2377-ST and ZTaq:3638-ST). The proteins were site-specifically labeled with DyLight488 for flow cytometry and ex vivo tissue analyses or with (11)C for in vivo PET studies. Kinetic scans with the (11)C-labeled proteins were performed in healthy mice and in mice bearing xenografts from human FaDu (squamous cell carcinoma) and A431 (epidermoid carcinoma) cell lines. Changes in tracer uptake in A431 xenografts over time were also monitored, followed by ex vivo proximity ligation assays (PLA) of EGFR expressions. Flow cytometry and ex vivo tissue analyses confirmed EGFR targeting by ZEGFR:2377-ST-DyLight488. [Methyl-(11)C]-labeled ZEGFR:2377-ST-CH3 and ZTaq:3638-ST-CH3 showed similar distributions in vivo, except for notably higher concentrations of the former in particularly the liver and the blood. [Methyl-(11)C]-ZEGFR:2377-ST-CH3 successfully visualized FaDu and A431 xenografts with moderate and high EGFR expression levels, respectively. However, in FaDu tumors, the non-specific uptake was large and sometimes equally large, illustrating the importance of proper controls. In the A431 group observed longitudinally, non-specific uptake remained at same level over the observation period. Specific uptake increased with tumor size, but changes varied widely over time in individual tumors. Total (membranous and cytoplasmic) EGFR

  8. Approaches for Establishing Clinically Relevant Dissolution Specifications for Immediate Release Solid Oral Dosage Forms.

    PubMed

    Hermans, Andre; Abend, Andreas M; Kesisoglou, Filippos; Flanagan, Talia; Cohen, Michael J; Diaz, Dorys A; Mao, Y; Zhang, Limin; Webster, Gregory K; Lin, Yiqing; Hahn, David A; Coutant, Carrie A; Grady, Haiyan

    2017-11-01

    This manuscript represents the perspective of the Dissolution Analytical Working Group of the IQ Consortium. The intent of this manuscript is to highlight the challenges of, and to provide a recommendation on, the development of clinically relevant dissolution specifications (CRS) for immediate release (IR) solid oral dosage forms. A roadmap toward the development of CRS for IR products containing active ingredients with a non-narrow therapeutic window is discussed, within the context of mechanistic dissolution understanding, supported by in-human pharmacokinetic (PK) data. Two case studies present potential outcomes of following the CRS roadmap and setting dissolution specifications. These cases reveal some benefits and challenges of pursuing CRS with additional PK data, in light of current regulatory positions, including that of the US Food and Drug Administration (FDA), who generally favor this approach, but with the understanding that both industry and regulatory agency perspectives are still evolving in this relatively new field. The CRS roadmap discussed in this manuscript also describes a way to develop clinically relevant dissolution specifications based primarily on dissolution data for batches used in pivotal clinical studies, acknowledging that not all IR product development efforts need to be supported by additional PK studies, albeit with the associated risk of potentially unnecessarily tight manufacturing controls. Recommendations are provided on what stages during the life cycle investment into in vivo studies may be valuable. Finally, the opportunities for CRS within the context of post-approval changes, Modeling and Simulation (M&S), and the application of biowaivers, are briefly discussed.

  9. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.

    PubMed

    Zhang, Hui; Zhang, Jinshan; Wei, Pengliang; Zhang, Botao; Gou, Feng; Feng, Zhengyan; Mao, Yanfei; Yang, Lan; Zhang, Heng; Xu, Nanfei; Zhu, Jian-Kang

    2014-08-01

    The CRISPR/Cas9 system has been demonstrated to efficiently induce targeted gene editing in a variety of organisms including plants. Recent work showed that CRISPR/Cas9-induced gene mutations in Arabidopsis were mostly somatic mutations in the early generation, although some mutations could be stably inherited in later generations. However, it remains unclear whether this system will work similarly in crops such as rice. In this study, we tested in two rice subspecies 11 target genes for their amenability to CRISPR/Cas9-induced editing and determined the patterns, specificity and heritability of the gene modifications. Analysis of the genotypes and frequency of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in rice, with target genes edited in nearly half of the transformed embryogenic cells before their first cell division. Homozygotes of edited target genes were readily found in T0 plants. The gene mutations were passed to the next generation (T1) following classic Mendelian law, without any detectable new mutation or reversion. Even with extensive searches including whole genome resequencing, we could not find any evidence of large-scale off-targeting in rice for any of the many targets tested in this study. By specifically sequencing the putative off-target sites of a large number of T0 plants, low-frequency mutations were found in only one off-target site where the sequence had 1-bp difference from the intended target. Overall, the data in this study point to the CRISPR/Cas9 system being a powerful tool in crop genome engineering. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. 21 CFR 520.1044b - Gentamicin sulfate pig pump oral solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate pig pump oral solution. 520....1044b Gentamicin sulfate pig pump oral solution. (a) Specifications. Each milliliter of pig pump oral.... (d) Conditions of use—(1) Amount. Administer 1.15 milliliters of pig pump oral solution (5 milligrams...

