A Track Initiation Method for the Underwater Target Tracking Environment
NASA Astrophysics Data System (ADS)
Li, Dong-dong; Lin, Yang; Zhang, Yao
2018-04-01
A novel efficient track initiation method is proposed for the harsh underwater target tracking environment (heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method (TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly. Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target: (a) they cannot eliminate the turbulences of clutter effectively; (b) there may be a high false alarm probability and low detection probability of a track; (c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track, track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target's existence and estimate its initial state with the least squares method. What's more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.
A Parallel Finite Set Statistical Simulator for Multi-Target Detection and Tracking
NASA Astrophysics Data System (ADS)
Hussein, I.; MacMillan, R.
2014-09-01
Finite Set Statistics (FISST) is a powerful Bayesian inference tool for the joint detection, classification and tracking of multi-target environments. FISST is capable of handling phenomena such as clutter, misdetections, and target birth and decay. Implicit within the approach are solutions to the data association and target label-tracking problems. Finally, FISST provides generalized information measures that can be used for sensor allocation across different types of tasks such as: searching for new targets, and classification and tracking of known targets. These FISST capabilities have been demonstrated on several small-scale illustrative examples. However, for implementation in a large-scale system as in the Space Situational Awareness problem, these capabilities require a lot of computational power. In this paper, we implement FISST in a parallel environment for the joint detection and tracking of multi-target systems. In this implementation, false alarms and misdetections will be modeled. Target birth and decay will not be modeled in the present paper. We will demonstrate the success of the method for as many targets as we possibly can in a desktop parallel environment. Performance measures will include: number of targets in the simulation, certainty of detected target tracks, computational time as a function of clutter returns and number of targets, among other factors.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing
2018-01-01
For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.
NASA Astrophysics Data System (ADS)
Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen
2017-06-01
Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.
Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments
Mossel, Annette
2015-01-01
In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388
Intelligence-aided multitarget tracking for urban operations - a case study: counter terrorism
NASA Astrophysics Data System (ADS)
Sathyan, T.; Bharadwaj, K.; Sinha, A.; Kirubarajan, T.
2006-05-01
In this paper, we present a framework for tracking multiple mobile targets in an urban environment based on data from multiple sources of information, and for evaluating the threat these targets pose to assets of interest (AOI). The motivating scenario is one where we have to track many targets, each with different (unknown) destinations and/or intents. The tracking algorithm is aided by information about the urban environment (e.g., road maps, buildings, hideouts), and strategic and intelligence data. The tracking algorithm needs to be dynamic in that it has to handle a time-varying number of targets and the ever-changing urban environment depending on the locations of the moving objects and AOI. Our solution uses the variable structure interacting multiple model (VS-IMM) estimator, which has been shown to be effective in tracking targets based on road map information. Intelligence information is represented as target class information and incorporated through a combined likelihood calculation within the VS-IMM estimator. In addition, we develop a model to calculate the probability that a particular target can attack a given AOI. This model for the calculation of the probability of attack is based on the target kinematic and class information. Simulation results are presented to demonstrate the operation of the proposed framework on a representative scenario.
Location detection and tracking of moving targets by a 2D IR-UWB radar system.
Nguyen, Van-Han; Pyun, Jae-Young
2015-03-19
In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.
Virtual target tracking (VTT) as applied to mobile satellite communication networks
NASA Astrophysics Data System (ADS)
Amoozegar, Farid
1999-08-01
Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.
Fusion-based multi-target tracking and localization for intelligent surveillance systems
NASA Astrophysics Data System (ADS)
Rababaah, Haroun; Shirkhodaie, Amir
2008-04-01
In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.
PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.
Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao
2015-11-06
Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low.
Large scale tracking algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett
2015-01-01
Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For highermore » resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.« less
Image-based tracking and sensor resource management for UAVs in an urban environment
NASA Astrophysics Data System (ADS)
Samant, Ashwin; Chang, K. C.
2010-04-01
Coordination and deployment of multiple unmanned air vehicles (UAVs) requires a lot of human resources in order to carry out a successful mission. The complexity of such a surveillance mission is significantly increased in the case of an urban environment where targets can easily escape from the UAV's field of view (FOV) due to intervening building and line-of-sight obstruction. In the proposed methodology, we focus on the control and coordination of multiple UAVs having gimbaled video sensor onboard for tracking multiple targets in an urban environment. We developed optimal path planning algorithms with emphasis on dynamic target prioritizations and persistent target updates. The command center is responsible for target prioritization and autonomous control of multiple UAVs, enabling a single operator to monitor and control a team of UAVs from a remote location. The results are obtained using extensive 3D simulations in Google Earth using Tangent plus Lyapunov vector field guidance for target tracking.
Audio Tracking in Noisy Environments by Acoustic Map and Spectral Signature.
Crocco, Marco; Martelli, Samuele; Trucco, Andrea; Zunino, Andrea; Murino, Vittorio
2018-05-01
A novel method is proposed for generic target tracking by audio measurements from a microphone array. To cope with noisy environments characterized by persistent and high energy interfering sources, a classification map (CM) based on spectral signatures is calculated by means of a machine learning algorithm. Next, the CM is combined with the acoustic map, describing the spatial distribution of sound energy, in order to obtain a cleaned joint map in which contributions from the disturbing sources are removed. A likelihood function is derived from this map and fed to a particle filter yielding the target location estimation on the acoustic image. The method is tested on two real environments, addressing both speaker and vehicle tracking. The comparison with a couple of trackers, relying on the acoustic map only, shows a sharp improvement in performance, paving the way to the application of audio tracking in real challenging environments.
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target recognition and tracking routines. Target tracking is based on simplified versions of Kalman filtration. Accuracy of recognition and tracking of implemented versions of the proposed suite of unsupervised algorithms is somewhat degraded from the ideal. Target recognition and tracking by supervised routines and by unsupervised SVM and CLNN routines in the ground-based WSN is evaluated in simulations using published system values and sensor data from vehicular targets in ground-surveillance scenarios. Results are compared with previously published performance for the system of the ground-based sensor network (GSN) and UAV swarm.
Enhancement of tracking performance in electro-optical system based on servo control algorithm
NASA Astrophysics Data System (ADS)
Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu
2017-10-01
Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.
2016-10-01
ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced
Robust pedestrian detection and tracking from a moving vehicle
NASA Astrophysics Data System (ADS)
Tuong, Nguyen Xuan; Müller, Thomas; Knoll, Alois
2011-01-01
In this paper, we address the problem of multi-person detection, tracking and distance estimation in a complex scenario using multi-cameras. Specifically, we are interested in a vision system for supporting the driver in avoiding any unwanted collision with the pedestrian. We propose an approach using Histograms of Oriented Gradients (HOG) to detect pedestrians on static images and a particle filter as a robust tracking technique to follow targets from frame to frame. Because the depth map requires expensive computation, we extract depth information of targets using Direct Linear Transformation (DLT) to reconstruct 3D-coordinates of correspondent points found by running Speeded Up Robust Features (SURF) on two input images. Using the particle filter the proposed tracker can efficiently handle target occlusions in a simple background environment. However, to achieve reliable performance in complex scenarios with frequent target occlusions and complex cluttered background, results from the detection module are integrated to create feedback and recover the tracker from tracking failures due to the complexity of the environment and target appearance model variability. The proposed approach is evaluated on different data sets both in a simple background scenario and a cluttered background environment. The result shows that, by integrating detector and tracker, a reliable and stable performance is possible even if occlusion occurs frequently in highly complex environment. A vision-based collision avoidance system for an intelligent car, as a result, can be achieved.
Multiple-hypothesis multiple-model line tracking
NASA Astrophysics Data System (ADS)
Pace, Donald W.; Owen, Mark W.; Cox, Henry
2000-07-01
Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.
Timing matters: sonar call groups facilitate target localization in bats.
Kothari, Ninad B; Wohlgemuth, Melville J; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F
2014-01-01
To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment.
Timing matters: sonar call groups facilitate target localization in bats
Kothari, Ninad B.; Wohlgemuth, Melville J.; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F.
2014-01-01
To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment. PMID:24860509
NASA Astrophysics Data System (ADS)
Kim, Sungho; Choi, Byungin; Kim, Jieun; Kwon, Soon; Kim, Kyung-Tae
2012-05-01
This paper presents a separate spatio-temporal filter based small infrared target detection method to address the sea-based infrared search and track (IRST) problem in dense sun-glint environment. It is critical to detect small infrared targets such as sea-skimming missiles or asymmetric small ships for national defense. On the sea surface, sun-glint clutters degrade the detection performance. Furthermore, if we have to detect true targets using only three images with a low frame rate camera, then the problem is more difficult. We propose a novel three plot correlation filter and statistics based clutter reduction method to achieve robust small target detection rate in dense sun-glint environment. We validate the robust detection performance of the proposed method via real infrared test sequences including synthetic targets.
NASA Astrophysics Data System (ADS)
Anderson, Monica; David, Phillip
2007-04-01
Implementation of an intelligent, automated target acquisition and tracking systems alleviates the need for operators to monitor video continuously. This system could identify situations that fatigued operators could easily miss. If an automated acquisition and tracking system plans motions to maximize a coverage metric, how does the performance of that system change when the user intervenes and manually moves the camera? How can the operator give input to the system about what is important and understand how that relates to the overall task balance between surveillance and coverage? In this paper, we address these issues by introducing a new formulation of the average linear uncovered length (ALUL) metric, specially designed for use in surveilling urban environments. This metric coordinates the often competing goals of acquiring new targets and tracking existing targets. In addition, it provides current system performance feedback to system users in terms of the system's theoretical maximum and minimum performance. We show the successful integration of the algorithm via simulation.
Bodala, Indu P; Abbasi, Nida I; Yu Sun; Bezerianos, Anastasios; Al-Nashash, Hasan; Thakor, Nitish V
2017-07-01
Eye tracking offers a practical solution for monitoring cognitive performance in real world tasks. However, eye tracking in dynamic environments is difficult due to high spatial and temporal variation of stimuli, needing further and thorough investigation. In this paper, we study the possibility of developing a novel computer vision assisted eye tracking analysis by using fixations. Eye movement data is obtained from a long duration naturalistic driving experiment. Source invariant feature transform (SIFT) algorithm was implemented using VLFeat toolbox to identify multiple areas of interest (AOIs). A new measure called `fixation score' was defined to understand the dynamics of fixation position between the target AOI and the non target AOIs. Fixation score is maximum when the subjects focus on the target AOI and diminishes when they gaze at the non-target AOIs. Statistically significant negative correlation was found between fixation score and reaction time data (r =-0.2253 and p<;0.05). This implies that with vigilance decrement, the fixation score decreases due to visual attention shifting away from the target objects resulting in an increase in the reaction time.
Underwater Acoustic Target Tracking: A Review
Han, Ying; Fan, Liying
2018-01-01
Advances in acoustic technology and instrumentation now make it possible to explore marine resources. As a significant component of ocean exploration, underwater acoustic target tracking has aroused wide attention both in military and civil fields. Due to the complexity of the marine environment, numerous techniques have been proposed to obtain better tracking performance. In this paper, we survey over 100 papers ranging from innovative papers to the state-of-the-art in this field to present underwater tracking technologies. Not only the related knowledge of acoustic tracking instrument and tracking progress is clarified in detail, but also a novel taxonomy method is proposed. In this paper, algorithms for underwater acoustic target tracking are classified based on the methods used as: (1) instrument-assisted methods; (2) mode-based methods; (3) tracking optimization methods. These algorithms are compared and analyzed in the aspect of dimensions, numbers, and maneuvering of the tracking target, which is different from other survey papers. Meanwhile, challenges, countermeasures, and lessons learned are illustrated in this paper. PMID:29301318
Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.
2012-01-01
Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329
NASA Astrophysics Data System (ADS)
Bagheri, Zahra M.; Cazzolato, Benjamin S.; Grainger, Steven; O'Carroll, David C.; Wiederman, Steven D.
2017-08-01
Objective. Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. Approach. We used our recent recordings from ‘small target motion detector’ neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. Significance. Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system.
Stereo Electro-optical Tracking System (SETS)
NASA Astrophysics Data System (ADS)
Koenig, E. W.
1984-09-01
The SETS is a remote, non-contacting, high-accuracy tracking system for the measurement of deflection of models in the National Transonic Facility at Langley Research Center. The system consists of four electronically scanned image dissector trackers which locate the position of Light Emitting Diodes embedded in the wing or body of aircraft models. Target location data is recorded on magnetic tape for later 3-D processing. Up to 63 targets per model may be tracked at typical rates of 1280 targets per second and to precision of 0.02mm at the target under the cold (-193 C) environment of the NTF tunnel.
Evaluation of the Jonker-Volgenant-Castanon (JVC) assignment algorithm for track association
NASA Astrophysics Data System (ADS)
Malkoff, Donald B.
1997-07-01
The Jonker-Volgenant-Castanon (JVC) assignment algorithm was used by Lockheed Martin Advanced Technology Laboratories (ATL) for track association in the Rotorcraft Pilot's Associate (RPA) program. RPA is Army Aviation's largest science and technology program, involving an integrated hardware/software system approach for a next generation helicopter containing advanced sensor equipments and applying artificial intelligence `associate' technologies. ATL is responsible for the multisensor, multitarget, onboard/offboard track fusion. McDonnell Douglas Helicopter Systems is the prime contractor and Lockheed Martin Federal Systems is responsible for developing much of the cognitive decision aiding and controls-and-displays subsystems. RPA is scheduled for flight testing beginning in 1997. RPA is unique in requiring real-time tracking and fusion for large numbers of highly-maneuverable ground (and air) targets in a target-dense environment. It uses diverse sensors and is concerned with a large area of interest. Target class and identification data is tightly integrated with spatial and kinematic data throughout the processing. Because of platform constraints, processing hardware for track fusion was quite limited. No previous experience using JVC in this type environment had been reported. ATL performed extensive testing of the JVC, concentrating on error rates and run- times under a variety of conditions. These included wide ranging numbers and types of targets, sensor uncertainties, target attributes, differing degrees of target maneuverability, and diverse combinations of sensors. Testing utilized Monte Carlo approaches, as well as many kinds of challenging scenarios. Comparisons were made with a nearest-neighbor algorithm and a new, proprietary algorithm (the `Competition' algorithm). The JVC proved to be an excellent choice for the RPA environment, providing a good balance between speed of operation and accuracy of results.
NASA Astrophysics Data System (ADS)
Koch, Wolfgang
1996-05-01
Sensor data processing in a dense target/dense clutter environment is inevitably confronted with data association conflicts which correspond with the multiple hypothesis character of many modern approaches (MHT: multiple hypothesis tracking). In this paper we analyze the efficiency of retrodictive techniques that generalize standard fixed interval smoothing to MHT applications. 'Delayed estimation' based on retrodiction provides uniquely interpretable and accurate trajectories from ambiguous MHT output if a certain time delay is tolerated. In a Bayesian framework the theoretical background of retrodiction and its intimate relation to Bayesian MHT is sketched. By a simulated example with two closely-spaced targets, relatively low detection probabilities, and rather high false return densities, we demonstrate the benefits of retrodiction and quantitatively discuss the achievable track accuracies and the time delays involved for typical radar parameters.
Integration of Irma tactical scene generator into directed-energy weapon system simulation
NASA Astrophysics Data System (ADS)
Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.
2003-08-01
Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.
A Biocompatible Near-Infrared 3D Tracking System*
Decker, Ryan S.; Shademan, Azad; Opfermann, Justin D.; Leonard, Simon; Kim, Peter C. W.; Krieger, Axel
2017-01-01
A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, and is difficult to differentiate from surrounding tissue. We developed small biocompatible near-infrared fluorescent (NIRF) markers with a novel fused plenoptic and NIR camera tracking system, enabling 3D tracking of tools and target tissue while overcoming blood and tissue occlusion in the uncontrolled, rapidly changing surgical environment. In this work, we present the tracking system and marker design and compare tracking accuracies to standard optical tracking methods using robotic experiments. At speeds of 1 mm/s, we observe tracking accuracies of 1.61 mm, degrading only to 1.71 mm when the markers are covered in blood and tissue. PMID:28129145
Biocompatible Near-Infrared Three-Dimensional Tracking System.
Decker, Ryan S; Shademan, Azad; Opfermann, Justin D; Leonard, Simon; Kim, Peter C W; Krieger, Axel
2017-03-01
A fundamental challenge in soft-tissue surgery is that target tissue moves and deforms, becomes occluded by blood or other tissue, and is difficult to differentiate from surrounding tissue. We developed small biocompatible near-infrared fluorescent (NIRF) markers with a novel fused plenoptic and NIR camera tracking system, enabling three-dimensional tracking of tools and target tissue while overcoming blood and tissue occlusion in the uncontrolled, rapidly changing surgical environment. In this work, we present the tracking system and marker design and compare tracking accuracies to standard optical tracking methods using robotic experiments. At speeds of 1 mm/s, we observe tracking accuracies of 1.61 mm, degrading only to 1.71 mm when the markers are covered in blood and tissue.
An improved multi-domain convolution tracking algorithm
NASA Astrophysics Data System (ADS)
Sun, Xin; Wang, Haiying; Zeng, Yingsen
2018-04-01
Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.
How Many Objects are You Worth? Quantification of the Self-Motion Load on Multiple Object Tracking
Thomas, Laura E.; Seiffert, Adriane E.
2011-01-01
Perhaps walking and chewing gum is effortless, but walking and tracking moving objects is not. Multiple object tracking is impaired by walking from one location to another, suggesting that updating location of the self puts demands on object tracking processes. Here, we quantified the cost of self-motion in terms of the tracking load. Participants in a virtual environment tracked a variable number of targets (1–5) among distractors while either staying in one place or moving along a path that was similar to the objects’ motion. At the end of each trial, participants decided whether a probed dot was a target or distractor. As in our previous work, self-motion significantly impaired performance in tracking multiple targets. Quantifying tracking capacity for each individual under move versus stay conditions further revealed that self-motion during tracking produced a cost to capacity of about 0.8 (±0.2) objects. Tracking your own motion is worth about one object, suggesting that updating the location of the self is similar, but perhaps slightly easier, than updating locations of objects. PMID:21991259
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association.
Liu, Yu; Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-11-05
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets' state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems.
Robust visual tracking via multiscale deep sparse networks
NASA Astrophysics Data System (ADS)
Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo
2017-04-01
In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Barhen, Jacob; Glover, Charles Wayne
2012-01-01
Multi-sensor networks may face resource limitations in a dynamically evolving multiple target tracking scenario. It is necessary to task the sensors efficiently so that the overall system performance is maximized within the system constraints. The central sensor resource manager may control the sensors to meet objective functions that are formulated to meet system goals such as minimization of track loss, maximization of probability of target detection, and minimization of track error. This paper discusses the variety of techniques that may be utilized to optimize sensor performance for either near term gain or future reward over a longer time horizon.
DoE Phase II SBIR: Spectrally-Assisted Vehicle Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villeneuve, Pierre V.
2013-02-28
The goal of this Phase II SBIR is to develop a prototype software package to demonstrate spectrally-aided vehicle tracking performance. The primary application is to demonstrate improved target vehicle tracking performance in complex environments where traditional spatial tracker systems may show reduced performance. Example scenarios in Figure 1 include a) the target vehicle obscured by a large structure for an extended period of time, or b), the target engaging in extreme maneuvers amongst other civilian vehicles. The target information derived from spatial processing is unable to differentiate between the green versus the red vehicle. Spectral signature exploitation enables comparison ofmore » new candidate targets with existing track signatures. The ambiguity in this confusing scenario is resolved by folding spectral analysis results into each target nomination and association processes. Figure 3 shows a number of example spectral signatures from a variety of natural and man-made materials. The work performed over the two-year effort was divided into three general areas: algorithm refinement, software prototype development, and prototype performance demonstration. The tasks performed under this Phase II to accomplish the program goals were as follows: 1. Acquire relevant vehicle target datasets to support prototype. 2. Refine algorithms for target spectral feature exploitation. 3. Implement a prototype multi-hypothesis target tracking software package. 4. Demonstrate and quantify tracking performance using relevant data.« less
A real-time optical tracking and measurement processing system for flying targets.
Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu
2014-01-01
Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control.
A Real-Time Optical Tracking and Measurement Processing System for Flying Targets
Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu
2014-01-01
Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control. PMID:24987748
NASA Astrophysics Data System (ADS)
Lamberti, Fabrizio; Sanna, Andrea; Paravati, Gianluca; Belluccini, Luca
2014-02-01
Tracking pedestrian targets in forward-looking infrared video sequences is a crucial component of a growing number of applications. At the same time, it is particularly challenging, since image resolution and signal-to-noise ratio are generally very low, while the nonrigidity of the human body produces highly variable target shapes. Moreover, motion can be quite chaotic with frequent target-to-target and target-to-scene occlusions. Hence, the trend is to design ever more sophisticated techniques, able to ensure rather accurate tracking results at the cost of a generally higher complexity. However, many of such techniques might not be suitable for real-time tracking in limited-resource environments. This work presents a technique that extends an extremely computationally efficient tracking method based on target intensity variation and template matching originally designed for targets with a marked and stable hot spot by adapting it to deal with much more complex thermal signatures and by removing the native dependency on configuration choices. Experimental tests demonstrated that, by working on multiple hot spots, the designed technique is able to achieve the robustness of other common approaches by limiting drifts and preserving the low-computational footprint of the reference method.
Dynamic Agent Classification and Tracking Using an Ad Hoc Mobile Acoustic Sensor Network
NASA Astrophysics Data System (ADS)
Friedlander, David; Griffin, Christopher; Jacobson, Noah; Phoha, Shashi; Brooks, Richard R.
2003-12-01
Autonomous networks of sensor platforms can be designed to interact in dynamic and noisy environments to determine the occurrence of specified transient events that define the dynamic process of interest. For example, a sensor network may be used for battlefield surveillance with the purpose of detecting, identifying, and tracking enemy activity. When the number of nodes is large, human oversight and control of low-level operations is not feasible. Coordination and self-organization of multiple autonomous nodes is necessary to maintain connectivity and sensor coverage and to combine information for better understanding the dynamics of the environment. Resource conservation requires adaptive clustering in the vicinity of the event. This paper presents methods for dynamic distributed signal processing using an ad hoc mobile network of microsensors to detect, identify, and track targets in noisy environments. They seamlessly integrate data from fixed and mobile platforms and dynamically organize platforms into clusters to process local data along the trajectory of the targets. Local analysis of sensor data is used to determine a set of target attribute values and classify the target. Sensor data from a field test in the Marine base at Twentynine Palms, Calif, was analyzed using the techniques described in this paper. The results were compared to "ground truth" data obtained from GPS receivers on the vehicles.
Big brown bats (Eptesicus fuscus) reveal diverse strategies for sonar target tracking in clutter.
Mao, Beatrice; Aytekin, Murat; Wilkinson, Gerald S; Moss, Cynthia F
2016-09-01
Bats actively adjust the acoustic features of their sonar calls to control echo information specific to a given task and environment. A previous study investigated how bats adapted their echolocation behavior when tracking a moving target in the presence of a stationary distracter at different distances and angular offsets. The use of only one distracter, however, left open the possibility that a bat could reduce the interference of the distracter by turning its head. Here, bats tracked a moving target in the presence of one or two symmetrically placed distracters to investigate adaptive echolocation behavior in a situation where vocalizing off-axis would result in increased interference from distracter echoes. Both bats reduced bandwidth and duration but increased sweep rate in more challenging distracter conditions, and surprisingly, made more head turns in the two-distracter condition compared to one, but only when distracters were placed at large angular offsets. However, for most variables examined, subjects showed distinct strategies to reduce clutter interference, either by (1) changing spectral or temporal features of their calls, or (2) producing large numbers of sonar sound groups and consistent head-turning behavior. The results suggest that individual bats can use different strategies for target tracking in cluttered environments.
Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang
2018-04-01
Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association
Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-01-01
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets’ state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems. PMID:29113085
Robust leader-follower formation tracking control of multiple underactuated surface vessels
NASA Astrophysics Data System (ADS)
Peng, Zhou-hua; Wang, Dan; Lan, Wei-yao; Sun, Gang
2012-09-01
This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation. The formation is achieved by the follower to track a virtual target defined relative to the leader. A robust adaptive target tracking law is proposed by using neural network and backstepping techniques. The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces, nonlinear damping, unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning. Based on Lyapunov analysis, the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the control strategy.
SLATE: scanning laser automatic threat extraction
NASA Astrophysics Data System (ADS)
Clark, David J.; Prickett, Shaun L.; Napier, Ashley A.; Mellor, Matthew P.
2016-10-01
SLATE is an Autonomous Sensor Module (ASM) designed to work with the SAPIENT system providing accurate location tracking and classifications of targets that pass through its field of view. The concept behind the SLATE ASM is to produce a sensor module that provides a complementary view of the world to the camera-based systems that are usually used for wide area surveillance. Cameras provide a hi-fidelity, human understandable view of the world with which tracking and identification algorithms can be used. Unfortunately, positioning and tracking in a 3D environment is difficult to implement robustly, making location-based threat assessment challenging. SLATE uses a Scanning Laser Rangefinder (SLR) that provides precise (<1cm) positions, sizes, shapes and velocities of targets within its field-of-view (FoV). In this paper we will discuss the development of the SLATE ASM including the techniques used to track and classify detections that move through the field of view of the sensor providing the accurate tracking information to the SAPIENT system. SLATE's ability to locate targets precisely allows subtle boundary-crossing judgements, e.g. on which side of a chain-link fence a target is. SLATE's ability to track targets in 3D throughout its FoV enables behavior classification such as running and walking which can provide an indication of intent and help reduce false alarm rates.
Assessing the performance of a motion tracking system based on optical joint transform correlation
NASA Astrophysics Data System (ADS)
Elbouz, M.; Alfalou, A.; Brosseau, C.; Ben Haj Yahia, N.; Alam, M. S.
2015-08-01
We present an optimized system specially designed for the tracking and recognition of moving subjects in a confined environment (such as an elderly remaining at home). In the first step of our study, we use a VanderLugt correlator (VLC) with an adapted pre-processing treatment of the input plane and a postprocessing of the correlation plane via a nonlinear function allowing us to make a robust decision. The second step is based on an optical joint transform correlation (JTC)-based system (NZ-NL-correlation JTC) for achieving improved detection and tracking of moving persons in a confined space. The proposed system has been found to have significantly superior discrimination and robustness capabilities allowing to detect an unknown target in an input scene and to determine the target's trajectory when this target is in motion. This system offers robust tracking performance of a moving target in several scenarios, such as rotational variation of input faces. Test results obtained using various real life video sequences show that the proposed system is particularly suitable for real-time detection and tracking of moving objects.
Real-time tracking of visually attended objects in virtual environments and its application to LOD.
Lee, Sungkil; Kim, Gerard Jounghyun; Choi, Seungmoon
2009-01-01
This paper presents a real-time framework for computationally tracking objects visually attended by the user while navigating in interactive virtual environments. In addition to the conventional bottom-up (stimulus-driven) saliency map, the proposed framework uses top-down (goal-directed) contexts inferred from the user's spatial and temporal behaviors, and identifies the most plausibly attended objects among candidates in the object saliency map. The computational framework was implemented using GPU, exhibiting high computational performance adequate for interactive virtual environments. A user experiment was also conducted to evaluate the prediction accuracy of the tracking framework by comparing objects regarded as visually attended by the framework to actual human gaze collected with an eye tracker. The results indicated that the accuracy was in the level well supported by the theory of human cognition for visually identifying single and multiple attentive targets, especially owing to the addition of top-down contextual information. Finally, we demonstrate how the visual attention tracking framework can be applied to managing the level of details in virtual environments, without any hardware for head or eye tracking.
Radar signature generation for feature-aided tracking research
NASA Astrophysics Data System (ADS)
Piatt, Teri L.; Sherwood, John U.; Musick, Stanton H.
2005-05-01
Accurately associating sensor kinematic reports to known tracks, new tracks, or clutter is one of the greatest obstacles to effective track estimation. Feature-aiding is one technology that is emerging to address this problem, and it is expected that adding target features will aid report association by enhancing track accuracy and lengthening track life. The Sensor's Directorate of the Air Force Research Laboratory is sponsoring a challenge problem called Feature-Aided Tracking of Stop-move Objects (FATSO). The long-range goal of this research is to provide a full suite of public data and software to encourage researchers from government, industry, and academia to participate in radar-based feature-aided tracking research. The FATSO program is currently releasing a vehicle database coupled to a radar signature generator. The completed FATSO system will incorporate this database/generator into a Monte Carlo simulation environment for evaluating multiplatform/multitarget tracking scenarios. The currently released data and software contains the following: eight target models, including a tank, ammo hauler, and self-propelled artillery vehicles; and a radar signature generator capable of producing SAR and HRR signatures of all eight modeled targets in almost any configuration or articulation. In addition, the signature generator creates Z-buffer data, label map data, and radar cross-section prediction and allows the user to add noise to an image while varying sensor-target geometry (roll, pitch, yaw, squint). Future capabilities of this signature generator, such as scene models and EO signatures as well as details of the complete FATSO testbed, are outlined.
NASA Technical Reports Server (NTRS)
Uldomkesmalee, Suraphol; Suddarth, Steven C.
1997-01-01
VIGILANTE is an ultrafast smart sensor testbed for generic Automatic Target Recognition (ATR) applications with a series of capability demonstration focussed on cruise missile defense (CMD). VIGILANTE's sensor/processor architecture is based on next-generation UV/visible/IR sensors and a tera-operations per second sugar-cube processor, as well as supporting airborne vehicle. Excellent results of efficient ATR methodologies that use an eigenvectors/neural network combination and feature-based precision tracking have been demonstrated in the laboratory environment.
NASA Astrophysics Data System (ADS)
Shi, Yi Fang; Park, Seung Hyo; Song, Taek Lyul
2017-12-01
The target tracking using multistatic passive radar in a digital audio/video broadcast (DAB/DVB) network with illuminators of opportunity faces two main challenges: the first challenge is that one has to solve the measurement-to-illuminator association ambiguity in addition to the conventional association ambiguity between the measurements and targets, which introduces a significantly complex three-dimensional (3-D) data association problem among the target-measurement illuminator, this is because all the illuminators transmit the same carrier frequency signals and signals transmitted by different illuminators but reflected via the same target become indistinguishable; the other challenge is that only the bistatic range and range-rate measurements are available while the angle information is unavailable or of very poor quality. In this paper, the authors propose a new target tracking algorithm directly in three-dimensional (3-D) Cartesian coordinates with the capability of track management using the probability of target existence as a track quality measure. The proposed algorithm is termed sequential processing-joint integrated probabilistic data association (SP-JIPDA), which applies the modified sequential processing technique to resolve the additional association ambiguity between measurements and illuminators. The SP-JIPDA algorithm sequentially operates the JIPDA tracker to update each track for each illuminator with all the measurements in the common measurement set at each time. For reasons of fair comparison, the existing modified joint probabilistic data association (MJPDA) algorithm that addresses the 3-D data association problem via "supertargets" using gate grouping and provides tracks directly in 3-D Cartesian coordinates, is enhanced by incorporating the probability of target existence as an effective track quality measure for track management. Both algorithms deal with nonlinear observations using the extended Kalman filtering. A simulation study is performed to verify the superiority of the proposed SP-JIPDA algorithm over the MJIPDA in this multistatic passive radar system.
Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features
NASA Astrophysics Data System (ADS)
Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique
2011-12-01
We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.
Track classification within wireless sensor network
NASA Astrophysics Data System (ADS)
Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic
2017-05-01
In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Reading color barcodes using visual snakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaub, Hanspeter
2004-05-01
Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method,more » the numeric bar codes reveal if the target is right-side-up or up-side-down.« less
NASA Astrophysics Data System (ADS)
Radzicki, Vincent R.; Boutte, David; Taylor, Paul; Lee, Hua
2017-05-01
Radar based detection of human targets behind walls or in dense urban environments is an important technical challenge with many practical applications in security, defense, and disaster recovery. Radar reflections from a human can be orders of magnitude weaker than those from objects encountered in urban settings such as walls, cars, or possibly rubble after a disaster. Furthermore, these objects can act as secondary reflectors and produce multipath returns from a person. To mitigate these issues, processing of radar return data needs to be optimized for recognizing human motion features such as walking, running, or breathing. This paper presents a theoretical analysis on the modulation effects human motion has on the radar waveform and how high levels of multipath can distort these motion effects. From this analysis, an algorithm is designed and optimized for tracking human motion in heavily clutter environments. The tracking results will be used as the fundamental detection/classification tool to discriminate human targets from others by identifying human motion traits such as predictable walking patterns and periodicity in breathing rates. The theoretical formulations will be tested against simulation and measured data collected using a low power, portable see-through-the-wall radar system that could be practically deployed in real-world scenarios. Lastly, the performance of the algorithm is evaluated in a series of experiments where both a single person and multiple people are moving in an indoor, cluttered environment.
Comparison of cap lamp and laser illumination for detecting visual escape cues in smoke
Lutz, T.J.; Sammarco, J.J.; Srednicki, J.R.; Gallagher, S.
2015-01-01
The Illuminating Engineering Society of North America reports that an underground mine is the most difficult environment to illuminate (Rea, 2000). Researchers at the U.S. National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) are conducting ongoing studies designed to explore different lighting technologies for improving mine safety. Underground miners use different visual cues to escape from a smoke-filled environment. Primary and secondary escapeways are marked with reflective ceiling tags of various colors. Miners also look for mine rail tracks. The main objective of this paper is to compare different lighting types and ceiling tag colors to differentiate what works best in a smoke-filled environment. Various cap lamps (LED and incandescent) and lasers (red, blue, green) were compared to see which options resulted in the longest detection distances for red, green and blue reflective markers and a section of mine rail track. All targets advanced toward the human subject inside of a smoke-filled room to simulate the subject walking in a mine environment. Detection distances were recorded and analyzed to find the best cap lamp, laser color and target color in a smoke environment. Results show that cap lamp, laser color and target color do make a difference in detection distances and are perceived differently based on subject age. Cap lamps were superior to lasers in all circumstances of ceiling tag detection, with the exception of the green laser. The incandescent cap lamp worked best in the simulated smoke compared to the LED cap lamps. The green laser was the best color for detecting the tags and track compared to the red and blue lasers. The green tags were the easiest color to detect on the ceiling. On average, the track was easier for the subjects to detect than the ceiling tags. PMID:26236146
Comparison of cap lamp and laser illumination for detecting visual escape cues in smoke.
Lutz, T J; Sammarco, J J; Srednicki, J R; Gallagher, S
The Illuminating Engineering Society of North America reports that an underground mine is the most difficult environment to illuminate (Rea, 2000). Researchers at the U.S. National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) are conducting ongoing studies designed to explore different lighting technologies for improving mine safety. Underground miners use different visual cues to escape from a smoke-filled environment. Primary and secondary escapeways are marked with reflective ceiling tags of various colors. Miners also look for mine rail tracks. The main objective of this paper is to compare different lighting types and ceiling tag colors to differentiate what works best in a smoke-filled environment. Various cap lamps (LED and incandescent) and lasers (red, blue, green) were compared to see which options resulted in the longest detection distances for red, green and blue reflective markers and a section of mine rail track. All targets advanced toward the human subject inside of a smoke-filled room to simulate the subject walking in a mine environment. Detection distances were recorded and analyzed to find the best cap lamp, laser color and target color in a smoke environment. Results show that cap lamp, laser color and target color do make a difference in detection distances and are perceived differently based on subject age. Cap lamps were superior to lasers in all circumstances of ceiling tag detection, with the exception of the green laser. The incandescent cap lamp worked best in the simulated smoke compared to the LED cap lamps. The green laser was the best color for detecting the tags and track compared to the red and blue lasers. The green tags were the easiest color to detect on the ceiling. On average, the track was easier for the subjects to detect than the ceiling tags.
Investigations into the design principles in the chemotactic behavior of Escherichia coli.
Kim, Tae-Hwan; Jung, Sung Hoon; Cho, Kwang-Hyun
2008-01-01
Inspired by the recent studies on the analysis of biased random walk behavior of Escherichia coli[Passino, K.M., 2002. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22 (3), 52-67; Passino, K.M., 2005. Biomimicry for Optimization, Control and Automation. Springer-Verlag, pp. 768-798; Liu, Y., Passino, K.M., 2002. Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J. Optim. Theory Appl. 115 (3), 603-628], we have developed a model describing the motile behavior of E. coli by specifying some simple rules on the chemotaxis. Based on this model, we have analyzed the role of some key parameters involved in the chemotactic behavior to unravel the underlying design principles. By investigating the target tracking capability of E. coli in a maze through computer simulations, we found that E. coli clusters can be controlled as target trackers in a complex micro-scale-environment. In addition, we have explored the dynamical characteristics of this target tracking mechanism through perturbation of parameters under noisy environments. It turns out that the E. coli chemotaxis mechanism might be designed such that it is sensitive enough to efficiently track the target and also robust enough to overcome environmental noises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Liu, Qiang
We consider tracking of a target with elliptical nonlinear constraints on its motion dynamics. The state estimates are generated by sensors and sent over long-haul links to a remote fusion center for fusion. We show that the constraints can be projected onto the known ellipse and hence incorporated into the estimation and fusion process. In particular, two methods based on (i) direct connection to the center, and (ii) shortest distance to the ellipse are discussed. A tracking example is used to illustrate the tracking performance using projection-based methods with various fusers in the lossy long-haul tracking environment.
Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study.
Shtark, Tomer; Gurfil, Pini
2017-03-31
Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control.
Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study
Shtark, Tomer; Gurfil, Pini
2017-01-01
Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control. PMID:28362338
Visual Detection and Tracking System for a Spherical Amphibious Robot
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-01-01
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation. PMID:28420134
Visual Detection and Tracking System for a Spherical Amphibious Robot.
Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun
2017-04-15
With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.
NASA Astrophysics Data System (ADS)
Wu, Hai-ying; Zhang, San-xi; Liu, Biao; Yue, Peng; Weng, Ying-hui
2018-02-01
The photoelectric theodolite is an important scheme to realize the tracking, detection, quantitative measurement and performance evaluation of weapon systems in ordnance test range. With the improvement of stability requirements for target tracking in complex environment, infrared scene simulation with high sense of reality and complex interference has become an indispensable technical way to evaluate the track performance of photoelectric theodolite. And the tail flame is the most important infrared radiation source of the weapon system. The dynamic tail flame with high reality is a key element for the photoelectric theodolite infrared scene simulation and imaging tracking test. In this paper, an infrared simulation method for the full-path tracking of tail flame by photoelectric theodolite is proposed aiming at the faint boundary, irregular, multi-regulated points. In this work, real tail images are employed. Simultaneously, infrared texture conversion technology is used to generate DDS texture for a particle system map. Thus, dynamic real-time tail flame simulation results with high fidelity from the theodolite perspective can be gained in the tracking process.
Detection and Tracking of Moving Targets Behind Cluttered Environments Using Compressive Sensing
NASA Astrophysics Data System (ADS)
Dang, Vinh Quang
Detection and tracking of moving targets (target's motion, vibration, etc.) in cluttered environments have been receiving much attention in numerous applications, such as disaster search-and-rescue, law enforcement, urban warfare, etc. One of the popular techniques is the use of stepped frequency continuous wave radar due to its low cost and complexity. However, the stepped frequency radar suffers from long data acquisition time. This dissertation focuses on detection and tracking of moving targets and vibration rates of stationary targets behind cluttered medium such as wall using stepped frequency radar enhanced by compressive sensing. The application of compressive sensing enables the reconstruction of the target space using fewer random frequencies, which decreases the acquisition time. Hardware-accelerated parallelization on GPU is investigated for the Orthogonal Matching Pursuit reconstruction algorithm. For simulation purpose, two hybrid methods have been developed to calculate the scattered fields from the targets through the wall approaching the antenna system, and to convert the incoming fields into voltage signals at terminals of the receive antenna. The first method is developed based on the plane wave spectrum approach for calculating the scattered fields of targets behind the wall. The method uses Fast Multiple Method (FMM) to calculate scattered fields on a particular source plane, decomposes them into plane wave components, and propagates the plane wave spectrum through the wall by integrating wall transmission coefficients before constructing the fields on a desired observation plane. The second method allows one to calculate the complex output voltage at terminals of a receiving antenna which fully takes into account the antenna effects. This method adopts the concept of complex antenna factor in Electromagnetic Compatibility (EMC) community for its calculation.
An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.
Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran
2017-02-01
In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.
UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.
Chang, Kai; Xia, Yuanqing; Huang, Kaoli
2016-01-01
This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method.
Tracking through laser-induced clutter for air-to-ground directed energy system
NASA Astrophysics Data System (ADS)
Belen'kii, Mikhail; Brinkley, Timothy; Hughes, Kevin; Tannenbaum, Allen
2003-09-01
The agility and speed with which directed energy can be retargeted and delivered to the target makes a laser weapon highly desirable in tactical battlefield environments. A directed energy system can effectively damage and possibly destroy relatively soft targets on the ground. In order to accurately point a high-energy beam at the target, the directed energy system must be able to acquire and track targets of interest in highly cluttered environments, under different weather, smoke, and camouflage conditions and in the presence of turbulence and thermal blooming. To meet these requirements, we proposed a concept of a multi spectral tracker, which integrates three sensors: SAR radar, a passive MWIR optical tracker, and a range-gated laser illuminated tracker. In this paper we evaluated the feasibility of the integrated optical tracker and arrived to the following conclusions: a) the contrast enhancement by mapping the original pixel distribution to the desired one enhances the target identification capability, b) a reduction of the divergence of the illuminating beam reduces rms pointing error of a laser tracker, c) a clutter removal algorithm based on active contours is capable of capturing targets in highly cluttered environments, d) the daytime rms pointing error caused by anisoplanatism of the track point to the aim point is comparable to the diffraction-limited beam spot size, f) the peak intensity shift from the optical axis caused by thermal blooming at 5 km range for the air-to-ground engagement scenario is on the order of 8 μrad, and it is 10 μrad at 10 km range, and e) the thermal blooming reduces the peak average power in a 2 cm bucket at 5 km range by a factor of 8, and it reduces the peak average power in the bucket at 10 km range by a factor of 22.
SKYWARD: the next generation airborne infrared search and track
NASA Astrophysics Data System (ADS)
Fortunato, L.; Colombi, G.; Ondini, A.; Quaranta, C.; Giunti, C.; Sozzi, B.; Balzarotti, G.
2016-05-01
Infrared Search and Track systems are an essential element of the modern and future combat aircrafts. Passive automatic search, detection and tracking functions, are key points for silent operations or jammed tactical scenarios. SKYWARD represents the latest evolution of IRST technology in which high quality electro-optical components, advanced algorithms, efficient hardware and software solutions are harmonically integrated to provide high-end affordable performances. Additionally, the reduction of critical opto-mechanical elements optimises weight and volume and increases the overall reliability. Multiple operative modes dedicated to different situations are available; many options can be selected among multiple or single target tracking, for surveillance or engagement, and imaging, for landing or navigation aid, assuring the maximum system flexibility. The high quality 2D-IR sensor is exploited by multiple parallel processing chains, based on linear and non-linear techniques, to extract the possible targets from background, in different conditions, with false alarm rate control. A widely tested track processor manages a large amount of candidate targets simultaneously and allows discriminating real targets from noise whilst operating with low target to background contrasts. The capability of providing reliable passive range estimation is an additional qualifying element of the system. Particular care has been dedicated to the detector non-uniformities, a possible limiting factor for distant targets detection, as well as to the design of the electro-optics for a harsh airborne environment. The system can be configured for LWIR or MWIR waveband according to the customer operational requirements. An embedded data recorder saves all the necessary images and data for mission debriefing, particularly useful during inflight system integration and tuning.
Self-motion impairs multiple-object tracking.
Thomas, Laura E; Seiffert, Adriane E
2010-10-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.
Earth observations can be used to address human health concerns in many ways: projecting occurrence of disease or disease outbreaks; rapid detection and tracking of events; construction of risk maps; targeting interventions; and enhancing knowledge of human health-environment int...
