Sample records for target volumes ptvs

  1. High-Frequency Jet Ventilation for Complete Target Immobilization and Reduction of Planning Target Volume in Stereotactic High Single-Dose Irradiation of Stage I Non-Small Cell Lung Cancer and Lung Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Peter, E-mail: p.h.fritz@t-online.d; Kraus, Hans-Joerg; Muehlnickel, Werner

    2010-09-01

    Purpose: To demonstrate the feasibility of complete target immobilization by means of high-frequency jet ventilation (HFJV); and to show that the saving of planning target volume (PTV) on the stereotactic body radiation therapy (SBRT) under HFJV, compared with SBRT with respiratory motion, can be predicted with reliable accuracy by computed tomography (CT) scans at peak inspiration phase. Methods and Materials: A comparison regarding different methods for defining the PTV was carried out in 22 patients with tumors that clearly moved with respiration. A movement span of the gross tumor volume (GTV) was defined by fusing respiration-correlated CT scans. The PTVmore » enclosed the GTV positions with a safety margin throughout the breathing cycle. To create a PTV from CT scans acquired under HFJV, the same margins were drawn around the immobilized target. In addition, peak inspiration phase CT images (PIP-CTs) were used to approximate a target immobilized by HFJV. Results: The resulting HFJV-PTVs were between 11.6% and 45.4% smaller than the baseline values calculated as respiration-correlated CT-PTVs (median volume reduction, 25.4%). Tentative planning by means of PIP-CT PTVs predicted that in 19 of 22 patients, use of HFJV would lead to a reduction in volume of {>=}20%. Using this threshold yielded a positive predictive value of 0.89, as well as a sensitivity of 0.94 and a specificity of 0.5. Conclusions: In all patients, SBRT under HFJV provided a reliable immobilization of the GTVs and achieved a reduction in PTVs, regardless of patient compliance. Tentative planning facilitated the selection of patients who could better undergo radiation in respiratory standstill, both with greater accuracy and lung protection.« less

  2. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy.

    PubMed

    Rieken, Stefan; Habermehl, Daniel; Giesel, Frederik L; Hoffmann, Christoph; Burger, Ute; Rief, Harald; Welzel, Thomas; Haberkorn, Uwe; Debus, Jürgen; Combs, Stephanie E

    2013-12-01

    Modern radiotherapy (RT) techniques such as stereotactic RT, intensity-modulated RT, or particle irradiation allow local dose escalation with simultaneous sparing of critical organs. Several trials are currently investigating their benefit in glioma reirradiation and boost irradiation. Target volume definition is of critical importance especially when steep dose gradient techniques are employed. In this manuscript we investigate the impact of O-(2-(F-18)fluoroethyl)-l-tyrosine-positron emission tomography/computer tomography (FET-PET/CT) on target volume definition in low and high grade glioma patients undergoing either first or re-irradiation with particles. We investigated volumetric size and uniformity of magnetic resonance imaging (MRI)- vs. FET-PET/CT-derived gross tumor volumes (GTVs) and planning target volumes (PTVs) of 41 glioma patients. Clinical cases are presented to demonstrate potential benefits of integrating FET-PET/CT-planning into daily routine. Integrating FET-uptake into the delineation of GTVs yields larger volumes. Combined modality-derived PTVs are significantly enlarged in high grade glioma patients and in case of primary RT. The congruence of MRI and FET signals for the identification of glioma GTVs is poor with mean uniformity indices of 0.39. MRI-based PTVs miss 17% of FET-PET/CT-based GTVs. Non significant alterations were detected in low grade glioma patients and in those undergoing reirradiation. Target volume definition for malignant gliomas during initial RT may yield significantly differing results depending upon the imaging modality, which the contouring process is based upon. The integration of both MRI and FET-PET/CT may help to improve GTV coverage by avoiding larger incongruences between physical and biological imaging techniques. In low grade gliomas and in cases of reirradiation, more studies are needed in order to investigate a potential benefit of FET-PET/CT for planning of RT. Copyright © 2013 Elsevier Ireland Ltd. All

  3. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate.

    PubMed

    Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard

    2007-02-01

    Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.

  4. Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study.

    PubMed

    Chirindel, Alin; Adebahr, Sonja; Schuster, Daniel; Schimek-Jasch, Tanja; Schanne, Daniel H; Nemer, Ursula; Mix, Michael; Meyer, Philipp; Grosu, Anca-Ligia; Brunner, Thomas; Nestle, Ursula

    2015-06-01

    Evaluation of the effect of co-registered 4D-(18)FDG-PET/CT for SBRT target delineation in patients with central versus peripheral lung tumors. Analysis of internal target volume (ITV) delineation of central and peripheral lung lesions in 21 SBRT-patients. Manual delineation was performed by 4 observers in 2 contouring phases: on respiratory gated 4DCT with diagnostic 3DPET available aside (CT-ITV) and on co-registered 4DPET/CT (PET/CT-ITV). Comparative analysis of volumes and inter-reader agreement. 11 cases of peripheral and 10 central lesions were evaluated. In peripheral lesions, average CT-ITV was 6.2 cm(3) and PET/CT-ITV 8.6 cm(3), resembling a mean change in hypothetical radius of 2 mm. For both CT-ITVs and PET/CT-ITVs inter reader agreement was good and unchanged (0.733 and 0.716; p=0.58). All PET/CT-ITVs stayed within the PTVs derived from CT-ITVs. In central lesions, average CT-ITVs were 42.1 cm(3), PET/CT-ITVs 44.2 cm(3), without significant overall volume changes. Inter-reader agreement improved significantly (0.665 and 0.750; p<0.05). 2/10 PET/CT-ITVs exceeded the PTVs derived from CT-ITVs by >1 ml in average for all observers. The addition of co-registered 4DPET data to 4DCT based target volume delineation for SBRT of centrally located lung tumors increases the inter-observer agreement and may help to avoid geographic misses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    PubMed

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  6. Single-Isocenter Multiple-Target Stereotactic Radiosurgery: Risk of Compromised Coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roper, Justin, E-mail: justin.roper@emory.edu; Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, Georgia; Chanyavanich, Vorakarn

    2015-11-01

    Purpose: To determine the dosimetric effects of rotational errors on target coverage using volumetric modulated arc therapy (VMAT) for multitarget stereotactic radiosurgery (SRS). Methods and Materials: This retrospective study included 50 SRS cases, each with 2 intracranial planning target volumes (PTVs). Both PTVs were planned for simultaneous treatment to 21 Gy using a single-isocenter, noncoplanar VMAT SRS technique. Rotational errors of 0.5°, 1.0°, and 2.0° were simulated about all axes. The dose to 95% of the PTV (D95) and the volume covered by 95% of the prescribed dose (V95) were evaluated using multivariate analysis to determine how PTV coverage was relatedmore » to PTV volume, PTV separation, and rotational error. Results: At 0.5° rotational error, D95 values and V95 coverage rates were ≥95% in all cases. For rotational errors of 1.0°, 7% of targets had D95 and V95 values <95%. Coverage worsened substantially when the rotational error increased to 2.0°: D95 and V95 values were >95% for only 63% of the targets. Multivariate analysis showed that PTV volume and distance to isocenter were strong predictors of target coverage. Conclusions: The effects of rotational errors on target coverage were studied across a broad range of SRS cases. In general, the risk of compromised coverage increased with decreasing target volume, increasing rotational error and increasing distance between targets. Multivariate regression models from this study may be used to quantify the dosimetric effects of rotational errors on target coverage given patient-specific input parameters of PTV volume and distance to isocenter.« less

  7. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    PubMed

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  8. Combined Recipe for Clinical Target Volume and Planning Target Volume Margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroom, Joep, E-mail: joep.stroom@fundacaochampalimaud.pt; Gilhuijs, Kenneth; Vieira, Sandra

    2014-03-01

    Purpose: To develop a combined recipe for clinical target volume (CTV) and planning target volume (PTV) margins. Methods and Materials: A widely accepted PTV margin recipe is M{sub geo} = aΣ{sub geo} + bσ{sub geo}, with Σ{sub geo} and σ{sub geo} standard deviations (SDs) representing systematic and random geometric uncertainties, respectively. On the basis of histopathology data of breast and lung tumors, we suggest describing the distribution of microscopic islets around the gross tumor volume (GTV) by a half-Gaussian with SD Σ{sub micro}, yielding as possible CTV margin recipe: M{sub micro} = ƒ(N{sub i}) × Σ{sub micro}, with N{sub i}more » the average number of microscopic islets per patient. To determine ƒ(N{sub i}), a computer model was developed that simulated radiation therapy of a spherical GTV with isotropic distribution of microscopic disease in a large group of virtual patients. The minimal margin that yielded D{sub min} <95% in maximally 10% of patients was calculated for various Σ{sub micro} and N{sub i}. Because Σ{sub micro} is independent of Σ{sub geo}, we propose they should be added quadratically, yielding for a combined GTV-to-PTV margin recipe: M{sub GTV-PTV} = √([aΣ{sub geo}]{sup 2} + [ƒ(N{sub i})Σ{sub micro}]{sup 2}) + bσ{sub geo}. This was validated by the computer model through numerous simultaneous simulations of microscopic and geometric uncertainties. Results: The margin factor ƒ(N{sub i}) in a relevant range of Σ{sub micro} and N{sub i} can be given by: ƒ(N{sub i}) = 1.4 + 0.8log(N{sub i}). Filling in the other factors found in our simulations (a = 2.1 and b = 0.8) yields for the combined recipe: M{sub GTV-PTV} = √((2.1Σ{sub geo}){sup 2} + ([1.4 + 0.8log(N{sub i})] × Σ{sub micro}){sup 2}) + 0.8σ{sub geo}. The average margin difference between the simultaneous simulations and the above recipe was 0.2 ± 0.8 mm (1 SD). Calculating M{sub geo} and M{sub micro} separately and adding them linearly overestimated PTVs

  9. Impacts of lung and tumor volumes on lung dosimetry for nonsmall cell lung cancer.

    PubMed

    Lei, Weijie; Jia, Jing; Cao, Ruifen; Song, Jing; Hu, Liqin

    2017-09-01

    The purpose of this study was to determine the impacts of lung and tumor volumes on normal lung dosimetry in three-dimensional conformal radiotherapy (3DCRT), step-and-shoot intensity-modulated radiotherapy (ssIMRT), and single full-arc volumetric-modulated arc therapy (VMAT) in treatment of nonsmall cell lung cancers (NSCLC). All plans were designed to deliver a total dose of 66 Gy in 33 fractions to PTV for the 32 NSCLC patients with various total (bilateral) lung volumes, planning target volumes (PTVs), and PTV locations. The ratio of the lung volume (total lung volume excluding the PTV volume) to the PTV volume (LTR) was evaluated to represent the impacts in three steps. (a) The least squares method was used to fit mean lung doses (MLDs) to PTVs or LTRs with power-law function in the population cohort (N = 32). (b) The population cohort was divided into three groups by LTRs based on first step and then by PTVs, respectively. The MLDs were compared among the three techniques in each LTR group (LG) and each PTV group (PG). (c) The power-law correlation was tested by using the adaptive radiation therapy (ART) planning data of individual patients in the individual cohort (N = 4). Different curves of power-law function with high R 2 values were observed between averaged LTRs and averaged MLDs for 3DCRT, ssIMRT, and VMAT, respectively. In the individual cohort, high R 2 values of fitting curves were also observed in individual patients in ART, although the trend was highly patient-specific. There was a more obvious correlation between LTR and MLD than that between PTV and MLD. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. Highly Conformal Craniospinal Radiotherapy Techniques Can Underdose the Cranial Clinical Target Volume if Leptomeningeal Extension through Skull Base Exit Foramina is not Contoured.

    PubMed

    Noble, D J; Ajithkumar, T; Lambert, J; Gleeson, I; Williams, M V; Jefferies, S J

    2017-07-01

    Craniospinal irradiation (CSI) remains a crucial treatment for patients with medulloblastoma. There is uncertainty about how to manage meningeal surfaces and cerebrospinal fluid (CSF) that follows cranial nerves exiting skull base foramina. The purpose of this study was to assess plan quality and dose coverage of posterior cranial fossa foramina with both photon and proton therapy. We analysed the radiotherapy plans of seven patients treated with CSI for medulloblastoma and primitive neuro-ectodermal tumours and three with ependymoma (total n = 10). Four had been treated with a field-based technique and six with TomoTherapy™. The internal acoustic meatus (IAM), jugular foramen (JF) and hypoglossal canal (HC) were contoured and added to the original treatment clinical target volume (Plan_CTV) to create a Test_CTV. This was grown to a test planning target volume (Test_PTV) for comparison with a Plan_PTV. Using Plan_CTV and Plan_PTV, proton plans were generated for all 10 cases. The following dosimetry data were recorded: conformity (dice similarity coefficient) and homogeneity index (D 2  - D 98 /D 50 ) as well as median and maximum dose (D 2% ) to Plan_PTV, V 95% and minimum dose (D 99.9% ) to Plan_CTV and Test_CTV and Plan_PTV and Test_PTV, V 95% and minimum dose (D 98% ) to foramina PTVs. Proton and TomoTherapy™ plans were more conformal (0.87, 0.86) and homogeneous (0.07, 0.04) than field-photon plans (0.79, 0.17). However, field-photon plans covered the IAM, JF and HC PTVs better than proton plans (P = 0.002, 0.004, 0.003, respectively). TomoTherapy™ plans covered the IAM and JF better than proton plans (P = 0.000, 0.002, respectively) but the result for the HC was not significant. Adding foramen CTVs/PTVs made no difference for field plans. The mean D min dropped 3.4% from Plan_PTV to Test_PTV for TomoTherapy™ (not significant) and 14.8% for protons (P = 0.001). Highly conformal CSI techniques may underdose meninges and CSF in the dural

  11. Sci—Fri AM: Mountain — 06: Optimizing planning target volume in lung radiotherapy using deformable registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, P; Wierzbicki, M; Juravinski Cancer Centre, Medical Physics Department, Hamilton, Ontario

    A four dimensional computed tomography (4DCT) image is acquired for all radically treated, lung cancer patients to define the internal target volume (ITV), which encompasses tumour motion due to breathing and subclinical disease. Patient set-up error and anatomical motion that is not due to breathing is addressed through an additional 1 cm margin around the ITV to obtain the planning target volume (PTV). The objective of this retrospective study is to find the minimum PTV margin that provides an acceptable probability of delivering the prescribed dose to the ITV. Acquisition of a kV cone beam computed tomography (CBCT) image atmore » each fraction was used to shift the treatment couch to accurately align the spinal cord and carina. Our method utilized deformable image registration to automatically position the planning ITV on each CBCT. We evaluated the percentage of the ITV surface that fell within various PTVs for 79 fractions across 18 patients. Treatment success was defined as a situation where at least 99% of the ITV is covered by the PTV. Overall, this is to be achieved in at least 90% of the treatment fractions. The current approach with a 1cm PTV margin was successful ∼96% of the time. This analysis revealed that the current margin can be reduced to 0.8cm isotropic or 0.6×0.6×1 cm{sup 3} non-isotropic, which were successful 92 and 91 percent of the time respectively. Moreover, we have shown that these margins maintain accuracy, despite intrafractional variation, and maximize CBCT image guidance capabilities.« less

  12. Is a Clinical Target Volume (CTV) Necessary in the Treatment of Lung Cancer in the Modern Era Combining 4-D Imaging and Image-guided Radiotherapy (IGRT)?

    PubMed

    Kilburn, Jeremy M; Lucas, John T; Soike, Michael H; Ayala-Peacock, Diandra N; Blackstock, Arthur W; Hinson, William H; Munley, Michael T; Petty, William J; Urbanic, James J

    2016-01-23

    We hypothesized that omission of clinical target volumes (CTV) in lung cancer radiotherapy would not compromise control by determining retrospectively if the addition of a CTV would encompass the site of failure. Stage II-III patients were treated from 2009-2012 with daily cone-beam imaging and a 5 mm planning target volume (PTV) without a CTV. PTVs were expanded 1 cm and termed CTVretro. Recurrences were scored as 1) within the PTV, 2) within CTVretro, or 3) outside the PTV. Locoregional control (LRC), distant control (DC), progression-free survival (PFS), and overall survival (OS) were estimated. Among 110 patients, Stage IIIA 57%, IIIB 32%, IIA 4%, and IIB 7%. Eighty-six percent of Stage III patients received chemotherapy. Median dose was 70 Gy (45-74 Gy) and fraction size ranged from 1.5-2.7 Gy. Median follow-up was 12 months, median OS was 22 months (95% CI 19-30 months), and LRC at two years was 69%. Fourteen local and eight regional events were scored with two CTVretro failures equating to a two-year CTV failure-free survival of 98%. Omission of a 1 cm CTV expansion appears feasible based on only two events among 110 patients and should be considered in radiation planning.

  13. Methods for Reducing Normal Tissue Complication Probabilities in Oropharyngeal Cancer: Dose Reduction or Planning Target Volume Elimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuels, Stuart E.; Eisbruch, Avraham; Vineberg, Karen

    Purpose: Strategies to reduce the toxicities of head and neck radiation (ie, dysphagia [difficulty swallowing] and xerostomia [dry mouth]) are currently underway. However, the predicted benefit of dose and planning target volume (PTV) reduction strategies is unknown. The purpose of the present study was to compare the normal tissue complication probabilities (NTCP) for swallowing and salivary structures in standard plans (70 Gy [P70]), dose-reduced plans (60 Gy [P60]), and plans eliminating the PTV margin. Methods and Materials: A total of 38 oropharyngeal cancer (OPC) plans were analyzed. Standard organ-sparing volumetric modulated arc therapy plans (P70) were created and then modified by eliminatingmore » the PTVs and treating the clinical tumor volumes (CTVs) only (C70) or maintaining the PTV but reducing the dose to 60 Gy (P60). NTCP dose models for the pharyngeal constrictors, glottis/supraglottic larynx, parotid glands (PGs), and submandibular glands (SMGs) were analyzed. The minimal clinically important benefit was defined as a mean change in NTCP of >5%. The P70 NTCP thresholds and overlap percentages of the organs at risk with the PTVs (56-59 Gy, vPTV{sub 56}) were evaluated to identify the predictors for NTCP improvement. Results: With the P60 plans, only the ipsilateral PG (iPG) benefited (23.9% vs 16.2%; P<.01). With the C70 plans, only the iPG (23.9% vs 17.5%; P<.01) and contralateral SMG (cSMG) (NTCP 32.1% vs 22.9%; P<.01) benefited. An iPG NTCP threshold of 20% and 30% predicted NTCP benefits for the P60 and C70 plans, respectively (P<.001). A cSMG NTCP threshold of 30% predicted for an NTCP benefit with the C70 plans (P<.001). Furthermore, for the iPG, a vPTV{sub 56} >13% predicted benefit with P60 (P<.001) and C70 (P=.002). For the cSMG, a vPTV{sub 56} >22% predicted benefit with C70 (P<.01). Conclusions: PTV elimination and dose-reduction lowered the NTCP of the iPG, and PTV elimination lowered the NTCP of the cSMG. NTCP thresholds and the

  14. SU-G-BRC-08: Evaluation of Dose Mass Histogram as a More Representative Dose Description Method Than Dose Volume Histogram in Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J; Eldib, A; Ma, C

    2016-06-15

    Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number wasmore » used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.« less

  15. SU-F-T-618: Evaluation of a Mono-Isocentric Treatment Planning Software for Stereotactic Radiosurgery of Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sham, E; Sattarivand, M; Mulroy, L

    Purpose: To evaluate planning performance of an automated treatment planning software (BrainLAB; Elements) for stereotactic radiosurgery (SRS) of multiple brain metastases. Methods: Brainlab’s Multiple Metastases Elements (MME) uses single isocentric technique to treat up to 10 cranial planning target volumes (PTVs). The planning algorithm of the MME accounts for multiple PTVs overlapping with one another on the beam eyes view (BEV) and automatically selects a subset of all overlapping PTVs on each arc for sparing normal tissues in the brain. The algorithm also optimizes collimator angles, margins between multi-leaf collimators (MLCs) and PTVs, as well as monitor units (MUs) usingmore » minimization of conformity index (CI) for all targets. Planning performance was evaluated by comparing the MME-calculated treatment plan parameters with the same parameters calculated with the Volumetric Modulated Arc Therapy (VMAT) optimization on Varian’s Eclipse platform. Results: Figures 1 to 3 compare several treatment plan outcomes calculated between the MME and VMAT for 5 clinical multi-targets SRS patient plans. Prescribed target dose was volume-dependent and defined based on the RTOG recommendation. For a total number of 18 PTV’s, mean values for the CI, PITV, and GI were comparable between the MME and VMAT within one standard deviation (σ). However, MME-calculated MDPD was larger than the same VMAT-calculated parameter. While both techniques delivered similar maximum point doses to the critical cranial structures and total MU’s for the 5 patient plans, the MME required less treatment planning time by an order of magnitude compared to VMAT. Conclusion: The MME and VMAT produce similar plan qualities in terms of MUs, target dose conformation, and OAR dose sparing. While the selective use of PTVs for arc-optimization with the MME reduces significantly the total planning time in comparison to VMAT, the target dose homogeneity was also compromised due to its

  16. Is Adaptive Treatment Planning Required for Stereotactic Radiotherapy of Stage I Non-Small-Cell Lung Cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haasbeek, Cornelis J.A.; Lagerwaard, Frank J.; Cuijpers, Johan P.

    2007-04-01

    Purpose: Changes in position or size of target volumes have been observed during radiotherapy for lung cancer. The need for adaptive treatment planning during stereotactic radiotherapy of Stage I tumors was retrospectively analyzed using repeat four-dimensional computed tomography (4DCT) scans. Methods and Materials: A planning study was performed for 60 tumors in 59 patients using 4DCT scans repeated after two or more treatment fractions. Planning target volumes (PTV) encompassed all tumor mobility, and dose distributions from the initial plan were projected onto PTVs derived from the repeat 4DCT. A dosimetric and volumetric analysis was performed. Results: The repeat 4DCT scansmore » were performed at a mean of 6.6 days (range, 2-12 days) after the first fraction of stereotactic radiotherapy. In 25% of cases the repeat PTV was larger, but the difference exceeded 1 mL in 5 patients only. The mean 3D displacement between the center of mass of both PTVs was 2.0 mm. The initial 80% prescription isodose ensured a mean coverage of 98% of repeat PTVs, and this isodose fully encompassed the repeat internal target volumes in all but 1 tumor. 'Inadequate' coverage in the latter was caused by a new area of atelectasis adjacent to the tumor on the repeat 4DCT. Conclusions: Limited 'time trends' were observed in PTVs generated by repeated uncoached 4DCT scans, and the dosimetric consequences proved to be minimal. Treatment based only on the initial PTV would not have resulted in major tumor underdosage, indicating that adaptive treatment planning is of limited value for fractionated stereotactic radiotherapy.« less

  17. SU-E-T-605: RapidArc Combined with DIBH Technique for Thoracic Esophageal Carcinoma: The Potential Value of Target Immobilization and Reduced Lung Density in Dose Escalation.

    PubMed

    Yin, Y; Liu, T; Zhai, D

    2012-06-01

    To compare the dosimetric benefits of Rapidarc (RA) combined with deep inspiration breath-hold (DIBH) with those of other standard techniques, including free breathing (FB) during fixed-field intensity modulated radiation therapy (IMRT) and dual arc RA, in the treatment of patients with thoracic esophageal carcinoma (EC). Ten patients with EC underwent computed tomography (CT) scans under 2 respiration conditions: free-breathing (FB) and DIBH. These scans were used to generate 3-dimensional conformal treatment plans. For breath-hold scans, the patients were brought to reproducible respiration levels using active breathing control (ABC) maneuvers. Planning target volumes (PTVs) for FB plans included a 0.5 cm margin for setup plus a 1 cm margin equal to the extent of tumor motion for respiration. PTVs for DIBH plans included a 0.5 cm margin for setup error and a 0.5 cm margin for residual uncertainty in tumor position. Using a dose level of 60 Gy to the PTV, three treatment plans were generated: IMRT-FB, RA-FB and RA-ABC, and the target and normal tissue volumes were compared, as were the dosimetry parameters. On average, the DIBH technique resulted in increased lung volumes compared with FB techniques. There was no significant differences in gross tumor volume between the two breathing states (p > 0.05); but PTV and heart volume were larger for FB than for DIBH (p < 0.05). The overall CI and HI for the RA-ABC plan was slightly inferior to those of the IMRT- FB and RA-FB plans (p < 0.05 each). With DIBH, the heart was partly out of the beam portals and the average mean heart dose was reduced. Compared with conventional FB, RA combined with DIBH significantly reduced cardiac and pulmonary doses without compromising the target coverage and may reduce treatment toxicity, enabling dose escalation in future prospective studies of patients with EC. © 2012 American Association of Physicists in Medicine.

  18. Dosimetric consequences of the parotid glands using CT-to-CBCT deformable registration during IMRT for late stage head and neck cancers

    NASA Astrophysics Data System (ADS)

    Conill, Annette L.

    Patients receiving Intensity Modulated Radiation Therapy (IMRT) for late stage head and neck (HN) cancer often experience anatomical changes due to weight loss, tumor regression, and positional changes of normal anatomy (1). As a result, the actual dose delivered may vary from the original treatment plan. The purpose of this study was (a) to evaluate the dosimetric consequences of the parotid glands during the course of treatment, and (b) to determine if there would be an optimal timeframe for replanning. Nineteen locally advanced HN cancer patients underwent definitive IMRT. Each patient received an initial computerized tomography simulation (CT-SIM) scan and weekly cone beam computerized tomography (CBCT) scans. A Deformable Image Registration (DIR) was performed between the CT-SIM and CBCT of the parotid glands and Planning Target Volumes (PTVs) using the Eclipse treatment planning system (TPS) and the Velocity deformation software. A recalculation of the dose was performed on the weekly CBCTs using the original monitor units. The parameters for evaluation of our method were: the changes in volume of the PTVs and parotid glands, the dose coverage of the PTVs, the lateral displacement in the Center of Mass (COM), the mean dose, and Normal Tissue Complication Probability (NTCP) of the parotid glands. The studies showed a reduction of the volume in the PTVs and parotids, a medial displacement in COM, and alterations of the mean dose to the parotid glands as compared to the initial plans. Differences were observed for the dose volume coverage of the PTVs and NTCP of the parotid gland values between the initial plan and our proposed method utilizing deformable registration-based dose calculations.

  19. Assessments of Sequential Intensity Modulated Radiation Therapy Boost (SqIB) Treatments Using HART

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-05-01

    A retrospective study was pursued to evaluate the SqIB treatments performed on ten head and neck cancer patients(n=10).Average prescription doses (PDs) of 39 Gy,15Gy and 17.8Gy were delivered consecutively from larger to smaller planning target volumes(ptvs) in three different treatment plans using 6 MV X-ray photon beams from a Linear accelerator (SLA Linac, Elekta) on BID weak on-weak off schedules. These plans were statistically evaluated on basis of plan indices (PIs),dose response of targets and critical structures, and dose tolerance(DT) of various organs utilizing the DVH analysis automated software known as Histogram Analysis in Radiation Therapy-HART(S.Jang et al., 2008, Med Phys 35, p.2812). Mean SqIB PIs were found consistent with the reported values for varying radio-surgical systems.The 95.5%(n=10)of each ptvs and the gross tumor volume also received 95% (n=10)of PDs in treatments. The average volume of ten organs (N=10) affected by each PDs shrank with decreasing size of ptvs in above plans.A largest volume of Oropharynx (79%,n=10,N=10) irradiated at PD, but the largest volume of Larynx (98%, n=10, N=10) was vulnerable to DT of structure (TD50).Thus, we have demonstrated the efficiency and accuracy of HART in the assessment of Linac based plans in radiation therapy treatments of cancer.

  20. A novel probabilistic approach to generating PTV with partial voxel contributions

    NASA Astrophysics Data System (ADS)

    Tsang, H. S.; Kamerling, C. P.; Ziegenhein, P.; Nill, S.; Oelfke, U.

    2017-06-01

    Radiotherapy treatment planning for use with high-energy photon beams currently employs a binary approach in defining the planning target volume (PTV). We propose a margin concept that takes the beam directions into account, generating beam-dependent PTVs (bdPTVs) on a beam-by-beam basis. The resulting degree of overlaps between the bdPTVs are used within the optimisation process; the optimiser effectively considers the same voxel to be both target and organ at risk (OAR) with fractional contributions. We investigate the impact of this novel approach when applied to prostate radiotherapy treatments, and compare treatment plans generated using beam dependent margins to conventional margins. Five prostate patients were used in this planning study, and plans using beam dependent margins improved the sparing of high doses to target-surrounding OARs, though a trade-off in delivering additional low dose to the OARs can be observed. Plans using beam dependent margins are observed to have a slightly reduced target coverage. Nevertheless, all plans are able to satisfy 90% population coverage with the target receiving at least 95% of the prescribed dose to D98% .

  1. Beam-specific planning volumes for scattered-proton lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Flampouri, S.; Hoppe, B. S.; Slopsema, R. L.; Li, Z.

    2014-08-01

    This work describes the clinical implementation of a beam-specific planning treatment volume (bsPTV) calculation for lung cancer proton therapy and its integration into the treatment planning process. Uncertainties incorporated in the calculation of the bsPTV included setup errors, machine delivery variability, breathing effects, inherent proton range uncertainties and combinations of the above. Margins were added for translational and rotational setup errors and breathing motion variability during the course of treatment as well as for their effect on proton range of each treatment field. The effect of breathing motion and deformation on the proton range was calculated from 4D computed tomography data. Range uncertainties were considered taking into account the individual voxel HU uncertainty along each proton beamlet. Beam-specific treatment volumes generated for 12 patients were used: a) as planning targets, b) for routine plan evaluation, c) to aid beam angle selection and d) to create beam-specific margins for organs at risk to insure sparing. The alternative planning technique based on the bsPTVs produced similar target coverage as the conventional proton plans while better sparing the surrounding tissues. Conventional proton plans were evaluated by comparing the dose distributions per beam with the corresponding bsPTV. The bsPTV volume as a function of beam angle revealed some unexpected sources of uncertainty and could help the planner choose more robust beams. Beam-specific planning volume for the spinal cord was used for dose distribution shaping to ensure organ sparing laterally and distally to the beam.

  2. SU-E-T-170: Characterization of the Location, Extent, and Proximity to Critical Structures of Target Volumes Provides Detail for Improved Outcome Predictions Among Pancreatic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Z; Moore, J; Rosati, L

    Purpose: In radiotherapy, size, location and proximity of the target to critical structures influence treatment decisions. It has been shown that proximity of the target predicts dosimetric sparing of critical structures. In addition to dosimetry, precise location of disease has further implications such as tumor invasion, or proximity to major arteries that inhibit surgery. Knowledge of which patients can be converted to surgical candidates by radiation may have high impact on future treat/no-treat decisions. We propose a method to improve our characterization of the location of pancreatic cancer and treatment volume extent with respect to nearby arteries with the goalmore » of developing features to improve clinical predictions and decisions. Methods: Oncospace is a local learning health system that systematically captures clinical outcomes and all aspects of radiotherapy treatment plans, including overlap volume histograms (OVH) – a measure of spatial relationships between two structures. Minimum and maximum distances of PTV and OARs based on OVH, PTV volume, anatomic location by ICD-9 code, and surgical outcome were queried. Normalized distance to center from the left and right kidney was calculated to indicate tumor location and laterality. Distance to critical arteries (celiac, superior mesenteric, common hepatic) is validated by surgical status (borderline resectable, locally advanced converted to resectable). Results: There were 205 pancreas stereotactic body radiotherapy patients treated from 2009–2015 queried. Location/laterality of tumor based on kidney OVH show strong trends between location by OVH and by ICD-9. Compared to the locally advanced group, the borderline resectable group showed larger geometrical distance from critical arteries (p=0.03). Conclusion: Our platform enabled analysis of shape/size-location relationships. These data suggest that PTV volume and attention to distance between PTVs and surrounding OARs and major arteries may be

  3. 'Compromise position' image alignment to accommodate independent motion of multiple clinical target volumes during radiotherapy: A high risk prostate cancer example.

    PubMed

    Rosewall, Tara; Yan, Jing; Alasti, Hamideh; Cerase, Carla; Bayley, Andrew

    2017-04-01

    Inclusion of multiple independently moving clinical target volumes (CTVs) in the irradiated volume causes an image guidance conundrum. The purpose of this research was to use high risk prostate cancer as a clinical example to evaluate a 'compromise' image alignment strategy. The daily pre-treatment orthogonal EPI for 14 consecutive patients were included in this analysis. Image matching was performed by aligning to the prostate only, the bony pelvis only and using the 'compromise' strategy. Residual CTV surrogate displacements were quantified for each of the alignment strategies. Analysis of the 388 daily fractions indicated surrogate displacements were well-correlated in all directions (r 2  = 0.95 (LR), 0.67 (AP) and 0.59 (SI). Differences between the surrogates displacements (95% range) were -0.4 to 1.8 mm (LR), -1.2 to 5.2 mm (SI) and -1.2 to 5.2 mm (AP). The distribution of the residual displacements was significantly smaller using the 'compromise' strategy, compared to the other strategies (p 0.005). The 'compromise' strategy ensured the CTV was encompassed by the PTV in all fractions, compared to 47 PTV violations when aligned to prostate only. This study demonstrated the feasibility of a compromise position image guidance strategy to accommodate simultaneous displacements of two independently moving CTVs. Application of this strategy was facilitated by correlation between the CTV displacements and resulted in no geometric excursions of the CTVs beyond standard sized PTVs. This simple image guidance strategy may also be applicable to other disease sites that concurrently irradiate multiple CTVs, such as head and neck, lung and cervix cancer. © 2016 The Royal Australian and New Zealand College of Radiologists.

  4. Consistency in seroma contouring for partial breast radiotherapy: Impact of guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Elaine K.; Truong, Pauline T.; Kader, Hosam A.

    2006-10-01

    Purpose: Inconsistencies in contouring target structures can undermine the precision of conformal radiation therapy (RT) planning and compromise the validity of clinical trial results. This study evaluated the impact of guidelines on consistency in target volume contouring for partial breast RT planning. Methods and Materials: Guidelines for target volume definition for partial breast radiation therapy (PBRT) planning were developed by members of the steering committee for a pilot trial of PBRT using conformal external beam planning. In phase 1, delineation of the breast seroma in 5 early-stage breast cancer patients was independently performed by a 'trained' cohort of four radiationmore » oncologists who were provided with these guidelines and an 'untrained' cohort of four radiation oncologists who contoured without guidelines. Using automated planning software, the seroma target volume (STV) was expanded into a clinical target volume (CTV) and planning target volume (PTV) for each oncologist. Means and standard deviations were calculated, and two-tailed t tests were used to assess differences between the 'trained' and 'untrained' cohorts. In phase 2, all eight radiation oncologists were provided with the same contouring guidelines, and were asked to delineate the seroma in five new cases. Data were again analyzed to evaluate consistency between the two cohorts. Results: The 'untrained' cohort contoured larger seroma volumes and had larger CTVs and PTVs compared with the 'trained' cohort in three of five cases. When seroma contouring was performed after review of contouring guidelines, the differences in the STVs, CTVs, and PTVs were no longer statistically significant. Conclusion: Guidelines can improve consistency among radiation oncologists performing target volume delineation for PBRT planning.« less

  5. Three-dimensional conformal simultaneously integrated boost technique for breast-conserving radiotherapy.

    PubMed

    van der Laan, Hans Paul; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Hollander, Miranda; Langendijk, Johannes A

    2007-07-15

    To compare the target coverage and normal tissue dose with the simultaneously integrated boost (SIB) and the sequential boost technique in breast cancer, and to evaluate the incidence of acute skin toxicity in patients treated with the SIB technique. Thirty patients with early-stage left-sided breast cancer underwent breast-conserving radiotherapy using the SIB technique. The breast and boost planning target volumes (PTVs) were treated simultaneously (i.e., for each fraction, the breast and boost PTVs received 1.81 Gy and 2.3 Gy, respectively). Three-dimensional conformal beams with wedges were shaped and weighted using forward planning. Dose-volume histograms of the PTVs and organs at risk with the SIB technique, 28 x (1.81 + 0.49 Gy), were compared with those for the sequential boost technique, 25 x 2 Gy + 8 x 2 Gy. Acute skin toxicity was evaluated for 90 patients treated with the SIB technique according to Common Terminology Criteria for Adverse Events, version 3.0. PTV coverage was adequate with both techniques. With SIB, more efficiently shaped boost beams resulted in smaller irradiated volumes. The mean volume receiving > or =107% of the breast dose was reduced by 20%, the mean volume outside the boost PTV receiving > or =95% of the boost dose was reduced by 54%, and the mean heart and lung dose were reduced by 10%. Of the evaluated patients, 32.2% had Grade 2 or worse toxicity. The SIB technique is proposed for standard use in breast-conserving radiotherapy because of its dose-limiting capabilities, easy implementation, reduced number of treatment fractions, and relatively low incidence of acute skin toxicity.