  11. 21 CFR 520.1044b - Gentamicin sulfate pig pump oral solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gentamicin sulfate pig pump oral solution. 520....1044b Gentamicin sulfate pig pump oral solution. (a) Specifications. Each milliliter of pig pump oral.... (d) Conditions of use—(1) Amount. Administer 1.15 milliliters of pig pump oral solution (5 milligrams...

  12. 21 CFR 520.1044b - Gentamicin sulfate pig pump oral solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentamicin sulfate pig pump oral solution. 520....1044b Gentamicin sulfate pig pump oral solution. (a) Specifications. Each milliliter of pig pump oral.... (d) Conditions of use—(1) Amount. Administer 1.15 milliliters of pig pump oral solution (5 milligrams...

  13. 21 CFR 520.1044b - Gentamicin sulfate pig pump oral solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gentamicin sulfate pig pump oral solution. 520....1044b Gentamicin sulfate pig pump oral solution. (a) Specifications. Each milliliter of pig pump oral.... (d) Conditions of use—(1) Amount. Administer 1.15 milliliters of pig pump oral solution (5 milligrams...

  14. 21 CFR 520.1044b - Gentamicin sulfate pig pump oral solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentamicin sulfate pig pump oral solution. 520....1044b Gentamicin sulfate pig pump oral solution. (a) Specifications. Each milliliter of pig pump oral.... (d) Conditions of use—(1) Amount. Administer 1.15 milliliters of pig pump oral solution (5 milligrams...

  15. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    PubMed Central

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  16. [Accuracy of three methods for the rapid diagnosis of oral candidiasis].

    PubMed

    Lyu, X; Zhao, C; Yan, Z M; Hua, H

    2016-10-09

    Objective: To explore a simple, rapid and efficient method for the diagnosis of oral candidiasis in clinical practice. Methods: Totally 124 consecutive patients with suspected oral candidiasis were enrolled from Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China. Exfoliated cells of oral mucosa and saliva or concentrated oral rinse) obtained from all participants were tested by three rapid smear methods(10% KOH smear, gram-stained smear, Congo red stained smear). The diagnostic efficacy(sensitivity, specificity, Youden's index, likelihood ratio, consistency, predictive value and area under curve(AUC) of each of the above mentioned three methods was assessed by comparing the results with the gold standard(combination of clinical diagnosis, laboratory diagnosis and expert opinion). Results: Gram-stained smear of saliva(or concentrated oral rinse) demonstrated highest sensitivity(82.3%). Test of 10%KOH smear of exfoliated cells showed highest specificity(93.5%). Congo red stained smear of saliva(or concentrated oral rinse) displayed highest diagnostic efficacy(79.0% sensitivity, 80.6% specificity, 0.60 Youden's index, 4.08 positive likelihood ratio, 0.26 negative likelihood ratio, 80% consistency, 80.3% positive predictive value, 79.4% negative predictive value and 0.80 AUC). Conclusions: Test of Congo red stained smear of saliva(or concentrated oral rinse) could be used as a point-of-care tool for the rapid diagnosis of oral candidiasis in clinical practice. Trial registration: Chinese Clinical Trial Registry, ChiCTR-DDD-16008118.

  17. A Contextualized Approach to Describing Oral Proficiency.

    ERIC Educational Resources Information Center

    Chalhoub-Deville, Micheline

    1995-01-01

    Studies learners' second-language (L2) oral proficiency, incorporating an interview, a narration, and a read-aloud. Results show that the nature of the L2 oral construct is not constant. The article concludes that proficiency researchers should use dimensions empirically derived according to the specific elicitation task and audience. (53…

  18. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells.

    PubMed

    Vacharaksa, Anjalee; Asrani, Anil C; Gebhard, Kristin H; Fasching, Claudine E; Giacaman, Rodrigo A; Janoff, Edward N; Ross, Karen F; Herzberg, Mark C

    2008-07-17

    Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells) were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Deltaenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs) or MOLT4 cells (CD4+ CCR5+) by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  19. Poly(amido amine) dendrimers in oral delivery.