Tracking the Sensory Environment: An ERP Study of Probability and Context Updating in ASD
ERIC Educational Resources Information Center
Westerfield, Marissa A.; Zinni, Marla; Vo, Khang; Townsend, Jeanne
2015-01-01
We recorded visual event-related brain potentials from 32 adult male participants (16 high-functioning participants diagnosed with autism spectrum disorder (ASD) and 16 control participants, ranging in age from 18 to 53 years) during a three-stimulus oddball paradigm. Target and non-target stimulus probability was varied across three probability…
NASA Astrophysics Data System (ADS)
Ahmed, Mousumi
Designing the control technique for nonlinear dynamic systems is a significant challenge. Approaches to designing a nonlinear controller are studied and an extensive study on backstepping based technique is performed in this research with the purpose of tracking a moving target autonomously. Our main motivation is to explore the controller for cooperative and coordinating unmanned vehicles in a target tracking application. To start with, a general theoretical framework for target tracking is studied and a controller in three dimensional environment for a single UAV is designed. This research is primarily focused on finding a generalized method which can be applied to track almost any reference trajectory. The backstepping technique is employed to derive the controller for a simplified UAV kinematic model. This controller can compute three autopilot modes i.e. velocity, ground heading (or course angle), and flight path angle for tracking the unmanned vehicle. Numerical implementation is performed in MATLAB with the assumption of having perfect and full state information of the target to investigate the accuracy of the proposed controller. This controller is then frozen for the multi-vehicle problem. Distributed or decentralized cooperative control is discussed in the context of multi-agent systems. A consensus based cooperative control is studied; such consensus based control problem can be viewed from the algebraic graph theory concepts. The communication structure between the UAVs is represented by the dynamic graph where UAVs are represented by the nodes and the communication links are represented by the edges. The previously designed controller is augmented to account for the group to obtain consensus based on their communication. A theoretical development of the controller for the cooperative group of UAVs is presented and the simulation results for different communication topologies are shown. This research also investigates the cases where the communication topology switches to a different topology over particular time instants. Lyapunov analysis is performed to show stability in all cases. Another important aspect of this dissertation research is to implement the controller for the case, where perfect or full state information is not available. This necessitates the design of an estimator to estimate the system state. A nonlinear estimator, Extended Kalman Filter (EKF) is first developed for target tracking with a single UAV. The uncertainties involved with the measurement model and dynamics model are considered as zero mean Gaussian noises with some known covariances. The measurements of the full state of the target are not available and only the range, elevation, and azimuth angle are available from an onboard seeker sensor. A separate EKF is designed to estimate the UAV's own state where the state measurement is available through on-board sensors. The controller computes the three control commands based on the estimated states of target and its own states. Estimation based control laws is also implemented for colored noise measurement uncertainties, and the controller performance is shown with the simulation results. The estimation based control approach is then extended for the cooperative target tracking case. The target information is available to the network and a separate estimator is used to estimate target states. All of the UAVs in the network apply the same control law and the only difference is that each UAV updates the commands according to their connection. The simulation is performed for both cases of fixed and time varying communication topology. Monte Carlo simulation is also performed with different sample noises to investigate the performance of the estimator. The proposed technique is shown to be simple and robust to noisy environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Peter J.; Edson, Patrick L.
2013-12-20
This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, wasmore » shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.« less
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Cucinotta, F. A.; Badhwar, G. D.; ONeill, P. M.; Badavi, F. F.
1995-01-01
Recent improvements in the radiation transport code HZETRN/BRYNTRN and galactic cosmic ray environmental model have provided an opportunity to investigate the effects of target fragmentation on estimates of single event upset (SEU) rates for spacecraft memory devices. Since target fragments are mostly of very low energy, an SEU prediction model has been derived in terms of particle energy rather than linear energy transfer (LET) to account for nonlinear relationship between range and energy. Predictions are made for SEU rates observed on two Shuttle flights, each at low and high inclination orbit. Corrections due to track structure effects are made for both high energy ions with track structure larger than device sensitive volume and for low energy ions with dense track where charge recombination is important. Results indicate contributions from target fragments are relatively important at large shield depths (or any thick structure material) and at low inclination orbit. Consequently, a more consistent set of predictions for upset rates observed in these two flights is reached when compared to an earlier analysis with CREME model. It is also observed that the errors produced by assuming linear relationship in range and energy in the earlier analysis have fortuitously canceled out the errors for not considering target fragmentation and track structure effects.
Fidan, Barış; Umay, Ilknur
2015-01-01
Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441
1992-12-01
AD-A265 479 F•DEFENSE MANPOWER DATA CENTER Military Advertising Awareness & Effectiveness Findings from the 1990 Youth Attitude Tracking Study Market...the Marine Corps. Few youth recalled responding to literature or other media messages encouraging a young person to call a toll-free number or mail a...may be an effective media vehicle, especially in a constrained budget environment. The data indicate that recruiters reach intended target audiences
NASA Astrophysics Data System (ADS)
Cho, Hoonkyung; Chun, Joohwan; Song, Sungchan
2016-09-01
The dim moving target tracking from the infrared image sequence in the presence of high clutter and noise has been recently under intensive investigation. The track-before-detect (TBD) algorithm processing the image sequence over a number of frames before decisions on the target track and existence is known to be especially attractive in very low SNR environments (⩽ 3 dB). In this paper, we shortly present a three-dimensional (3-D) TBD with dynamic programming (TBD-DP) algorithm using multiple IR image sensors. Since traditional two-dimensional TBD algorithm cannot track and detect the along the viewing direction, we use 3-D TBD with multiple sensors and also strictly analyze the detection performance (false alarm and detection probabilities) based on Fisher-Tippett-Gnedenko theorem. The 3-D TBD-DP algorithm which does not require a separate image registration step uses the pixel intensity values jointly read off from multiple image frames to compute the merit function required in the DP process. Therefore, we also establish the relationship between the pixel coordinates of image frame and the reference coordinates.
Simultaneous Deployment and Tracking Multi-Robot Strategies with Connectivity Maintenance
Tardós, Javier; Aragues, Rosario; Sagüés, Carlos; Rubio, Carlos
2018-01-01
Multi-robot teams composed of ground and aerial vehicles have gained attention during the last few years. We present a scenario where both types of robots must monitor the same area from different view points. In this paper, we propose two Lloyd-based tracking strategies to allow the ground robots (agents) to follow the aerial ones (targets), keeping the connectivity between the agents. The first strategy establishes density functions on the environment so that the targets acquire more importance than other zones, while the second one iteratively modifies the virtual limits of the working area depending on the positions of the targets. We consider the connectivity maintenance due to the fact that coverage tasks tend to spread the agents as much as possible, which is addressed by restricting their motions so that they keep the links of a minimum spanning tree of the communication graph. We provide a thorough parametric study of the performance of the proposed strategies under several simulated scenarios. In addition, the methods are implemented and tested using realistic robotic simulation environments and real experiments. PMID:29558446
Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature
Li, Zhiyong; Li, Pengfei; Yu, Xiaoping; Hashem, Mervat
2014-01-01
It is a challenge to represent the target appearance model for moving object tracking under complex environment. This study presents a novel method with appearance model described by double templates based on timed motion history image with HSV color histogram feature (tMHI-HSV). The main components include offline template and online template initialization, tMHI-HSV-based candidate patches feature histograms calculation, double templates matching (DTM) for object location, and templates updating. Firstly, we initialize the target object region and calculate its HSV color histogram feature as offline template and online template. Secondly, the tMHI-HSV is used to segment the motion region and calculate these candidate object patches' color histograms to represent their appearance models. Finally, we utilize the DTM method to trace the target and update the offline template and online template real-timely. The experimental results show that the proposed method can efficiently handle the scale variation and pose change of the rigid and nonrigid objects, even in illumination change and occlusion visual environment. PMID:24592185
Lin, Fan; Xiao, Bin
2017-01-01
Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228
Hong, Zhiling; Lin, Fan; Xiao, Bin
2017-01-01
Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.
Game theory-based visual tracking approach focusing on color and texture features.
Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Chen, Chuanhua; Wang, Xin
2017-07-20
It is difficult for a single-feature tracking algorithm to achieve strong robustness under a complex environment. To solve this problem, we proposed a multifeature fusion tracking algorithm that is based on game theory. By focusing on color and texture features as two gamers, this algorithm accomplishes tracking by using a mean shift iterative formula to search for the Nash equilibrium of the game. The contribution of different features is always keeping the state of optical balance, so that the algorithm can fully take advantage of feature fusion. According to the experiment results, this algorithm proves to possess good performance, especially under the condition of scene variation, target occlusion, and similar interference.
Implementation of a sensor guided flight algorithm for target tracking by small UAS
NASA Astrophysics Data System (ADS)
Collins, Gaemus E.; Stankevitz, Chris; Liese, Jeffrey
2011-06-01
Small xed-wing UAS (SUAS) such as Raven and Unicorn have limited power, speed, and maneuverability. Their missions can be dramatically hindered by environmental conditions (wind, terrain), obstructions (buildings, trees) blocking clear line of sight to a target, and/or sensor hardware limitations (xed stare, limited gimbal motion, lack of zoom). Toyon's Sensor Guided Flight (SGF) algorithm was designed to account for SUAS hardware shortcomings and enable long-term tracking of maneuvering targets by maintaining persistent eyes-on-target. SGF was successfully tested in simulation with high-delity UAS, sensor, and environment models, but real- world ight testing with 60 Unicorn UAS revealed surprising second order challenges that were not highlighted by the simulations. This paper describes the SGF algorithm, our rst round simulation results, our second order discoveries from ight testing, and subsequent improvements that were made to the algorithm.
Brockhoff, Alisa; Huff, Markus
2016-10-01
Multiple object tracking (MOT) plays a fundamental role in processing and interpreting dynamic environments. Regarding the type of information utilized by the observer, recent studies reported evidence for the use of object features in an automatic, low- level manner. By introducing a novel paradigm that allowed us to combine tracking with a noninterfering top-down task, we tested whether a voluntary component can regulate the deployment of attention to task-relevant features in a selective manner. In four experiments we found conclusive evidence for a task-driven selection mechanism that guides attention during tracking: The observers were able to ignore or prioritize distinct objects. They marked the distinct (cued) object (target/distractor) more or less often than other objects of the same type (targets /distractors)-but only when they had received an identification task that required them to actively process object features (cues) during tracking. These effects are discussed with regard to existing theoretical approaches to attentive tracking, gaze-cue usability as well as attentional readiness, a term that originally stems from research on attention capture and visual search. Our findings indicate that existing theories of MOT need to be adjusted to allow for flexible top-down, voluntary processing during tracking.
OpenCV and TYZX : video surveillance for tracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jim; Spencer, Andrew; Chu, Eric
2008-08-01
As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processingmore » solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition.« less
Airborne target tracking algorithm against oppressive decoys in infrared imagery
NASA Astrophysics Data System (ADS)
Sun, Xiechang; Zhang, Tianxu
2009-10-01
This paper presents an approach for tracking airborne target against oppressive infrared decoys. Oppressive decoy lures infrared guided missile by its high infrared radiation. Traditional tracking algorithms have degraded stability even come to tracking failure when airborne target continuously throw out many decoys. The proposed approach first determines an adaptive tracking window. The center of the tracking window is set at a predicted target position which is computed based on uniform motion model. Different strategies are applied for determination of tracking window size according to target state. The image within tracking window is segmented and multi features of candidate targets are extracted. The most similar candidate target is associated to the tracking target by using a decision function, which calculates a weighted sum of normalized feature differences between two comparable targets. Integrated intensity ratio of association target and tracking target, and target centroid are examined to estimate target state in the presence of decoys. The tracking ability and robustness of proposed approach has been validated by processing available real-world and simulated infrared image sequences containing airborne targets and oppressive decoys.
2014-07-25
composition of simple temporal structures to a speaker diarization task with the goal of segmenting conference audio in the presence of an unknown number of...application domains including neuroimaging, diverse document selection, speaker diarization , stock modeling, and target tracking. We detail each of...recall performance than competing methods in a task of discovering articles preferred by the user • a gold-standard speaker diarization method, as
Integrated long-range UAV/UGV collaborative target tracking
NASA Astrophysics Data System (ADS)
Moseley, Mark B.; Grocholsky, Benjamin P.; Cheung, Carol; Singh, Sanjiv
2009-05-01
Coordinated operations between unmanned air and ground assets allow leveraging of multi-domain sensing and increase opportunities for improving line of sight communications. While numerous military missions would benefit from coordinated UAV-UGV operations, foundational capabilities that integrate stove-piped tactical systems and share available sensor data are required and not yet available. iRobot, AeroVironment, and Carnegie Mellon University are working together, partially SBIR-funded through ARDEC's small unit network lethality initiative, to develop collaborative capabilities for surveillance, targeting, and improved communications based on PackBot UGV and Raven UAV platforms. We integrate newly available technologies into computational, vision, and communications payloads and develop sensing algorithms to support vision-based target tracking. We first simulated and then applied onto real tactical platforms an implementation of Decentralized Data Fusion, a novel technique for fusing track estimates from PackBot and Raven platforms for a moving target in an open environment. In addition, system integration with AeroVironment's Digital Data Link onto both air and ground platforms has extended our capabilities in communications range to operate the PackBot as well as in increased video and data throughput. The system is brought together through a unified Operator Control Unit (OCU) for the PackBot and Raven that provides simultaneous waypoint navigation and traditional teleoperation. We also present several recent capability accomplishments toward PackBot-Raven coordinated operations, including single OCU display design and operation, early target track results, and Digital Data Link integration efforts, as well as our near-term capability goals.
Adaptive waveform optimization design for target detection in cognitive radar
NASA Astrophysics Data System (ADS)
Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao
2017-01-01
The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.
Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.
The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signaturesmore » in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.« less
Harris, Jody; Frongillo, Edward A; Nguyen, Phuong H; Kim, Sunny S; Menon, Purnima
2017-06-13
There is limited literature examining shifts in policy environments for nutrition and infant and young child feeding (IYCF) over time, and on the potential contribution of targeted advocacy to improved policy environments in low- and middle-income countries. This study tracked changes in the policy environment over a four-year period in three countries, and examined the role of targeted nutrition and IYCF advocacy strategies by a global initiative. Qualitative methods, including key informant interviews, social network mapping, document and literature review, and event tracking, were used to gather data on nutrition and IYCF policies and programs, actor networks, and perceptions and salience of nutrition as an issue in 2010 and 2014 in Bangladesh, Ethiopia, and Vietnam. Theoretical frameworks from the policy sciences were used to analyze policy change over time, and drivers of change, across countries. The written policy environment improved to differing extents in each country. By 2014, the discourse in all three countries mirrored international priorities of stunting reduction and exclusive breastfeeding. Yet competing nutrition priorities such as acute malnutrition, food insecurity, and nutrition transitions remained in each context. Key actor groups in each country were government, civil society, development partners and the private sector. Infant formula companies, in particular, emerged as key players against enforcement of IYCF legislation. The role of a targeted IYCF advocacy and policy support initiative was well-recognized in supporting multiple facets of the policy environment in each country, ranging from alliances to legislation and implementation support. Despite progress, however, government commitment to funding, implementation, and enforcement is still emerging in each country, thus challenging the potential impact of new and improved policies. Targeted policy advocacy can catalyze change in national nutrition and IYCF policy environments, especially actor commitment, policy guidance, and legislation. Implementation constraints - financing, capacity and commitment of systems, and competing priorities and actors - are essential to address to sustain further progress. The lack of pressing political urgency for nutrition and IYCF, and the uncertain role of international networks in national policy spaces, has implications for the potential for change.
A helmet mounted display to adapt the telerobotic environment to human vision
NASA Technical Reports Server (NTRS)
Tharp, Gregory; Liu, Andrew; Yamashita, Hitomi; Stark, Lawrence
1990-01-01
A Helmet Mounted Display system has been developed. It provides the capability to display stereo images with the viewpoint tied to subjects' head orientation. The type of display might be useful in a telerobotic environment provided the correct operating parameters are known. The effects of update frequency were tested using a 3D tracking task. The effects of blur were tested using both tracking and pick-and-place tasks. For both, researchers found that operator performance can be degraded if the correct parameters are not used. Researchers are also using the display to explore the use of head movements as part of gaze as subjects search their visual field for target objects.
Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W
2010-11-15
In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy. Copyright © 2010 Elsevier Inc. All rights reserved.
Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor.
Huang, Lvwen; Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing
2017-08-23
Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields.
Measurement level AIS/radar fusion for maritime surveillance
NASA Astrophysics Data System (ADS)
Habtemariam, Biruk K.; Tharmarasa, R.; Meger, Eric; Kirubarajan, T.
2012-05-01
Using the Automatic Identification System (AIS) ships identify themselves intermittently by broadcasting their location information. However, traditionally radars are used as the primary source of surveillance and AIS is considered as a supplement with a little interaction between these data sets. The data from AIS is much more accurate than radar data with practically no false alarms. But unlike the radar data, the AIS measurements arrive unpredictably, depending on the type and behavior of a ship. The AIS data includes target IDs that can be associated to initialized tracks. In multitarget maritime surveillance environment, for some targets the revisit interval form the AIS could be very large. In addition, the revisit intervals for various targets can be different. In this paper, we proposed a joint probabilistic data association based tracking algorithm that addresses the aforementioned issues to fuse the radar measurements with AIS data. Multiple AIS IDs are assigned to a track, with probabilities updated by both AIS and radar measurements to resolve the ambiguity in the AIS ID source. Experimental results based on simulated data demonstrate the performance the proposed technique.
Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor
Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing
2017-01-01
Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields. PMID:28832520
Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.
2012-01-01
We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068
Foliage penetration by using 4-D point cloud data
NASA Astrophysics Data System (ADS)
Méndez Rodríguez, Javier; Sánchez-Reyes, Pedro J.; Cruz-Rivera, Sol M.
2012-06-01
Real-time awareness and rapid target detection are critical for the success of military missions. New technologies capable of detecting targets concealed in forest areas are needed in order to track and identify possible threats. Currently, LAser Detection And Ranging (LADAR) systems are capable of detecting obscured targets; however, tracking capabilities are severely limited. Now, a new LADAR-derived technology is under development to generate 4-D datasets (3-D video in a point cloud format). As such, there is a new need for algorithms that are able to process data in real time. We propose an algorithm capable of removing vegetation and other objects that may obfuscate concealed targets in a real 3-D environment. The algorithm is based on wavelets and can be used as a pre-processing step in a target recognition algorithm. Applications of the algorithm in a real-time 3-D system could help make pilots aware of high risk hidden targets such as tanks and weapons, among others. We will be using a 4-D simulated point cloud data to demonstrate the capabilities of our algorithm.
Cooperative Robots to Observe Moving Targets: Review.
Khan, Asif; Rinner, Bernhard; Cavallaro, Andrea
2018-01-01
The deployment of multiple robots for achieving a common goal helps to improve the performance, efficiency, and/or robustness in a variety of tasks. In particular, the observation of moving targets is an important multirobot application that still exhibits numerous open challenges, including the effective coordination of the robots. This paper reviews control techniques for cooperative mobile robots monitoring multiple targets. The simultaneous movement of robots and targets makes this problem particularly interesting, and our review systematically addresses this cooperative multirobot problem for the first time. We classify and critically discuss the control techniques: cooperative multirobot observation of multiple moving targets, cooperative search, acquisition, and track, cooperative tracking, and multirobot pursuit evasion. We also identify the five major elements that characterize this problem, namely, the coordination method, the environment, the target, the robot and its sensor(s). These elements are used to systematically analyze the control techniques. The majority of the studied work is based on simulation and laboratory studies, which may not accurately reflect real-world operational conditions. Importantly, while our systematic analysis is focused on multitarget observation, our proposed classification is useful also for related multirobot applications.
Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju
2014-03-21
A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated.
Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery
Fuerst, Bernhard; Tateno, Keisuke; Johnson, Alex; Fotouhi, Javad; Osgood, Greg; Tombari, Federico; Navab, Nassir
2017-01-01
Orthopaedic surgeons are still following the decades old workflow of using dozens of two-dimensional fluoroscopic images to drill through complex 3D structures, e.g. pelvis. This Letter presents a mixed reality support system, which incorporates multi-modal data fusion and model-based surgical tool tracking for creating a mixed reality environment supporting screw placement in orthopaedic surgery. A red–green–blue–depth camera is rigidly attached to a mobile C-arm and is calibrated to the cone-beam computed tomography (CBCT) imaging space via iterative closest point algorithm. This allows real-time automatic fusion of reconstructed surface and/or 3D point clouds and synthetic fluoroscopic images obtained through CBCT imaging. An adapted 3D model-based tracking algorithm with automatic tool segmentation allows for tracking of the surgical tools occluded by hand. This proposed interactive 3D mixed reality environment provides an intuitive understanding of the surgical site and supports surgeons in quickly localising the entry point and orienting the surgical tool during screw placement. The authors validate the augmentation by measuring target registration error and also evaluate the tracking accuracy in the presence of partial occlusion. PMID:29184659
Guo, Yang-Yang; He, Dong-Jian; Liu, Cong
2018-06-25
Insect behaviour is an important research topic in plant protection. To study insect behaviour accurately, it is necessary to observe and record their flight trajectory quantitatively and precisely in three dimensions (3D). The goal of this research was to analyse frames extracted from videos using Kernelized Correlation Filters (KCF) and Background Subtraction (BS) (KCF-BS) to plot the 3D trajectory of cabbage butterfly (P. rapae). Considering the experimental environment with a wind tunnel, a quadrature binocular vision insect video capture system was designed and applied in this study. The KCF-BS algorithm was used to track the butterfly in video frames and obtain coordinates of the target centroid in two videos. Finally the 3D trajectory was calculated according to the matching relationship in the corresponding frames of two angles in the video. To verify the validity of the KCF-BS algorithm, Compressive Tracking (CT) and Spatio-Temporal Context Learning (STC) algorithms were performed. The results revealed that the KCF-BS tracking algorithm performed more favourably than CT and STC in terms of accuracy and robustness.
δ-Generalized Labeled Multi-Bernoulli Filter Using Amplitude Information of Neighboring Cells
Liu, Chao; Lei, Peng; Qi, Yaolong
2018-01-01
The amplitude information (AI) of echoed signals plays an important role in radar target detection and tracking. A lot of research shows that the introduction of AI enables the tracking algorithm to distinguish targets from clutter better and then improves the performance of data association. The current AI-aided tracking algorithms only consider the signal amplitude in the range-azimuth cell where measurement exists. However, since radar echoes always contain backscattered signals from multiple cells, the useful information of neighboring cells would be lost if directly applying those existing methods. In order to solve this issue, a new δ-generalized labeled multi-Bernoulli (δ-GLMB) filter is proposed. It exploits the AI of radar echoes from neighboring cells to construct a united amplitude likelihood ratio, and then plugs it into the update process and the measurement-track assignment cost matrix of the δ-GLMB filter. Simulation results show that the proposed approach has better performance in target’s state and number estimation than that of the δ-GLMB only using single-cell AI in low signal-to-clutter-ratio (SCR) environment. PMID:29642595
Target tracking system based on preliminary and precise two-stage compound cameras
NASA Astrophysics Data System (ADS)
Shen, Yiyan; Hu, Ruolan; She, Jun; Luo, Yiming; Zhou, Jie
2018-02-01
Early detection of goals and high-precision of target tracking is two important performance indicators which need to be balanced in actual target search tracking system. This paper proposed a target tracking system with preliminary and precise two - stage compound. This system using a large field of view to achieve the target search. After the target was searched and confirmed, switch into a small field of view for two field of view target tracking. In this system, an appropriate filed switching strategy is the key to achieve tracking. At the same time, two groups PID parameters are add into the system to reduce tracking error. This combination way with preliminary and precise two-stage compound can extend the scope of the target and improve the target tracking accuracy and this method has practical value.
A difference tracking algorithm based on discrete sine transform
NASA Astrophysics Data System (ADS)
Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun
2018-04-01
Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.
Towards large scale multi-target tracking
NASA Astrophysics Data System (ADS)
Vo, Ba-Ngu; Vo, Ba-Tuong; Reuter, Stephan; Lam, Quang; Dietmayer, Klaus
2014-06-01
Multi-target tracking is intrinsically an NP-hard problem and the complexity of multi-target tracking solutions usually do not scale gracefully with problem size. Multi-target tracking for on-line applications involving a large number of targets is extremely challenging. This article demonstrates the capability of the random finite set approach to provide large scale multi-target tracking algorithms. In particular it is shown that an approximate filter known as the labeled multi-Bernoulli filter can simultaneously track one thousand five hundred targets in clutter on a standard laptop computer.
Nikolic, Dejan; Stojkovic, Nikola; Lekic, Nikola
2018-04-09
To obtain the complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) which lies over the horizon (OTH) requires the integration of data obtained from various sensors. These sensors include: high frequency surface-wave-radar (HFSWR), satellite automatic identification system (SAIS) and land automatic identification system (LAIS). The algorithm proposed in this paper utilizes radar tracks obtained from the network of HFSWRs, which are already processed by a multi-target tracking algorithm and associates SAIS and LAIS data to the corresponding radar tracks, thus forming an integrated data pair. During the integration process, all HFSWR targets in the vicinity of AIS data are evaluated and the one which has the highest matching factor is used for data association. On the other hand, if there is multiple AIS data in the vicinity of a single HFSWR track, the algorithm still makes only one data pair which consists of AIS and HFSWR data with the highest mutual matching factor. During the design and testing, special attention is given to the latency of AIS data, which could be very high in the EEZs of developing countries. The algorithm is designed, implemented and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of HFSWRs consisting of two HFSWRs, several coastal sites with LAIS receivers and SAIS data provided by provider of SAIS data.
A unified dynamic neural field model of goal directed eye movements
NASA Astrophysics Data System (ADS)
Quinton, J. C.; Goffart, L.
2018-01-01
Primates heavily rely on their visual system, which exploits signals of graded precision based on the eccentricity of the target in the visual field. The interactions with the environment involve actively selecting and focusing on visual targets or regions of interest, instead of contemplating an omnidirectional visual flow. Eye-movements specifically allow foveating targets and track their motion. Once a target is brought within the central visual field, eye-movements are usually classified into catch-up saccades (jumping from one orientation or fixation to another) and smooth pursuit (continuously tracking a target with low velocity). Building on existing dynamic neural field equations, we introduce a novel model that incorporates internal projections to better estimate the current target location (associated to a peak of activity). Such estimate is then used to trigger an eye movement, leading to qualitatively different behaviours depending on the dynamics of the whole oculomotor system: (1) fixational eye-movements due to small variations in the weights of projections when the target is stationary, (2) interceptive and catch-up saccades when peaks build and relax on the neural field, (3) smooth pursuit when the peak stabilises near the centre of the field, the system reaching a fixed point attractor. Learning is nevertheless required for tracking a rapidly moving target, and the proposed model thus replicates recent results in the monkey, in which repeated exercise permits the maintenance of the target within in the central visual field at its current (here-and-now) location, despite the delays involved in transmitting retinal signals to the oculomotor neurons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shchory, Tal; Schifter, Dan; Lichtman, Rinat
Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less
NASA Astrophysics Data System (ADS)
Schoonmaker, Jon; Reed, Scott; Podobna, Yuliya; Vazquez, Jose; Boucher, Cynthia
2010-04-01
Due to increased security concerns, the commitment to monitor and maintain security in the maritime environment is increasingly a priority. A country's coast is the most vulnerable area for the incursion of illegal immigrants, terrorists and contraband. This work illustrates the ability of a low-cost, light-weight, multi-spectral, multi-channel imaging system to handle the environment and see under difficult marine conditions. The system and its implemented detecting and tracking technologies should be organic to the maritime homeland security community for search and rescue, fisheries, defense, and law enforcement. It is tailored for airborne and ship based platforms to detect, track and monitor suspected objects (such as semi-submerged targets like marine mammals, vessels in distress, and drug smugglers). In this system, automated detection and tracking technology is used to detect, classify and localize potential threats or objects of interest within the imagery provided by the multi-spectral system. These algorithms process the sensor data in real time, thereby providing immediate feedback when features of interest have been detected. A supervised detection system based on Haar features and Cascade Classifiers is presented and results are provided on real data. The system is shown to be extendable and reusable for a variety of different applications.
Frequency Diverse Tracking/Guidance Millimeter Radar Adapted to Target Acquisition,
1980-06-01
resolution offered by electro- optical and infrared systems and the adverse environment (fog, battle- field smokes) penetrability which is characteristic of...Reflectors (&1 > 2). 63 ALEXANDER whereAis the transmitted wavelength. It shall also be assumed for this analysis that 2*a4 ’ ( optical region), and that the...and J. L. Brown, "A Preliminary Assessment of Target Classification using Noncoherent Radar Waveforms," US Army Missile Command, Technical Report T-79
Moving target detection in flash mode against stroboscopic mode by active range-gated laser imaging
NASA Astrophysics Data System (ADS)
Zhang, Xuanyu; Wang, Xinwei; Sun, Liang; Fan, Songtao; Lei, Pingshun; Zhou, Yan; Liu, Yuliang
2018-01-01
Moving target detection is important for the application of target tracking and remote surveillance in active range-gated laser imaging. This technique has two operation modes based on the difference of the number of pulses per frame: stroboscopic mode with the accumulation of multiple laser pulses per frame and flash mode with a single shot of laser pulse per frame. In this paper, we have established a range-gated laser imaging system. In the system, two types of lasers with different frequency were chosen for the two modes. Electric fan and horizontal sliding track were selected as the moving targets to compare the moving blurring between two modes. Consequently, the system working in flash mode shows more excellent performance in motion blurring against stroboscopic mode. Furthermore, based on experiments and theoretical analysis, we presented the higher signal-to-noise ratio of image acquired by stroboscopic mode than flash mode in indoor and underwater environment.
Reliable motion detection of small targets in video with low signal-to-clutter ratios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, S.A.; Naylor, R.B.
1995-07-01
Studies show that vigilance decreases rapidly after several minutes when human operators are required to search live video for infrequent intrusion detections. Therefore, there is a need for systems which can automatically detect targets in live video and reserve the operator`s attention for assessment only. Thus far, automated systems have not simultaneously provided adequate detection sensitivity, false alarm suppression, and ease of setup when used in external, unconstrained environments. This unsatisfactory performance can be exacerbated by poor video imagery with low contrast, high noise, dynamic clutter, image misregistration, and/or the presence of small, slow, or erratically moving targets. This papermore » describes a highly adaptive video motion detection and tracking algorithm which has been developed as part of Sandia`s Advanced Exterior Sensor (AES) program. The AES is a wide-area detection and assessment system for use in unconstrained exterior security applications. The AES detection and tracking algorithm provides good performance under stressing data and environmental conditions. Features of the algorithm include: reliable detection with negligible false alarm rate of variable velocity targets having low signal-to-clutter ratios; reliable tracking of targets that exhibit motion that is non-inertial, i.e., varies in direction and velocity; automatic adaptation to both infrared and visible imagery with variable quality; and suppression of false alarms caused by sensor flaws and/or cutouts.« less
Tether deployment monitoring system, phase 2
NASA Technical Reports Server (NTRS)
1989-01-01
An operational Tether Deployment Monitoring System (TEDEMS) was constructed that would show system functionality in a terrestrial environment. The principle function of the TEDEMS system is the launching and attachment of reflective targets onto the tether during its deployment. These targets would be tracked with a radar antenna that was pointed towards the targets by a positioning system. A spring powered launcher for the targets was designed and fabricated. An instrumentation platform and launcher were also developed. These modules are relatively heavy and will influence tether deployment scenarios, unless they are released with a velocity and trajectory closely matching that of the tether. Owing to the tracking range limitations encountered during field trails of the Radar system, final TEDEMS system integration was not completed. The major module not finished was the system control computer. The lack of this device prevented any subsystem testing or field trials to be conducted. Other items only partially complete were the instrumentation platform launcher and modules and the radar target launcher. The work completed and the tests performed suggest that the proposed system continues to be a feasible approach to tether monitoring, although additional effort is still necessary to increase the range at which modules can be detected. The equipment completed and tested, to the extent stated, is available to NASA for use on any future program that requires tether tracking capability.
Linte, Cristian A; White, James; Eagleson, Roy; Guiraudon, Gérard M; Peters, Terry M
2010-01-01
Virtual and augmented reality environments have been adopted in medicine as a means to enhance the clinician's view of the anatomy and facilitate the performance of minimally invasive procedures. Their value is truly appreciated during interventions where the surgeon cannot directly visualize the targets to be treated, such as during cardiac procedures performed on the beating heart. These environments must accurately represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical tracking, and visualization technology in a common framework centered around the patient. This review begins with an overview of minimally invasive cardiac interventions, describes the architecture of a typical surgical guidance platform including imaging, tracking, registration and visualization, highlights both clinical and engineering accuracy limitations in cardiac image guidance, and discusses the translation of the work from the laboratory into the operating room together with typically encountered challenges.
Holcombe, Alex O; Chen, Wei-Ying
2013-01-09
Overall performance when tracking moving targets is known to be poorer for larger numbers of targets, but the specific effect on tracking's temporal resolution has never been investigated. We document a broad range of display parameters for which visual tracking is limited by temporal frequency (the interval between when a target is at each location and a distracter moves in and replaces it) rather than by object speed. We tested tracking of one, two, and three moving targets while the eyes remained fixed. Variation of the number of distracters and their speed revealed both speed limits and temporal frequency limits on tracking. The temporal frequency limit fell from 7 Hz with one target to 4 Hz with two targets and 2.6 Hz with three targets. The large size of this performance decrease implies that in the two-target condition participants would have done better by tracking only one of the two targets and ignoring the other. These effects are predicted by serial models involving a single tracking focus that must switch among the targets, sampling the position of only one target at a time. If parallel processing theories are to explain why dividing the tracking resource reduces temporal resolution so markedly, supplemental assumptions will be required.
Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing
2013-01-01
The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.
Tracking a convoy of multiple targets using acoustic sensor data
NASA Astrophysics Data System (ADS)
Damarla, T. R.
2003-08-01
In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.
Robust and Rapid Air-Borne Odor Tracking without Casting1,2,3
Bhattacharyya, Urvashi
2015-01-01
Abstract Casting behavior (zigzagging across an odor stream) is common in air/liquid-borne odor tracking in open fields; however, terrestrial odor localization often involves path selection in a familiar environment. To study this, we trained rats to run toward an odor source in a multi-choice olfactory arena with near-laminar airflow. We find that rather than casting, rats run directly toward an odor port, and if this is incorrect, they serially sample other sources. This behavior is consistent and accurate in the presence of perturbations, such as novel odors, background odor, unilateral nostril stitching, and turbulence. We developed a model that predicts that this run-and-scan tracking of air-borne odors is faster than casting, provided there are a small number of targets at known locations. Thus, the combination of best-guess target selection with fallback serial sampling provides a rapid and robust strategy for finding odor sources in familiar surroundings. PMID:26665165
Ye, Tao; Zhou, Fuqiang
2015-04-10
When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.
Research on target tracking algorithm based on spatio-temporal context
NASA Astrophysics Data System (ADS)
Li, Baiping; Xu, Sanmei; Kang, Hongjuan
2017-07-01
In this paper, a novel target tracking algorithm based on spatio-temporal context is proposed. During the tracking process, the camera shaking or occlusion may lead to the failure of tracking. The proposed algorithm can solve this problem effectively. The method use the spatio-temporal context algorithm as the main research object. We get the first frame's target region via mouse. Then the spatio-temporal context algorithm is used to get the tracking targets of the sequence of frames. During this process a similarity measure function based on perceptual hash algorithm is used to judge the tracking results. If tracking failed, reset the initial value of Mean Shift algorithm for the subsequent target tracking. Experiment results show that the proposed algorithm can achieve real-time and stable tracking when camera shaking or target occlusion.
The PMHT: solutions for some of its problems
NASA Astrophysics Data System (ADS)
Wieneke, Monika; Koch, Wolfgang
2007-09-01
Tracking multiple targets in a cluttered environment is a challenging task. Probabilistic Multiple Hypothesis Tracking (PMHT) is an efficient approach for dealing with it. Essentially PMHT is based on the method of Expectation-Maximization for handling with association conflicts. Linearity in the number of targets and measurements is the main motivation for a further development and extension of this methodology. Unfortunately, compared with the Probabilistic Data Association Filter (PDAF), PMHT has not yet shown its superiority in terms of track-lost statistics. Furthermore, the problem of track extraction and deletion is apparently not yet satisfactorily solved within this framework. Four properties of PMHT are responsible for its problems in track maintenance: Non-Adaptivity, Hospitality, Narcissism and Local Maxima. 1, 2 In this work we present a solution for each of them and derive an improved PMHT by integrating the solutions into the PMHT formalism. The new PMHT is evaluated by Monte-Carlo simulations. A sequential Likelihood-Ratio (LR) test for track extraction has been developed and already integrated into the framework of traditional Bayesian Multiple Hypothesis Tracking. 3 As a multi-scan approach, also the PMHT methodology has the potential for track extraction. In this paper an analogous integration of a sequential LR test into the PMHT framework is proposed. We present an LR formula for track extraction and deletion using the PMHT update formulae. As PMHT provides all required ingredients for a sequential LR calculation, the LR is thus a by-product of the PMHT iteration process. Therefore the resulting update formula for the sequential LR test affords the development of Track-Before-Detect algorithms for PMHT. The approach is illustrated by a simple example.
NASA Astrophysics Data System (ADS)
Li, Miao; Lin, Zaiping; Long, Yunli; An, Wei; Zhou, Yiyu
2016-05-01
The high variability of target size makes small target detection in Infrared Search and Track (IRST) a challenging task. A joint detection and tracking method based on block-wise sparse decomposition is proposed to address this problem. For detection, the infrared image is divided into overlapped blocks, and each block is weighted on the local image complexity and target existence probabilities. Target-background decomposition is solved by block-wise inexact augmented Lagrange multipliers. For tracking, label multi-Bernoulli (LMB) tracker tracks multiple targets taking the result of single-frame detection as input, and provides corresponding target existence probabilities for detection. Unlike fixed-size methods, the proposed method can accommodate size-varying targets, due to no special assumption for the size and shape of small targets. Because of exact decomposition, classical target measurements are extended and additional direction information is provided to improve tracking performance. The experimental results show that the proposed method can effectively suppress background clutters, detect and track size-varying targets in infrared images.
Research on infrared small-target tracking technology under complex background
NASA Astrophysics Data System (ADS)
Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao
2012-10-01
In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.
Infrared small target tracking based on SOPC
NASA Astrophysics Data System (ADS)
Hu, Taotao; Fan, Xiang; Zhang, Yu-Jin; Cheng, Zheng-dong; Zhu, Bin
2011-01-01
The paper presents a low cost FPGA based solution for a real-time infrared small target tracking system. A specialized architecture is presented based on a soft RISC processor capable of running kernel based mean shift tracking algorithm. Mean shift tracking algorithm is realized in NIOS II soft-core with SOPC (System on a Programmable Chip) technology. Though mean shift algorithm is widely used for target tracking, the original mean shift algorithm can not be directly used for infrared small target tracking. As infrared small target only has intensity information, so an improved mean shift algorithm is presented in this paper. How to describe target will determine whether target can be tracked by mean shift algorithm. Because color target can be tracked well by mean shift algorithm, imitating color image expression, spatial component and temporal component are advanced to describe target, which forms pseudo-color image. In order to improve the processing speed parallel technology and pipeline technology are taken. Two RAM are taken to stored images separately by ping-pong technology. A FLASH is used to store mass temp data. The experimental results show that infrared small target is tracked stably in complicated background.
Centroid tracker and aimpoint selection
NASA Astrophysics Data System (ADS)
Venkateswarlu, Ronda; Sujata, K. V.; Venkateswara Rao, B.
1992-11-01
Autonomous fire and forget weapons have gained importance to achieve accurate first pass kill by hitting the target at an appropriate aim point. Centroid of the image presented by a target in the field of view (FOV) of a sensor is generally accepted as the aimpoint for these weapons. Centroid trackers are applicable only when the target image is of significant size in the FOV of the sensor but does not overflow the FOV. But as the range between the sensor and the target decreases the image of the target will grow and finally overflow the FOV at close ranges and the centroid point on the target will keep on changing which is not desirable. And also centroid need not be the most desired/vulnerable point on the target. For hardened targets like tanks, proper aimpoint selection and guidance up to almost zero range is essential to achieve maximum kill probability. This paper presents a centroid tracker realization. As centroid offers a stable tracking point, it can be used as a reference to select the proper aimpoint. The centroid and the desired aimpoint are simultaneously tracked to avoid jamming by flares and also to take care of the problems arising due to image overflow. Thresholding of gray level image to binary image is a crucial step in centroid tracker. Different thresholding algorithms are discussed and a suitable algorithm is chosen. The real-time hardware implementation of centroid tracker with a suitable thresholding technique is presented including the interfacing to a multimode tracker for autonomous target tracking and aimpoint selection. The hardware uses very high speed arithmetic and programmable logic devices to meet the speed requirement and a microprocessor based subsystem for the system control. The tracker has been evaluated in a field environment.
Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju
2014-01-01
A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated. PMID:24662407
Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor
NASA Astrophysics Data System (ADS)
Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony
2015-03-01
Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.
Tracking native and applied populations of Cryptococcus flavescens in the environment
USDA-ARS?s Scientific Manuscript database
Cryptococcus flavescens strain OH182.9_3C (3C) exhibits biological control efficacy against Fusarium Head Blight, a globally important disease of wheat. In this study, a quantitative PCR (qPCR) assay of SYBR® Green chemistry targeting a Heat Shock Protein 70 kDa gene was developed and applied to mon...
Space moving target detection and tracking method in complex background
NASA Astrophysics Data System (ADS)
Lv, Ping-Yue; Sun, Sheng-Li; Lin, Chang-Qing; Liu, Gao-Rui
2018-06-01
The background of the space-borne detectors in real space-based environment is extremely complex and the signal-to-clutter ratio is very low (SCR ≈ 1), which increases the difficulty for detecting space moving targets. In order to solve this problem, an algorithm combining background suppression processing based on two-dimensional least mean square filter (TDLMS) and target enhancement based on neighborhood gray-scale difference (GSD) is proposed in this paper. The latter can filter out most of the residual background clutter processed by the former such as cloud edge. Through this procedure, both global and local SCR have obtained substantial improvement, indicating that the target has been greatly enhanced. After removing the detector's inherent clutter region through connected domain processing, the image only contains the target point and the isolated noise, in which the isolated noise could be filtered out effectively through multi-frame association. The proposed algorithm in this paper has been compared with some state-of-the-art algorithms for moving target detection and tracking tasks. The experimental results show that the performance of this algorithm is the best in terms of SCR gain, background suppression factor (BSF) and detection results.
The role of "rescue saccades" in tracking objects through occlusions.
Zelinsky, Gregory J; Todor, Andrei
2010-12-29
We hypothesize that our ability to track objects through occlusions is mediated by timely assistance from gaze in the form of "rescue saccades"-eye movements to tracked objects that are in danger of being lost due to impending occlusion. Observers tracked 2-4 target sharks (out of 9) for 20 s as they swam through a rendered 3D underwater scene. Targets were either allowed to enter into occlusions (occlusion trials) or not (no occlusion trials). Tracking accuracy with 2-3 targets was ≥ 92% regardless of target occlusion but dropped to 74% on occlusion trials with four targets (no occlusion trials remained accurate; 83%). This pattern was mirrored in the frequency of rescue saccades. Rescue saccades accompanied approximatlely 50% of the Track 2-3 target occlusions, but only 34% of the Track 4 occlusions. Their frequency also decreased with increasing distance between a target and the nearest other object, suggesting that it is the potential for target confusion that summons a rescue saccade, not occlusion itself. These findings provide evidence for a tracking system that monitors for events that might cause track loss (e.g., occlusions) and requests help from the oculomotor system to resolve these momentary crises. As the number of crises increase with the number of targets, some requests for help go unsatisfied, resulting in degraded tracking.
System considerations for detection and tracking of small targets using passive sensors
NASA Astrophysics Data System (ADS)
DeBell, David A.