  6. Improving the consistency in cervical esophageal target volume definition by special training.

    PubMed

    Tai, Patricia; Van Dyk, Jake; Battista, Jerry; Yu, Edward; Stitt, Larry; Tonita, Jon; Agboola, Olusegun; Brierley, James; Dar, Rashid; Leighton, Christopher; Malone, Shawn; Strang, Barbara; Truong, Pauline; Videtic, Gregory; Wong, C Shun; Wong, Rebecca; Youssef, Youssef

    2002-07-01

    Three-dimensional conformal radiation therapy requires the precise definition of the target volume. Its potential benefits could be offset by the inconsistency in target definition by radiation oncologists. In a previous survey of radiation oncologists, a large degree of variation in target volume definition of cervical esophageal cancer was noted for the boost phase of radiotherapy. The present study evaluated whether special training could improve the consistency in target volume definitions. A pre-training survey was performed to establish baseline values. This was followed by a special one-on-one training session on treatment planning based on the RTOG 94-05 protocol to 12 radiation oncologists. Target volumes were redrawn immediately and at 1-2 months later. Post-training vs. pre-training target volumes were compared. There was less variability in the longitudinal positions of the target volumes post-training compared to pre-training (p < 0.05 in 5 of 6 comparisons). One case had more variability due to the lack of a visible gross tumor on CT scans. Transverse contours of target volumes did not show any significant difference pre- or post-training. For cervical esophageal cancer, this study suggests that special training on protocol guidelines may improve consistency in target volume definition. Explicit protocol directions are required for situations where the gross tumor is not easily visible on CT scans. This may be particularly important for multicenter clinical trials, to reduce the occurrences of protocol violations.

  7. Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution.

    PubMed

    Chen, Yi-Jen; Liu, An; Han, Chunhui; Tsai, Peter T; Schultheiss, Timothy E; Pezner, Richard D; Vora, Nilesh; Lim, Dean; Shibata, Stephen; Kernstine, Kemp H; Wong, Jeffrey Y C

    2007-01-01

    We compare different radiotherapy techniques-helical tomotherapy (tomotherapy), step-and-shoot IMRT (IMRT), and 3-dimensional conformal radiotherapy (3DCRT)-for patients with mid-distal esophageal carcinoma on the basis of dosimetric analysis. Six patients with locally advanced mid-distal esophageal carcinoma were treated with neoadjuvant chemoradiation followed by surgery. Radiotherapy included 50 Gy to gross planning target volume (PTV) and 45 Gy to elective PTV in 25 fractions. Tomotherapy, IMRT, and 3DCRT plans were generated. Dose-volume histograms (DVHs), homogeneity index (HI), volumes of lung receiving more than 10, 15, or 20 Gy (V(10), V(15), V(20)), and volumes of heart receiving more than 30 or 45 Gy (V(30), V(45)) were determined. Statistical analysis was performed by paired t-tests. By isodose distributions and DVHs, tomotherapy plans showed sharper dose gradients, more conformal coverage, and better HI for both gross and elective PTVs compared with IMRT or 3DCRT plans. Mean V(20) of lung was significantly reduced in tomotherapy plans. However, tomotherapy and IMRT plans resulted in larger V(10) of lung compared to 3DCRT plans. The heart was significantly spared in tomotherapy and IMRT plans compared to 3DCRT plans in terms of V(30) and V(45). We conclude that tomotherapy plans are superior in terms of target conformity, dose homogeneity, and V(20) of lung.

  8. Investigating different computed tomography techniques for internal target volume definition.

    PubMed

    Yoganathan, S A; Maria Das, K J; Subramanian, V Siva; Raj, D Gowtham; Agarwal, Arpita; Kumar, Shaleen

    2017-01-01

    The aim of this work was to evaluate the various computed tomography (CT) techniques such as fast CT, slow CT, breath-hold (BH) CT, full-fan cone beam CT (FF-CBCT), half-fan CBCT (HF-CBCT), and average CT for delineation of internal target volume (ITV). In addition, these ITVs were compared against four-dimensional CT (4DCT) ITVs. Three-dimensional target motion was simulated using dynamic thorax phantom with target insert of diameter 3 cm for ten respiration data. CT images were acquired using a commercially available multislice CT scanner, and the CBCT images were acquired using On-Board-Imager. Average CT was generated by averaging 10 phases of 4DCT. ITVs were delineated for each CT by contouring the volume of the target ball; 4DCT ITVs were generated by merging all 10 phases target volumes. Incase of BH-CT, ITV was derived by boolean of CT phases 0%, 50%, and fast CT target volumes. ITVs determined by all CT and CBCT scans were significantly smaller (P < 0.05) than the 4DCT ITV, whereas there was no significant difference between average CT and 4DCT ITVs (P = 0.17). Fast CT had the maximum deviation (-46.1% ± 20.9%) followed by slow CT (-34.3% ± 11.0%) and FF-CBCT scans (-26.3% ± 8.7%). However, HF-CBCT scans (-12.9% ± 4.4%) and BH-CT scans (-11.1% ± 8.5%) resulted in almost similar deviation. On the contrary, average CT had the least deviation (-4.7% ± 9.8%). When comparing with 4DCT, all the CT techniques underestimated ITV. In the absence of 4DCT, the HF-CBCT target volumes with appropriate margin may be a reasonable approach for defining the ITV.

  9. OPS MCC level B/C formulation requirements: Area targets and space volumes processor

    NASA Technical Reports Server (NTRS)

    Bishop, M. J., Jr.

    1979-01-01

    The level B/C mathematical specifications for the area targets and space volumes processor (ATSVP) are described. The processor is designed to compute the acquisition-of-signal (AOS) and loss-of-signal (LOS) times for area targets and space volumes. The characteristics of the area targets and space volumes are given. The mathematical equations necessary to determine whether the spacecraft lies within the area target or space volume are given. These equations provide a detailed model of the target geometry. A semianalytical technique for predicting the AOS and LOS time periods is disucssed. This technique was designed to bound the actual visibility period using a simplified target geometry model and unperturbed orbital motion. Functional overview of the ATSVP is presented and it's detailed logic flow is described.

  10. Self-expanding stent effects on radiation dosimetry in esophageal cancer.

    PubMed

    Francis, Samual R; Anker, Christopher J; Wang, Brian; Williams, Greg V; Cox, Kristen; Adler, Douglas G; Shrieve, Dennis C; Salter, Bill J

    2013-07-08

    It is the purpose of this study to evaluate how self-expanding stents (SESs) affect esophageal cancer radiation planning target volumes (PTVs) and dose delivered to surrounding organs at risk (OARs). Ten patients were evaluated, for whom a SES was placed before radiation. A computed tomography (CT) scan obtained before stent placement was fused to the post-stent CT simulation scan. Three methods were used to represent pre-stent PTVs: 1) image fusion (IF), 2) volume approximation (VA), and 3) diameter approximation (DA). PTVs and OARs were contoured per RTOG 1010 protocol using Eclipse Treatment Planning software. Post-stent dosimetry for each patient was compared to approximated pre-stent dosimetry. For each of the three pre-stent approximations (IF, VA, and DA), the mean lung and liver doses and the estimated percentages of lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and 30 Gy, and heart volumes receiving 40 Gy were significantly lower (p-values < 0.02) than those estimated in the post-stent treatment plans. The lung V5, lung V10, and heart V40 constraints were achieved more often using our pre-stent approximations. Esophageal SES placement increases the dose delivered to the lungs, heart, and liver. This may have clinical importance, especially when the dose-volume constraints are near the recommended thresholds, as was the case for lung V5, lung V10, and heart V40. While stents have established benefits for treating patients with significant dysphagia, physicians considering stent placement and radiation therapy must realize the effects stents can have on the dosimetry.

  11. Multiple two-dimensional versus three-dimensional PTV definition in treatment planning for conformal radiotherapy.

    PubMed

    Stroom, J C; Korevaar, G A; Koper, P C; Visser, A G; Heijmen, B J

    1998-06-01

    To demonstrate the need for a fully three-dimensional (3D) computerized expansion of the gross tumour volume (GTV) or clinical target volume (CTV), as delineated by the radiation oncologist on CT slices, to obtain the proper planning target volume (PTV) for treatment planning according to the ICRU-50 recommendations. For 10 prostate cancer patients two PTVs have been determined by expansion of the GTV with a 1.5 cm margin, i.e. a 3D PTV and a multiple 2D PTV. The former was obtained by automatically adding the margin while accounting in 3D for GTV contour differences in neighbouring slices. The latter was generated by automatically adding the 1.5 cm margin to the GTV in each CT slice separately; the resulting PTV is a computer simulation of the PTV that a radiation oncologist would obtain with (the still common) manual contouring in CT slices. For each patient the two PTVs were compared to assess the deviations of the multiple 2D PTV from the 3D PTV. For both PTVs conformal plans were designed using a three-field technique with fixed block margins. For each patient dose-volume histograms and tumour control probabilities (TCPs) of the (correct) 3D PTV were calculated, both for the plan designed for this PTV and for the treatment plan based on the (deviating) 2D PTV. Depending on the shape of the GTV, multiple 2D PTV generation could locally result in a 1 cm underestimation of the GTV-to-PTV margin. The deviations occurred predominantly in the cranio-caudal direction at locations where the GTV contour shape varies significantly from slice to slice. This could lead to serious underdosage and to a TCP decrease of up to 15%. A full 3D GTV-to-PTV expansion should be applied in conformal radiotherapy to avoid underdosage.

  12. Lentiviral Protein Transfer Vectors Are an Efficient Vaccine Platform and Induce a Strong Antigen-Specific Cytotoxic T Cell Response

    PubMed Central

    Uhlig, Katharina M.; Schülke, Stefan; Scheuplein, Vivian A. M.; Malczyk, Anna H.; Reusch, Johannes; Kugelmann, Stefanie; Muth, Anke; Koch, Vivian; Hutzler, Stefan; Bodmer, Bianca S.; Schambach, Axel; Buchholz, Christian J.; Waibler, Zoe; Scheurer, Stephan

    2015-01-01

    ABSTRACT To induce and trigger innate and adaptive immune responses, antigen-presenting cells (APCs) take up and process antigens. Retroviral particles are capable of transferring not only genetic information but also foreign cargo proteins when they are genetically fused to viral structural proteins. Here, we demonstrate the capacity of lentiviral protein transfer vectors (PTVs) for targeted antigen transfer directly into APCs and thereby induction of cytotoxic T cell responses. Targeting of lentiviral PTVs to APCs can be achieved analogously to gene transfer vectors by pseudotyping the particles with truncated wild-type measles virus (MV) glycoproteins (GPs), which use human SLAM (signaling lymphocyte activation molecule) as a main entry receptor. SLAM is expressed on stimulated lymphocytes and APCs, including dendritic cells. SLAM-targeted PTVs transferred the reporter protein green fluorescent protein (GFP) or Cre recombinase with strict receptor specificity into SLAM-expressing CHO and B cell lines, in contrast to broadly transducing vesicular stomatitis virus G protein (VSV-G) pseudotyped PTVs. Primary myeloid dendritic cells (mDCs) incubated with targeted or nontargeted ovalbumin (Ova)-transferring PTVs stimulated Ova-specific T lymphocytes, especially CD8+ T cells. Administration of Ova-PTVs into SLAM-transgenic and control mice confirmed the observed predominant induction of antigen-specific CD8+ T cells and demonstrated the capacity of protein transfer vectors as suitable vaccines for the induction of antigen-specific immune responses. IMPORTANCE This study demonstrates the specificity and efficacy of antigen transfer by SLAM-targeted and nontargeted lentiviral protein transfer vectors into antigen-presenting cells to trigger antigen-specific immune responses in vitro and in vivo. The observed predominant activation of antigen-specific CD8+ T cells indicates the suitability of SLAM-targeted and also nontargeted PTVs as a vaccine for the induction of

  13. Effect of lung and target density on small-field dose coverage and PTV definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Patrick D., E-mail: higgi010@umn.edu; Ehler, Eric D.; Cho, Lawrence C.

    We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy wasmore » delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.« less

  14. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  15. Self‐expanding stent effects on radiation dosimetry in esophageal cancer

    PubMed Central

    Francis, Samual R.; Wang, Brian; Williams, Greg V.; Cox, Kristen; Adler, Douglas G.; Shrieve, Dennis C.; Salter, Bill J.

    2013-01-01

    It is the purpose of this study to evaluate how self‐expanding stents (SESs) affect esophageal cancer radiation planning target volumes (PTVs) and dose delivered to surrounding organs at risk (OARs). Ten patients were evaluated, for whom a SES was placed before radiation. A computed tomography (CT) scan obtained before stent placement was fused to the post‐stent CT simulation scan. Three methods were used to represent pre‐stent PTVs: 1) image fusion (IF), 2) volume approximation (VA), and 3) diameter approximation (DA). PTVs and OARs were contoured per RTOG 1010 protocol using Eclipse Treatment Planning software. Post‐stent dosimetry for each patient was compared to approximated pre‐stent dosimetry. For each of the three pre‐stent approximations (IF, VA, and DA), the mean lung and liver doses and the estimated percentages of lung volumes receiving 5 Gy, 10 Gy, 20 Gy, and 30 Gy, and heart volumes receiving 40 Gy were significantly lower (p‐values <0.02) than those estimated in the post‐stent treatment plans. The lung V5, lung V10, and heart V40 constraints were achieved more often using our pre‐stent approximations. Esophageal SES placement increases the dose delivered to the lungs, heart, and liver. This may have clinical importance, especially when the dose‐volume constraints are near the recommended thresholds, as was the case for lung V5, lung V10, and heart V40. While stents have established benefits for treating patients with significant dysphagia, physicians considering stent placement and radiation therapy must realize the effects stents can have on the dosimetry. PACS number: 87.55.dk PMID:23835387

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Ornelas-Couto, M; Bossart, E; Elsayyad, N

    Purpose: To determine the sensitivity of dose-mass-histogram (DMH) due to anatomical changes of head-and-neck squamous cell carcinoma (HNSCC) radiotherapy (RT). Methods: Eight patients undergoing RT treatment for HNSCC were scanned during the third and sixth week of RT. These second (CT2) and third (CT3) CTs were co-registered to the planning CT (CT1). Contours were propagated via deformable registration from CT1 and doses were re-calculated. DMHs were extracted for each CT set. DMH sensitivity was assessed by dose-mass indices (DMIs), which represent the dose delivered to a certain mass of and anatomical structure. DMIs included: dose to 98%, 95% and 2%more » of the target masses (PTV1, PTV2, and PTV3) and organs-at-risk (OARs): cord DMI2%, brainstem DMI2%, left- and right-parotid DMI2% and DMI50%, and mandible DMI2%. A two-tailed paired t-test was used to compare changes to DMIs in CT2 and CT3 with respect to CT1 (CT2/CT1 and CT3/CT1). Results: Changes to DMHs were found for all OARs and PTVs, but they were significant only for the PTVs. Maximum dose to PTVs increased significantly for CT2/CT1 in all three PTVs, but CT3/CT1 changes were only significantly different for PTV1 and PTV2. Dose coverage to the three PTVs was also significantly different, DMI98% was lower for both CT2/CT1 and CT3/CT1. DMI95% was significantly lower for PTV1 for CT2/CT1, PTV2 for CT2/CT1 and CT3/CT1, and PTV3 for CT3/CT1. Conclusion: Changes in anatomy significantly change dose-mass coverage for the planning targets, making it necessary to re-plan in order to maintain the therapeutic goals. Maximum dose to the PTVs increase significantly as RT progresses, which may not be problematic as long as the high dose remains in the gross tumor volume. Doses to OARs were minimally affected and the differences were not significant.« less

  17. Radiotherapy for Early Mediastinal Hodgkin Lymphoma According to the German Hodgkin Study Group (GHSG): The Roles of Intensity-Modulated Radiotherapy and Involved-Node Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeck, Julia, E-mail: Julia_Koeck@gmx.net; Abo-Madyan, Yasser; Department of Radiation Oncology, Faculty of Medicine, Cairo University, Cairo

    2012-05-01

    Purpose: Cure rates of early Hodgkin lymphoma (HL) are high, and avoidance of late complications and second malignancies have become increasingly important. This comparative treatment planning study analyzes to what extent target volume reduction to involved-node (IN) and intensity-modulated (IM) radiotherapy (RT), compared with involved-field (IF) and three-dimensional (3D) RT, can reduce doses to organs at risk (OAR). Methods and Materials: Based on 20 computed tomography (CT) datasets of patients with early unfavorable mediastinal HL, we created treatment plans for 3D-RT and IMRT for both the IF and IN according to the guidelines of the German Hodgkin Study Group (GHSG).more » As OAR, we defined heart, lung, breasts, and spinal cord. Dose-volume histograms (DVHs) were evaluated for planning target volumes (PTVs) and OAR. Results: Average IF-PTV and IN-PTV were 1705 cm{sup 3} and 1015 cm{sup 3}, respectively. Mean doses to the PTVs were almost identical for all plans. For IF-PTV/IN-PTV, conformity was better with IMRT and homogeneity was better with 3D-RT. Mean doses to the heart (17.94/9.19 Gy for 3D-RT and 13.76/7.42 Gy for IMRT) and spinal cord (23.93/13.78 Gy for 3D-RT and 19.16/11.55 Gy for IMRT) were reduced by IMRT, whereas mean doses to lung (10.62/8.57 Gy for 3D-RT and 12.77/9.64 Gy for IMRT) and breasts (left 4.37/3.42 Gy for 3D-RT and 6.04/4.59 Gy for IMRT, and right 2.30/1.63 Gy for 3D-RT and 5.37/3.53 Gy for IMRT) were increased. Volume exposed to high doses was smaller for IMRT, whereas volume exposed to low doses was smaller for 3D-RT. Pronounced benefits of IMRT were observed for patients with lymph nodes anterior to the heart. IN-RT achieved substantially better values than IF-RT for almost all OAR parameters, i.e., dose reduction of 20% to 50%, regardless of radiation technique. Conclusions: Reduction of target volume to IN most effectively improves OAR sparing, but is still considered investigational. For the time being, IMRT should be

  18. [Clinical target volume delineation for radiotherapy of the esophagus].

    PubMed

    Lazarescu, I; Thureau, S; Nkhali, L; Pradier, O; Dubray, B

    2013-10-01

    The dense lymphatic network of the esophagus facilitates tumour spreading along the cephalo-caudal axis and to locoregional lymph nodes. A better understanding of microscopic invasion by tumour cells, based on histological analysis of surgical specimens and analysis of recurrence sites, has justified a reduction in radiotherapy target volumes. The delineation of the clinical target volume (CTV) depends on tumour characteristics (site, histology) and on its spread as assessed on endoscopic ultrasonography and ((18)F)-fluorodeoxyglucose positron-emission tomography (FDG-PET). We propose that positive and negative predictive values for FDG-PET should be used to adapt the CTV according to the risk of nodal involvement. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  19. International Spine Radiosurgery Consortium Consensus Guidelines for Target Volume Definition in Spinal Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Brett W., E-mail: coxb@mskcc.org; Spratt, Daniel E.; Lovelock, Michael

    2012-08-01

    Purpose: Spinal stereotactic radiosurgery (SRS) is increasingly used to manage spinal metastases. However, target volume definition varies considerably and no consensus target volume guidelines exist. This study proposes consensus target volume definitions using common scenarios in metastatic spine radiosurgery. Methods and Materials: Seven radiation oncologists and 3 neurological surgeons with spinal radiosurgery expertise independently contoured target and critical normal structures for 10 cases representing common scenarios in metastatic spine radiosurgery. Each set of volumes was imported into the Computational Environment for Radiotherapy Research. Quantitative analysis was performed using an expectation maximization algorithm for Simultaneous Truth and Performance Level Estimation (STAPLE)more » with kappa statistics calculating agreement between physicians. Optimized confidence level consensus contours were identified using histogram agreement analysis and characterized to create target volume definition guidelines. Results: Mean STAPLE agreement sensitivity and specificity was 0.76 (range, 0.67-0.84) and 0.97 (range, 0.94-0.99), respectively, for gross tumor volume (GTV) and 0.79 (range, 0.66-0.91) and 0.96 (range, 0.92-0.98), respectively, for clinical target volume (CTV). Mean kappa agreement was 0.65 (range, 0.54-0.79) for GTV and 0.64 (range, 0.54-0.82) for CTV (P<.01 for GTV and CTV in all cases). STAPLE histogram agreement analysis identified optimal consensus contours (80% confidence limit). Consensus recommendations include that the CTV should include abnormal marrow signal suspicious for microscopic invasion and an adjacent normal bony expansion to account for subclinical tumor spread in the marrow space. No epidural CTV expansion is recommended without epidural disease, and circumferential CTVs encircling the cord should be used only when the vertebral body, bilateral pedicles/lamina, and spinous process are all involved or there is extensive

  20. Dosimetric impact of tumor bed delineation variability based on 4DCT scan for external-beam partial breast irradiation.

    PubMed

    Guo, Bing; Li, Jianbin; Wang, Wei; Li, Fengxiang; Guo, Yanluan; Li, Yankang; Liu, Tonghai

    2015-01-01

    This study sought to evaluate the dosimetric impact of tumor bed delineation variability (based on clips, seroma or both clips and seroma) during external-beam partial breast irradiation (EB-PBI) planned utilizing four-dimensional computed tomography (4DCT) scans. 4DCT scans of 20 patients with a seroma clarity score (SCS) 3~5 and ≥5 surgical clips were included in this study. The combined volume of the tumor bed formed using clips, seroma, or both clips and seroma on the 10 phases of 4DCT was defined as the internal gross target volume (termed IGTVC, IGTVS and IGTVC+S, respectively). A 1.5-cm margin was added by defining the planning target volume (termed PTVC, PTVS and PTVC+S, respectively). Three treatment plans were established using the 4DCT images (termed EB-PBIC, EB-PBIS, EB-PBIC+S, respectively). The results showed that the volume of IGTVC+S was significantly larger than that of IGTVCand IGTVS. Similarly, the volume of PTVC+S was markedly larger than that of PTVC and PTVS. However, the PTV coverage for EB-PBIC+S was similar to that of EB-PBIC and EB-PBIS, and there were no significant differences in the homogeneity index or conformity index between the three treatment plans (P=0.878, 0.086). The EB-PBIS plan resulted in the lowest ipsilateral normal breast and ipsilateral lung doses compared with the EB-PBIC and EB-PBIC+S plans. To conclude, the volume variability delineated based on clips, seroma or both clips and seroma resulted in dosimetric variability for organs at risk, but did not show a marked influence on the dosimetric distribution.

  1. Dosimetric impact of tumor bed delineation variability based on 4DCT scan for external-beam partial breast irradiation

    PubMed Central

    Guo, Bing; Li, Jianbin; Wang, Wei; Li, Fengxiang; Guo, Yanluan; Li, Yankang; Liu, Tonghai

    2015-01-01

    This study sought to evaluate the dosimetric impact of tumor bed delineation variability (based on clips, seroma or both clips and seroma) during external-beam partial breast irradiation (EB-PBI) planned utilizing four-dimensional computed tomography (4DCT) scans. 4DCT scans of 20 patients with a seroma clarity score (SCS) 3~5 and ≥5 surgical clips were included in this study. The combined volume of the tumor bed formed using clips, seroma, or both clips and seroma on the 10 phases of 4DCT was defined as the internal gross target volume (termed IGTVC, IGTVS and IGTVC+S, respectively). A 1.5-cm margin was added by defining the planning target volume (termed PTVC, PTVS and PTVC+S, respectively). Three treatment plans were established using the 4DCT images (termed EB-PBIC, EB-PBIS, EB-PBIC+S, respectively). The results showed that the volume of IGTVC+S was significantly larger than that of IGTVCand IGTVS. Similarly, the volume of PTVC+S was markedly larger than that of PTVC and PTVS. However, the PTV coverage for EB-PBIC+S was similar to that of EB-PBIC and EB-PBIS, and there were no significant differences in the homogeneity index or conformity index between the three treatment plans (P=0.878, 0.086). The EB-PBIS plan resulted in the lowest ipsilateral normal breast and ipsilateral lung doses compared with the EB-PBIC and EB-PBIC+S plans. To conclude, the volume variability delineated based on clips, seroma or both clips and seroma resulted in dosimetric variability for organs at risk, but did not show a marked influence on the dosimetric distribution. PMID:26885108

  2. [4D-CT-based plan target volume (PTV) definition compared with conventional PTV definition using general margin in radiotherapy for lung cancer].

    PubMed

    Ju, Xiao; Li, Minghui; Zhou, Zongmei; Zhang, Ke; Han, Wei; Fu, Guishan; Cao, Ying; Wang, Lyuhua

    2014-01-01

    To investigate the dosimetric benefit of 4D-CT in the planning target volume (PTV) definition process compared with conventional PTV definition using general margin in radiotherapy of lung cancer. A set of 4D-CT images and multiphase helical CT scans were obtained in 10 patients with lung cancer. The radiotherapeutic plans based on PTV determined by 4D-CT and in addition of general margin were performed, respectively. The 3D motion of the centroid of GTV and the 3D spatial motion vectors were calculated. The differences of the two kinds of PTVs, mean lung dose (MLD), V5,V10,V15,V20 of total lung, mean heart dose (MHD), V30 and V40 of heart, D99 and D95 were compared, and the correlation between them and the 3D spatial motion vector was analyzed. The PTV4D in eight patients were smaller than PTVconv, with a mean reduction of (13.0 ± 8.0)% (P = 0.018). In other two patients, whose respiration motion was great, PTV4D was larger than PTVconv. The mean 3D spatial motion vector of GTV centroid was (0.78 ± 0.72)cm. By using 4D-CT, the mean reduction of MLD was (8.6 ± 9.9)% (P = 0.037). V5, V10, V15, V20 of total lung were decreased averagely by (7.2 ± 10.5)%, (5.5 ± 8.9)%, (6.5 ± 8.4)% and (5.7 ± 7.4)%, respectively (P < 0.05 for all). There was a significant positive correlation between PTV4D/PTVconv and the 3D spatial motion vector of the GTV centroid (P = 0.008). A significant inverse correlation was found between D994D/D99conv and the 3D spatial motion vector of the GTV centroid (P = 0.002). D994D/D99conv, (MLDconv-MLD4D) /MLDconv, total lung (V5conv-V54D)/V5conv, total lung (V10conv-V104D)/V10conv, (MHDconv-MHD4D)/MHDconv, heart (V30conv-V304D)/V30conv were inversely correlated with PTV4D/PTVconv (P < 0.05 for all). 4D-CT can be used to evaluate the respiration motion of lung tumor accurately. The 4D-CT-based PTV definition and radiotherapeutic planing can reduce the volume of PTV in patients with small respiration motion, increase the intra-target dose, and

  3. Proton therapy may allow for comprehensive elective nodal coverage for patients receiving neoadjuvant radiotherapy for localized pancreatic head cancers.

    PubMed

    Lee, Richard Y; Nichols, Romaine C; Huh, Soon N; Ho, Meng W; Li, Zuofeng; Zaiden, Robert; Awad, Ziad T; Ahmed, Bestoun; Hoppe, Bradfors S

    2013-12-01

    Neoadjuvant radiotherapy has the potential to improve local disease control for patients with localized pancreatic cancers. Concern about an increased risk of surgical complications due to small bowel and gastric exposure, however, has limited enthusiasm for this approach. Dosimetric studies have demonstrated the potential for proton therapy to reduce intestinal exposure compared with X-ray-based therapy. We sought to determine if neoadjuvant proton therapy allowed for field expansions to cover high-risk nodal stations in addition to the primary tumor. Twelve consecutive patients with nonmetastatic cancers of the pancreatic head underwent proton-based planning for neoadjuvant radiotherapy. Gross tumor volume was contoured using diagnostic computed tomography (CT) scans with oral and intravenous contrast. Four-dimensional planning scans were utilized to define an internal clinical target volume (ICTV). Five-mm planning target volume (PTV) expansions on the ICTV were generated to establish an initial PTV (PTV1). A second PTV was created using the initial PTV but was expanded to include the high-risk nodal targets as defined by the RTOG contouring atlas (PTV2). Optimized proton plans were generated for both PTVs for each patient. All PTVs received a dose of 50.4 cobalt gray equivalent (CGE). Normal-tissue exposures to the small bowel space, stomach, right kidney, left kidney and liver were recorded. Point spinal cord dose was limited to 45 CGE. Median PTV1 volume was 308.75 cm(3) (range, 133.33-495.61 cm(3)). Median PTV2 volume was 541.75 cm(3) (range, 399.44-691.14 cm(3)). In spite of the substantial enlargement of the PTV when high-risk lymph nodes were included in the treatment volume, normal-tissue exposures (stomach, bowel space, liver, and kidneys) were only minimally increased relative to the exposures seen when only the gross tumor target was treated. Proton therapy appears to allow for field expansions to cover high-risk lymph nodes without significantly

  4. Postoperative radiation in esophageal squamous cell carcinoma and target volume delineation

    PubMed Central

    Zhu, Yingming; Li, Minghuan; Kong, Li; Yu, Jinming

    2016-01-01

    Esophageal cancer is the sixth leading cause of cancer death worldwide, and patients who are treated with surgery alone, without neoadjuvant therapies, experience frequent relapses. Whether postoperative therapies could reduce the recurrence or improve overall survival is still controversial for these patients. The purpose of our review is to figure out the value of postoperative adjuvant therapy and address the disputes about target volume delineation according to published data. Based on the evidence of increased morbidity and disadvantages on patient survival caused by postoperative chemotherapy or radiotherapy (RT) alone provided by studies in the early 1990s, the use of postoperative adjuvant therapies in cases of esophageal squamous cell carcinoma has diminished substantially and has been replaced gradually by neoadjuvant chemoradiation. With advances in surgery and RT, accumulating evidence has recently rekindled interest in the delivery of postoperative RT or chemoradiotherapy in patients with stage T3/T4 or N1 (lymph node positive) carcinomas after radical surgery. However, due to complications with the standard radiation field, a nonconforming modified field has been adopted in most studies. Therefore, we analyze different field applications and provide suggestions on the optimization of the radiation field based on the major sites of relapse and the surgical non-clearance area. For upper and middle thoracic esophageal carcinomas, the bilateral supraclavicular and superior mediastinal areas remain common sites of recurrence and should be encompassed within the clinical target volume. In contrast, a consensus has yet to be reached regarding lower thoracic esophageal carcinomas; the “standard” clinical target volume is still recommended. Further studies of larger sample sizes should focus on different recurrence patterns, categorized by tumor locations, refined classifications, and differing molecular biology, to provide more information on the

  5. Calculation of Lung Cancer Volume of Target Based on Thorax Computed Tomography Images using Active Contour Segmentation Method for Treatment Planning System

    NASA Astrophysics Data System (ADS)

    Patra Yosandha, Fiet; Adi, Kusworo; Edi Widodo, Catur

    2017-06-01

    In this research, calculation process of the lung cancer volume of target based on computed tomography (CT) thorax images was done. Volume of the target calculation was done in purpose to treatment planning system in radiotherapy. The calculation of the target volume consists of gross tumor volume (GTV), clinical target volume (CTV), planning target volume (PTV) and organs at risk (OAR). The calculation of the target volume was done by adding the target area on each slices and then multiply the result with the slice thickness. Calculations of area using of digital image processing techniques with active contour segmentation method. This segmentation for contouring to obtain the target volume. The calculation of volume produced on each of the targets is 577.2 cm3 for GTV, 769.9 cm3 for CTV, 877.8 cm3 for PTV, 618.7 cm3 for OAR 1, 1,162 cm3 for OAR 2 right, and 1,597 cm3 for OAR 2 left. These values indicate that the image processing techniques developed can be implemented to calculate the lung cancer target volume based on CT thorax images. This research expected to help doctors and medical physicists in determining and contouring the target volume quickly and precisely.

  6. Co-registration of cone beam CT and planning CT in head and neck IMRT dose estimation: a feasible adaptive radiotherapy strategy

    PubMed Central

    Yip, C; Thomas, C; Michaelidou, A; James, D; Lynn, R; Lei, M

    2014-01-01

    Objective: To investigate if cone beam CT (CBCT) can be used to estimate the delivered dose in head and neck intensity-modulated radiotherapy (IMRT). Methods: 15 patients (10 without replan and 5 with replan) were identified retrospectively. Weekly CBCT was co-registered with original planning CT. Original high-dose clinical target volume (CTV1), low-dose CTV (CTV2), brainstem, spinal cord, parotids and external body contours were copied to each CBCT and modified to account for anatomical changes. Corresponding planning target volumes (PTVs) and planning organ-at-risk volumes were created. The original plan was applied and calculated using modified per-treatment volumes on the original CT. Percentage volumetric, cumulative (planned dose delivered prior to CBCT + adaptive dose delivered after CBCT) and actual delivered (summation of weekly adaptive doses) dosimetric differences between each per-treatment and original plan were calculated. Results: There was greater volumetric change in the parotids with an average weekly difference of between −4.1% and −27.0% compared with the CTVs/PTVs (−1.8% to −5.0%). The average weekly cumulative dosimetric differences were as follows: CTV/PTV (range, −3.0% to 2.2%), ipsilateral parotid volume receiving ≥26 Gy (V26) (range, 0.5–3.2%) and contralateral V26 (range, 1.9–6.3%). In patients who required replan, the average volumetric reductions were greater: CTV1 (−2.5%), CTV2 (−6.9%), PTV1 (−4.7%), PTV2 (−11.5%), ipsilateral (−10.4%) and contralateral parotids (−12.1%), but did not result in significant dosimetric changes. Conclusion: The dosimetric changes during head and neck simultaneous integrated boost IMRT do not necessitate adaptive radiotherapy in most patients. Advances in knowledge: Our study shows that CBCT could be used for dose estimation during head and neck IMRT. PMID:24288402

  7. A case study for online plan adaptation using helical tomotherapy

    PubMed Central

    Neilson, Christopher E.; Yartsev, Slav

    2012-01-01

    Helical tomotherapy's ability to provide daily megavoltage (MV) computed tomography (CT) images for patient set-up verification allows for the creation of adapted plans. As plans become more complex by introducing sharper dose gradients in an effort to spare healthy tissue, inter-fraction changes of organ position with respect to plan become a limiting factor in the correct dose delivery to the target. Tomotherapy's planned adaptive option provides the possibility to evaluate the dose distribution for each fraction and subsequently adapt the original plan to the current anatomy. In this study, 30 adapted plans were created using new contours based on the daily MVCT studies of a bladder cancer patient with considerable anatomical variations. Dose to the rectum and two planning target volumes (PTVs) were compared between the original plan, the dose that was actually delivered to the patient, and the theoretical dose from the 30 adapted plans. The adaptation simulation displayed a lower dose to 35% and 50% of the rectum compared to no adaptation at all, while maintaining an equivalent dose to the PTVs. Although online adaptation is currently too time-consuming, it has the potential to improve the effectiveness of radiotherapy. PMID:22557799

  8. Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept".

    PubMed

    Nordström, Carl-Henrik

    2005-01-01

    The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy ("Lund concept") discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physio-logically tightly autoregulated. Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP. The volume-targeted "Lund concept" has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.

  9. Pre- and postoperative radiotherapy for extremity soft tissue sarcoma: Evaluation of inter-observer target volume contouring variability among French sarcoma group radiation oncologists.

    PubMed

    Sargos, P; Charleux, T; Haas, R L; Michot, A; Llacer, C; Moureau-Zabotto, L; Vogin, G; Le Péchoux, C; Verry, C; Ducassou, A; Delannes, M; Mervoyer, A; Wiazzane, N; Thariat, J; Sunyach, M P; Benchalal, M; Laredo, J D; Kind, M; Gillon, P; Kantor, G

    2018-04-01

    The purpose of this study was to evaluate, during a national workshop, the inter-observer variability in target volume delineation for primary extremity soft tissue sarcoma radiation therapy. Six expert sarcoma radiation oncologists (members of French Sarcoma Group) received two extremity soft tissue sarcoma radiation therapy cases 1: one preoperative and one postoperative. They were distributed with instructions for contouring gross tumour volume or reconstructed gross tumour volume, clinical target volume and to propose a planning target volume. The preoperative radiation therapy case was a patient with a grade 1 extraskeletal myxoid chondrosarcoma of the thigh. The postoperative case was a patient with a grade 3 pleomorphic undifferentiated sarcoma of the thigh. Contour agreement analysis was performed using kappa statistics. For the preoperative case, contouring agreement regarding GTV, gross tumour volume GTV, clinical target volume and planning target volume were substantial (kappa between 0.68 and 0.77). In the postoperative case, the agreement was only fair for reconstructed gross tumour volume (kappa: 0.38) but moderate for clinical target volume and planning target volume (kappa: 0.42). During the workshop discussion, consensus was reached on most of the contour divergences especially clinical target volume longitudinal extension. The determination of a limited cutaneous cover was also discussed. Accurate delineation of target volume appears to be a crucial element to ensure multicenter clinical trial quality assessment, reproducibility and homogeneity in delivering RT. radiation therapy RT. Quality assessment process should be proposed in this setting. We have shown in our study that preoperative radiation therapy of extremity soft tissue sarcoma has less inter-observer contouring variability. Copyright © 2018 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  10. A novel concept for tumour targeting with radiation: Inverse dose-painting or targeting the "Low Drug Uptake Volume".