    PubMed

    Yellepeddi, Venkata K; Ghandehari, Hamidreza

    2016-01-01

    Poly(amidoamine) (PAMAM) dendrimers have been extensively investigated for oral delivery applications due to their ability to translocate across the gastrointestinal epithelium. In this Review, we highlight recent advances in the evaluation of PAMAM dendrimers as oral drug delivery carriers. Specifically, toxicity, mechanisms of transepithelial transport, models of the intestinal epithelial barrier including isolated human intestinal tissue model, detection of dendrimers, and surface modification are discussed. We also highlight evaluation of various PAMAM dendrimer-drug conjugates for their ability to transport across gastrointestinal epithelium for improved oral bioavailability. In addition, current challenges and future trends for clinical translation of PAMAM dendrimers as carriers for oral delivery are discussed.

  20. Poly(amido amine) dendrimers in oral delivery

    PubMed Central

    Yellepeddi, Venkata K.; Ghandehari, Hamidreza

    2016-01-01

    ABSTRACT Poly(amidoamine) (PAMAM) dendrimers have been extensively investigated for oral delivery applications due to their ability to translocate across the gastrointestinal epithelium. In this Review, we highlight recent advances in the evaluation of PAMAM dendrimers as oral drug delivery carriers. Specifically, toxicity, mechanisms of transepithelial transport, models of the intestinal epithelial barrier including isolated human intestinal tissue model, detection of dendrimers, and surface modification are discussed. We also highlight evaluation of various PAMAM dendrimer-drug conjugates for their ability to transport across gastrointestinal epithelium for improved oral bioavailability. In addition, current challenges and future trends for clinical translation of PAMAM dendrimers as carriers for oral delivery are discussed. PMID:27358755

  1. Artemisinin Directly Targets Malarial Mitochondria through Its Specific Mitochondrial Activation

    PubMed Central

    Wang, Juan; Huang, Liying; Li, Jian; Fan, Qiangwang; Long, Yicheng; Li, Ying; Zhou, Bing

    2010-01-01

    The biological mode of action of artemisinin, a potent antimalarial, has long been controversial. Previously we established a yeast model addressing its mechanism of action and found mitochondria the key in executing artemisinin's action. Here we present data showing that artemisinin directly acts on mitochondria and it inhibits malaria in a similar way as yeast. Specifically, artemisinin and its homologues exhibit correlated activities against malaria and yeast, with the peroxide bridge playing a key role for their inhibitory action in both organisms. In addition, we showed that artemisinins are distributed to malarial mitochondria and directly impair their functions when isolated mitochondria were tested. In efforts to explore how the action specificity of artemisinin is achieved, we found strikingly rapid and dramatic reactive oxygen species (ROS) production is induced with artemisinin in isolated yeast and malarial but not mammalian mitochondria, and ROS scavengers can ameliorate the effects of artemisinin. Deoxyartemisinin, which lacks an endoperoxide bridge, has no effect on membrane potential or ROS production in malarial mitochondria. OZ209, a distantly related antimalarial endoperoxide, also causes ROS production and depolarization in isolated malarial mitochondria. Finally, interference of mitochondrial electron transport chain (ETC) can alter the sensitivity of the parasite towards artemisinin. Addition of iron chelator desferrioxamine drastically reduces ETC activity as well as mitigates artemisinin-induced ROS production. Taken together, our results indicate that mitochondrion is an important direct target, if not the sole one, in the antimalarial action of artemisinins. We suggest that fundamental differences among mitochondria from different species delineate the action specificity of this class of drugs, and differing from many other drugs, the action specificity of artemisinins originates from their activation mechanism. PMID:20221395

  2. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    PubMed

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. Towards development of aptamers that specifically bind to lactate dehydrogenase of Plasmodium falciparum through epitopic targeting.