1991-08-01
Passive sensors provide only a few discriminants to assist in threat assessment of small targets. Tracking of the small targets provides additional discriminants. This paper discusses the system considerations for tracking small targets using passive sensors, in particular EO sensors. Tracking helps establish good versus bad detections. Discussed are the requirements to be placed on the sensor system's accuracy, with respect to knowledge of the sightline direction. The detection of weak targets sets a requirement for two levels of tracking in order to reduce processor throughput. A system characteristic is the need to track all detections. For low thresholds, this can mean a heavy track burden. Therefore, thresholds must be adaptive in order not to saturate the processors. Second-level tracks must develop a range estimate in order to assess threat. Sensor platform maneuvers are required if the targets are moving. The need for accurate pointing, good stability, and a good update rate will be shown quantitatively, relating to track accuracy and track association.
Ultra-Wideband Tracking System Design for Relative Navigation
NASA Technical Reports Server (NTRS)
Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John
2011-01-01
This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.
Adaptive bearing estimation and tracking of multiple targets in a realistic passive sonar scenario
NASA Astrophysics Data System (ADS)
Rajagopal, R.; Challa, Subhash; Faruqi, Farhan A.; Rao, P. R.
1997-06-01
In a realistic passive sonar environment, the received signal consists of multipath arrivals from closely separated moving targets. The signals are contaminated by spatially correlated noise. The differential MUSIC has been proposed to estimate the DOAs in such a scenario. This method estimates the 'noise subspace' in order to estimate the DOAs. However, the 'noise subspace' estimate has to be updated as and when new data become available. In order to save the computational costs, a new adaptive noise subspace estimation algorithm is proposed in this paper. The salient features of the proposed algorithm are: (1) Noise subspace estimation is done by QR decomposition of the difference matrix which is formed from the data covariance matrix. Thus, as compared to standard eigen-decomposition based methods which require O(N3) computations, the proposed method requires only O(N2) computations. (2) Noise subspace is updated by updating the QR decomposition. (3) The proposed algorithm works in a realistic sonar environment. In the second part of the paper, the estimated bearing values are used to track multiple targets. In order to achieve this, the nonlinear system/linear measurement extended Kalman filtering proposed is applied. Computer simulation results are also presented to support the theory.
Infrared measurement and composite tracking algorithm for air-breathing hypersonic vehicles
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Gao, Changsheng; Jing, Wuxing
2018-03-01
Air-breathing hypersonic vehicles have capabilities of hypersonic speed and strong maneuvering, and thus pose a significant challenge to conventional tracking methodologies. To achieve desirable tracking performance for hypersonic targets, this paper investigates the problems related to measurement model design and tracking model mismatching. First, owing to the severe aerothermal effect of hypersonic motion, an infrared measurement model in near space is designed and analyzed based on target infrared radiation and an atmospheric model. Second, using information from infrared sensors, a composite tracking algorithm is proposed via a combination of the interactive multiple models (IMM) algorithm, fitting dynamics model, and strong tracking filter. During the procedure, the IMMs algorithm generates tracking data to establish a fitting dynamics model of the target. Then, the strong tracking unscented Kalman filter is employed to estimate the target states for suppressing the impact of target maneuvers. Simulations are performed to verify the feasibility of the presented composite tracking algorithm. The results demonstrate that the designed infrared measurement model effectively and continuously observes hypersonic vehicles, and the proposed composite tracking algorithm accurately and stably tracks these targets.
Accounting for direction and speed of eye motion in planning visually guided manual tracking.
Leclercq, Guillaume; Blohm, Gunnar; Lefèvre, Philippe
2013-10-01
Accurate motor planning in a dynamic environment is a critical skill for humans because we are often required to react quickly and adequately to the visual motion of objects. Moreover, we are often in motion ourselves, and this complicates motor planning. Indeed, the retinal and spatial motions of an object are different because of the retinal motion component induced by self-motion. Many studies have investigated motion perception during smooth pursuit and concluded that eye velocity is partially taken into account by the brain. Here we investigate whether the eye velocity during ongoing smooth pursuit is taken into account for the planning of visually guided manual tracking. We had 10 human participants manually track a target while in steady-state smooth pursuit toward another target such that the difference between the retinal and spatial target motion directions could be large, depending on both the direction and the speed of the eye. We used a measure of initial arm movement direction to quantify whether motor planning occurred in retinal coordinates (not accounting for eye motion) or was spatially correct (incorporating eye velocity). Results showed that the eye velocity was nearly fully taken into account by the neuronal areas involved in the visuomotor velocity transformation (between 75% and 102%). In particular, these neuronal pathways accounted for the nonlinear effects due to the relative velocity between the target and the eye. In conclusion, the brain network transforming visual motion into a motor plan for manual tracking adequately uses extraretinal signals about eye velocity.
UWB Two-Cluster AOA Tracking Prototype System Design
NASA Technical Reports Server (NTRS)
Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda
2006-01-01
This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.
The performance of matched-field track-before-detect methods using shallow-water Pacific data.
Tantum, Stacy L; Nolte, Loren W; Krolik, Jeffrey L; Harmanci, Kerem
2002-07-01
Matched-field track-before-detect processing, which extends the concept of matched-field processing to include modeling of the source dynamics, has recently emerged as a promising approach for maintaining the track of a moving source. In this paper, optimal Bayesian and minimum variance beamforming track-before-detect algorithms which incorporate a priori knowledge of the source dynamics in addition to the underlying uncertainties in the ocean environment are presented. A Markov model is utilized for the source motion as a means of capturing the stochastic nature of the source dynamics without assuming uniform motion. In addition, the relationship between optimal Bayesian track-before-detect processing and minimum variance track-before-detect beamforming is examined, revealing how an optimal tracking philosophy may be used to guide the modification of existing beamforming techniques to incorporate track-before-detect capabilities. Further, the benefits of implementing an optimal approach over conventional methods are illustrated through application of these methods to shallow-water Pacific data collected as part of the SWellEX-1 experiment. The results show that incorporating Markovian dynamics for the source motion provides marked improvement in the ability to maintain target track without the use of a uniform velocity hypothesis.
NASA Astrophysics Data System (ADS)
Leon, Barbara D.; Heller, Paul R.
1987-05-01
A surveillance network is a group of multiplatform sensors cooperating to improve network performance. Network control is distributed as a measure to decrease vulnerability to enemy threat. The network may contain diverse sensor types such as radar, ESM (Electronic Support Measures), IRST (Infrared search and track) and E-0 (Electro-Optical). Each platform may contain a single sensor or suite of sensors. In a surveillance network it is desirable to control sensors to make the overall system more effective. This problem has come to be known as sensor management and control (SM&C). Two major facets of network performance are surveillance and survivability. In a netted environment, surveillance can be enhanced if information from all sensors is combined and sensor operating conditions are controlled to provide a synergistic effect. In contrast, when survivability is the main concern for the network, the best operating status for all sensors would be passive or off. Of course, improving survivability tends to degrade surveillance. Hence, the objective of SM&C is to optimize surveillance and survivability of the network. Too voluminous data of various formats and the quick response time are two characteristics of this problem which make it an ideal application for Artificial Intelligence. A solution to the SM&C problem, presented as a computer simulation, will be presented in this paper. The simulation is a hybrid production written in LISP and FORTRAN. It combines the latest conventional computer programming methods with Artificial Intelligence techniques to produce a flexible state-of-the-art tool to evaluate network performance. The event-driven simulation contains environment models coupled with an expert system. These environment models include sensor (track-while-scan and agile beam) and target models, local tracking, and system tracking. These models are used to generate the environment for the sensor management and control expert system. The expert system, driven by a forward chaining inference engine, makes decisions based on the global database. The global database contains current track and sensor information supplied by the simulation. At present, the rule base emphasizes the surveillance features with rules grouped into three main categories: maintenance and enhancing track on prioritized targets; filling coverage holes and countering jamming; and evaluating sensor status. The paper will describe the architecture used for the expert system and the reasons for selecting the chosen methods. The SM&C simulation produces a graphical representation of sensors and their associated tracks such that the benefits of the sensor management and control expert system are evident. Jammer locations are also part of the display. The paper will describe results from several scenarios that best illustrate the sensor management and control concepts.
Penalty dynamic programming algorithm for dim targets detection in sensor systems.
Huang, Dayu; Xue, Anke; Guo, Yunfei
2012-01-01
In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations.
Real-time target tracking and locating system for UAV
NASA Astrophysics Data System (ADS)
Zhang, Chao; Tang, Linbo; Fu, Huiquan; Li, Maowen
2017-07-01
In order to achieve real-time target tracking and locating for UAV, a reliable processing system is built on the embedded platform. Firstly, the video image is acquired in real time by the photovoltaic system on the UAV. When the target information is known, KCF tracking algorithm is adopted to track the target. Then, the servo is controlled to rotate with the target, when the target is in the center of the image, the laser ranging module is opened to obtain the distance between the UAV and the target. Finally, to combine with UAV flight parameters obtained by BeiDou navigation system, through the target location algorithm to calculate the geodetic coordinates of the target. The results show that the system is stable for real-time tracking of targets and positioning.
Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets
NASA Technical Reports Server (NTRS)
Nesnas, Issa A.; Pivtoraiko, Mihail N.; Kelly, Alonzo; Fleder, Michael
2012-01-01
This software controls a rover platform to traverse rocky terrain autonomously, plan paths, and avoid obstacles using its stereo hazard and navigation cameras. It does so while continuously tracking a target of interest selected from 10 20 m away. The rover drives and tracks the target until it reaches the vicinity of the target. The rover then positions itself to approach the target, deploys its robotic arm, and places the end effector instrument on the designated target to within 2-3-cm accuracy of the originally selected target. This software features continuous navigation in a fairly rocky field in an outdoor environment and the ability to enable the rover to avoid large rocks and traverse over smaller ones. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover s mast cameras. The navigation software uses stereo imaging, traversability analysis, path planning, trajectory generation, and trajectory execution. It also includes visual target tracking of a designated target selected from 10 m away while continuously navigating the rocky terrain. Improvements in this design include steering while driving, which uses continuous curvature paths. There are also several improvements to the traversability analyzer, including improved data fusion of traversability maps that result from pose estimation uncertainties, dealing with boundary effects to enable tighter maneuvers, and handling a wider range of obstacles. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight, thread-the-needle maneuvers. These algorithms were integrated on the newly refurbished Athena Mars research rover, and were fielded in the JPL Mars Yard. Forty-three runs were conducted with targets at distances ranging from 5 to 15 m, and a success rate of 93% was achieved for placement of the instrument within 2-3 cm of the target.
An Example of Effective Urban Outreach: Cleveland Metroparks' NatureTracks Program.
ERIC Educational Resources Information Center
Volbrecht, Vera E.; Hereford, Ray
1996-01-01
Describes a mobile interpretive unit of the Cleveland Metroparks that is involved with interpreting natural and cultural history to urban core audiences. The program focuses on plant and animal life in forest, pond, meadow, and urban environments with content targeted to urban youths who are often unable to visit Cleveland Metroparks and are…
Adaptive block online learning target tracking based on super pixel segmentation
NASA Astrophysics Data System (ADS)
Cheng, Yue; Li, Jianzeng
2018-04-01
Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Y; Keall, P; Poulsen, P
Purpose: Multiple targets with large intrafraction independent motion are often involved in advanced prostate, lung, abdominal, and head and neck cancer radiotherapy. Current standard of care treats these with the originally planned fields, jeopardizing the treatment outcomes. A real-time multi-leaf collimator (MLC) tracking method has been developed to address this problem for the first time. This study evaluates the geometric uncertainty of the multi-target tracking method. Methods: Four treatment scenarios are simulated based on a prostate IMAT plan to treat a moving prostate target and static pelvic node target: 1) real-time multi-target MLC tracking; 2) real-time prostate-only MLC tracking; 3)more » correcting for prostate interfraction motion at setup only; and 4) no motion correction. The geometric uncertainty of the treatment is assessed by the sum of the erroneously underexposed target area and overexposed healthy tissue areas for each individual target. Two patient-measured prostate trajectories of average 2 and 5 mm motion magnitude are used for simulations. Results: Real-time multi-target tracking accumulates the least uncertainty overall. As expected, it covers the static nodes similarly well as no motion correction treatment and covers the moving prostate similarly well as the real-time prostate-only tracking. Multi-target tracking reduces >90% of uncertainty for the static nodal target compared to the real-time prostate-only tracking or interfraction motion correction. For prostate target, depending on the motion trajectory which affects the uncertainty due to leaf-fitting, multi-target tracking may or may not perform better than correcting for interfraction prostate motion by shifting patient at setup, but it reduces ∼50% of uncertainty compared to no motion correction. Conclusion: The developed real-time multi-target MLC tracking can adapt for the independently moving targets better than other available treatment adaptations. This will enable PTV margin reduction to minimize health tissue toxicity while remain tumor coverage when treating advanced disease with independently moving targets involved. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less
Computer-aided target tracking in motion analysis studies
NASA Astrophysics Data System (ADS)
Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.
1990-08-01
Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.
Real-time visual tracking of less textured three-dimensional objects on mobile platforms
NASA Astrophysics Data System (ADS)
Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il
2012-12-01
Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.
Voice tracking and spoken word recognition in the presence of other voices
NASA Astrophysics Data System (ADS)
Litong-Palima, Marisciel; Violanda, Renante; Saloma, Caesar
2004-12-01
We study the human hearing process by modeling the hair cell as a thresholded Hopf bifurcator and compare our calculations with experimental results involving human subjects in two different multi-source listening tasks of voice tracking and spoken-word recognition. In the model, we observed noise suppression by destructive interference between noise sources which weakens the effective noise strength acting on the hair cell. Different success rate characteristics were observed for the two tasks. Hair cell performance at low threshold levels agree well with results from voice-tracking experiments while those of word-recognition experiments are consistent with a linear model of the hearing process. The ability of humans to track a target voice is robust against cross-talk interference unlike word-recognition performance which deteriorates quickly with the number of uncorrelated noise sources in the environment which is a response behavior that is associated with linear systems.
EUV process improvement with novel litho track hardware
NASA Astrophysics Data System (ADS)
Stokes, Harold; Harumoto, Masahiko; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya
2017-03-01
Currently, there are many developments in the field of EUV lithography that are helping to move it towards increased HVM feasibility. Targeted improvements in hardware design for advanced lithography are of interest to our group specifically for metrics such as CD uniformity, LWR, and defect density. Of course, our work is focused on EUV process steps that are specifically affected by litho track performance, and consequently, can be improved by litho track design improvement and optimization. In this study we are building on our experience to provide continual improvement for LWR, CDU, and Defects as applied to a standard EUV process by employing novel hardware solutions on our SOKUDO DUO coat develop track system. Although it is preferable to achieve such improvements post-etch process we feel, as many do, that improvements after patterning are a precursor to improvements after etching. We hereby present our work utilizing the SOKUDO DUO coat develop track system with an ASML NXE:3300 in the IMEC (Leuven, Belgium) cleanroom environment to improve aggressive dense L/S patterns.
Space-based IR tracking bias removal using background star observations
NASA Astrophysics Data System (ADS)
Clemons, T. M., III; Chang, K. C.
2009-05-01
This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.
Discriminative correlation filter tracking with occlusion detection
NASA Astrophysics Data System (ADS)
Zhang, Shuo; Chen, Zhong; Yu, XiPeng; Zhang, Ting; He, Jing
2018-03-01
Aiming at the problem that the correlation filter-based tracking algorithm can not track the target of severe occlusion, a target re-detection mechanism is proposed. First of all, based on the ECO, we propose the multi-peak detection model and the response value to distinguish the occlusion and deformation in the target tracking, which improve the success rate of tracking. And then we add the confidence model to update the mechanism to effectively prevent the model offset problem which due to similar targets or background during the tracking process. Finally, the redetection mechanism of the target is added, and the relocation is performed after the target is lost, which increases the accuracy of the target positioning. The experimental results demonstrate that the proposed tracker performs favorably against state-of-the-art methods in terms of robustness and accuracy.
A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots
Pan, Shaowu; Shi, Liwei; Guo, Shuxiang
2015-01-01
A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system. PMID:25856331
A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.
Pan, Shaowu; Shi, Liwei; Guo, Shuxiang
2015-04-08
A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.
A particle filter for multi-target tracking in track before detect context
NASA Astrophysics Data System (ADS)
Amrouche, Naima; Khenchaf, Ali; Berkani, Daoud
2016-10-01
The track-before-detect (TBD) approach can be used to track a single target in a highly noisy radar scene. This is because it makes use of unthresholded observations and incorporates a binary target existence variable into its target state estimation process when implemented as a particle filter (PF). This paper proposes the recursive PF-TBD approach to detect multiple targets in low-signal-to noise ratios (SNR). The algorithm's successful performance is demonstrated using a simulated two target example.
Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase
Lu, Kelin; Zhou, Rui
2016-01-01
A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications. PMID:27537883
Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase.
Lu, Kelin; Zhou, Rui
2016-08-15
A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications.
Birds of a Feather: Supporting Secure Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braswell III, H V
2006-04-24
Over the past few years Lawrence Livermore National Laboratory has begun the process of moving to a diskless environment in the Secure Computer Support realm. This movement has included many moving targets and increasing support complexity. We would like to set up a forum for Security and Support professionals to get together from across the Complex and discuss current deployments, lessons learned, and next steps. This would include what hardware, software, and hard copy based solutions are being used to manage Secure Computing. The topics to be discussed include but are not limited to: Diskless computing, port locking and management,more » PC, Mac, and Linux/UNIX support and setup, system imaging, security setup documentation and templates, security documentation and management, customer tracking, ticket tracking, software download and management, log management, backup/disaster recovery, and mixed media environments.« less
Research on target tracking in coal mine based on optical flow method
NASA Astrophysics Data System (ADS)
Xue, Hongye; Xiao, Qingwei
2015-03-01
To recognize, track and count the bolting machine in coal mine video images, a real-time target tracking method based on the Lucas-Kanade sparse optical flow is proposed in this paper. In the method, we judge whether the moving target deviate from its trajectory, predicate and correct the position of the moving target. The method solves the problem of failure to track the target or lose the target because of the weak light, uneven illumination and blocking. Using the VC++ platform and Opencv lib we complete the recognition and tracking. The validity of the method is verified by the result of the experiment.
A Novel Loss Recovery and Tracking Scheme for Maneuvering Target in Hybrid WSNs.
Qian, Hanwang; Fu, Pengcheng; Li, Baoqing; Liu, Jianpo; Yuan, Xiaobing
2018-01-25
Tracking a mobile target, which aims to timely monitor the invasion of specific target, is one of the most prominent applications in wireless sensor networks (WSNs). Traditional tracking methods in WSNs only based on static sensor nodes (SNs) have several critical problems. For example, to void the loss of mobile target, many SNs must be active to track the target in all possible directions, resulting in excessive energy consumption. Additionally, when entering coverage holes in the monitoring area, the mobile target may be missing and then its state is unknown during this period. To tackle these problems, in this paper, a few mobile sensor nodes (MNs) are introduced to cooperate with SNs to form a hybrid WSN due to their stronger abilities and less constrained energy. Then, we propose a valid target tracking scheme for hybrid WSNs to dynamically schedule the MNs and SNs. Moreover, a novel loss recovery mechanism is proposed to find the lost target and recover the tracking with fewer SNs awakened. Furthermore, to improve the robustness and accuracy of the recovery mechanism, an adaptive unscented Kalman filter (AUKF) algorithm is raised to dynamically adjust the process noise covariance. Simulation results demonstrate that our tracking scheme for maneuvering target in hybrid WSNs can not only track the target effectively even if the target is lost but also maintain an excellent accuracy and robustness with fewer activated nodes.
A Novel Loss Recovery and Tracking Scheme for Maneuvering Target in Hybrid WSNs
Liu, Jianpo; Yuan, Xiaobing
2018-01-01
Tracking a mobile target, which aims to timely monitor the invasion of specific target, is one of the most prominent applications in wireless sensor networks (WSNs). Traditional tracking methods in WSNs only based on static sensor nodes (SNs) have several critical problems. For example, to void the loss of mobile target, many SNs must be active to track the target in all possible directions, resulting in excessive energy consumption. Additionally, when entering coverage holes in the monitoring area, the mobile target may be missing and then its state is unknown during this period. To tackle these problems, in this paper, a few mobile sensor nodes (MNs) are introduced to cooperate with SNs to form a hybrid WSN due to their stronger abilities and less constrained energy. Then, we propose a valid target tracking scheme for hybrid WSNs to dynamically schedule the MNs and SNs. Moreover, a novel loss recovery mechanism is proposed to find the lost target and recover the tracking with fewer SNs awakened. Furthermore, to improve the robustness and accuracy of the recovery mechanism, an adaptive unscented Kalman filter (AUKF) algorithm is raised to dynamically adjust the process noise covariance. Simulation results demonstrate that our tracking scheme for maneuvering target in hybrid WSNs can not only track the target effectively even if the target is lost but also maintain an excellent accuracy and robustness with fewer activated nodes. PMID:29370103
Begon, Mike; Diggle, Peter J.; Serrano, Soledad; Reis, Mitermayer G.; Childs, James E.; Ko, Albert I.; Costa, Federico
2016-01-01
Norway rats (Rattus norvegicus) living in urban environments are a critical public health and economic problem, particularly in urban slums where residents are at a higher risk for rat borne diseases, yet convenient methods to quantitatively assess population sizes are lacking. We evaluated track plates as a method to determine rat distribution and relative abundance in a complex urban slum environment by correlating the presence and intensity of rat-specific marks on track plates with findings from rat infestation surveys and trapping of rats to population exhaustion. To integrate the zero-inflated track plate data we developed a two-component mixture model with one binary and one censored continuous component. Track plate mark-intensity was highly correlated with signs of rodent infestation (all coefficients between 0.61 and 0.79 and all p-values < 0.05). Moreover, the mean level of pre-trapping rat-mark intensity on plates was significantly associated with the number of rats captured subsequently (Odds ratio1.38; 95% CI 1.19-1.61) and declined significantly following trapping (Odds ratio 0.86; 95% CI 0.78-0.95). Track plates provided robust proxy measurements of rat abundance and distribution and detected rat presence even when populations appeared ‘trapped out’. Tracking plates are relatively easy and inexpensive methods that can be used to intensively sample settings such as urban slums, where traditional trapping or mark-recapture studies are impossible to implement, and therefore the results can inform and assess the impact of targeted urban rodent control campaigns. PMID:27453682
1996-09-01
T1wo such modes have buen iinrylvni teted: a full target-track mode0 and a target- edge-track mode. Whun using thc full target-track mode the sonai ...direction is reversed. Rather than tracking across the target all the way to the opposing edge, however, the sonai is scanned only until three returns
Stereo vision tracking of multiple objects in complex indoor environments.
Marrón-Romera, Marta; García, Juan C; Sotelo, Miguel A; Pizarro, Daniel; Mazo, Manuel; Cañas, José M; Losada, Cristina; Marcos, Alvaro
2010-01-01
This paper presents a novel system capable of solving the problem of tracking multiple targets in a crowded, complex and dynamic indoor environment, like those typical of mobile robot applications. The proposed solution is based on a stereo vision set in the acquisition step and a probabilistic algorithm in the obstacles position estimation process. The system obtains 3D position and speed information related to each object in the robot's environment; then it achieves a classification between building elements (ceiling, walls, columns and so on) and the rest of items in robot surroundings. All objects in robot surroundings, both dynamic and static, are considered to be obstacles but the structure of the environment itself. A combination of a Bayesian algorithm and a deterministic clustering process is used in order to obtain a multimodal representation of speed and position of detected obstacles. Performance of the final system has been tested against state of the art proposals; test results validate the authors' proposal. The designed algorithms and procedures provide a solution to those applications where similar multimodal data structures are found.
Eye tracking, strategies, and sex differences in virtual navigation.
Andersen, Nicolas E; Dahmani, Louisa; Konishi, Kyoko; Bohbot, Véronique D
2012-01-01
Reports of sex differences in wayfinding have typically used paradigms sensitive to the female advantage (navigation by landmarks) or sensitive to the male advantage (navigation by cardinal directions, Euclidian coordinates, environmental geometry, and absolute distances). The current virtual navigation paradigm allowed both men and women an equal advantage. We studied sex differences by systematically varying the number of landmarks. Eye tracking was used to quantify sex differences in landmark utilisation as participants solved an eight-arm radial maze task within different virtual environments. To solve the task, participants were required to remember the locations of target objects within environments containing 0, 2, 4, 6, or 8 landmarks. We found that, as the number of landmarks available in the environment increases, the proportion of time men and women spend looking at landmarks and the number of landmarks they use to find their way increases. Eye tracking confirmed that women rely more on landmarks to navigate, although landmark fixations were also associated with an increase in task completion time. Sex differences in navigational behaviour occurred only in environments devoid of landmarks and disappeared in environments containing multiple landmarks. Moreover, women showed sustained landmark-oriented gaze, while men's decreased over time. Finally, we found that men and women use spatial and response strategies to the same extent. Together, these results shed new light on the discrepancy in landmark utilisation between men and women and help explain the differences in navigational behaviour previously reported. Copyright © 2011 Elsevier Inc. All rights reserved.
Penalty Dynamic Programming Algorithm for Dim Targets Detection in Sensor Systems
Huang, Dayu; Xue, Anke; Guo, Yunfei
2012-01-01
In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations. PMID:22666074
Robust infrared targets tracking with covariance matrix representation
NASA Astrophysics Data System (ADS)
Cheng, Jian
2009-07-01
Robust infrared target tracking is an important and challenging research topic in many military and security applications, such as infrared imaging guidance, infrared reconnaissance, scene surveillance, etc. To effectively tackle the nonlinear and non-Gaussian state estimation problems, particle filtering is introduced to construct the theory framework of infrared target tracking. Under this framework, the observation probabilistic model is one of main factors for infrared targets tracking performance. In order to improve the tracking performance, covariance matrices are introduced to represent infrared targets with the multi-features. The observation probabilistic model can be constructed by computing the distance between the reference target's and the target samples' covariance matrix. Because the covariance matrix provides a natural tool for integrating multiple features, and is scale and illumination independent, target representation with covariance matrices can hold strong discriminating ability and robustness. Two experimental results demonstrate the proposed method is effective and robust for different infrared target tracking, such as the sensor ego-motion scene, and the sea-clutter scene.
Robot Tracking of Human Subjects in Field Environments
NASA Technical Reports Server (NTRS)
Graham, Jeffrey; Shillcutt, Kimberly
2003-01-01
Future planetary exploration will involve both humans and robots. Understanding and improving their interaction is a main focus of research in the Intelligent Systems Branch at NASA's Johnson Space Center. By teaming intelligent robots with astronauts on surface extra-vehicular activities (EVAs), safety and productivity can be improved. The EVA Robotic Assistant (ERA) project was established to study the issues of human-robot teams, to develop a testbed robot to assist space-suited humans in exploration tasks, and to experimentally determine the effectiveness of an EVA assistant robot. A companion paper discusses the ERA project in general, its history starting with ASRO (Astronaut-Rover project), and the results of recent field tests in Arizona. This paper focuses on one aspect of the research, robot tracking, in greater detail: the software architecture and algorithms. The ERA robot is capable of moving towards and/or continuously following mobile or stationary targets or sequences of targets. The contributions made by this research include how the low-level pose data is assembled, normalized and communicated, how the tracking algorithm was generalized and implemented, and qualitative performance reports from recent field tests.
Passive tracking scheme for a single stationary observer
NASA Astrophysics Data System (ADS)
Chan, Y. T.; Rea, Terry
2001-08-01
While there are many techniques for Bearings-Only Tracking (BOT) in the ocean environment, they do not apply directly to the land situation. Generally, for tactical reasons, the land observer platform is stationary; but, it has two sensors, visual and infrared, for measuring bearings and a laser range finder (LRF) for measuring range. There is a requirement to develop a new BOT data fusion scheme that fuses the two sets of bearing readings, and together with a single LRF measurement, produces a unique track. This paper first develops a parameterized solution for the target speeds, prior to the occurrence of the LRF measurement, when the problem is unobservable. At, and after, the LRF measurement, a BOT formulated as a least squares (LS) estimator then produces a unique LS estimate of the target states. Bearing readings from the other sensor serve as instrumental variables in a data fusion setting to eliminate the bias in the BOT estimator. The result is recursive, unbiased and decentralized data fusion scheme. Results from two simulation experiments have corroborated the theoretical development and show that the scheme is optimal.
Multisensor fusion for 3D target tracking using track-before-detect particle filter
NASA Astrophysics Data System (ADS)
Moshtagh, Nima; Romberg, Paul M.; Chan, Moses W.
2015-05-01
This work presents a novel fusion mechanism for estimating the three-dimensional trajectory of a moving target using images collected by multiple imaging sensors. The proposed projective particle filter avoids the explicit target detection prior to fusion. In projective particle filter, particles that represent the posterior density (of target state in a high-dimensional space) are projected onto the lower-dimensional observation space. Measurements are generated directly in the observation space (image plane) and a marginal (sensor) likelihood is computed. The particles states and their weights are updated using the joint likelihood computed from all the sensors. The 3D state estimate of target (system track) is then generated from the states of the particles. This approach is similar to track-before-detect particle filters that are known to perform well in tracking dim and stealthy targets in image collections. Our approach extends the track-before-detect approach to 3D tracking using the projective particle filter. The performance of this measurement-level fusion method is compared with that of a track-level fusion algorithm using the projective particle filter. In the track-level fusion algorithm, the 2D sensor tracks are generated separately and transmitted to a fusion center, where they are treated as measurements to the state estimator. The 2D sensor tracks are then fused to reconstruct the system track. A realistic synthetic scenario with a boosting target was generated, and used to study the performance of the fusion mechanisms.
Position estimation and driving of an autonomous vehicle by monocular vision
NASA Astrophysics Data System (ADS)
Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.
2007-04-01
Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.
Distributed Peer-to-Peer Target Tracking in Wireless Sensor Networks
Wang, Xue; Wang, Sheng; Bi, Dao-Wei; Ma, Jun-Jie
2007-01-01
Target tracking is usually a challenging application for wireless sensor networks (WSNs) because it is always computation-intensive and requires real-time processing. This paper proposes a practical target tracking system based on the auto regressive moving average (ARMA) model in a distributed peer-to-peer (P2P) signal processing framework. In the proposed framework, wireless sensor nodes act as peers that perform target detection, feature extraction, classification and tracking, whereas target localization requires the collaboration between wireless sensor nodes for improving the accuracy and robustness. For carrying out target tracking under the constraints imposed by the limited capabilities of the wireless sensor nodes, some practically feasible algorithms, such as the ARMA model and the 2-D integer lifting wavelet transform, are adopted in single wireless sensor nodes due to their outstanding performance and light computational burden. Furthermore, a progressive multi-view localization algorithm is proposed in distributed P2P signal processing framework considering the tradeoff between the accuracy and energy consumption. Finally, a real world target tracking experiment is illustrated. Results from experimental implementations have demonstrated that the proposed target tracking system based on a distributed P2P signal processing framework can make efficient use of scarce energy and communication resources and achieve target tracking successfully.
A Fast MEANSHIFT Algorithm-Based Target Tracking System
Sun, Jian
2012-01-01
Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397
Medical Imaging for the Tracking of Micromotors.
Vilela, Diana; Cossío, Unai; Parmar, Jemish; Martínez-Villacorta, Angel M; Gómez-Vallejo, Vanessa; Llop, Jordi; Sánchez, Samuel
2018-02-27
Micro/nanomotors are useful tools for several biomedical applications, including targeted drug delivery and minimally invasive microsurgeries. However, major challenges such as in vivo imaging need to be addressed before they can be safely applied on a living body. Here, we show that positron emission tomography (PET), a molecular imaging technique widely used in medical imaging, can also be used to track a large population of tubular Au/PEDOT/Pt micromotors. Chemisorption of an iodine isotope onto the micromotor's Au surface rendered them detectable by PET, and we could track their movements in a tubular phantom over time frames of up to 15 min. In a second set of experiments, micromotors and the bubbles released during self-propulsion were optically tracked by video imaging and bright-field microscopy. The results from direct optical tracking agreed with those from PET tracking, demonstrating that PET is a suitable technique for the imaging of large populations of active micromotors in opaque environments, thus opening opportunities for the use of this mature imaging technology for the in vivo localization of artificial swimmers.
NASA Astrophysics Data System (ADS)
Pace, Paul W.; Sutherland, John
2001-10-01
This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.
Objective assessment of operator performance during ultrasound-guided procedures.
Tabriz, David M; Street, Mandie; Pilgram, Thomas K; Duncan, James R
2011-09-01
Simulation permits objective assessment of operator performance in a controlled and safe environment. Image-guided procedures often require accurate needle placement, and we designed a system to monitor how ultrasound guidance is used to monitor needle advancement toward a target. The results were correlated with other estimates of operator skill. The simulator consisted of a tissue phantom, ultrasound unit, and electromagnetic tracking system. Operators were asked to guide a needle toward a visible point target. Performance was video-recorded and synchronized with the electromagnetic tracking data. A series of algorithms based on motor control theory and human information processing were used to convert raw tracking data into different performance indices. Scoring algorithms converted the tracking data into efficiency, quality, task difficulty, and targeting scores that were aggregated to create performance indices. After initial feasibility testing, a standardized assessment was developed. Operators (N = 12) with a broad spectrum of skill and experience were enrolled and tested. Overall scores were based on performance during ten simulated procedures. Prior clinical experience was used to independently estimate operator skill. When summed, the performance indices correlated well with estimated skill. Operators with minimal or no prior experience scored markedly lower than experienced operators. The overall score tended to increase according to operator's clinical experience. Operator experience was linked to decreased variation in multiple aspects of performance. The aggregated results of multiple trials provided the best correlation between estimated skill and performance. A metric for the operator's ability to maintain the needle aimed at the target discriminated between operators with different levels of experience. This study used a highly focused task model, standardized assessment, and objective data analysis to assess performance during simulated ultrasound-guided needle placement. The performance indices were closely related to operator experience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahimian, B.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, D.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berbeco, R.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keall, P.
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
Robust Target Tracking with Multi-Static Sensors under Insufficient TDOA Information.
Shin, Hyunhak; Ku, Bonhwa; Nelson, Jill K; Ko, Hanseok
2018-05-08
This paper focuses on underwater target tracking based on a multi-static sonar network composed of passive sonobuoys and an active ping. In the multi-static sonar network, the location of the target can be estimated using TDOA (Time Difference of Arrival) measurements. However, since the sensor network may obtain insufficient and inaccurate TDOA measurements due to ambient noise and other harsh underwater conditions, target tracking performance can be significantly degraded. We propose a robust target tracking algorithm designed to operate in such a scenario. First, track management with track splitting is applied to reduce performance degradation caused by insufficient measurements. Second, a target location is estimated by a fusion of multiple TDOA measurements using a Gaussian Mixture Model (GMM). In addition, the target trajectory is refined by conducting a stack-based data association method based on multiple-frames measurements in order to more accurately estimate target trajectory. The effectiveness of the proposed method is verified through simulations.
Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.
Sato, Masaaki; Kawano, Masako; Mizuta, Kotaro; Islam, Tanvir; Lee, Min Goo; Hayashi, Yasunori
2017-01-01
The demonstration of the ability of rodents to navigate in virtual reality (VR) has made it an important behavioral paradigm for studying spatially modulated neuronal activity in these animals. However, their behavior in such simulated environments remains poorly understood. Here, we show that encoding and retrieval of goal location memory in mice head-fixed in VR depends on the postsynaptic scaffolding protein Shank2 and the dorsal hippocampus. In our newly developed virtual cued goal location task, a head-fixed mouse moves from one end of a virtual linear track to seek rewards given at a target location along the track. The mouse needs to visually recognize the target location and stay there for a short period of time to receive the reward. Transient pharmacological blockade of fast glutamatergic synaptic transmission in the dorsal hippocampus dramatically and reversibly impaired performance of this task. Encoding and updating of virtual cued goal location memory was impaired in mice deficient in the postsynaptic scaffolding protein Shank2, a mouse model of autism that exhibits impaired spatial learning in a real environment. These results highlight the crucial roles of the dorsal hippocampus and postsynaptic protein complexes in spatial learning and navigation in VR.
Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality
Kawano, Masako; Mizuta, Kotaro; Islam, Tanvir; Lee, Min Goo; Hayashi, Yasunori
2017-01-01
Abstract The demonstration of the ability of rodents to navigate in virtual reality (VR) has made it an important behavioral paradigm for studying spatially modulated neuronal activity in these animals. However, their behavior in such simulated environments remains poorly understood. Here, we show that encoding and retrieval of goal location memory in mice head-fixed in VR depends on the postsynaptic scaffolding protein Shank2 and the dorsal hippocampus. In our newly developed virtual cued goal location task, a head-fixed mouse moves from one end of a virtual linear track to seek rewards given at a target location along the track. The mouse needs to visually recognize the target location and stay there for a short period of time to receive the reward. Transient pharmacological blockade of fast glutamatergic synaptic transmission in the dorsal hippocampus dramatically and reversibly impaired performance of this task. Encoding and updating of virtual cued goal location memory was impaired in mice deficient in the postsynaptic scaffolding protein Shank2, a mouse model of autism that exhibits impaired spatial learning in a real environment. These results highlight the crucial roles of the dorsal hippocampus and postsynaptic protein complexes in spatial learning and navigation in VR. PMID:28484738
NASA Astrophysics Data System (ADS)
Zhang, Dong-Hai; Chen, Yan-Ling; Wang, Guo-Rong; Li, Wang-Dong; Wang, Qing; Yao, Ji-Jie; Zhou, Jian-Guo; Li, Rong; Li, Jun-Sheng; Li, Hui-Ling
2015-01-01
The forward-backward multiplicity and correlations of a target evaporated fragment (black track particle) and target recoiled proton (grey track particle) emitted from 150 A MeV 4He, 290 A MeV 12C, 400 A MeV 12C, 400 A MeV 20Ne and 500 A MeV 56Fe induced different types of nuclear emulsion target interactions are investigated. It is found that the forward and backward averaged multiplicity of a grey, black and heavily ionized track particle increases with the increase of the target size. The averaged multiplicity of a forward black track particle, backward black track particle, and backward grey track particle do not depend on the projectile size and energy, but the averaged multiplicity of a forward grey track particle increases with an increase of projectile size and energy. The backward grey track particle multiplicity distribution follows an exponential decay law and the decay constant decreases with an increase of target size. The backward-forward multiplicity correlations follow linear law which is independent of the projectile size and energy, and the saturation effect is observed in some heavy target data sets.
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Extracting 3d Semantic Information from Video Surveillance System Using Deep Learning
NASA Astrophysics Data System (ADS)
Zhang, J. S.; Cao, J.; Mao, B.; Shen, D. Q.
2018-04-01
At present, intelligent video analysis technology has been widely used in various fields. Object tracking is one of the important part of intelligent video surveillance, but the traditional target tracking technology based on the pixel coordinate system in images still exists some unavoidable problems. Target tracking based on pixel can't reflect the real position information of targets, and it is difficult to track objects across scenes. Based on the analysis of Zhengyou Zhang's camera calibration method, this paper presents a method of target tracking based on the target's space coordinate system after converting the 2-D coordinate of the target into 3-D coordinate. It can be seen from the experimental results: Our method can restore the real position change information of targets well, and can also accurately get the trajectory of the target in space.
Gao, Han; Li, Jingwen
2014-06-19
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.
Gao, Han; Li, Jingwen
2014-01-01
A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640
MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniquesmore » for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.« less
Li, Miao; Li, Jun; Zhou, Yiyu
2015-12-08
The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing.
Li, Miao; Li, Jun; Zhou, Yiyu
2015-01-01
The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-02-12
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.
Research of maneuvering target prediction and tracking technology based on IMM algorithm
NASA Astrophysics Data System (ADS)
Cao, Zheng; Mao, Yao; Deng, Chao; Liu, Qiong; Chen, Jing
2016-09-01
Maneuvering target prediction and tracking technology is widely used in both military and civilian applications, the study of those technologies is all along the hotspot and difficulty. In the Electro-Optical acquisition-tracking-pointing system (ATP), the primary traditional maneuvering targets are ballistic target, large aircraft and other big targets. Those targets have the features of fast velocity and a strong regular trajectory and Kalman Filtering and polynomial fitting have good effects when they are used to track those targets. In recent years, the small unmanned aerial vehicles developed rapidly for they are small, nimble and simple operation. The small unmanned aerial vehicles have strong maneuverability in the observation system of ATP although they are close-in, slow and small targets. Moreover, those vehicles are under the manual operation, therefore, the acceleration of them changes greatly and they move erratically. So the prediction and tracking precision is low when traditional algorithms are used to track the maneuvering fly of those targets, such as speeding up, turning, climbing and so on. The interacting multiple model algorithm (IMM) use multiple models to match target real movement trajectory, there are interactions between each model. The IMM algorithm can switch model based on a Markov chain to adapt to the change of target movement trajectory, so it is suitable to solve the prediction and tracking problems of the small unmanned aerial vehicles because of the better adaptability of irregular movement. This paper has set up model set of constant velocity model (CV), constant acceleration model (CA), constant turning model (CT) and current statistical model. And the results of simulating and analyzing the real movement trajectory data of the small unmanned aerial vehicles show that the prediction and tracking technology based on the interacting multiple model algorithm can get relatively lower tracking error and improve tracking precision comparing with traditional algorithms.
Management of three-dimensional intrafraction motion through real-time DMLC tracking.
Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul
2008-05-01
Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Brown, A.; Brown, J.
The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud, and these objects may not always be resolvable in individual data frames. In the present paper, the performance of the developed algorithms is demonstrated using real-world data containing resident space objects observed from the MSX platform, with backgrounds varying from celestial to combined celestial and earth limb, with instances of extremely bright aurora clutter. Simulation results are also presented for parameterized variations in signal-to-clutter levels (down to 1/1000) and signal-to-noise levels (down to 1/6) for simulated targets against real-world terrestrial clutter backgrounds. We also discuss algorithm processing requirements and C++ software processing capabilities from our on-going MDA- and AFRL-sponsored development of an image processing toolkit (iPTK). In the current effort, the iPTK is being developed to a Technology Readiness Level (TRL) of 6 by mid-2010, in preparation for possible integration with STSS-like, SBIRS high-like and SBSS-like surveillance suites.
MRI-based dynamic tracking of an untethered ferromagnetic microcapsule navigating in liquid
NASA Astrophysics Data System (ADS)
Dahmen, Christian; Belharet, Karim; Folio, David; Ferreira, Antoine; Fatikow, Sergej
2016-04-01
The propulsion of ferromagnetic objects by means of MRI gradients is a promising approach to enable new forms of therapy. In this work, necessary techniques are presented to make this approach work. This includes path planning algorithms working on MRI data, ferromagnetic artifact imaging and a tracking algorithm which delivers position feedback for the ferromagnetic objects, and a propulsion sequence to enable interleaved magnetic propulsion and imaging. Using a dedicated software environment, integrating path-planning methods and real-time tracking, a clinical MRI system is adapted to provide this new functionality for controlled interventional targeted therapeutic applications. Through MRI-based sensing analysis, this article aims to propose a framework to plan a robust pathway to enhance the navigation ability to reach deep locations in the human body. The proposed approaches are validated with different experiments.
ETHOWATCHER: validation of a tool for behavioral and video-tracking analysis in laboratory animals.
Crispim Junior, Carlos Fernando; Pederiva, Cesar Nonato; Bose, Ricardo Chessini; Garcia, Vitor Augusto; Lino-de-Oliveira, Cilene; Marino-Neto, José
2012-02-01
We present a software (ETHOWATCHER(®)) developed to support ethography, object tracking and extraction of kinematic variables from digital video files of laboratory animals. The tracking module allows controlled segmentation of the target from the background, extracting image attributes used to calculate the distance traveled, orientation, length, area and a path graph of the experimental animal. The ethography module allows recording of catalog-based behaviors from environment or from video files continuously or frame-by-frame. The output reports duration, frequency and latency of each behavior and the sequence of events in a time-segmented format, set by the user. Validation tests were conducted on kinematic measurements and on the detection of known behavioral effects of drugs. This software is freely available at www.ethowatcher.ufsc.br. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug
2011-05-01
Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our calibration method and a virtual navigation evaluation system for quantifying the overall errors of the intra-operative data integration. We believe this phantom not only offers us good insights to understand the systematic errors encountered in all phases of an EM-tracked endoscopy procedure but also can provide quality control of laboratory experiments for endoscopic procedures before the experiments are transferred from the laboratory to human subjects.