    PubMed

    Yaromina, Ala; Granzier, Marlies; Biemans, Rianne; Lieuwes, Natasja; van Elmpt, Wouter; Shakirin, Georgy; Dubois, Ludwig; Lambin, Philippe

    2017-09-01

    We tested a novel treatment approach combining (1) targeting radioresistant hypoxic tumour cells with the hypoxia-activated prodrug TH-302 and (2) inverse radiation dose-painting to boost selectively non-hypoxic tumour sub-volumes having no/low drug uptake. 18 F-HX4 hypoxia tracer uptake measured with a clinical PET/CT scanner was used as a surrogate of TH-302 activity in rhabdomyosarcomas growing in immunocompetent rats. Low or high drug uptake volume (LDUV/HDUV) was defined as 40% of the GTV with the lowest or highest 18 F-HX4 uptake, respectively. Two hours post TH-302/saline administration, animals received either single dose radiotherapy (RT) uniformly (15 or 18.5Gy) or a dose-painted non-uniform radiation (15Gy) with 50% higher dose to LDUV or HDUV (18.5Gy). Treatment plans were created using Eclipse treatment planning system and radiation was delivered using VMAT. Tumour response was quantified as time to reach 3 times starting tumour volume. Non-uniform RT boosting tumour sub-volume with low TH-302 uptake (LDUV) was superior to the same dose escalation to HDUV (p<0.0001) and uniform RT with the same mean dose 15Gy (p=0.0077). Noteworthy, dose escalation to LDUV required on average 3.5Gy lower dose to the GTV to achieve similar tumour response as uniform dose escalation. The results support targeted dose escalation to non-hypoxic tumour sub-volume with no/low activity of hypoxia-activated prodrugs. This strategy applies on average a lower radiation dose and is as effective as uniform dose escalation to the entire tumour. It could be applied to other type of drugs provided that their distribution can be imaged. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Dose to mass for evaluation and optimization of lung cancer radiation therapy.

    PubMed

    Tyler Watkins, William; Moore, Joseph A; Hugo, Geoffrey D; Siebers, Jeffrey V

    2017-11-01

    To evaluate potential organ at risk dose-sparing by using dose-mass-histogram (DMH) objective functions compared with dose-volume-histogram (DVH) objective functions. Treatment plans were retrospectively optimized for 10 locally advanced non-small cell lung cancer patients based on DVH and DMH objectives. DMH-objectives were the same as DVH objectives, but with mass replacing volume. Plans were normalized to dose to 95% of the PTV volume (PTV-D95v) or mass (PTV-D95m). For a given optimized dose, DVH and DMH were intercompared to ascertain dose-to-volume vs. dose-to-mass differences. Additionally, the optimized doses were intercompared using DVH and DMH metrics to ascertain differences in optimized plans. Mean dose to volume, D v ‾, mean dose to mass, D M ‾, and fluence maps were intercompared. For a given dose distribution, DVH and DMH differ by >5% in heterogeneous structures. In homogeneous structures including heart and spinal cord, DVH and DMH are nearly equivalent. At fixed PTV-D95v, DMH-optimization did not significantly reduce dose to OARs but reduced PTV-D v ‾ by 0.20±0.2Gy (p=0.02) and PTV-D M ‾ by 0.23±0.3Gy (p=0.02). Plans normalized to PTV-D95m also result in minor PTV dose reductions and esophageal dose sparing (D v ‾ reduced 0.45±0.5Gy, p=0.02 and D M ‾ reduced 0.44±0.5Gy, p=0.02) compared to DVH-optimized plans. Optimized fluence map comparisons indicate that DMH optimization reduces dose in the periphery of lung PTVs. DVH- and DMH-dose indices differ by >5% in lung and lung target volumes for fixed dose distributions, but optimizing DMH did not reduce dose to OARs. The primary difference observed in DVH- and DMH-optimized plans were variations in fluence to the periphery of lung target PTVs, where low density lung surrounds tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of beam arrangement on oral cavity dose in external beam radiotherapy of nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe

    This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volumemore » histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.« less

  13. Target volume motion during anal cancer image guided radiotherapy using cone-beam computed tomography.

    PubMed

    Brooks, Corrinne J; Bernier, Laurence; Hansen, Vibeke N; Tait, Diana M

    2018-05-01

    Literature regarding image-guidance and interfractional motion of the anal canal (AC) during anal cancer radiotherapy is sparse. This study investigates interfractional AC motion during anal cancer radiotherapy. Bone matched cone beam CT (CBCT) images were acquired for 20 patients receiving anal cancer radiotherapy allowing population systematic and random error calculations. 12 were selected to investigate interfractional AC motion. Primary anal gross tumour volume and clinical target volume (CTVa) were contoured on each CBCT. CBCT CTVa volumes were compared to planning CTVa. CBCT CTVa volumes were combined into a CBCT-CTVa envelope for each patient. Maximum distortion between each orthogonal border of the planning CTVa and CBCT-CTVa envelope was measured. Frequency, volume and location of CBCT-CTVa envelope beyond the planning target volume (PTVa) was analysed. Population systematic and random errors were 1 and 3 mm respectively. 112 CBCTs were analysed in the interfractional motion study. CTVa varied between each imaging session particularly T location patients of anorectal origin. CTVa border expansions ≥ 1 cm were seen inferiorly, anteriorly, posteriorly and left direction. The CBCT-CTVa envelope fell beyond the PTVa ≥ 50% imaging sessions (n = 5). Of these CBCT CTVa distortions beyond PTVa, 44% and 32% were in the upper and lower thirds of PTVa respectively. The AC is susceptible to volume changes and shape deformations. Care must be taken when calculating or considering reducing the PTV margin to the anus. Advances in knowledge: Within a limited field of research, this study provides further knowledge of how the AC deforms during anal cancer radiotherapy.

  14. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William; Filion, Edith; Roberge, David

    2007-09-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less

  15. Water-filled balloon in the postoperative resection cavity improves dose distribution to target volumes in radiotherapy of maxillary sinus carcinoma.

    PubMed

    Zhang, Qun; Lin, Shi-Rong; He, Fang; Kang, De-Hua; Chen, Guo-Zhang; Luo, Wei

    2011-11-01

    Postoperative radiotherapy is a major treatment for patients with maxillary sinus carcinoma. However, the irregular resection cavity poses a technical difficulty for this treatment, causing uneven dose distribution to target volumes. In this study, we evaluated the dose distribution to target volumes and normal tissues in postoperative intensity-modulated radiotherapy (IMRT) after placing a water-filled balloon into the resection cavity. Three postoperative patients with advanced maxillary sinus carcinoma were selected in this trial. Water-filled balloons and supporting dental stents were fabricated according to the size of the maxillary resection cavity. Simulation CT scans were performed with or without water-filled balloons, IMRT treatment plans were established, and dose distribution to target volumes and organs at risk were evaluated. Compared to those in the treatment plan without balloons, the dose (D98) delivered to 98% of the gross tumor volume (GTV) increased by 2.1 Gy (P = 0.009), homogeneity index (HI) improved by 2.3% (P = 0.001), and target volume conformity index (TCI) of 68 Gy increased by 18.5% (P = 0.011) in the plan with balloons. Dosimetry endpoints of normal tissues around target regions in both plans were not significantly different (P > 0.05) except for the optic chiasm. In the plan without balloons, 68 Gy high-dose regions did not entirely cover target volumes in the ethmoid sinus, posteromedial wall of the maxillary sinus, or surgical margin of the hard palate. In contrast, 68 Gy high-dose regions entirely covered the GTV in the plan with balloons. These results suggest that placing a water-filled balloon in the resection cavity for postoperative IMRT of maxillary sinus carcinoma can reduce low-dose regions and markedly and simultaneously increase dose homogeneity and conformity of target volumes.

  16. Radiotherapy planning: PET/CT scanner performances in the definition of gross tumour volume and clinical target volume.

    PubMed

    Brianzoni, Ernesto; Rossi, Gloria; Ancidei, Sergio; Berbellini, Alfonso; Capoccetti, Francesca; Cidda, Carla; D'Avenia, Paola; Fattori, Sara; Montini, Gian Carlo; Valentini, Gianluca; Proietti, Alfredo; Algranati, Carlo

    2005-12-01

    Positron emission tomography is the most advanced scintigraphic imaging technology and can be employed in the planning of radiation therapy (RT). The aim of this study was to evaluate the possible role of fused images (anatomical CT and functional FDG-PET), acquired with a dedicated PET/CT scanner, in delineating gross tumour volume (GTV) and clinical target volume (CTV) in selected patients and thus in facilitating RT planning. Twenty-eight patients were examined, 24 with lung cancer (17 non-small cell and seven small cell) and four with non-Hodgkin's lymphoma in the head and neck region. All patients underwent a whole-body PET scan after a CT scan. The CT images provided morphological volumetric information, and in a second step, the corresponding PET images were overlaid to define the effective target volume. The images were exported off-line via an internal network to an RT simulator. Three patient were excluded from the study owing to change in the disease stage subsequent to the PET/CT study. Among the remaining 25 patients, PET significantly altered the GTV or CTV in 11 (44%) . In five of these 11 cases there was a reduction in GTV or CTV, while in six there was an increase in GTV or CTV. FDG-PET is a highly sensitive imaging modality that offers better visualisation of local and locoregional tumour extension. This study confirmed that co-registration of CT data and FDG-PET images may lead to significant modifications of RT planning and patient management.

  17. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation.

    PubMed

    van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M

    2018-05-03

    Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non–small cell lung cancer patients under abdominal compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Chunhui, E-mail: chan@coh.org; Sampath, Sagus; Schultheisss, Timothy E.

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non–small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registeredmore » with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery.« less

  19. Benchmark Credentialing Results for NRG-BR001: The First National Cancer Institute-Sponsored Trial of Stereotactic Body Radiation Therapy for Multiple Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hallaq, Hania A., E-mail: halhallaq@radonc.uchicago.edu; Chmura, Steven J.; Salama, Joseph K.

    Purpose: The NRG-BR001 trial is the first National Cancer Institute–sponsored trial to treat multiple (range 2-4) extracranial metastases with stereotactic body radiation therapy. Benchmark credentialing is required to ensure adherence to this complex protocol, in particular, for metastases in close proximity. The present report summarizes the dosimetric results and approval rates. Methods and Materials: The benchmark used anonymized data from a patient with bilateral adrenal metastases, separated by <5 cm of normal tissue. Because the planning target volume (PTV) overlaps with organs at risk (OARs), institutions must use the planning priority guidelines to balance PTV coverage (45 Gy in 3 fractions) againstmore » OAR sparing. Submitted plans were processed by the Imaging and Radiation Oncology Core and assessed by the protocol co-chairs by comparing the doses to targets, OARs, and conformity metrics using nonparametric tests. Results: Of 63 benchmarks submitted through October 2015, 94% were approved, with 51% approved at the first attempt. Most used volumetric arc therapy (VMAT) (78%), a single plan for both PTVs (90%), and prioritized the PTV over the stomach (75%). The median dose to 95% of the volume was 44.8 ± 1.0 Gy and 44.9 ± 1.0 Gy for the right and left PTV, respectively. The median dose to 0.03 cm{sup 3} was 14.2 ± 2.2 Gy to the spinal cord and 46.5 ± 3.1 Gy to the stomach. Plans that spared the stomach significantly reduced the dose to the left PTV and stomach. Conformity metrics were significantly better for single plans that simultaneously treated both PTVs with VMAT, intensity modulated radiation therapy, or 3-dimensional conformal radiation therapy compared with separate plans. No significant differences existed in the dose at 2 cm from the PTVs. Conclusions: Although most plans used VMAT, the range of conformity and dose falloff was large. The decision to prioritize either OARs or PTV coverage varied considerably, suggesting

  20. Benchmark Credentialing Results for NRG-BR001: The First National Cancer Institute-Sponsored Trial of Stereotactic Body Radiation Therapy for Multiple Metastases.

    PubMed

    Al-Hallaq, Hania A; Chmura, Steven J; Salama, Joseph K; Lowenstein, Jessica R; McNulty, Susan; Galvin, James M; Followill, David S; Robinson, Clifford G; Pisansky, Thomas M; Winter, Kathryn A; White, Julia R; Xiao, Ying; Matuszak, Martha M

    2017-01-01

    The NRG-BR001 trial is the first National Cancer Institute-sponsored trial to treat multiple (range 2-4) extracranial metastases with stereotactic body radiation therapy. Benchmark credentialing is required to ensure adherence to this complex protocol, in particular, for metastases in close proximity. The present report summarizes the dosimetric results and approval rates. The benchmark used anonymized data from a patient with bilateral adrenal metastases, separated by <5 cm of normal tissue. Because the planning target volume (PTV) overlaps with organs at risk (OARs), institutions must use the planning priority guidelines to balance PTV coverage (45 Gy in 3 fractions) against OAR sparing. Submitted plans were processed by the Imaging and Radiation Oncology Core and assessed by the protocol co-chairs by comparing the doses to targets, OARs, and conformity metrics using nonparametric tests. Of 63 benchmarks submitted through October 2015, 94% were approved, with 51% approved at the first attempt. Most used volumetric arc therapy (VMAT) (78%), a single plan for both PTVs (90%), and prioritized the PTV over the stomach (75%). The median dose to 95% of the volume was 44.8 ± 1.0 Gy and 44.9 ± 1.0 Gy for the right and left PTV, respectively. The median dose to 0.03 cm 3 was 14.2 ± 2.2 Gy to the spinal cord and 46.5 ± 3.1 Gy to the stomach. Plans that spared the stomach significantly reduced the dose to the left PTV and stomach. Conformity metrics were significantly better for single plans that simultaneously treated both PTVs with VMAT, intensity modulated radiation therapy, or 3-dimensional conformal radiation therapy compared with separate plans. No significant differences existed in the dose at 2 cm from the PTVs. Although most plans used VMAT, the range of conformity and dose falloff was large. The decision to prioritize either OARs or PTV coverage varied considerably, suggesting that the toxicity outcomes in the trial could be affected. Several

  1. Use of volume-targeted non-invasive bilevel positive airway pressure ventilation in a patient with amyotrophic lateral sclerosis*,**

    PubMed Central

    Diaz-Abad, Montserrat; Brown, John Edward

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease in which most patients die of respiratory failure. Although volume-targeted non-invasive bilevel positive airway pressure (BPAP) ventilation has been studied in patients with chronic respiratory failure of various etiologies, its use in ALS has not been reported. We present the case of a 66-year-old woman with ALS and respiratory failure treated with volume-targeted BPAP ventilation for 15 weeks. Weekly data downloads showed that disease progression was associated with increased respiratory muscle weakness, decreased spontaneous breathing, and increased use of non-invasive positive pressure ventilation, whereas tidal volume and minute ventilation remained relatively constant. PMID:25210968

  2. Analysis of radiation exposure for naval units of Operation Crossroads. Volume 2. (Appendix A) target ships. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitz, R.; Thomas, C.; Klemm, J.

    1982-03-03

    External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details themore » results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those, approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.« less

  3. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression.

    PubMed

    Han, Chunhui; Sampath, Sagus; Schultheisss, Timothy E; Wong, Jeffrey Y C

    2017-01-01

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non-small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registered with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer.

    PubMed

    Dawson, L A; Anzai, Y; Marsh, L; Martel, M K; Paulino, A; Ship, J A; Eisbruch, A

    2000-03-15

    To analyze the patterns of local-regional recurrence in patients with head and neck cancer treated with parotid-sparing conformal and segmental intensity-modulated radiotherapy (IMRT). Fifty-eight patients with head and neck cancer were treated with bilateral neck radiation (RT) using conformal or segmental IMRT techniques, while sparing a substantial portion of one parotid gland. The targets for CT-based RT planning included the gross tumor volume (GTV) (primary tumor and lymph node metastases) and the clinical target volume (CTV) (postoperative tumor bed, expansions of the GTVs and lymph node groups at risk of subclinical disease). Lymph node targets at risk of subclinical disease included the bilateral jugulodigastric and lower jugular lymph nodes, bilateral retropharyngeal lymph nodes at risk, and high jugular nodes at the base of skull in the side of the neck at highest risk (containing clinical neck metastases and/or ipsilateral to the primary tumor). The CTVs were expanded by 5 mm to yield planning target volumes (PTVs). Planning goals included coverage of all PTVs (with a minimum of 95% of the prescribed dose) and sparing of a substantial portion of the parotid gland in the side of the neck at less risk. The median RT doses to the gross tumor, the operative bed, and the subclinical disease PTVs were 70.4 Gy, 61.2 Gy, and 50.4 Gy respectively. All recurrences were defined on CT scans obtained at the time of recurrence, transferred to the pretreatment CT dataset used for RT planning, and analyzed using dose-volume histograms. The recurrences were classified as 1) "in-field," in which 95% or more of the recurrence volume (V(recur)) was within the 95% isodose; 2) "marginal," in which 20% to 95% of V(recur) was within the 95% isodose; or 3) "outside," in which less than 20% of V(recur) was within the 95% isodose. With a median follow-up of 27 months (range 6 to 60 months), 10 regional recurrences, 5 local recurrences (including one noninvasive recurrence) and 1

  5. Impact of Node Negative Target Volume Delineation on Contralateral Parotid Gland Dose Sparing Using IMRT in Head and Neck Cancer.

    PubMed

    Magnuson, William J; Urban, Erich; Bayliss, R Adam; Harari, Paul M

    2015-06-01

    There is considerable practice variation in treatment of the node negative (N0) contralateral neck in patients with head and neck cancer. In this study, we examined the impact of N0 neck target delineation volume on radiation dose to the contralateral parotid gland. Following institutional review board approval, 12 patients with head and neck cancer were studied. All had indications for treatment of the N0 neck, such as midline base of tongue or soft palate extension or advanced ipsilateral nodal disease. The N0 neck volumes were created using the Radiation Therapy Oncology Group head and neck contouring atlas. The physician-drawn N0 neck clinical target volume (CTV) was expanded by 25% to 200% to generate volume variation, followed by a 3-mm planning target volume (PTV) expansion. Surrounding organs at risk were contoured and complete intensity-modulated radiation therapy plans were generated for each N0 volume expansion. The median N0 target volume drawn by the radiation oncologist measured 93 cm(3) (range 71-145). Volumetric expansion of the N0 CTV by 25% to 200% increased the resultant mean dose to the contralateral parotid gland by 1.4 to 8.5 Gray (Gy). For example, a 4.1-mm increase in the N0 neck CTV translated to a 2.0-Gy dose increase to the parotid, 7.4 mm to a 4.5 Gy dose increase, and 12.5 mm to an 8.5 Gy dose increase, respectively. The treatment volume designated for the N0 neck has profound impact on resultant dose to the contralateral parotid gland. Variations of up to 15 mm are routine across physicians in target contouring, reflecting individual preference and training expertise. Depending on the availability of immobilization and image guidance techniques, experts commonly recommend 3 to 10 mm margin expansions to generate the PTV. Careful attention to the original volume of the N0 neck CTV, as well as expansion margins, is important in achieving effective contralateral gland sparing to reduce the resultant xerostomia and dysguesia that may ensue

  6. SU-F-T-501: Dosimetric Comparison of Single Arc-Per-Beam and Two Arc-Per-Beam VMAT Optimization in the Monaco Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalet, A; Cao, N; Meyer, J

    Purpose: The purpose of this study was to evaluate the dosimetric and practical effects of the Monaco treatment planning system “max arcs-per-beam” optimization parameter in pelvic radiotherapy treatments. Methods: A total of 17 previously treated patients were selected for this study with a range of pelvic disease site including prostate(9), bladder(1), uterus(3), rectum(3), and cervix(1). For each patient, two plans were generated, one using a arc-per-beam setting of ‘1’ and another with setting of ‘2’. The setting allows the optimizer to add a gantry direction change, creating multiple arc passes per beam sequence. Volumes and constraints established from the initialmore » clinical treatments were used for planning. All constraints and dose coverage objects were kept the same between plans, and all plans were normalized to 99.7% to ensure 100% of the PTV received 95% of the prescription dose. We evaluated the PTV conformity index, homogeneity index, total monitor units, number of control points, and various dose volume histogram (DVH) points for statistical comparison (alpha=0.05). Results: We found for the 10 complex shaped target volumes (small central volumes with extending bilateral ‘arms’ to cover nodal regions) that the use of 2 arcs-per-beam achieved significantly lower average DVH values for the bladder V20 (p=0.036) and rectum V30 (p=0.001) while still meeting the high dose target constraints. DVH values for the simpler, more spherical PTVs were not found significantly different. Additionally, we found a beam delivery time reduction of approximately 25%. Conclusion: In summary, the dosimetric benefit, while moderate, was improved over a 1 arc-per-beam setting for complex PTVs, and equivalent in other cases. The overall reduced delivery time suggests that the use of multiple arcs-per-beam could lead to reduced patient on table time, increased clinical throughput, and reduced medical physics quality assurance effort.« less

  7. A New Suggestion for the Radiation Target Volume After a Subtotal Gastrectomy in Patients With Stomach Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Heerim; Lim, Do Hoon; Kim, Sung

    2008-06-01

    Purpose: To compare treatment results between the use of two different radiation fields including and excluding remnant stomach and suggest new target volumes excluding remnant stomach after subtotal gastrectomy (STG) in patients with stomach cancer. Methods and Materials: We retrospectively analyzed 291 patients treated with adjuvant chemoradiotherapy after STG and D2 dissection at the Samsung Medical Center, Seoul, South Korea. Eighty-three patients registered from 1995 to 1997 underwent irradiation according to the INT 0116 protocol that recommended the inclusion of remnant stomach within the target volume (Group A). After this period, we excluded remnant stomach from the target volume formore » 208 patients (Group B). Median follow-up was 67 months. Results: Treatment failure developed in 93 patients (32.0%). Local and regional recurrence rates for Group A vs. Group B were 10.8% vs. 5.3% (p = not significant) and 9.6% vs. 6.3% (p = not significant), and recurrence rates for remnant stomach were 7.2% vs. 1.4% (p = 0.018), respectively. Overall and disease-free survival rates were not different between the two groups. Grade 3 or 4 vomiting and diarrhea developed more frequently in Group A than Group B (4.8% vs. 1.4% and 6.0% vs. 1.9%, respectively; p = 0.012; p < 0.001). Conclusion: Exclusion of remnant stomach from the radiation field had no effect on failure rates or survival, and a low complication rate occurred in patients treated excluding remnant stomach. We suggest that remnant stomach be excluded from the radiation target volume for patients with stomach cancer who undergo STG and D2 dissection.« less

  8. Performance of Leak Compensation in All-Age ICU Ventilators During Volume-Targeted Neonatal Ventilation: A Lung Model Study.

    PubMed

    Itagaki, Taiga; Bennett, Desmond J; Chenelle, Christopher T; Fisher, Daniel F; Kacmarek, Robert M

    2017-01-01

    Volume-targeted ventilation is increasingly used in low birthweight infants because of the potential for reducing volutrauma and avoiding hypocapnea. However, it is not known what level of air leak is acceptable during neonatal volume-targeted ventilation when leak compensation is activated concurrently. Four ICU ventilators (Servo-i, PB980, V500, and Avea) were compared in available invasive volume-targeted ventilation modes (pressure control continuous spontaneous ventilation [PC-CSV] and pressure control continuous mandatory ventilation [PC-CMV]). The Servo-i and PB980 were tested with (+) and without (-) their proximal flow sensor. The V500 and Avea were tested with their proximal flow sensor as indicated by their manufacturers. An ASL 5000 lung model was used to simulate 4 neonatal scenarios (body weight 0.5, 1, 2, and 4 kg). The ASL 5000 was ventilated via an endotracheal tube with 3 different leaks. Two minutes of data were collected after each change in leak level, and the asynchrony index was calculated. Tidal volume (V T ) before and after the change in leak was assessed. The differences in delivered V T between before and after the change in leak were within ±5% in all scenarios with the PB980 (-/+) and V500. With the Servo-i (-/+), baseline V T was ≥10% greater than set V T during PC-CSV, and delivered V T markedly changed with leak. The Avea demonstrated persistent high V T in all leak scenarios. Across all ventilators, the median asynchrony index was 1% (interquartile range 0-27%) in PC-CSV and 1.8% (0-45%) in PC-CMV. The median asynchrony index was significantly higher in the Servo-i (-/+) than in the PB980 (-/+) and V500 in 1 and 2 kg scenarios during PC-CSV and PC-CMV. The PB980 and V500 were the only ventilators to acclimate to all leak scenarios and achieve targeted V T . Further clinical investigation is needed to validate the use of leak compensation during neonatal volume-targeted ventilation. Copyright © 2017 by Daedalus Enterprises.

  9. SU-E-T-619: Comparison of CyberKnife Versus HDR (SAVI) for Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooij, R; Ding, X; Nagda, S

    2014-06-15

    Purpose: Compare SAVI plans and CyberKnife (CK) plans for the same accelerated course. Methods and Materials: Three SAVI patients were selected. Pre-SAVI CTs were used for CK planning. All prescriptions are 3400cGy in 10 fractions BID. Max dose to skin and chestwall is 425cGy. For SAVI, PTV is a 1cm expansion of the cavity minus the cavity. For CK, CTV is a 1cm expansion of the seroma, with 2mm margin. CK plans are normalized to SAVI, so that in both cases the 323cGy isodose line covers the same percentage of PTV. For CK Fiducial/Synchrony tracking is used. Results: In themore » following, all doses are per fraction and results are averaged. The PTVs for the CK plans are 2.4 times larger than the corresponding SAVI PTVs. Nonetheless the CK plans meet all constraints and are superior to SAVI plans in several respects. Max skin dose for SAVI vs CK is 332cGy vs 337cGy. Max dose to chestwall is 252cGy vs 286cGy. The volume of lung over 125cGy is 6.4cc for SAVI and 2.5cc for CK. Max heart dose is 60cGy for SAVI and 83cGy for CK. The volume of PTV receiving over 425cGy is 49cc for SAVI and 1.3cc for CK. Max dose to contra-lateral breast is 16cGy for SAVI and 4.5cGy for CK. Conclusion: CK PTVs are directly derived from the seroma. Corresponding SAVI PTVs tend to be much smaller. Dosimetrically, CK plans are equivalent or superior to SAVI plans despite the larger PTVs. Interestingly, the dose delivered to the lung is higher in SAVI vs CK. Fiducial/Synchrony tracking employed by CK might reduce errors in delivery compared to errors associated with shifts of the SAVI implant. In conclusion, when CK is an option for partial breast irradiation it may preferable to SAVI.« less

  10. Intravesical markers for delineation of target volume during external focal irradiation of bladder carcinomas.

    PubMed

    Hulshof, Maarten C C M; van Andel, George; Bel, Arjen; Gangel, Pieter; van de Kamer, Jeroen B

    2007-07-01

    A clip forceps was developed which can insert markers at the border of a bladder tumour through a rigid cystoscope. This technique proved to be simple and safe and is of help for delineation of the target volume during CT simulation for focal boost irradiation of bladder cancer.

  11. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Y; Yu, J; Xiao, Y

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematicalmore » model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.« less

  12. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI

    PubMed Central

    Farace, P; Giri, M G; Meliadò, G; Amelio, D; Widesott, L; Ricciardi, G K; Dall'Oglio, S; Rizzotti, A; Sbarbati, A; Beltramello, A; Maluta, S; Amichetti, M

    2011-01-01

    Objectives Delineation of clinical target volume (CTV) is still controversial in glioblastomas. In order to assess the differences in volume and shape of the radiotherapy target, the use of pre-operative vs post-operative/pre-radiotherapy T1 and T2 weighted MRI was compared. Methods 4 CTVs were delineated in 24 patients pre-operatively and post-operatively using T1 contrast-enhanced (T1PRECTV and T1POSTCTV) and T2 weighted images (T2PRECTV and T2POSTCTV). Pre-operative MRI examinations were performed the day before surgery, whereas post-operative examinations were acquired 1 month after surgery and before chemoradiation. A concordance index (CI) was defined as the ratio between the overlapping and composite volumes. Results The volumes of T1PRECTV and T1POSTCTV were not statistically different (248 ± 88 vs 254 ± 101), although volume differences >100 cm3 were observed in 6 out of 24 patients. A marked increase due to tumour progression was shown in three patients. Three patients showed a decrease because of a reduced mass effect. A significant reduction occurred between pre-operative and post-operative T2 volumes (139 ± 68 vs 78 ± 59). Lack of concordance was observed between T1PRECTV and T1POSTCTV (CI = 0.67 ± 0.09), T2PRECTV and T2POSTCTV (CI = 0.39 ± 0.20) and comparing the portion of the T1PRECTV and T1POSTCTV not covered by that defined on T2PRECTV images (CI = 0.45 ± 0.16 and 0.44 ± 0.17, respectively). Conclusion Using T2 MRI, huge variations can be observed in peritumoural oedema, which are probably due to steroid treatment. Using T1 MRI, brain shifts after surgery and possible progressive enhancing lesions produce substantial differences in CTVs. Our data support the use of post-operative/pre-radiotherapy T1 weighted MRI for planning purposes. PMID:21045069

  13. ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer.

    PubMed

    Nestle, Ursula; De Ruysscher, Dirk; Ricardi, Umberto; Geets, Xavier; Belderbos, Jose; Pöttgen, Christoph; Dziadiuszko, Rafal; Peeters, Stephanie; Lievens, Yolande; Hurkmans, Coen; Slotman, Ben; Ramella, Sara; Faivre-Finn, Corinne; McDonald, Fiona; Manapov, Farkhad; Putora, Paul Martin; LePéchoux, Cécile; Van Houtte, Paul

    2018-04-01

    Radiotherapy (RT) plays a major role in the curative treatment of locally advanced non-small cell lung cancer (NSCLC). Therefore, the ACROP committee was asked by the ESTRO to provide recommendations on target volume delineation for standard clinical scenarios in definitive (chemo)radiotherapy (RT) and adjuvant RT for locally advanced NSCLC. The guidelines given here are a result of the evaluation of a structured questionnaire followed by a consensus discussion, voting and writing procedure within the committee. Hence, we provide advice for methods and time-points of diagnostics and imaging before the start of treatment planning and for the mandatory and optional imaging to be used for planning itself. Concerning target volumes, recommendations are given for GTV delineation of primary tumour and lymph nodes followed by issues related to the delineation of CTVs for definitive and adjuvant radiotherapy. In the context of PTV delineation, recommendations about the management of geometric uncertainties and target motion are given. We further provide our opinions on normal tissue delineation and organisational and responsibility questions in the process of target volume delineation. This guideline intends to contribute to the standardisation and optimisation of the process of RT treatment planning for clinical practice and prospective studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. P04.02 Analysis of 18F-DOPA PET imaging for target volume definition in patients with recurrent glioblastoma treated with proton therapy

    PubMed Central

    Amelio, D.; Scartoni, D.; Palucci, A.; Vennarini, S.; Giacomelli, I.; Lemoine, S.; Donner, D.; Farace, P.; Chierichetti, F.; Amichetti, M.

    2017-01-01

    Abstract Introduction: Target volume definition is of critical relevance when re-irradiation is delivered and steep dose gradient irradiation techniques, such as proton therapy (PT), are employed. Aim of the study is to investigate the impact of 18F-DOPA on target volume contouring in recurrent glioblastoma (rGBM) patients (pts) undergoing re-irradiation with PT. MATERIAL AND METHODS: We investigated the differences in volume and relationship of magnetic resonance imaging (MRI)- vs. DOPA PET-derived gross tumor volumes (GTVs) of 14 rGBM pts re-irradiated with PT between January and November 2016. All pts had been previously treated with photon radiotherapy (60 Gy) with concomitant and adjuvant temozolomide. All the pts received morphological MRI with contrast enhancement medium administration and 18F-DOPA PET-CT study. We used the pathological distribution of 18F-DOPA in brain tissue to identify the so-called Biological Tumor Volume (BTV). Such areas were assessed using a tumor to normal brain ratio > 2. Moreover, any area of contrast enhancement on MRI was used to identify the MRI-based GTV (MRGTV). Definitive GTV included MRGTV plus BTV. Clinical target volume was generated by adding to GTV a 3-mm uniform margin manually corrected in proximity of anatomical barriers. CTV was expanded by 4 mm to create planning target volume. All pts received 36 GyRBE in 18 fractions. Mean values of differently delineated GTVs were compared each other by paired Student’s t-test; p < 0.05 was considered significant. To further compare MRGTV and BTV, the overlapping (MRGTV ^ BTV) and the composite (MRGTV U BTV) volumes were calculated, and a concordance index (CI) was defined as the ratio between the overlap and composite volumes. Results: MRGTV (mean 14.9 ± 14.5 cc) was larger than BTV (mean 10.9 ± 9.8 cc) although this difference was not statistically significant. The composite volume (mean 20.9 ± 14.7 cc) was significantly larger than each single volume (p < 0

  15. TH-A-9A-03: Dosimetric Effect of Rotational Errors for Lung Stereotactic Body Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Kim, H; Park, J

    2014-06-15

    Purpose: To evaluate the dosimetric effects on target volume and organs at risk (OARs) due to roll rotational errors in treatment setup of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: There were a total of 23 volumetric modulated arc therapy (VMAT) plans for lung SBRT examined in this retrospective study. Each CT image of VMAT plans was intentionally rotated by ±1°, ±2°, and ±3° to simulate roll rotational setup errors. The axis of rotation was set at the center of T-spine. The target volume and OARs in the rotated CT images were re-defined by deformable registration of originalmore » contours. The dose distributions on each set of rotated images were re-calculated to cover the planning target volume (PTV) with the prescription dose before and after the couch translational correction. The dose-volumetric changes of PTVs and spinal cords were analyzed. Results: The differences in D95% of PTVs by −3°, −2°, −1°, 1°, 2°, and 3° roll rotations before the couch translational correction were on average −11.3±11.4%, −5.46±7.24%, −1.11±1.38% −3.34±3.97%, −9.64±10.3%, and −16.3±14.7%, respectively. After the couch translational correction, those values were −0.195±0.544%, −0.159±0.391%, −0.188±0.262%, −0.310±0.270%, −0.407±0.331%, and −0.433±0.401%, respectively. The maximum dose difference of spinal cord among the 23 plans even after the couch translational correction was 25.9% at −3° rotation. Conclusions: Roll rotational setup errors in lung SBRT significantly influenced the coverage of target volume using VMAT technique. This could be in part compensated by the translational couch correction. However, in spite of the translational correction, the delivered doses to the spinal cord could be more than the calculated doses. Therefore if rotational setup errors exist during lung SBRT using VMAT technique, the rotational correction would rather be considered to prevent over-irradiation of

  16. Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, Jason, E-mail: jason.callahan@petermac.org; Kron, Tomas; Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne

    2013-07-15

    Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom whilemore » moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently

  17. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar, E-mail: dpokhrel@kumc.edu; Sood, Sumit; McClinton, Christopher

    Purpose: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). Materials and methods: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured onmore » T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30 Gy for WB-PTV and 45 Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. Results: All 5 HS-WBRT with SIB plans met WB-PTV D{sub 2%}, D{sub 98%}, and V{sub 30} {sub Gy} NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5

  18. Facial Contouring by Targeted Restoration of Facial Fat Compartment Volume: The Midface.

    PubMed

    Wang, Wenjin; Xie, Yun; Huang, Ru-Lin; Zhou, Jia; Tanja, Herrler; Zhao, Peijuan; Cheng, Chen; Zhou, Sizheng; Pu, Lee L Q; Li, Qingfeng

    2017-03-01

    Recent anatomical findings have suggested that facial fat distribution is complex and changes with age. Here, the authors developed a grafting technique based on the physiologic distribution and volume changes of facial fat compartments to achieve a youthful and natural-appearing face. Forty cadaveric hemifaces were used for the dissection of fat compartments and neurovascular structures in the midface area. Seventy-eight patients were treated for cheek atrophy using the authors' targeted restoration of midface fat compartment volume. The outcome was evaluated by a two-dimensional assessment, malar lipoatrophy assessment, and a satisfaction survey. The medial and lateral parts of the deep medial cheek fat compartment were separated by a septum arising from the lateral border of the levator anguli oris muscle. The angular vein traveled between the deep medial cheek fat compartment and the buccal fat pad, 12 mm from the maxilla. A total volume of 29.3 ml of fat was grafted per cheek for each patient. A 12-month follow-up revealed an average volume augmentation rate of 27.1 percent. Pleasing and elevated anterior projection of the cheek and ameliorated nasolabial groove were still obvious by 12 months after the procedure. In total, 95.2 percent of the patients were satisfied with their results. The present study provides the anatomical and clinical basis for the concept of compartmentally based fat grafting. It allows for the restoration of facial fat volume close to the physiologic state. With this procedure, a natural and youthful facial contour could be rebuilt with a high satisfaction rate. Therapeutic, IV.