    PubMed

    Frith, Kelly-Anne; Fogel, Ronen; Goldring, J P Dean; Krause, Robert G E; Khati, Makobetsa; Hoppe, Heinrich; Cromhout, Mary E; Jiwaji, Meesbah; Limson, Janice L

    2018-05-03

    Early detection is crucial for the effective treatment of malaria, particularly in those cases infected with Plasmodium falciparum. There is a need for diagnostic devices with the capacity to distinguish P. falciparum from other strains of malaria. Here, aptamers generated against targeted species-specific epitopes of P. falciparum lactate dehydrogenase (rPfLDH) are described. Two classes of aptamers bearing high binding affinity and specificity for recombinant P. falciparum lactate dehydrogenase (rPfLDH) and P. falciparum-specific lactate dehydrogenase epitopic oligopeptide (LDHp) were separately generated. Structurally-relevant moieties with particular consensus sequences (GGTAG and GGCG) were found in aptamers reported here and previously published, confirming their importance in recognition of the target, while novel moieties particular to this work (ATTAT and poly-A stretches) were identified. Aptamers with diagnostically-supportive functions were synthesized, prime examples of which are the aptamers designated as LDHp 1, LDHp 11 and rLDH 4 and rLDH 15 in work presented herein. Of the sampled aptamers raised against the recombinant protein, rLDH 4 showed the highest binding to the target rPfLDH in the ELONA assay, with both rLDH 4 and rLDH 15 indicating an ability to discriminate between rPfLDH and rPvLDH. LDHp 11 was generated against a peptide selected as a unique P. falciparum LDH peptide. The aptamer, LDHp 11, like antibodies against the same peptide, only detected rPfLDH and discriminated between rPfLDH and rPvLDH. This was supported by affinity binding experiments where only aptamers generated against a unique species-specific epitope showed an ability to preferentially bind to rPfLDH relative to rPvLDH rather than those generated against the whole recombinant protein. In addition, rLDH 4 and LDHp 11 demonstrated in situ binding to P. falciparum cells during confocal microscopy. The utilization and application of LDHp 11, an aptamer generated against a

  4. Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication.

    PubMed

    Tan, Ruoyun; He, Weichun; Lin, Xia; Kiss, Lawrence P; Liu, Youhua

    2008-05-01

    Smad ubiquitination regulatory factor-2 (Smurf2) is an E3 ubiqutin ligase that plays a pivotal role in regulating TGF-beta signaling via selectively targeting key components of the Smad pathway for degradation. In this study, we have investigated the regulation of Smurf2 expression, its target specificity, and the functional implication of its induction in the fibrotic kidney. Immunohistochemical staining revealed that Smurf2 was upregulated specifically in renal tubules of kidney biopsies from patients with various nephropathies. In vitro, Smurf2 mRNA and protein were induced in human proximal tubular epithelial cells (HKC-8) upon TGF-beta1 stimulation. Ectopic expression of Smurf2 was sufficient to reduce the steady-state levels of Smad2, but not Smad1, Smad3, Smad4, and Smad7, in HKC-8 cells. Interestingly, Smurf2 was also able to downregulate the Smad transcriptional corepressors Ski, SnoN, and TG-interacting factor. Inhibition of the proteasomal pathway prevented Smurf2-mediated downregulation of Smad2 and Smad corepressors. Functionally, overexpression of Smurf2 enhanced the transcription of the TGF-beta-responsive promoter and augmented TGF-beta1-mediated E-cadherin suppression, as well as fibronectin and type I collagen induction in HKC-8 cells. These results indicate that Smurf2 specifically targets both positive and negative Smad regulators for destruction in tubular epithelial cells, thereby providing a complex fine-tuning of TGF-beta signaling. It appears that dysregulation of Smurf2 could contribute to an aberrant TGF-beta/Smad signaling in the pathogenesis of kidney fibrosis.

  5. Conversion from intravenous to oral medications: assessment of a computerized intervention for hospitalized patients.

    PubMed

    Fischer, Michael A; Solomon, Daniel H; Teich, Jonathan M; Avorn, Jerry

    2003-11-24

    Many hospitalized patients continue to receive intravenous medications longer than necessary. Earlier conversion from the intravenous to the oral route could increase patient safety and comfort, reduce costs, and facilitate earlier discharge from the hospital without compromising clinical care. We examined the effect of a computer-based intervention to prompt physicians to switch appropriate patients from intravenous to oral medications. This study was performed at Brigham and Women's Hospital, an academic tertiary care hospital at which all medications are ordered online. We targeted 5 medications with equal oral and intravenous bioavailability: fluconazole, levofloxacin, metronidazole, ranitidine, and amiodarone. We used the hospital's computerized order entry system to prompt physicians to convert appropriate intravenous medications to the oral route. We measured the total use of the targeted medications via each route in the 4 months before and after the implementation of the intervention. We also measured the rate at which physicians responded to the intervention when prompted. The average intravenous defined daily dose declined by 11.1% (P =.002) from the preintervention to the postintervention period, while the average oral defined daily dose increased by 3.7% (P =.002). Length of stay, case-mix index, and total drug use at the hospital increased during the study period. The average total monthly use of the intravenous preparation of all of the targeted medications declined in the 4 months after the intervention began, compared with the 4 months before. In 35.6% of 1045 orders for which a prompt was generated, the physician either made a conversion from the intravenous to the oral version or canceled the order altogether. Computer-generated reminders can produce a substantial reduction in excessive use of targeted intravenous medications. As online prescribing becomes more common, this approach can be used to reduce excess use of intravenous medications