Execution of saccadic eye movements affects speed perception
Goettker, Alexander; Braun, Doris I.; Schütz, Alexander C.; Gegenfurtner, Karl R.
2018-01-01
Due to the foveal organization of our visual system we have to constantly move our eyes to gain precise information about our environment. Doing so massively alters the retinal input. This is problematic for the perception of moving objects, because physical motion and retinal motion become decoupled and the brain has to discount the eye movements to recover the speed of moving objects. Two different types of eye movements, pursuit and saccades, are combined for tracking. We investigated how the way we track moving targets can affect the perceived target speed. We found that the execution of corrective saccades during pursuit initiation modifies how fast the target is perceived compared with pure pursuit. When participants executed a forward (catch-up) saccade they perceived the target to be moving faster. When they executed a backward saccade they perceived the target to be moving more slowly. Variations in pursuit velocity without corrective saccades did not affect perceptual judgments. We present a model for these effects, assuming that the eye velocity signal for small corrective saccades gets integrated with the retinal velocity signal during pursuit. In our model, the execution of corrective saccades modulates the integration of these two signals by giving less weight to the retinal information around the time of corrective saccades. PMID:29440494
Autonomous target tracking of UAVs based on low-power neural network hardware
NASA Astrophysics Data System (ADS)
Yang, Wei; Jin, Zhanpeng; Thiem, Clare; Wysocki, Bryant; Shen, Dan; Chen, Genshe
2014-05-01
Detecting and identifying targets in unmanned aerial vehicle (UAV) images and videos have been challenging problems due to various types of image distortion. Moreover, the significantly high processing overhead of existing image/video processing techniques and the limited computing resources available on UAVs force most of the processing tasks to be performed by the ground control station (GCS) in an off-line manner. In order to achieve fast and autonomous target identification on UAVs, it is thus imperative to investigate novel processing paradigms that can fulfill the real-time processing requirements, while fitting the size, weight, and power (SWaP) constrained environment. In this paper, we present a new autonomous target identification approach on UAVs, leveraging the emerging neuromorphic hardware which is capable of massively parallel pattern recognition processing and demands only a limited level of power consumption. A proof-of-concept prototype was developed based on a micro-UAV platform (Parrot AR Drone) and the CogniMemTMneural network chip, for processing the video data acquired from a UAV camera on the y. The aim of this study was to demonstrate the feasibility and potential of incorporating emerging neuromorphic hardware into next-generation UAVs and their superior performance and power advantages towards the real-time, autonomous target tracking.
Visuomotor Tracking Ability of Young Adult Speakers.
ERIC Educational Resources Information Center
Moon, Jerald B.; And Others
1993-01-01
Twenty-five normal young adult speakers tracked sinusoidal and unpredictable target signals using lower lip and jaw movement and fundamental frequency modulation. Tracking accuracy varied as a function of target frequency and articulator used to track. Results show the potential of visuomotor tracking tasks in the assessment of speech articulatory…
Acquiring Semantically Meaningful Models for Robotic Localization, Mapping and Target Recognition
2014-12-21
information, including suggesstions for reducing this burden, to Washington Headquarters Services , Directorate for Information Operations and Reports, 1215...Representations • Point features tracking • Recovery of relative motion, visual odometry • Loop closure • Environment models, sparse clouds of points...that co- occur with the object of interest Chair-Background Table-Background Object Level Segmentation Jaccard Index Silber .[5] 15.12 RenFox[4
The NASA Meter Class Autonomous Telescope: Ascension Island
2013-09-01
understand the debris environment by providing high fidelity data in a timely manner to protect satellites and spacecraft in orbit around the Earth...gigabytes of image data nightly. With fainter detection limits, precision detection, acquisition and tracking of targets, multi-color photometry ...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for
Exploiting target amplitude information to improve multi-target tracking
NASA Astrophysics Data System (ADS)
Ehrman, Lisa M.; Blair, W. Dale
2006-05-01
Closely-spaced (but resolved) targets pose a challenge for measurement-to-track data association algorithms. Since the Mahalanobis distances between measurements collected on closely-spaced targets and tracks are similar, several elements of the corresponding kinematic measurement-to-track cost matrix are also similar. Lacking any other information on which to base assignments, it is not surprising that data association algorithms make mistakes. One ad hoc approach for mitigating this problem is to multiply the kinematic measurement-to-track likelihoods by amplitude likelihoods. However, this can actually be detrimental to the measurement-to-track association process. With that in mind, this paper pursues a rigorous treatment of the hypothesis probabilities for kinematic measurements and features. Three simple scenarios are used to demonstrate the impact of basing data association decisions on these hypothesis probabilities for Rayleigh, fixed-amplitude, and Rician targets. The first scenario assumes that the tracker carries two tracks but only one measurement is collected. This provides insight into more complex scenarios in which there are fewer measurements than tracks. The second scenario includes two measurements and one track. This extends naturally to the case with more measurements than tracks. Two measurements and two tracks are present in the third scenario, which provides insight into the performance of this method when the number of measurements equals the number of tracks. In all cases, basing data association decisions on the hypothesis probabilities leads to good results.
A computer program to determine the possible daily release window for sky target experiments
NASA Technical Reports Server (NTRS)
Michaud, N. H.
1973-01-01
A computer program is presented which is designed to determine the daily release window for sky target experiments. Factors considered in the program include: (1) target illumination by the sun at release time and during the tracking period; (2) look angle elevation above local horizon from each tracking station to the target; (3) solar depression angle from the local horizon of each tracking station during the experimental period after target release; (4) lunar depression angle from the local horizon of each tracking station during the experimental period after target release; and (5) total sky background brightness as seen from each tracking station while viewing the target. Program output is produced in both graphic and data form. Output data can be plotted for a single calendar month or year. The numerical values used to generate the plots are furnished to permit a more detailed review of the computed daily release windows.
Zhao, Ximei; Ren, Chengyi; Liu, Hao; Li, Haogyi
2014-12-01
Robotic catheter minimally invasive operation requires that the driver control system has the advantages of quick response, strong anti-jamming and real-time tracking of target trajectory. Since the catheter parameters of itself and movement environment and other factors continuously change, when the driver is controlled using traditional proportional-integral-derivative (PID), the controller gain becomes fixed once the PID parameters are set. It can not change with the change of the parameters of the object and environmental disturbance so that its change affects the position tracking accuracy, and may bring a large overshoot endangering patients' vessel. Therefore, this paper adopts fuzzy PID control method to adjust PID gain parameters in the tracking process in order to improve the system anti-interference ability, dynamic performance and tracking accuracy. The simulation results showed that the fuzzy PID control method had a fast tracking performance and a strong robustness. Compared with those of traditional PID control, the feasibility and practicability of fuzzy PID control are verified in a robotic catheter minimally invasive operation.
Long-term temporal tracking of speech rate affects spoken-word recognition.
Baese-Berk, Melissa M; Heffner, Christopher C; Dilley, Laura C; Pitt, Mark A; Morrill, Tuuli H; McAuley, J Devin
2014-08-01
Humans unconsciously track a wide array of distributional characteristics in their sensory environment. Recent research in spoken-language processing has demonstrated that the speech rate surrounding a target region within an utterance influences which words, and how many words, listeners hear later in that utterance. On the basis of hypotheses that listeners track timing information in speech over long timescales, we investigated the possibility that the perception of words is sensitive to speech rate over such a timescale (e.g., an extended conversation). Results demonstrated that listeners tracked variation in the overall pace of speech over an extended duration (analogous to that of a conversation that listeners might have outside the lab) and that this global speech rate influenced which words listeners reported hearing. The effects of speech rate became stronger over time. Our findings are consistent with the hypothesis that neural entrainment by speech occurs on multiple timescales, some lasting more than an hour. © The Author(s) 2014.
Visual Target Tracking in the Presence of Unknown Observer Motion
NASA Technical Reports Server (NTRS)
Williams, Stephen; Lu, Thomas
2009-01-01
Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.
A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking
Wang, Xuedong; Sun, Shudong; Corchado, Juan M.
2017-01-01
We review some advances of the particle filtering (PF) algorithm that have been achieved in the last decade in the context of target tracking, with regard to either a single target or multiple targets in the presence of false or missing data. The first part of our review is on remarkable achievements that have been made for the single-target PF from several aspects including importance proposal, computing efficiency, particle degeneracy/impoverishment and constrained/multi-modal systems. The second part of our review is on analyzing the intractable challenges raised within the general multitarget (multi-sensor) tracking due to random target birth and termination, false alarm, misdetection, measurement-to-track (M2T) uncertainty and track uncertainty. The mainstream multitarget PF approaches consist of two main classes, one based on M2T association approaches and the other not such as the finite set statistics-based PF. In either case, significant challenges remain due to unknown tracking scenarios and integrated tracking management. PMID:29168772
How facial attractiveness affects sustained attention.
Li, Jie; Oksama, Lauri; Hyönä, Jukka
2016-10-01
The present study investigated whether and how facial attractiveness affects sustained attention. We adopted a multiple-identity tracking paradigm, using attractive and unattractive faces as stimuli. Participants were required to track moving target faces amid distractor faces and report the final location of each target. In Experiment 1, the attractive and unattractive faces differed in both the low-level properties (i.e., luminance, contrast, and color saturation) and high-level properties (i.e., physical beauty and age). The results showed that the attractiveness of both the target and distractor faces affected the tracking performance: The attractive target faces were tracked better than the unattractive target faces; when the targets and distractors were both unattractive male faces, the tracking performance was poorer than when they were of different attractiveness. In Experiment 2, the low-level properties of the facial images were equalized. The results showed that the attractive target faces were still tracked better than unattractive targets while the effects related to distractor attractiveness ceased to exist. Taken together, the results indicate that during attentional tracking the high-level properties related to the attractiveness of the target faces can be automatically processed, and then they can facilitate the sustained attention on the attractive targets, either with or without the supplement of low-level properties. On the other hand, only low-level properties of the distractor faces can be processed. When the distractors share similar low-level properties with the targets, they can be grouped together, so that it would be more difficult to sustain attention on the individual targets. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Probabilistic multi-person localisation and tracking in image sequences
NASA Astrophysics Data System (ADS)
Klinger, T.; Rottensteiner, F.; Heipke, C.
2017-05-01
The localisation and tracking of persons in image sequences in commonly guided by recursive filters. Especially in a multi-object tracking environment, where mutual occlusions are inherent, the predictive model is prone to drift away from the actual target position when not taking context into account. Further, if the image-based observations are imprecise, the trajectory is prone to be updated towards a wrong position. In this work we address both these problems by using a new predictive model on the basis of Gaussian Process Regression, and by using generic object detection, as well as instance-specific classification, for refined localisation. The predictive model takes into account the motion of every tracked pedestrian in the scene and the prediction is executed with respect to the velocities of neighbouring persons. In contrast to existing methods our approach uses a Dynamic Bayesian Network in which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image, are modelled as unknowns. This allows the detection to be corrected before it is incorporated into the recursive filter. Our method is evaluated on a publicly available benchmark dataset and outperforms related methods in terms of geometric precision and tracking accuracy.
Research on regional intrusion prevention and control system based on target tracking
NASA Astrophysics Data System (ADS)
Liu, Yanfei; Wang, Jieling; Jiang, Ke; He, Yanhui; Wu, Zhilin
2017-08-01
In view of the fact that China’s border is very long and the border prevention and control measures are single, we designed a regional intrusion prevention and control system which based on target-tracking. The system consists of four parts: solar panel, radar, electro-optical equipment, unmanned aerial vehicle and intelligent tracking platform. The solar panel provides independent power for the entire system. The radar detects the target in real time and realizes the high precision positioning of suspicious targets, then through the linkage of electro-optical equipment, it can achieve full-time automatic precise tracking of targets. When the target appears within the range of detection, the drone will be launched to continue the tracking. The system is mainly to realize the full time, full coverage, whole process integration and active realtime control of the border area.
Active Multimodal Sensor System for Target Recognition and Tracking
Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen
2017-01-01
High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609
B-spline based image tracking by detection
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Sithiravel, Rajiv; Damini, Anthony; Kirubarajan, Thiagalingam; Rajan, Sreeraman
2016-05-01
Visual image tracking involves the estimation of the motion of any desired targets in a surveillance region using a sequence of images. A standard method of isolating moving targets in image tracking uses background subtraction. The standard background subtraction method is often impacted by irrelevant information in the images, which can lead to poor performance in image-based target tracking. In this paper, a B-Spline based image tracking is implemented. The novel method models the background and foreground using the B-Spline method followed by a tracking-by-detection algorithm. The effectiveness of the proposed algorithm is demonstrated.
Direction information in multiple object tracking is limited by a graded resource.
Horowitz, Todd S; Cohen, Michael A
2010-10-01
Is multiple object tracking (MOT) limited by a fixed set of structures (slots), a limited but divisible resource, or both? Here, we answer this question by measuring the precision of the direction representation for tracked targets. The signature of a limited resource is a decrease in precision as the square root of the tracking load. The signature of fixed slots is a fixed precision. Hybrid models predict a rapid decrease to asymptotic precision. In two experiments, observers tracked moving disks and reported target motion direction by adjusting a probe arrow. We derived the precision of representation of correctly tracked targets using a mixture distribution analysis. Precision declined with target load according to the square-root law up to six targets. This finding is inconsistent with both pure and hybrid slot models. Instead, directional information in MOT appears to be limited by a continuously divisible resource.
Trajectory Control of Rendezvous with Maneuver Target Spacecraft
NASA Technical Reports Server (NTRS)
Zhou, Zhinqiang
2012-01-01
In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.
On the internal target model in a tracking task
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Baron, S.
1981-01-01
An optimal control model for predicting operator's dynamic responses and errors in target tracking ability is summarized. The model, which predicts asymmetry in the tracking data, is dependent on target maneuvers and trajectories. Gunners perception, decision making, control, and estimate of target positions and velocity related to crossover intervals are discussed. The model provides estimates for means, standard deviations, and variances for variables investigated and for operator estimates of future target positions and velocities.
NASA Astrophysics Data System (ADS)
Potter, Michael; Bensch, Alexander; Dawson-Elli, Alexander; Linte, Cristian A.
2015-03-01
In minimally invasive surgical interventions direct visualization of the target area is often not available. Instead, clinicians rely on images from various sources, along with surgical navigation systems for guidance. These spatial localization and tracking systems function much like the Global Positioning Systems (GPS) that we are all well familiar with. In this work we demonstrate how the video feed from a typical camera, which could mimic a laparoscopic or endoscopic camera used during an interventional procedure, can be used to identify the pose of the camera with respect to the viewed scene and augment the video feed with computer-generated information, such as rendering of internal anatomy not visible beyond the imaged surface, resulting in a simple augmented reality environment. This paper describes the software and hardware environment and methodology for augmenting the real world with virtual models extracted from medical images to provide enhanced visualization beyond the surface view achieved using traditional imaging. Following intrinsic and extrinsic camera calibration, the technique was implemented and demonstrated using a LEGO structure phantom, as well as a 3D-printed patient-specific left atrial phantom. We assessed the quality of the overlay according to fiducial localization, fiducial registration, and target registration errors, as well as the overlay offset error. Using the software extensions we developed in conjunction with common webcams it is possible to achieve tracking accuracy comparable to that seen with significantly more expensive hardware, leading to target registration errors on the order of 2 mm.
Initial Considerations for Navigation and Flight Dynamics of a Crewed Near-Earth Object Mission
NASA Technical Reports Server (NTRS)
Holt, Greg N.; Getchius, Joel; Tracy, William H.
2011-01-01
A crewed mission to a Near-Earth Object (NEO) was recently identified as a NASA Space Policy goal and priority. In support of this goal, a study was conducted to identify the initial considerations for performing the navigation and flight dynamics tasks of this mission class. Although missions to a NEO are not new, the unique factors involved in human spaceflight present challenges that warrant special examination. During the cruise phase of the mission, one of the most challenging factors is the noisy acceleration environment associated with a crewed vehicle. Additionally, the presence of a human crew necessitates a timely return trip, which may need to be expedited in an emergency situation where the mission is aborted. Tracking, navigation, and targeting results are shown for sample human-class trajectories to NEOs. Additionally, the benefit of in-situ navigation beacons on robotic precursor missions is presented. This mission class will require a longer duration flight than Apollo and, unlike previous human missions, there will likely be limited communication and tracking availability. This will necessitate the use of more onboard navigation and targeting capabilities. Finally, the rendezvous and proximity operations near an asteroid will be unlike anything previously attempted in a crewed spaceflight. The unknown gravitational environment and physical surface properties of the NEO may cause the rendezvous to behave differently than expected. Symbiosis of the human pilot and onboard navigation/targeting are presented which give additional robustness to unforeseen perturbations.
The new approach for infrared target tracking based on the particle filter algorithm
NASA Astrophysics Data System (ADS)
Sun, Hang; Han, Hong-xia
2011-08-01
Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring, precision, and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection, the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure, but in order to capture the change of the state space, it need a certain amount of particles to ensure samples is enough, and this number will increase in accompany with dimension and increase exponentially, this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining", we expand the classic Mean Shift tracking framework .Based on the previous perspective, we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis, Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism, used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation, and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value .Last because of the gray and fusion target motion information, this approach also inhibit interference from the background, ultimately improve the stability and the real-time of the target track.
Attentional enhancement during multiple-object tracking.
Drew, Trafton; McCollough, Andrew W; Horowitz, Todd S; Vogel, Edward K
2009-04-01
What is the role of attention in multiple-object tracking? Does attention enhance target representations, suppress distractor representations, or both? It is difficult to ask this question in a purely behavioral paradigm without altering the very attentional allocation one is trying to measure. In the present study, we used event-related potentials to examine the early visual evoked responses to task-irrelevant probes without requiring an additional detection task. Subjects tracked two targets among four moving distractors and four stationary distractors. Brief probes were flashed on targets, moving distractors, stationary distractors, or empty space. We obtained a significant enhancement of the visually evoked P1 and N1 components (approximately 100-150 msec) for probes on targets, relative to distractors. Furthermore, good trackers showed larger differences between target and distractor probes than did poor trackers. These results provide evidence of early attentional enhancement of tracked target items and also provide a novel approach to measuring attentional allocation during tracking.
Tracking the Sensory Environment: An ERP Study of Probability and Context Updating in ASD
Westerfield, Marissa A.; Zinni, Marla; Vo, Khang; Townsend, Jeanne
2014-01-01
We recorded visual event-related brain potentials (ERPs) from 32 adult male participants (16 high-functioning participants diagnosed with Autism Spectrum Disorder (ASD) and 16 control participants, ranging in age from 18–53 yrs) during a three-stimulus oddball paradigm. Target and non-target stimulus probability was varied across three probability conditions, whereas the probability of a third non-target stimulus was held constant in all conditions. P3 amplitude to target stimuli was more sensitive to probability in ASD than in TD participants, whereas P3 amplitude to non-target stimuli was less responsive to probability in ASD participants. This suggests that neural responses to changes in event probability are attention-dependant in high-functioning ASD. The implications of these findings for higher-level behaviors such as prediction and planning are discussed. PMID:24488156
2013-09-01
75 Figure 25: Swing Weight Analysis....................................................................................76 Figure 26...AN/SPY-1D radar “can track golf ball-sized targets at ranges in excess of 165 kilometers” (Robinson, 2004). Given the radar cross section (RCS) of a... golf ball (calculated as a simple metallic sphere), it was determined that this would correspond to a maximum detection range beyond the Launch
SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlemann, I; Graduate School for Computing in Medicine and Life Sciences, University of Luebeck; Jauer, P
Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety featuresmore » create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking applications, including image quality control and target tracking.« less
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.
Liu, Hua; Wu, Wen
2017-03-31
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.
Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking
Liu, Hua; Wu, Wen
2017-01-01
Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking. PMID:28362347
NASA Technical Reports Server (NTRS)
Kirschner, S. M.; Samii, M. V.; Broaddus, S. R.; Doll, C. E.
1988-01-01
The Preliminary Orbit Determination System (PODS) provides early orbit determination capability in the Trajectory Computation and Orbital Products System (TCOPS) for a Tracking and Data Relay Satellite System (TDRSS)-tracked spacecraft. PODS computes a set of orbit states from an a priori estimate and six tracking measurements, consisting of any combination of TDRSS range and Doppler tracking measurements. PODS uses the homotopy continuation method to solve a set of nonlinear equations, and it is particularly effective for the case when the a priori estimate is not well known. Since range and Doppler measurements produce multiple states in PODS, a screening technique selects the desired state. PODS is executed in the TCOPS environment and can directly access all operational data sets. At the completion of the preliminary orbit determination, the PODS-generated state, along with additional tracking measurements, can be directly input to the differential correction (DC) process to generate an improved state. To validate the computational and operational capabilities of PODS, tests were performed using simulated TDRSS tracking measurements for the Cosmic Background Explorer (COBE) satellite and using real TDRSS measurements for the Earth Radiation Budget Satellite (ERBS) and the Solar Mesosphere Explorer (SME) spacecraft. The effects of various measurement combinations, varying arc lengths, and levels of degradation of the a priori state vector on the PODS solutions were considered.
4D Optimization of Scanned Ion Beam Tracking Therapy for Moving Tumors
Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph
2014-01-01
Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking. PMID:24889215
4D optimization of scanned ion beam tracking therapy for moving tumors
NASA Astrophysics Data System (ADS)
Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph
2014-07-01
Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.
NASA Astrophysics Data System (ADS)
Bo, Nyan Bo; Deboeverie, Francis; Veelaert, Peter; Philips, Wilfried
2017-09-01
Occlusion is one of the most difficult challenges in the area of visual tracking. We propose an occlusion handling framework to improve the performance of local tracking in a smart camera view in a multicamera network. We formulate an extensible energy function to quantify the quality of a camera's observation of a particular target by taking into account both person-person and object-person occlusion. Using this energy function, a smart camera assesses the quality of observations over all targets being tracked. When it cannot adequately observe of a target, a smart camera estimates the quality of observation of the target from view points of other assisting cameras. If a camera with better observation of the target is found, the tracking task of the target is carried out with the assistance of that camera. In our framework, only positions of persons being tracked are exchanged between smart cameras. Thus, communication bandwidth requirement is very low. Performance evaluation of our method on challenging video sequences with frequent and severe occlusions shows that the accuracy of a baseline tracker is considerably improved. We also report the performance comparison to the state-of-the-art trackers in which our method outperforms.
Gregori Grgič, Regina; Calore, Enrico; de'Sperati, Claudio
2016-01-01
Whereas overt visuospatial attention is customarily measured with eye tracking, covert attention is assessed by various methods. Here we exploited Steady-State Visual Evoked Potentials (SSVEPs) - the oscillatory responses of the visual cortex to incoming flickering stimuli - to record the movements of covert visuospatial attention in a way operatively similar to eye tracking (attention tracking), which allowed us to compare motion observation and motion extrapolation with and without eye movements. Observers fixated a central dot and covertly tracked a target oscillating horizontally and sinusoidally. In the background, the left and the right halves of the screen flickered at two different frequencies, generating two SSVEPs in occipital regions whose size varied reciprocally as observers attended to the moving target. The two signals were combined into a single quantity that was modulated at the target frequency in a quasi-sinusoidal way, often clearly visible in single trials. The modulation continued almost unchanged when the target was switched off and observers mentally extrapolated its motion in imagery, and also when observers pointed their finger at the moving target during covert tracking, or imagined doing so. The amplitude of modulation during covert tracking was ∼25-30% of that measured when observers followed the target with their eyes. We used 4 electrodes in parieto-occipital areas, but similar results were achieved with a single electrode in Oz. In a second experiment we tested ramp and step motion. During overt tracking, SSVEPs were remarkably accurate, showing both saccadic-like and smooth pursuit-like modulations of cortical responsiveness, although during covert tracking the modulation deteriorated. Covert tracking was better with sinusoidal motion than ramp motion, and better with moving targets than stationary ones. The clear modulation of cortical responsiveness recorded during both overt and covert tracking, identical for motion observation and motion extrapolation, suggests to include covert attention movements in enactive theories of mental imagery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Robust human detection, tracking, and recognition in crowded urban areas
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2014-06-01
In this paper, we present algorithms we recently developed to support an automated security surveillance system for very crowded urban areas. In our approach for human detection, the color features are obtained by taking the difference of R, G, B spectrum and converting R, G, B to HSV (Hue, Saturation, Value) space. Morphological patch filtering and regional minimum and maximum segmentation on the extracted features are applied for target detection. The human tracking process approach includes: 1) Color and intensity feature matching track candidate selection; 2) Separate three parallel trackers for color, bright (above mean intensity), and dim (below mean intensity) detections, respectively; 3) Adaptive track gate size selection for reducing false tracking probability; and 4) Forward position prediction based on previous moving speed and direction for continuing tracking even when detections are missed from frame to frame. The Human target recognition is improved with a Super-Resolution Image Enhancement (SRIE) process. This process can improve target resolution by 3-5 times and can simultaneously process many targets that are tracked. Our approach can project tracks from one camera to another camera with a different perspective viewing angle to obtain additional biometric features from different perspective angles, and to continue tracking the same person from the 2nd camera even though the person moved out of the Field of View (FOV) of the 1st camera with `Tracking Relay'. Finally, the multiple cameras at different view poses have been geo-rectified to nadir view plane and geo-registered with Google- Earth (or other GIS) to obtain accurate positions (latitude, longitude, and altitude) of the tracked human for pin-point targeting and for a large area total human motion activity top-view. Preliminary tests of our algorithms indicate than high probability of detection can be achieved for both moving and stationary humans. Our algorithms can simultaneously track more than 100 human targets with averaged tracking period (time length) longer than the performance of the current state-of-the-art.
Target motion tracking in MRI-guided transrectal robotic prostate biopsy.
Tadayyon, Hadi; Lasso, Andras; Kaushal, Aradhana; Guion, Peter; Fichtinger, Gabor
2011-11-01
MRI-guided prostate needle biopsy requires compensation for organ motion between target planning and needle placement. Two questions are studied and answered in this paper: 1) is rigid registration sufficient in tracking the targets with an error smaller than the clinically significant size of prostate cancer and 2) what is the effect of the number of intraoperative slices on registration accuracy and speed? we propose multislice-to-volume registration algorithms for tracking the biopsy targets within the prostate. Three orthogonal plus additional transverse intraoperative slices are acquired in the approximate center of the prostate and registered with a high-resolution target planning volume. Both rigid and deformable scenarios were implemented. Both simulated and clinical MRI-guided robotic prostate biopsy data were used to assess tracking accuracy. average registration errors in clinical patient data were 2.6 mm for the rigid algorithm and 2.1 mm for the deformable algorithm. rigid tracking appears to be promising. Three tracking slices yield significantly high registration speed with an affordable error.
SU-E-J-188: Theoretical Estimation of Margin Necessary for Markerless Motion Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R; Block, A; Harkenrider, M
2015-06-15
Purpose: To estimate the margin necessary to adequately cover the target using markerless motion tracking (MMT) of lung lesions given the uncertainty in tracking and the size of the target. Methods: Simulations were developed in Matlab to determine the effect of tumor size and tracking uncertainty on the margin necessary to achieve adequate coverage of the target. For simplicity, the lung tumor was approximated by a circle on a 2D radiograph. The tumor was varied in size from a diameter of 0.1 − 30 mm in increments of 0.1 mm. From our previous studies using dual energy markerless motion tracking,more » we estimated tracking uncertainties in x and y to have a standard deviation of 2 mm. A Gaussian was used to simulate the deviation between the tracked location and true target location. For each size tumor, 100,000 deviations were randomly generated, the margin necessary to achieve at least 95% coverage 95% of the time was recorded. Additional simulations were run for varying uncertainties to demonstrate the effect of the tracking accuracy on the margin size. Results: The simulations showed an inverse relationship between tumor size and margin necessary to achieve 95% coverage 95% of the time using the MMT technique. The margin decreased exponentially with target size. An increase in tracking accuracy expectedly showed a decrease in margin size as well. Conclusion: In our clinic a 5 mm expansion of the internal target volume (ITV) is used to define the planning target volume (PTV). These simulations show that for tracking accuracies in x and y better than 2 mm, the margin required is less than 5 mm. This simple simulation can provide physicians with a guideline estimation for the margin necessary for use of MMT clinically based on the accuracy of their tracking and the size of the tumor.« less
Tracking fluid-borne odors in diverse and dynamic environments using multiple sensory mechanisms
NASA Astrophysics Data System (ADS)
Taylor, Brian Kyle
The ability to locate odor sources in different types of environments (i.e. diverse) and environments that change radically during the mission (i.e., dynamic) is essential. While many engineered odor tracking systems have been developed, they appear to be designed for a particular environment (e.g., strong or low flow). In field conditions, agents may encounter both. Insect olfactory orientation studies show that several animals can locate odor sources in both high and low flow environments, and environments where the wind vanishes during tracking behavior. Furthermore, animals use multi-modal sensing, including olfaction, vision and touch to localize a source. This work uses simulated and hardware environments to explore how engineered systems can maintain wind-driven tracking behavior in diverse and dynamic environments. The simulation uses olfaction, vision and tactile attributes to track and localize a source in the following environments: high flow, low flow, and transition from high to low flow (i.e., Wind Stop). The hardware platform tests two disparate tracking strategies (including the simulated strategy) in an environment that transitions from strong to low flow. Results indicate that using a remembered wind direction post wind-shutoff is a viable way to maintain wind-driven tracking behavior in a wind stop environment, which can help bridge the gap between high flow and low flow strategies. Also, multi-modal sensing with tactile attributes, vision and olfaction helps a vehicle to localize a source. In addition to engineered systems, the moth Manduca sexta is challenged to track in the following environments: Wind and Odor, Wind Stop, Odor and No Wind, No Odor and No Wind to gain a better understanding of animal behavior in these environments. Results show that contrary to previous studies of different moth species, M. sexta does not generally maintain its wind-driven tracking behavior post-wind shutoff, but instead executes a stereotyped sequence of maneuvers followed by odor-modulated undirected exploration of its environment. In the Odor and No Wind environment, animals become biased towards the area of the arena where odor is located compared to the No Odor and No Wind environment. Robot and animal results are compared to learn more about both.
The research on the mean shift algorithm for target tracking
NASA Astrophysics Data System (ADS)
CAO, Honghong
2017-06-01
The traditional mean shift algorithm for target tracking is effective and high real-time, but there still are some shortcomings. The traditional mean shift algorithm is easy to fall into local optimum in the tracking process, the effectiveness of the method is weak when the object is moving fast. And the size of the tracking window never changes, the method will fail when the size of the moving object changes, as a result, we come up with a new method. We use particle swarm optimization algorithm to optimize the mean shift algorithm for target tracking, Meanwhile, SIFT (scale-invariant feature transform) and affine transformation make the size of tracking window adaptive. At last, we evaluate the method by comparing experiments. Experimental result indicates that the proposed method can effectively track the object and the size of the tracking window changes.
Multiple-target tracking implementation in the ebCMOS camera system: the LUSIPHER prototype
NASA Astrophysics Data System (ADS)
Doan, Quang Tuyen; Barbier, Remi; Dominjon, Agnes; Cajgfinger, Thomas; Guerin, Cyrille
2012-06-01
The domain of the low light imaging systems progresses very fast, thanks to detection and electronic multiplication technology evolution, such as the emCCD (electron multiplying CCD) or the ebCMOS (electron bombarded CMOS). We present an ebCMOS camera system that is able to track every 2 ms more than 2000 targets with a mean number of photons per target lower than two. The point light sources (targets) are spots generated by a microlens array (Shack-Hartmann) used in adaptive optics. The Multiple-Target-Tracking designed and implemented on a rugged workstation is described. The results and the performances of the system on the identification and tracking are presented and discussed.
Video Guidance Sensors Using Remotely Activated Targets
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.
2004-01-01
Four updated video guidance sensor (VGS) systems have been proposed. As described in a previous NASA Tech Briefs article, a VGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. The VGS provides relative position and attitude (6-DOF) information between the VGS and its target. In the original intended application, the two vehicles would be spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In the first two of the four VGS systems as now proposed, the tracked vehicle would include active targets that would light up on command from the tracking vehicle, and a video camera on the tracking vehicle would be synchronized with, and would acquire images of, the active targets. The video camera would also acquire background images during the periods between target illuminations. The images would be digitized and the background images would be subtracted from the illuminated-target images. Then the position and orientation of the tracked vehicle relative to the tracking vehicle would be computed from the known geometric relationships among the positions of the targets in the image, the positions of the targets relative to each other and to the rest of the tracked vehicle, and the position and orientation of the video camera relative to the rest of the tracking vehicle. The major difference between the first two proposed systems and prior active-target VGS systems lies in the techniques for synchronizing the flashing of the active targets with the digitization and processing of image data. In the prior active-target VGS systems, synchronization was effected, variously, by use of either a wire connection or the Global Positioning System (GPS). In three of the proposed VGS systems, the synchronizing signal would be generated on, and transmitted from, the tracking vehicle. In the first proposed VGS system, the tracking vehicle would transmit a pulse of light. Upon reception of the pulse, circuitry on the tracked vehicle would activate the target lights. During the pulse, the target image acquired by the camera would be digitized. When the pulse was turned off, the target lights would be turned off and the background video image would be digitized. The second proposed system would function similarly to the first proposed system, except that the transmitted synchronizing signal would be a radio pulse instead of a light pulse. In this system, the signal receptor would be a rectifying antenna. If the signal contained sufficient power, the output of the rectifying antenna could be used to activate the target lights, making it unnecessary to include a battery or other power supply for the targets on the tracked vehicle.
Automated multiple target detection and tracking in UAV videos
NASA Astrophysics Data System (ADS)
Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie
2010-04-01
In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.
NASA Astrophysics Data System (ADS)
Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.
2016-12-01
The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive track makes users experience a virtual dive survey. In addition, by synchronizing a virtual dive track with videos, it is easy to understand living organisms and geological environments of a dive point. Therefore, these functions will visually support understanding of deep-sea environments in lectures and educational activities.
A model-based 3D template matching technique for pose acquisition of an uncooperative space object.
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2015-03-16
This paper presents a customized three-dimensional template matching technique for autonomous pose determination of uncooperative targets. This topic is relevant to advanced space applications, like active debris removal and on-orbit servicing. The proposed technique is model-based and produces estimates of the target pose without any prior pose information, by processing three-dimensional point clouds provided by a LIDAR. These estimates are then used to initialize a pose tracking algorithm. Peculiar features of the proposed approach are the use of a reduced number of templates and the idea of building the database of templates on-line, thus significantly reducing the amount of on-board stored data with respect to traditional techniques. An algorithm variant is also introduced aimed at further accelerating the pose acquisition time and reducing the computational cost. Technique performance is investigated within a realistic numerical simulation environment comprising a target model, LIDAR operation and various target-chaser relative dynamics scenarios, relevant to close-proximity flight operations. Specifically, the capability of the proposed techniques to provide a pose solution suitable to initialize the tracking algorithm is demonstrated, as well as their robustness against highly variable pose conditions determined by the relative dynamics. Finally, a criterion for autonomous failure detection of the presented techniques is presented.
Maritime microwave radar and electro-optical data fusion for homeland security
NASA Astrophysics Data System (ADS)
Seastrand, Mark J.
2004-09-01
US Customs is responsible for monitoring all incoming air and maritime traffic, including the island of Puerto Rico as a US territory. Puerto Rico offers potentially obscure points of entry to drug smugglers. This environment sets forth a formula for an illegal drug trade - based relatively near the continental US. The US Customs Caribbean Air and Marine Operations Center (CAMOC), located in Puntas Salinas, has the charter to monitor maritime and Air Traffic Control (ATC) radars. The CAMOC monitors ATC radars and advises the Air and Marine Branch of US Customs of suspicious air activity. In turn, the US Coast Guard and/or US Customs will launch air and sea assets as necessary. The addition of a coastal radar and camera system provides US Customs a maritime monitoring capability for the northwestern end of Puerto Rico (Figure 1). Command and Control of the radar and camera is executed at the CAMOC, located 75 miles away. The Maritime Microwave Surveillance Radar performs search, primary target acquisition and target tracking while the Midwave Infrared (MWIR) camera performs target identification. This wide area surveillance, using a combination of radar and MWIR camera, offers the CAMOC a cost and manpower effective approach to monitor, track and identify maritime targets.
Renewal of the Attentive Sensing Project
2006-02-07
decisions about target presence or absence, is denoted track before detect . We have investigated joint tracking and detection in the context of the foveal...computationally tractable bounds. 4 Task 2: Sensor Configuration for Tracking and Track Before Detect Task 2 consisted of investigation of attentive...strategy to multiple targets and to track before detect sensors. To apply principles developed in the context of foveal sensors to more immediately
Target Tracking in Heavy-Tailed Clutter Using Amplitude Information
2009-07-01
to integrate the data before the detection decision is made, as done in so- called Track - Before - Detect (TBD) [5,14]. For very low SNR, when the target...Processes. McGraw-Hill, 2002. [14] M. G. Rutten, N. J. Gordon, and S. Maskell, “Recur- sive track - before - detect with target amplitude fluctua- tions,” in IEE
Intelligent navigation and accurate positioning of an assist robot in indoor environments
NASA Astrophysics Data System (ADS)
Hua, Bin; Rama, Endri; Capi, Genci; Jindai, Mitsuru; Tsuri, Yosuke
2017-12-01
Intact robot's navigation and accurate positioning in indoor environments are still challenging tasks. Especially in robot applications, assisting disabled and/or elderly people in museums/art gallery environments. In this paper, we present a human-like navigation method, where the neural networks control the wheelchair robot to reach the goal location safely, by imitating the supervisor's motions, and positioning in the intended location. In a museum similar environment, the mobile robot starts navigation from various positions, and uses a low-cost camera to track the target picture, and a laser range finder to make a safe navigation. Results show that the neural controller with the Conjugate Gradient Backpropagation training algorithm gives a robust response to guide the mobile robot accurately to the goal position.
NASA Astrophysics Data System (ADS)
Yang, Hua; Zhong, Donghong; Liu, Chenyi; Song, Kaiyou; Yin, Zhouping
2018-03-01
Object tracking is still a challenging problem in computer vision, as it entails learning an effective model to account for appearance changes caused by occlusion, out of view, plane rotation, scale change, and background clutter. This paper proposes a robust visual tracking algorithm called deep convolutional neural network (DCNNCT) to simultaneously address these challenges. The proposed DCNNCT algorithm utilizes a DCNN to extract the image feature of a tracked target, and the full range of information regarding each convolutional layer is used to express the image feature. Subsequently, the kernelized correlation filters (CF) in each convolutional layer are adaptively learned, the correlation response maps of that are combined to estimate the location of the tracked target. To avoid the case of tracking failure, an online random ferns classifier is employed to redetect the tracked target, and a dual-threshold scheme is used to obtain the final target location by comparing the tracking result with the detection result. Finally, the change in scale of the target is determined by building scale pyramids and training a CF. Extensive experiments demonstrate that the proposed algorithm is effective at tracking, especially when evaluated using an index called the overlap rate. The DCNNCT algorithm is also highly competitive in terms of robustness with respect to state-of-the-art trackers in various challenging scenarios.
Distributed cluster management techniques for unattended ground sensor networks
NASA Astrophysics Data System (ADS)
Essawy, Magdi A.; Stelzig, Chad A.; Bevington, James E.; Minor, Sharon
2005-05-01
Smart Sensor Networks are becoming important target detection and tracking tools. The challenging problems in such networks include the sensor fusion, data management and communication schemes. This work discusses techniques used to distribute sensor management and multi-target tracking responsibilities across an ad hoc, self-healing cluster of sensor nodes. Although miniaturized computing resources possess the ability to host complex tracking and data fusion algorithms, there still exist inherent bandwidth constraints on the RF channel. Therefore, special attention is placed on the reduction of node-to-node communications within the cluster by minimizing unsolicited messaging, and distributing the sensor fusion and tracking tasks onto local portions of the network. Several challenging problems are addressed in this work including track initialization and conflict resolution, track ownership handling, and communication control optimization. Emphasis is also placed on increasing the overall robustness of the sensor cluster through independent decision capabilities on all sensor nodes. Track initiation is performed using collaborative sensing within a neighborhood of sensor nodes, allowing each node to independently determine if initial track ownership should be assumed. This autonomous track initiation prevents the formation of duplicate tracks while eliminating the need for a central "management" node to assign tracking responsibilities. Track update is performed as an ownership node requests sensor reports from neighboring nodes based on track error covariance and the neighboring nodes geo-positional location. Track ownership is periodically recomputed using propagated track states to determine which sensing node provides the desired coverage characteristics. High fidelity multi-target simulation results are presented, indicating the distribution of sensor management and tracking capabilities to not only reduce communication bandwidth consumption, but to also simplify multi-target tracking within the cluster.
Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2017-01-01
Purpose Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that calibration can be performed in the OR on demand. Methods We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration result in the OR, we integrated a tube phantom with fCalib and overlaid a virtual representation of the tube on the live video scene. Results We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggested that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, would affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s – 22.7 s). Conclusions We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand. PMID:27250853
Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj
2016-06-01
Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that the calibration can be performed in the OR on demand. We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration results in the OR, we integrated a tube phantom with fCalib prototype and overlaid a virtual representation of the tube on the live video scene. We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggest that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, might affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s-22.7 s). We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand.
GLAS Spacecraft Pointing Study
NASA Technical Reports Server (NTRS)
Born, George H.; Gold, Kenn; Ondrey, Michael; Kubitschek, Dan; Axelrad, Penina; Komjathy, Attila
1998-01-01
Science requirements for the GLAS mission demand that the laser altimeter be pointed to within 50 m of the location of the previous repeat ground track. The satellite will be flown in a repeat orbit of 182 days. Operationally, the required pointing information will be determined on the ground using the nominal ground track, to which pointing is desired, and the current propagated orbit of the satellite as inputs to the roll computation algorithm developed by CCAR. The roll profile will be used to generate a set of fit coefficients which can be uploaded on a daily basis and used by the on-board attitude control system. In addition, an algorithm has been developed for computation of the associated command quaternions which will be necessary when pointing at targets of opportunity. It may be desirable in the future to perform the roll calculation in an autonomous real-time mode on-board the spacecraft. GPS can provide near real-time tracking of the satellite, and the nominal ground track can be stored in the on-board computer. It will be necessary to choose the spacing of this nominal ground track to meet storage requirements in the on-board environment. Several methods for generating the roll profile from a sparse reference ground track are presented.
A game theory approach to target tracking in sensor networks.
Gu, Dongbing
2011-02-01
In this paper, we investigate a moving-target tracking problem with sensor networks. Each sensor node has a sensor to observe the target and a processor to estimate the target position. It also has wireless communication capability but with limited range and can only communicate with neighbors. The moving target is assumed to be an intelligent agent, which is "smart" enough to escape from the detection by maximizing the estimation error. This adversary behavior makes the target tracking problem more difficult. We formulate this target estimation problem as a zero-sum game in this paper and use a minimax filter to estimate the target position. The minimax filter is a robust filter that minimizes the estimation error by considering the worst case noise. Furthermore, we develop a distributed version of the minimax filter for multiple sensor nodes. The distributed computation is implemented via modeling the information received from neighbors as measurements in the minimax filter. The simulation results show that the target tracking algorithm proposed in this paper provides a satisfactory result.