  19. Implant breast reconstruction followed by radiotherapy: Can helical tomotherapy become a standard irradiation treatment?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massabeau, Carole, E-mail: cmassabeau@hotmail.com; Fournier-Bidoz, Nathalie; Wakil, Georges

    2012-01-01

    To evaluate the benefits and limitations of helical tomotherapy (HT) for loco-regional irradiation of patients after a mastectomy and immediate implant-based reconstruction. Ten breast cancer patients with retropectoral implants were randomly selected for this comparative study. Planning target volumes (PTVs) 1 (the volume between the skin and the implant, plus margin) and 2 (supraclavicular, infraclavicular, and internal mammary nodes, plus margin) were 50 Gy in 25 fractions using a standard technique and HT. The extracted dosimetric data were compared using a 2-tailed Wilcoxon matched-pair signed-rank test. Doses for PTV1 and PTV2 were significantly higher with HT (V95 of 98.91 andmore » 97.91%, respectively) compared with the standard technique (77.46 and 72.91%, respectively). Similarly, the indexes of homogeneity were significantly greater with HT (p = 0.002). HT reduced ipsilateral lung volume that received {>=}20 Gy (16.7 vs. 35%), and bilateral lungs (p = 0.01) and neighboring organs received doses that remained well below tolerance levels. The heart volume, which received 25 Gy, was negligible with both techniques. HT can achieve full target coverage while decreasing high doses to the heart and ipsilateral lung. However, the low doses to normal tissue volumes need to be reduced in future studies.« less

  20. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, Chris; Wierzbicki, Marcin

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITVmore » dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.« less

  1. Using injectable hydrogel markers to assess resimulation for boost target volume definition in a patient undergoing whole-breast radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Henal; Goyal, Sharad; Kim, Leonard, E-mail: kimlh@rutgers.edu

    Several publications have recommended that patients undergoing whole-breast radiotherapy be resimulated for boost planning. The rationale for this is that the seroma may be smaller when compared with the initial simulation. However, the decision remains whether to use the earlier or later images to define an appropriate boost target volume. A patient undergoing whole-breast radiotherapy had new, injectable, temporary hydrogel fiducial markers placed 1 to 3 cm from the seroma at the time of initial simulation. The patient was resimulated 4.5 weeks later for conformal photon boost planning. Computed tomography (CT) scans acquired at the beginning and the end ofmore » whole-breast radiotherapy showed that shrinkage of the lumpectomy cavity was not matched by a corresponding reduction in the surrounding tissue volume, as demarcated by hydrogel markers. This observation called into question the usual interpretation of cavity shrinkage for boost target definition. For this patient, it was decided to define the boost target volume on the initial planning CT instead of the new CT.« less

  2. Evaluation of potential internal target volume of liver tumors using cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp; Oh, Ryoong-Jin; Masai, Norihisa

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquiredmore » for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC

  3. Stereotactic ultrasound for target volume definition in a patient with prostate cancer and bilateral total hip replacement.

    PubMed

    Boda-Heggemann, Judit; Haneder, Stefan; Ehmann, Michael; Sihono, Dwi Seno Kuncoro; Wertz, Hansjörg; Mai, Sabine; Kegel, Stefan; Heitmann, Sigrun; von Swietochowski, Sandra; Lohr, Frank; Wenz, Frederik

    2015-01-01

    Target-volume definition for prostate cancer in patients with bilateral metal total hip replacements (THRs) is a challenge because of metal artifacts in the planning computed tomography (CT) scans. Magnetic resonance imaging (MRI) can be used for matching and prostate delineation; however, at a spatial and temporal distance from the planning CT, identical rectal and vesical filling is difficult to achieve. In addition, MRI may also be impaired by metal artifacts, even resulting in spatial image distortion. Here, we present a method to define prostate target volumes based on ultrasound images acquired during CT simulation and online-matched to the CT data set directly at the planning CT. A 78-year-old patient with cT2cNxM0 prostate cancer with bilateral metal THRs was referred to external beam radiation therapy. T2-weighted MRI was performed on the day of the planning CT with preparation according to a protocol for reproducible bladder and rectal filling. The planning CT was obtained with the immediate acquisition of a 3-dimensional ultrasound data set with a dedicated stereotactic ultrasound system for online intermodality image matching referenced to the isocenter by ceiling-mounted infrared cameras. MRI (offline) and ultrasound images (online) were thus both matched to the CT images for planning. Daily image guided radiation therapy (IGRT) was performed with transabdominal ultrasound and compared with cone beam CT. Because of variations in bladder and rectal filling and metal-induced image distortion in MRI, soft-tissue-based matching of the MRI to CT was not sufficient for unequivocal prostate target definition. Ultrasound-based images could be matched, and prostate, seminal vesicles, and target volumes were reliably defined. Daily IGRT could be successfully completed with transabdominal ultrasound with good accordance between cone beam CT and ultrasound. For prostate cancer patients with bilateral THRs causing artifacts in planning CTs, ultrasound referenced to

  4. Protons Offer Reduced Normal-Tissue Exposure for Patients Receiving Postoperative Radiotherapy for Resected Pancreatic Head Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Romaine C., E-mail: rnichols@floridaproton.org; Huh, Soon N.; Prado, Karl L.

    2012-05-01

    Purpose: To determine the potential role for adjuvant proton-based radiotherapy (PT) for resected pancreatic head cancer. Methods and Materials: Between June 2008 and November 2008, 8 consecutive patients with resected pancreatic head cancers underwent optimized intensity-modulated radiotherapy (IMRT) treatment planning. IMRT plans used between 10 and 18 fields and delivered 45 Gy to the initial planning target volume (PTV) and a 5.4 Gy boost to a reduced PTV. PTVs were defined according to the Radiation Therapy Oncology Group 9704 radiotherapy guidelines. Ninety-five percent of PTVs received 100% of the target dose and 100% of the PTVs received 95% of themore » target dose. Normal tissue constraints were as follows: right kidney V18 Gy to <70%; left kidney V18 Gy to <30%; small bowel/stomach V20 Gy to <50%, V45 Gy to <15%, V50 Gy to <10%, and V54 Gy to <5%; liver V30 Gy to <60%; and spinal cord maximum to 46 Gy. Optimized two- to three-field three-dimensional conformal proton plans were retrospectively generated on the same patients. The team generating the proton plans was blinded to the dose distributions achieved by the IMRT plans. The IMRT and proton plans were then compared. A Wilcoxon paired t-test was performed to compare various dosimetric points between the two plans for each patient. Results: All proton plans met all normal tissue constraints and were isoeffective with the corresponding IMRT plans in terms of PTV coverage. The proton plans offered significantly reduced normal-tissue exposure over the IMRT plans with respect to the following: median small bowel V20 Gy, 15.4% with protons versus 47.0% with IMRT (p = 0.0156); median gastric V20 Gy, 2.3% with protons versus 20.0% with IMRT (p = 0.0313); and median right kidney V18 Gy, 27.3% with protons versus 50.5% with IMRT (p = 0.0156). Conclusions: By reducing small bowel and stomach exposure, protons have the potential to reduce the acute and late toxicities of postoperative chemoradiation in this

  5. Protons offer reduced normal-tissue exposure for patients receiving postoperative radiotherapy for resected pancreatic head cancer.

    PubMed

    Nichols, Romaine C; Huh, Soon N; Prado, Karl L; Yi, Byong Y; Sharma, Navesh K; Ho, Meng W; Hoppe, Bradford S; Mendenhall, Nancy P; Li, Zuofeng; Regine, William F

    2012-05-01

    To determine the potential role for adjuvant proton-based radiotherapy (PT) for resected pancreatic head cancer. Between June 2008 and November 2008, 8 consecutive patients with resected pancreatic head cancers underwent optimized intensity-modulated radiotherapy (IMRT) treatment planning. IMRT plans used between 10 and 18 fields and delivered 45 Gy to the initial planning target volume (PTV) and a 5.4 Gy boost to a reduced PTV. PTVs were defined according to the Radiation Therapy Oncology Group 9704 radiotherapy guidelines. Ninety-five percent of PTVs received 100% of the target dose and 100% of the PTVs received 95% of the target dose. Normal tissue constraints were as follows: right kidney V18 Gy to <70%; left kidney V18 Gy to <30%; small bowel/stomach V20 Gy to <50%, V45 Gy to <15%, V50 Gy to <10%, and V54 Gy to <5%; liver V30 Gy to <60%; and spinal cord maximum to 46 Gy. Optimized two- to three-field three-dimensional conformal proton plans were retrospectively generated on the same patients. The team generating the proton plans was blinded to the dose distributions achieved by the IMRT plans. The IMRT and proton plans were then compared. A Wilcoxon paired t-test was performed to compare various dosimetric points between the two plans for each patient. All proton plans met all normal tissue constraints and were isoeffective with the corresponding IMRT plans in terms of PTV coverage. The proton plans offered significantly reduced normal-tissue exposure over the IMRT plans with respect to the following: median small bowel V20 Gy, 15.4% with protons versus 47.0% with IMRT (p = 0.0156); median gastric V20 Gy, 2.3% with protons versus 20.0% with IMRT (p = 0.0313); and median right kidney V18 Gy, 27.3% with protons versus 50.5% with IMRT (p = 0.0156). By reducing small bowel and stomach exposure, protons have the potential to reduce the acute and late toxicities of postoperative chemoradiation in this setting. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. [Microscopic extensions of head and neck squamous cell carcinomas: impact for clinical target volume definition].

    PubMed

    Fleury, B; Thariat, J; Barnoud, R; Buiret, G; Lebreton, F; Bancel, B; Poupart, M; Devouassoux-Shisheboran, M

    2014-11-01

    To assess microscopic extensions of head and neck squamous cell carcinomas aiming at a proposal for target volumes of radiation therapy. Surgical specimens were prospectively analysed macroscopically and microscopically. Tumour borders were identified per macroscopic visual examination and inked on stained slides. Then microscopic implants (perineural or lymphatic involvement, or in situ carcinomas) were looked for with an optic microscope in the macroscopic healthy tissue surrounding the tumour. The maximal length from tumour border was correlated with the maximal length of macroscopically healthy tissues assessable. Twenty-one specimens were analysed and 12 were locally advanced tumours. Mean and median maximal microscopic extensions were 2.9 and 1.0mm (0-15mm), respectively. The 90th and 95th percentiles were 5 and 11mm, respectively. The ratio between healthy tissue length and maximal microscopic tumour extension was 10%. No correlation was found with tumour grade or volume. The presence of microscopic tumour was unlikely after 5mm from macroscopic tumour (≤5% of patients in this series) but should be assessed along with other histoclinical factors and particularities of tumour behaviour by anatomic site. A rigorous terminology should authorize a relevant appreciation of local risk of recurrence, particularly in adjuvant setting or for clinical target volume definition. Larger and more homogenous confirmatory series are needed. Copyright © 2014. Published by Elsevier SAS.

  7. Evaluation of the Dosimetric Feasibility of Hippocampal Sparing Intensity-Modulated Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma

    PubMed Central

    Gan, Hua; Denniston, Kyle A.; Li, Sicong; Tan, Wenyong; Wang, Zhaohua

    2014-01-01

    Purpose The objective of this study was to evaluate the dosimetric feasibility of using hippocampus (HPC) sparing intensity-modulated radiotherapy (IMRT) in patients with locally advanced nasopharyngeal carcinoma (NPC). Materials/Methods Eight cases of either T3 or T4 NPC were selected for this study. Standard IMRT treatment plans were constructed using the volume and dose constraints for the targets and organs at risk (OAR) per Radiation Therapy Oncology Group (RTOG) 0615 protocol. Experimental plans were constructed using the same criteria, with the addition of the HPC as an OAR. The two dose-volume histograms for each case were compared for the targets and OARs. Results All plans achieved the protocol dose criteria. The homogeneity index, conformity index, and coverage index for the planning target volumes (PTVs) were not significantly compromised by the avoidance of the HPC. The doses to all OARs, excluding the HPC, were similar. Both the dose (Dmax, D2%, D40%, Dmean, Dmedian, D98% and Dmin) and volume (V5, V10, V15, V20, V30, V40 and V50) parameters for the HPC were significantly lower in the HPC sparing plans (p<0.05), except for Dmin (P = 0.06) and V5 (P = 0.12). Conclusions IMRT for patients with locally advanced NPC exposes the HPC to a significant radiation dose. HPC sparing IMRT planning significantly decreases this dose, with minimal impact on the therapeutic targets and other OARs. PMID:24587184

  8. The application of positron emission tomography/computed tomography in radiation treatment planning: effect on gross target volume definition and treatment management.

    PubMed

    Iğdem, S; Alço, G; Ercan, T; Unalan, B; Kara, B; Geceer, G; Akman, C; Zengin, F O; Atilla, S; Okkan, S

    2010-04-01

    To analyse the effect of the use of molecular imaging on gross target volume (GTV) definition and treatment management. Fifty patients with various solid tumours who underwent positron emission tomography (PET)/computed tomography (CT) simulation for radiotherapy planning from 2006 to 2008 were enrolled in this study. First, F-18 fluorodeoxyglucose (FDG)-PET and CT scans of the treatment site in the treatment position and then a whole body scan were carried out with a dedicated PET/CT scanner and fused thereafter. FDG-avid primary tumour and lymph nodes were included into the GTV. A multidisciplinary team defined the target volume, and contouring was carried out by a radiation oncologist using visual methods. To compare the PET/CT-based volumes with CT-based volumes, contours were drawn on CT-only data with the help of site-specific radiologists who were blind to the PET/CT results after a median time of 7 months. In general, our PET/CT volumes were larger than our CT-based volumes. This difference was significant in patients with head and neck cancers. Major changes (> or =25%) in GTV delineation were observed in 44% of patients. In 16% of cases, PET/CT detected incidental second primaries and metastatic disease, changing the treatment strategy from curative to palliative. Integrating functional imaging with FDG-PET/CT into the radiotherapy planning process resulted in major changes in a significant proportion of our patients. An interdisciplinary approach between imaging and radiation oncology departments is essential in defining the target volumes. Copyright 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Delineation of Internal Mammary Nodal Target Volumes in Breast Cancer Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jethwa, Krishan R.; Kahila, Mohamed M.; Hunt, Katie N.

    Purpose: The optimal clinical target volume for internal mammary (IM) node irradiation is uncertain in an era of increasingly conformal volume-based treatment planning for breast cancer. We mapped the location of gross internal mammary lymph node (IMN) metastases to identify areas at highest risk of harboring occult disease. Methods and Materials: Patients with axial imaging of IMN disease were identified from a breast cancer registry. The IMN location was transferred onto the corresponding anatomic position on representative axial computed tomography images of a patient in the treatment position and compared with consensus group guidelines of IMN target delineation. Results: Themore » IMN location in 67 patients with 130 IMN metastases was mapped. The location was in the first 3 intercostal spaces in 102 of 130 nodal metastases (78%), whereas 18 of 130 IMNs (14%) were located caudal to the third intercostal space and 10 of 130 IMNs (8%) were located cranial to the first intercostal space. Of the 102 nodal metastases within the first 3 intercostal spaces, 54 (53%) were located within the Radiation Therapy Oncology Group consensus volume. Relative to the IM vessels, 19 nodal metastases (19%) were located medially with a mean distance of 2.2 mm (SD, 2.9 mm) whereas 29 (28%) were located laterally with a mean distance of 3.6 mm (SD, 2.5 mm). Ninety percent of lymph nodes within the first 3 intercostal spaces would have been encompassed within a 4-mm medial and lateral expansion on the IM vessels. Conclusions: In women with indications for elective IMN irradiation, a 4-mm medial and lateral expansion on the IM vessels may be appropriate. In women with known IMN involvement, cranial extension to the confluence of the IM vein with the brachiocephalic vein with or without caudal extension to the fourth or fifth interspace may be considered provided that normal tissue constraints are met.« less

  10. Target location after deep cerebral biopsies using low-volume air injection in 75 patients. Results and technical note.

    PubMed

    Poca, Maria A; Martínez-Ricarte, Francisco-Ramon; Gándara, Dario F; Coscojuela, Pilar; Martínez-Sáez, Elena; Sahuquillo, Juan

    2017-10-01

    Stereotactic biopsy is a minimally invasive technique that allows brain tissue samples to be obtained with low risk. Classically, different techniques have been used to identify the biopsy site after surgery. To describe a technique to identify the precise location of the target in the postoperative CT scan using the injection of a low volume of air into the biopsy cannula. Seventy-five biopsies were performed in 65 adults and 10 children (40 males and 35 females, median age 51 years). Frame-based biopsy was performed in 46 patients, while frameless biopsy was performed in the remaining 29 patients. In both systems, after brain specimens had been collected and with the biopsy needle tip in the center of the target, a small volume of air (median 0.7 cm 3 ) was injected into the site. A follow-up CT scan was performed in all patients. Intracranial air in the selected target was present in 69 patients (92%). No air was observed in two patients (air volume administered in these 2 cases was below 0.7 cm 3 ), while in the remaining four patients blood content was observed in the target. The diagnostic yield in this series was 97.3%. No complications were found to be associated with intracranial air injection in any of the 75 patients who underwent this procedure. The air-injection maneuver proposed for use in stereotactic biopsies of intracranial mass lesions is a safe and reliable technique that allows the exact biopsy site to be located without any related complications.

  11. Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas.

    PubMed

    Farzin, Mostafa; Molls, Michael; Astner, Sabrina; Rondak, Ina-Christine; Oechsner, Markus

    2015-12-01

    In 20 patients with high-grade gliomas, we compared two methods of planning for volumetric-modulated arc therapy (VMAT): simultaneous integrated boost (SIB) vs. sequential boost (SEB). The investigation focused on the analysis of dose distributions in the target volumes and the organs at risk (OARs). After contouring the target volumes [planning target volumes (PTVs) and boost volumes (BVs)] and OARs, SIB planning and SEB planning were performed. The SEB method consisted of two plans: in the first plan the PTV received 50 Gy in 25 fractions with a 2-Gy dose per fraction. In the second plan the BV received 10 Gy in 5 fractions with a dose per fraction of 2 Gy. The doses of both plans were summed up to show the total doses delivered. In the SIB method the PTV received 54 Gy in 30 fractions with a dose per fraction of 1.8 Gy, while the BV received 60 Gy in the same fraction number but with a dose per fraction of 2 Gy. All of the OARs showed higher doses (Dmax and Dmean) in the SEB method when compared with the SIB technique. The differences between the two methods were statistically significant in almost all of the OARs. Analysing the total doses of the target volumes we found dose distributions with similar homogeneities and comparable total doses. Our analysis shows that the SIB method offers advantages over the SEB method in terms of sparing OARs.

  12. Effects of online cone-beam computed tomography with active breath control in determining planning target volume during accelerated partial breast irradiation.

    PubMed

    Li, Y; Zhong, R; Wang, X; Ai, P; Henderson, F; Chen, N; Luo, F

    2017-04-01

    To test if active breath control during cone-beam computed tomography (CBCT) could improve planning target volume during accelerated partial breast radiotherapy for breast cancer. Patients who were more than 40 years old, underwent breast-conserving dissection and planned for accelerated partial breast irradiation, and with postoperative staging limited to T1-2 N0 M0, or postoperative staging T2 lesion no larger than 3cm with a negative surgical margin greater than 2mm were enrolled. Patients with lobular carcinoma or extensive ductal carcinoma in situ were excluded. CBCT images were obtained pre-correction, post-correction and post-treatment. Set-up errors were recorded at left-right, anterior-posterior and superior-inferior directions. The differences between these CBCT images, as well as calculated radiation doses, were compared between patients with active breath control or free breathing. Forty patients were enrolled, among them 25 had active breath control. A total of 836 CBCT images were obtained for analysis. CBCT significantly reduced planning target volume. However, active breath control did not show significant benefit in decreasing planning target volume margin and the doses of organ-at-risk when compared to free breathing. CBCT, but not active breath control, could reduce planning target volume during accelerated partial breast irradiation. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  13. Synovial tissue volume: a treatment target in knee osteoarthritis (OA).

    PubMed

    O'Neill, Terence W; Parkes, Matthew J; Maricar, Nasimah; Marjanovic, Elizabeth J; Hodgson, Richard; Gait, Andrew D; Cootes, Timothy F; Hutchinson, Charles E; Felson, David T

    2016-01-01

    Synovitis occurring frequently in osteoarthritis (OA) may be a targeted outcome. There are no data examining whether synovitis changes following intra-articular intervention. Persons aged 40 years and older with painful knee OA participated in an open label trial of intra-articular steroid therapy. At all time points they completed the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire. They had a contrast-enhanced (CE) MRI immediately prior to an intra-articular steroid injection with a repeat scan within 20 days. Response status was assessed using the Osteoarthritis Research Society International (OARSI) response criteria. OARSI responders were followed until their pain relapsed either within 20% of baseline or 6 months, shortly after which a third MRI was performed. Synovial tissue volume (STV) was measured on postcontrast knee images. We looked at changes in the STV and in pain, and their association. 120 subjects with preinjection and postinjection CE MRI were followed. Their mean age was 62.3 years (SD=10.3) and 62 (52%) were women. The median time between injection and follow-up scan was 8 days (IQR 7-14 days). 85/120 (71%) were OARSI responders. Pain decreased (mean change in KOOS=+23.9; 95% CI 20.1 to 27.8, p<0.001) following steroid injection, as did mean STV (mean change=-1071 mm(3); 95% CI -1839 mm(3) to -303 mm(3), p=0.01). Of the 80 who returned for a third MRI, pain relapsed in 57, and in the 48 of those with MRI data, STV increased between follow-up and final visit (+1220 mm(3); 95% CI 25 mm(3) to 2414 mm(3), p=0.05). 23 were persistent responders at 6 months and, in these, STV did not increase (mean change=-202 mm(3); 95% CI -2008 mm(3) to 1604 mm(3), p=0.83). Controlling for variation over time, there was a significant association between synovitis volume and KOOS pain (b coefficient-change in KOOS pain score per 1000 mm(3) change in STV=-1.13; 95% CI -1.87 to -0.39, p=0.003), although STV accounted for only a small proportion of

  14. Physical and biological pretreatment quality assurance of the head and neck cancer plan with the volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Park, So-Hyun; Lee, Dong-Soo; Lee, Yun-Hee; Lee, Seu-Ran; Kim, Min-Ju; Suh, Tae-Suk

    2015-09-01

    The aim of this work is to demonstrate both the physical and the biological quality assurance (QA) aspects as pretreatment QA of the head and neck (H&N) cancer plan for the volumetric modulated arc therapy (VMAT). Ten H&N plans were studied. The COMPASS® dosimetry analysis system and the tumor control probability (TCP) and the normal tissue complication probability (NTCP) calculation free program were used as the respective measurement and calculation tools. The reliability of these tools was verified by a benchmark study in accordance with the TG-166 report. For the physical component of QA, the gamma passing rates and the false negative cases between the calculated and the measured data were evaluated. The biological component of QA was performed based on the equivalent uniform dose (EUD), TCP and NTCP values. The evaluation was performed for the planning target volumes (PTVs) and the organs at risks (OARs), including the eyes, the lens, the parotid glands, the esophagus, the spinal cord, and the brainstem. All cases had gamma passing rates above 95% at an acceptance tolerance level with the 3%/3 mm criteria. In addition, the false negative instances were presented for the PTVs and OARs. The gamma passing rates exhibited a weak correlation with false negative cases. For the biological QA, the physical dose errors affect the EUD and the TCP for the PTVs, but no linear correlation existed between them. The EUD and NTCP for the OARs were shown the random differences that could not be attributed to the dose errors from the physical QA. The differences in the EUD and NTCP between the calculated and the measured results were mainly demonstrated for the parotid glands. This study describes the importance and the necessity of improved QA to accompany both the physical and the biological aspects for accurate radiation treatment.

  15. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    PubMed

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  16. Volume comparison of radiofrequency ablation at 3- and 5-cm target volumes for four different radiofrequency generators: MR volumetry in an open 1-T MRI system versus macroscopic measurement.

    PubMed

    Rathke, Hendrik; Hamm, Bernd; Guettler, Felix; Lohneis, Philipp; Stroux, Andrea; Suttmeyer, Britta; Jonczyk, Martin; Teichgräber, Ulf; de Bucourt, Maximilian

    2015-12-01

    In a patient, it is usually not macroscopically possible to estimate the non-viable volume induced by radiofrequency ablation (RFA) after the procedure. The purpose of this study was to use an ex vivo bovine liver model to perform magnetic resonance (MR) volumetry of the visible tissue signal change induced by RFA and to correlate the MR measurement with the actual macroscopic volume measured in the dissected specimens. Sixty-four liver specimens cut from 16 bovine livers were ablated under constant simulated, close physiological conditions with target volumes set to 14.14 ml (3-cm lesion) and 65.45 ml (5-cm lesion). Four commercially available radiofrequency (RF) systems were tested (n=16 for each system; n=8 for 3 cm and n=8 for 5 cm). A T1-weighted turbo spin echo (TSE) sequence with inversion recovery and a proton-density (PD)-weighted TSE sequence were acquired in a 1.0-T open magnetic resonance imaging (MRI) system. After manual dissection, actual macroscopic ablation diameters were measured and volumes calculated. MR volumetry was performed using a semiautomatic software tool. To validate the correctness and feasibility of the volume formula in macroscopic measurements, MR multiplanar reformation diameter measurements with subsequent volume calculation and semiautomatic MR volumes were correlated. Semiautomatic MR volumetry yielded smaller volumes than manual measurement after dissection, irrespective of RF system used, target lesion size, and MR sequence. For the 3-cm lesion, only 43.3% (T1) and 41.5% (PD) of the entire necrosis are detectable. For the 5-cm lesion, only 40.8% (T1) and 37.2% (PD) are visualized in MRI directly after intervention. The correlation between semiautomatic MR volumes and calculated MR volumes was 0.888 for the T1-weighted sequence and 0.875 for the PD sequence. After correlation of semiautomatic MR volumes and calculated MR volumes, it seems reasonable to use the respective volume formula for macroscopic volume calculation

  17. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma.

    PubMed

    Lee, Anne W; Ng, Wai Tong; Pan, Jian Ji; Poh, Sharon S; Ahn, Yong Chan; AlHussain, Hussain; Corry, June; Grau, Cai; Grégoire, Vincent; Harrington, Kevin J; Hu, Chao Su; Kwong, Dora L; Langendijk, Johannes A; Le, Quynh Thu; Lee, Nancy Y; Lin, Jin Ching; Lu, Tai Xiang; Mendenhall, William M; O'Sullivan, Brian; Ozyar, Enis; Peters, Lester J; Rosenthal, David I; Soong, Yoke Lim; Tao, Yungan; Yom, Sue S; Wee, Joseph T

    2018-01-01

    Target delineation in nasopharyngeal carcinoma (NPC) often proves challenging because of the notoriously narrow therapeutic margin. High doses are needed to achieve optimal levels of tumour control, and dosimetric inadequacy remains one of the most important independent factors affecting treatment outcome. A review of the available literature addressing the natural behaviour of NPC and correlation between clinical and pathological aspects of the disease was conducted. Existing international guidelines as well as published protocols specified by clinical trials on contouring of clinical target volumes (CTV) were compared. This information was then summarized into a preliminary draft guideline which was then circulated to international experts in the field for exchange of opinions and subsequent voting on areas with the greatest controversies. Common areas of uncertainty and variation in practices among experts experienced in radiation therapy for NPC were elucidated. Iterative revisions were made based on extensive discussion and final voting on controversial areas by the expert panel, to formulate the recommendations on contouring of CTV based on optimal geometric expansion and anatomical editing for those structures with substantial risk of microscopic infiltration. Through this comprehensive review of available evidence and best practices at major institutions, as well as interactive exchange of vast experience by international experts, this set of consensus guidelines has been developed to provide a practical reference for appropriate contouring to ensure optimal target coverage. However, the final decision on the treatment volumes should be based on full consideration of individual patients' factors and facilities of an individual centre (including the quality of imaging methods and the precision of treatment delivery). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. FDG-PET-based differential uptake volume histograms: a possible approach towards definition of biological target volumes.

    PubMed

    Devic, Slobodan; Mohammed, Huriyyah; Tomic, Nada; Aldelaijan, Saad; De Blois, François; Seuntjens, Jan; Lehnert, Shirley; Faria, Sergio

    2016-06-01

    Integration of fluorine-18 fludeoxyglucose ((18)F-FDG)-positron emission tomography (PET) functional data into conventional anatomically based gross tumour volume delineation may lead to optimization of dose to biological target volumes (BTV) in radiotherapy. We describe a method for defining tumour subvolumes using (18)F-FDG-PET data, based on the decomposition of differential uptake volume histograms (dUVHs). For 27 patients with histopathologically proven non-small-cell lung carcinoma (NSCLC), background uptake values were sampled within the healthy lung contralateral to a tumour in those image slices containing tumour and then scaled by the ratio of mass densities between the healthy lung and tumour. Signal-to-background (S/B) uptake values within volumes of interest encompassing the tumour were used to reconstruct the dUVHs. These were subsequently decomposed into the minimum number of analytical functions (in the form of differential uptake values as a function of S/B) that yielded acceptable net fits, as assessed by χ(2) values. Six subvolumes consistently emerged from the fitted dUVHs over the sampled volume of interest on PET images. Based on the assumption that each function used to decompose the dUVH may correspond to a single subvolume, the intersection between the two adjacent functions could be interpreted as a threshold value that differentiates them. Assuming that the first two subvolumes spread over the tumour boundary, we concentrated on four subvolumes with the highest uptake values, and their S/B thresholds [mean ± standard deviation (SD)] were 2.88 ± 0.98, 4.05 ± 1.55, 5.48 ± 2.06 and 7.34 ± 2.89 for adenocarcinoma, 3.01 ± 0.71, 4.40 ± 0.91, 5.99 ± 1.31 and 8.17 ± 2.42 for large-cell carcinoma and 4.54 ± 2.11, 6.46 ± 2.43, 8.87 ± 5.37 and 12.11 ± 7.28 for squamous cell carcinoma, respectively. (18)F-FDG-based PET data may potentially be used to identify BTV within the tumour in

  19. SU-E-T-622: Planning Technique for Passively-Scattered Involved-Node Proton Therapy of Mediastinal Lymphoma with Consideration of Cardiac Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flampouri, S; Li, Z; Hoppe, B

    2015-06-15

    Purpose: To develop a treatment planning method for passively-scattered involved-node proton therapy of mediastinal lymphoma robust to breathing and cardiac motions. Methods: Beam-specific planning treatment volumes (bsPTV) are calculated for each proton field to incorporate pertinent uncertainties. Geometric margins are added laterally to each beam while margins for range uncertainty due to setup errors, breathing, and calibration curve uncertainties are added along each beam. The calculation of breathing motion and deformation effects on proton range includes all 4DCT phases. The anisotropic water equivalent margins are translated to distances on average 4DCT. Treatment plans are designed so each beam adequately coversmore » the corresponding bsPTV. For targets close to the heart, cardiac motion effects on dosemaps are estimated by using a library of anonymous ECG-gated cardiac CTs (cCT). The cCT, originally contrast-enhanced, are partially overridden to allow meaningful proton dose calculations. Targets similar to the treatment targets are drawn on one or more cCT sets matching the anatomy of the patient. Plans based on the average cCT are calculated on individual phases, then deformed to the average and accumulated. When clinically significant dose discrepancies occur between planned and accumulated doses, the patient plan is modified to reduce the cardiac motion effects. Results: We found that bsPTVs as planning targets create dose distributions similar to the conventional proton planning distributions, while they are a valuable tool for visualization of the uncertainties. For large targets with variability in motion and depth, integral dose was reduced because of the anisotropic margins. In most cases, heart motion has a clinically insignificant effect on target coverage. Conclusion: A treatment planning method was developed and used for proton therapy of mediastinal lymphoma. The technique incorporates bsPTVs compensating for all common sources of

  20. Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment.

    PubMed

    Paluska, Petr; Hanus, Josef; Sefrova, Jana; Rouskova, Lucie; Grepl, Jakub; Jansa, Jan; Kasaova, Linda; Hodek, Miroslav; Zouhar, Milan; Vosmik, Milan; Petera, Jiri

    2012-01-01

    To assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction. Implementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution. Seventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed. In 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively. Sufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.

  1. Long-term Outcomes of Temporal Hollowing Augmentation by Targeted Volume Restoration of Fat Compartments in Chinese Adults.

    PubMed

    Huang, Ru-Lin; Xie, Yun; Wang, Wenjin; Tan, Pohching; Li, Qingfeng

    2018-04-19

    Previous anatomical and clinical studies have suggested that targeted restoration of the volume and distribution of fat compartments using appropriate cannula entry sites and injection planes is an excellent fat-grafting technique for facial contouring and hand rejuvenation. To perform subjective and objective evaluations of the safe and effective profile of the targeted fat-grafting technique for temporal hollowing augmentation. In a retrospective cohort study, a total of 96 consecutive patients with temporal hollowing were treated at the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai, China, with the targeted fat-grafting technique from January 1, 2009, to January 1, 2017. The safety and efficacy profile of this technique was evaluated by the following methods: (1) a quantitative measurement of fat-graft survival and temporal augmentation rates by using 3-dimensional laser scanning, (2) a subjective assessment using a satisfaction survey and the Hollowness Severity Rating Scale (grades range from 0-3, with higher grades representing more hollowness), and (3) the complication rate. Of the 96 study patients, 94 (97.9%) were women and the mean (SD) age was 34.4 (7.4) years. Of the 142 autologous fat-grafting procedures performed, the mean (SD) total follow-up time was 16.3 (3.2) months, with a mean (SD) of 1.5 (0.7) procedures performed. The mean (SD) baseline volume requirement per temple for each patient was 12.8 (4.8) mL, and the total volume of the fat graft per temple was 17.8 (7.5) mL. Quantitative analysis revealed that the mean (SD) total augmentation volume per temple was 11.7 (3.0) mL, the total survival rate of the fat grafts was 65.7% (12.6%), and total augmentation rate of hollowness was 91.4% (23.4%). Subjective analysis revealed that all patients showed an improved appearance after fat grafting, and 142 temples (74.0%) exhibited clinical improvement by more than 2 grades. In all, 88 patients (91.7%) were

  2. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, Elizabeth H., E-mail: ebaldini@partners.org; Abrams, Ross A.; Bosch, Walter

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneousmore » truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.« less

  3. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    PubMed Central

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-01-01

    Purpose The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed. PMID:26194680

  4. Radiographer-led plan selection for bladder cancer radiotherapy: initiating a training programme and maintaining competency.

    PubMed

    McNair, H A; Hafeez, S; Taylor, H; Lalondrelle, S; McDonald, F; Hansen, V N; Huddart, R

    2015-04-01

    The implementation of plan of the day selection for patients receiving radiotherapy (RT) for bladder cancer requires efficient and confident decision-making. This article describes the development of a training programme and maintenance of competency. Cone beam CT (CBCT) images acquired on patients receiving RT for bladder cancer were assessed to establish baseline competency and training needs. A training programme was implemented, and observers were asked to select planning target volumes (PTVs) on two groups of 20 patients' images. After clinical implementation, the PTVs chosen were reviewed offline, and an audit performed after 3 years. A mean of 73% (range, 53-93%) concordance rate was achieved prior to training. Subsequent to training, the mean score decreased to 66% (Round 1), then increased to 76% (Round 2). Six radiographers and two clinicians successfully completed the training programme. An independent observer reviewed the images offline after clinical implementation, and a 91% (126/139) concordance rate was achieved. During the audit, 125 CBCT images from 13 patients were reviewed by a single observer and concordance was 92%. Radiographer-led selection of plan of the day was implemented successfully with the use of a training programme and continual assessment. Quality has been maintained over a period of 3 years. The training programme was successful in achieving and maintaining competency for a plan of the day technique.

  5. Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer.

    PubMed

    Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie

    2017-11-09

    Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.

  6. A new functional method to choose the target lobe for lung volume reduction in emphysema - comparison with the conventional densitometric method.