  6. A proposed model for infant and child oral health promotion in India.

    PubMed

    Jawdekar, Ashwin Muralidhar

    2013-01-01

    Dental caries is an increasing burden in the developing countries. A proper budgetary allocation for treating dental diseases in an enormous population such as India is impractical, where resources are inadequate for major health challenges such as malnutrition and gastrointestinal and respiratory infections in children. An integrated, directed population approach targeting children is much needed. The existing machinery of successful public health campaigns such as the "Pulse Polio" and the "Mid-Day-Meals Scheme" of the Government of India can be used for oral health promotion for children. India has about 300 dental colleges and countrywide branches of the Indian Dental Association that can provide manpower for the program. An innovative, large-scale "Fit for School" program in Philippines is a model for an integrated approach for children's health and has proved to be cost-effective and viable. A model for oral health promotion in infants and children of India, combining age-specific initiatives for health education, nutrition, hygiene, and fluoride use, is proposed. The model could be implemented to evaluate the oral health status of children, knowledge and knowledge gain of the community health workers, and acceptability and sustainability of the preventive programs (fluoride varnish and preschool and school tooth brushing) pragmatically.

  7. Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporter-Targeting Nanoparticles: A Case Study of High-Efficiency SLC22A5 (OCTN2)-Mediated Carnitine-Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs.

    PubMed

    Kou, Longfa; Yao, Qing; Sun, Mengchi; Wu, Chunnuan; Wang, Jia; Luo, Qiuhua; Wang, Gang; Du, Yuqian; Fu, Qiang; Wang, Jian; He, Zhonggui; Ganapathy, Vadivel; Sun, Jin

    2017-09-01

    OCTN2 (SLC22A5) is a Na + -coupled absorption transporter for l-carnitine in small intestine. This study tests the potential of this transporter for oral delivery of therapeutic drugs encapsulated in l-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) and discloses the molecular mechanism for cellular endocytosis of transporter-targeting nanoparticles. Conjugation of l-carnitine to a surface of PLGA-NPs enhances the cellular uptake and intestinal absorption of encapsulated drug. In both cases, the uptake process is dependent on cotransporting ion Na + . Computational OCTN2 docking analysis shows that the presence of Na + is important for the formation of the energetically stable intermediate complex of transporter-Na + -LC-PLGA NPs, which is also the first step in cellular endocytosis of nanoparticles. The transporter-mediated intestinal absorption of LC-PLGA NPs occurs via endocytosis/transcytosis rather than via the traditional transmembrane transport. The portal blood versus the lymphatic route is evaluated by the plasma appearance of the drug in the control and lymph duct-ligated rats. Absorption via the lymphatic system is the predominant route in the oral delivery of the NPs. In summary, LC-PLGA NPs can effectively target OCTN2 on the enterocytes for enhancing oral delivery of drugs and the critical role of cotransporting ions should be noticed in designing transporter-targeting nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Detection of HPV related oropharyngeal cancer in oral rinse specimens

    PubMed Central

    Rosenthal, Matthew; Huang, Bin; Katabi, Nora; Migliacci, Jocelyn; Bryant, Robert; Kaplan, Samuel; Blackwell, Timothy; Patel, Snehal; Yang, Liying; Pei, Zhiheng; Tang, Yi-Wei; Ganly, Ian