Dissociable Frontal Controls during Visible and Memory-guided Eye-Tracking of Moving Targets
Ding, Jinhong; Powell, David; Jiang, Yang
2009-01-01
When tracking visible or occluded moving targets, several frontal regions including the frontal eye fields (FEF), dorsal-lateral prefrontal cortex (DLPFC), and Anterior Cingulate Cortex (ACC) are involved in smooth pursuit eye movements (SPEM). To investigate how these areas play different roles in predicting future locations of moving targets, twelve healthy college students participated in a smooth pursuit task of visual and occluded targets. Their eye movements and brain responses measured by event-related functional MRI were simultaneously recorded. Our results show that different visual cues resulted in time discrepancies between physical and estimated pursuit time only when the moving dot was occluded. Visible phase velocity gain was higher than that of occlusion phase. We found bilateral FEF association with eye-movement whether moving targets are visible or occluded. However, the DLPFC and ACC showed increased activity when tracking and predicting locations of occluded moving targets, and were suppressed during smooth pursuit of visible targets. When visual cues were increasingly available, less activation in the DLPFC and the ACC was observed. Additionally, there was a significant hemisphere effect in DLPFC, where right DLPFC showed significantly increased responses over left when pursuing occluded moving targets. Correlation results revealed that DLPFC, the right DLPFC in particular, communicates more with FEF during tracking of occluded moving targets (from memory). The ACC modulates FEF more during tracking of visible targets (likely related to visual attention). Our results suggest that DLPFC and ACC modulate FEF and cortical networks differentially during visible and memory-guided eye tracking of moving targets. PMID:19434603
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
Infrared small target detection based on multiscale center-surround contrast measure
NASA Astrophysics Data System (ADS)
Fu, Hao; Long, Yunli; Zhu, Ran; An, Wei
2018-04-01
Infrared(IR) small target detection plays a critical role in the Infrared Search And Track (IRST) system. Although it has been studied for years, there are some difficulties remained to the clutter environment. According to the principle of human discrimination of small targets from a natural scene that there is a signature of discontinuity between the object and its neighboring regions, we develop an efficient method for infrared small target detection called multiscale centersurround contrast measure (MCSCM). First, to determine the maximum neighboring window size, an entropy-based window selection technique is used. Then, we construct a novel multiscale center-surround contrast measure to calculate the saliency map. Compared with the original image, the MCSCM map has less background clutters and noise residual. Subsequently, a simple threshold is used to segment the target. Experimental results show our method achieves better performance.
2010-11-01
pected target motion. Along this line, Wettergren [5] analyzed the performance of the track - before - detect schemes for the sensor networks. Furthermore...dressed by Baumgartner and Ferrari [11] for the reorganization of the sensor field to achieve the maximum coverage. The track - before - detect -based optimal...confirming a target. In accordance with the track - before - detect paradigm [4], a moving target is detected if the kd (typically kd = 3 or 4) sensors detect
Fast Markerless Tracking for Augmented Reality in Planar Environment
NASA Astrophysics Data System (ADS)
Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim
2015-12-01
Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.
Huang, Chien-Ting; Hwang, Ing-Shiou
2012-01-01
Visual feedback and non-visual information play different roles in tracking of an external target. This study explored the respective roles of the visual and non-visual information in eleven healthy volunteers who coupled the manual cursor to a rhythmically moving target of 0.5 Hz under three sensorimotor conditions: eye-alone tracking (EA), eye-hand tracking with visual feedback of manual outputs (EH tracking), and the same tracking without such feedback (EHM tracking). Tracking error, kinematic variables, and movement intermittency (saccade and speed pulse) were contrasted among tracking conditions. The results showed that EHM tracking exhibited larger pursuit gain, less tracking error, and less movement intermittency for the ocular plant than EA tracking. With the vision of manual cursor, EH tracking achieved superior tracking congruency of the ocular and manual effectors with smaller movement intermittency than EHM tracking, except that the rate precision of manual action was similar for both types of tracking. The present study demonstrated that visibility of manual consequences altered mutual relationships between movement intermittency and tracking error. The speed pulse metrics of manual output were linked to ocular tracking error, and saccade events were time-locked to the positional error of manual tracking during EH tracking. In conclusion, peripheral non-visual information is critical to smooth pursuit characteristics and rate control of rhythmic manual tracking. Visual information adds to eye-hand synchrony, underlying improved amplitude control and elaborate error interpretation during oculo-manual tracking. PMID:23236498
Projection-based circular constrained state estimation and fusion over long-haul links
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qiang; Rao, Nageswara S.
In this paper, we consider a scenario where sensors are deployed over a large geographical area for tracking a target with circular nonlinear constraints on its motion dynamics. The sensor state estimates are sent over long-haul networks to a remote fusion center for fusion. We are interested in different ways to incorporate the constraints into the estimation and fusion process in the presence of communication loss. In particular, we consider closed-form projection-based solutions, including rules for fusing the estimates and for incorporating the constraints, which jointly can guarantee timely fusion often required in realtime systems. We test the performance ofmore » these methods in the long-haul tracking environment using a simple example.« less
The role of visual attention in multiple object tracking: evidence from ERPs.
Doran, Matthew M; Hoffman, James E
2010-01-01
We examined the role of visual attention in the multiple object tracking (MOT) task by measuring the amplitude of the N1 component of the event-related potential (ERP) to probe flashes presented on targets, distractors, or empty background areas. We found evidence that visual attention enhances targets and suppresses distractors (Experiment 1 & 3). However, we also found that when tracking load was light (two targets and two distractors), accurate tracking could be carried out without any apparent contribution from the visual attention system (Experiment 2). Our results suggest that attentional selection during MOT is flexibly determined by task demands as well as tracking load and that visual attention may not always be necessary for accurate tracking.
Real-time seam tracking control system based on line laser visions
NASA Astrophysics Data System (ADS)
Zou, Yanbiao; Wang, Yanbo; Zhou, Weilin; Chen, Xiangzhi
2018-07-01
A set of six-degree-of-freedom robotic welding automatic tracking platform was designed in this study to realize the real-time tracking of weld seams. Moreover, the feature point tracking method and the adaptive fuzzy control algorithm in the welding process were studied and analyzed. A laser vision sensor and its measuring principle were designed and studied, respectively. Before welding, the initial coordinate values of the feature points were obtained using morphological methods. After welding, the target tracking method based on Gaussian kernel was used to extract the real-time feature points of the weld. An adaptive fuzzy controller was designed to input the deviation value of the feature points and the change rate of the deviation into the controller. The quantization factors, scale factor, and weight function were adjusted in real time. The input and output domains, fuzzy rules, and membership functions were constantly updated to generate a series of smooth bias robot voltage. Three groups of experiments were conducted on different types of curve welds in a strong arc and splash noise environment using the welding current of 120 A short-circuit Metal Active Gas (MAG) Arc Welding. The tracking error was less than 0.32 mm and the sensor's metrical frequency can be up to 20 Hz. The end of the torch run smooth during welding. Weld trajectory can be tracked accurately, thereby satisfying the requirements of welding applications.
Tracking Temporal Hazard in the Human Electroencephalogram Using a Forward Encoding Model
2018-01-01
Abstract Human observers automatically extract temporal contingencies from the environment and predict the onset of future events. Temporal predictions are modeled by the hazard function, which describes the instantaneous probability for an event to occur given it has not occurred yet. Here, we tackle the question of whether and how the human brain tracks continuous temporal hazard on a moment-to-moment basis, and how flexibly it adjusts to strictly implicit variations in the hazard function. We applied an encoding-model approach to human electroencephalographic data recorded during a pitch-discrimination task, in which we implicitly manipulated temporal predictability of the target tones by varying the interval between cue and target tone (i.e. the foreperiod). Critically, temporal predictability either was driven solely by the passage of time (resulting in a monotonic hazard function) or was modulated to increase at intermediate foreperiods (resulting in a modulated hazard function with a peak at the intermediate foreperiod). Forward-encoding models trained to predict the recorded EEG signal from different temporal hazard functions were able to distinguish between experimental conditions, showing that implicit variations of temporal hazard bear tractable signatures in the human electroencephalogram. Notably, this tracking signal was reconstructed best from the supplementary motor area, underlining this area’s link to cognitive processing of time. Our results underline the relevance of temporal hazard to cognitive processing and show that the predictive accuracy of the encoding-model approach can be utilized to track abstract time-resolved stimuli. PMID:29740594
Hayhoe, Mary M; Matthis, Jonathan Samir
2018-08-06
The development of better eye and body tracking systems, and more flexible virtual environments have allowed more systematic exploration of natural vision and contributed a number of insights. In natural visually guided behaviour, humans make continuous sequences of sensory-motor decisions to satisfy current goals, and the role of vision is to provide the relevant information in order to achieve those goals. This paper reviews the factors that control gaze in natural visually guided actions such as locomotion, including the rewards and costs associated with the immediate behavioural goals, uncertainty about the state of the world and prior knowledge of the environment. These general features of human gaze control may inform the development of artificial systems.
40 CFR 73.30 - Allowance tracking system accounts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...
40 CFR 73.30 - Allowance tracking system accounts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Allowance tracking system accounts. 73.30 Section 73.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Allowance Tracking System § 73.30 Allowance tracking system...
Tracking Multiple Video Targets with an Improved GM-PHD Tracker
Zhou, Xiaolong; Yu, Hui; Liu, Honghai; Li, Youfu
2015-01-01
Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art. PMID:26633422
Oemisch, Mariann; Watson, Marcus R.; Womelsdorf, Thilo; Schubö, Anna
2017-01-01
Previously learned reward values can have a pronounced impact, behaviorally and neurophysiologically, on the allocation of selective attention. All else constant, stimuli previously associated with a high value gain stronger attentional prioritization than stimuli previously associated with a low value. The N2pc, an ERP component indicative of attentional target selection, has been shown to reflect aspects of this prioritization, by changes of mean amplitudes closely corresponding to selective enhancement of high value target processing and suppression of high value distractor processing. What has remained unclear so far is whether the N2pc also reflects the flexible and repeated behavioral adjustments needed in a volatile task environment, in which the values of stimuli are reversed often and unannounced. Using a value-based reversal learning task, we found evidence that the N2pc amplitude flexibly and reversibly tracks value-based choices during the learning of reward associated stimulus colors. Specifically, successful learning of current value-contingencies was associated with reduced N2pc amplitudes, and this effect was more apparent for distractor processing, compared with target processing. In addition, following a value reversal the feedback related negativity(FRN), an ERP component that reflects feedback processing, was amplified and co-occurred with increased N2pc amplitudes in trials following low-value feedback. Importantly, participants that showed the greatest adjustment in N2pc amplitudes based on feedback were also the most efficient learners. These results allow further insight into how changes in attentional prioritization in an uncertain and volatile environment support flexible adjustments of behavior. PMID:29163113
Oemisch, Mariann; Watson, Marcus R; Womelsdorf, Thilo; Schubö, Anna
2017-01-01
Previously learned reward values can have a pronounced impact, behaviorally and neurophysiologically, on the allocation of selective attention. All else constant, stimuli previously associated with a high value gain stronger attentional prioritization than stimuli previously associated with a low value. The N2pc, an ERP component indicative of attentional target selection, has been shown to reflect aspects of this prioritization, by changes of mean amplitudes closely corresponding to selective enhancement of high value target processing and suppression of high value distractor processing. What has remained unclear so far is whether the N2pc also reflects the flexible and repeated behavioral adjustments needed in a volatile task environment, in which the values of stimuli are reversed often and unannounced. Using a value-based reversal learning task, we found evidence that the N2pc amplitude flexibly and reversibly tracks value-based choices during the learning of reward associated stimulus colors. Specifically, successful learning of current value-contingencies was associated with reduced N2pc amplitudes, and this effect was more apparent for distractor processing, compared with target processing. In addition, following a value reversal the feedback related negativity(FRN), an ERP component that reflects feedback processing, was amplified and co-occurred with increased N2pc amplitudes in trials following low-value feedback. Importantly, participants that showed the greatest adjustment in N2pc amplitudes based on feedback were also the most efficient learners. These results allow further insight into how changes in attentional prioritization in an uncertain and volatile environment support flexible adjustments of behavior.
Lack of Free Choice Reveals the Cost of Having to Search for More Than One Object
Ort, Eduard; Fahrenfort, Johannes J.; Olivers, Christian N. L.
2017-01-01
It is debated whether people can actively search for more than one object or whether this results in switch costs. Using a gaze-contingent eye-tracking paradigm, we revealed a crucial role for cognitive control in multiple-target search. We instructed participants to simultaneously search for two target objects presented among distractors. In one condition, both targets were available, which gave the observer free choice of what to search for and allowed for proactive control. In the other condition, only one of the two targets was available, so that the choice was imposed, and a reactive mechanism would be required. No switch costs emerged when target choice was free, but switch costs emerged reliably when targets were imposed. Bridging contradictory findings, the results are consistent with models of visual selection in which only one attentional template actively drives selection and in which the efficiency of switching targets depends on the type of cognitive control allowed for by the environment. PMID:28661761
Computing Satellite Maneuvers For A Repeating Ground Track
NASA Technical Reports Server (NTRS)
Shapiro, Bruce
1994-01-01
TOPEX/POSEIDON Ground Track Maintenance Maneuver Targeting Program (GTARG) assists in designing maneuvers to maintain orbit of TOPEX/POSEIDON satellite. Targeting strategies used either maximize time between maneuvers or force control band exit to occur at specified intervals. Runout mode allows for ground-track propagation without targeting. GTARG incorporates analytic mean-element propagation algorithm accounting for all perturbations known to cause significant variations in ground track. Perturbations include oblateness of Earth, luni-solar gravitation, drag, thrusts associated with impulsive maneuvers, and unspecified fixed forces acting on satellite in direction along trajectory. Written in VAX-FORTRAN.
NASA Astrophysics Data System (ADS)
Basso, Tessa Chiara; Iovieno, Michele; Bertoldo, Silvano; Perotto, Giovanni; Athanassiou, Athanassia; Canavero, Flavio; Perona, Giovanni; Tordella, Daniela
2017-11-01
An introduction to innovative, bio-compatible, ultralight, disposable radiosondes that are aimed to be passively transported on isopycnic surfaces in cloud and clear air environments. Their goal is to track small-scale fluctuations of velocity, temperature, humidity, acceleration and pressure for several hours within and outside the cloud boundary. With a target weight of 15 g, the volume is chosen such that the probes float on isopycnic surfaces at constant altitudes from 1000 to 3000 m. They are filled with helium gas to obtain a buoyancy force equal to the weight of the system. Transmitters within the probes will send data to receivers on Earth to be analysed and compared with numerical simulations. To minimise their environmental impact, it is foreseen that the disposable radiosondes be made with biodegradable smart materials which keep the desired hydrophobicity and flexibility. These environmentally friendly, hydrophobic balloons will provide an insight into the unsteady life cycle of warm clouds over land, ocean and alpine environments. These explorative observations will contribute to the current understanding of microphysical processes in clouds with the purpose of improving weather prediction and climate modelling.
NASA Astrophysics Data System (ADS)
Barkley, Brett E.
A cooperative detection and tracking algorithm for multiple targets constrained to a road network is presented for fixed-wing Unmanned Air Vehicles (UAVs) with a finite field of view. Road networks of interest are formed into graphs with nodes that indicate the target likelihood ratio (before detection) and position probability (after detection). A Bayesian likelihood ratio tracker recursively assimilates target observations until the cumulative observations at a particular location pass a detection criterion. At this point, a target is considered detected and a position probability is generated for the target on the graph. Data association is subsequently used to route future measurements to update the likelihood ratio tracker (for undetected target) or to update a position probability (a previously detected target). Three strategies for motion planning of UAVs are proposed to balance searching for new targets with tracking known targets for a variety of scenarios. Performance was tested in Monte Carlo simulations for a variety of mission parameters, including tracking on road networks with varying complexity and using UAVs at various altitudes.
40 CFR 97.50 - NOX Allowance Tracking System accounts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts. 97.50 Section 97.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of compliance...
40 CFR 97.50 - NOX Allowance Tracking System accounts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts. 97.50 Section 97.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Tracking System § 97.50 NOX Allowance Tracking System accounts. (a) Nature and function of compliance...
Bias estimation for moving optical sensor measurements with targets of opportunity
NASA Astrophysics Data System (ADS)
Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov
2014-06-01
Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.
LightForce: An Update on Orbital Collision Avoidance Using Photon Pressure
NASA Technical Reports Server (NTRS)
Stupl, Jan; Mason, James; De Vries, Willem; Smith, Craig; Levit, Creon; Marshall, William; Salas, Alberto Guillen; Pertica, Alexander; Olivier, Scot; Ting, Wang
2012-01-01
We present an update on our research on collision avoidance using photon-pressure induced by ground-based lasers. In the past, we have shown the general feasibility of employing small orbit perturbations, induced by photon pressure from ground-based laser illumination, for collision avoidance in space. Possible applications would be protecting space assets from impacts with debris and stabilizing the orbital debris environment. Focusing on collision avoidance rather than de-orbit, the scheme avoids some of the security and liability implications of active debris removal, and requires less sophisticated hardware than laser ablation. In earlier research we concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, could avoid a significant fraction of debris-debris collisions in low Earth orbit. This paper describes our recent efforts, which include refining our original analysis, employing higher fidelity simulations and performing experimental tracking tests. We investigate the efficacy of one or more laser ground stations for debris-debris collision avoidance and satellite protection using simulations to investigate multiple case studies. The approach includes modeling of laser beam propagation through the atmosphere, the debris environment (including actual trajectories and physical parameters), laser facility operations, and simulations of the resulting photon pressure. We also present the results of experimental laser debris tracking tests. These tests track potential targets of a first technical demonstration and quantify the achievable tracking performance.
Hue distinctiveness overrides category in determining performance in multiple object tracking.
Sun, Mengdan; Zhang, Xuemin; Fan, Lingxia; Hu, Luming
2018-02-01
The visual distinctiveness between targets and distractors can significantly facilitate performance in multiple object tracking (MOT), in which color is a feature that has been commonly used. However, the processing of color can be more than "visual." Color is continuous in chromaticity, while it is commonly grouped into discrete categories (e.g., red, green). Evidence from color perception suggested that color categories may have a unique role in visual tasks independent of its chromatic appearance. Previous MOT studies have not examined the effect of chromatic and categorical distinctiveness on tracking separately. The current study aimed to reveal how chromatic (hue) and categorical distinctiveness of color between the targets and distractors affects tracking performance. With four experiments, we showed that tracking performance was largely facilitated by the increasing hue distance between the target set and the distractor set, suggesting that perceptual grouping was formed based on hue distinctiveness to aid tracking. However, we found no color categorical effect, because tracking performance was not significantly different when the targets and distractors were from the same or different categories. It was concluded that the chromatic distinctiveness of color overrides category in determining tracking performance, suggesting a dominant role of perceptual feature in MOT.
Drew, Trafton; Horowitz, Todd S.; Wolfe, Jeremy M.; Vogel, Edward K.
2015-01-01
In the attentive tracking task, observers track multiple objects as they move independently and unpredictably among visually identical distractors. Although a number of models of attentive tracking implicate visual working memory as the mechanism responsible for representing target locations, no study has ever directly compared the neural mechanisms of the two tasks. In the current set of experiments, we used electrophysiological recordings to delineate similarities and differences between the neural processing involved in working memory and attentive tracking. We found that the contralateral electrophysiological response to the two tasks was similarly sensitive to the number of items attended in both tasks but that there was also a unique contralateral negativity related to the process of monitoring target position during tracking. This signal was absent for periods of time during tracking tasks when objects briefly stopped moving. These results provide evidence that, during attentive tracking, the process of tracking target locations elicits an electrophysiological response that is distinct and dissociable from neural measures of the number of items being attended. PMID:21228175
Electromagnetic tracking for abdominal interventions in computer aided surgery
Zhang, Hui; Banovac, Filip; Lin, Ralph; Glossop, Neil; Wood, Bradford J.; Lindisch, David; Levy, Elliot; Cleary, Kevin
2014-01-01
Electromagnetic tracking has great potential for assisting physicians in precision placement of instruments during minimally invasive interventions in the abdomen, since electromagnetic tracking is not limited by the line-of-sight restrictions of optical tracking. A new generation of electromagnetic tracking has recently become available, with sensors small enough to be included in the tips of instruments. To fully exploit the potential of this technology, our research group has been developing a computer aided, image-guided system that uses electromagnetic tracking for visualization of the internal anatomy during abdominal interventions. As registration is a critical component in developing an accurate image-guided system, we present three registration techniques: 1) enhanced paired-point registration (time-stamp match registration and dynamic registration); 2) orientation-based registration; and 3) needle shape-based registration. Respiration compensation is another important issue, particularly in the abdomen, where respiratory motion can make precise targeting difficult. To address this problem, we propose reference tracking and affine transformation methods. Finally, we present our prototype navigation system, which integrates the registration, segmentation, path-planning and navigation functions to provide real-time image guidance in the clinical environment. The methods presented here have been tested with a respiratory phantom specially designed by our group and in swine animal studies under approved protocols. Based on these tests, we conclude that our system can provide quick and accurate localization of tracked instruments in abdominal interventions, and that it offers a user friendly display for the physician. PMID:16829506
Visual object tracking by correlation filters and online learning
NASA Astrophysics Data System (ADS)
Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei
2018-06-01
Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.
Development of feedforward control in a dynamic manual tracking task.
van Roon, Dominique; Caeyenberghs, Karen; Swinnen, Stephan P; Smits-Engelsman, Bouwien C M
2008-01-01
To examine the development of feedforward control during manual tracking, 117 participants in 5 age groups (6 to 7, 8 to 9, 10 to 11, 12 to 14, and 15 to 17 years) tracked an accelerating dot presented on a monitor by moving an electronic pen on a digitizer. To remain successful at higher target velocities, they had to create a predictive model of the target's motion. The ability to track the target at higher velocities increased, and the application of a feedback-based step-and-hold strategy decreased with age, as shown by increases in maximum target velocity and decreases in number of stops between ages 6-7 and 8-9 and between ages 8-9 and 10-11. The ability to exploit feedforward control in a dynamic tracking task improves significantly with age.
Electro-optic tracking R&D for defense surveillance
NASA Astrophysics Data System (ADS)
Sutherland, Stuart; Woodruff, Chris J.
1995-09-01
Two aspects of work on automatic target detection and tracking for electro-optic (EO) surveillance are described. Firstly, a detection and tracking algorithm test-bed developed by DSTO and running on a PC under Windows NT is being used to assess candidate algorithms for unresolved and minimally resolved target detection. The structure of this test-bed is described and examples are given of its user interfaces and outputs. Secondly, a development by Australian industry under a Defence-funded contract, of a reconfigurable generic track processor (GTP) is outlined. The GTP will include reconfigurable image processing stages and target tracking algorithms. It will be used to demonstrate to the Australian Defence Force automatic detection and tracking capabilities, and to serve as a hardware base for real time algorithm refinement.
An object tracking method based on guided filter for night fusion image
NASA Astrophysics Data System (ADS)
Qian, Xiaoyan; Wang, Yuedong; Han, Lei
2016-01-01
Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking with guided image filter for accurate and robust night fusion image tracking. Firstly, frame difference is applied to produce the coarse target, which helps to generate observation models. Under the restriction of these models and local source image, guided filter generates sufficient and accurate foreground target. Then accurate boundaries of the target can be extracted from detection results. Finally timely updating for observation models help to avoid tracking shift. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-art methods.
40 CFR 96.50 - NOX Allowance Tracking System accounts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and...
40 CFR 96.50 - NOX Allowance Tracking System accounts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX Allowance Tracking System accounts. 96.50 Section 96.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... IMPLEMENTATION PLANS NOX Allowance Tracking System § 96.50 NOX Allowance Tracking System accounts. (a) Nature and...
Multisensor data fusion for integrated maritime surveillance
NASA Astrophysics Data System (ADS)
Premji, A.; Ponsford, A. M.
1995-01-01
A prototype Integrated Coastal Surveillance system has been developed on Canada's East Coast to provide effective surveillance out to and beyond the 200 nautical mile Exclusive Economic Zone. The system has been designed to protect Canada's natural resources, and to monitor and control the coastline for smuggling, drug trafficking, and similar illegal activity. This paper describes the Multiple Sensor - Multiple Target data fusion system that has been developed. The fusion processor has been developed around the celebrated Multiple Hypothesis Tracking algorithm which accommodates multiple targets, new targets, false alarms, and missed detections. This processor performs four major functions: plot-to-track association to form individual radar tracks; fusion of radar tracks with secondary sensor reports; track identification and tagging using secondary reports; and track level fusion to form common tracks. Radar data from coherent and non-coherent radars has been used to evaluate the performance of the processor. This paper presents preliminary results.
Multiple Target Laser Designator (MTLD)
2007-03-01
Optimized Liquid Crystal Scanning Element Optimize the Nonimaging Predictive Algorithm for Target Ranging, Tracking, and Position Estimation...commercial potential. 3.0 PROGRESS THIS QUARTER 3.1 Optimization of Nonimaging Holographic Antenna for Target Tracking and Position Estimation (Task 6) In
GTARG - The TOPEX/Poseidon ground track maintenance maneuver targeting program
NASA Technical Reports Server (NTRS)
Shapiro, Bruce E.; Bhat, Ramachandra S.
1993-01-01
GTARG is a computer program used to design orbit maintenance maneuvers for the TOPEX/Poseidon satellite. These maneuvers ensure that the ground track is kept within +/-1 km with of an = 9.9 day exact repeat pattern. Maneuver parameters are determined using either of two targeting strategies: longitude targeting, which maximizes the time between maneuvers, and time targeting, in which maneuvers are targeted to occur at specific intervals. The GTARG algorithm propagates nonsingular mean elements, taking into account anticipated error sigma's in orbit determination, Delta v execution, drag prediction and Delta v quantization. A satellite unique drag model is used which incorporates an approximate mean orbital Jacchia-Roberts atmosphere and a variable mean area model. Maneuver Delta v magnitudes are targeted to precisely maintain either the unbiased ground track itself, or a comfortable (3 sigma) error envelope about the unbiased ground track.
Three-dimensional microscope tracking system using the astigmatic lens method and a profile sensor
NASA Astrophysics Data System (ADS)
Kibata, Hiroki; Ishii, Katsuhiro
2018-03-01
We developed a three-dimensional microscope tracking system using the astigmatic lens method and a profile sensor, which provides three-dimensional position detection over a wide range at the rate of 3.2 kHz. First, we confirmed the range of target detection of the developed system, where the range of target detection was shown to be ± 90 µm in the horizontal plane and ± 9 µm in the vertical plane for a 10× objective lens. Next, we attempted to track a motion-controlled target. The developed system kept the target at the center of the field of view and in focus up to a target speed of 50 µm/s for a 20× objective lens. Finally, we tracked a freely moving target. We successfully demonstrated the tracking of a 10-µm-diameter polystyrene bead suspended in water for 40 min. The target was kept in the range of approximately 4.9 µm around the center of the field of view. In addition, the vertical direction was maintained in the range of ± 0.84 µm, which was sufficiently within the depth of focus.
The semantic category-based grouping in the Multiple Identity Tracking task.
Wei, Liuqing; Zhang, Xuemin; Li, Zhen; Liu, Jingyao
2018-01-01
In the Multiple Identity Tracking (MIT) task, categorical distinctions between targets and distractors have been found to facilitate tracking (Wei, Zhang, Lyu, & Li in Frontiers in Psychology, 7, 589, 2016). The purpose of this study was to further investigate the reasons for the facilitation effect, through six experiments. The results of Experiments 1-3 excluded the potential explanations of visual distinctiveness, attentional distribution strategy, and a working memory mechanism, respectively. When objects' visual information was preserved and categorical information was removed, the facilitation effect disappeared, suggesting that the visual distinctiveness between targets and distractors was not the main reason for the facilitation effect. Moreover, the facilitation effect was not the result of strategically shifting the attentional distribution, because the targets received more attention than the distractors in all conditions. Additionally, the facilitation effect did not come about because the identities of targets were encoded and stored in visual working memory to assist in the recovery from tracking errors; when working memory was disturbed by the object identities changing during tracking, the facilitation effect still existed. Experiments 4 and 5 showed that observers grouped targets together and segregated them from distractors on the basis of their categorical information. By doing this, observers could largely avoid distractor interference with tracking and improve tracking performance. Finally, Experiment 6 indicated that category-based grouping is not an automatic, but a goal-directed and effortful, strategy. In summary, the present findings show that a semantic category-based target-grouping mechanism exists in the MIT task, which is likely to be the major reason for the tracking facilitation effect.
Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system
NASA Astrophysics Data System (ADS)
Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen
2016-05-01
Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.
Tracking subpixel targets in domestic environments
NASA Astrophysics Data System (ADS)
Govinda, V.; Ralph, J. F.; Spencer, J. W.; Goulermas, J. Y.; Smith, D. H.
2006-05-01
In recent years, closed circuit cameras have become a common feature of urban life. There are environments however where the movement of people needs to be monitored but high resolution imaging is not necessarily desirable: rooms where privacy is required and the occupants are not comfortable with the perceived intrusion. Examples might include domiciliary care environments, prisons and other secure facilities, and even large open plan offices. This paper discusses algorithms that allow activity within this type of sensitive environment to be monitored using data from low resolution cameras (ones where all objects of interest are sub-pixel and cannot be resolved) and other non-intrusive sensors. The algorithms are based on techniques originally developed for wide area reconnaissance and surveillance applications. Of particular importance is determining the minimum spatial resolution that is required to provide a specific level of coverage and reliability.
Adaptive Filter Techniques for Optical Beam Jitter Control and Target Tracking
2008-12-01
OPTICAL BEAM JITTER CONTROL AND TARGET TRACKING Michael J. Beerer Civilian, United States Air Force B.S., University of California Irvine, 2006...TECHNIQUES FOR OPTICAL BEAM JITTER CONTROL AND TARGET TRACKING by Michael J. Beerer December 2008 Thesis Advisor: Brij N. Agrawal Co...DATE December 2008 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Adaptive Filter Techniques for Optical Beam Jitter
NASA Astrophysics Data System (ADS)
Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Bai, Shengjian; Xu, Wanying
2014-07-01
Infrared moving target detection is an important part of infrared technology. We introduce a novel infrared small moving target detection method based on tracking interest points under complicated background. Firstly, Difference of Gaussians (DOG) filters are used to detect a group of interest points (including the moving targets). Secondly, a sort of small targets tracking method inspired by Human Visual System (HVS) is used to track these interest points for several frames, and then the correlations between interest points in the first frame and the last frame are obtained. Last, a new clustering method named as R-means is proposed to divide these interest points into two groups according to the correlations, one is target points and another is background points. In experimental results, the target-to-clutter ratio (TCR) and the receiver operating characteristics (ROC) curves are computed experimentally to compare the performances of the proposed method and other five sophisticated methods. From the results, the proposed method shows a better discrimination of targets and clutters and has a lower false alarm rate than the existing moving target detection methods.
Development and evaluation of a prototype tracking system using the treatment couch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Stephanie, E-mail: stephanie.lang@usz.ch; Riesterer, Oliver; Klöck, Stephan
2014-02-15
Purpose: Tumor motion increases safety margins around the clinical target volume and leads to an increased dose to the surrounding healthy tissue. The authors have developed and evaluated a one-dimensional treatment couch tracking system to counter steer respiratory tumor motion. Three different motion detection sensors with different lag times were evaluated. Methods: The couch tracking system consists of a motion detection sensor, which can be the topometrical system Topos (Cyber Technologies, Germany), the respiratory gating system RPM (Varian Medical Systems) or a laser triangulation system (Micro Epsilon), and the Protura treatment couch (Civco Medical Systems). The control of the treatmentmore » couch was implemented in the block diagram environment Simulink (MathWorks). To achieve real time performance, the Simulink models were executed on a real time engine, provided by Real-Time Windows Target (MathWorks). A proportional-integral control system was implemented. The lag time of the couch tracking system using the three different motion detection sensors was measured. The geometrical accuracy of the system was evaluated by measuring the mean absolute deviation from the reference (static position) during motion tracking. This deviation was compared to the mean absolute deviation without tracking and a reduction factor was defined. A hexapod system was moving according to seven respiration patterns previously acquired with the RPM system as well as according to a sin{sup 6} function with two different frequencies (0.33 and 0.17 Hz) and the treatment table compensated the motion. Results: A prototype system for treatment couch tracking of respiratory motion was developed. The laser based tracking system with a small lag time of 57 ms reduced the residual motion by a factor of 11.9 ± 5.5 (mean value ± standard deviation). An increase in delay time from 57 to 130 ms (RPM based system) resulted in a reduction by a factor of 4.7 ± 2.6. The Topos based tracking system with the largest lag time of 300 ms achieved a mean reduction by a factor of 3.4 ± 2.3. The increase in the penumbra of a profile (1 × 1 cm{sup 2}) for a motion of 6 mm was 1.4 mm. With tracking applied there was no increase in the penumbra. Conclusions: Couch tracking with the Protura treatment couch is achievable. To reliably track all possible respiration patterns without prediction filters a short lag time below 100 ms is needed. More scientific work is necessary to extend our prototype to tracking of internal motion.« less
Moving target tracking through distributed clustering in directional sensor networks.
Enayet, Asma; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif
2014-12-18
The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works.
Moving Target Tracking through Distributed Clustering in Directional Sensor Networks
Enayet, Asma; Razzaque, Md. Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif
2014-01-01
The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works. PMID:25529205
Development of three-dimensional tracking system using astigmatic lens method for microscopes
NASA Astrophysics Data System (ADS)
Kibata, Hiroki; Ishii, Katsuhiro
2017-07-01
We have developed a three-dimensional tracking system for microscopes. Using the astigmatic lens method and a CMOS image sensor, we realize a rapid detection of a target position in a wide range. We demonstrate a target tracking using the developed system.
A new method for tracking organ motion on diagnostic ultrasound images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Yoshiki, E-mail: y-kubota@gunma-u.ac.jp; Matsumura, Akihiko, E-mail: matchan.akihiko@gunma-u.ac.jp; Fukahori, Mai, E-mail: fukahori@nirs.go.jp
2014-09-15
Purpose: Respiratory-gated irradiation is effective in reducing the margins of a target in the case of abdominal organs, such as the liver, that change their position as a result of respiratory motion. However, existing technologies are incapable of directly measuring organ motion in real-time during radiation beam delivery. Hence, the authors proposed a novel quantitative organ motion tracking method involving the use of diagnostic ultrasound images; it is noninvasive and does not entail radiation exposure. In the present study, the authors have prospectively evaluated this proposed method. Methods: The method involved real-time processing of clinical ultrasound imaging data rather thanmore » organ monitoring; it comprised a three-dimensional ultrasound device, a respiratory sensing system, and two PCs for data storage and analysis. The study was designed to evaluate the effectiveness of the proposed method by tracking the gallbladder in one subject and a liver vein in another subject. To track a moving target organ, the method involved the control of a region of interest (ROI) that delineated the target. A tracking algorithm was used to control the ROI, and a large number of feature points and an error correction algorithm were used to achieve long-term tracking of the target. Tracking accuracy was assessed in terms of how well the ROI matched the center of the target. Results: The effectiveness of using a large number of feature points and the error correction algorithm in the proposed method was verified by comparing it with two simple tracking methods. The ROI could capture the center of the target for about 5 min in a cross-sectional image with changing position. Indeed, using the proposed method, it was possible to accurately track a target with a center deviation of 1.54 ± 0.9 mm. The computing time for one frame image using our proposed method was 8 ms. It is expected that it would be possible to track any soft-tissue organ or tumor with large deformations and changing cross-sectional position using this method. Conclusions: The proposed method achieved real-time processing and continuous tracking of the target organ for about 5 min. It is expected that our method will enable more accurate radiation treatment than is the case using indirect observational methods, such as the respiratory sensor method, because of direct visualization of the tumor. Results show that this tracking system facilitates safe treatment in clinical practice.« less
Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Rune; Ravkilde, Thomas; Worm, Esben Schjødt
2016-05-15
Purpose: Couch and MLC tracking are two promising methods for real-time motion compensation during radiation therapy. So far, couch and MLC tracking experiments have mainly been performed by different research groups, and no direct comparison of couch and MLC tracking of volumetric modulated arc therapy (VMAT) plans has been published. The Varian TrueBeam 2.0 accelerator includes a prototype tracking system with selectable couch or MLC compensation. This study provides a direct comparison of the two tracking types with an otherwise identical setup. Methods: Several experiments were performed to characterize the geometric and dosimetric performance of electromagnetic guided couch and MLCmore » tracking on a TrueBeam accelerator equipped with a Millennium MLC. The tracking system latency was determined without motion prediction as the time lag between sinusoidal target motion and the compensating motion of the couch or MLC as recorded by continuous MV portal imaging. The geometric and dosimetric tracking accuracies were measured in tracking experiments with motion phantoms that reproduced four prostate and four lung tumor trajectories. The geometric tracking error in beam’s eye view was determined as the distance between an embedded gold marker and a circular MLC aperture in continuous MV images. The dosimetric tracking error was quantified as the measured 2%/2 mm gamma failure rate of a low and a high modulation VMAT plan delivered with the eight motion trajectories using a static dose distribution as reference. Results: The MLC tracking latency was approximately 146 ms for all sinusoidal period lengths while the couch tracking latency increased from 187 to 246 ms with decreasing period length due to limitations in the couch acceleration. The mean root-mean-square geometric error was 0.80 mm (couch tracking), 0.52 mm (MLC tracking), and 2.75 mm (no tracking) parallel to the MLC leaves and 0.66 mm (couch), 1.14 mm (MLC), and 2.41 mm (no tracking) perpendicular to the leaves. The motion-induced gamma failure rate was in mean 0.1% (couch tracking), 8.1% (MLC tracking), and 30.4% (no tracking) for prostate motion and 2.9% (couch), 2.4% (MLC), and 41.2% (no tracking) for lung tumor motion. The residual tracking errors were mainly caused by inadequate adaptation to fast lung tumor motion for couch tracking and to prostate motion perpendicular to the MLC leaves for MLC tracking. Conclusions: Couch and MLC tracking markedly improved the geometric and dosimetric accuracies of VMAT delivery. However, the two tracking types have different strengths and weaknesses. While couch tracking can correct perfectly for slowly moving targets such as the prostate, MLC tracking may have considerably larger dose errors for persistent target shift perpendicular to the MLC leaves. Advantages of MLC tracking include faster dynamics with better adaptation to fast moving targets, the avoidance of moving the patient, and the potential to track target rotations and deformations.« less
Eye Tracking of Occluded Self-Moved Targets: Role of Haptic Feedback and Hand-Target Dynamics.
Danion, Frederic; Mathew, James; Flanagan, J Randall
2017-01-01
Previous studies on smooth pursuit eye movements have shown that humans can continue to track the position of their hand, or a target controlled by the hand, after it is occluded, thereby demonstrating that arm motor commands contribute to the prediction of target motion driving pursuit eye movements. Here, we investigated this predictive mechanism by manipulating both the complexity of the hand-target mapping and the provision of haptic feedback. Two hand-target mappings were used, either a rigid (simple) one in which hand and target motion matched perfectly or a nonrigid (complex) one in which the target behaved as a mass attached to the hand by means of a spring. Target animation was obtained by asking participants to oscillate a lightweight robotic device that provided (or not) haptic feedback consistent with the target dynamics. Results showed that as long as 7 s after target occlusion, smooth pursuit continued to be the main contributor to total eye displacement (∼60%). However, the accuracy of eye-tracking varied substantially across experimental conditions. In general, eye-tracking was less accurate under the nonrigid mapping, as reflected by higher positional and velocity errors. Interestingly, haptic feedback helped to reduce the detrimental effects of target occlusion when participants used the nonrigid mapping, but not when they used the rigid one. Overall, we conclude that the ability to maintain smooth pursuit in the absence of visual information can extend to complex hand-target mappings, but the provision of haptic feedback is critical for the maintenance of accurate eye-tracking performance.
Eye Tracking of Occluded Self-Moved Targets: Role of Haptic Feedback and Hand-Target Dynamics
Mathew, James
2017-01-01
Abstract Previous studies on smooth pursuit eye movements have shown that humans can continue to track the position of their hand, or a target controlled by the hand, after it is occluded, thereby demonstrating that arm motor commands contribute to the prediction of target motion driving pursuit eye movements. Here, we investigated this predictive mechanism by manipulating both the complexity of the hand-target mapping and the provision of haptic feedback. Two hand-target mappings were used, either a rigid (simple) one in which hand and target motion matched perfectly or a nonrigid (complex) one in which the target behaved as a mass attached to the hand by means of a spring. Target animation was obtained by asking participants to oscillate a lightweight robotic device that provided (or not) haptic feedback consistent with the target dynamics. Results showed that as long as 7 s after target occlusion, smooth pursuit continued to be the main contributor to total eye displacement (∼60%). However, the accuracy of eye-tracking varied substantially across experimental conditions. In general, eye-tracking was less accurate under the nonrigid mapping, as reflected by higher positional and velocity errors. Interestingly, haptic feedback helped to reduce the detrimental effects of target occlusion when participants used the nonrigid mapping, but not when they used the rigid one. Overall, we conclude that the ability to maintain smooth pursuit in the absence of visual information can extend to complex hand-target mappings, but the provision of haptic feedback is critical for the maintenance of accurate eye-tracking performance. PMID:28680964
Zhang, Senlin; Chen, Huayan; Liu, Meiqin; Zhang, Qunfei
2017-11-07
Target tracking is one of the broad applications of underwater wireless sensor networks (UWSNs). However, as a result of the temporal and spatial variability of acoustic channels, underwater acoustic communications suffer from an extremely limited bandwidth. In order to reduce network congestion, it is important to shorten the length of the data transmitted from local sensors to the fusion center by quantization. Although quantization can reduce bandwidth cost, it also brings about bad tracking performance as a result of information loss after quantization. To solve this problem, this paper proposes an optimal quantization-based target tracking scheme. It improves the tracking performance of low-bit quantized measurements by minimizing the additional covariance caused by quantization. The simulation demonstrates that our scheme performs much better than the conventional uniform quantization-based target tracking scheme and the increment of the data length affects our scheme only a little. Its tracking performance improves by only 4.4% from 2- to 3-bit, which means our scheme weakly depends on the number of data bits. Moreover, our scheme also weakly depends on the number of participate sensors, and it can work well in sparse sensor networks. In a 6 × 6 × 6 sensor network, compared with 4 × 4 × 4 sensor networks, the number of participant sensors increases by 334.92%, while the tracking accuracy using 1-bit quantized measurements improves by only 50.77%. Overall, our optimal quantization-based target tracking scheme can achieve the pursuit of data-efficiency, which fits the requirements of low-bandwidth UWSNs.
Multiple-Object Tracking in Children: The "Catch the Spies" Task
ERIC Educational Resources Information Center
Trick, L.M.; Jaspers-Fayer, F.; Sethi, N.
2005-01-01
Multiple-object tracking involves simultaneously tracking positions of a number of target-items as they move among distractors. The standard version of the task poses special challenges for children, demanding extended concentration and the ability to distinguish targets from identical-looking distractors, and may thus underestimate children's…
Fly eye radar or micro-radar sensor technology
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo; Asmolova, Olga
2014-05-01
To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.
A Computational Model of Spatial Development
NASA Astrophysics Data System (ADS)
Hiraki, Kazuo; Sashima, Akio; Phillips, Steven
Psychological experiments on children's development of spatial knowledge suggest experience at self-locomotion with visual tracking as important factors. Yet, the mechanism underlying development is unknown. We propose a robot that learns to mentally track a target object (i.e., maintaining a representation of an object's position when outside the field-of-view) as a model for spatial development. Mental tracking is considered as prediction of an object's position given the previous environmental state and motor commands, and the current environment state resulting from movement. Following Jordan & Rumelhart's (1992) forward modeling architecture the system consists of two components: an inverse model of sensory input to desired motor commands; and a forward model of motor commands to desired sensory input (goals). The robot was tested on the `three cups' paradigm (where children are required to select the cup containing the hidden object under various movement conditions). Consistent with child development, without the capacity for self-locomotion the robot's errors are self-center based. When given the ability of self-locomotion the robot responds allocentrically.
Wästlund, Erik; Shams, Poja; Otterbring, Tobias
2018-01-01
In visual marketing, the truism that "unseen is unsold" means that products that are not noticed will not be sold. This truism rests on the idea that the consumer choice process is heavily influenced by visual search. However, given that the majority of available products are not seen by consumers, this article examines the role of peripheral vision in guiding attention during the consumer choice process. In two eye-tracking studies, one conducted in a lab facility and the other conducted in a supermarket, the authors investigate the role and limitations of peripheral vision. The results show that peripheral vision is used to direct visual attention when discriminating between target and non-target objects in an eye-tracking laboratory. Target and non-target similarity, as well as visual saliency of non-targets, constitute the boundary conditions for this effect, which generalizes from instruction-based laboratory tasks to preference-based choice tasks in a real supermarket setting. Thus, peripheral vision helps customers to devote a larger share of attention to relevant products during the consumer choice process. Taken together, the results show how the creation of consideration set (sets of possible choice options) relies on both goal-directed attention and peripheral vision. These results could explain how visually similar packaging positively influences market leaders, while making novel brands almost invisible on supermarket shelves. The findings show that even though unsold products might be unseen, in the sense that they have not been directly observed, they might still have been evaluated and excluded by means of peripheral vision. This article is based on controlled lab experiments as well as a field study conducted in a complex retail environment. Thus, the findings are valid both under controlled and ecologically valid conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
2010-01-01
target kinematics for multiple sensor detections is referred to as the track - before - detect strategy, and is commonly adopted in multi-sensor surveillance...of moving targets. Wettergren [4] presented an application of track - before - detect strategies to undersea distributed sensor networks. In de- signing...the deployment of a distributed passive sensor network that employs this track - before - detect procedure, it is impera- tive that the placement of
NASA Astrophysics Data System (ADS)
Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.