    PubMed

    Hetzel, Juergen; Boeckeler, Michael; Horger, Marius; Ehab, Ahmed; Kloth, Christopher; Wagner, Robert; Freitag, Lutz; Slebos, Dirk-Jan; Lewis, Richard Alexander; Haentschel, Maik

    2017-01-01

    Lung volume reduction (LVR) improves breathing mechanics by reducing hyperinflation. Lobar selection usually focuses on choosing the most destroyed emphysematous lobes as seen on an inspiratory CT scan. However, it has never been shown to what extent these densitometric CT parameters predict the least deflation of an individual lobe during expiration. The addition of expiratory CT analysis allows measurement of the extent of lobar air trapping and could therefore provide additional functional information for choice of potential treatment targets. To determine lobar vital capacity/lobar total capacity (LVC/LTC) as a functional parameter for lobar air trapping using on an inspiratory and expiratory CT scan. To compare lobar selection by LVC/LTC with the established morphological CT density parameters. 36 patients referred for endoscopic LVR were studied. LVC/LTC, defined as delta volume over maximum volume of a lobe, was calculated using inspiratory and expiratory CT scans. The CT morphological parameters of mean lung density (MLD), low attenuation volume (LAV), and 15th percentile of Hounsfield units (15%P) were determined on an inspiratory CT scan for each lobe. We compared and correlated LVC/LTC with MLD, LAV, and 15%P. There was a weak correlation between the functional parameter LVC/LTC and all inspiratory densitometric parameters. Target lobe selection using lowest lobar deflation (lowest LVC/LTC) correlated with target lobe selection based on lowest MLD in 18 patients (50.0%), with the highest LAV in 13 patients (36.1%), and with the lowest 15%P in 12 patients (33.3%). CT-based measurement of deflation (LVC/LTC) as a functional parameter correlates weakly with all densitometric CT parameters on a lobar level. Therefore, morphological criteria based on inspiratory CT densitometry partially reflect the deflation of particular lung lobes, and may be of limited value as a sole predictor for target lobe selection in LVR.

  7. A Comparison of Lumpectomy Cavity Delineations Between Use of Magnetic Resonance Imaging and Computed Tomography Acquired With Patient in Prone Position for Radiation Therapy Planning of Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Wei; Department of Radiation Oncology, Shandong's Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan; Currey, Adam

    2016-03-15

    Purpose: To compare lumpectomy cavity (LC) and planning target volume (PTV) delineated with the use of magnetic resonance imaging (MRI) and computed tomography (CT) and to examine the possibility of replacing CT with MRI for radiation therapy (RT) planning for breast cancer. Methods and Materials: MRI and CT data were acquired for 15 patients with early-stage breast cancer undergoing lumpectomy during RT simulation in prone positions, the same as their RT treatment positions. The LCs were delineated manually on both CT (LC-CT) and MRI acquired with 4 sequences: T1, T2, STIR, and DCE. Various PTVs were created by expanding amore » 15-mm margin from the corresponding LCs and from the union of the LCs for the 4 MRI sequences (PTV-MRI). Differences were measured in terms of cavity visualization score (CVS) and dice coefficient (DC). Results: The mean CVSs for T1, T2, STIR, DCE, and CT defined LCs were 3.47, 3.47, 3.87, 3.50. and 2.60, respectively, implying that the LC is mostly visible with a STIR sequence. The mean reductions of LCs from those for CT were 22%, 43%, 36%, and 17% for T1, T2, STIR, and DCE, respectively. In 14 of 15 cases, MRI (union of T1, T2, STIR, and DCE) defined LC included extra regions that would not be visible from CT. The DCs between CT and MRI (union of T1, T2, STIR, and DCE) defined volumes were 0.65 ± 0.20 for LCs and 0.85 ± 0.06 for PTVs. There was no obvious difference between the volumes of PTV-MRI and PTV-CT, and the average PTV-STIR/PTV-CT volume ratio was 0.83 ± 0.23. Conclusions: The use of MRI improves the visibility of LC in comparison with CT. The volumes of LC and PTV generated based on a MRI sequence are substantially smaller than those based on CT, and the PTV-MRI volumes, defined by the union of T1, T2, STIR, and DCE, were comparable with those of PTV-CT for most of the cases studied.« less

  8. SU-E-T-287: Dose Verification On the Variation of Target Volume and Organ at Risk in Preradiation Chemotherapy IMRT for Nasopharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X; Kong, L; Wang, J

    2015-06-15

    Purpose: To quantify the target volume and organ at risk of nasopharyngeal carcinoma (NPC) patients with preradiation chemotherapy based on CT scanned during intensity-modulated radiotherapy (IMRT), and recalculate the dose distribution. Methods: Seven patients with NPC and preradiation chemotherapy, treated with IMRT (35 to 37 fractions) were reviewed. Repeat CT scanning was required to all of the patients during the radiotherapy, and the number of repeat CTs varies from 2 to 6. The plan CT and repeat CT were generated by different CT scanner. To ensure crespectively on the same IMPT plan. The real dose distribution was calculated by deformablemore » registration and weighted method in Raystation (v 4.5.1). The fraction of each dose is based on radiotherapy record. The volumetric and dose differences among these images were calculated for nascIpharyngeal tumor and retro-pharyngeal lymph nodes (GTV-NX), neck lymph nodes(GTV-ND), and parotid glands. Results: The volume variation in GTV-NX from CT1 to CT2 was 1.15±3.79%, and in GTV-LN −0.23±4.93%. The volume variation in left parotid from CT1 to CT2 was −6.79±11.91%, and in right parotid −3.92±8.80%. In patient 2, the left parotid volume were decreased remarkably, as a Result, the V30 and V40 of it were increased as well. Conclusion: The target volume of patients with NPC varied lightly during IMRT. It shows that preradiation chemotherapy can control the target volume variation and perform a good dose repeatability. Also, the decreasing volume of parotid in some patient might increase the dose of it, which might course potential complications.« less

  9. The potential advantages of (18)FDG PET/CT-based target volume delineation in radiotherapy planning of head and neck cancer.

    PubMed

    Moule, Russell N; Kayani, Irfan; Moinuddin, Syed A; Meer, Khalda; Lemon, Catherine; Goodchild, Kathleen; Saunders, Michele I

    2010-11-01

    This study investigated two fixed threshold methods to delineate the target volume using (18)FDG PET/CT before and during a course of radical radiotherapy in locally advanced squamous cell carcinoma of the head and neck. Patients were enrolled into the study between March 2006 and May 2008. (18)FDG PET/CT scans were carried out 72h prior to the start of radiotherapy and then at 10, 44 and 66Gy. Functional volumes were delineated according to the SUV Cut Off (SUVCO) (2.5, 3.0, 3.5, and 4.0bwg/ml) and percentage of the SUVmax (30%, 35%, 40%, 45%, and 50%) thresholds. The background (18)FDG uptake and the SUVmax within the volumes were also assessed. Primary and lymph node volumes for the eight patients significantly reduced with each increase in the delineation threshold (for example 2.5-3.0bwg/ml SUVCO) compared to the baseline threshold at each imaging point. There was a significant reduction in the volume (p⩽0.0001-0.01) after 36Gy compared to the 0Gy by the SUVCO method. There was a negative correlation between the SUVmax within the primary and lymph node volumes and delivered radiation dose (p⩽0.0001-0.011) but no difference in the SUV within the background reference region. The volumes delineated by the PTSUVmax method increased with the increase in the delivered radiation dose after 36Gy because the SUVmax within the region of interest used to define the edge of the volume was equal or less than the background (18)FDG uptake and the software was unable to effectively differentiate between tumour and background uptake. The changes in the target volumes delineated by the SUVCO method were less susceptible to background (18)FDG uptake compared to those delineated by the PTSUVmax and may be more helpful in radiotherapy planning. The best method and threshold have still to be determined within institutions, both nationally and internationally. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lens, Eelco, E-mail: e.lens@amc.uva.nl; Horst, Astrid van der; Versteijne, Eva

    2015-07-01

    Purpose: The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. Methods and Materials: For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dosemore » distribution was analyzed; PTV coverage was required to be at least V{sub 95%} >98%. In addition, the change in PTV size and the changes in V{sub 10Gy}, V{sub 20Gy}, V{sub 30Gy}, V{sub 40Gy}, D{sub mean} and D{sub 2cc} for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Results: Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D{sub 2cc} of the duodenum, improved significantly (P≤.002). Conclusions: By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors.« less

  11. The impact of computed tomography slice thickness on the assessment of stereotactic, 3D conformal and intensity-modulated radiotherapy of brain tumors.

    PubMed

    Caivano, R; Fiorentino, A; Pedicini, P; Califano, G; Fusco, V

    2014-05-01

    To evaluate radiotherapy treatment planning accuracy by varying computed tomography (CT) slice thickness and tumor size. CT datasets from patients with primary brain disease and metastatic brain disease were selected. Tumor volumes ranging from about 2.5 to 100 cc and CT scan at different slice thicknesses (1, 2, 4, 6 and 10 mm) were used to perform treatment planning (1-, 2-, 4-, 6- and 10-CT, respectively). For any slice thickness, a conformity index (CI) referring to 100, 98, 95 and 90 % isodoses and tumor size was computed. All the CI and volumes obtained were compared to evaluate the impact of CT slice thickness on treatment plans. The smallest volumes reduce significantly if defined on 1-CT with respect to 4- and 6-CT, while the CT slice thickness does not affect target definition for the largest volumes. The mean CI for all the considered isodoses and CT slice thickness shows no statistical differences when 1-CT is compared to 2-CT. Comparing the mean CI of 1- with 4-CT and 1- with 6-CT, statistical differences appear only for the smallest volumes with respect to 100, 98 and 95 % isodoses-the CI for 90 % isodose being not statistically significant for all the considered PTVs. The accuracy of radiotherapy tumor volume definition depends on CT slice thickness. To achieve a better tumor definition and dose coverage, 1- and 2-CT would be suitable for small targets, while 4- and 6-CT are suitable for the other volumes.

  12. A new approach to delineating lymph node target volumes for post-operative radiotherapy in gastric cancer: A phase II trial.

    PubMed

    Haijun, Yu; Qiuji, Wu; Zhenming, Fu; Yong, Huang; Zhengkai, Liao; Conghua, Xie; Yunfeng, Zhou; Yahua, Zhong

    2015-08-01

    In the context of gastric cancer, lymph node target volume delineation for post-operative radiotherapy is currently built on the traditional system of dividing the stomach and 2-D treatment methods. Here, we have proposed a new delineation approach with irradiation indications for lymph node stations. Its safety and efficacy were evaluated in a phase II clinical trial. Fifty-four gastric cancer patients with D2 lymph node dissection received 2 cycles of FOLFOX4. They subsequently received concurrent chemoradiotherapy (45 Gy at 1.8 Gy per fraction, 5 fractions per week for 5 weeks) with a 5-fluorouracil/leucovorin regimen, followed by 4 additional FOLFOX4 cycles. The target volume included the remnant stomach, anastomosis site, tumor bed, and regional lymph nodes selected through our new approach by taking gastric arteries as references. The most common grade 3-4 adverse event was neutropenia (14.8%). Neutropenia, anemia, and nausea were common grade 1-2 toxicities. No treatment-related deaths occurred during treatment. The 3-year overall, disease-free, and locoregional recurrence-free survival rates were 81.6%, 70.2%, and 91.1%, respectively. Eight patients developed peritoneal or distant metastases. Using our new approach and irradiation indications, delineation of the target volume of post-operative lymph node stations was feasible and well tolerated after D2 resection in patients with gastric cancer. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation.

    PubMed

    Unkelbach, Jan; Menze, Bjoern H; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A

    2014-02-07

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  14. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  15. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio.

    PubMed

    Ueyama, Tomoko; Arimura, Takeshi; Takumi, Koji; Nakamura, Fumihiko; Higashi, Ryutaro; Ito, Soichiro; Fukukura, Yoshihiko; Umanodan, Tomokazu; Nakajo, Masanori; Koriyama, Chihaya; Yoshiura, Takashi

    2018-06-01

    To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP  ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.

  16. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Hrycushko, B; Jiang, S

    2014-06-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less

  17. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    PubMed

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.

  18. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oborn, B. M., E-mail: brad.oborn@gmail.com; Ge, Y.; Hardcastle, N.

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, whilemore » the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of

  19. The impact of PET/CT scanning on the size of target volumes, radiation exposure of organs at risk, TCP and NTCP, in the radiotherapy planning of non-small cell lung cancer.

    PubMed

    Vojtíšek, Radovan; Mužík, Jan; Slampa, Pavel; Budíková, Marie; Hejsek, Jaroslav; Smolák, Petr; Ferda, Jiří; Fínek, Jindřich

    2014-05-01

    To compare radiotherapy plans made according to CT and PET/CT and to investigate the impact of changes in target volumes on tumour control probability (TCP), normal tissue complication probability (NTCP) and the impact of PET/CT on the staging and treatment strategy. Contemporary studies have proven that PET/CT attains higher sensitivity and specificity in the diagnosis of lung cancer and also leads to higher accuracy than CT alone in the process of target volume delineation in NSCLC. Between October 2009 and March 2012, 31 patients with locally advanced NSCLC, who had been referred to radical radiotherapy were involved in our study. They all underwent planning PET/CT examination. Then we carried out two separate delineations of target volumes and two radiotherapy plans and we compared the following parameters of those plans: staging, treatment purpose, the size of GTV and PTV and the exposure of organs at risk (OAR). TCP and NTCP were also compared. PET/CT information led to a significant decrease in the sizes of target volumes, which had the impact on the radiation exposure of OARs. The reduction of target volume sizes was not reflected in the significant increase of the TCP value. We found that there is a very strong direct linear relationship between all evaluated dosimetric parameters and NTCP values of all evaluated OARs. Our study found that the use of planning PET/CT in the radiotherapy planning of NSCLC has a crucial impact on the precise determination of target volumes, more precise staging of the disease and thus also on possible changes of treatment strategy.

  20. Influence of FDG-PET on primary nodal target volume definition for head and neck carcinomas.

    PubMed

    van Egmond, Sylvia L; Piscaer, Vera; Janssen, Luuk M; Stegeman, Inge; Hobbelink, Monique G; Grolman, Wilko; Terhaard, Chris H

    The role of 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in routine diagnostic staging remains controversial. In case of discordance between FDG-PET and CT, a compromise has to be made between the risk of false positive FDG-PET and the risk of delaying appropriate salvage intervention. Second, with intensity modulated radiation therapy (IMRT), smaller radiation fields allow tissue sparing, but could also lead to more marginal failures. We retrospectively studied 283 patients with head and neck carcinoma scheduled for radiotherapy between 2002 and 2010. We analyzed the influence of FDG-PET/CT versus CT alone on defining nodal target volume definition and evaluated its long-term clinical results. Second, the location of nodal recurrences was related to the radiation regional dose distribution. In 92 patients, CT and FDG-PET, performed in mold, showed discordant results. In 33%, nodal staging was altered by FDG-PET. In 24%, FDG-PET also led to an alteration in nodal treatment, including a nodal upstage of 18% and downstage of 6%. In eight of these 92 patients, a regional recurrence occurred. Only two patients had a recurrence in the discordant node on FDG-PET and CT and both received a boost (high dose radiation). These results support the complementary value of FDG-PET/CT compared to CT alone in defining nodal target volume definition for radiotherapy of head and neck cancer.

  1. Treatment plan comparison between Tri-Co-60 magnetic-resonance image-guided radiation therapy and volumetric modulated arc therapy for prostate cancer

    PubMed Central

    Park, Jong Min; Park, So-Yeon; Choi, Chang Heon; Chun, Minsoo; Kim, Jin Ho; Kim, Jung-In

    2017-01-01

    To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) with magnetic-resonance image-guided radiation therapy compared with volumetric-modulated arc therapy (VMAT) for prostate cancer. Twenty patients with intermediate-risk prostate cancer, who received radical VMAT were selected. Additional tri-Co-60 IMRT plans were generated for each patient. Both primary and boost plans were generated with tri-Co-60 IMRT and VMAT techniques. The prescription doses of the primary and boost plans were 50.4 Gy and 30.6 Gy, respectively. The primary and boost planning target volumes (PTVs) of the tri-Co-60 IMRT were generated with 3 mm margins from the primary clinical target volume (CTV, prostate + seminal vesicle) and a boost CTV (prostate), respectively. VMAT had a primary planning target volume (primary CTV + 1 cm or 2 cm margins) and a boost PTV (boost CTV + 0.7 cm margins), respectively. For both tri-Co-60 IMRT and VMAT, all the primary and boost plans were generated that 95% of the target volumes would be covered by the 100% of the prescription doses. Sum plans were generated by summation of primary and boost plans. In sum plans, the average values of V70 Gy of the bladder of tri-Co-60 IMRT vs. VMAT were 4.0% ± 3.1% vs. 10.9% ± 6.7%, (p < 0.001). Average values of V70 Gy of the rectum of tri-Co-60 IMRT vs. VMAT were 5.2% ± 1.8% vs. 19.1% ± 4.0% (p < 0.001). The doses of tri-Co-60 IMRT delivered to the bladder and rectum were smaller than those of VMAT while maintaining identical target coverage in both plans. PMID:29207634

  2. Generation of synthetic CT using multi-scale and dual-contrast patches for brain MRI-only external beam radiotherapy.

    PubMed

    Aouadi, Souha; Vasic, Ana; Paloor, Satheesh; Torfeh, Tarraf; McGarry, Maeve; Petric, Primoz; Riyas, Mohamed; Hammoud, Rabih; Al-Hammadi, Noora

    2017-10-01

    To create a synthetic CT (sCT) from conventional brain MRI using a patch-based method for MRI-only radiotherapy planning and verification. Conventional T1 and T2-weighted MRI and CT datasets from 13 patients who underwent brain radiotherapy were included in a retrospective study whereas 6 patients were tested prospectively. A new contribution to the Non-local Means Patch-Based Method (NMPBM) framework was done with the use of novel multi-scale and dual-contrast patches. Furthermore, the training dataset was improved by pre-selecting the closest database patients to the target patient for computation time/accuracy balance. sCT and derived DRRs were assessed visually and quantitatively. VMAT planning was performed on CT and sCT for hypothetical PTVs in homogeneous and heterogeneous regions. Dosimetric analysis was done by comparing Dose Volume Histogram (DVH) parameters of PTVs and organs at risk (OARs). Positional accuracy of MRI-only image-guided radiation therapy based on CBCT or kV images was evaluated. The retrospective (respectively prospective) evaluation of the proposed Multi-scale and Dual-contrast Patch-Based Method (MDPBM) gave a mean absolute error MAE=99.69±11.07HU (98.95±8.35HU), and a Dice in bones DI bone =83±0.03 (0.82±0.03). Good agreement with conventional planning techniques was obtained; the highest percentage of DVH metric deviations was 0.43% (0.53%) for PTVs and 0.59% (0.75%) for OARs. The accuracy of sCT/CBCT or DRR sCT /kV images registration parameters was <2mm and <2°. Improvements with MDPBM, compared to NMPBM, were significant. We presented a novel method for sCT generation from T1 and T2-weighted MRI potentially suitable for MRI-only external beam radiotherapy in brain sites. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. SU-E-T-283: Dose Perturbations Near Heterogeneity Junctions for Modulated-Scanning Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Y; Li, Y; Sheng, Y

    2015-06-15

    Purpose: To compare calculated and measured doses near heterogeneity junctions of tissue-substitute materials for modulated-scanning protons. Methods: Three heterogeneous phantoms were configured using slabs of various plastics to simulate lung, fat, soft-tissue (polystyrene), and bone with known relative linear stopping powers (RLSPs). Each phantom consisted of soft-tissue and a single heterogeneity of a 5 or 10 cm thickness of a non-soft-tissue material. CT images were loaded into a Syngo treatment planning system and each material contoured and assigned its RLSP. Planning target volumes (PTVs) were drawn such that a beam would partially traverse the heterogeneity and partially only soft-tissue. Lateralmore » profiles were measured using EDR2 films at a minimum of six depths between the phantom surface and the depth corresponding to the beam range. Absolute doses were measured inside and distal to the PTV in all phantoms using either a parallel plate or thimble chamber. Additional dose measurements were made between two lung slabs. Results: Profiles measured by film generally agreed with calculations except for depths distal to lung and fat junctions. Measured lateral penumbras for depths at the distal junction of lung were found to be wider than calculated ones. Compared with calculated doses, measured doses in the PTVs were 5.19% and 2.51% lower for lung and fat respectively but for bone were 0.2% higher. Measured doses for depths distal to the PTV were up to 29.65% and 10.58% higher for lung and fat, respectively but 6.30% lower for bone. Conclusion: The low measured doses in the PTVs for lung and fat might be due to underestimation of lateral scattering of protons. The higher measured doses distal to the PTV for the lung and fat are a Result of a shortened calculated beam range whereas the higher dose distal to the bone junction is within uncertainties.« less

  4. Comparative Study With New Accuracy Metrics for Target Volume Contouring in PET Image Guided Radiation Therapy

    PubMed Central

    Shepherd, T; Teras, M; Beichel, RR; Boellaard, R; Bruynooghe, M; Dicken, V; Gooding, MJ; Julyan, PJ; Lee, JA; Lefèvre, S; Mix, M; Naranjo, V; Wu, X; Zaidi, H; Zeng, Z; Minn, H

    2017-01-01

    The impact of positron emission tomography (PET) on radiation therapy is held back by poor methods of defining functional volumes of interest. Many new software tools are being proposed for contouring target volumes but the different approaches are not adequately compared and their accuracy is poorly evaluated due to the ill-definition of ground truth. This paper compares the largest cohort to date of established, emerging and proposed PET contouring methods, in terms of accuracy and variability. We emphasize spatial accuracy and present a new metric that addresses the lack of unique ground truth. Thirty methods are used at 13 different institutions to contour functional volumes of interest in clinical PET/CT and a custom-built PET phantom representing typical problems in image guided radiotherapy. Contouring methods are grouped according to algorithmic type, level of interactivity and how they exploit structural information in hybrid images. Experiments reveal benefits of high levels of user interaction, as well as simultaneous visualization of CT images and PET gradients to guide interactive procedures. Method-wise evaluation identifies the danger of over-automation and the value of prior knowledge built into an algorithm. PMID:22692898

  5. Changes in the planning target volume and liver volume dose based on the selected respiratory phase in respiratory-gated radiation therapy for a hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min

    2013-11-01

    The aim of this study was to quantitatively analyze the changes in the planning target volume (PTV) and liver volume dose based on the respiratory phase to identify the optimal respiratory phase for respiratory-gated radiation therapy for a hepatocellular carcinoma (HCC). Based on the standardized procedure for respiratory-gated radiation therapy, we performed a 4-dimensional computed tomography simulation for 0 ˜ 90%, 30 ˜ 70%, and 40 ˜ 60% respiratory phases to assess the respiratory stability (S R ) and the defined PTV i for each respiratory phase i. A treatment plan was established, and the changes in the PTV i and dose volume of the liver were quantitatively analyzed. Most patients (91.5%) passed the respiratory stability test (S R = 0.111 ± 0.015). With standardized respiration training exercises, we were able to minimize the overall systematic error caused by irregular respiration. Furthermore, a quantitative analysis to identify the optimal respiratory phase revealed that when a short respiratory phase (40 ˜ 60%) was used, the changes in the PTV were concentrated inside the center line; thus, we were able to obtain both a PTV margin accounting for respiration and a uniform radiation dose within the PTV.

  6. Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses

    NASA Astrophysics Data System (ADS)

    Printz Ringbæk, Toke; Weber, Uli; Santiago, Alina; Simeonov, Yuri; Fritz, Peter; Krämer, Michael; Wittig, Andrea; Bassler, Niels; Engenhart-Cabillic, Rita; Zink, Klemens

    2016-06-01

    A ripple filter (RiFi)—also called mini-ridge filter—is a passive energy modulator used in particle beam treatments that broadens the Bragg peak (BP) as a function of its maximum thickness. The number of different energies requested from the accelerator can thus be reduced, which significantly reduces the treatment time. A new second generation RiFi with 2D groove shapes was developed using rapid prototyping, which optimizes the beam-modulating material and enables RiFi thicknesses of up to 6 mm. Carbon ion treatment plans were calculated using the standard 1D 3 mm thick RiFi and the new 4 and 6 mm 2D RiFis for spherical planning target volumes (PTVs) in water, eight stage I non-small cell lung cancer cases, four skull base chordoma cases and three prostate cancer cases. TRiP98 was used for treatment planning with facility-specific base data calculated with the Monte Carlo code SHIELD-HIT12A. Dose-volume-histograms, spatial dose distributions and dosimetric indexes were used for plan evaluation. Plan homogeneity and conformity of thinner RiFis were slightly superior to thicker RiFis but satisfactory results were obtained for all RiFis investigated. For the 6 mm RiFi, fine structures in the dose distribution caused by the larger energy steps were observed at the PTV edges, in particular for superficial and/or very small PTVs but performances for all RiFis increased with penetration depth due to straggling and scattering effects. Plans with the new RiFi design yielded for the studied cases comparable dosimetric results to the standard RiFi while the 4 and 6 mm RiFis lowered the irradiation time by 25-30% and 45-49%, respectively.

  7. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  8. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Lorraine; Cox, Jennifer; Faculty of Health Sciences, University of Sydney, Sydney, New South Wales

    2015-09-15

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 daysmore » post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.« less

  9. Application of modified dynamic conformal arc (MDCA) technique on liver stereotactic body radiation therapy (SBRT) planning following RTOG 0438 guideline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Chengyu, E-mail: shicy1974@yahoo.com; Chen, Yong; Fang, Deborah

    2015-04-01

    Liver stereotactic body radiation therapy (SBRT) is a feasible treatment method for the nonoperable, patient with early-stage liver cancer. Treatment planning for the SBRT is very important and has to consider the simulation accuracy, planning time, treatment efficiency effects etc. The modified dynamic conformal arc (MDCA) technique is a 3-dimensional conformal arc planning method, which has been proposed for liver SBRT planning at our center. In this study, we compared the MDCA technique with the RapidArc technique in terms of planning target volume (PTV) coverage and sparing of organs at risk (OARs). The results show that the MDCA technique hasmore » comparable plan quality to RapidArc considering PTV coverage, hot spots, heterogeneity index, and effective liver volume. For the 5 PTVs studied among 4 patients, the MDCA plan, when compared with the RapidArc plan, showed 9% more hot spots, more heterogeneity effect, more sparing of OARs, and lower liver effective volume. The monitor unit (MU) number for the MDCA plan is much lower than for the RapidArc plans. The MDCA plan has the advantages of less planning time, no-collision treatment, and a lower MU number.« less

  10. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    PubMed

    Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M

    2007-11-15

    Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.

  11. Impact of case volume on outcome and performance of targeted temperature management in out-of-hospital cardiac arrest survivors.

    PubMed

    Lee, Seung Joon; Jeung, Kyung Woon; Lee, Byung Kook; Min, Yong Il; Park, Kyu Nam; Suh, Gil Joon; Kim, Kyung Su; Kang, Gu Hyun

    2015-01-01

    This study aimed to determine the effect of case volume on targeted temperature management (TTM) performance, incidence of adverse events, and neurologic outcome in comatose out-of-hospital cardiac arrest (OHCA) survivors treated with TTM. We used a Web-based, multicenter registry (Korean Hypothermia Network registry), to which 24 hospitals throughout the Republic of Korea participated to study adult (≥18 years) comatose out-of-hospital cardiac arrest patients treated with TTM between 2007 and 2012. The primary outcome was neurologic outcome at hospital discharge. The secondary outcomes were inhospital mortality, TTM performance, and adverse events. We extracted propensity-matched cohorts to control for bias. Multivariate logistic regression analysis was performed to assess independent risk factors for neurologic outcome. A total of 901 patients were included in this study; 544 (60.4%) survived to hospital discharge, and 248 (27.5%) were discharged with good neurologic outcome. The high-volume hospitals initiated TTM significantly earlier and had lower rates of hyperglycemia, bleeding, hypotension, and rebound hyperthermia. However, neurologic outcome and inhospital mortality were comparable between high-volume (27.7% and 44.6%, respectively) and low-volume hospitals (21.1% and 40.5%) in the propensity-matched cohorts. The adjusted odds ratio for the high-volume hospitals compared with low-volume hospitals was 1.506 (95% confidence interval, 0.875-2.592) for poor neurologic outcome. Higher TTM case volume was significantly associated with early initiation of TTM and lower incidence of adverse events. However, case volume had no association with neurologic outcome and inhospital mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy dose and androgen deprivation administration.

    PubMed

    Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P

    2015-03-01

    Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.

  13. Target volume and artifact evaluation of a new data-driven 4D CT.

    PubMed

    Martin, Rachael; Pan, Tinsu

    Four-dimensional computed tomography (4D CT) is often used to define the internal gross target volume (IGTV) for radiation therapy of lung cancer. Traditionally, this technique requires the use of an external motion surrogate; however, a new image, data-driven 4D CT, has become available. This study aims to describe this data-driven 4D CT and compare target contours created with it to those created using standard 4D CT. Cine CT data of 35 patients undergoing stereotactic body radiation therapy were collected and sorted into phases using standard and data-driven 4D CT. IGTV contours were drawn using a semiautomated method on maximum intensity projection images of both 4D CT methods. Errors resulting from reproducibility of the method were characterized. A comparison of phase image artifacts was made using a normalized cross-correlation method that assigned a score from +1 (data-driven "better") to -1 (standard "better"). The volume difference between the data-driven and standard IGTVs was not significant (data driven was 2.1 ± 1.0% smaller, P = .08). The Dice similarity coefficient showed good similarity between the contours (0.949 ± 0.006). The mean surface separation was 0.4 ± 0.1 mm and the Hausdorff distance was 3.1 ± 0.4 mm. An average artifact score of +0.37 indicated that the data-driven method had significantly fewer and/or less severe artifacts than the standard method (P = 1.5 × 10 -5 for difference from 0). On average, the difference between IGTVs derived from data-driven and standard 4D CT was not clinically relevant or statistically significant, suggesting data-driven 4D CT can be used in place of standard 4D CT without adjustments to IGTVs. The relatively large differences in some patients were usually attributed to limitations in automatic contouring or differences in artifacts. Artifact reduction and setup simplicity suggest a clinical advantage to data-driven 4D CT. Published by Elsevier Inc.

  14. Dosimetric Impact of Using the Acuros XB Algorithm for Intensity Modulated Radiation Therapy and RapidArc Planning in Nasopharyngeal Carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Monica W.K., E-mail: kanwkm@ha.org.hk; Department of Physics and Materials Science, City University of Hong Kong, Hong Kong; Leung, Lucullus H.T.

    2013-01-01

    Purpose: To assess the dosimetric implications for the intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy with RapidArc (RA) of nasopharyngeal carcinomas (NPC) due to the use of the Acuros XB (AXB) algorithm versus the anisotropic analytical algorithm (AAA). Methods and Materials: Nine-field sliding window IMRT and triple-arc RA plans produced for 12 patients with NPC using AAA were recalculated using AXB. The dose distributions to multiple planning target volumes (PTVs) with different prescribed doses and critical organs were compared. The PTVs were separated into components in bone, air, and tissue. The change of doses by AXB duemore » to air and bone, and the variation of the amount of dose changes with number of fields was also studied using simple geometric phantoms. Results: Using AXB instead of AAA, the averaged mean dose to PTV{sub 70} (70 Gy was prescribed to PTV{sub 70}) was found to be 0.9% and 1.2% lower for IMRT and RA, respectively. It was approximately 1% lower in tissue, 2% lower in bone, and 1% higher in air. The averaged minimum dose to PTV{sub 70} in bone was approximately 4% lower for both IMRT and RA, whereas it was approximately 1.5% lower for PTV{sub 70} in tissue. The decrease in target doses estimated by AXB was mostly contributed from the presence of bone, less from tissue, and none from air. A similar trend was observed for PTV{sub 60} (60 Gy was prescribed to PTV{sub 60}). The doses to most serial organs were found to be 1% to 3% lower and to other organs 4% to 10% lower for both techniques. Conclusions: The use of the AXB algorithm is highly recommended for IMRT and RapidArc planning for NPC cases.« less

  15. Impact of organ shape variations on margin concepts for cervix cancer ART.

    PubMed

    Seppenwoolde, Yvette; Stock, Markus; Buschmann, Martin; Georg, Dietmar; Bauer-Novotny, Kwei-Yuang; Pötter, Richard; Georg, Petra

    2016-09-01

    Target and organ movement motivate adaptive radiotherapy for cervix cancer patients. We investigated the dosimetric impact of margin concepts with different levels of complexity on both organ at risk (OAR) sparing and PTV coverage. Weekly CT and daily CBCT scans were delineated for 10 patients. The dosimetric impact of organ shape variations were evaluated for four (isotropic) margin concepts: two static PTVs (PTV 6mm and PTV 15mm ), a PTV based on ITV of the planning CT and CBCTs of the first treatment week (PTV ART ITV ) and an adaptive PTV based on a library approach (PTV ART Library ). Using static concepts, OAR doses increased with large margins, while smaller margins compromised target coverage. ART PTVs resulted in comparable target coverage and better sparing of bladder (V40Gy: 15% and 7% less), rectum (V40Gy: 18 and 6cc less) and bowel (V40Gy: 106 and 15cc less) compared to PTV 15mm . Target coverage evaluation showed that for elective fields a static 5mm margin sufficed. PTV ART Library achieved the best dosimetric results. However when weighing clinical benefit against workload, ITV margins based on repetitive movement evaluation during the first week also provide improvements over static margin concepts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Plan selection strategy for rectum cancer patients: An interobserver study to assess clinical feasibility.

    PubMed

    de Jong, Rianne; Lutkenhaus, Lotte; van Wieringen, Niek; Visser, Jorrit; Wiersma, Jan; Crama, Koen; Geijsen, Debby; Bel, Arjan

    2016-08-01

    In radiotherapy for rectum cancer, the target volume is highly deformable. An adaptive plan selection strategy can mitigate the effect of these variations. The purpose of this study was to evaluate the feasibility of an adaptive strategy by assessing the interobserver variation in CBCT-based plan selection. Eleven patients with rectum cancer, treated with a non-adaptive strategy, were selected. Five CBCT scans were available per patient. To simulate the plan selection strategy, per patient three PTVs were created by varying the anterior upper mesorectum margin. For each CBCT scan, twenty observers selected the smallest PTV that encompassed the target volume. After this initial baseline measurement, the gold standard was determined during a consensus meeting, followed by a second measurement one month later. Differences between both measurements were assessed using the Wilcoxon signed-rank test. In the baseline measurement, the concordance with the gold standard was 69% (range: 60-82%), which improved to 75% (range: 60-87%) in the second measurement (p=0.01). For the second measurement, 10% of plan selections were smaller than the gold standard. With a plan selection consistency between observers of 75%, a plan selection strategy for rectum cancer patients is feasible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Technology transfer from NASA to targeted industries, volume 2

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  18. [Comparison of planning quality and delivery efficiency between volumetric modulated arc therapy and dynamic intensity modulated radiation therapy for nasopharyngeal carcinoma with more than 4 prescribed dose levels].