    2017-01-01

    Background The majority of patients diagnosed with oropharyngeal squamous cell cancer (OPSCC) are due to HPV infection. At present, there are no reliable tests for screening HPV in patients with OPSCC. The objective of this study was to assess the Cobas® HPV Test on oral rinse specimens as an early, non-invasive tool for HPV-related OPSCC. Methods Oral rinse specimens were collected from 187 patients (45 with OPSCC, 61 with oral cavity SCC (OCSCC) and 81 control patients who had benign or malignant thyroid nodules) treated at MSKCC. The Cobas® HPV Test was used to detect 14 high-risk HPV types in these samples. Performance of the HPV Test was correlated with p16 tumor immunohistochemistry as gold standard. Results 91.1% of the oropharynx cancer patients had p16 positive tumors compared to 3.3% of oral cavity cancer. Of the 81 control patients, 79 (97.5%) had no HPV in their oral rinse giving a specificity of the HPV test of 98%. For the combined oral cavity oropharynx cancer cohort, the sensitivity, specificity, positive predictive value and negative predictive value of the HPV Test were 79.1%, 90.5%, 85.0% and 86.4% respectively when p16 immunohistochemistry was used as the reference. Conclusion The Cobas® HPV Test on oral rinse is a highly specific and potentially sensitive test for oropharyngeal cancer and may be a potentially useful screening test for early oropharyngeal cancer. Impact We describe an oral rinse test for the detection of HPV related oropharyngeal cancer. PMID:29312616

  9. Target-specific NMR detection of protein-ligand interactions with antibody-relayed 15N-group selective STD.

    PubMed

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A

    2016-12-01

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  10. The sensitivity and specificity of frozen-section histopathology in the management of benign oral and maxillofacial lesions.

    PubMed

    Aronovich, Sharon; Kim, Roderick Y

    2014-05-01

    The management of odontogenic cysts and tumors typically requires a biopsy, which may present significant challenges and prompt an additional visit to the operating room before definitive treatment. The aim of this study was to determine the validity of frozen-section diagnosis in the management of benign oral and maxillofacial lesions, allowing intraoperative diagnosis followed by definitive treatment under the same general anesthetic. A retrospective chart review of patients treated at the University of Michigan Health System was performed. Patients of all ages who had a diagnosis of a benign maxillofacial lesion by frozen-section and permanent histopathology reports were included for analysis. Patients were identified using the Current Procedural Terminology code for enucleation and curettage and International Classification of Diseases, Ninth Revision codes for benign cysts or tumors of skull, face, or lower jaw. Of 450 patients reviewed, 214 had intraoperative frozen-section examination available for comparison with permanent histopathology. There were 121 men (56.5%) and 93 women (43.5%), with a mean age of 41 years. Compared with final permanent histopathology, the overall sensitivity of frozen sections was 92.1%. Frozen-section histopathology had a sensitivity greater than 90% and a specificity greater than 95% for the diagnosis of dentigerous cyst and keratocyst odontogenic tumor. In this study of 214 patients with benign maxillofacial lesions, frozen-section histopathology was found to be a valid diagnostic modality with high sensitivity, specificity, and positive and negative predictive values. These results and analysis support the use of frozen-section histopathology for the treatment of benign maxillofacial lesions and underscore its value in the management of these lesions. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Improving specificity of Bordetella pertussis detection using a four target real-time PCR.

    PubMed

    Martini, Helena; Detemmerman, Liselot; Soetens, Oriane; Yusuf, Erlangga; Piérard, Denis

    2017-01-01

    The incidence of whooping cough, a contagious respiratory disease caused by Bordetella pertussis, is on the rise despite existing vaccination programmes. Similar, though usually milder, respiratory symptoms may be caused by other members of the Bordetella genus: B. parapertussis, B. holmesii, and B. bronchiseptica. Pertussis diagnosis is mostly done using PCR, but the use of multiple targets is necessary in order to differentiate the different Bordetella spp. with sufficient sensitivity and specificity. In this study we evaluate a multiplex PCR assay for the differentiation of B. pertussis from other Bordetella spp., using the targets IS481, IS1001, IS1002, and recA. Moreover, we retrospectively explore the epidemiology of Bordetella spp. infections in Belgium, using the aforementioned assay over a three-year period, from 2013 until 2015.

  12. Improving specificity of Bordetella pertussis detection using a four target real-time PCR

    PubMed Central

    Detemmerman, Liselot; Soetens, Oriane; Yusuf, Erlangga; Piérard, Denis

    2017-01-01

    The incidence of whooping cough, a contagious respiratory disease caused by Bordetella pertussis, is on the rise despite existing vaccination programmes. Similar, though usually milder, respiratory symptoms may be caused by other members of the Bordetella genus: B. parapertussis, B. holmesii, and B. bronchiseptica. Pertussis diagnosis is mostly done using PCR, but the use of multiple targets is necessary in order to differentiate the different Bordetella spp. with sufficient sensitivity and specificity. In this study we evaluate a multiplex PCR assay for the differentiation of B. pertussis from other Bordetella spp., using the targets IS481, IS1001, IS1002, and recA. Moreover, we retrospectively explore the epidemiology of Bordetella spp. infections in Belgium, using the aforementioned assay over a three-year period, from 2013 until 2015. PMID:28403204

  13. Creating and virtually screening databases of fluorescently-labelled compounds for the discovery of target-specific molecular probes

    NASA Astrophysics Data System (ADS)

    Kamstra, Rhiannon L.; Dadgar, Saedeh; Wigg, John; Chowdhury, Morshed A.; Phenix, Christopher P.; Floriano, Wely B.