2007-03-01
We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.
Visual Target Tracking on the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Kim, Won S.; Biesiadecki, Jeffrey J.; Ali, Khaled S.
2008-01-01
Visual Target Tracking (VTT) has been implemented in the new Mars Exploration Rover (MER) Flight Software (FSW) R9.2 release, which is now running on both Spirit and Opportunity rovers. Applying the normalized cross-correlation (NCC) algorithm with template image magnification and roll compensation on MER Navcam images, VTT tracks the target and enables the rover to approach the target within a few cm over a 10 m traverse. Each VTT update takes 1/2 to 1 minute on the rovers, 2-3 times faster than one Visual Odometry (Visodom) update. VTT is a key element to achieve a target approach and instrument placement over a 10-m run in a single sol in contrast to the original baseline of 3 sols. VTT has been integrated into the MER FSW so that it can operate with any combination of blind driving, Autonomous Navigation (Autonav) with hazard avoidance, and Visodom. VTT can either guide the rover towards the target or simply image the target as the rover drives by. Three recent VTT operational checkouts on Opportunity were all successful, tracking the selected target reliably within a few pixels.
Adaptive early detection ML/PDA estimator for LO targets with EO sensors
NASA Astrophysics Data System (ADS)
Chummun, Muhammad R.; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov
2000-07-01
The batch Maximum Likelihood Estimator, combined with Probabilistic Data (ML-PDA), has been shown to be effective in acquiring low observable (LO) - low SNR - non-maneuvering targets in the presence of heavy clutter. The use of signal strength or amplitude information (AI) in the ML-PDA estimator with AI in a sliding-window fashion, to detect high- speed targets in heavy clutter using electro-optical (EO) sensors. The initial time and the length of the sliding-window are adjusted adaptively according to the information content of the received measurements. A track validation scheme via hypothesis testing is developed to confirm the estimated track, that is, the presence of a target, in each window. The sliding-window ML-PDA approach, together with track validation, enables early detection by rejecting noninformative scans, target reacquisition in case of temporary target disappearance and the handling of targets with speeds evolving over time. The proposed algorithm is shown to detect the target, which is hidden in as many as 600 false alarms per scan, 10 frames earlier than the Multiple Hypothesis Tracking (MHT) algorithm.
Analysis of the development of missile-borne IR imaging detecting technologies
NASA Astrophysics Data System (ADS)
Fan, Jinxiang; Wang, Feng
2017-10-01
Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key technologies and its development trends of missiles' IR imaging detecting technologies are analyzed.
Neural substrates of dynamic object occlusion.
Shuwairi, Sarah M; Curtis, Clayton E; Johnson, Scott P
2007-08-01
In everyday environments, objects frequently go out of sight as they move and our view of them becomes obstructed by nearer objects, yet we perceive these objects as continuous and enduring entities. Here, we used functional magnetic resonance imaging with an attentive tracking paradigm to clarify the nature of perceptual and cognitive mechanisms subserving this ability to fill in the gaps in perception of dynamic object occlusion. Imaging data revealed distinct regions of cortex showing increased activity during periods of occlusion relative to full visibility. These regions may support active maintenance of a representation of the target's spatiotemporal properties ensuring that the object is perceived as a persisting entity when occluded. Our findings may shed light on the neural substrates involved in object tracking that give rise to the phenomenon of object permanence.
Homography-based multiple-camera person-tracking
NASA Astrophysics Data System (ADS)
Turk, Matthew R.
2009-01-01
Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.
Eye tracking a self-moved target with complex hand-target dynamics
Landelle, Caroline; Montagnini, Anna; Madelain, Laurent
2016-01-01
Previous work has shown that the ability to track with the eye a moving target is substantially improved when the target is self-moved by the subject's hand compared with when being externally moved. Here, we explored a situation in which the mapping between hand movement and target motion was perturbed by simulating an elastic relationship between the hand and target. Our objective was to determine whether the predictive mechanisms driving eye-hand coordination could be updated to accommodate this complex hand-target dynamics. To fully appreciate the behavioral effects of this perturbation, we compared eye tracking performance when self-moving a target with a rigid mapping (simple) and a spring mapping as well as when the subject tracked target trajectories that he/she had previously generated when using the rigid or spring mapping. Concerning the rigid mapping, our results confirmed that smooth pursuit was more accurate when the target was self-moved than externally moved. In contrast, with the spring mapping, eye tracking had initially similar low spatial accuracy (though shorter temporal lag) in the self versus externally moved conditions. However, within ∼5 min of practice, smooth pursuit improved in the self-moved spring condition, up to a level similar to the self-moved rigid condition. Subsequently, when the mapping unexpectedly switched from spring to rigid, the eye initially followed the expected target trajectory and not the real one, thereby suggesting that subjects used an internal representation of the new hand-target dynamics. Overall, these results emphasize the stunning adaptability of smooth pursuit when self-maneuvering objects with complex dynamics. PMID:27466129
NASA Astrophysics Data System (ADS)
Dubuque, Shaun; Coffman, Thayne; McCarley, Paul; Bovik, A. C.; Thomas, C. William
2009-05-01
Foveated imaging has been explored for compression and tele-presence, but gaps exist in the study of foveated imaging applied to acquisition and tracking systems. Results are presented from two sets of experiments comparing simple foveated and uniform resolution targeting (acquisition and tracking) algorithms. The first experiments measure acquisition performance when locating Gabor wavelet targets in noise, with fovea placement driven by a mutual information measure. The foveated approach is shown to have lower detection delay than a notional uniform resolution approach when using video that consumes equivalent bandwidth. The second experiments compare the accuracy of target position estimates from foveated and uniform resolution tracking algorithms. A technique is developed to select foveation parameters that minimize error in Kalman filter state estimates. Foveated tracking is shown to consistently outperform uniform resolution tracking on an abstract multiple target task when using video that consumes equivalent bandwidth. Performance is also compared to uniform resolution processing without bandwidth limitations. In both experiments, superior performance is achieved at a given bandwidth by foveated processing because limited resources are allocated intelligently to maximize operational performance. These findings indicate the potential for operational performance improvements over uniform resolution systems in both acquisition and tracking tasks.
Alvarez, George A.; Cavanagh, Patrick
2014-01-01
It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. PMID:25164651
Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search.
Liu, Meiqin; Zhang, Duo; Zhang, Senlin; Zhang, Qunfei
2017-12-04
Underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM) can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS) algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme.
Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search
Zhang, Senlin; Zhang, Qunfei
2017-01-01
Underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM) can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS) algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme. PMID:29207541
Target-type probability combining algorithms for multisensor tracking
NASA Astrophysics Data System (ADS)
Wigren, Torbjorn
2001-08-01
Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.
Radar Methods in Urban Environments
2016-10-26
to appear in IEEE Journal of Selected Topics in Signal Processing. J8. M. Wang and A. Nehorai, “Coarrays, MUSIC , and the Cramér Rao bound,” to...Journal Papers: 1. P. Chavali and A. Nehorai, "Scheduling and resource allocation in a cognitive radar network for multiple- target tracking,’’ IEEE...Processing. 33. M. Wang and A. Nehorai, "Coarrays, MUSIC , and the Cramér Rao bound," to appear in IEEE Trans. on Signal Processing. 34. J. Li and A. Nehorai
2011-10-31
designs with code division multiple access ( CDMA ). Analog chirp filters were used to produce an up-chirp, which is used as a radar waveform, coupled with...signals. A potential shortcoming of CDMA techniques is that the addition of two signals will result in a non-constant amplitude signal which will be...of low-frequency A/ Ds . As an example for a multiple carrier signal all the received signals from the multiple carriers are aliased onto the
Multiple-object tracking while driving: the multiple-vehicle tracking task.
Lochner, Martin J; Trick, Lana M
2014-11-01
Many contend that driving an automobile involves multiple-object tracking. At this point, no one has tested this idea, and it is unclear how multiple-object tracking would coordinate with the other activities involved in driving. To address some of the initial and most basic questions about multiple-object tracking while driving, we modified the tracking task for use in a driving simulator, creating the multiple-vehicle tracking task. In Experiment 1, we employed a dual-task methodology to determine whether there was interference between tracking and driving. Findings suggest that although it is possible to track multiple vehicles while driving, driving reduces tracking performance, and tracking compromises headway and lane position maintenance while driving. Modified change-detection paradigms were used to assess whether there were change localization advantages for tracked targets in multiple-vehicle tracking. When changes occurred during a blanking interval, drivers were more accurate (Experiment 2a) and ~250 ms faster (Experiment 2b) at locating the vehicle that changed when it was a target rather than a distractor in tracking. In a more realistic driving task where drivers had to brake in response to the sudden onset of brake lights in one of the lead vehicles, drivers were more accurate at localizing the vehicle that braked if it was a tracking target, although there was no advantage in terms of braking response time. Overall, results suggest that multiple-object tracking is possible while driving and perhaps even advantageous in some situations, but further research is required to determine whether multiple-object tracking is actually used in day-to-day driving.
Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor.
Kim, Han-Ul; Kim, Chang-Su
2017-08-01
In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.
Sensor Compromise Detection in Multiple-Target Tracking Systems
Doucette, Emily A.; Curtis, Jess W.
2018-01-01
Tracking multiple targets using a single estimator is a problem that is commonly approached within a trusted framework. There are many weaknesses that an adversary can exploit if it gains control over the sensors. Because the number of targets that the estimator has to track is not known with anticipation, an adversary could cause a loss of information or a degradation in the tracking precision. Other concerns include the introduction of false targets, which would result in a waste of computational and material resources, depending on the application. In this work, we study the problem of detecting compromised or faulty sensors in a multiple-target tracker, starting with the single-sensor case and then considering the multiple-sensor scenario. We propose an algorithm to detect a variety of attacks in the multiple-sensor case, via the application of finite set statistics (FISST), one-class classifiers and hypothesis testing using nonparametric techniques. PMID:29466314
Pilot Study for Definition of Track Component Load Environments
DOT National Transportation Integrated Search
1981-02-01
This report describes the results of an experimental and analytical effort to define the vehicle induced load environment in an at-grade, concrete tie/ballast transit track structure. The experiment was performed on the UMTA transit track oval at the...
Improvement of Hand Movement on Visual Target Tracking by Assistant Force of Model-Based Compensator
NASA Astrophysics Data System (ADS)
Ide, Junko; Sugi, Takenao; Nakamura, Masatoshi; Shibasaki, Hiroshi
Human motor control is achieved by the appropriate motor commands generating from the central nerve system. A test of visual target tracking is one of the effective methods for analyzing the human motor functions. We have previously examined a possibility for improving the hand movement on visual target tracking by additional assistant force through a simulation study. In this study, a method for compensating the human hand movement on visual target tracking by adding an assistant force was proposed. Effectiveness of the compensation method was investigated through the experiment for four healthy adults. The proposed compensator precisely improved the reaction time, the position error and the variability of the velocity of the human hand. The model-based compensator proposed in this study is constructed by using the measurement data on visual target tracking for each subject. The properties of the hand movement for different subjects can be reflected in the structure of the compensator. Therefore, the proposed method has possibility to adjust the individual properties of patients with various movement disorders caused from brain dysfunctions.
Feature-aided multiple target tracking in the image plane
NASA Astrophysics Data System (ADS)
Brown, Andrew P.; Sullivan, Kevin J.; Miller, David J.
2006-05-01
Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we have developed an image plane tracker which automatically detects and tracks multiple targets in image sequences using both motion and feature information. The effects of platform and camera motion are compensated via image registration, and a novel change detection algorithm is applied for accurate moving target detection. The contiguous pixel blob on each moving target is segmented for use in target feature extraction and model learning. Feature-based target location measurements are used for tracking through move-stop-move maneuvers, close target spacing, and occlusion. Effective clutter suppression is achieved using joint probabilistic data association (JPDA), and confirmed target tracks are indicated for further processing or operator review. In this paper we describe the algorithms implemented in the image plane tracker and present performance results obtained with video clips from the DARPA VIVID program data collection and from a miniature unmanned aerial vehicle (UAV) flight.
Target Information Processing: A Joint Decision and Estimation Approach
2012-03-29
ground targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important...targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important
The Extended-Image Tracking Technique Based on the Maximum Likelihood Estimation
NASA Technical Reports Server (NTRS)
Tsou, Haiping; Yan, Tsun-Yee
2000-01-01
This paper describes an extended-image tracking technique based on the maximum likelihood estimation. The target image is assume to have a known profile covering more than one element of a focal plane detector array. It is assumed that the relative position between the imager and the target is changing with time and the received target image has each of its pixels disturbed by an independent additive white Gaussian noise. When a rotation-invariant movement between imager and target is considered, the maximum likelihood based image tracking technique described in this paper is a closed-loop structure capable of providing iterative update of the movement estimate by calculating the loop feedback signals from a weighted correlation between the currently received target image and the previously estimated reference image in the transform domain. The movement estimate is then used to direct the imager to closely follow the moving target. This image tracking technique has many potential applications, including free-space optical communications and astronomy where accurate and stabilized optical pointing is essential.
Infrared target tracking via weighted correlation filter
NASA Astrophysics Data System (ADS)
He, Yu-Jie; Li, Min; Zhang, JinLi; Yao, Jun-Ping
2015-11-01
Design of an effective target tracker is an important and challenging task for many applications due to multiple factors which can cause disturbance in infrared video sequences. In this paper, an infrared target tracking method under tracking by detection framework based on a weighted correlation filter is presented. This method consists of two parts: detection and filtering. For the detection stage, we propose a sequential detection method for the infrared target based on low-rank representation. For the filtering stage, a new multi-feature weighted function which fuses different target features is proposed, which takes the importance of the different regions into consideration. The weighted function is then incorporated into a correlation filter to compute a confidence map more accurately, in order to indicate the best target location based on the detection results obtained from the first stage. Extensive experimental results on different video sequences demonstrate that the proposed method performs favorably for detection and tracking compared with baseline methods in terms of efficiency and accuracy.
Decoupled tracking and thermal monitoring of non-stationary targets.
Tan, Kok Kiong; Zhang, Yi; Huang, Sunan; Wong, Yoke San; Lee, Tong Heng
2009-10-01
Fault diagnosis and predictive maintenance address pertinent economic issues relating to production systems as an efficient technique can continuously monitor key health parameters and trigger alerts when critical changes in these variables are detected, before they lead to system failures and production shutdowns. In this paper, we present a decoupled tracking and thermal monitoring system which can be used on non-stationary targets of closed systems such as machine tools. There are three main contributions from the paper. First, a vision component is developed to track moving targets under a monitor. Image processing techniques are used to resolve the target location to be tracked. Thus, the system is decoupled and applicable to closed systems without the need for a physical integration. Second, an infrared temperature sensor with a built-in laser for locating the measurement spot is deployed for non-contact temperature measurement of the moving target. Third, a predictive motion control system holds the thermal sensor and follows the moving target efficiently to enable continuous temperature measurement and monitoring.
Prior Knowledge Guides Speech Segregation in Human Auditory Cortex.
Wang, Yuanye; Zhang, Jianfeng; Zou, Jiajie; Luo, Huan; Ding, Nai
2018-05-18
Segregating concurrent sound streams is a computationally challenging task that requires integrating bottom-up acoustic cues (e.g. pitch) and top-down prior knowledge about sound streams. In a multi-talker environment, the brain can segregate different speakers in about 100 ms in auditory cortex. Here, we used magnetoencephalographic (MEG) recordings to investigate the temporal and spatial signature of how the brain utilizes prior knowledge to segregate 2 speech streams from the same speaker, which can hardly be separated based on bottom-up acoustic cues. In a primed condition, the participants know the target speech stream in advance while in an unprimed condition no such prior knowledge is available. Neural encoding of each speech stream is characterized by the MEG responses tracking the speech envelope. We demonstrate that an effect in bilateral superior temporal gyrus and superior temporal sulcus is much stronger in the primed condition than in the unprimed condition. Priming effects are observed at about 100 ms latency and last more than 600 ms. Interestingly, prior knowledge about the target stream facilitates speech segregation by mainly suppressing the neural tracking of the non-target speech stream. In sum, prior knowledge leads to reliable speech segregation in auditory cortex, even in the absence of reliable bottom-up speech segregation cue.
Delayed Anticipatory Spoken Language Processing in Adults with Dyslexia—Evidence from Eye-tracking.
Huettig, Falk; Brouwer, Susanne
2015-05-01
It is now well established that anticipation of upcoming input is a key characteristic of spoken language comprehension. It has also frequently been observed that literacy influences spoken language processing. Here, we investigated whether anticipatory spoken language processing is related to individuals' word reading abilities. Dutch adults with dyslexia and a control group participated in two eye-tracking experiments. Experiment 1 was conducted to assess whether adults with dyslexia show the typical language-mediated eye gaze patterns. Eye movements of both adults with and without dyslexia closely replicated earlier research: spoken language is used to direct attention to relevant objects in the environment in a closely time-locked manner. In Experiment 2, participants received instructions (e.g., 'Kijk naar de(COM) afgebeelde piano(COM)', look at the displayed piano) while viewing four objects. Articles (Dutch 'het' or 'de') were gender marked such that the article agreed in gender only with the target, and thus, participants could use gender information from the article to predict the target object. The adults with dyslexia anticipated the target objects but much later than the controls. Moreover, participants' word reading scores correlated positively with their anticipatory eye movements. We conclude by discussing the mechanisms by which reading abilities may influence predictive language processing. Copyright © 2015 John Wiley & Sons, Ltd.
ACT-Vision: active collaborative tracking for multiple PTZ cameras
NASA Astrophysics Data System (ADS)
Broaddus, Christopher; Germano, Thomas; Vandervalk, Nicholas; Divakaran, Ajay; Wu, Shunguang; Sawhney, Harpreet
2009-04-01
We describe a novel scalable approach for the management of a large number of Pan-Tilt-Zoom (PTZ) cameras deployed outdoors for persistent tracking of humans and vehicles, without resorting to the large fields of view of associated static cameras. Our system, Active Collaborative Tracking - Vision (ACT-Vision), is essentially a real-time operating system that can control hundreds of PTZ cameras to ensure uninterrupted tracking of target objects while maintaining image quality and coverage of all targets using a minimal number of sensors. The system ensures the visibility of targets between PTZ cameras by using criteria such as distance from sensor and occlusion.
NASA Astrophysics Data System (ADS)
Van Zandt, James R.
2012-05-01
Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.
A model for combined targeting and tracking tasks in computer applications.
Senanayake, Ransalu; Hoffmann, Errol R; Goonetilleke, Ravindra S
2013-11-01
Current models for targeted-tracking are discussed and shown to be inadequate as a means of understanding the combined task of tracking, as in the Drury's paradigm, and having a final target to be aimed at, as in the Fitts' paradigm. It is shown that the task has to be split into components that are, in general, performed sequentially and have a movement time component dependent on the difficulty of the individual component of the task. In some cases, the task time may be controlled by the Fitts' task difficulty, and in others, it may be dominated by the Drury's task difficulty. Based on an experiment carried out that captured movement time in combinations of visually controlled and ballistic movements, a model for movement time in targeted-tracking was developed.
Visual Target Tracking on the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Kim, Won; Biesiadecki, Jeffrey; Ali, Khaled
2008-01-01
Visual target tracking (VTT) software has been incorporated into Release 9.2 of the Mars Exploration Rover (MER) flight software, now running aboard the rovers Spirit and Opportunity. In the VTT operation (see figure), the rover is driven in short steps between stops and, at each stop, still images are acquired by actively aimed navigation cameras (navcams) on a mast on the rover (see artistic rendition). The VTT software processes the digitized navcam images so as to track a target reliably and to make it possible to approach the target accurately to within a few centimeters over a 10-m traverse.
Effects of measurement unobservability on neural extended Kalman filter tracking
NASA Astrophysics Data System (ADS)
Stubberud, Stephen C.; Kramer, Kathleen A.
2009-05-01
An important component of tracking fusion systems is the ability to fuse various sensors into a coherent picture of the scene. When multiple sensor systems are being used in an operational setting, the types of data vary. A significant but often overlooked concern of multiple sensors is the incorporation of measurements that are unobservable. An unobservable measurement is one that may provide information about the state, but cannot recreate a full target state. A line of bearing measurement, for example, cannot provide complete position information. Often, such measurements come from passive sensors such as a passive sonar array or an electronic surveillance measure (ESM) system. Unobservable measurements will, over time, result in the measurement uncertainty to grow without bound. While some tracking implementations have triggers to protect against the detrimental effects, many maneuver tracking algorithms avoid discussing this implementation issue. One maneuver tracking technique is the neural extended Kalman filter (NEKF). The NEKF is an adaptive estimation algorithm that estimates the target track as it trains a neural network on line to reduce the error between the a priori target motion model and the actual target dynamics. The weights of neural network are trained in a similar method to the state estimation/parameter estimation Kalman filter techniques. The NEKF has been shown to improve target tracking accuracy through maneuvers and has been use to predict target behavior using the new model that consists of the a priori model and the neural network. The key to the on-line adaptation of the NEKF is the fact that the neural network is trained using the same residuals as the Kalman filter for the tracker. The neural network weights are treated as augmented states to the target track. Through the state-coupling function, the weights are coupled to the target states. Thus, if the measurements cause the states of the target track to be unobservable, then the weights of the neural network have unobservable modes as well. In recent analysis, the NEKF was shown to have a significantly larger growth in the eigenvalues of the error covariance matrix than the standard EKF tracker when the measurements were purely bearings-only. This caused detrimental effects to the ability of the NEKF to model the target dynamics. In this work, the analysis is expanded to determine the detrimental effects of bearings-only measurements of various uncertainties on the performance of the NEKF when these unobservable measurements are interlaced with completely observable measurements. This analysis provides the ability to put implementation limitations on the NEKF when bearings-only sensors are present.
Uninformative Prior Multiple Target Tracking Using Evidential Particle Filters
NASA Astrophysics Data System (ADS)
Worthy, J. L., III; Holzinger, M. J.
Space situational awareness requires the ability to initialize state estimation from short measurements and the reliable association of observations to support the characterization of the space environment. The electro-optical systems used to observe space objects cannot fully characterize the state of an object given a short, unobservable sequence of measurements. Further, it is difficult to associate these short-arc measurements if many such measurements are generated through the observation of a cluster of satellites, debris from a satellite break-up, or from spurious detections of an object. An optimization based, probabilistic short-arc observation association approach coupled with a Dempster-Shafer based evidential particle filter in a multiple target tracking framework is developed and proposed to address these problems. The optimization based approach is shown in literature to be computationally efficient and can produce probabilities of association, state estimates, and covariances while accounting for systemic errors. Rigorous application of Dempster-Shafer theory is shown to be effective at enabling ignorance to be properly accounted for in estimation by augmenting probability with belief and plausibility. The proposed multiple hypothesis framework will use a non-exclusive hypothesis formulation of Dempster-Shafer theory to assign belief mass to candidate association pairs and generate tracks based on the belief to plausibility ratio. The proposed algorithm is demonstrated using simulated observations of a GEO satellite breakup scenario.
78 FR 2695 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... data elements used in the Workplace Environment Tracking System (WETS), a new electronic national..., Workplace Harassment Fact Finding, Threat Assessment Case Tracking, and Workplace Environment Intervention... tracking system for these four processes will reasonably assure that workplace harassment policies and...
Multiple hypothesis tracking for cluttered biological image sequences.
Chenouard, Nicolas; Bloch, Isabelle; Olivo-Marin, Jean-Christophe
2013-11-01
In this paper, we present a method for simultaneously tracking thousands of targets in biological image sequences, which is of major importance in modern biology. The complexity and inherent randomness of the problem lead us to propose a unified probabilistic framework for tracking biological particles in microscope images. The framework includes realistic models of particle motion and existence and of fluorescence image features. For the track extraction process per se, the very cluttered conditions motivate the adoption of a multiframe approach that enforces tracking decision robustness to poor imaging conditions and to random target movements. We tackle the large-scale nature of the problem by adapting the multiple hypothesis tracking algorithm to the proposed framework, resulting in a method with a favorable tradeoff between the model complexity and the computational cost of the tracking procedure. When compared to the state-of-the-art tracking techniques for bioimaging, the proposed algorithm is shown to be the only method providing high-quality results despite the critically poor imaging conditions and the dense target presence. We thus demonstrate the benefits of advanced Bayesian tracking techniques for the accurate computational modeling of dynamical biological processes, which is promising for further developments in this domain.
2017-06-01
implement human following on a mobile robot in an indoor environment . B. FUTURE WORK Future work that could be conducted in the realm of this thesis...FEASIBILITY OF CONDUCTING HUMAN TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM by...FEASIBILITY OF CONDUCTING HUMAN TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM 5. FUNDING NUMBERS
Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid.
Sumida, Iori; Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko
2016-03-08
Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film-based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers' abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one-dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers' breathing patterns, the mean tracking error range was 0.78-1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient.
Multithreaded hybrid feature tracking for markerless augmented reality.
Lee, Taehee; Höllerer, Tobias
2009-01-01
We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.
Tumanova, Victoria; Zebrowski, Patricia M.; Goodman, Shawn S.; Arenas, Richard M.
2015-01-01
Purpose The purpose of this study was to utilize a visuomotor tracking task, with both the jaw and hand, to add to the literature regarding non-speech motor practice and sensorimotor integration (outside of auditory-motor integration domain) in adults who do (PWS) and do not (PWNS) stutter. Method Participants were 15 PWS (14 males, mean age = 27.0) and 15 PWNS (14 males, mean age = 27.2). Participants tracked both predictable and unpredictable moving targets separately with their jaw and their dominant hand, and accuracy was assessed by calculating phase and amplitude difference between the participant and the target. Motor practice effect was examined by comparing group performance over consecutive tracking trials of predictable conditions as well as within the first trial of same conditions. Results Results showed that compared to PWNS, PWS were not significantly different in matching either the phase (timing) or the amplitude of the target in both jaw and hand tracking of predictable and unpredictable targets. Further, there were no significant between-group differences in motor practice effects for either jaw or hand tracking. Both groups showed improved tracking accuracy within and between the trials. Conclusion Our findings revealed no statistically significant differences in non-speech motor practice effects and integration of sensorimotor feedback between PWS and PWNS, at least in the context of the visuomotor tracking tasks employed in the study. In general, both talker groups exhibited practice effects (i.e., increased accuracy over time) within and between tracking trials during both jaw and hand tracking. Implications for these results are discussed. PMID:25990027
Design of a Holonic Control Architecture for Distributed Sensor Management
2009-09-01
Tracking tasks require only intermit - tent access to the sensors to maintain a given track quality. The higher the specified quality, the more often...resolution of the sensor (i.e., sensor mode), which can be adjusted to compensate for fast moving targets tracked over long ranges, or slower moving...but provides higher data update rates that are beneficial when tracking fast agile targets (i.e., a fighter). Table A.2 illustrates the dependence of
Reallocating attention during multiple object tracking.
Ericson, Justin M; Christensen, James C
2012-07-01
Wolfe, Place, and Horowitz (Psychonomic Bulletin & Review 14:344-349, 2007) found that participants were relatively unaffected by selecting and deselecting targets while performing a multiple object tracking task, such that maintaining tracking was possible for longer durations than the few seconds typically studied. Though this result was generally consistent with other findings on tracking duration (Franconeri, Jonathon, & Scimeca Psychological Science 21:920-925, 2010), it was inconsistent with research involving cuing paradigms, specifically precues (Pylyshyn & Annan Spatial Vision 19:485-504, 2006). In the present research, we broke down the addition and removal of targets into separate conditions and incorporated a simple performance model to evaluate the costs associated with the selection and deselection of moving targets. Across three experiments, we demonstrated evidence against a cost being associated with any shift in attention, but rather that varying the type of cue used for target deselection produces no additional cost to performance and that hysteresis effects are not induced by a reduction in tracking load.
40 CFR 610.64 - Track test procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Track test procedures. 610.64 Section 610.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.64 Track...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking. 279.74 Section 279.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.74 Tracking. (a) Off...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking. 279.74 Section 279.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.74 Tracking. (a) Off...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking. 279.56 Section 279.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Tracking. 279.74 Section 279.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.74 Tracking. (a) Off...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking. 279.56 Section 279.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Tracking. 279.56 Section 279.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tracking. 279.56 Section 279.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking. 279.56 Section 279.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279.56 Tracking. (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Tracking. 279.74 Section 279.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.74 Tracking. (a) Off...
Scholey, Andrew B; Sünram-Lea, Sandra I; Greer, Joanna; Elliott, Jade; Kennedy, David O
2009-01-01
The cognition-enhancing effects of glucose administration to humans have been well-documented; however, it remains unclear whether this effect preferentially targets episodic memory or other cognitive domains. The effect of glucose on the allocation of attentional resources during memory encoding was assessed using a sensitive dual-attention paradigm. One hundred and twenty volunteers (mean age 21.60, SD 4.89, 77 females) took part in this randomised, double-blind, placebo-controlled, parallel groups study where each consumed a 25-g glucose drink or a placebo. Half of the participants in each drink condition attempted to track a moving on-screen target during auditory word presentation. The distance between the cursor and the tracking target was used as an index of attentional cost during encoding. Effects of drink and tracking on recognition memory and drink on tracking performance were assessed. Self-rated appetite and mood were co-monitored. Co-performing the tracking task significantly impaired memory performance irrespective of drink condition. In the placebo-tracking condition, there was a cost to tracking manifest as greater deviation from target during and immediately following word presentation. Compared with placebo, the glucose drink significantly improved tracking performance during encoding. There were significant time-related changes in thirst and alertness ratings but these were not differentially affected by drink or tracking conditions. Tracking but not memory was enhanced by glucose. This finding suggests that, under certain task conditions, glucose administrations does not preferentially enhance memory performance. One mechanism through which glucose acts as a cognition enhancer is through allowing greater allocation of attentional resources.
Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians.
Clayton, Kameron K; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D; Kidd, Gerald
2016-01-01
The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, "cocktail-party" like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the "cocktail party problem".
Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians
Clayton, Kameron K.; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D.; Kidd, Gerald
2016-01-01
The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, “cocktail-party” like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the “cocktail party problem”. PMID:27384330
Störmer, Viola S; Alvarez, George A; Cavanagh, Patrick
2014-08-27
It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. Copyright © 2014 the authors 0270-6474/14/3311526-08$15.00/0.
McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech
2008-09-01
An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (ID) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated. However, the algorithm presented is robust in the sense that it does not rely on a high level of agreement between the target motion measured during treatment planning and delivery.
3D Visual Tracking of an Articulated Robot in Precision Automated Tasks
Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P.
2017-01-01
The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot with an overall tracking error of 0.25 mm. Also, the effectiveness of CRCHT technique in saving up to 60% of the overall time required for image processing. PMID:28067860
Tracking target objects orbiting earth using satellite-based telescopes
De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J
2014-10-14
A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.
40 CFR 273.19 - Tracking universal waste shipments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Tracking universal waste shipments. 273.19 Section 273.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... Universal Waste § 273.19 Tracking universal waste shipments. A small quantity handler of universal waste is...
Multitarget mixture reduction algorithm with incorporated target existence recursions
NASA Astrophysics Data System (ADS)
Ristic, Branko; Arulampalam, Sanjeev
2000-07-01
The paper derives a deferred logic data association algorithm based on the mixture reduction approach originally due to Salmond [SPIE vol.1305, 1990]. The novelty of the proposed algorithm provides the recursive formulae for both data association and target existence (confidence) estimation, thus allowing automatic track initiation and termination. T he track initiation performance of the proposed filter is investigated by computer simulations. It is observed that at moderately high levels of clutter density the proposed filter initiates tracks more reliably than its corresponding PDA filter. An extension of the proposed filter to the multi-target case is also presented. In addition, the paper compares the track maintenance performance of the MR algorithm with an MHT implementation.
Influence of school environments on childhood obesity in California.
Ortega Hinojosa, Alberto M; MacLeod, Kara E; Balmes, John; Jerrett, Michael
2018-06-05
To conduct a state-wide examination of public schools and the school neighborhood as potential targets for environmental public health tracking to address childhood obesity. We examined the relationship of social and physical environmental attributes of the school environment (within school and neighborhood) and childhood obesity in California with machine learning (Random Forest) and multilevel methods. We used data compiled from the California Department of Education, the U.S. Geological Survey, ESRI's Business Analyst, the U.S. Census, and other public sources for ecologic level variables for various years and assessed their relative importance to obesity as determined from the statewide Physical Fitness Test 2003 through 2007 for grades 5, 7, and 9 (n = 5,265,265). In addition to individual-level race and gender, the following within and school neighborhood variables ranked as the most important model contributors based on the Random Forest analysis and were included in multilevel regressions clustered on the county. Violent crime, English learners, socioeconomic disadvantage, fewer physical education (PE) and fully credentialed teachers, and diversity index were positively associated with obesity while academic performance index, PE participation, mean educational attainment and per capita income were negatively associated with obesity. The most highly ranked built or physical environment variables were distance to the nearest highway and greenness, which were 10th and 11th most important, respectively. Many states in the U.S. do not have school-based surveillance programs that collect body mass index data. System-level determinants of obesity can be important for tracking and intervention. The results of these analyses suggest that the school social environment factors may be especially important. Disadvantaged and low academic performing schools have a higher risk for obesity. Supporting such schools in a targeted way may be an efficient way to intervene and could impact both health and academic outcomes. Some of the more important variables, such as having credentialed teachers and participating in PE, are modifiable risk factors. Copyright © 2018. Published by Elsevier Inc.
Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.
Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J
2017-03-03
We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.
Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods
Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J.
2017-01-01
We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter. PMID:28273796
Computational Transport Modeling of High-Energy Neutrons Found in the Space Environment
NASA Technical Reports Server (NTRS)
Cox, Brad; Theriot, Corey A.; Rohde, Larry H.; Wu, Honglu
2012-01-01
The high charge and high energy (HZE) particle radiation environment in space interacts with spacecraft materials and the human body to create a population of neutrons encompassing a broad kinetic energy spectrum. As an HZE ion penetrates matter, there is an increasing chance of fragmentation as penetration depth increases. When an ion fragments, secondary neutrons are released with velocities up to that of the primary ion, giving some neutrons very long penetration ranges. These secondary neutrons have a high relative biological effectiveness, are difficult to effectively shield, and can cause more biological damage than the primary ions in some scenarios. Ground-based irradiation experiments that simulate the space radiation environment must account for this spectrum of neutrons. Using the Particle and Heavy Ion Transport Code System (PHITS), it is possible to simulate a neutron environment that is characteristic of that found in spaceflight. Considering neutron dosimetry, the focus lies on the broad spectrum of recoil protons that are produced in biological targets. In a biological target, dose at a certain penetration depth is primarily dependent upon recoil proton tracks. The PHITS code can be used to simulate a broad-energy neutron spectrum traversing biological targets, and it account for the recoil particle population. This project focuses on modeling a neutron beamline irradiation scenario for determining dose at increasing depth in water targets. Energy-deposition events and particle fluence can be simulated by establishing cross-sectional scoring routines at different depths in a target. This type of model is useful for correlating theoretical data with actual beamline radiobiology experiments. Other work exposed human fibroblast cells to a high-energy neutron source to study micronuclei induction in cells at increasing depth behind water shielding. Those findings provide supporting data describing dose vs. depth across a water-equivalent medium. This poster presents PHITS data suggesting an increase in dose, up to roughly 10 cm depth, followed by a continual decrease as neutrons come to a stop in the target.
GTARG - THE TOPEX/POSEIDON GROUND TRACK MAINTENANCE MANEUVER TARGETING PROGRAM
NASA Technical Reports Server (NTRS)
Shapiro, B. E.
1994-01-01
GTARG, The TOPEX/POSEIDON Ground Track Maintenance Maneuver Targeting Program, was developed to assist in the designing of orbit maintenance maneuvers for the TOPEX/POSEIDON satellite. These maneuvers ensure that the ground track is kept within 1 km of an approximately 9.9 day exact repeat pattern. Targeting strategies used by GTARG will either maximize the time between maneuvers (longitude targeting) or force control band exit to occur at specified intervals (time targeting). A runout mode allows for ground track propagation without targeting. The analytic mean-element propagation algorithm used in GTARG includes all perturbations that are known to cause significant variations in the satellite ground track. These include earth oblateness, luni-solar gravity, and drag, as well as the thrust due to impulsive maneuvers and unspecified along-track satellite fixed forces. Merson's extension of Grove's theory is used for the computation of the geopotential field. Kaula's disturbing function is used to attain the luni-solar gravitational perturbations. GTARG includes a satellite unique drag model which incorporates an approximate mean orbital Jacchia-Roberts atmosphere and a variable mean area model. Error models include uncertainties due to orbit determination, maneuver execution, drag unpredictability, as well as utilization of the knowledge of along-track satellite fixed forces. Maneuver Delta-v magnitudes are targeted to precisely maintain either the unbiased ground track itself, or a comfortable (3 sigma) error envelope about the unbiased ground track. GTARG is written in VAX-FORTRAN for DEC VAX Series computers running VMS. GTARG output is provided in two forms: an executive report summary which is in tabular form, and a plot file which is formatted as EZPLOT input namelists. Although the EZPLOT program and documentation are included with GTARG, EZPLOT requires PGPLOT, which was written by the California Institute of Technology Astronomy Department. (For non-commercial use, the CalTech-copyrighted program PGPLOT is available via anonymous ftp at the following internet address: deimos.caltech.edu.) GTARG users without access to PGPLOT may want to use a standard spreadsheet program to produce plots of the tabular ground track data stored in the executive report summary. Alternatively, using information provided in the GTARG User's Reference Manual, GTARG users may write a graphics interpreter for the system of their choice. The standard distribution medium for GTARG is a 1600 BPI 9-track magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. GTARG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.
Exogenous Social Identity Cues Differentially Affect the Dynamic Tracking of Individual Target Faces
ERIC Educational Resources Information Center
Allen, Roy; Gabbert, Fiona
2013-01-01
We report on an experiment to investigate the top-down effect of exogenous social identity cues on a multiple-identity tracking task, a paradigm well suited to investigate the processes of binding identity to spatial locations. Here we simulated an eyewitness event in which dynamic targets, all to be tracked with equal effort, were identified from…
NASA Astrophysics Data System (ADS)
Qian, Kun; Zhou, Huixin; Wang, Bingjian; Song, Shangzhen; Zhao, Dong
2017-11-01
Infrared dim and small target tracking is a great challenging task. The main challenge for target tracking is to account for appearance change of an object, which submerges in the cluttered background. An efficient appearance model that exploits both the global template and local representation over infrared image sequences is constructed for dim moving target tracking. A Sparsity-based Discriminative Classifier (SDC) and a Convolutional Network-based Generative Model (CNGM) are combined with a prior model. In the SDC model, a sparse representation-based algorithm is adopted to calculate the confidence value that assigns more weights to target templates than negative background templates. In the CNGM model, simple cell feature maps are obtained by calculating the convolution between target templates and fixed filters, which are extracted from the target region at the first frame. These maps measure similarities between each filter and local intensity patterns across the target template, therefore encoding its local structural information. Then, all the maps form a representation, preserving the inner geometric layout of a candidate template. Furthermore, the fixed target template set is processed via an efficient prior model. The same operation is applied to candidate templates in the CNGM model. The online update scheme not only accounts for appearance variations but also alleviates the migration problem. At last, collaborative confidence values of particles are utilized to generate particles' importance weights. Experiments on various infrared sequences have validated the tracking capability of the presented algorithm. Experimental results show that this algorithm runs in real-time and provides a higher accuracy than state of the art algorithms.
A Novel Passive Tracking Scheme Exploiting Geometric and Intercept Theorems
Zhou, Biao; Sun, Chao; Ahn, Deockhyeon; Kim, Youngok
2018-01-01
Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target’s trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes. PMID:29562621
Heterogeneous Vision Data Fusion for Independently Moving Cameras
2010-03-01
target detection , tracking , and identification over a large terrain. The goal of the project is to investigate and evaluate the existing image...fusion algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in moving target detection and tracking . The...moving target detection and classification. 15. SUBJECT TERMS Image Fusion, Target Detection , Moving Cameras, IR Camera, EO Camera 16. SECURITY
An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks.
Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing
2017-03-20
In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods.
An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks
Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing
2017-01-01
In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods. PMID:28335537
Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid
Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko
2016-01-01
Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film‐based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers’ abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one‐dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers’ breathing patterns, the mean tracking error range was 0.78‐1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient. PACS number(s): 87.55.D‐, 87.55.km, 87.55.Qr, 87.56.Fc PMID:27074474
Alternatives to an extended Kalman Filter for target image tracking
NASA Astrophysics Data System (ADS)
Leuthauser, P. R.
1981-12-01
Four alternative filters are compared to an extended Kalman filter (EKF) algorithm for tracking a distributed (elliptical) source target in a closed loop tracking problem, using outputs from a forward looking (FLIR) sensor as measurements. These were (1) an EKF with (second order) bias correction term, (2) a constant gain EKF, (3) a constant gain EKF with bias correction term, and (4) a statistically linearized filter. Estimates are made of both actual target motion and of apparent motion due to atmospheric jitter. These alternative designs are considered specifically to address some of the significant biases exhibited by an EKF due to initial acquisition difficulties, unmodelled maneuvering by the target, low signal-to-noise ratio, and real world conditions varying significantly from those assumed in the filter design (robustness). Filter performance was determined with a Monte Carlo study under both ideal and non ideal conditions for tracking targets on a constant velocity cross range path, and during constant acceleration turns of 5G, 10G, and 20G.
NASA Technical Reports Server (NTRS)
Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong
2015-01-01
A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. This report describes the research and development effort for this prototype integrated UWB tracking and CO2 sensing system. The remainder of the report is organized as follows. In Section II, the TOA tracking methodology is introduced and the 3D tracking algorithm is derived. The simulation results are discussed in Section III. In Section VI, prototype system design and field tests are discussed. Some concluding remarks and future works are presented in Section V.
A real-time tracking system of infrared dim and small target based on FPGA and DSP
NASA Astrophysics Data System (ADS)
Rong, Sheng-hui; Zhou, Hui-xin; Qin, Han-lin; Wang, Bing-jian; Qian, Kun
2014-11-01
A core technology in the infrared warning system is the detection tracking of dim and small targets with complicated background. Consequently, running the detection algorithm on the hardware platform has highly practical value in the military field. In this paper, a real-time detection tracking system of infrared dim and small target which is used FPGA (Field Programmable Gate Array) and DSP (Digital Signal Processor) as the core was designed and the corresponding detection tracking algorithm and the signal flow is elaborated. At the first stage, the FPGA obtain the infrared image sequence from the sensor, then it suppresses background clutter by mathematical morphology method and enhances the target intensity by Laplacian of Gaussian operator. At the second stage, the DSP obtain both the original image and the filtered image form the FPGA via the video port. Then it segments the target from the filtered image by an adaptive threshold segmentation method and gets rid of false target by pipeline filter. Experimental results show that our system can achieve higher detection rate and lower false alarm rate.
Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight
Guo, Siqiu; Zhang, Tao; Song, Yulong
2018-01-01
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610
Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng
2018-04-23
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.
Zhu, Wei; Wang, Wei; Yuan, Gannan
2016-06-01
In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).
Attention Modulates Spatial Precision in Multiple-Object Tracking.