    PubMed

    Jia, Pengfei; Xu, Jun; Zhou, Xiaoxi; Chen, Jian; Tang, Lemin

    2017-12-01

    The aim of this study is to compare the planning quality and delivery efficiency between dynamic intensity modulated radiation therapy (d-IMRT) and dual arc volumetric modulated arc therapy (VMAT) systematically for nasopharyngeal carcinoma (NPC) patients with multi-prescribed dose levels, and to analyze the correlations between target volumes and plan qualities. A total of 20 patients of NPC with 4-5 prescribed dose levels to achieve simultaneous integrated boost (SIB) treated by sliding window d-IMRT in our department from 2014 to 2015 were re-planned with dual arc VMAT. All optimization objectives for each VMAT plan were as the same as the corresponding d-IMRT plan. The dose parameters for targets and organ at risk (OAR), the delivery time and monitor units (MU) in two sets of plans were compared respectively. The treatment accuracy was tested by three dimensional dose validation system. Finally, the correlations between the difference of planning quality and the volume of targets were discussed. The conform indexes (CIs) of planning target volumes (PTVs) in VMAT plans were obviously high than those in d-IMRT plans ( P < 0.05), but no significant correlations between the difference of CIs and the volume of targets were discovered ( P > 0.05). The target coverage and heterogeneity indexes (HIs) of PTV 1 and PGTV nd and PTV 3 in two sets of plans were consistent. The doses of PTV 2 decreased and HIs were worse in VMAT plans. VMAT could provide better spinal cord and brainstem sparing, but increase mean dose of parotids. The average number of MUs and delivery time for d-IMRT were 3.32 and 2.19 times of that for VMAT. The γ-index (3 mm, 3%) analysis for each plans was more than 97% in COMPASS ® measurement for quality assurance (QA). The results show that target dose coverages in d-IMRT and VMAT plans are similar for NPC with multi-prescribed dose levels. VMAT could improve the the CIs of targets, but reduce the dose to the target volume in neck except for PGTV nd

  19. SU-E-T-811: Volumetric Modulated Arc Therapy Vs. C-IMRT for the Treatment of Upper Thoracic Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W; Wu, L; Lu, J

    2015-06-15

    Purpose: To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods: CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (planning target volume 64, PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results:more » All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion: The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2. however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. This work was sponsored by Shantou University Medical College Clinical Research Enhancement Initiative(NO.201424)« less

  20. Will weight loss cause significant dosimetric changes of target volumes and organs at risk in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuanben; Fei, Zhaodong; Chen, Lisha

    This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contoursmore » were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.« less

  1. Delineation of clinical target volume for postoperative radiotherapy in stage IIIA-pN2 non-small-cell lung cancer

    PubMed Central

    Jing, Xuquan; Meng, Xue; Sun, Xindong; Yu, Jinming

    2016-01-01

    With the high locoregional relapse rate and the improvement of radiation technology, postoperative radiotherapy (PORT) has been widely used in the treatment of completely resected stage IIIA-pN2 non-small-cell lung cancer (NSCLC). However, there is still no definitive consensus on clinical target volume for the pN2 subgroup. This review will discuss how to delineate the clinical target volume (CTV) for pN2 subgroups of IIIA-N2 NSCLC based on the published literature and to investigate the optimal PORT CTV in this cohort of patients. Besides overall survival (OS), locoregional recurrence (LR), and radiotherapy-related toxicity of this subset of the population in the modern PORT era, selection of proper patients will also be considered in this review. In summary, it is appropriate to include involved lymph node stations and uninvolved stations at high risk in PORT CTV for patients with pN2 disease when PORT is administered. PORT can reduce LR and has the potential to improve OS. In the current era of modern radiation technology, PORT can be administered safely with well-tolerated toxicity. Clinicopathological characteristics may be helpful in selecting proper candidates for PORT. PMID:26929651

  2. Delineation of clinical target volume for postoperative radiotherapy in stage IIIA-pN2 non-small-cell lung cancer.

    PubMed

    Jing, Xuquan; Meng, Xue; Sun, Xindong; Yu, Jinming

    2016-01-01

    With the high locoregional relapse rate and the improvement of radiation technology, postoperative radiotherapy (PORT) has been widely used in the treatment of completely resected stage IIIA-pN2 non-small-cell lung cancer (NSCLC). However, there is still no definitive consensus on clinical target volume for the pN2 subgroup. This review will discuss how to delineate the clinical target volume (CTV) for pN2 subgroups of IIIA-N2 NSCLC based on the published literature and to investigate the optimal PORT CTV in this cohort of patients. Besides overall survival (OS), locoregional recurrence (LR), and radiotherapy-related toxicity of this subset of the population in the modern PORT era, selection of proper patients will also be considered in this review. In summary, it is appropriate to include involved lymph node stations and uninvolved stations at high risk in PORT CTV for patients with pN2 disease when PORT is administered. PORT can reduce LR and has the potential to improve OS. In the current era of modern radiation technology, PORT can be administered safely with well-tolerated toxicity. Clinicopathological characteristics may be helpful in selecting proper candidates for PORT.

  3. High volume fabrication of laser targets using MEMS techniques

    NASA Astrophysics Data System (ADS)

    Spindloe, C.; Arthur, G.; Hall, F.; Tomlinson, S.; Potter, R.; Kar, S.; Green, J.; Higginbotham, A.; Booth, N.; Tolley, M. K.

    2016-04-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed.

  4. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Lindsay C.; Diehn, Felix E.; Boughey, Judy C.

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastasesmore » were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted.« less

  5. Poster — Thur Eve — 36: Implementation of constant dose rate and gantry speed arc therapy(CDR-CAS-IMAT) for thoracic esophageal carcinoma on Varian 23EX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ruohui; Department of Medical Physics, Medical Faculty Mannheim, Heidelberg University; Fan, Xiaomei

    2014-08-15

    Objective: The purpose of this study is to propose an alternative planning approach for VMAT using constant dose rate and gantry speed arc therapy(CDR-CAS-IMAT) implementation on conventional Linac Varian 23EX and used IMRT as a benchmark to evaluate the performance. Methods and materials: Eighteen patients with thoracic esophageal carcinoma who were previously treated with IMRT on Varian 23EX were retrospectively planned for CDR-CAS-IMAT plans. Dose prescription was set to 60 Gy to PTVs in 30 fractions. The planning objectives for PTVs and OAR were corresponding with the IMRT plans. Dose to the PTVs and OAR were compared to IMRT withmore » respect to plan quality, MU, treatment time and delivery accuracy. Results: CDR-CAS-IMAT plans led to equivalent or superior plan quality as compared to IMRT, PTV's CI relative increased 16.2%, while small deviations were observed on minimum dose for PTV. Volumes in the cord receiving 40Gy were increased from 3.6% with IMRT to 7.0%. Treatment times were reduced significantly with CDR-CAS-IMAT(mean 85.7s vs. 232.1s, p < .05), however, MU increased by a factor of 1.3 and lung V10/5/3.5/aver were relative increase 6.7%,12%,17.9%,4.2%, respectively. And increased the E-P low dose area volume decreased the hight dose area. There were no significant difference in Delta4 measurements results between both planning techniques. Conclusion: CDR-CAS-IMAT plans can be implemented smoothly and quickly into a busy cancer center, which improved PTV CI and reduces treatment time but increased the MU and low dose irradiated area. An evaluation of weight loss must be performed during treatment for CDR-CAS-IMAT patients.« less

  6. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging.

    PubMed

    Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke

    2007-11-01

    To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.

  7. Simultaneous modulated accelerated radiation therapy for esophageal cancer: a feasibility study.

    PubMed

    Zhang, Wu-Zhe; Chen, Jian-Zhou; Li, De-Rui; Chen, Zhi-Jian; Guo, Hong; Zhuang, Ting-Ting; Li, Dong-Sheng; Zhou, Ming-Zhen; Chen, Chuang-Zhen

    2014-10-14

    To establish the feasibility of simultaneous modulated accelerated radiation therapy (SMART) in esophageal cancer (EC). Computed tomography (CT) datasets of 10 patients with upper or middle thoracic squamous cell EC undergoing chemoradiotherapy were used to generate SMART, conventionally-fractionated three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiation therapy (cf-IMRT) plans, respectively. The gross target volume (GTV) of the esophagus, positive regional lymph nodes (LN), and suspected lymph nodes (LN ±) were contoured for each patient. The clinical target volume (CTV) was delineated with 2-cm longitudinal and 0.5- to 1.0-cm radial margins with respect to the GTV and with 0.5-cm uniform margins for LN and LN(±). For the SMART plans, there were two planning target volumes (PTVs): PTV66 = (GTV + LN) + 0.5 cm and PTV54 = CTV + 0.5 cm. For the 3DCRT and cf-IMRT plans, there was only a single PTV: PTV60 = CTV + 0.5 cm. The prescribed dose for the SMART plans was 66 Gy/30 F to PTV66 and 54 Gy/30 F to PTV54. The dose prescription to the PTV60 for both the 3DCRT and cf-IMRT plans was set to 60 Gy/30 F. All the plans were generated on the Eclipse 10.0 treatment planning system. Fulfillment of the dose criteria for the PTVs received the highest priority, followed by the spinal cord, heart, and lungs. The dose-volume histograms were compared. Clinically acceptable plans were achieved for all the SMART, cf-IMRT, and 3DCRT plans. Compared with the 3DCRT plans, the SMART plans increased the dose delivered to the primary tumor (66 Gy vs 60 Gy), with improved sparing of normal tissues in all patients. The Dmax of the spinal cord, V20 of the lungs, and Dmean and V50 of the heart for the SMART and 3DCRT plans were as follows: 38.5 ± 2.0 vs 44.7 ± 0.8 (P = 0.002), 17.1 ± 4.0 vs 25.8 ± 5.0 (P = 0.000), 14.4 ± 7.5 vs 21.4 ± 11.1 (P = 0.000), and 4.9 ± 3.4 vs 12.9 ± 7.6 (P = 0.000), respectively. In contrast to the cf-IMRT plans, the SMART plans

  8. Simultaneous modulated accelerated radiation therapy for esophageal cancer: A feasibility study

    PubMed Central

    Zhang, Wu-Zhe; Chen, Jian-Zhou; Li, De-Rui; Chen, Zhi-Jian; Guo, Hong; Zhuang, Ting-Ting; Li, Dong-Sheng; Zhou, Ming-Zhen; Chen, Chuang-Zhen

    2014-01-01

    AIM: To establish the feasibility of simultaneous modulated accelerated radiation therapy (SMART) in esophageal cancer (EC). METHODS: Computed tomography (CT) datasets of 10 patients with upper or middle thoracic squamous cell EC undergoing chemoradiotherapy were used to generate SMART, conventionally-fractionated three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiation therapy (cf-IMRT) plans, respectively. The gross target volume (GTV) of the esophagus, positive regional lymph nodes (LN), and suspected lymph nodes (LN±) were contoured for each patient. The clinical target volume (CTV) was delineated with 2-cm longitudinal and 0.5- to 1.0-cm radial margins with respect to the GTV and with 0.5-cm uniform margins for LN and LN(±). For the SMART plans, there were two planning target volumes (PTVs): PTV66 = (GTV + LN) + 0.5 cm and PTV54 = CTV + 0.5 cm. For the 3DCRT and cf-IMRT plans, there was only a single PTV: PTV60 = CTV + 0.5 cm. The prescribed dose for the SMART plans was 66 Gy/30 F to PTV66 and 54 Gy/30 F to PTV54. The dose prescription to the PTV60 for both the 3DCRT and cf-IMRT plans was set to 60 Gy/30 F. All the plans were generated on the Eclipse 10.0 treatment planning system. Fulfillment of the dose criteria for the PTVs received the highest priority, followed by the spinal cord, heart, and lungs. The dose-volume histograms were compared. RESULTS: Clinically acceptable plans were achieved for all the SMART, cf-IMRT, and 3DCRT plans. Compared with the 3DCRT plans, the SMART plans increased the dose delivered to the primary tumor (66 Gy vs 60 Gy), with improved sparing of normal tissues in all patients. The Dmax of the spinal cord, V20 of the lungs, and Dmean and V50 of the heart for the SMART and 3DCRT plans were as follows: 38.5 ± 2.0 vs 44.7 ± 0.8 (P = 0.002), 17.1 ± 4.0 vs 25.8 ± 5.0 (P = 0.000), 14.4 ± 7.5 vs 21.4 ± 11.1 (P = 0.000), and 4.9 ± 3.4 vs 12.9 ± 7.6 (P = 0.000), respectively. In contrast to the cf

  9. Chemoradiation for ductal pancreatic carcinoma: principles of combining chemotherapy with radiation, definition of target volume and radiation dose.

    PubMed

    Wilkowski, Ralf; Thoma, Martin; Weingandt, Helmut; Dühmke, Eckhart; Heinemann, Volker

    2005-05-10

    Review of the role of chemoradiotherapy in the treatment of locally advanced pancreatic cancer with a specific focus on the technical feasibility and the integration of chemoradiotherapy into multimodal treatment concepts. Combined chemoradiotherapy of pancreatic cancer is a safe treatment with an acceptable profile of side effects when applied with modern planning and radiation techniques as well as considering tissue tolerance. Conventionally fractionated radiation regimens with total doses of 45-50 Gy and small-volume boost radiation with 5.4 Gy have found the greatest acceptance. Locoregional lymphatic drainage should be included in the planning of target volumes because the risk of tumor involvement and local or loco-regional recurrence is high. Up to now, 5-fluorouracil has been considered the "standard" agent for concurrent chemoradiotherapy. The role of gemcitabine given concurrently with radiation has not yet been defined, since high local efficacy may also be accompanied by enhanced toxicities. In addition, no dose or administration form has been determined to be "standard" up to now. The focus of presently ongoing research is to define an effective and feasible regimen of concurrent chemoradiotherapy. While preliminary results indicate promising results using gemcitabine-based chemoradiotherapy, reliable data derived from mature phase III trials are greatly needed. Intensity-modulated radiotherapy has been developed to improve target-specific radiation and to reduce organ toxicity. Its clinical relevance still needs to be defined.

  10. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer.

    PubMed

    Muijs, Christina T; Schreurs, Liesbeth M; Busz, Dianne M; Beukema, Jannet C; van der Borden, Arnout J; Pruim, Jan; Van der Jagt, Eric J; Plukker, John Th; Langendijk, Johannes A

    2009-12-01

    To determine the consequences of target volume (TV) modifications, based on the additional use of PET information, on radiation planning, assuming PET/CT-imaging represents the true extent of the tumour. For 21 patients with esophageal cancer, two separate TV's were retrospectively defined based on CT (CT-TV) and co-registered PET/CT images (PET/CT-TV). Two 3D-CRT plans (prescribed dose 50.4 Gy) were constructed to cover the corresponding TV's. Subsequently, these plans were compared for target coverage, normal tissue dose-volume histograms and the corresponding normal tissue complication probability (NTCP) values. The addition of PET led to the modification of CT-TV with at least 10% in 12 of 21 patients (57%) (reduction in 9, enlargement in 3). PET/CT-TV was inadequately covered by the CT-based treatment plan in 8 patients (36%). Treatment plan modifications resulted in significant changes (p<0.05) in dose distributions to heart and lungs. Corresponding changes in NTCP values ranged from -3% to +2% for radiation pneumonitis and from -0.2% to +1.2% for cardiac mortality. This study demonstrated that TV's based on CT might exclude PET-avid disease. Consequences are under dosing and thereby possibly ineffective treatment. Moreover, the addition of PET in radiation planning might result in clinical important changes in NTCP.

  11. Estimation of Error in Maximal Intensity Projection-Based Internal Target Volume of Lung Tumors: A Simulation and Comparison Study Using Dynamic Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Jing; Read, Paul W.; Baisden, Joseph M.

    Purpose: To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Methods and Materials: Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA)more » from RedCAM ({epsilon}), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability ({nu}). Results: Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies ({epsilon} = -21.64% {+-} 8.23%) and lung tumor patient studies ({epsilon} = -20.31% {+-} 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly ({epsilon} = -5.13{nu} - 6.71, r{sup 2} = 0.76) with the subjects' respiratory variability. Conclusions: Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.« less

  12. Comparison of Magnetic Resonance Imaging and Computed Tomography for Breast Target Volume Delineation in Prone and Supine Positions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogson, Elise M.; Liverpool and Macarthur Cancer Therapy Centres, Liverpool; Ingham Institute for Applied Medical Research, Liverpool

    2016-11-15

    Purpose: To determine whether T2-weighted MRI improves seroma cavity (SC) and whole breast (WB) interobserver conformity for radiation therapy purposes, compared with the gold standard of CT, both in the prone and supine positions. Methods and Materials: Eleven observers (2 radiologists and 9 radiation oncologists) delineated SC and WB clinical target volumes (CTVs) on T2-weighted MRI and CT supine and prone scans (4 scans per patient) for 33 patient datasets. Individual observer's volumes were compared using the Dice similarity coefficient, volume overlap index, center of mass shift, and Hausdorff distances. An average cavity visualization score was also determined. Results: Imaging modalitymore » did not affect interobserver variation for WB CTVs. Prone WB CTVs were larger in volume and more conformal than supine CTVs (on both MRI and CT). Seroma cavity volumes were larger on CT than on MRI. Seroma cavity volumes proved to be comparable in interobserver conformity in both modalities (volume overlap index of 0.57 (95% Confidence Interval (CI) 0.54-0.60) for CT supine and 0.52 (95% CI 0.48-0.56) for MRI supine, 0.56 (95% CI 0.53-0.59) for CT prone and 0.55 (95% CI 0.51-0.59) for MRI prone); however, after registering modalities together the intermodality variation (Dice similarity coefficient of 0.41 (95% CI 0.36-0.46) for supine and 0.38 (0.34-0.42) for prone) was larger than the interobserver variability for SC, despite the location typically remaining constant. Conclusions: Magnetic resonance imaging interobserver variation was comparable to CT for the WB CTV and SC delineation, in both prone and supine positions. Although the cavity visualization score and interobserver concordance was not significantly higher for MRI than for CT, the SCs were smaller on MRI, potentially owing to clearer SC definition, especially on T2-weighted MR images.« less

  13. Evaluation of radiotherapy techniques for radical treatment of lateralised oropharyngeal cancers : Dosimetry and NTCP.

    PubMed

    McQuaid, D; Dunlop, A; Nill, S; Franzese, C; Nutting, C M; Harrington, K J; Newbold, K L; Bhide, S A

    2016-08-01

    The aim of this study was to investigate potential advantages and disadvantages of three-dimensional conformal radiotherapy (3DCRT), multiple fixed-field intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in terms of dose to the planning target volume (PTV), organs at risk (OARs) and normal tissue complication probability (NTCP) for delivering ipsilateral radiotherapy. 3DCRT, IMRT and VMAT were compared in patients with well-lateralised primary tonsillar cancers who underwent primary radical ipsilateral radiotherapy. The following parameters were compared: conformity index (CI); homogeneity index (HI); dose-volume histograms (DVHs) of PTVs and OARs; NTCP, risk of radiation-induced cancer and dose accumulation during treatment. IMRT and VMAT were superior to 3DCRT in terms of CI, HI and dose to the target volumes, as well as mandible and dose accumulation robustness. The techniques were equivalent in terms of dose and NTCP for the contralateral oral cavity, contralateral submandibular gland and mandible, when specific dose constraint objectives were used on the oral cavity volume. Although the volume of normal tissue exposed to low-dose radiation was significantly higher with IMRT and VMAT, the risk of radiation-induced secondary malignancy was dependant on the mathematical model used. This study demonstrates the superiority of IMRT/VMAT techniques over 3DCRT in terms of dose homogeneity, conformity and consistent dose delivery to the PTV throughout the course of treatment in patients with lateralised oropharyngeal cancers. Dosimetry and NTCP calculations show that these techniques are equivalent to 3DCRT with regard to the risk of acute mucositis when specific dose constraint objectives were used on the contralateral oral cavity OAR.

  14. TU-E-BRA-11: Volume of Interest Cone Beam CT with a Low-Z Linear Accelerator Target: Proof-of-Concept.

    PubMed

    Robar, J; Parsons, D; Berman, A; MacDonald, A

    2012-06-01

    This study demonstrates feasibility and advantages of volume of interest (VOI) cone beam CT (CBCT) imaging performed with an x-ray beam generated from 2.35 MeV electrons incident on a carbon linear accelerator target. The electron beam energy was reduced to 2.35 MeV in a Varian 21EX linear accelerator containing a 7.6 mm thick carbon x-ray target. Arbitrary imaging volumes were defined in the planning system to produce dynamic MLC sequences capable of tracking off-axis VOIs in phantoms. To reduce truncation artefacts, missing data in projection images were completed using a priori DRR information from the planning CT set. The feasibility of the approach was shown through imaging of an anthropomorphic phantom and the head-and-neck section of a lamb. TLD800 and EBT2 radiochromic film measurements were used to compare the VOI dose distributions with those for full-field techniques. CNR was measured for VOIs ranging from 4 to 15 cm diameter. The 2.35 MV/Carbon beam provides favorable CNR characteristics, although marked boundary and cupping artefacts arise due to truncation of projection data. These artefacts are largely eliminated using the DRR filling technique. Imaging dose was reduced by 5-10% and 75% inside and outside of the VOI, respectively, compared to full-field imaging for a cranial VOI. For the 2.35 MV/Carbon beam, CNR was shown to be approximately invariant with VOI dimension for bone and lung objects. This indicates that the advantage of the VOI approach with the low-Z target beam is substantial imaging dose reduction, not improvement of image quality. VOI CBCT using a 2.35 MV/Carbon beam is a feasible technique whereby a chosen imaging volume can be defined in the planning system and tracked during acquisition. The novel x-ray beam affords good CNR characteristics while imaging dose is localized to the chosen VOI. Funding for this project has been received from Varian Medical, Incorporated. © 2012 American Association of Physicists in Medicine.

  15. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT.

    PubMed

    Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S

    2010-01-01

    To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p<0.001) with higher conformity index value of 0.81±0.07 compared to both the 3D-CRT plans. The doses to the liver and bowel reduced significantly (p<0.001) with IMRT plans compared to other 3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.

  16. Comparing masked target transform volume (MTTV) clutter metric to human observer evaluation of visual clutter

    NASA Astrophysics Data System (ADS)

    Camp, H. A.; Moyer, Steven; Moore, Richard K.

    2010-04-01

    The Night Vision and Electronic Sensors Directorate's current time-limited search (TLS) model, which makes use of the targeting task performance (TTP) metric to describe image quality, does not explicitly account for the effects of visual clutter on observer performance. The TLS model is currently based on empirical fits to describe human performance for a time of day, spectrum and environment. Incorporating a clutter metric into the TLS model may reduce the number of these empirical fits needed. The masked target transform volume (MTTV) clutter metric has been previously presented and compared to other clutter metrics. Using real infrared imagery of rural images with varying levels of clutter, NVESD is currently evaluating the appropriateness of the MTTV metric. NVESD had twenty subject matter experts (SME) rank the amount of clutter in each scene in a series of pair-wise comparisons. MTTV metric values were calculated and then compared to the SME observers rankings. The MTTV metric ranked the clutter in a similar manner to the SME evaluation, suggesting that the MTTV metric may emulate SME response. This paper is a first step in quantifying clutter and measuring the agreement to subjective human evaluation.

  17. Utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer and atelectasis.

    PubMed

    Yin, Li-Jie; Yu, Xiao-Bin; Ren, Yan-Gang; Gu, Guang-Hai; Ding, Tian-Gui; Lu, Zhi

    2013-03-18

    To investigate the utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer (NSCLC) and atelectasis. Thirty NSCLC patients who underwent radical radiotherapy from August 2010 to March 2012 were included in this study. All patients were pathologically confirmed to have atelectasis by imaging examination. PET-CT scanning was performed in these patients. According to the PET-CT scan results, the gross tumor volume (GTV) and organs at risk (OARs, including the lungs, heart, esophagus and spinal cord) were delineated separately both on CT and PET-CT images. The clinical target volume (CTV) was defined as the GTV plus a margin of 6-8 mm, and the planning target volume (PTV) as the GTV plus a margin of 10-15mm. An experienced physician was responsible for designing treatment plans PlanCT and PlanPET-CT on CT image sets. 95% of the PTV was encompassed by the 90% isodose curve, and the two treatment plans kept the same beam direction, beam number, gantry angle, and position of the multi-leaf collimator as much as possible. The GTV was compared using a target delineation system, and doses distributions to OARs were compared on the basis of dose-volume histogram (DVH) parameters. The GTVCT and GTVPET-CT had varying degrees of change in all 30 patients, and the changes in the GTVCT and GTVPET-CT exceeded 25% in 12 (40%) patients. The GTVPET-CT decreased in varying degrees compared to the GTVCT in 22 patients. Their median GTVPET-CT and median GTVPET-CT were 111.4 cm3 (range, 37.8 cm3-188.7 cm3) and 155.1 cm3 (range, 76.2 cm3-301.0 cm3), respectively, and the former was 43.7 cm3 (28.2%) less than the latter. The GTVPET-CT increased in varying degrees compared to the GTVCT in 8 patients. Their median GTVPET-CT and median GTVPET-CT were 144.7 cm3 (range, 125.4 cm3-178.7 cm3) and 125.8 cm3 (range, 105.6 cm3-153.5 cm3), respectively, and the former was 18.9 cm3 (15.0%) greater than the latter

  18. System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid

    DOEpatents

    Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.

    2000-01-01

    A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

  19. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, C; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Wong, A

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results inmore » non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to

  20. Study of impacts of different evaluation criteria on gamma pass rates in VMAT QA using MatriXX and EPID

    NASA Astrophysics Data System (ADS)

    Noufal, Manthala Padannayil; Abdullah, Kallikuzhiyil Kochunny; Niyas, Puzhakkal; Subha, Pallimanhayil Abdul Raheem

    2017-12-01

    Aim: This study evaluates the impacts of using different evaluation criteria on gamma pass rates in two commercially available QA methods employed for the verification of VMAT plans using different hypothetical planning target volumes (PTVs) and anatomical regions. Introduction: Volumetric modulated arc therapy (VMAT) is a widely accepted technique to deliver highly conformal treatment in a very efficient manner. As their level of complexity is high in comparison to intensity-modulated radiotherapy (IMRT), the implementation of stringent quality assurance (QA) before treatment delivery is of paramount importance. Material and Methods: Two sets of VMAT plans were generated using Eclipse planning systems, one with five different complex hypothetical three-dimensional PTVs and one including three anatomical regions. The verification of these plans was performed using a MatriXX ionization chamber array embedded inside a MultiCube phantom and a Varian EPID dosimetric system attached to a Clinac iX. The plans were evaluated based on the 3%/3 mm, 2%/2 mm, and 1%/1 mm global gamma criteria and with three low-dose threshold values (0%, 10%, and 20%). Results: The gamma pass rates were above 95% in all VMAT plans, when the 3%/3mm gamma criterion was used and no threshold was applied. In both systems, the pass rates decreased as the criteria become stricter. Higher pass rates were observed when no threshold was applied and they tended to decrease for 10% and 20% thresholds. Conclusion: The results confirm the suitability of the equipments used and the validity of the plans. The study also confirmed that the threshold settings greatly affect the gamma pass rates, especially for lower gamma criteria.

  1. Verification of the grid size and angular increment effects in lung stereotactic body radiation therapy using the dynamic conformal arc technique

    NASA Astrophysics Data System (ADS)

    Park, Hae-Jin; Suh, Tae-Suk; Park, Ji-Yeon; Lee, Jeong-Woo; Kim, Mi-Hwa; Oh, Young-Taek; Chun, Mison; Noh, O. Kyu; Suh, Susie

    2013-06-01

    The dosimetric effects of variable grid size and angular increment were systematically evaluated in the measured dose distributions of dynamic conformal arc therapy (DCAT) for lung stereotactic body radiation therapy (SBRT). Dose variations with different grid sizes (2, 3, and 4 mm) and angular increments (2, 4, 6, and 10°) for spherical planning target volumes (PTVs) were verified in a thorax phantom by using EBT2 films. Although the doses for identical PTVs were predicted for the different grid sizes, the dose discrepancy was evaluated using one measured dose distribution with the gamma tool because the beam was delivered in the same set-up for DCAT. The dosimetric effect of the angular increment was verified by comparing the measured dose area histograms of organs at risk (OARs) at each angular increment. When the difference in the OAR doses is higher than the uncertainty of the film dosimetry, the error is regarded as the angular increment effect in discretely calculated doses. In the results, even when a 2-mm grid size was used with an elaborate dose calculation, 4-mm grid size led to a higher gamma pass ratio due to underdosage, a steep-dose descent gradient, and lower estimated PTV doses caused by the smoothing effect in the calculated dose distribution. An undulating dose distribution and a difference in the maximum contralateral lung dose of up to 14% were observed in dose calculation using a 10° angular increment. The DCAT can be effectively applied for an approximately spherical PTV in a relatively uniform geometry, which is less affected by inhomogeneous materials and differences in the beam path length.

  2. Variation in the Gross Tumor Volume and Clinical Target Volume for Preoperative Radiotherapy of Primary Large High-Grade Soft Tissue Sarcoma of the Extremity Among RTOG Sarcoma Radiation Oncologists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Dian, E-mail: dwang@mcw.edu; Bosch, Walter; Kirsch, David G.

    Purpose: To evaluate variability in the definition of preoperative radiotherapy gross tumor volume (GTV) and clinical target volume (CTV) delineated by sarcoma radiation oncologists. Methods and Materials: Extremity sarcoma planning CT images along with the corresponding diagnostic MRI from two patients were distributed to 10 Radiation Therapy Oncology Group sarcoma radiation oncologists with instructions to define GTV and CTV using standardized guidelines. The CT data with contours were then returned for central analysis. Contours representing statistically corrected 95% (V95) and 100% (V100) agreement were computed for each structure. Results: For the GTV, the minimum, maximum, mean (SD) volumes (mL) weremore » 674, 798, 752 {+-} 35 for the lower extremity case and 383, 543, 447 {+-} 46 for the upper extremity case. The volume (cc) of the union, V95 and V100 were 882, 761, and 752 for the lower, and 587, 461, and 455 for the upper extremity, respectively. The overall GTV agreement was judged to be almost perfect in both lower and upper extremity cases (kappa = 0.9 [p < 0.0001] and kappa = 0.86 [p < 0.0001]). For the CTV, the minimum, maximum, mean (SD) volumes (mL) were 1145, 1911, 1605 {+-} 211 for the lower extremity case and 637, 1246, 1006 {+-} 180 for the upper extremity case. The volume (cc) of the union, V95, and V100 were 2094, 1609, and 1593 for the lower, and 1533, 1020, and 965 for the upper extremity cases, respectively. The overall CTV agreement was judged to be almost perfect in the lower extremity case (kappa = 0.85 [p < 0.0001]) but only substantial in the upper extremity case (kappa = 0.77 [p < 0.0001]). Conclusions: Almost perfect agreement existed in the GTV of these two representative cases. Tshere was no significant disagreement in the CTV of the lower extremity, but variation in the CTV of upper extremity was seen, perhaps related to the positional differences between the planning CT and the diagnostic MRI.« less

  3. SU-C-210-06: Quantitative Evaluation of Dosimetric Effects Resulting From Positional Variations of Pancreatic Tumor Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S; Sehgal, V; Wei, R

    2015-06-15

    Purpose: The aim of this study is to quantify dosimetric effects resulting from variation in pancreatic tumor position assessed by bony anatomy and implanted fiducial markers Methods: Twelve pancreatic cancer patients were retrospectively analyzed for this study. All patients received modulated arc therapy (VMAT) treatment using fiducial-based Image Guided Radiation Therapy (IGRT) to the intact pancreas. Using daily orthogonal kV and/or Cone beam CT images, the shift needed to co-register the daily pre-treatment images to reference CT from fiducial to bone (Fid-Bone) were recorded as Left-Right (LR), Anterior-Posterior (AP) and Superior-Inferior (SI). The original VMAT plan iso-center was shifted basedmore » on KV bone matching positions at 5 evenly spaced fractions. Dose coverage of the planning target volumes (PTVs) (V100%), mean dose to liver, kidney and stomach/duodenum were assessed in the modified plans. Results: A total of 306 fractions were analyzed. The absolute fiducial-bone positional shifts were greatest in the SI direction, (AP = 2.7 ± 3.0, LR = 2.8 ± 2.8, and SI 6.3 ± 7.9 mm, mean ± SD). The V100% was significantly reduced by 13.5%, (Fid-Bone = 95.3 ± 2.0 vs. 82.3 ± 11.8%, p=0.02). This varied widely among patients (Fid-Bone V100% Range = 2–60%), where 33% of patients had a reduction in V100% of more than 10%. The impact on OARs was greatest to the liver (Fid-Bone= 14.6 vs. 16.1 Gy, 10%), and stomach, (Fid-Bone = 23.9 vx. 25.5 Gy, 7%), however was not statistically significant (p=0.10 both). Conclusion: Compared to matching by fiducial markers, matching by bony anatomy would have substantially reduced the PTV coverage by 13.5%. This reinforces the importance of online position verification based on fiducial markers. Hence, implantation of fiducial markers is strongly recommended for pancreatic cancer patients undergoing intensity modulated radiation therapy treatments.« less

  4. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    NASA Astrophysics Data System (ADS)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  5. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation.

    PubMed

    Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M

    2015-09-07

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo(®) TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus(®) chamber. An EBT3(®) film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  6. Projection-data based temporal maximum attenuation computed tomography: determination of internal target volume for lung cancer against intra-fraction motion

    NASA Astrophysics Data System (ADS)

    Mori, Shinichiro; Kanematsu, Nobuyuki; Asakura, Hiroshi; Endo, Masahiro

    2007-02-01

    The concept of internal target volume (ITV) is highly significant in radiotherapy for the lung, an organ which is hampered by organ motion. To date, different methods to obtain the ITV have been published and are therefore available. To define ITV, we developed a new method by adapting a time filter to the four-dimensional CT scan technique (4DCT) which is projection-data processing (4D projection data maximum attenuation (4DPM)), and compared it with reconstructed image processing (4D image maximum intensity projection (4DIM)) using a phantom and clinical evaluations. 4DIM and 4DPM captured accurate maximum intensity volume (MIV), that is tumour encompassing volume, easily. Although 4DIM increased the CT number 1.8 times higher than 4DPM, 4DPM provided the original tumour CT number for MIV via a reconstruction algorithm. In the patient with lung fibrosis honeycomb, the MIV with 4DIM is 0.7 cm larger than that for cine imaging in the cranio-caudal direction. 4DPM therefore provided an accurate MIV independent of patient characteristics and reconstruction conditions. These findings indicate the usefulness of 4DPM in determining ITV in radiotherapy.

  7. Are there benefits or harm from pressure targeting during lung-protective ventilation?

    PubMed

    MacIntyre, Neil R; Sessler, Curtis N

    2010-02-01

    Mechanically, breath design is usually either flow/volume-targeted or pressure-targeted. Both approaches can effectively provide lung-protective ventilation, but they prioritize different ventilation parameters, so their responses to changing respiratory-system mechanics and patient effort are different. These different response behaviors have advantages and disadvantages that can be important in specific circumstances. Flow/volume targeting guarantees a set minute ventilation but sometimes may be difficult to synchronize with patient effort, and it will not limit inspiratory pressure. In contrast, pressure targeting, with its variable flow, may be easier to synchronize and will limit inspiratory pressure, but it provides no control over delivered volume. Skilled clinicians can maximize benefits and minimize problems with either flow/volume targeting or pressure targeting. Indeed, as is often the case in managing complex life-support devices, it is operator expertise rather than the device design features that most impacts patient outcomes.

  8. Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC).

    PubMed

    Cheung, Patrick C F; Sixel, Katharina E; Tirona, Romeo; Ung, Yee C

    2003-12-01

    The active breathing control (ABC) device allows for temporary immobilization of respiratory motion by implementing a breath hold at a predefined relative lung volume and air flow direction. The purpose of this study was to quantitatively evaluate the ability of the ABC device to immobilize peripheral lung tumors at a reproducible position, increase total lung volume, and thereby reduce lung mass within the planning target volume (PTV). Ten patients with peripheral non-small-cell lung cancer tumors undergoing radiotherapy had CT scans of their thorax with and without ABC inspiration breath hold during the first 5 days of treatment. Total lung volumes were determined from the CT data sets. Each peripheral lung tumor was contoured by one physician on all CT scans to generate gross tumor volumes (GTVs). The lung density and mass contained within a 1.5-cm PTV margin around each peripheral tumor was calculated using CT numbers. Using the center of the GTV from the Day 1 ABC scan as the reference, the displacement of subsequent GTV centers on Days 2 to 5 for each patient with ABC applied was calculated in three dimensions. With the use of ABC inspiration breath hold, total lung volumes increased by an average of 42%. This resulted in an average decrease in lung mass of 18% within a standard 1.5-cm PTV margin around the GTV. The average (+/- standard deviation) displacement of GTV centers with ABC breath hold applied was 0.3 mm (+/- 1.8 mm), 1.2 mm (+/- 2.3 mm), and 1.1 mm (+/- 3.5 mm) in the lateral direction, anterior-posterior direction, and superior-inferior direction, respectively. Results from this study indicate that there remains some inter-breath hold variability in peripheral lung tumor position with the use of ABC inspiration breath hold, which prevents significant PTV margin reduction. However, lung volumes can significantly increase, thereby decreasing the mass of lung within a standard PTV.