    2014-11-01

    Our group has recently demonstrated that virtual screening is a useful technique for the identification of target-specific molecular probes. In this paper, we discuss some of our proof-of-concept results involving two biologically relevant target proteins, and report the development of a computational script to generate large databases of fluorescence-labelled compounds for computer-assisted molecular design. The virtual screening of a small library of 1,153 fluorescently-labelled compounds against two targets, and the experimental testing of selected hits reveal that this approach is efficient at identifying molecular probes, and that the screening of a labelled library is preferred over the screening of base compounds followed by conjugation of confirmed hits. The automated script for library generation explores the known reactivity of commercially available dyes, such as NHS-esters, to create large virtual databases of fluorescence-tagged small molecules that can be easily synthesized in a laboratory. A database of 14,862 compounds, each tagged with the ATTO680 fluorophore was generated with the automated script reported here. This library is available for downloading and it is suitable for virtual ligand screening aiming at the identification of target-specific fluorescent molecular probes.

  14. Short-term effects of oral administration of Pistacia lentiscus oil on tissue-specific toxicity and drug metabolizing enzymes in mice.

    PubMed

    Attoub, Samir; Karam, Sherif M; Nemmar, Abderrahim; Arafat, Kholoud; John, Annie; Al-Dhaheri, Wafa; Al Sultan, Mahmood Ahmed; Raza, Haider

    2014-01-01

    Pistacia lentiscus (Anacardiaceae) is a flowering plant traditionally used in the treatment of various skin, respiratory, and gastrointestinal disorders. The aim of this study was to assess whether Pistacia lentiscus oil has any short term toxic effects in vivo and in vitro. Pistacia lentiscus oil (100µl) was administered orally into mice for 5 days. Measurements of body weight did not show any weight loss. Serum concentration of LDH did not show any significant statistical difference when compared to control mice. Similarly, blood, kidney or liver function tests showed no toxicity with Pistacia lentiscus oil when compared to the control group. Examination of gastrointestinal tissues sections revealed similar structural features with no difference in cell proliferation. In this context, pharmacological dilutions of Pistacia lentiscus oil (10(-6) - 10(-3)) did not affect the viability (cell death and proliferation) of mouse gastric stem cells, human colorectal cancer cells HT29, human hepatoma cells HepG2. However, it appears that at the dose and time point studied, Pistacia lentiscus oil treatment has targeted various cytochrome P450s and has specifically inhibited the activities and the expression of CYP2E1, CYP3A4, CYP1A1 and CYP1A2 differentially in different tissues. Our results also demonstrate that there is no appreciable effect of Pistacia lentiscus oil on the GSH-dependent redox homoeostasis and detoxification mechanism in the tissues. These data suggest a good safety profile of short term oral use of Pistacia lentiscus oil as a monotherapy in the treatment of various skin, respiratory, and gastrointestinal disorders. However, due to its inhibitory effect of various cytochrome P450s and mainly CYP3A4, this might have implications on the bioavailability and metabolism of drugs taken in combination with Pistacia lentiscus oil. More attention is needed when Pistacia lentiscus oil is intended to be uses in combination with other pharmacological agents in order

  15. Microbiota, cirrhosis, and the emerging oral-gut-liver axis

    PubMed Central

    Acharya, Chathur; Bajaj, Jasmohan S.