Srivastava, Nisheeth; Vul, Ed
2016-01-01
We present a computational model of multiple-object tracking that makes trial-level predictions about the allocation of visual attention and the effect of this allocation on observers' ability to track multiple objects simultaneously. This model follows the intuition that increased attention to a location increases the spatial resolution of its internal representation. Using a combination of empirical and computational experiments, we demonstrate the existence of a tight coupling between cognitive and perceptual resources in this task: Low-level tracking of objects generates bottom-up predictions of error likelihood, and high-level attention allocation selectively reduces error probabilities in attended locations while increasing it at non-attended locations. Whereas earlier models of multiple-object tracking have predicted the big picture relationship between stimulus complexity and response accuracy, our approach makes accurate predictions of both the macro-scale effect of target number and velocity on tracking difficulty and micro-scale variations in difficulty across individual trials and targets arising from the idiosyncratic within-trial interactions of targets and distractors. Copyright © 2016 Cognitive Science Society, Inc.
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)
2010-01-01
A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.
Countering MANPADS: study of new concepts and applications
NASA Astrophysics Data System (ADS)
Maltese, Dominique; Robineau, Jacques; Audren, Jean-Thierry; Aragones, Julien; Sailliot, Christophe
2006-05-01
The latest events of ground-to-air Man Portable Air Defense (MANPAD) attacks against aircraft have revealed a new threat both for military and civilian aircraft. Consequently, the implementation of Protecting systems (i.e. Directed InfraRed Counter Measure - DIRCM) in order to face IR guided missiles turns out to be now inevitable. In a near future, aircraft will have to possess detection, tracking, targeting and jamming capabilities to face single and multiple MANPAD threats fired in short-range scenarios from various environments (urban sites, landscape...). In this paper, a practical example of a DIRCM system under study at SAGEM DEFENSE & SECURITY company is presented. The self-protection solution includes built-in and automatic locking-on, tracking, identification and laser jamming capabilities, including defeat assessment. Target Designations are provided by a Missile Warning System. Multiple Target scenarios have been considered to design the system architecture. The article deals with current and future threats (IR seekers of different generations...), scenarios and platforms for system definition. Plus, it stresses on self-protection solutions based on laser jamming capability. Different strategies including target identification, multi band laser, active imagery are described. The self-protection system under study at SAGEM DEFENSE & SECURITY company is also a part of this chapter. Eventually, results of self-protection scenarios are provided for different MANPAD scenarios. Data have been obtained from a simulation software. The results highlight how the system reacts to incoming IR-guided missiles in short time scenarios.
Fast object reconstruction in block-based compressive low-light-level imaging
NASA Astrophysics Data System (ADS)
Ke, Jun; Sui, Dong; Wei, Ping
2014-11-01
In this paper we propose a simply yet effective and efficient method for long-term object tracking. Different from traditional visual tracking method which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion problem. To summarize, our algorithm can be roughly decomposed in a initialization stage and a tracking stage. In the initialization stage, an offline classifier is trained to get the object appearance information in category level. When the video stream is coming, the pre-trained offline classifier is used for detecting the potential target and initializing the tracking stage. In the tracking stage, it consists of three parts which are online tracking part, offline tracking part and confidence judgment part. Online tracking part captures the specific target appearance information while detection part localizes the object based on the pre-trained offline classifier. Since there is no data dependence between online tracking and offline detection, these two parts are running in parallel to significantly improve the processing speed. A confidence selection mechanism is proposed to optimize the object location. Besides, we also propose a simple mechanism to judge the absence of the object. If the target is lost, the pre-trained offline classifier is utilized to re-initialize the whole algorithm as long as the target is re-located. During experiment, we evaluate our method on several challenging video sequences and demonstrate competitive results.
Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600
NASA Technical Reports Server (NTRS)
Matney, Mark J.; Stansbery, Eugene; J.-C Liou; Stokely, Christopher; Horstman, Matthew; Whitlock, David
2008-01-01
On January 11, 2007, the Chinese military conducted a test of an anti-satellite (ASAT) system, destroying their own Fengyun-1C spacecraft with an interceptor missile. The resulting hypervelocity collision created an unprecedented number of tracked debris - more than 2500 objects. These objects represent only those large enough for the US Space Surveillance Network (SSN) to track - typically objects larger than about 5-10 cm in diameter. There are expected to be even more debris objects at sizes too small to be seen and tracked by the SSN. Because of the altitude of the target satellite (865 x 845 km orbit), many of the debris are expected to have long orbital lifetimes and contribute to the orbital debris environment for decades to come. In the days and weeks following the ASAT test, NASA was able to use Lincoln Laboratory s Haystack radar on several occasions to observe portions of the ASAT debris cloud. Haystack has the capability of detecting objects down to less than one centimeter in diameter, and a large number of centimeter-sized particles corresponding to the ASAT cloud were clearly seen in the data. While Haystack cannot track these objects, the statistical sampling procedures NASA uses can give an accurate statistical picture of the characteristics of the debris from a breakup event. For years computer models based on data from ground hypervelocity collision tests (e.g., the SOCIT test) and orbital collision experiments (e.g., the P-78 and Delta-180 on-orbit collisions) have been used to predict the extent and characteristics of such hypervelocity collision debris clouds, but until now there have not been good ways to verify these models in the centimeter size regime. It is believed that unplanned collisions of objects in space similar to ASAT tests will drive the long-term future evolution of the debris environment in near-Earth space. Therefore, the Chinese ASAT test provides an excellent opportunity to test the models used to predict the future debris environment. For this study, Haystack detection events are compared to model predictions to test the model assumptions, including debris size distribution, velocity distribution, and assumptions about momentum transfer between the target and interceptor. In this paper we will present the results of these and other measurements on the size and extent of collisional breakup debris clouds.
Development of a frequency-modulated ultrasonic sensor inspired by bat echolocation
NASA Astrophysics Data System (ADS)
Kepa, Krzysztof; Abaid, Nicole
2015-03-01
Bats have evolved to sense using ultrasonic signals with a variety of different frequency signatures which interact with their environment. Among these signals, those with time-varying frequencies may enable the animals to gather more complex information for obstacle avoidance and target tracking. Taking inspiration from this system, we present the development of a sonar sensor capable of generating frequency-modulated ultrasonic signals. The device is based on a miniature mobile computer, with on board data capture and processing capabilities, which is designed for eventual autonomous operation in a robotic swarm. The hardware and software components of the sensor are detailed, as well their integration. Preliminary results for target detection using both frequency-modulated and constant frequency signals are discussed.
Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Booth, Jeremy T.; Keall, Paul J.
2014-01-01
Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the Au+Ao was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the Au+Ao reductions were all above 75% and the total Au+Ao improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time. PMID:24877798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien
Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real timemore » tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the A{sub u}+A{sub o} was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the A{sub u}+A{sub o} reductions were all above 75% and the total A{sub u}+A{sub o} improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time.« less
NASA Technical Reports Server (NTRS)
Oliver, B. M.; Gower, J. F. R.
1977-01-01
A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.
Colomb, Julien; Reiter, Lutz; Blaszkiewicz, Jedrzej; Wessnitzer, Jan; Brembs, Bjoern
2012-01-01
Insects have been among the most widely used model systems for studying the control of locomotion by nervous systems. In Drosophila, we implemented a simple test for locomotion: in Buridan's paradigm, flies walk back and forth between two inaccessible visual targets [1]. Until today, the lack of easily accessible tools for tracking the fly position and analyzing its trajectory has probably contributed to the slow acceptance of Buridan's paradigm. We present here a package of open source software designed to track a single animal walking in a homogenous environment (Buritrack) and to analyze its trajectory. The Centroid Trajectory Analysis (CeTrAn) software is coded in the open source statistics project R. It extracts eleven metrics and includes correlation analyses and a Principal Components Analysis (PCA). It was designed to be easily customized to personal requirements. In combination with inexpensive hardware, these tools can readily be used for teaching and research purposes. We demonstrate the capabilities of our package by measuring the locomotor behavior of adult Drosophila melanogaster (whose wings were clipped), either in the presence or in the absence of visual targets, and comparing the latter to different computer-generated data. The analysis of the trajectories confirms that flies are centrophobic and shows that inaccessible visual targets can alter the orientation of the flies without changing their overall patterns of activity. Using computer generated data, the analysis software was tested, and chance values for some metrics (as well as chance value for their correlation) were set. Our results prompt the hypothesis that fixation behavior is observed only if negative phototaxis can overcome the propensity of the flies to avoid the center of the platform. Together with our companion paper, we provide new tools to promote Open Science as well as the collection and analysis of digital behavioral data.
Sensor Management for Fighter Applications
2006-06-01
has consistently shown that by directly estimating the prob- ability density of a target state using a track - before - detect scheme, weak and densely... track - before - detect nonlinear filter was constructed to estimate the joint density of all state variables. A simulation that emulates estimator...targets in clutter and noise from sensed kinematic and identity data. Among the most capable is track - before - detect (TBD), which delivers
Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H
2018-02-01
Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.
Visuo-oculomotor skills related to the visual demands of sporting environments.
Ceyte, Hadrien; Lion, Alexis; Caudron, Sébastien; Perrin, Philippe; Gauchard, Gérome C
2017-01-01
The aim of this study was to assess the visuo-oculomotor skills of gaze orientation in selected sport activities relative to visual demands of the sporting environment. Both temporal and spatial demands of the sporting environment were investigated: The latency and accuracy of horizontal saccades and the gain of the horizontal smooth pursuit of the sporting environment were investigated in 16 fencers, 19 tennis players, 12 gymnasts, 9 swimmers and 18 sedentary participants. For the saccade test, two sequences were tested: In the fixed sequence, participants knew in advance the time interval between each target, as well as the direction and the amplitude of its reappearance; in the Freyss sequence however, the spatial changes of the target (direction and amplitude) were known in advance by participants but the time interval between each target was unknown. For the smooth-pursuit test, participants were instructed to smoothly track a target moving in a predictable sinusoidal, horizontal way without corrective ocular saccades, nor via anticipation or head movements. The results showed no significant differences between specificities of selected sporting activities via the saccade latency (although shorter than in non-athletes), contrary to saccade accuracy and the gain of smooth pursuit. Higher saccade accuracy was observed overall in fencers compared to non-athletes and all other sportsmen with the exception of tennis players. In the smooth-pursuit task, only tennis players presented a significantly higher gain compared to non-athletes and gymnasts. These sport-specific characteristics of the visuo-oculomotor skills are discussed with regard to the different cognitive skills such as attentional allocation and cue utilization ability as well as with regard to the difference in motor preparation.
Neural network fusion capabilities for efficient implementation of tracking algorithms
NASA Astrophysics Data System (ADS)
Sundareshan, Malur K.; Amoozegar, Farid
1996-05-01
The ability to efficiently fuse information of different forms for facilitating intelligent decision-making is one of the major capabilities of trained multilayer neural networks that is being recognized int eh recent times. While development of innovative adaptive control algorithms for nonlinear dynamical plants which attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. In this paper we describe the capabilities and functionality of neural network algorithms for data fusion and implementation of nonlinear tracking filters. For a discussion of details and for serving as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes form the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. Such an approach results in an overall nonlinear tracking filter which has several advantages over the popular efforts at designing nonlinear estimation algorithms for tracking applications, the principle one being the reduction of mathematical and computational complexities. A system architecture that efficiently integrates the processing capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described in this paper.
Online Variational Bayesian Filtering-Based Mobile Target Tracking in Wireless Sensor Networks
Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei
2014-01-01
The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer–Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying. PMID:25393784
NASA Astrophysics Data System (ADS)
de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.
2011-05-01
Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.
Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit
NASA Astrophysics Data System (ADS)
Kozlinskiy, Alexandr
2017-08-01
The Mu3e experiment is designed to search for the lepton flavor violating decay μ+ → e+e+e-. The aim of the experiment is to reach a branching ratio sensitivity of 10-16. In a first phase the experiment will be performed at an existing beam line at the Paul-Scherrer Institute (Switzerland) providing 108 muons per second, which will allow to reach a sensitivity of 2 · 10-15. The muons with a momentum of about 28 MeV/c are stopped and decay at rest on a target. The decay products (positrons and electrons) with energies below 53MeV are measured by a tracking detector consisting of two double layers of 50 μm thin silicon pixel sensors. The high granularity of the pixel detector with a pixel size of 80 μm × 80 μm allows for a precise track reconstruction in the high multiplicity environment of the Mu3e experiment, reaching 100 tracks per reconstruction frame of 50 ns in the final phase of the experiment. To deal with such high rates and combinatorics, the Mu3e track reconstruction uses a novel fit algorithm that in the simplest case takes into account only the multiple scattering, which allows for a fast online tracking on a GPU based filter farm. An implementation of the 3-dimensional multiple scattering fit based on hit triplets is described. The extension of the fit that takes into account energy losses and pixel size is used for offline track reconstruction. The algorithm and performance of the offline track reconstruction based on a full Geant4 simulation of the Mu3e detector are presented.
Polar versus Cartesian velocity models for maneuvering target tracking with IMM
NASA Astrophysics Data System (ADS)
Laneuville, Dann
This paper compares various model sets in different IMM filters for the maneuvering target tracking problem. The aim is to see whether we can improve the tracking performance of what is certainly the most widely used model set in the literature for the maneuvering target tracking problem: a Nearly Constant Velocity model and a Nearly Coordinated Turn model. Our new challenger set consists of a mixed Cartesian position and polar velocity state vector to describe the uniform motion segments and is augmented with the turn rate to obtain the second model for the maneuvering segments. This paper also gives a general procedure to discretize up to second order any non-linear continuous time model with linear diffusion. Comparative simulations on an air defence scenario with a 2D radar, show that this new approach improves significantly the tracking performance in this case.
Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance of a Moving Target
Tsukamoto, Kazuya; Ueda, Hirofumi; Tamura, Hitomi; Kawahara, Kenji; Oie, Yuji
2009-01-01
In this paper, we focus on the problem of tracking a moving target in a wireless sensor network (WSN), in which the capability of each sensor is relatively limited, to construct large-scale WSNs at a reasonable cost. We first propose two simple multi-point surveillance schemes for a moving target in a WSN and demonstrate that one of the schemes can achieve high tracking probability with low power consumption. In addition, we examine the relationship between tracking probability and sensor density through simulations, and then derive an approximate expression representing the relationship. As the results, we present guidelines for sensor density, tracking probability, and the number of monitoring sensors that satisfy a variety of application demands. PMID:22412326
Electromagnetic tracking in the clinical environment
Yaniv, Ziv; Wilson, Emmanuel; Lindisch, David; Cleary, Kevin
2009-01-01
When choosing an electromagnetic tracking system (EMTS) for image-guided procedures several factors must be taken into consideration. Among others these include the system’s refresh rate, the number of sensors that need to be tracked, the size of the navigated region, the system interaction with the environment, whether the sensors can be embedded into the tools and provide the desired transformation data, and tracking accuracy and robustness. To date, the only factors that have been studied extensively are the accuracy and the susceptibility of EMTSs to distortions caused by ferromagnetic materials. In this paper the authors shift the focus from analysis of system accuracy and stability to the broader set of factors influencing the utility of EMTS in the clinical environment. The authors provide an analysis based on all of the factors specified above, as assessed in three clinical environments. They evaluate two commercial tracking systems, the Aurora system from Northern Digital Inc., and the 3D Guidance system with three different field generators from Ascension Technology Corp. The authors show that these systems are applicable to specific procedures and specific environments, but that currently, no single system configuration provides a comprehensive solution across procedures and environments. PMID:19378748
Real Time Target Tracking in a Phantom Using Ultrasonic Imaging
NASA Astrophysics Data System (ADS)
Xiao, X.; Corner, G.; Huang, Z.
In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.
MW 08-multi-beam air and surface surveillance radar
NASA Astrophysics Data System (ADS)
1989-09-01
Signal of the Netherlands has developed and is marketing the MW 08, a 3-D radar to be used for short to medium range surveillance, target acquisition, and tracking. MW 08 is a fully automated detecting and tracking radar. It is designed to counter threats from aircraft and low flying antiship missiles. It can also deal with the high level missile threat. MW 08 operates in the 5 cm band using one antenna for both transmitting and receiving. The antenna is an array, consisting of 8 stripline antennas. The received radar energy is processed by 8 receiver channels. These channels come together in the beam forming network, in which 8 virtual beams are formed. From this beam pattern, 6 beams are used for the elevation coverage of 0-70 degrees. MW 08's output signals of the beam former are further handled by FFT and plot processors for target speed information, clutter rejection, and jamming suppression. A general purpose computer handles target track initiation, and tracking. Tracking data are transferred to the command and control systems with 3-D target information for fastest possible lockon.
Strategic Defense Initiative Organization adaptive structures program overview
NASA Astrophysics Data System (ADS)
Obal, Michael; Sater, Janet M.
In the currently envisioned architecture none of the Strategic Defense System (SDS) elements to be deployed will receive scheduled maintenance. Assessments of performance capability due to changes caused by the uncertain effects of environments will be difficult, at best. In addition, the system will have limited ability to adjust in order to maintain its required performance levels. The Materials and Structures Office of the Strategic Defense Initiative Organization (SDIO) has begun to address solutions to these potential difficulties via an adaptive structures technology program that combines health and environment monitoring with static and dynamic structural control. Conceivable system benefits include improved target tracking and hit-to-kill performance, on-orbit system health monitoring and reporting, and threat attack warning and assessment.
Rate control and quality assurance during rhythmic force tracking.
Huang, Cheng-Ya; Su, Jyong-Huei; Hwang, Ing-Shiou
2014-02-01
Movement characteristics can be coded in the single neurons or in the summed activity of neural populations. However, whether neural oscillations are conditional to the frequency demand and task quality of rhythmic force regulation is still unclear. This study was undertaken to investigate EEG dynamics and behavior correlates during force-tracking at different target rates. Fourteen healthy volunteers conducted load-varying isometric abduction of the index finger by coupling the force output to sinusoidal targets at 0.5 Hz, 1.0 Hz, and 2.0 Hz. Our results showed that frequency demand significantly affected EEG delta oscillation (1-4 Hz) in the C3, CP3, CPz, and CP4 electrodes, with the greatest delta power and lowest delta peak around 1.5 Hz for slower tracking at 0.5 Hz. Those who had superior tracking congruency also manifested enhanced alpha oscillation (8-12 Hz). Alpha rhythms of the skilled performers during slow tracking spread through the whole target cycle, except for the phase of direction changes. However, the alpha rhythms centered at the mid phase of a target cycle with increasing target rate. In conclusion, our findings clearly suggest two advanced roles of cortical oscillation in rhythmic force regulation. Rate-dependent delta oscillation involves a paradigm shift in force control under different time scales. Phasic organization of alpha rhythms during rhythmic force tracking is related to behavioral success underlying the selective use of bimodal controls (feedback and feedforward processes) and the timing of attentional focus on the target's peak velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
Nguyen, Phong Ha; Kim, Ki Wan; Lee, Young Won; Park, Kang Ryoung
2017-08-30
Unmanned aerial vehicles (UAVs), which are commonly known as drones, have proved to be useful not only on the battlefields where manned flight is considered too risky or difficult, but also in everyday life purposes such as surveillance, monitoring, rescue, unmanned cargo, aerial video, and photography. More advanced drones make use of global positioning system (GPS) receivers during the navigation and control loop which allows for smart GPS features of drone navigation. However, there are problems if the drones operate in heterogeneous areas with no GPS signal, so it is important to perform research into the development of UAVs with autonomous navigation and landing guidance using computer vision. In this research, we determined how to safely land a drone in the absence of GPS signals using our remote maker-based tracking algorithm based on the visible light camera sensor. The proposed method uses a unique marker designed as a tracking target during landing procedures. Experimental results show that our method significantly outperforms state-of-the-art object trackers in terms of both accuracy and processing time, and we perform test on an embedded system in various environments.
Detection of multiple airborne targets from multisensor data
NASA Astrophysics Data System (ADS)
Foltz, Mark A.; Srivastava, Anuj; Miller, Michael I.; Grenander, Ulf
1995-08-01
Previously we presented a jump-diffusion based random sampling algorithm for generating conditional mean estimates of scene representations for the tracking and recongition of maneuvering airborne targets. These representations include target positions and orientations along their trajectories and the target type associated with each trajectory. Taking a Bayesian approach, a posterior measure is defined on the parameter space by combining sensor models with a sophisticated prior based on nonlinear airplane dynamics. The jump-diffusion algorithm constructs a Markov process which visits the elements of the parameter space with frequencies proportional to the posterior probability. It consititutes both the infinitesimal, local search via a sample path continuous diffusion transform and the larger, global steps through discrete jump moves. The jump moves involve the addition and deletion of elements from the scene configuration or changes in the target type assoviated with each target trajectory. One such move results in target detection by the addition of a track seed to the inference set. This provides initial track data for the tracking/recognition algorithm to estimate linear graph structures representing tracks using the other jump moves and the diffusion process, as described in our earlier work. Target detection ideally involves a continuous research over a continuum of the observation space. In this work we conclude that for practical implemenations the search space must be discretized with lattice granularity comparable to sensor resolution, and discuss how fast Fourier transforms are utilized for efficient calcuation of sufficient statistics given our array models. Some results are also presented from our implementation on a networked system including a massively parallel machine architecture and a silicon graphics onyx workstation.
Full-Carpet Design of a Low-Boom Demonstrator Concept
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Wintzer, Mathias; Rallabhandi, Sriram K.
2015-01-01
The Cart3D adjoint-based design framework is used to mitigate the undesirable o -track sonic boom properties of a demonstrator concept designed for low-boom directly under the flight path. First, the requirements of a Cart3D design mesh are determined using a high-fidelity mesh adapted to minimize the discretization error of the CFD analysis. Low-boom equivalent area targets are then generated at the under-track and one off-track azimuthal position for the baseline configuration. The under-track target is generated using a trim- feasible low-boom target generation process, ensuring that the final design is not only low-boom, but also trimmed at the specified flight condition. The o -track equivalent area target is generated by minimizing the A-weighted loudness using an efficient adjoint-based approach. The configuration outer mold line is then parameterized and optimized to match the off-body pressure distributions prescribed by the low-boom targets. The numerical optimizer uses design gradients which are calculated using the Cart3D adjoint- based design capability. Optimization constraints are placed on the geometry to satisfy structural feasibility. The low-boom properties of the final design are verified using the adaptive meshing approach. This analysis quantifies the error associated with the CFD mesh that is used for design. Finally, an alternate mesh construction and target positioning approach offering greater computational efficiency is demonstrated and verified.
A ground moving target emergency tracking method for catastrophe rescue
NASA Astrophysics Data System (ADS)
Zhou, X.; Li, D.; Li, G.
2014-11-01
In recent years, great disasters happen now and then. Disaster management test the emergency operation ability of the government and society all over the world. Immediately after the occurrence of a great disaster (e.g., earthquake), a massive nationwide rescue and relief operation need to be kicked off instantly. In order to improve the organizations efficiency of the emergency rescue, the organizers need to take charge of the information of the rescuer teams, including the real time location, the equipment with the team, the technical skills of the rescuers, and so on. One of the key factors for the success of emergency operations is the real time location of the rescuers dynamically. Real time tracking methods are used to track the professional rescuer teams now. But volunteers' participation play more and more important roles in great disasters. However, real time tracking of the volunteers will cause many problems, e.g., privacy leakage, expensive data consumption, etc. These problems may reduce the enthusiasm of volunteers' participation for catastrophe rescue. In fact, the great disaster is just small probability event, it is not necessary to track the volunteers (even rescuer teams) every time every day. In order to solve this problem, a ground moving target emergency tracking method for catastrophe rescue is presented in this paper. In this method, the handheld devices using GPS technology to provide the location of the users, e.g., smart phone, is used as the positioning equipment; an emergency tracking information database including the ID of the ground moving target (including the rescuer teams and volunteers), the communication number of the handheld devices with the moving target, and the usually living region, etc., is built in advance by registration; when catastrophe happens, the ground moving targets that living close to the disaster area will be filtered by the usually living region; then the activation short message will be sent to the selected ground moving target through the communication number of the handheld devices. The handheld devices receive and identify the activation short message, and send the current location information to the server. Therefore, the emergency tracking mode is triggered. The real time location of the filtered target can be shown on the organizer's screen, and the organizer can assign the rescue tasks to the rescuer teams and volunteers based on their real time location. The ground moving target emergency tracking prototype system is implemented using Oracle 11g, Visual Studio 2010 C#, Android, SMS Modem, and Google Maps API.
Dual-mode capability for hardware-in-the-loop
NASA Astrophysics Data System (ADS)
Vamivakas, A. N.; Jackson, Ron L.
2000-07-01
This paper details a Hardware-in-the-Loop Facility (HIL) developed for evaluation and verification of a missile system with dual mode capability. The missile has the capability of tracking and intercepting a target using either an RF antenna or an IR sensor. The testing of a dual mode system presents a significant challenge in the development of the HIL facility. An IR and RF target environment must be presented simultaneously to the missile under test. These targets, simulated by IR and RF sources, must be presented to the missile under test without interference from each other. The location of each source is critical in the development of the HIL facility. The requirements for building a HIL facility with dual mode capability and the methodology for testing the dual mode system are defined within this paper. Methods for the verification and validation of the facility are discussed.
ERIC Educational Resources Information Center
Bieber, Ed
1983-01-01
Suggests thinking of "tracks" as clues and using them as the focus of outdoor activities in the urban environment. Provides 24 examples of possible track activities, including: seeds on the ground (track of a nearby tree), litter (track of a litterbug), and peeling paint (track of weathering forces). (JN)
Miller, Haylie L.; Bugnariu, Nicoleta; Patterson, Rita M.; Wijayasinghe, Indika; Popa, Dan O.
2018-01-01
Visuomotor integration (VMI), the use of visual information to guide motor planning, execution, and modification, is necessary for a wide range of functional tasks. To comprehensively, quantitatively assess VMI, we developed a paradigm integrating virtual environments, motion-capture, and mobile eye-tracking. Virtual environments enable tasks to be repeatable, naturalistic, and varied in complexity. Mobile eye-tracking and minimally-restricted movement enable observation of natural strategies for interacting with the environment. This paradigm yields a rich dataset that may inform our understanding of VMI in typical and atypical development. PMID:29876370
Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul
2011-07-01
In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.
Theatre Ballistic Missile Defense-Multisensor Fusion, Targeting and Tracking Techniques
1998-03-01
Washington, D.C., 1994. 8. Brown , R., and Hwang , P., Introduction to Random Signals and Applied Kaiman Filtering, Third Edition, John Wiley and Sons...C. ADDING MEASUREMENT NOISE 15 III. EXTENDED KALMAN FILTER 19 A. DISCRETE TIME KALMAN FILTER 19 B. EXTENDED KALMAN FILTER 21 C. EKF IN TARGET...tracking algorithms. 17 18 in. EXTENDED KALMAN FILTER This chapter provides background information on the development of a tracking algorithm
Grand Challenges Emerging Perspectives For Embedded Processing (BRIEFING CHARTS)
2007-03-06
track before detect Small... Track - before - detect (dim targets) Change detection 16Mpixel 2 Hz 1 km2 1 ft res. STAPBOY Φ1 60W .3k$ AMD server 120 W ~.8k...60 X (m) Y ( m ) −50 0 50 −60 −40 −20 0 20 40 60 X (m) Y ( m ) EO/IR Track - before - detect (dim targets) Change detection RISC/DSP AMD
Moving-window dynamic optimization: design of stimulation profiles for walking.
Dosen, Strahinja; Popović, Dejan B
2009-05-01
The overall goal of the research is to improve control for electrical stimulation-based assistance of walking in hemiplegic individuals. We present the simulation for generating offline input (sensors)-output (intensity of muscle stimulation) representation of walking that serves in synthesizing a rule-base for control of electrical stimulation for restoration of walking. The simulation uses new algorithm termed moving-window dynamic optimization (MWDO). The optimization criterion was to minimize the sum of the squares of tracking errors from desired trajectories with the penalty function on the total muscle efforts. The MWDO was developed in the MATLAB environment and tested using target trajectories characteristic for slow-to-normal walking recorded in healthy individual and a model with the parameters characterizing the potential hemiplegic user. The outputs of the simulation are piecewise constant intensities of electrical stimulation and trajectories generated when the calculated stimulation is applied to the model. We demonstrated the importance of this simulation by showing the outputs for healthy and hemiplegic individuals, using the same target trajectories. Results of the simulation show that the MWDO is an efficient tool for analyzing achievable trajectories and for determining the stimulation profiles that need to be delivered for good tracking.
Water-Column Stratification Observed along an AUV-Tracked Isotherm
NASA Astrophysics Data System (ADS)
Zhang, Y.; Messié, M.; Ryan, J. P.; Kieft, B.; Stanway, M. J.; Hobson, B.; O'Reilly, T. C.; Raanan, B. Y.; Smith, J. M.; Chavez, F.
2016-02-01
Studies of marine physical, chemical and microbiological processes benefit from observing in a Lagrangian frame of reference, i.e. drifting with ambient water. Because these processes can be organized relative to specific density or temperature ranges, maintaining observing platforms within targeted environmental ranges is an important observing strategy. We have developed a novel method to enable a Tethys-class long-range autonomous underwater vehicle (AUV) (which has a propeller and a buoyancy engine) to track a target isotherm in buoyancy-controlled drift mode. In this mode, the vehicle shuts off its propeller and autonomously detects the isotherm and stays with it by actively controlling the vehicle's buoyancy. In the June 2015 CANON (Controlled, Agile, and Novel Observing Network) Experiment in Monterey Bay, California, AUV Makai tracked a target isotherm for 13 hours to study the coastal upwelling system. The tracked isotherm started from 33 m depth, shoaled to 10 m, and then deepened to 29 m. The thickness of the tracked isotherm layer (within 0.3°C error from the target temperature) increased over this duration, reflecting weakened stratification around the isotherm. During Makai's isotherm tracking, another long-range AUV, Daphne, acoustically tracked Makai on a circular yo-yo trajectory, measuring water-column profiles in Makai's vicinity. A wave glider also acoustically tracked Makai, providing sea surface measurements on the track. The presented method is a new approach for studying water-column stratification, but requires careful analysis of the temporal and spatial variations mingled in the vehicles' measurements. We will present a synthesis of the water column's stratification in relation to the upwelling conditions, based on the in situ measurements by the mobile platforms, as well as remote sensing and mooring data.
The first clinical implementation of electromagnetic transponder-guided MLC tracking.
Keall, Paul J; Colvill, Emma; O'Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T
2014-02-01
We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy.
The first clinical implementation of electromagnetic transponder-guided MLC tracking
Keall, Paul J.; Colvill, Emma; O’Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T.
2014-01-01
Purpose: We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. Methods: An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. Results: The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. Conclusions: The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy. PMID:24506591
Interactive target tracking for persistent wide-area surveillance
NASA Astrophysics Data System (ADS)
Ersoy, Ilker; Palaniappan, Kannappan; Seetharaman, Guna S.; Rao, Raghuveer M.
2012-06-01
Persistent aerial surveillance is an emerging technology that can provide continuous, wide-area coverage from an aircraft-based multiple-camera system. Tracking targets in these data sets is challenging for vision algorithms due to large data (several terabytes), very low frame rate, changing viewpoint, strong parallax and other imperfections due to registration and projection. Providing an interactive system for automated target tracking also has additional challenges that require online algorithms that are seamlessly integrated with interactive visualization tools to assist the user. We developed an algorithm that overcomes these challenges and demonstrated it on data obtained from a wide-area imaging platform.
1992-07-01
target state estimation is affected not only by the measurement noise but also by the uncertainty in the origins of the measurements. To improve the...to identify targets in the presence of anticipated background noise (including earth, lunar, star backgrounds, complicated spacecraft structures...each other. Futhermore, those frames are often degraded versions of the original scene due to blur and noise . Through the task of image registration
Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Sanner, Robert M.
2006-01-01
Autonomous space rendezvous scenarios require knowledge of the target vehicle state in order to safely dock with the chaser vehicle. Ideally, the target vehicle state information is derived from telemetered data, or with the use of known tracking points on the target vehicle. However, if the target vehicle is non-cooperative and does not have the ability to maintain attitude control, or transmit attitude knowledge, the docking becomes more challenging. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a tracking control scheme. The approach is tested with the robotic servicing mission concept for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates, but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST.
Long-term object tracking combined offline with online learning
NASA Astrophysics Data System (ADS)
Hu, Mengjie; Wei, Zhenzhong; Zhang, Guangjun
2016-04-01
We propose a simple yet effective method for long-term object tracking. Different from the traditional visual tracking method, which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion. To summarize, our algorithm can be roughly decomposed into an initialization stage and a tracking stage. In the initialization stage, an offline detector is trained to get the object appearance information at the category level, which is used for detecting the potential target and initializing the tracking stage. The tracking stage consists of three modules: the online tracking module, detection module, and decision module. A pretrained detector is used for maintaining drift of the online tracker, while the online tracker is used for filtering out false positive detections. A confidence selection mechanism is proposed to optimize the object location based on the online tracker and detection. If the target is lost, the pretrained detector is utilized to reinitialize the whole algorithm when the target is relocated. During experiments, we evaluate our method on several challenging video sequences, and it demonstrates huge improvement compared with detection and online tracking only.
The effect of concurrent hand movement on estimated time to contact in a prediction motion task.
Zheng, Ran; Maraj, Brian K V
2018-04-27
In many activities, we need to predict the arrival of an occluded object. This action is called prediction motion or motion extrapolation. Previous researchers have found that both eye tracking and the internal clocking model are involved in the prediction motion task. Additionally, it is reported that concurrent hand movement facilitates the eye tracking of an externally generated target in a tracking task, even if the target is occluded. The present study examined the effect of concurrent hand movement on the estimated time to contact in a prediction motion task. We found different (accurate/inaccurate) concurrent hand movements had the opposite effect on the eye tracking accuracy and estimated TTC in the prediction motion task. That is, the accurate concurrent hand tracking enhanced eye tracking accuracy and had the trend to increase the precision of estimated TTC, but the inaccurate concurrent hand tracking decreased eye tracking accuracy and disrupted estimated TTC. However, eye tracking accuracy does not determine the precision of estimated TTC.
Dynamic tumor tracking using the Elekta Agility MLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, Martin F., E-mail: martin.fast@icr.ac.uk; Nill, Simeon, E-mail: simeon.nill@icr.ac.uk; Bedford, James L.
2014-11-01
Purpose: To evaluate the performance of the Elekta Agility multileaf collimator (MLC) for dynamic real-time tumor tracking. Methods: The authors have developed a new control software which interfaces to the Agility MLC to dynamically program the movement of individual leaves, the dynamic leaf guides (DLGs), and the Y collimators (“jaws”) based on the actual target trajectory. A motion platform was used to perform dynamic tracking experiments with sinusoidal trajectories. The actual target positions reported by the motion platform at 20, 30, or 40 Hz were used as shift vectors for the MLC in beams-eye-view. The system latency of the MLCmore » (i.e., the average latency comprising target device reporting latencies and MLC adjustment latency) and the geometric tracking accuracy were extracted from a sequence of MV portal images acquired during irradiation for the following treatment scenarios: leaf-only motion, jaw + leaf motion, and DLG + leaf motion. Results: The portal imager measurements indicated a clear dependence of the system latency on the target position reporting frequency. Deducting the effect of the target frequency, the leaf adjustment latency was measured to be 38 ± 3 ms for a maximum target speed v of 13 mm/s. The jaw + leaf adjustment latency was 53 ± 3 at a similar speed. The system latency at a target position frequency of 30 Hz was in the range of 56–61 ms for the leaves (v ≤ 31 mm/s), 71–78 ms for the jaw + leaf motion (v ≤ 25 mm/s), and 58–72 ms for the DLG + leaf motion (v ≤ 59 mm/s). The tracking accuracy showed a similar dependency on the target position frequency and the maximum target speed. For the leaves, the root-mean-squared error (RMSE) was between 0.6–1.5 mm depending on the maximum target speed. For the jaw + leaf (DLG + leaf) motion, the RMSE was between 0.7–1.5 mm (1.9–3.4 mm). Conclusions: The authors have measured the latency and geometric accuracy of the Agility MLC, facilitating its future use for clinical tracking applications.« less
Siamese convolutional networks for tracking the spine motion
NASA Astrophysics Data System (ADS)
Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong
2017-09-01
Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.
2007-12-01
Hardware - In - Loop , Piccolo, UAV, Unmanned Aerial Vehicle 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...Maneuvering Target.......................... 35 C. HARDWARE - IN - LOOP SIMULATION............................................... 37 1. Hardware - In - Loop Setup...law as proposed in equation (23) is capable of tracking a maneuvering target. C. HARDWARE - IN - LOOP SIMULATION The intention of HIL simulation
Towards accurate localization: long- and short-term correlation filters for tracking
NASA Astrophysics Data System (ADS)
Li, Minglangjun; Tian, Chunna
2018-04-01
Visual tracking is a challenging problem, especially using a single model. In this paper, we propose a discriminative correlation filter (DCF) based tracking approach that exploits both the long-term and short-term information of the target, named LSTDCF, to improve the tracking performance. In addition to a long-term filter learned through the whole sequence, a short-term filter is trained using only features extracted from most recent frames. The long-term filter tends to capture more semantics of the target as more frames are used for training. However, since the target may undergo large appearance changes, features extracted around the target in non-recent frames prevent the long-term filter from locating the target in the current frame accurately. In contrast, the short-term filter learns more spatial details of the target from recent frames but gets over-fitting easily. Thus the short-term filter is less robust to handle cluttered background and prone to drift. We take the advantage of both filters and fuse their response maps to make the final estimation. We evaluate our approach on a widely-used benchmark with 100 image sequences and achieve state-of-the-art results.
Global Positioning System Synchronized Active Light Autonomous Docking System
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Bell, Joseph L. (Inventor)
1996-01-01
A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprising at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.
Global Positioning System Synchronized Active Light Autonomous Docking System
NASA Technical Reports Server (NTRS)
Howard, Richard (Inventor)
1994-01-01
A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.
Bräuer, Juliane; Belger, Julia
2018-05-01
There has been a growing interest in the cognitive skills of domestic dogs, but most current knowledge about dogs' understanding of their environment is limited to the visual or auditory modality. Although it is well known that dogs have an excellent olfactory sense and that they rely on olfaction heavily when exploring the environment or recognizing individuals, it remains unclear whether dogs perceive odors as representing specific objects. In the current study, we examined this aspect of dogs' perception of the world. Dogs were presented with a violation-of-expectation paradigm in which they could track the odor trail of one target (Target A), but at the end of the trail, they found another target (Target B). We explored (a) what dogs expect when they smell the trail of an object, (b) how they search for an object, and (c) how their educational background influences their ability to find a hidden object, by comparing family dogs and working dogs that had passed exams for police or rescue dogs. We found that all subjects showed a flexible searching behavior, with the working dogs being more effective but the family dogs learning to be effective over trials. In the first trial, dogs showed measurable signs of "surprise" (i.e., further searching for Target A) when they found Target B, which did not correspond to the odor of Target A from the trail. We conclude that dogs represent what they smell and search flexibly, which is independent from their educational background. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, D; Churby, A; Krieger, E
2011-07-25
The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtualmore » model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.« less
NASA Technical Reports Server (NTRS)
Lewis, Steven J.; Palacios, David M.
2013-01-01
This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).
Development of HWIL Testing Capabilities for Satellite Target Emulation at AEDC
NASA Astrophysics Data System (ADS)
Lowry, H.; Crider, D.; Burns, J.; Thompson, R.; Goldsmith, G., II; Sholes, W.
Programs involved in Space Situational Awareness (SSA) need the capability to test satellite sensors in a Hardware-in-the-Loop (HWIL) environment. Testing in a ground system avoids the significant cost of on-orbit test targets and the resulting issues such as debris mitigation, and in-space testing implications. The space sensor test facilities at AEDC consist of cryo-vacuum chambers that have been developed to project simulated targets to air-borne, space-borne, and ballistic platforms. The 7V chamber performs calibration and characterization of surveillance and seeker systems, as well as some mission simulation. The 10V chamber is being upgraded to provide real-time target simulation during the detection, acquisition, discrimination, and terminal phases of a seeker mission. The objective of the Satellite Emulation project is to upgrade this existing capability to support the ability to discern and track other satellites and orbital debris in a HWIL capability. It would provide a baseline for realistic testing of satellite surveillance sensors, which would be operated in a controlled environment. Many sensor functions could be tested, including scene recognition and maneuvering control software, using real interceptor hardware and software. Statistically significant and repeatable datasets produced by the satellite emulation system can be acquired during such test and saved for further analysis. In addition, the robustness of the discrimination and tracking algorithms can be investigated by a parametric analysis using slightly different scenarios; this will be used to determine critical points where a sensor system might fail. The radiometric characteristics of satellites are expected to be similar to the targets and decoys that make up a typical interceptor mission scenario, since they are near ambient temperature. Their spectral reflectivity, emissivity, and shape must also be considered, but the projection systems employed in the 7V and 10V chambers should be capable of providing the simulation of satellites as well. There may also be a need for greater radiometric intensity or shorter time response. An appropriate satellite model is integral to the scene generation process to meet the requirements of SSA programs. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) facility and the Guided Weapons Evaluation Facility (GWEF), both at Eglin Air Force Base, FL are assisting in developing the scene projection hardware, based on their significant test experience using resistive emitter arrays to test interceptors in a real-time environment. Army Aviation and Missile Research & Development Command (AMRDEC) will develop the Scene Generation System for the real-time mission simulation.
Graphical Environment Tools for Application to Gamma-Ray Energy Tracking Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Richard A.; Radford, David C.
2013-12-30
Highly segmented, position-sensitive germanium detector systems are being developed for nuclear physics research where traditional electronic signal processing with mixed analog and digital function blocks would be enormously complex and costly. Future systems will be constructed using pipelined processing of high-speed digitized signals as is done in the telecommunications industry. Techniques which provide rapid algorithm and system development for future systems are desirable. This project has used digital signal processing concepts and existing graphical system design tools to develop a set of re-usable modular functions and libraries targeted for the nuclear physics community. Researchers working with complex nuclear detector arraysmore » such as the Gamma-Ray Energy Tracking Array (GRETA) have been able to construct advanced data processing algorithms for implementation in field programmable gate arrays (FPGAs) through application of these library functions using intuitive graphical interfaces.« less
High-performance object tracking and fixation with an online neural estimator.
Kumarawadu, Sisil; Watanabe, Keigo; Lee, Tsu-Tian
2007-02-01
Vision-based target tracking and fixation to keep objects that move in three dimensions in view is important for many tasks in several fields including intelligent transportation systems and robotics. Much of the visual control literature has focused on the kinematics of visual control and ignored a number of significant dynamic control issues that limit performance. In line with this, this paper presents a neural network (NN)-based binocular tracking scheme for high-performance target tracking and fixation with minimum sensory information. The procedure allows the designer to take into account the physical (Lagrangian dynamics) properties of the vision system in the control law. The design objective is to synthesize a binocular tracking controller that explicitly takes the systems dynamics into account, yet needs no knowledge of dynamic nonlinearities and joint velocity sensory information. The combined neurocontroller-observer scheme can guarantee the uniform ultimate bounds of the tracking, observer, and NN weight estimation errors under fairly general conditions on the controller-observer gains. The controller is tested and verified via simulation tests in the presence of severe target motion changes.
Optimized swimmer tracking system based on a novel multi-related-targets approach
NASA Astrophysics Data System (ADS)
Benarab, D.; Napoléon, T.; Alfalou, A.; Verney, A.; Hellard, P.
2017-02-01
Robust tracking is a crucial step in automatic swimmer evaluation from video sequences. We designed a robust swimmer tracking system using a new multi-related-targets approach. The main idea is to consider the swimmer as a bloc of connected subtargets that advance at the same speed. If one of the subtargets is partially or totally occluded, it can be localized by knowing the position of the others. In this paper, we first introduce the two-dimensional direct linear transformation technique that we used to calibrate the videos. Then, we present the classical tracking approach based on dynamic fusion. Next, we highlight the main contribution of our work, which is the multi-related-targets tracking approach. This approach, the classical head-only approach and the ground truth are then compared, through testing on a database of high-level swimmers in training, national and international competitions (French National Championships, Limoges 2015, and World Championships, Kazan 2015). Tracking percentage and the accuracy of the instantaneous speed are evaluated and the findings show that our new appraoach is significantly more accurate than the classical approach.
Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K
2013-03-20
Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.
NASA Astrophysics Data System (ADS)
Falzone, Nadia; Myhra, Sverre; Chakalova, Radka; Hill, Mark A.; Thomson, James; Vallis, Katherine A.
2013-11-01
The interactions between energetic ions and biological and/or organic target materials have recently attracted theoretical and experimental attention, due to their implications for detector and device technologies, and for therapeutic applications. Most of the attention has focused on detection of the primary ionization tracks, and their effects, while recoil target atom tracks remain largely unexplored. Detection of tracks by a negative tone photoresist (SU-8), followed by standard development, in combination with analysis by atomic force microscopy, shows that both primary and recoil tracks are revealed as conical spikes, and can be characterized at high spatial resolution. The methodology has the potential to provide detailed information about single impact events, which may lead to more effective and informative detector technologies and advanced therapeutic procedures. In comparison with current characterization methods the advantageous features include: greater spatial resolution by an order of magnitude (20 nm) detection of single primary and associated recoil tracks; increased range of fluence (to 2.5 × 109 cm-2) sensitivity to impacts at grazing angle incidence; and better definition of the lateral interaction volume in target materials.
Some lessons learned in three years with ADS-33C. [rotorcraft handling qualities specification
NASA Technical Reports Server (NTRS)
Key, David L.; Blanken, Chris L.; Hoh, Roger H.
1993-01-01
Three years of using the U.S. Army's rotorcraft handling qualities specification, Aeronautical Design Standard - 33, has shown it to be surprisingly robust. It appears to provide an excellent basis for design and for assessment, however, as the subtleties become more well understood, several areas needing refinement became apparent. Three responses to these needs have been documented in this paper: (1) The yaw-axis attitude quickness for hover target acquisition and tracking can be relaxed slightly. (2) Understanding and application of criteria for degraded visual environments needed elaboration. This and some guidelines for testing to obtain visual cue ratings have been documented. (3) The flight test maneuvers were an innovation that turned out to be very valuable. Their extensive use has made it necessary to tighten definitions and testing guidance. This was accomplished for a good visual environment and is underway for degraded visual environments.
Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs
Oh, Sang-Il; Kang, Hang-Bong
2017-01-01
Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point clouds and corresponding RGB frames. The MOFT uses a matching function initialized on large-scale external sequences to determine which candidates in the current frame match with the target object in the previous frame. After conducting tracking on a few frames, the initialized matching function is fine-tuned according to the appearance models of target objects. The fine-tuning process of the matching function is constructed as a structured form with diverse matching function branches. In general multiple object tracking situations, scale variations for a scene occur depending on the distance between the target objects and the sensors. If the target objects in various scales are equally represented with the same strategy, information losses will occur for any representation of the target objects. In this paper, the output map of the convolutional layer obtained from a pre-trained convolutional neural network is used to adaptively represent instances without information loss. In addition, MOFT fuses the tracking results obtained from each modality at the decision level to compensate the tracking failures of each modality using basic belief assignment, rather than fusing modalities by selectively using the features of each modality. Experimental results indicate that the proposed tracker provides state-of-the-art performance considering multiple objects tracking (MOT) and KITTIbenchmarks. PMID:28420194
Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie
2017-11-09
Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.
Gibo, Tricia L; Bastian, Amy J; Okamura, Allison M
2014-03-01
When grasping and manipulating objects, people are able to efficiently modulate their grip force according to the experienced load force. Effective grip force control involves providing enough grip force to prevent the object from slipping, while avoiding excessive force to avoid damage and fatigue. During indirect object manipulation via teleoperation systems or in virtual environments, users often receive limited somatosensory feedback about objects with which they interact. This study examines the effects of force feedback, accuracy demands, and training on grip force control during object interaction in a virtual environment. The task required subjects to grasp and move a virtual object while tracking a target. When force feedback was not provided, subjects failed to couple grip and load force, a capability fundamental to direct object interaction. Subjects also exerted larger grip force without force feedback and when accuracy demands of the tracking task were high. In addition, the presence or absence of force feedback during training affected subsequent performance, even when the feedback condition was switched. Subjects' grip force control remained reminiscent of their employed grip during the initial training. These results motivate the use of force feedback during telemanipulation and highlight the effect of force feedback during training.
Search Radar Track-Before-Detect Using the Hough Transform.
1995-03-01
before - detect processing method which allows previous data to help in target detection. The technique provides many advantages compared to...improved target detection scheme, applicable to search radars, using the Hough transform image processing technique. The system concept involves a track
NASA Astrophysics Data System (ADS)
Liu, Brent; Lee, Jasper; Documet, Jorge; Guo, Bing; King, Nelson; Huang, H. K.
2006-03-01
By implementing a tracking and verification system, clinical facilities can effectively monitor workflow and heighten information security in today's growing demand towards digital imaging informatics. This paper presents the technical design and implementation experiences encountered during the development of a Location Tracking and Verification System (LTVS) for a clinical environment. LTVS integrates facial biometrics with wireless tracking so that administrators can manage and monitor patient and staff through a web-based application. Implementation challenges fall into three main areas: 1) Development and Integration, 2) Calibration and Optimization of Wi-Fi Tracking System, and 3) Clinical Implementation. An initial prototype LTVS has been implemented within USC's Healthcare Consultation Center II Outpatient Facility, which currently has a fully digital imaging department environment with integrated HIS/RIS/PACS/VR (Voice Recognition).
Brain activation of semantic category-based grouping in multiple identity tracking task
Wei, Liuqing; Lyu, Chuang; Hu, Siyuan; Li, Zhen
2017-01-01
Using Multiple Identity Tracking task and the functional magnetic resonance imaging (fMRI) technology, the present study aimed to isolate and visualize the functional anatomy of neural systems involved in the semantic category-based grouping process. Three experiment conditions were selected and compared: the category-based targets grouping (TG) condition, the targets-distractors grouping (TDG) condition and the homogenous condition. In the TG condition, observers could utilize the categorical distinction between targets and distractors, to construct a uniform presentation of targets, that is, to form a group of the targets to facilitate tracking. In the TDG condition, half the targets and half the distractors belonged to the same category. Observers had to inhibit the grouping of targets and distractors in one category to complete tracking. In the homogenous condition, where targets and distractors consisted of the same objects, no grouping could be formed. The “TG-Homogenous” contrast (p<0.01) revealed the activation of the left fusiform and the pars triangularis of inferior frontal gyrus (IFG). The “TG-TDG” contrast only revealed the activation of the left anterior cingulate gyrus (ACC). The fusiform and IFG pars triangularis might participate in the representation of semantic knowledge, IFG pars triangularis might relate intensely with the classification of semantic categories. The ACC might be responsible for the initiation and maintenance of grouping representation. PMID:28505166
ERIC Educational Resources Information Center
Yang, Fang-Ying; Tsai, Meng-Jung; Chiou, Guo-Li; Lee, Silvia Wen-Yu; Chang, Cheng-Chieh; Chen, Li-Ling
2018-01-01
The main purpose of this study was to provide instructional suggestions for supporting science learning in digital environments based on a review of eye tracking studies in e-learning related areas. Thirty-three eye-tracking studies from 2005 to 2014 were selected from the Social Science Citation Index (SSCI) database for review. Through a…
Nonlinear dynamics support a linear population code in a retinal target-tracking circuit.
Leonardo, Anthony; Meister, Markus
2013-10-23
A basic task faced by the visual system of many organisms is to accurately track the position of moving prey. The retina is the first stage in the processing of such stimuli; the nature of the transformation here, from photons to spike trains, constrains not only the ultimate fidelity of the tracking signal but also the ease with which it can be extracted by other brain regions. Here we demonstrate that a population of fast-OFF ganglion cells in the salamander retina, whose dynamics are governed by a nonlinear circuit, serve to compute the future position of the target over hundreds of milliseconds. The extrapolated position of the target is not found by stimulus reconstruction but is instead computed by a weighted sum of ganglion cell outputs, the population vector average (PVA). The magnitude of PVA extrapolation varies systematically with target size, speed, and acceleration, such that large targets are tracked most accurately at high speeds, and small targets at low speeds, just as is seen in the motion of real prey. Tracking precision reaches the resolution of single photoreceptors, and the PVA algorithm performs more robustly than several alternative algorithms. If the salamander brain uses the fast-OFF cell circuit for target extrapolation as we suggest, the circuit dynamics should leave a microstructure on the behavior that may be measured in future experiments. Our analysis highlights the utility of simple computations that, while not globally optimal, are efficiently implemented and have close to optimal performance over a limited but ethologically relevant range of stimuli.
Webcam mouse using face and eye tracking in various illumination environments.
Lin, Yuan-Pin; Chao, Yi-Ping; Lin, Chung-Chih; Chen, Jyh-Horng
2005-01-01
Nowadays, due to enhancement of computer performance and popular usage of webcam devices, it has become possible to acquire users' gestures for the human-computer-interface with PC via webcam. However, the effects of illumination variation would dramatically decrease the stability and accuracy of skin-based face tracking system; especially for a notebook or portable platform. In this study we present an effective illumination recognition technique, combining K-Nearest Neighbor classifier and adaptive skin model, to realize the real-time tracking system. We have demonstrated that the accuracy of face detection based on the KNN classifier is higher than 92% in various illumination environments. In real-time implementation, the system successfully tracks user face and eyes features at 15 fps under standard notebook platforms. Although KNN classifier only initiates five environments at preliminary stage, the system permits users to define and add their favorite environments to KNN for computer access. Eventually, based on this efficient tracking algorithm, we have developed a "Webcam Mouse" system to control the PC cursor using face and eye tracking. Preliminary studies in "point and click" style PC web games also shows promising applications in consumer electronic markets in the future.
Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar
2018-01-01
Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.
2018-01-01
Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421
Faint Debris Detection by Particle Based Track-Before-Detect Method
NASA Astrophysics Data System (ADS)
Uetsuhara, M.; Ikoma, N.
2014-09-01
This study proposes a particle method to detect faint debris, which is hardly seen in single frame, from an image sequence based on the concept of track-before-detect (TBD). The most widely used detection method is detect-before-track (DBT), which firstly detects signals of targets from single frame by distinguishing difference of intensity between foreground and background then associate the signals for each target between frames. DBT is capable of tracking bright targets but limited. DBT is necessary to consider presence of false signals and is difficult to recover from false association. On the other hand, TBD methods try to track targets without explicitly detecting the signals followed by evaluation of goodness of each track and obtaining detection results. TBD has an advantage over DBT in detecting weak signals around background level in single frame. However, conventional TBD methods for debris detection apply brute-force search over candidate tracks then manually select true one from the candidates. To reduce those significant drawbacks of brute-force search and not-fully automated process, this study proposes a faint debris detection algorithm by a particle based TBD method consisting of sequential update of target state and heuristic search of initial state. The state consists of position, velocity direction and magnitude, and size of debris over the image at a single frame. The sequential update process is implemented by a particle filter (PF). PF is an optimal filtering technique that requires initial distribution of target state as a prior knowledge. An evolutional algorithm (EA) is utilized to search the initial distribution. The EA iteratively applies propagation and likelihood evaluation of particles for the same image sequences and resulting set of particles is used as an initial distribution of PF. This paper describes the algorithm of the proposed faint debris detection method. The algorithm demonstrates performance on image sequences acquired during observation campaigns dedicated to GEO breakup fragments, which would contain a sufficient number of faint debris images. The results indicate the proposed method is capable of tracking faint debris with moderate computational costs at operational level.
MERIANS, A. S.; TUNIK, E.; FLUET, G. G.; QIU, Q.; ADAMOVICH, S. V.
2017-01-01
Aim Upper-extremity interventions for hemiparesis are a challenging aspect of stroke rehabilitation. Purpose of this paper is to report the feasibility of using virtual environments (VEs) in combination with robotics to assist recovery of hand-arm function and to present preliminary data demonstrating the potential of using sensory manipulations in VE to drive activation in targeted neural regions. Methods We trained 8 subjects for 8 three hour sessions using a library of complex VE’s integrated with robots, comparing training arm and hand separately to training arm and hand together. Instrumented gloves and hand exoskeleton were used for hand tracking and haptic effects. Haptic Master robotic arm was used for arm tracking and generating three-dimensional haptic VEs. To investigate the use of manipulations in VE to drive neural activations, we created a “virtual mirror” that subjects used while performing a unimanual task. Cortical activation was measured with functional MRI (fMRI) and transcranial magnetic stimulation. Results Both groups showed improvement in kinematics and measures of real-world function. The group trained using their arm and hand together showed greater improvement. In a stroke subject, fMRI data suggested virtual mirror feedback could activate the sensorimotor cortex contralateral to the reflected hand (ipsilateral to the moving hand) thus recruiting the lesioned hemisphere. Conclusion Gaming simulations interfaced with robotic devices provide a training medium that can modify movement patterns. In addition to showing that our VE therapies can optimize behavioral performance, we show preliminary evidence to support the potential of using specific sensory manipulations to selectively recruit targeted neural circuits. PMID:19158659
An examination of along-track interferometry for detecting ground moving targets
NASA Technical Reports Server (NTRS)
Chen, Curtis W.; Chapin, Elaine; Muellerschoen, Ron; Hensley, Scott
2005-01-01
Along-track interferometry (ATI) is an interferometric synthetic aperture radar technique primarily used to measure Earth-surface velocities. We present results from an airborne experiment demonstrating phenomenology specific to the context of observing discrete ground targets moving admidst a stationary clutter background.
Impedance modulation and feedback corrections in tracking targets of variable size and frequency.
Selen, Luc P J; van Dieën, Jaap H; Beek, Peter J
2006-11-01
Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In this experiment, we studied both mechanisms, using mechanical perturbations to estimate stiffness and damping as indices of impedance modulation and submovement scaling as an index of feedback driven corrections. Eight subjects tracked three differently sized targets (0.0135, 0.0270, and 0.0405 rad) moving at three different frequencies (0.20, 0.25, and 0.33 Hz). Movement variability decreased with both decreasing target size and movement frequency, whereas stiffness and damping increased with decreasing target size, independent of movement frequency. These results are consistent with the theory that mechanical impedance acts as a filter of noisy neuromuscular signals but challenge stochastic theories of motor control that do not account for impedance modulation and only partially for feedback control. Submovements during unperturbed cycles were quantified in terms of their gain, i.e., the slope between their duration and amplitude in the speed profile. Submovement gain decreased with decreasing movement frequency and increasing target size. The results were interpreted to imply that submovement gain is related to observed tracking errors and that those tracking errors are expressed in units of target size. We conclude that impedance and submovement gain modulation contribute additively to tracking accuracy.
A comparison of error bounds for a nonlinear tracking system with detection probability Pd < 1.
Tong, Huisi; Zhang, Hao; Meng, Huadong; Wang, Xiqin
2012-12-14
Error bounds for nonlinear filtering are very important for performance evaluation and sensor management. This paper presents a comparative study of three error bounds for tracking filtering, when the detection probability is less than unity. One of these bounds is the random finite set (RFS) bound, which is deduced within the framework of finite set statistics. The others, which are the information reduction factor (IRF) posterior Cramer-Rao lower bound (PCRLB) and enumeration method (ENUM) PCRLB are introduced within the framework of finite vector statistics. In this paper, we deduce two propositions and prove that the RFS bound is equal to the ENUM PCRLB, while it is tighter than the IRF PCRLB, when the target exists from the beginning to the end. Considering the disappearance of existing targets and the appearance of new targets, the RFS bound is tighter than both IRF PCRLB and ENUM PCRLB with time, by introducing the uncertainty of target existence. The theory is illustrated by two nonlinear tracking applications: ballistic object tracking and bearings-only tracking. The simulation studies confirm the theory and reveal the relationship among the three bounds.
A Comparison of Error Bounds for a Nonlinear Tracking System with Detection Probability Pd < 1
Tong, Huisi; Zhang, Hao; Meng, Huadong; Wang, Xiqin
2012-01-01
Error bounds for nonlinear filtering are very important for performance evaluation and sensor management. This paper presents a comparative study of three error bounds for tracking filtering, when the detection probability is less than unity. One of these bounds is the random finite set (RFS) bound, which is deduced within the framework of finite set statistics. The others, which are the information reduction factor (IRF) posterior Cramer-Rao lower bound (PCRLB) and enumeration method (ENUM) PCRLB are introduced within the framework of finite vector statistics. In this paper, we deduce two propositions and prove that the RFS bound is equal to the ENUM PCRLB, while it is tighter than the IRF PCRLB, when the target exists from the beginning to the end. Considering the disappearance of existing targets and the appearance of new targets, the RFS bound is tighter than both IRF PCRLB and ENUM PCRLB with time, by introducing the uncertainty of target existence. The theory is illustrated by two nonlinear tracking applications: ballistic object tracking and bearings-only tracking. The simulation studies confirm the theory and reveal the relationship among the three bounds. PMID:23242274
ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs
NASA Astrophysics Data System (ADS)
Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar
2016-10-01
Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.
Kernelized correlation tracking with long-term motion cues
NASA Astrophysics Data System (ADS)
Lv, Yunqiu; Liu, Kai; Cheng, Fei
2018-04-01
Robust object tracking is a challenging task in computer vision due to interruptions such as deformation, fast motion and especially, occlusion of tracked object. When occlusions occur, image data will be unreliable and is insufficient for the tracker to depict the object of interest. Therefore, most trackers are prone to fail under occlusion. In this paper, an occlusion judgement and handling method based on segmentation of the target is proposed. If the target is occluded, the speed and direction of it must be different from the objects occluding it. Hence, the value of motion features are emphasized. Considering the efficiency and robustness of Kernelized Correlation Filter Tracking (KCF), it is adopted as a pre-tracker to obtain a predicted position of the target. By analyzing long-term motion cues of objects around this position, the tracked object is labelled. Hence, occlusion could be detected easily. Experimental results suggest that our tracker achieves a favorable performance and effectively handles occlusion and drifting problems.
Grouping and trajectory storage in multiple object tracking: impairments due to common item motions.
Suganuma, Mutsumi; Yokosawa, Kazuhiko
2006-01-01
In our natural viewing, we notice that objects change their locations across space and time. However, there has been relatively little consideration of the role of motion information in the construction and maintenance of object representations. We investigated this question in the context of the multiple object tracking (MOT) paradigm, wherein observers must keep track of target objects as they move randomly amid featurally identical distractors. In three experiments, we observed impairments in tracking ability when the motions of the target and distractor items shared particular properties. Specifically, we observed impairments when the target and distractor items were in a chasing relationship or moved in a uniform direction. Surprisingly, tracking ability was impaired by these manipulations even when observers failed to notice them. Our results suggest that differentiable trajectory information is an important factor in successful performance of MOT tasks. More generally, these results suggest that various types of common motion can serve as cues to form more global object representations even in the absence of other grouping cues.
Applications of amorphous track models in radiation biology
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Nikjoo, H.; Goodhead, D. T.; Wilson, J. W. (Principal Investigator)
1999-01-01
The average or amorphous track model uses the response of a system to gamma-rays and the radial distribution of dose about an ion's path to describe survival and other cellular endpoints from proton, heavy ion, and neutron irradiation. This model has been used for over 30 years to successfully fit many radiobiology data sets. We review several extensions of this approach that address objections to the original model, and consider applications of interest in radiobiology and space radiation risk assessment. In the light of present views of important cellular targets, the role of target size as manifested through the relative contributions from ion-kill (intra-track) and gamma-kill (inter-track) remains a critical question in understanding the success of the amorphous track model. Several variations of the amorphous model are discussed, including ones that consider the radial distribution of event-sizes rather than average electron dose, damage clusters rather than multiple targets, and a role for repair or damage processing.
NASA Astrophysics Data System (ADS)
Mundhenk, Terrell N.; Dhavale, Nitin; Marmol, Salvador; Calleja, Elizabeth; Navalpakkam, Vidhya; Bellman, Kirstie; Landauer, Chris; Arbib, Michael A.; Itti, Laurent
2003-10-01
In view of the growing complexity of computational tasks and their design, we propose that certain interactive systems may be better designed by utilizing computational strategies based on the study of the human brain. Compared with current engineering paradigms, brain theory offers the promise of improved self-organization and adaptation to the current environment, freeing the programmer from having to address those issues in a procedural manner when designing and implementing large-scale complex systems. To advance this hypothesis, we discus a multi-agent surveillance system where 12 agent CPUs each with its own camera, compete and cooperate to monitor a large room. To cope with the overload of image data streaming from 12 cameras, we take inspiration from the primate"s visual system, which allows the animal to operate a real-time selection of the few most conspicuous locations in visual input. This is accomplished by having each camera agent utilize the bottom-up, saliency-based visual attention algorithm of Itti and Koch (Vision Research 2000;40(10-12):1489-1506) to scan the scene for objects of interest. Real time operation is achieved using a distributed version that runs on a 16-CPU Beowulf cluster composed of the agent computers. The algorithm guides cameras to track and monitor salient objects based on maps of color, orientation, intensity, and motion. To spread camera view points or create cooperation in monitoring highly salient targets, camera agents bias each other by increasing or decreasing the weight of different feature vectors in other cameras, using mechanisms similar to excitation and suppression that have been documented in electrophysiology, psychophysics and imaging studies of low-level visual processing. In addition, if cameras need to compete for computing resources, allocation of computational time is weighed based upon the history of each camera. A camera agent that has a history of seeing more salient targets is more likely to obtain computational resources. The system demonstrates the viability of biologically inspired systems in a real time tracking. In future work we plan on implementing additional biological mechanisms for cooperative management of both the sensor and processing resources in this system that include top down biasing for target specificity as well as novelty and the activity of the tracked object in relation to sensitive features of the environment.
Nakamura, Mitsuhiro; Sawada, Akira; Mukumoto, Nobutaka; Takahashi, Kunio; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro
2013-09-06
The Vero4DRT (MHI-TM2000) is capable of performing X-ray image-based tracking (X-ray Tracking) that directly tracks the target or fiducial markers under continuous kV X-ray imaging. Previously, we have shown that irregular respiratory patterns increased X-ray Tracking errors. Thus, we assumed that audio instruction, which generally improves the periodicity of respiration, should reduce tracking errors. The purpose of this study was to assess the effect of audio instruction on X-ray Tracking errors. Anterior-posterior abdominal skin-surface displacements obtained from ten lung cancer patients under free breathing and simple audio instruction were used as an alternative to tumor motion in the superior-inferior direction. First, a sequential predictive model based on the Levinson-Durbin algorithm was created to estimate the future three-dimensional (3D) target position under continuous kV X-ray imaging while moving a steel ball target of 9.5 mm in diameter. After creating the predictive model, the future 3D target position was sequentially calculated from the current and past 3D target positions based on the predictive model every 70 ms under continuous kV X-ray imaging. Simultaneously, the system controller of the Vero4DRT calculated the corresponding pan and tilt rotational angles of the gimbaled X-ray head, which then adjusted its orientation to the target. The calculated and current rotational angles of the gimbaled X-ray head were recorded every 5 ms. The target position measured by the laser displacement gauge was synchronously recorded every 10 msec. Total tracking system errors (ET) were compared between free breathing and audio instruction. Audio instruction significantly improved breathing regularity (p < 0.01). The mean ± standard deviation of the 95th percentile of ET (E95T ) was 1.7 ± 0.5 mm (range: 1.1-2.6mm) under free breathing (E95T,FB) and 1.9 ± 0.5 mm (range: 1.2-2.7 mm) under audio instruction (E95T,AI). E95T,AI was larger than E95T,FB for five patients; no significant difference was found between E95T,FB and E95T,AI (p = 0.21). Correlation analysis revealed that the rapid respiratory velocity significantly increased E95T. Although audio instruction improved breathing regularity, it also increased the respiratory velocity, which did not necessarily reduce tracking errors.
Sawada, Akira; Mukumoto, Nobutaka; Takahashi, Kunio; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro
2013-01-01
The Vero4DRT (MHI‐TM2000) is capable of performing X‐ray image‐based tracking (X‐ray Tracking) that directly tracks the target or fiducial markers under continuous kV X‐ray imaging. Previously, we have shown that irregular respiratory patterns increased X‐ray Tracking errors. Thus, we assumed that audio instruction, which generally improves the periodicity of respiration, should reduce tracking errors. The purpose of this study was to assess the effect of audio instruction on X‐ray Tracking errors. Anterior‐posterior abdominal skin‐surface displacements obtained from ten lung cancer patients under free breathing and simple audio instruction were used as an alternative to tumor motion in the superior‐inferior direction. First, a sequential predictive model based on the Levinson‐Durbin algorithm was created to estimate the future three‐dimensional (3D) target position under continuous kV X‐ray imaging while moving a steel ball target of 9.5 mm in diameter. After creating the predictive model, the future 3D target position was sequentially calculated from the current and past 3D target positions based on the predictive model every 70 ms under continuous kV X‐ray imaging. Simultaneously, the system controller of the Vero4DRT calculated the corresponding pan and tilt rotational angles of the gimbaled X‐ray head, which then adjusted its orientation to the target. The calculated and current rotational angles of the gimbaled X‐ray head were recorded every 5 ms. The target position measured by the laser displacement gauge was synchronously recorded every 10 msec. Total tracking system errors (ET) were compared between free breathing and audio instruction. Audio instruction significantly improved breathing regularity (p < 0.01). The mean ± standard deviation of the 95th percentile of ET (E95T) was 1.7 ± 0.5 mm (range: 1.1–2.6 mm) under free breathing (E95T,FB) and 1.9 ± 0.5 mm (range: 1.2–2.7 mm) under audio instruction (E95T,AI). E95T,AI was larger than E95T,FB for five patients; no significant difference was found between E95T,FB and ET,AI95(p = 0.21). Correlation analysis revealed that the rapid respiratory velocity significantly increased E95T. Although audio instruction improved breathing regularity, it also increased the respiratory velocity, which did not necessarily reduce tracking errors. PACS number: 87.55.ne, 87.57.N‐, 87.59.C‐, PMID:24036880
Coenen, Volker A; Mädler, Burkhard; Schiffbauer, Hagen; Urbach, Horst; Allert, Niels
2011-04-01
Deep brain stimulation (DBS) has been proven to alleviate tremor of various origins. Distinct regions have been targeted. One explanation for good clinical tremor control might be the involvement of the dentatorubrothalamic tract (DRT) as has been suggested in superficial (thalamic) and inferior (posterior subthalamic) target regions. Beyond a correlation with atlas data and the postmortem evaluation of patients treated with lesion surgery, proof for the involvement of DRT in tremor reduction in the living, the scope of this work, is elusive. To report a case of unilateral refractory tremor in tremor-dominant Parkinson disease treated with thalamic DBS. Preoperative diffusion tensor imaging (DTI) was performed. Correlation with individual DBS electrode contact locations was obtained through postoperative fusion of helical computed tomography (CT) data with DTI fiber tracking. Tremor was alleviated effectively. An evaluation of the active electrode contact position revealed clear involvement of the DRT in tremor control. A closer evaluation of clinical effects and side effects revealed a highly detailed individual fiber map of the subthalamic region with DTI fiber tracking. This is the first time the involvement of the DRT in tremor reduction through DBS has been shown in the living. The combination of DTI with postoperative CT and the evaluation of the electrophysiological environment of distinct electrode contacts led to an individual detailed fiber map and might be extrapolated to refined DTI-based targeting strategies in the future. Data acquisition for a larger study group is the topic of our ongoing research.
Context effects on smooth pursuit and manual interception of a disappearing target.
Kreyenmeier, Philipp; Fooken, Jolande; Spering, Miriam
2017-07-01
In our natural environment, we interact with moving objects that are surrounded by richly textured, dynamic visual contexts. Yet most laboratory studies on vision and movement show visual objects in front of uniform gray backgrounds. Context effects on eye movements have been widely studied, but it is less well known how visual contexts affect hand movements. Here we ask whether eye and hand movements integrate motion signals from target and context similarly or differently, and whether context effects on eye and hand change over time. We developed a track-intercept task requiring participants to track the initial launch of a moving object ("ball") with smooth pursuit eye movements. The ball disappeared after a brief presentation, and participants had to intercept it in a designated "hit zone." In two experiments ( n = 18 human observers each), the ball was shown in front of a uniform or a textured background that either was stationary or moved along with the target. Eye and hand movement latencies and speeds were similarly affected by the visual context, but eye and hand interception (eye position at time of interception, and hand interception timing error) did not differ significantly between context conditions. Eye and hand interception timing errors were strongly correlated on a trial-by-trial basis across all context conditions, highlighting the close relation between these responses in manual interception tasks. Our results indicate that visual contexts similarly affect eye and hand movements but that these effects may be short-lasting, affecting movement trajectories more than movement end points. NEW & NOTEWORTHY In a novel track-intercept paradigm, human observers tracked a briefly shown object moving across a textured, dynamic context and intercepted it with their finger after it had disappeared. Context motion significantly affected eye and hand movement latency and speed, but not interception accuracy; eye and hand position at interception were correlated on a trial-by-trial basis. Visual context effects may be short-lasting, affecting movement trajectories more than movement end points. Copyright © 2017 the American Physiological Society.
Xiao, Jingjing; Stolkin, Rustam; Gao, Yuqing; Leonardis, Ales
2017-09-06
This paper presents a novel robust method for single target tracking in RGB-D images, and also contributes a substantial new benchmark dataset for evaluating RGB-D trackers. While a target object's color distribution is reasonably motion-invariant, this is not true for the target's depth distribution, which continually varies as the target moves relative to the camera. It is therefore nontrivial to design target models which can fully exploit (potentially very rich) depth information for target tracking. For this reason, much of the previous RGB-D literature relies on color information for tracking, while exploiting depth information only for occlusion reasoning. In contrast, we propose an adaptive range-invariant target depth model, and show how both depth and color information can be fully and adaptively fused during the search for the target in each new RGB-D image. We introduce a new, hierarchical, two-layered target model (comprising local and global models) which uses spatio-temporal consistency constraints to achieve stable and robust on-the-fly target relearning. In the global layer, multiple features, derived from both color and depth data, are adaptively fused to find a candidate target region. In ambiguous frames, where one or more features disagree, this global candidate region is further decomposed into smaller local candidate regions for matching to local-layer models of small target parts. We also note that conventional use of depth data, for occlusion reasoning, can easily trigger false occlusion detections when the target moves rapidly toward the camera. To overcome this problem, we show how combining target information with contextual information enables the target's depth constraint to be relaxed. Our adaptively relaxed depth constraints can robustly accommodate large and rapid target motion in the depth direction, while still enabling the use of depth data for highly accurate reasoning about occlusions. For evaluation, we introduce a new RGB-D benchmark dataset with per-frame annotated attributes and extensive bias analysis. Our tracker is evaluated using two different state-of-the-art methodologies, VOT and object tracking benchmark, and in both cases it significantly outperforms four other state-of-the-art RGB-D trackers from the literature.
Hammoud, Riad I.; Sahin, Cem S.; Blasch, Erik P.; Rhodes, Bradley J.; Wang, Tao
2014-01-01
We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports. PMID:25340453
Hammoud, Riad I; Sahin, Cem S; Blasch, Erik P; Rhodes, Bradley J; Wang, Tao
2014-10-22
We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat Sensors 2014, 14 19844 messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports.
WE-G-213CD-03: A Dual Complementary Verification Method for Dynamic Tumor Tracking on Vero SBRT.
Poels, K; Depuydt, T; Verellen, D; De Ridder, M
2012-06-01
to use complementary cine EPID and gimbals log file analysis for in-vivo tracking accuracy monitoring. A clinical prototype of dynamic tracking (DT) was installed on the Vero SBRT system. This prototype version allowed tumor tracking by gimballed linac rotations using an internal-external correspondence model. The DT prototype software allowed the detailed logging of all applied gimbals rotations during tracking. The integration of an EPID on the vero system allowed the acquisition of cine EPID images during DT. We quantified the tracking error on cine EPID (E-EPID) by subtracting the target center (fiducial marker detection) and the field centroid. Dynamic gimbals log file information was combined with orthogonal x-ray verification images to calculate the in-vivo tracking error (E-kVLog). The correlation between E-kVLog and E-EPID was calculated for validation of the gimbals log file. Further, we investigated the sensitivity of the log file tracking error by introducing predefined systematic tracking errors. As an application we calculate gimbals log file tracking error for dynamic hidden target tests to investigate gravity effects and decoupled gimbals rotation from gantry rotation. Finally, calculating complementary cine EPID and log file tracking errors evaluated the clinical accuracy of dynamic tracking. A strong correlation was found between log file and cine EPID tracking error distribution during concurrent measurements (R=0.98). We found sensitivity in the gimbals log files to detect a systematic tracking error up to 0.5 mm. Dynamic hidden target tests showed no gravity influence on tracking performance and high degree of decoupled gimbals and gantry rotation during dynamic arc dynamic tracking. A submillimetric agreement between clinical complementary tracking error measurements was found. Redundancy of the internal gimbals log file with x-ray verification images with complementary independent cine EPID images was implemented to monitor the accuracy of gimballed tumor tracking on Vero SBRT. Research was financially supported by the Flemish government (FWO), Hercules Foundation and BrainLAB AG. © 2012 American Association of Physicists in Medicine.
Tracking of multiple targets using online learning for reference model adaptation.
Pernkopf, Franz
2008-12-01
Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.
Effects of Non-Normal Outlier-Prone Error Distribution on Kalman Filter Track
1991-09-01
other possibilities exist. For example the GST (Generic Statistical Tracker) uses four motion models [Ref. 41. The GST keeps track of both the target...1.011 + + + 3.113 1.291 4 Although this procedure is not easily statistically interpretable, it was used for the sake of comparison with the other... TRANSITOR TARGET’ WRITE(6,*)’ 3 SECOND ORDER GAUSS MARKOV TARGET’ WRITE(6,*)’ 4 RANDOM TOUR TARGET’ READ(6,*) CHOICE IF((CHOICE.LT.1).OR.(CHOICE.GT.4
NASA Technical Reports Server (NTRS)
Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu
2014-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu
2014-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.
Comparison of Arc Tracking Tests in Various Aerospace Environments
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Hammoud, Ahmad; McCall, David
1996-01-01
Momentary short-circuit arcs between a polyimide insulated wire with defective insulation and another conductor may cause pyrolization of the insulation resulting in a conductive path capable of sustaining the arc. These sustained arcs may propagate along the wires or to neighboring wires leading to complete failure of the wire bundle. Wire insulation susceptibility to arc tracking may be dependent on its environment. Because all wire insulation types tested to date arc track, a test procedure has been developed to compare different insulation types with respect to their arc tracking susceptibility. This test procedure is presented along with a comparison of arc tracking in the following three environments: (1) Air at atmospheric pressure and 1 gravitational(g) force; (2) Vacuum (2.67 x 10(exp -3) Pa) and 1g, and (3) Air at atmospheric pressure and microgravity (less than 0.04g).
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.
1998-07-01
An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.
Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints
NASA Astrophysics Data System (ADS)
Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea
2018-05-01
This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.
Haptic control with environment force estimation for telesurgery.
Bhattacharjee, Tapomayukh; Son, Hyoung Il; Lee, Doo Yong
2008-01-01
Success of telesurgical operations depends on better position tracking ability of the slave device. Improved position tracking of the slave device can lead to safer and less strenuous telesurgical operations. The two-channel force-position control architecture is widely used for better position tracking ability. This architecture requires force sensors for direct force feedback. Force sensors may not be a good choice in the telesurgical environment because of the inherent noise, and limitation in the deployable place and space. Hence, environment force estimation is developed using the concept of the robot function parameter matrix and a recursive least squares method. Simulation results show efficacy of the proposed method. The slave device successfully tracks the position of the master device, and the estimation error quickly becomes negligible.
Gundogdu, Erhan; Ozkan, Huseyin; Alatan, A Aydin
2017-11-01
Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel tracking algorithm [of complexity O(D) ] based on a large ensemble of CFB trackers. The ensemble [of size O(2 D ) ] is organized over a binary tree (depth D ), and learns the target appearance subspaces such that each constituent tracker becomes an expert of a certain appearance. During tracking, the proposed algorithm combines only the appearance-aware relevant experts to produce boosted tracking decisions. Additionally, we propose a versatile spatial windowing technique to enhance the individual expert trackers. For this purpose, spatial windows are learned for target objects as well as the correlation filters and then the windowed regions are processed for more robust correlations. In our extensive experiments on benchmark datasets, we achieve a substantial performance increase by using the proposed tracking algorithm together with the spatial windowing.
Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets*
Nakhmani, Arie; Tannenbaum, Allen
2012-01-01
Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The algorithm divides the template, selected by the user in the first video frame, into numerous patches. The matching process of these patches by particle filtering allows one to handle the target’s occlusions and scaling. Experimental results with fixed rectangular templates show that the method is reliable for videos with nonstationary, noisy, and cluttered background, and provides accurate trajectories in cases of target translation, scaling, and occlusion. PMID:22506088
Li, Yuankun; Xu, Tingfa; Deng, Honggao; Shi, Guokai; Guo, Jie
2018-02-23
Although correlation filter (CF)-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn some non-target information or partial-target information. In order to avoid model contamination and enhance the adaptability of model updating, we introduce the keypoints matching strategy and adjust the model learning rate dynamically according to the matching score. Moreover, the proposed approach extracts convolutional features from a deep convolutional neural network (DCNN) to accurately estimate the position and scale of the target. Experimental results demonstrate that the proposed tracker has achieved satisfactory performance in a wide range of challenging tracking scenarios.
Optical tracking of nanoscale particles in microscale environments
NASA Astrophysics Data System (ADS)
Mathai, P. P.; Liddle, J. A.; Stavis, S. M.
2016-03-01
The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.
MRI-guided tumor tracking in lung cancer radiotherapy
NASA Astrophysics Data System (ADS)
Cerviño, Laura I.; Du, Jiang; Jiang, Steve B.
2011-07-01
Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error ē and the error at 95% confidence level e95 were evaluated for each model. The ANN model led to ē = 1.5 mm and e95 = 4.2 mm, while TM led to ē = 0.6 mm and e95 = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.
Orbital Evasive Target Tracking and Sensor Management
2012-03-30
maximize the total information gain in the observer-to-target assignment. We compare the information based approach to the game theoretic criterion where...tracking with multiple space borne observers. The results indicate that the game theoretic approach is more effective than the information based approach in...sensor management is to maximize the total information gain in the observer-to-target assignment. We compare the information based approach to the game
Secure FAST: Security Enhancement in the NATO Time Sensitive Targeting Tool
2010-11-01
designed to aid in the tracking and prosecuting of Time Sensitive Targets. The FAST tool provides user level authentication and authorisation in terms...level authentication and authorisation in terms of security. It uses operating system level security but does not provide application level security for...and collaboration tool, designed to aid in the tracking and prosecuting of Time Sensitive Targets. The FAST tool provides user level authentication and
Animals of agricultural significance contribute a large percentage of fecal pollution to waterways via runoff contamination. The premise of microbial source tracking is to utilize fecal bacteria to identify target populations which are directly correlated to specific animal feces...
SME filter approach to multiple target tracking with false and missing measurements
NASA Astrophysics Data System (ADS)
Lee, Yong J.; Kamen, Edward W.
1993-10-01
The symmetric measurement equation (SME) filter for track maintenance in multiple target tracking is extended to the general case when there are an arbitrary unknown number of false and missing position measurements in the measurement set at any time point. It is assumed that the number N of targets is known a priori and that the target motions consist of random perturbations of constant-velocity trajectories. The key idea in the paper is to generate a new measurement vector from sums-of-products of the elements of 'feasible' N-element data vectors that pass a thresholding operation in the sums-of-products framework. Via this construction, the data association problem is completely avoided, and in addition, there is no need to identify which target measurements may correspond to false returns or which target measurements may be missing. A computer simulation of SME filter performance is given, including a comparison with the associated filter (a benchmark) and the joint probabilistic data association (JPDA) filter.
The Design and Evaluation of a Large-Scale Real-Walking Locomotion Interface
Peck, Tabitha C.; Fuchs, Henry; Whitton, Mary C.
2014-01-01
Redirected Free Exploration with Distractors (RFED) is a large-scale real-walking locomotion interface developed to enable people to walk freely in virtual environments that are larger than the tracked space in their facility. This paper describes the RFED system in detail and reports on a user study that evaluated RFED by comparing it to walking-in-place and joystick interfaces. The RFED system is composed of two major components, redirection and distractors. This paper discusses design challenges, implementation details, and lessons learned during the development of two working RFED systems. The evaluation study examined the effect of the locomotion interface on users’ cognitive performance on navigation and wayfinding measures. The results suggest that participants using RFED were significantly better at navigating and wayfinding through virtual mazes than participants using walking-in-place and joystick interfaces. Participants traveled shorter distances, made fewer wrong turns, pointed to hidden targets more accurately and more quickly, and were able to place and label targets on maps more accurately, and more accurately estimate the virtual environment size. PMID:22184262
NASA Astrophysics Data System (ADS)
Linte, Cristian A.; Rettmann, Maryam E.; Dilger, Ben; Gunawan, Mia S.; Arunachalam, Shivaram P.; Holmes, David R., III; Packer, Douglas L.; Robb, Richard A.
2012-02-01
The novel prototype system for advanced visualization for image-guided left atrial ablation therapy developed in our laboratory permits ready integration of multiple imaging modalities, surgical instrument tracking, interventional devices and electro-physiologic data. This technology allows subject-specific procedure planning and guidance using 3D dynamic, patient-specific models of the patient's heart, augmented with real-time intracardiac echocardiography (ICE). In order for the 2D ICE images to provide intuitive visualization for accurate catheter to surgical target navigation, the transducer must be tracked, so that the acquired images can be appropriately presented with respect to the patient-specific anatomy. Here we present the implementation of a previously developed ultrasound calibration technique for a magnetically tracked ICE transducer, along with a series of evaluation methods to ensure accurate imaging and faithful representation of the imaged structures. Using an engineering-designed phantom, target localization accuracy is assessed by comparing known target locations with their transformed locations inferred from the tracked US images. In addition, the 3D volume reconstruction accuracy is also estimated by comparing a truth volume to that reconstructed from sequential 2D US images. Clinically emulating validation studies are conducted using a patient-specific left atrial phantom. Target localization error of clinically-relevant surgical targets represented by nylon fiducials implanted within the endocardial wall of the phantom was assessed. Our studies have demonstrated 2.4 +/- 0.8 mm target localization error in the engineering-designed evaluation phantoms, 94.8 +/- 4.6 % volume reconstruction accuracy, and 3.1 +/- 1.2 mm target localization error in the left atrial-mimicking phantom. These results are consistent with those disseminated in the literature and also with the accuracy constraints imposed by the employed technology and the clinical application.
Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery
Alam, Mohammad S.; Bhuiyan, Sharif M. A.
2014-01-01
In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filters such as the maximum average correlation height (MACH) filter and its variants, and distance classifier correlation filter (DCCF) and its variants. Test results are presented for both single/multiple target detection and tracking using various real-life FLIR image sequences. PMID:25061840
Liu, Hua; Wu, Wen
2017-01-01
For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF). PMID:28608843
Liu, Hua; Wu, Wen
2017-06-13
For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF).
XPAR-2 Search Mode Initial Design
2013-11-01
by an azimuth sector, an elevation sector, and out to a required maximum range. The frame-time, which is defined as the time it takes the antenna beam...continues its scan, more targets are detected and the measurements are used to form their track files, which are then updated when the beam scans over...every additional target to be tracked. Although the track update rate can be made much faster than that in the TWS mode, it is obvious that there is a
Temporal Clustering in the Multi-Target Tracking Environment
1988-08-01
UNLASS IliED % ,, SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)_ REPORT DOCUMENTATION PAGE BF READ INSTRUCTIONS6. PEFORE COMPLETING FORM...1. REPORT NUMBER (. )OVT ACCESSION No. 3. RE-Ur-’SAFIT/CI/NR 88- 1 ? ,7 1 11 - _t tA Jr TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVEREDTLMfP6...AL C405TEW .GI )K T 4 MULT)- F11M9THESI I, TiNtLqET TOLFNCK lUG 6.mVjllop,3MrJT TEI ~6. PERFORMING O-4O. REPORT hUMBER AU THOR(s) 8. CONTRACT OR