  9. SU-E-T-495: Influence of Reduced Target-To-Nozzle Distance On Secondary Neutron Dose Equivalent in Proton and Carbon Ion Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Y; Shahnazi, K; Wang, W

    Purpose: Ion beams have an unavoidable lateral spread due to nuclear interactions interacting with the air and monitoring systems. To minimize this spread, the distance between the nozzle and the patient should be kept as small as possible.The purpose of this work was to determine the impact of the target-to-nozzle distance reduction on the secondary neutron dose equivalent in proton and carbon ion radiotherapy. Methods: In this study, abdominal and head phantoms were scanned with our CT scanner. Cubical targets with side lengths of 3 cm to 10 cm and 1 cm to 5 cm were drawn in the abdominalmore » and head phantoms respectively. Two intensity-modulated plans were made for each phantom and ion. The first of these plans placed the target at the isocenter while the other shifted the phantom 30 cm towards the nozzle. The plans at both phantom locations were optimized to provide identical dose coverage to the PTVs.Secondary neutron dose equivalent at 50 cm lateral to the center of target. Results: The neutron dose equivalent was higher for the larger field size from 0.25µSv per Gy (RBE) to 72µSv per Gy (RBE). The neutron dose equivalent was smaller when the phantom was placed at the upstream target location versus at the isocenter location by 8.9% to 10.4% and 11.0% to 22.1% for proton plans of the abdominal and head phantoms respectively. Differences for carbon plans with different target-to-nozzle locations were less than 3% for both phantoms. Conclusion: A reduction of target-to-nozzle distance can lead to benefits for proton radiotherapy. In this study, a reduction of secondary neutron dose equivalent was found for proton plans with a smaller target-to-nozzle distance. A greater impact was found for a head phantom with a smaller field size; however, a reduction of the target-to-nozzle distance had little effect for carbon therapy.« less

  10. Elective Clinical Target Volumes for Conformal Therapy in Anorectal Cancer: A Radiation Therapy Oncology Group Consensus Panel Contouring Atlas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myerson, Robert J.; Garofalo, Michael C.; El Naqa, Issam

    2009-07-01

    Purpose: To develop a Radiation Therapy Oncology Group (RTOG) atlas of the elective clinical target volume (CTV) definitions to be used for planning pelvic intensity-modulated radiotherapy (IMRT) for anal and rectal cancers. Methods and Materials: The Gastrointestinal Committee of the RTOG established a task group (the nine physician co-authors) to develop this atlas. They responded to a questionnaire concerning three elective CTVs (CTVA: internal iliac, presacral, and perirectal nodal regions for both anal and rectal case planning; CTVB: external iliac nodal region for anal case planning and for selected rectal cases; CTVC: inguinal nodal region for anal case planning andmore » for select rectal cases), and to outline these areas on individual computed tomographic images. The imaging files were shared via the Advanced Technology Consortium. A program developed by one of the co-authors (I.E.N.) used binomial maximum-likelihood estimates to generate a 95% group consensus contour. The computer-estimated consensus contours were then reviewed by the group and modified to provide a final contouring consensus atlas. Results: The panel achieved consensus CTV definitions to be used as guidelines for the adjuvant therapy of rectal cancer and definitive therapy for anal cancer. The most important difference from similar atlases for gynecologic or genitourinary cancer is mesorectal coverage. Detailed target volume contouring guidelines and images are discussed. Conclusion: This report serves as a template for the definition of the elective CTVs to be used in IMRT planning for anal and rectal cancers, as part of prospective RTOG trials.« less

  11. The dosimetric impact of daily setup error on target volumes and surrounding normal tissue in the treatment of prostate cancer with intensity-modulated radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algan, Ozer, E-mail: oalgan@ouhsc.edu; Jamgade, Ambarish; Ali, Imad

    2012-01-01

    The purpose of this study was to evaluate the impact of daily setup error and interfraction organ motion on the overall dosimetric radiation treatment plans. Twelve patients undergoing definitive intensity-modulated radiation therapy (IMRT) treatments for prostate cancer were evaluated in this institutional review board-approved study. Each patient had fiducial markers placed into the prostate gland before treatment planning computed tomography scan. IMRT plans were generated using the Eclipse treatment planning system. Each patient was treated to a dose of 8100 cGy given in 45 fractions. In this study, we retrospectively created a plan for each treatment day that had amore » shift available. To calculate the dose, the patient would have received under this plan, we mathematically 'negated' the shift by moving the isocenter in the exact opposite direction of the shift. The individualized daily plans were combined to generate an overall plan sum. The dose distributions from these plans were compared with the treatment plans that were used to treat the patients. Three-hundred ninety daily shifts were negated and their corresponding plans evaluated. The mean isocenter shift based on the location of the fiducial markers was 3.3 {+-} 6.5 mm to the right, 1.6 {+-} 5.1 mm posteriorly, and 1.0 {+-} 5.0 mm along the caudal direction. The mean D95 doses for the prostate gland when setup error was corrected and uncorrected were 8228 and 7844 cGy (p < 0.002), respectively, and for the planning target volume (PTV8100) was 8089 and 7303 cGy (p < 0.001), respectively. The mean V95 values when patient setup was corrected and uncorrected were 99.9% and 87.3%, respectively, for the PTV8100 volume (p < 0.0001). At an individual patient level, the difference in the D95 value for the prostate volume could be >1200 cGy and for the PTV8100 could approach almost 2000 cGy when comparing corrected against uncorrected plans. There was no statistically significant difference in the D35

  12. Multimodal Hierarchical Imaging of Serial Sections for Finding Specific Cellular Targets within Large Volumes

    PubMed Central

    Wacker, Irene U.; Veith, Lisa; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R.

    2018-01-01

    Targeting specific cells at ultrastructural resolution within a mixed cell population or a tissue can be achieved by hierarchical imaging using a combination of light and electron microscopy. Samples embedded in resin are sectioned into arrays consisting of ribbons of hundreds of ultrathin sections and deposited on pieces of silicon wafer or conductively coated coverslips. Arrays are imaged at low resolution using a digital consumer like smartphone camera or light microscope (LM) for a rapid large area overview, or a wide field fluorescence microscope (fluorescence light microscopy (FLM)) after labeling with fluorophores. After post-staining with heavy metals, arrays are imaged in a scanning electron microscope (SEM). Selection of targets is possible from 3D reconstructions generated by FLM or from 3D reconstructions made from the SEM image stacks at intermediate resolution if no fluorescent markers are available. For ultrastructural analysis, selected targets are finally recorded in the SEM at high-resolution (a few nanometer image pixels). A ribbon-handling tool that can be retrofitted to any ultramicrotome is demonstrated. It helps with array production and substrate removal from the sectioning knife boat. A software platform that allows automated imaging of arrays in the SEM is discussed. Compared to other methods generating large volume EM data, such as serial block-face SEM (SBF-SEM) or focused ion beam SEM (FIB-SEM), this approach has two major advantages: (1) The resin-embedded sample is conserved, albeit in a sliced-up version. It can be stained in different ways and imaged with different resolutions. (2) As the sections can be post-stained, it is not necessary to use samples strongly block-stained with heavy metals to introduce contrast for SEM imaging or render the tissue blocks conductive. This makes the method applicable to a wide variety of materials and biological questions. Particularly prefixed materials e.g., from biopsy banks and pathology labs

  13. A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications.

    PubMed

    Johnson, Corinne; Price, Gareth; Khalifa, Jonathan; Faivre-Finn, Corinne; Dekker, Andre; Moore, Christopher; van Herk, Marcel

    2018-02-01

    The gross tumour volume (GTV) is predictive of clinical outcome and consequently features in many machine-learned models. 4D-planning, however, has prompted substitution of the GTV with the internal gross target volume (iGTV). We present and validate a method to synthesise GTV data from the iGTV, allowing the combination of 3D and 4D planned patient cohorts for modelling. Expert delineations in 40 non-small cell lung cancer patients were used to develop linear fit and erosion methods to synthesise the GTV volume and shape. Quality was assessed using Dice Similarity Coefficients (DSC) and closest point measurements; by calculating dosimetric features; and by assessing the quality of random forest models built on patient populations with and without synthetic GTVs. Volume estimates were within the magnitudes of inter-observer delineation variability. Shape comparisons produced mean DSCs of 0.8817 and 0.8584 for upper and lower lobe cases, respectively. A model trained on combined true and synthetic data performed significantly better than models trained on GTV alone, or combined GTV and iGTV data. Accurate synthesis of GTV size from the iGTV permits the combination of lung cancer patient cohorts, facilitating machine learning applications in thoracic radiotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer.

    PubMed

    Nestle, Ursula; Schaefer-Schuler, Andrea; Kremp, Stephanie; Groeschel, Andreas; Hellwig, Dirk; Rübe, Christian; Kirsch, Carl-Martin

    2007-04-01

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN(PET)). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN(PET)). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV(vis); 40% SUVmax: GTV40; SUV=2.5: GTV2.5; target/background (T/B) algorithm: GTV(bg)). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUVmax = 2.5; p = 0.0001 for technical delineability by GTV2.5; p = 0.003 by GTV40), favouring the GTV(bg) method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring.

  15. Coplanar intensity-modulated radiotherapy class solution for patients with prostate cancer with bilateral hip prostheses with and without nodal involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk; McVey, Gerard P.; South, Chris P.

    2013-07-01

    Dose distributions for prostate radiotherapy are difficult to predict in patients with bilateral hip prostheses in situ, due to image distortions and difficulty in dose calculation. The feasibility of delivering curative doses to prostate using intensity-modulated radiotherapy (IMRT) in patients with bilateral hip prostheses was evaluated. Planning target volumes for prostate only (PTV1) and pelvic nodes (PTV2) were generated from data on 5 patients. PTV1 and PTV2 dose prescriptions were 70 Gy and 60 Gy, respectively, in 35 fractions, and an additional nodal boost of 65 Gy was added for 1 plan. Rectum, bladder, and bowel were also delineated. Beammore » angles and segments were chosen to best avoid entering through the prostheses. Dose-volume data were assessed with respect to clinical objectives. The plans achieved the required prescription doses to the PTVs. Five-field IMRT plans were adequate for patients with relatively small prostheses (head volumes<60 cm{sup 3}) but 7-field plans were required for patients with larger prostheses. Bowel and bladder doses were clinically acceptable for all patients. Rectal doses were deemed clinically acceptable, although the V{sub 50} {sub Gy} objective was not met for 4/5 patients. We describe an IMRT solution for patients with bilateral hip prostheses of varying size and shape, requiring either localized or whole pelvic radiotherapy for prostate cancer.« less

  16. Functional Requirements of a Target Description System for Vulnerability Analysis

    DTIC Science & Technology

    1979-11-01

    called GIFT .1,2 Together the COMGEOM description model and GIFT codes make up the BRL’s target description system. The significance of a target...and modifying target descriptions are described. 1 Lawrence W. Bain, Jr. and Mathew J. Reisinger, "The GIFT Code User Manual; Volume 1...34The GIFT Code User Manual; Volume II, The Output Options," unpublished draft of BRL report. II. UNDERLYING PHILOSOPHY The BRL has a computer

  17. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo‐based dose distributions

    PubMed Central

    Kapanen, Mika K.; Hyödynmaa, Simo J.; Wigren, Tuija K.; Pitkänen, Maunu A.

    2014-01-01

    The accuracy of dose calculation is a key challenge in stereotactic body radiotherapy (SBRT) of the lung. We have benchmarked three photon beam dose calculation algorithms — pencil beam convolution (PBC), anisotropic analytical algorithm (AAA), and Acuros XB (AXB) — implemented in a commercial treatment planning system (TPS), Varian Eclipse. Dose distributions from full Monte Carlo (MC) simulations were regarded as a reference. In the first stage, for four patients with central lung tumors, treatment plans using 3D conformal radiotherapy (CRT) technique applying 6 MV photon beams were made using the AXB algorithm, with planning criteria according to the Nordic SBRT study group. The plans were recalculated (with same number of monitor units (MUs) and identical field settings) using BEAMnrc and DOSXYZnrc MC codes. The MC‐calculated dose distributions were compared to corresponding AXB‐calculated dose distributions to assess the accuracy of the AXB algorithm, to which then other TPS algorithms were compared. In the second stage, treatment plans were made for ten patients with 3D CRT technique using both the PBC algorithm and the AAA. The plans were recalculated (with same number of MUs and identical field settings) with the AXB algorithm, then compared to original plans. Throughout the study, the comparisons were made as a function of the size of the planning target volume (PTV), using various dose‐volume histogram (DVH) and other parameters to quantitatively assess the plan quality. In the first stage also, 3D gamma analyses with threshold criteria 3%/3 mm and 2%/2 mm were applied. The AXB‐calculated dose distributions showed relatively high level of agreement in the light of 3D gamma analysis and DVH comparison against the full MC simulation, especially with large PTVs, but, with smaller PTVs, larger discrepancies were found. Gamma agreement index (GAI) values between 95.5% and 99.6% for all the plans with the threshold criteria 3%/3 mm were

  18. Determination of internal target volume for radiation treatment planning of esophageal cancer by using 4-dimensional computed tomography (4DCT).

    PubMed

    Chen, Xiaojian; Lu, Haijun; Tai, An; Johnstone, Candice; Gore, Elizabeth; Li, X Allen

    2014-09-01

    To determine an efficient strategy for the generation of the internal target volume (ITV) for radiation treatment planning for esophageal cancer using 4-dimensional computed tomography (4DCT). 4DCT sets acquired for 20 patients with esophageal carcinoma were analyzed. Each of the 4DCT sets was binned into 10 respiratory phases. For each patient, the gross tumor volume (GTV) was delineated on the 4DCT set at each phase. Various strategies to derive ITV were explored, including the volume from the maximum intensity projection (MIP; ITV_MIP), unions of the GTVs from selected multiple phases ITV2 (0% and 50% phases), ITV3 (ITV2 plus 80%), and ITV4 (ITV3 plus 60%), as well as the volumes expanded from ITV2 and ITV3 with a uniform margin. These ITVs were compared to ITV10 (the union of the GTVs for all 10 phases) and the differences were measured with the overlap ratio (OR) and relative volume ratio (RVR) relative to ITV10 (ITVx/ITV10). For all patients studied, the average GTV from a single phase was 84.9% of ITV10. The average ORs were 91.2%, 91.3%, 94.5%, and 96.4% for ITV_MIP, ITV2, ITV3, and ITV4, respectively. Low ORs were associated with irregular breathing patterns. ITV3s plus 1 mm uniform margins (ITV3+1) led to an average OR of 98.1% and an average RVR of 106.4%. The ITV generated directly from MIP underestimates the range of the respiration motion for esophageal cancer. The ITV generated from 3 phases (ITV3) may be used for regular breathers, whereas the ITV generated from 4 phases (ITV4) or ITV3 plus a 1-mm uniform margin may be applied for irregular breathers. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Dosimetric evaluation of planning target volume margin reduction for prostate cancer via image-guided intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-07-01

    The aim of this study was to quantitatively estimate the dosimetric benefits of the image-guided radiation therapy (IGRT) system for the prostate intensity-modulated radiation therapy (IMRT) delivery. The cases of eleven patients who underwent IMRT for prostate cancer without a prostatectomy at our institution between October 2012 and April 2014 were retrospectively analyzed. For every patient, clinical target volume (CTV) to planning target volume (PTV) margins were uniformly used: 3 mm, 5 mm, 7 mm, 10 mm, 12 mm, and 15 mm. For each margin size, the IMRT plans were independently optimized by one medical physicist using Pinnalce3 (ver. 8.0.d, Philips Medical System, Madison, WI) in order to maintain the plan quality. The maximum geometrical margin (MGM) for every CT image set, defined as the smallest margin encompassing the rectum at least at one slice, was between 13 mm and 26 mm. The percentage rectum overlapping PTV (%V ROV ), the rectal normal tissue complication probability (NTCP) and the mean rectal dose (%RD mean ) increased in proportion to the increase of PTV margin. However the bladder NTCP remained around zero to some extent regardless of the increase of PTV margin while the percentage bladder overlapping PTV (%V BOV ) and the mean bladder dose (%BD mean ) increased in proportion to the increase of PTV margin. Without relatively large rectum or small bladder, the increase observed for rectal NTCP, %RDmean and %BD mean per 1-mm PTV margin size were 1.84%, 2.44% and 2.90%, respectively. Unlike the behavior of the rectum or the bladder, the maximum dose on each femoral head had little effect on PTV margin. This quantitative study of the PTV margin reduction supported that IG-IMRT has enhanced the clinical effects over prostate cancer with the reduction of normal organ complications under the similar level of PTV control.

  20. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy.

    PubMed

    Clements, N; Kron, T; Franich, R; Dunn, L; Roxby, P; Aarons, Y; Chesson, B; Siva, S; Duplan, D; Ball, D

    2013-02-01

    Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. A Perspex thorax phantom was used to simulate a patient. Three wooden "lung" inserts with embedded Perspex "lesions" were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to true ITVs. Breathing patterns with a

  1. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, N.; Kron, T.; Roxby, P.

    2013-02-15

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of thismore » work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to

  2. Impact of PET and MRI threshold-based tumor volume segmentation on patient-specific targeted radionuclide therapy dosimetry using CLR1404.

    PubMed

    Besemer, Abigail E; Titz, Benjamin; Grudzinski, Joseph J; Weichert, Jamey P; Kuo, John S; Robins, H Ian; Hall, Lance T; Bednarz, Bryan P

    2017-07-06

    Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124 I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131 I-CLR1404 voxel-level dose distribution was calculated from the 124 I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average  ±  standard deviation (range) was 0.19  ±  0.13 (0.01-0.51), 0.30  ±  0.17 (0.03-0.67), and 0.75  ±  0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131 I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq -1 (0.07-0.37 Gy GBq -1 ). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for

  3. Impact of PET and MRI threshold-based tumor volume segmentation on patient-specific targeted radionuclide therapy dosimetry using CLR1404

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.; Titz, Benjamin; Grudzinski, Joseph J.; Weichert, Jamey P.; Kuo, John S.; Robins, H. Ian; Hall, Lance T.; Bednarz, Bryan P.

    2017-08-01

    Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average  ±  standard deviation (range) was 0.19  ±  0.13 (0.01-0.51), 0.30  ±  0.17 (0.03-0.67), and 0.75  ±  0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard

  4. CO2 laser surface treatment of failed dental implants for re-implantation: an animal study.

    PubMed

    Kasraei, Shahin; Torkzaban, Parviz; Shams, Bahar; Hosseinipanah, Seyed Mohammad; Farhadian, Maryam

    2016-07-01

    The aim of the present study was to evaluate the success rate of failed implants re-implanted after surface treatment with CO2 laser. Despite the widespread use of dental implants, there are many incidents of failures. It is believed that lasers can be applied to decontaminate the implant surface without damaging the implant. Ten dental implants that had failed for various reasons other than fracture or surface abrasion were subjected to CO2 laser surface treatment and randomly placed in the maxillae of dogs. Three failed implants were also placed as the negative controls after irrigation with saline solution without laser surface treatment. The stability of the implants was evaluated by the use of the Periotest values (PTVs) on the first day after surgery and at 1, 3, and 6 months post-operatively. The mean PTVs of treated implants increased at the first month interval, indicating a decrease in implant stability due to inflammation followed by healing of the tissue. At 3 and 6 months, the mean PTVs decreased compared to the 1-month interval (P < 0.05), indicating improved implant stability. The mean PTVs increased in the negative control group compared to baseline (P < 0.05). Independent t-test showed that the mean PTVs of treated implants were significantly lower than control group at 3 and 6 months after implant placement (P < 0.05). Based on the PTVs, re-implantation of failed implants in Jack Russell Terrier dogs after CO2 laser surface debridement is associated with a high success rate in terms of implant stability.

  5. Maxillary sinus volume in patients with impacted canines.

    PubMed

    Oz, Aslihan Zeynep; Oz, Abdullah Alper; El, Hakan; Palomo, Juan Martin

    2017-01-01

    To evaluate the maxillary sinus volumes in unilaterally impacted canine patients and to compare the volumetric changes that occur after the eruption of canines to the dental arch using cone beam computed tomography (CBCT). Pre- (T0) and posttreatment (T1) CBCT records of 30 patients were used to calculate maxillary sinus volumes between the impacted and erupted canine sides. The InVivoDental 5.0 program was used to measure the volume of the maxillary sinuses. The distance from impacted canine cusp tip to the target point on the palatal plane was also measured. Right maxillary sinus volume was statistically significantly smaller compared to that of the left maxillary sinus when the canine was impacted on the right side at T0. According to the T1 measurements there was no significant difference between the mean volumes of the impaction side and the contralateral side. The distance from the canine tip to its target point on the palatal plane were 17.17 mm, and the distance from the tip to the target point was 15.14 mm for the left- and right-side impacted canines, respectively, and there was a significant difference between the mean amount of change of both sides of maxillary sinuses after treatment of impacted canines. Orthodontic treatment of impacted canines created a significant increase in maxillary sinus volume when the impacted canines were closer with respect to the maxillary sinus.

  6. Nuclear reactor target assemblies, nuclear reactor configurations, and methods for producing isotopes, modifying materials within target material, and/or characterizing material within a target material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, James J.; Wall, Donald; Wittman, Richard S.

    Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less

  7. Setup Variations in Radiotherapy of Anal Cancer: Advantages of Target Volume Reduction Using Image-Guided Radiation Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yijen, E-mail: yichen@coh.org; Suh, Steve; Nelson, Rebecca A.

    2012-09-01

    Purpose: To define setup variations in the radiation treatment (RT) of anal cancer and to report the advantages of image-guided RT (IGRT) in terms of reduction of target volume and treatment-related side effects. Methods and Materials: Twelve consecutive patients with anal cancer treated by combined chemoradiation by use of helical tomotherapy from March 2007 to November 2008 were selected. With patients immobilized and positioned in place, megavoltage computed tomography (MVCT) scans were performed before each treatment and were automatically registered to planning CT scans. Patients were shifted per the registration data and treated. A total of 365 MVCT scans weremore » analyzed. The primary site received a median dose of 55 Gy. To evaluate the potential dosimetric advantage(s) of IGRT, cases were replanned according to Radiation Therapy Oncology Group 0529, with and without adding recommended setup variations from the current study. Results: Significant setup variations were observed throughout the course of RT. The standard deviations for systematic setup correction in the anterior-posterior (AP), lateral, and superior-inferior (SI) directions and roll rotation were 1.1, 3.6, and 3.2 mm, and 0.3 Degree-Sign , respectively. The average random setup variations were 3.8, 5.5, and 2.9 mm, and 0.5 Degree-Sign , respectively. Without daily IGRT, margins of 4.9, 11.1, and 8.5 mm in the AP, lateral, and SI directions would have been needed to ensure that the planning target volume (PTV) received {>=}95% of the prescribed dose. Conversely, daily IGRT required no extra margins on PTV and resulted in a significant reduction of V15 and V45 of intestine and V10 of pelvic bone marrow. Favorable toxicities were observed, except for acute hematologic toxicity. Conclusions: Daily MVCT scans before each treatment can effectively detect setup variations and thereby reduce PTV margins in the treatment of anal cancer. The use of concurrent chemotherapy and IGRT provided favorable

  8. Distance-to-Agreement Investigation of Tomotherapy's Bony Anatomy-Based Autoregistration and Planning Target Volume Contour-Based Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Steve, E-mail: ssuh@coh.org; Schultheiss, Timothy E.

    Purpose: To compare Tomotherapy's megavoltage computed tomography bony anatomy autoregistration with the best achievable registration, assuming no deformation and perfect knowledge of planning target volume (PTV) location. Methods and Materials: Distance-to-agreement (DTA) of the PTV was determined by applying a rigid-body shift to the PTV region of interest of the prostate from its reference position, assuming no deformations. Planning target volume region of interest of the prostate was extracted from the patient archives. The reference position was set by the 6 degrees of freedom (dof)—x, y, z, roll, pitch, and yaw—optimization results from the previous study at this institution. Themore » DTA and the compensating parameters were calculated by the shift of the PTV from the reference 6-dof to the 4-dof—x, y, z, and roll—optimization. In this study, the effectiveness of Tomotherapy's 4-dof bony anatomy–based autoregistration was compared with the idealized 4-dof PTV contour-based optimization. Results: The maximum DTA (maxDTA) of the bony anatomy-based autoregistration was 3.2 ± 1.9 mm, with the maximum value of 8.0 mm. The maxDTA of the contour-based optimization was 1.8 ± 1.3 mm, with the maximum value of 5.7 mm. Comparison of Pearson correlation of the compensating parameters between the 2 4-dof optimization algorithms shows that there is a small but statistically significant correlation in y and z (0.236 and 0.300, respectively), whereas there is very weak correlation in x and roll (0.062 and 0.025, respectively). Conclusions: We find that there is an average improvement of approximately 1 mm in terms of maxDTA on the PTV going from 4-dof bony anatomy-based autoregistration to the 4-dof contour-based optimization. Pearson correlation analysis of the 2 4-dof optimizations suggests that uncertainties due to deformation and inadequate resolution account for much of the compensating parameters, but pitch variation also makes a statistically

  9. RTOG 0529: A Phase 2 Evaluation of Dose-Painted Intensity Modulated Radiation Therapy in Combination With 5-Fluorouracil and Mitomycin-C for the Reduction of Acute Morbidity in Carcinoma of the Anal Canal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachnic, Lisa A., E-mail: lisa.kachnic@bmc.org; Winter, Kathryn; Myerson, Robert J.

    2013-05-01

    Purpose: A multi-institutional phase 2 trial assessed the utility of dose-painted intensity modulated radiation therapy (DP-IMRT) in reducing grade 2+ combined acute gastrointestinal and genitourinary adverse events (AEs) of 5-fluorouracil (5FU) and mitomycin-C (MMC) chemoradiation for anal cancer by at least 15% compared with the conventional radiation/5FU/MMC arm from RTOG 9811. Methods and Materials: T2-4N0-3M0 anal cancer patients received 5FU and MMC on days 1 and 29 of DP-IMRT, prescribed per stage: T2N0, 42 Gy elective nodal and 50.4 Gy anal tumor planning target volumes (PTVs) in 28 fractions; T3-4N0-3, 45 Gy elective nodal, 50.4 Gy ≤3 cm or 54more » Gy >3 cm metastatic nodal and 54 Gy anal tumor PTVs in 30 fractions. The primary endpoint is described above. Planned secondary endpoints assessed all AEs and the investigator’s ability to perform DP-IMRT. Results: Of 63 accrued patients, 52 were evaluable. Tumor stage included 54% II, 25% IIIA, and 21% IIIB. In primary endpoint analysis, 77% experienced grade 2+ gastrointestinal/genitourinary acute AEs (9811 77%). There was, however, a significant reduction in acute grade 2+ hematologic, 73% (9811 85%, P=.032), grade 3+ gastrointestinal, 21% (9811 36%, P=.0082), and grade 3+ dermatologic AEs 23% (9811 49%, P<.0001) with DP-IMRT. On initial pretreatment review, 81% required DP-IMRT replanning, and final review revealed only 3 cases with normal tissue major deviations. Conclusions: Although the primary endpoint was not met, DP-IMRT was associated with significant sparing of acute grade 2+ hematologic and grade 3+ dermatologic and gastrointestinal toxicity. Although DP-IMRT proved feasible, the high pretreatment planning revision rate emphasizes the importance of real-time radiation quality assurance for IMRT trials.« less

  10. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeoh, Kheng-Wei; Mikhaeel, N. George, E-mail: George.Mikhaeel@gstt.nhs.uk

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CTmore » data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.« less

  11. AAA and AXB algorithms for the treatment of nasopharyngeal carcinoma using IMRT and RapidArc techniques.

    PubMed

    Kamaleldin, Maha; Elsherbini, Nader A; Elshemey, Wael M

    2017-09-27

    The aim of this study is to evaluate the impact of anisotropic analytical algorithm (AAA) and 2 reporting systems (AXB-D m and AXB-D w ) of Acuros XB algorithm (AXB) on clinical plans of nasopharyngeal patients using intensity-modulated radiotherapy (IMRT) and RapidArc (RA) techniques. Six plans of different algorithm-technique combinations are performed for 10 patients to calculate dose-volume histogram (DVH) physical parameters for planning target volumes (PTVs) and organs at risk (OARs). The number of monitor units (MUs) and calculation time are also determined. Good coverage is reported for all algorithm-technique combination plans without exceeding the tolerance for OARs. Regardless of the algorithm, RA plans persistently reported higher D 2% values for PTV-70. All IMRT plans reported higher number of MUs (especially with AXB) than did RA plans. AAA-IMRT produced the minimum calculation time of all plans. Major differences between the investigated algorithm-technique combinations are reported only for the number of MUs and calculation time parameters. In terms of these 2 parameters, it is recommended to employ AXB in calculating RA plans and AAA in calculating IMRT plans to achieve minimum calculation times at reduced number of MUs. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  12. Planned Subtotal Resection of Vestibular Schwannoma Differs from the Ideal Radiosurgical Target Defined by Adaptive Hybrid Surgery.

    PubMed

    Sheppard, John P; Lagman, Carlito; Prashant, Giyarpuram N; Alkhalid, Yasmine; Nguyen, Thien; Duong, Courtney; Udawatta, Methma; Gaonkar, Bilwaj; Tenn, Stephen E; Bloch, Orin; Yang, Isaac

    2018-06-01

    To retrospectively compare ideal radiosurgical target volumes defined by a manual method (surgeon) to those determined by Adaptive Hybrid Surgery (AHS) operative planning software in 7 patients with vestibular schwannoma (VS). Four attending surgeons (3 neurosurgeons and 1 ear, nose, and throat surgeon) manually contoured planned residual tumors volumes for 7 consecutive patients with VS. Next, the AHS software determined the ideal radiosurgical target volumes based on a specified radiotherapy plan. Our primary measure was the difference between the average planned residual tumor volumes and the ideal radiosurgical target volumes defined by AHS (dRV AHS-planned ). We included 7 consecutive patients with VS in this study. The planned residual tumor volumes were smaller than the ideal radiosurgical target volumes defined by AHS (1.6 vs. 4.5 cm 3 , P = 0.004). On average, the actual post-operative residual tumor volumes were smaller than the ideal radiosurgical target volumes defined by AHS (2.2 cm 3 vs. 4.5 cm 3 ; P = 0.02). The average difference between the ideal radiosurgical target volume defined by AHS and the planned residual tumor volume (dRV AHS-planned ) was 2.9 ± 1.7 cm 3 , and we observed a trend toward larger dRV AHS-planned in patients who lost serviceable facial nerve function compared with patients who maintained serviceable facial nerve function (4.7 cm 3 vs. 1.9 cm 3 ; P = 0.06). Planned subtotal resection of VS diverges from the ideal radiosurgical target defined by AHS, but whether that influences clinical outcomes is unclear. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. SU-E-J-187: Management of Optic Organ Motion in Fractionated Stereotactic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, M; Maurer, J

    2015-06-15

    Purpose: Fractionated stereotactic radiotherapy (FSRT) for optic nerve tumors can potentially use planning target volume (PTV) expansions as small as 1–5 mm. However, the motion of the intraorbital segment of the optic nerve has not been studied. Methods: A subject with a right optic nerve sheath meningioma underwent CT simulation in three fixed gaze positions: right, left, and fixed forward at a marker. The gross tumor volume (GTV) and the organs-at-risk (OAR) were contoured on all three scans. An IMRT plan using 10 static non-coplanar fields to 50.4 Gy in 28 fractions was designed to treat the fixed-forward gazing GTVmore » with a 1 mm PTV, then resulting coverage was evaluated for the GTV in the three positions. As an alternative, the composite structures were computed to generate the internal target volume (ITV), 1 mm expansion free-gazing PTV, and planning organat-risk volumes (PRVs) for free-gazing treatment. A comparable IMRT plan was created for the free-gazing PTV. Results: If the patient were treated using the fixed forward gaze plan looking straight, right, and left, the V100% for the GTV was 100.0%, 33.1%, and 0.1%, respectively. The volumes of the PTVs for fixed gaze and free-gazing plans were 0.79 and 2.21 cc, respectively, increasing the PTV by a factor of 2.6. The V100% for the fixed gaze and free-gazing plans were 0.85 cc and 2.8 cc, respectively increasing the treated volume by a factor of 3.3. Conclusion: Fixed gaze treatment appears to provide greater organ sparing than free-gazing. However unanticipated intrafraction right or left gaze can produce a geometric miss. Further study of optic nerve motion appears to be warranted in areas such as intrafraction optical confirmation of fixed gaze and optimized gaze directions to minimize lens and other normal organ dose in cranial radiotherapy.« less

  14. Simultaneous integrated protection : A new concept for high-precision radiation therapy.

    PubMed

    Brunner, Thomas B; Nestle, Ursula; Adebahr, Sonja; Gkika, Eleni; Wiehle, Rolf; Baltas, Dimos; Grosu, Anca-Ligia

    2016-12-01

    Stereotactic radiotherapy near serial organs at risk (OAR) requires special caution. A novel intensity-modulated radiotherapy (IMRT) prescription concept termed simultaneous integrated protection (SIP) for quantifiable and comparable dose prescription to targets very close to OAR is described. An intersection volume of a planning risk volume (PRV) with the total planning target volume (PTV) defined the protection volume (PTV SIP ). The remainder of the PTV represented the dominant PTV (PTV dom ). Planning was performed using IMRT. Dose was prescribed to PTV dom according to ICRU in 3, 5, 8, or 12 fractions. Constraints to OARs were expressed as absolute and as equieffective doses at 2 Gy (EQD2). Dose to the gross risk volume of an OAR was to respect constraints. Violation of constraints to OAR triggered a planning iteration at increased fractionation. Dose to PTV SIP was required to be as high as possible within the constraints to avoid local relapse. SIP was applied in 6 patients with OAR being large airways (n = 2) or bowel (n = 4) in 3, 5, 8, and 12 fractions in 1, 3, 1, and 1 patients, respectively. PTVs were 14.5-84.9 ml and PTV SIP 1.8-3.9 ml (2.9-13.4 % of PTV). Safety of the plans was analyzed from the absolute dose-volume histogram (dose to ml). The steepness of dose fall-off could be determined by comparing the dose constraints to the PRVs with those to the OARs (Wilcoxon test p = 0.001). Constraints were respected for the corresponding OARs. All patients had local control at a median 9 month follow-up and toxicity was low. SIP results in a median dose of ≥100 % to PTV, to achieve high local control and low toxicity. Longer follow-up is required to verify results and a prospective clinical trial is currently testing this new approach in chest and abdomen stereotactic body radiotherapy.

  15. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.

    PubMed

    Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang

    2015-06-01

    This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.

  16. Determination of Internal Target Volume for Radiation Treatment Planning of Esophageal Cancer by Using 4-Dimensional Computed Tomography (4DCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaojian; Lu, Haijun; Radiation Oncology Center, Affiliated Hospital of Medical College, Qingdao University, Qingdao

    2014-09-01

    Purpose: To determine an efficient strategy for the generation of the internal target volume (ITV) for radiation treatment planning for esophageal cancer using 4-dimensional computed tomography (4DCT). Methods and Materials: 4DCT sets acquired for 20 patients with esophageal carcinoma were analyzed. Each of the 4DCT sets was binned into 10 respiratory phases. For each patient, the gross tumor volume (GTV) was delineated on the 4DCT set at each phase. Various strategies to derive ITV were explored, including the volume from the maximum intensity projection (MIP; ITV{sub M}IP), unions of the GTVs from selected multiple phases ITV2 (0% and 50% phases), ITV3 (ITV2more » plus 80%), and ITV4 (ITV3 plus 60%), as well as the volumes expanded from ITV2 and ITV3 with a uniform margin. These ITVs were compared to ITV10 (the union of the GTVs for all 10 phases) and the differences were measured with the overlap ratio (OR) and relative volume ratio (RVR) relative to ITV10 (ITVx/ITV10). Results: For all patients studied, the average GTV from a single phase was 84.9% of ITV10. The average ORs were 91.2%, 91.3%, 94.5%, and 96.4% for ITV{sub M}IP, ITV2, ITV3, and ITV4, respectively. Low ORs were associated with irregular breathing patterns. ITV3s plus 1 mm uniform margins (ITV3+1) led to an average OR of 98.1% and an average RVR of 106.4%. Conclusions: The ITV generated directly from MIP underestimates the range of the respiration motion for esophageal cancer. The ITV generated from 3 phases (ITV3) may be used for regular breathers, whereas the ITV generated from 4 phases (ITV4) or ITV3 plus a 1-mm uniform margin may be applied for irregular breathers.« less

  17. Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma.

    PubMed

    Mok, Henry; Crane, Christopher H; Palmer, Matthew B; Briere, Tina M; Beddar, Sam; Delclos, Marc E; Krishnan, Sunil; Das, Prajnan

    2011-06-08

    , without incurring penalty with respect to adjacent organs-at-risk. For rectal carcinoma, IMRT, compared to 3DCRT, yielded plans superior with respect to target coverage, homogeneity, and conformality, while lowering dose to adjacent organs-at-risk. This is achieved despite treating larger volumes, raising the possibility of a clinically-relevant improvement in the therapeutic ratio through the use of IMRT with a belly-board apparatus.

  18. VOLUMNECT: measuring volumes with Kinect

    NASA Astrophysics Data System (ADS)

    Quintino Ferreira, Beatriz; Griné, Miguel; Gameiro, Duarte; Costeira, João. Paulo; Sousa Santos, Beatriz

    2014-03-01

    This article presents a solution to volume measurement object packing using 3D cameras (such as the Microsoft KinectTM). We target application scenarios, such as warehouses or distribution and logistics companies, where it is important to promptly compute package volumes, yet high accuracy is not pivotal. Our application auto- matically detects cuboid objects using the depth camera data and computes their volume and sorting it allowing space optimization. The proposed methodology applies to a point cloud simple computer vision and image processing methods, as connected components, morphological operations and Harris corner detector, producing encouraging results, namely an accuracy in volume measurement of 8mm. Aspects that can be further improved are identified; nevertheless, the current solution is already promising turning out to be cost effective for the envisaged scenarios.