    2017-01-01

    Cirrhosis is a prevalent cause of morbidity and mortality, especially for those at an advanced decompensated stage. Cirrhosis development and progression involves several important interorgan communications, and recently, the gut microbiome has been implicated in pathophysiology of the disease. Dysbiosis, defined as a pathological change in the microbiome, has a variable effect on the compensated versus decompensated stage of cirrhosis. Adverse microbial changes, both in composition and function, can act at several levels within the gut (stool and mucosal) and have also been described in the blood and oral cavity. While dysbiosis in the oral cavity could be a source of systemic inflammation, current cirrhosis treatment modalities are targeted toward the gut-liver axis and do not address the oral microbiome. As interventions designed to modulate oral dysbiosis may delay progression of cirrhosis, a better understanding of this process is of the utmost importance. The concept of oral microbiota dysbiosis in cirrhosis is relatively new; therefore, this review will highlight the emerging role of the oral-gut-liver axis and introduce perspectives for future research. PMID:28978799

  16. New orally active DNA minor groove binding small molecule CT-1 acts against breast cancer by targeting tumor DNA damage leading to p53-dependent apoptosis.

    PubMed

    Saini, Karan Singh; Hamidullah; Ashraf, Raghib; Mandalapu, Dhanaraju; Das, Sharmistha; Siddiqui, Mohd Quadir; Dwivedi, Sonam; Sarkar, Jayanta; Sharma, Vishnu Lal; Konwar, Rituraj

    2017-04-01

    Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein

    PubMed Central

    Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.

    2015-01-01

    ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can

  18. Mast Cells: Key Players in the Shadow in Oral Inflammation and in Squamous Cell Carcinoma of the Oral Cavity

    PubMed Central

    Gaje, Pusa Nela; Amalia Ceausu, Raluca; Jitariu, Adriana; Popovici, Ramona Amina; Raica, Marius

    2016-01-01

    Although mast cells (MCs) have been discovered over 130 years ago, their function was almost exclusively linked to allergic affections. At the time being, it is well known that MCs possess a great variety of roles, in both physiologic and pathologic conditions. In the oral tissues, MCs release different proinflammatory cytokines, tumor necrosis factor alpha (TNF-α), that promote leukocyte infiltration in various inflammatory states of the oral cavity. These cells play a key role in the inflammatory process and, as a consequence, their number changes in different pathologic conditions of the oral cavity, like gingivitis, periodontitis, and so on. MCs also represent a rich source of proteases, especially of mast cell tryptase and chymase, which directly degrade the extracellular matrix through their proteolytic activity and thus indirectly stimulate angiogenesis and facilitate invasion and metastasis. It may be stated that mast cells could have an impact on primary tumor development, progression, and metastases in oral squamous cell carcinoma. By understanding the role of mast cells in the pathogenesis of different inflammatory and tumor diseases of the oral cavity, these cells may become therapeutic targets that could possibly improve the prognosis and survival of these patients. PMID:27847826

  19. Evaluation of the specificity and effectiveness of selected oral hygiene actives in salivary biofilm microcosms.

    PubMed

    Ledder, Ruth G; Sreenivasan, Prem K; DeVizio, William; McBain, Andrew J

    2010-12-01

    The microbiological effects of biocidal products used for the enhancement of oral hygiene relate to the active compound(s) as well as other formulation components. Here, we test the specificities of selected actives in the absence of multiple excipients. Salivary ecosystems were maintained in tissue culture plate-based hydroxyapatite disc models (HDMs) and modified drip-flow biofilm reactors (MDFRs). Test compounds stannous fluoride (SF), SDS, triclosan (TCS), zinc lactate (ZL) and ZL with SF in combination (ZLSF) were delivered to the HDMs once and four times daily for 6 days to MDFRs. Plaques were characterized by differential viable counting and PCR-denaturing gradient gel electrophoresis (DGGE). TCS and SDS were the most effective compounds against HDM plaques, significantly reducing total viable counts (P<0.05), whilst SF, ZL and ZLSF were comparatively ineffective. TCS exhibited specificity for streptococci (P<0.01) and Gram-negative anaerobes (P<0.01) following a single dosing and also on repeated dosing in MDFRs. In contrast to single exposures, multiple dosing with ZLSF also significantly reduced all bacterial groups, whilst SF and ZL caused significant but transient reductions. According to PCR-DGGE analyses, significant (P<0.05) reductions in eubacterial diversity occurred following 6 day dosing with both TCS and ZLSF. Concordance of MDFR eubacterial profiles with salivary inocula ranged between 58 and 97%. TCS and ZL(SF) exhibited similar specificities to those reported for formulations. TCS was the most potent antibacterial, after single and multiple dosage regimens.

  20. Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis

    PubMed Central

    Kluza, Ewelina; Van Tilborg, Geralda A. F.; van der Schaft, Daisy W. J.; Griffioen, Arjan W.; Mulder, Willem J. M.; Nicolay, Klaas

    2010-01-01

    Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy. PMID:20390447