  19. Transorbital target localization in the porcine model

    NASA Astrophysics Data System (ADS)

    DeLisi, Michael P.; Mawn, Louise A.; Galloway, Robert L.

    2013-03-01

    Current pharmacological therapies for the treatment of chronic optic neuropathies such as glaucoma are often inadequate due to their inability to directly affect the optic nerve and prevent neuron death. While drugs that target the neurons have been developed, existing methods of administration are not capable of delivering an effective dose of medication along the entire length of the nerve. We have developed an image-guided system that utilizes a magnetically tracked flexible endoscope to navigate to the back of the eye and administer therapy directly to the optic nerve. We demonstrate the capabilities of this system with a series of targeted surgical interventions in the orbits of live pigs. Target objects consisted of NMR microspherical bulbs with a volume of 18 μL filled with either water or diluted gadolinium-based contrast, and prepared with either the presence or absence of a visible coloring agent. A total of 6 pigs were placed under general anesthesia and two microspheres of differing color and contrast content were blindly implanted in the fat tissue of each orbit. The pigs were scanned with T1-weighted MRI, image volumes were registered, and the microsphere containing gadolinium contrast was designated as the target. The surgeon was required to navigate the flexible endoscope to the target and identify it by color. For the last three pigs, a 2D/3D registration was performed such that the target's coordinates in the image volume was noted and its location on the video stream was displayed with a crosshair to aid in navigation. The surgeon was able to correctly identify the target by color, with an average intervention time of 20 minutes for the first three pigs and 3 minutes for the last three.

  20. Defining the Optimal Planning Target Volume in Image-Guided Stereotactic Radiosurgery of Brain Metastases: Results of a Randomized Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, John P., E-mail: john.kirkpatrick@dm.duke.edu; Department of Surgery, Duke University, Durham, North Carolina; Wang, Zhiheng

    2015-01-01

    Purpose: To identify an optimal margin about the gross target volume (GTV) for stereotactic radiosurgery (SRS) of brain metastases, minimizing toxicity and local recurrence. Methods and Materials: Adult patients with 1 to 3 brain metastases less than 4 cm in greatest dimension, no previous brain radiation therapy, and Karnofsky performance status (KPS) above 70 were eligible for this institutional review board–approved trial. Individual lesions were randomized to 1- or 3- mm uniform expansion of the GTV defined on contrast-enhanced magnetic resonance imaging (MRI). The resulting planning target volume (PTV) was treated to 24, 18, or 15 Gy marginal dose for maximum PTV diametersmore » less than 2, 2 to 2.9, and 3 to 3.9 cm, respectively, using a linear accelerator–based image-guided system. The primary endpoint was local recurrence (LR). Secondary endpoints included neurocognition Mini-Mental State Examination, Trail Making Test Parts A and B, quality of life (Functional Assessment of Cancer Therapy-Brain), radionecrosis (RN), need for salvage radiation therapy, distant failure (DF) in the brain, and overall survival (OS). Results: Between February 2010 and November 2012, 49 patients with 80 brain metastases were treated. The median age was 61 years, the median KPS was 90, and the predominant histologies were non–small cell lung cancer (25 patients) and melanoma (8). Fifty-five, 19, and 6 lesions were treated to 24, 18, and 15 Gy, respectively. The PTV/GTV ratio, volume receiving 12 Gy or more, and minimum dose to PTV were significantly higher in the 3-mm group (all P<.01), and GTV was similar (P=.76). At a median follow-up time of 32.2 months, 11 patients were alive, with median OS 10.6 months. LR was observed in only 3 lesions (2 in the 1 mm group, P=.51), with 6.7% LR 12 months after SRS. Biopsy-proven RN alone was observed in 6 lesions (5 in the 3-mm group, P=.10). The 12-month DF rate was 45.7%. Three months after SRS, no significant change

  1. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial.

    PubMed

    Kirkpatrick, John P; Wang, Zhiheng; Sampson, John H; McSherry, Frances; Herndon, James E; Allen, Karen J; Duffy, Eileen; Hoang, Jenny K; Chang, Zheng; Yoo, David S; Kelsey, Chris R; Yin, Fang-Fang

    2015-01-01

    To identify an optimal margin about the gross target volume (GTV) for stereotactic radiosurgery (SRS) of brain metastases, minimizing toxicity and local recurrence. Adult patients with 1 to 3 brain metastases less than 4 cm in greatest dimension, no previous brain radiation therapy, and Karnofsky performance status (KPS) above 70 were eligible for this institutional review board-approved trial. Individual lesions were randomized to 1- or 3- mm uniform expansion of the GTV defined on contrast-enhanced magnetic resonance imaging (MRI). The resulting planning target volume (PTV) was treated to 24, 18, or 15 Gy marginal dose for maximum PTV diameters less than 2, 2 to 2.9, and 3 to 3.9 cm, respectively, using a linear accelerator-based image-guided system. The primary endpoint was local recurrence (LR). Secondary endpoints included neurocognition Mini-Mental State Examination, Trail Making Test Parts A and B, quality of life (Functional Assessment of Cancer Therapy-Brain), radionecrosis (RN), need for salvage radiation therapy, distant failure (DF) in the brain, and overall survival (OS). Between February 2010 and November 2012, 49 patients with 80 brain metastases were treated. The median age was 61 years, the median KPS was 90, and the predominant histologies were non-small cell lung cancer (25 patients) and melanoma (8). Fifty-five, 19, and 6 lesions were treated to 24, 18, and 15 Gy, respectively. The PTV/GTV ratio, volume receiving 12 Gy or more, and minimum dose to PTV were significantly higher in the 3-mm group (all P<.01), and GTV was similar (P=.76). At a median follow-up time of 32.2 months, 11 patients were alive, with median OS 10.6 months. LR was observed in only 3 lesions (2 in the 1 mm group, P=.51), with 6.7% LR 12 months after SRS. Biopsy-proven RN alone was observed in 6 lesions (5 in the 3-mm group, P=.10). The 12-month DF rate was 45.7%. Three months after SRS, no significant change in neurocognition or quality of life was observed. SRS was well

  2. Robotic intrafractional US guidance for liver SABR: System design, beam avoidance, and clinical imaging.

    PubMed

    Schlosser, Jeffrey; Gong, Ren Hui; Bruder, Ralf; Schweikard, Achim; Jang, Sungjune; Henrie, John; Kamaya, Aya; Koong, Albert; Chang, Daniel T; Hristov, Dimitre

    2016-11-01

    To present a system for robotic 4D ultrasound (US) imaging concurrent with radiotherapy beam delivery and estimate the proportion of liver stereotactic ablative body radiotherapy (SABR) cases in which robotic US image guidance can be deployed without interfering with clinically used VMAT beam configurations. The image guidance hardware comprises a 4D US machine, an optical tracking system for measuring US probe pose, and a custom-designed robot for acquiring hands-free US volumes. In software, a simulation environment incorporating the LINAC, couch, planning CT, and robotic US guidance hardware was developed. Placement of the robotic US hardware was guided by a target visibility map rendered on the CT surface by using the planning CT to simulate US propagation. The visibility map was validated in a prostate phantom and evaluated in patients by capturing live US from imaging positions suggested by the visibility map. In 20 liver SABR patients treated with VMAT, the simulation environment was used to virtually place the robotic hardware and US probe. Imaging targets were either planning target volumes (PTVs, range 5.9-679.5 ml) or gross tumor volumes (GTVs, range 0.9-343.4 ml). Presence or absence of mechanical interference with LINAC, couch, and patient body as well as interferences with treated beams was recorded. For PTV targets, robotic US guidance without mechanical interference was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85%, respectively. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of noninterfering imaging positions. The robotic US imaging system was deployed in two liver SABR patients during CT simulation with successful acquisition of 4D US sequences in different imaging positions. This study indicates that for VMAT liver SABR, robotic US imaging of a relevant internal target

  3. Geometric convex cone volume analysis

    NASA Astrophysics Data System (ADS)

    Li, Hsiao-Chi; Chang, Chein-I.

    2016-05-01

    Convexity is a major concept used to design and develop endmember finding algorithms (EFAs). For abundance unconstrained techniques, Pixel Purity Index (PPI) and Automatic Target Generation Process (ATGP) which use Orthogonal Projection (OP) as a criterion, are commonly used method. For abundance partially constrained techniques, Convex Cone Analysis is generally preferred which makes use of convex cones to impose Abundance Non-negativity Constraint (ANC). For abundance fully constrained N-FINDR and Simplex Growing Algorithm (SGA) are most popular methods which use simplex volume as a criterion to impose ANC and Abundance Sum-to-one Constraint (ASC). This paper analyze an issue encountered in volume calculation with a hyperplane introduced to illustrate an idea of bounded convex cone. Geometric Convex Cone Volume Analysis (GCCVA) projects the boundary vectors of a convex cone orthogonally on a hyperplane to reduce the effect of background signatures and a geometric volume approach is applied to address the issue arose from calculating volume and further improve the performance of convex cone-based EFAs.

  4. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase.

    PubMed

    Mathieu, Véronique; Chantôme, Aurélie; Lefranc, Florence; Cimmino, Alessio; Miklos, Walter; Paulitschke, Verena; Mohr, Thomas; Maddau, Lucia; Kornienko, Alexander; Berger, Walter; Vandier, Christophe; Evidente, Antonio; Delpire, Eric; Kiss, Robert

    2015-10-01

    Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 µM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl(-) and the decreased HCO3 (-) concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na-K-2Cl electroneutral cotransporter or Cl(-)/HCO3 (-) anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells.

  5. Automated linking of suspicious findings between automated 3D breast ultrasound volumes

    NASA Astrophysics Data System (ADS)

    Gubern-Mérida, Albert; Tan, Tao; van Zelst, Jan; Mann, Ritse M.; Karssemeijer, Nico

    2016-03-01

    Automated breast ultrasound (ABUS) is a 3D imaging technique which is rapidly emerging as a safe and relatively inexpensive modality for screening of women with dense breasts. However, reading ABUS examinations is very time consuming task since radiologists need to manually identify suspicious findings in all the different ABUS volumes available for each patient. Image analysis techniques to automatically link findings across volumes are required to speed up clinical workflow and make ABUS screening more efficient. In this study, we propose an automated system to, given the location in the ABUS volume being inspected (source), find the corresponding location in a target volume. The target volume can be a different view of the same study or the same view from a prior examination. The algorithm was evaluated using 118 linkages between suspicious abnormalities annotated in a dataset of ABUS images of 27 patients participating in a high risk screening program. The distance between the predicted location and the center of the annotated lesion in the target volume was computed for evaluation. The mean ± stdev and median distance error achieved by the presented algorithm for linkages between volumes of the same study was 7.75±6.71 mm and 5.16 mm, respectively. The performance was 9.54±7.87 and 8.00 mm (mean ± stdev and median) for linkages between volumes from current and prior examinations. The proposed approach has the potential to minimize user interaction for finding correspondences among ABUS volumes.

  6. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation.

    PubMed

    Daisne, Jean-François; Blumhofer, Andreas

    2013-06-26

    Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for "manual to automatic" and "manual to corrected" volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert.

  7. [Definition of nodal volumes in breast cancer treatment and segmentation guidelines].

    PubMed

    Kirova, Y M; Castro Pena, P; Dendale, R; Campana, F; Bollet, M A; Fournier-Bidoz, N; Fourquet, A

    2009-06-01

    To assist in the determination of breast and nodal volumes in the setting of radiotherapy for breast cancer and establish segmentation guidelines. Materials and methods. Contrast metarial enhanced CT examinations were obtained in the treatment position in 25 patients to clearly define the target volumes. The clinical target volume (CTV) including the breast, internal mammary nodes, supraclavicular and subclavicular regions and axxilary region were segmented along with the brachial plexus and interpectoral nodes. The following critical organs were also segmented: heart, lungs, contralateral breast, thyroid, esophagus and humeral head. A correlation between clinical and imaging findings and meeting between radiation oncologists and breast specialists resulted in a better definition of irradiation volumes for breast and nodes with establishement of segmentation guidelines and creation of an anatomical atlas. A practical approach, based on anatomical criteria, is proposed to assist in the segmentation of breast and node volumes in the setting of breast cancer treatment along with a definition of irradiation volumes.

  8. [Target volume segmentation of PET images by an iterative method based on threshold value].

    PubMed

    Castro, P; Huerga, C; Glaría, L A; Plaza, R; Rodado, S; Marín, M D; Mañas, A; Serrada, A; Núñez, L

    2014-01-01

    An automatic segmentation method is presented for PET images based on an iterative approximation by threshold value that includes the influence of both lesion size and background present during the acquisition. Optimal threshold values that represent a correct segmentation of volumes were determined based on a PET phantom study that contained different sizes spheres and different known radiation environments. These optimal values were normalized to background and adjusted by regression techniques to a two-variable function: lesion volume and signal-to-background ratio (SBR). This adjustment function was used to build an iterative segmentation method and then, based in this mention, a procedure of automatic delineation was proposed. This procedure was validated on phantom images and its viability was confirmed by retrospectively applying it on two oncology patients. The resulting adjustment function obtained had a linear dependence with the SBR and was inversely proportional and negative with the volume. During the validation of the proposed method, it was found that the volume deviations respect to its real value and CT volume were below 10% and 9%, respectively, except for lesions with a volume below 0.6 ml. The automatic segmentation method proposed can be applied in clinical practice to tumor radiotherapy treatment planning in a simple and reliable way with a precision close to the resolution of PET images. Copyright © 2013 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  9. Volumetric-modulated arc therapy for the treatment of a large planning target volume in thoracic esophageal cancer.

    PubMed

    Abbas, Ahmar S; Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles

    2013-05-06

    Recently, volumetric-modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity-modulated fixed-field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs-at-risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed-field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient-specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single-arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2-T3 N0-N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281-601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four-field (n = 4) or five-field (n = 9) step-and-shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose-volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose

  10. Volumetric‐modulated arc therapy for the treatment of a large planning target volume in thoracic esophageal cancer

    PubMed Central

    Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles

    2013-01-01

    Recently, volumetric‐modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity‐modulated fixed‐field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs‐at‐risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed‐field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient‐specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single‐arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2‐T3 N0‐N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281–601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four‐field (n=4) or five‐field (n=9) step‐and‐shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose‐volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation

  11. Voluntary Deep Inspiration Breath-hold Reduces the Heart Dose Without Compromising the Target Volume Coverage During Radiotherapy for Left-sided Breast Cancer.

    PubMed

    Al-Hammadi, Noora; Caparrotti, Palmira; Naim, Carole; Hayes, Jillian; Rebecca Benson, Katherine; Vasic, Ana; Al-Abdulla, Hissa; Hammoud, Rabih; Divakar, Saju; Petric, Primoz

    2018-03-01

    During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/- regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/- 2.5 to 3.2 +/- 1.4 Gy (p < 0.001), maximum cardiac dose from 51.1 +/- 1.4 to 48.5 +/- 6.8 Gy (p = 0.005) and cardiac V25Gy from 8.5 +/- 4.2 to 3.2 +/- 2.5% (p < 0.001). Heart volumes receiving low (10-20 Gy) and high (30-50 Gy) doses were also significantly reduced. Mean dose to the left anterior coronary artery was 23.0 (+/- 6.7) Gy and 14.8 (+/- 7.6) Gy on FB and V-DIBH, respectively (p < 0.001). Differences between FB- and V-DIBH-derived mean lung dose (11.3 +/- 3.2 vs. 10.6 +/- 2.6 Gy), lung V20Gy (20.5 +/- 7 vs. 19.5 +/- 5.1 Gy) and V95% for the OPTV (95.6 +/- 4.1 vs. 95.2 +/- 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors

  12. Sphere of equivalence--a novel target volume concept for intraoperative radiotherapy using low-energy X rays.

    PubMed

    Herskind, Carsten; Griebel, Jürgen; Kraus-Tiefenbacher, Uta; Wenz, Frederik

    2008-12-01

    Accelerated partial breast radiotherapy with low-energy photons from a miniature X-ray machine is undergoing a randomized clinical trial (Targeted Intra-operative Radiation Therapy [TARGIT]) in a selected subgroup of patients treated with breast-conserving surgery. The steep radial dose gradient implies reduced tumor cell control with increasing depth in the tumor bed. The purpose was to compare the expected risk of local recurrence in this nonuniform radiation field with that after conventional external beam radiotherapy. The relative biologic effectiveness of low-energy photons was modeled using the linear-quadratic formalism including repair of sublethal lesions during protracted irradiation. Doses of 50-kV X-rays (Intrabeam) were converted to equivalent fractionated doses, EQD2, as function of depth in the tumor bed. The probability of local control was estimated using a logistic dose-response relationship fitted to clinical data from fractionated radiotherapy. The model calculations show that, for a cohort of patients, the increase in local control in the high-dose region near the applicator partly compensates the reduction of local control at greater distances. Thus a "sphere of equivalence" exists within which the risk of recurrence is equal to that after external fractionated radiotherapy. The spatial distribution of recurrences inside this sphere will be different from that after conventional radiotherapy. A novel target volume concept is presented here. The incidence of recurrences arising in the tumor bed around the excised tumor will test the validity of this concept and the efficacy of the treatment. Recurrences elsewhere will have implications for the rationale of TARGIT.

  13. SU-F-T-205: Effectiveness of Robust Treatment Planning to Account for Inter- Fractional Variation in Intensity Modulated Proton Therapy for Head Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Zhang, J; Qin, A

    2016-06-15

    Purpose: To evaluate the potential benefits of robust optimization in intensity modulated proton therapy(IMPT) treatment planning to account for inter-fractional variation for Head Neck Cancer(HNC). Methods: One patient with bilateral HNC previous treated at our institution was used in this study. Ten daily CBCTs were selected. The CT numbers of the CBCTs were corrected by mapping the CT numbers from simulation CT via Deformable Image Registration. The planning target volumes(PTVs) were defined by a 3mm expansion from clinical target volumes(CTVs). The prescription was 70Gy, 54Gy to CTV1, CTV2, and PTV1, PTV2 for robust optimized(RO) and conventionally optimized(CO) plans respectively. Bothmore » techniques were generated by RayStation with the same beam angles: two anterior oblique and two posterior oblique angles. The similar dose constraints were used to achieve 99% of CTV1 received 100% prescription dose while kept the hotspots less than 110% of the prescription. In order to evaluate the dosimetric result through the course of treatment, the contours were deformed from simulation CT to daily CBCTs, modified, and approved by a radiation oncologist. The initial plan on the simulation CT was re-replayed on the daily CBCTs followed the bony alignment. The target coverage was evaluated using the daily doses and the cumulative dose. Results: Eight of 10 daily deliveries with using RO plan achieved at least 95% prescription dose to CTV1 and CTV2, while still kept maximum hotspot less than 112% of prescription compared with only one of 10 for the CO plan to achieve the same standards. For the cumulative doses, the target coverage for both RO and CO plans was quite similar, which was due to the compensation of cold and hot spots. Conclusion: Robust optimization can be effectively applied to compensate for target dose deficit caused by inter-fractional target geometric variation in IMPT treatment planning.« less

  14. Dosimetric comparison of volumetric modulated Arc therapy, step-and-shoot, and sliding window IMRT for prostate cancer

    NASA Astrophysics Data System (ADS)

    Schnell, Erich; Herman, Tania De La Fuente; Young, Julie; Hildebrand, Kim; Algan, Ozer; Syzek, Elizabeth; Herman, Terence; Ahmad, Salahuddin

    2012-10-01

    This study aims to evaluate treatment plans generated by Step-and-Shoot (SS), Sliding Window (SW) and Volumetric Modulated Arc Therapy (VMAT) in order to assess the differences in dose volume histograms of planning target volume (PTV) and organs at risk (OAR), conformity indices, radiobiological evaluations, and plan quality for prostate cancer cases. Six prostate cancer patients treated in our center were selected for this retrospective study. Treatment plans were generated with Eclipse version 8.9 using 10 MV photon beams. For VMAT, Varian Rapid Arc with 1 or 2 arcs, and for SS and SW IMRT, 7-9 fields were used. Each plan had three PTVs with prescription doses of 81, 59.4, and 45 Gy to prostate, to prostate and lymph nodes, and to pelvis, respectively. Doses to PTV and OAR and the conformal indices (COIN) were compared among three techniques. The equivalent uniform dose (EUD), tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated and compared. The mean doses to the PTV prostate on average were 83 Gy and the percent differences of mean dose among all techniques were below 0.28. For bladder and rectum, the percent differences of mean dose among all techniques were below 2.2. The COIN did not favour any particular delivery method over the other. The TCP was higher with SS and SW for four patients and higher with VMAT for two patients. The NTCP for the rectum was the lowest with VMAT in five out of the six patients. The results show similar target coverage in general.

  15. Use of biotin targeted methotrexate–human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy

    PubMed Central

    Taheri, Azade; Dinarvand, Rassoul; Nouri, Faranak Salman; Khorramizadeh, Mohammad Reza; Borougeni, Atefeh Taheri; Mansoori, Pooria; Atyabi, Fatemeh

    2011-01-01

    Biotin molecules could be used as suitable targeting moieties in targeted drug delivery systems against tumors. To develop a biotin targeted drug delivery system, we employed human serum albumin (HSA) as a carrier. Methotrexate (MTX) molecules were conjugated to HSA. MTX-HSA nanoparticles (MTX-HSA NPs) were prepared from these conjugates by cross-linking the HSA molecules. Biotin molecules were then conjugated on the surface of MTX-HSA NPs. The anticancer efficacy of biotin targeted MTX-HSA NPs was evaluated in mice bearing 4T1 breast carcinoma. A single dose of biotin targeted MTX-HSA NPs showed stronger in vivo antitumor activity than non-targeted MTX-HSA NPs and free MTX. By 7 days after treatment, average tumor volume in the biotin targeted MTX-HSA NPs-treated group decreased to 17.6% of the initial tumor volume when the number of attached biotin molecules on MTX-HSA-NPs was the highest. Average tumor volume in non-targeted MTX-HSA NPs-treated mice grew rapidly and reached 250.7% of the initial tumor volume. Biotin targeted MTX-HSA NPs increased the survival of tumor-bearing mice to 47.5 ± 0.71 days and increased their life span up to 216.7%. Mice treated with biotin targeted MTX-HSA NPs showed slight body weight loss (8%) 21 days after treatment, whereas non-targeted MTX-HSA NPs treatment at the same dose caused a body weight loss of 27.05% ± 3.1%. PMID:21931482

  16. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.

    PubMed

    Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min

    2013-07-01

    Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  18. Target volume definition for post prostatectomy radiotherapy: Do the consensus guidelines correctly define the inferior border of the CTV?

    PubMed

    Manji, Mo; Crook, Juanita; Schmid, Matt; Rajapakshe, Rasika

    2016-01-01

    We compare urethrogram delineation of the caudal aspect of the anastomosis to the recommended guidelines of post prostatectomy radiotherapy. Level one evidence has established the indications for, and importance of, adjuvant radiotherapy following radical prostatectomy. Several guidelines have recently addressed delineation of the prostate bed target volume including identification of the vesico-urethral anastomosis, taken as the first CT slice caudal to visible urine in the bladder neck. The inferior border of clinical target volume is then variably defined 5-12 mm below this anastomosis or 15 mm cranial to the penile bulb. Thirty-three patients who received adjuvant radiotherapy following radical prostatectomy were reviewed. All underwent planning CT with urethrogram. The authors (MM, JC) independently identified the CT slice caudal to the last slice showing urine in the bladder neck (called the CT Reference Slice), and measured the distance between this and the tip of the urethrogram cone. Five patients also had a diagnostic MRI at the time of CT planning to better visualize the anatomy. Sixty-six readings were obtained. The mean distance between the Bladder CT Reference Slice and the most cranial urethrogram contrast slice was 16.1 mm (MM 16.4 mm, JC 15.8 mm), range: 6.8-34.2 mm. The mean distance between the urethrogram tip and the ischial tuberosities was 19.9 mm (range 12.5-29.8 mm). The mean distance between the CT Reference Slice and the ischial tuberosities was 36.9 mm (range 28.3-52.4 mm). Guidelines for prostate bed radiation post prostatectomy have been developed after publication of the trials proving benefit of such treatment, and are thus untested. The anastomosis is a frequent site of local relapse but is variably defined by the existing guidelines, none of which take into account anatomic patient variation and all of which are at variance with urethrogram data. We recommend the use of planning urethrogram to better delineate the vesico

  19. The role of PET in target localization for radiotherapy treatment planning.

    PubMed

    Rembielak, Agata; Price, Pat

    2008-02-01

    Positron emission tomography (PET) is currently accepted as an important tool in oncology, mostly for diagnosis, staging and restaging purposes. It provides a new type of information in radiotherapy, functional rather than anatomical. PET imaging can also be used for target volume definition in radiotherapy treatment planning. The need for very precise target volume delineation has arisen with the increasing use of sophisticated three-dimensional conformal radiotherapy techniques and intensity modulated radiation therapy. It is expected that better delineation of the target volume may lead to a significant reduction in the irradiated volume, thus lowering the risk of treatment complications (smaller safety margins). Better tumour visualisation also allows a higher dose of radiation to be applied to the tumour, which may lead to better tumour control. The aim of this article is to review the possible use of PET imaging in the radiotherapy of various cancers. We focus mainly on non-small cell lung cancer, lymphoma and oesophageal cancer, but also include current opinion on the use of PET-based planning in other tumours including brain, uterine cervix, rectum and prostate.

  20. Therapeutic analysis of high-dose-rate {sup 192}Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu; Donnelly, Eric D.; Strauss, Jonathan B.

    Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model wasmore » used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0){sup 4} to

  1. Generation of Parametric Equivalent-Area Targets for Design of Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood

    2011-01-01

    A tool with an Excel visual interface is developed to generate equivalent-area (A(sub e)) targets that satisfy the volume constraints for a low-boom supersonic configuration. The new parametric Ae target explorer allows users to interactively study the tradeoffs between the aircraft volume constraints and the low-boom characteristics (e.g., loudness) of the ground signature. Moreover, numerical optimization can be used to generate the optimal A(sub e) target for given A(sub e) volume constraints. A case study is used to demonstrate how a generated low-boom Ae target can be matched by a supersonic configuration that includes a fuselage, wing, nacelle, pylon, aft pod, horizontal tail, and vertical tail. The low-boom configuration is verified by sonic-boom analysis with an off-body pressure distribution at three body lengths below the configuration

  2. LLE Review Quarterly Report (October - December 2007). Volume 113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuegel, Jonathan D.

    2007-12-01

    This volume of the LLE Review, covering October–December 2007, features “High-Intensity Laser–Plasma Interactions in the Refluxing Limit,” by P. M. Nilson, W. Theobald, J. Myatt, C. Stoeckl, M. Storm, O. V. Gotchev, J. D. Zuegel, R. Betti, D. D. Meyerhofer, and T. C. Sangster. In this article (p. 1), the authors report on target experiments using the Multi-Terawatt (MTW) Laser Facility to study isochoric heating of solid-density targets by fast electrons produced from intense, short-pulse laser irradiation. Electron refluxing occurs due to target-sheath field effects and contains most of the fast electrons within the target volume. This efficiently heats themore » solid-density plasma through collisions. X-ray spectroscopic measurements of absolute K α (x-radiation) photon yields and variations of the K β/K α b emission ratio both indicate that laser energy couples to fast electrons with a conversion efficiency of approximately 20%. Bulk electron temperatures of at least 200 eV are inferred for the smallest mass targets.« less

  3. SU-C-BRE-02: BED Vs. Local Control: Radiobiological Effect of Tumor Volume in Monte Carlo (MC) Lung SBRT Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Badkul, R; Jiang, H

    2014-06-15

    Purpose: SBRT with hypofractionated dose schemata has emerged a compelling treatment modality for medically inoperable early stage lung cancer patients. It requires more accurate dose calculation and treatment delivery technique. This report presents the relationship between tumor control probability(TCP) and size-adjusted biological effective dose(sBED) of tumor volume for MC lung SBRT patients. Methods: Fifteen patients who were treated with MC-based lung SBRT to 50Gy in 5 fractions to PTVV100%=95% were studied. ITVs were delineated on MIP images of 4DCT-scans. PTVs diameter(ITV+5mm margins) ranged from 2.7–4.9cm (mean 3.7cm). Plans were generated using non-coplanar conformal arcs/beams using iPlan XVMC algorithm (BrainLABiPlan ver.4.1.2)more » for Novalis-TX with HD-MLCs and 6MVSRS(1000MU/min) mode, following RTOG-0813 dosimetric guidelines. To understand the known uncertainties of conventional heterogeneities-corrected/uncorrected pencil beam (PBhete/ PB-homo) algorithms, dose distributions were re-calculated with PBhete/ PB-homo using same beam configurations, MLCs and monitor units. Biologically effective dose(BED10) was computed using LQ-model with α/β=10Gy for meanPTV and meanITV. BED10-c*L, gave size-adjusted BED(sBED), where c=10Gy/cm and L=PTV diameter in centimeter. The TCP model was adopted from Ohri et al.(IJROBP, 2012): TCP = exp[sBEDTCD50]/ k /(1.0 + exp[sBED-TCD50]/k), where k=31Gy corresponding to TCD50=0Gy; and more realistic MC-based TCP was computed for PTV(V99%). Results: Mean PTV PB-hete TCP value was 6% higher, but, mean PTV PB-homo TCP value was 4% lower compared to mean PTV MC TCP. Mean ITV PB-hete/PB-homo TCP values were comparable (within ±3.0%) to mean ITV MC TCP. The mean PTV(V99%)had BED10=90.9±3.7%(median=92.2%),sBED=54.1±8.2%(median=53.5%) corresponding to mean MC TCP value of 84.8±3.3%(median=84.9%) at 2- year local control. Conclusion: The TCP model which incorporates BED10 and tumor diameter indicates that

  4. Patterns-of-failure guided biological target volume definition for head and neck cancer patients: FDG-PET and dosimetric analysis of dose escalation candidate subregions.

    PubMed

    Mohamed, Abdallah S R; Cardenas, Carlos E; Garden, Adam S; Awan, Musaddiq J; Rock, Crosby D; Westergaard, Sarah A; Brandon Gunn, G; Belal, Abdelaziz M; El-Gowily, Ahmed G; Lai, Stephen Y; Rosenthal, David I; Fuller, Clifton D; Aristophanous, Michalis

    2017-08-01

    To identify the radio-resistant subvolumes in pretreatment FDG-PET by mapping the spatial location of the origin of tumor recurrence after IMRT for head-and-neck squamous cell cancer to the pretreatment FDG-PET/CT. Patients with local/regional recurrence after IMRT with available FDG-PET/CT and post-failure CT were included. For each patient, both pre-therapy PET/CT and recurrence CT were co-registered with the planning CT (pCT). A 4-mm radius was added to the centroid of mapped recurrence growth target volumes (rGTV's) to create recurrence nidus-volumes (NVs). The overlap between boost-tumor-volumes (BTV) representing different SUV thresholds/margins combinations and NVs was measured. Forty-seven patients were eligible. Forty-two (89.4%) had type A central high dose failure. Twenty-six (48%) of type A rGTVs were at the primary site and 28 (52%) were at the nodal site. The mean dose of type A rGTVs was 71Gy. BTV consisting of 50% of the maximum SUV plus 10mm margin was the best subvolume for dose boosting due to high coverage of primary site NVs (92.3%), low average relative volume to CTV1 (41%), and least average percent voxels outside CTV1 (19%). The majority of loco-regional recurrences originate in the regions of central-high-dose. When correlated with pretreatment FDG-PET, the majority of recurrences originated in an area that would be covered by additional 10mm margin on the volume of 50% of the maximum FDG uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pragmatics & Language Learning. Volume 12

    ERIC Educational Resources Information Center

    Kasper, Gabriele, Ed.; Nguyen, Hanh thi, Ed.; Yoshimi, Dina Rudolph, Ed.; Yoshioka, Jim K., Ed.

    2010-01-01

    This volume examines the organization of second language and multilingual speakers' talk and pragmatic knowledge across a range of naturalistic and experimental activities. Based on data collected on Danish, English, Hawai'i Creole, Indonesian, and Japanese as target languages, the contributions explore the nexus of pragmatic knowledge,…

  6. Three-dimensional cluster formation and structure in heterogeneous dose distribution of intensity modulated radiation therapy.

    PubMed

    Chao, Ming; Wei, Jie; Narayanasamy, Ganesh; Yuan, Yading; Lo, Yeh-Chi; Peñagarícano, José A

    2018-05-01

    To investigate three-dimensional cluster structure and its correlation to clinical endpoint in heterogeneous dose distributions from intensity modulated radiation therapy. Twenty-five clinical plans from twenty-one head and neck (HN) patients were used for a phenomenological study of the cluster structure formed from the dose distributions of organs at risks (OARs) close to the planning target volumes (PTVs). Initially, OAR clusters were searched to examine the pattern consistence among ten HN patients and five clinically similar plans from another HN patient. Second, clusters of the esophagus from another ten HN patients were scrutinized to correlate their sizes to radiobiological parameters. Finally, an extensive Monte Carlo (MC) procedure was implemented to gain deeper insights into the behavioral properties of the cluster formation. Clinical studies showed that OAR clusters had drastic differences despite similar PTV coverage among different patients, and the radiobiological parameters failed to positively correlate with the cluster sizes. MC study demonstrated the inverse relationship between the cluster size and the cluster connectivity, and the nonlinear changes in cluster size with dose thresholds. In addition, the clusters were insensitive to the shape of OARs. The results demonstrated that the cluster size could serve as an insightful index of normal tissue damage. The clinical outcome of the same dose-volume might be potentially different. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Definition of the key target volume in radiosurgical management of arteriovenous malformations: a new dynamic concept based on angiographic circulation time.

    PubMed

    Valle, Ramiro Del; Zenteno, Marco; Jaramillo, José; Lee, Angel; De Anda, Salvador

    2008-12-01

    The cumulative experience worldwide indicates complete radiosurgical obliteration rates of brain arteriovenous malformations (AVMs) ranging from 35 to 90%. The purpose of this study was to propose a strategy to increase the obliteration rate for AVMs through the dynamic definition of the key target volume (KTV). A prospective series of patients harboring an AVM was assessed using digital subtraction angiography in which a digital counter was used to measure the several stages of the frame-by-frame circulation time. All the patients were analyzed using dynamic measurement planning to define the KTV, corresponding to the volume of the shunt with the least vascular resistance and the earliest venous drainage. All patients underwent catheter-based angiography, a subgroup was additionally assessed by means of a superselective catheterization, and among these a further subgroup received embolization. The shunts were also categorized according to their angioarchitectural type: fistulous, plexiform, or mixed. The authors applied the radiosurgery-based grading system (RBGS) as well to find a correlation with the obliteration rate. This series includes 44 patients treated by radiosurgery; global angiography was performed for all patients, including dynamic measurement planning. Eighty-four percent of them underwent superselective catheterization, and 50% of the total population underwent embolization. In the embolized arm of the study, the pretreatment volume was up to 120 ml. In patients with a single treatment, the mean volume was 8.5 ml, and the median volume was 6.95 +/- 4.56 ml (mean +/- standard deviation), with a KTV of up to 15 ml. For prospectively staged radiosurgery, the mean KTV was 28 ml. The marginal radiation dose was 18-22 Gy, with a mean of dose 20 Gy. The mean RBGS score was 1.70. The overall obliteration rate was 91%, including the repeated radiosurgery group (4 patients), in which 100% showed complete obliteration. The overall permanent deficit was 2 of

  8. Target volume geometric change and/or deviation from the cranium during fractionated stereotactic radiotherapy for brain metastases: potential pitfalls in image guidance based on bony anatomy alignment.

    PubMed

    Ohtakara, Kazuhiro; Hoshi, Hiroaki

    2014-12-01

    This study sought to evaluate the potential geometrical change and/or displacement of the target relative to the cranium during fractionated stereotactic radiotherapy (FSRT) for treating newly developed brain metastases. For 16 patients with 21 lesions treated with image-guided frameless FSRT in 5 or 10 fractions using a 6-degree-of-freedom image guidance system-integrated platform, the unenhanced computed tomography or T2-weighted magnetic resonance images acquired until the completion of FSRT were fused to the planning image datasets for comparison. Significant change was defined as ≥3-mm change in the tumour diameter or displacement of the tumour centroid. FSRT was started 1 day after planning image acquisition. Tumour shrinkage, deviation and both were observed in 2, 1 and 1 of the 21 lesions, respectively, over a period of 7-13 days. Tumour shrinkage or deviation resulted in an increase or decrease in the marginal dose to the tumour, respectively, and a substantial increase in the irradiated volume for the surrounding tissue irrespective of the pattern of alteration. No obvious differences in the clinical and treatment characteristics were noted among the populations with or without significant changes in tumour volume or position. Target deformity and/or deviation can unexpectedly occur even during relatively short-course FSRT, inevitably leading to a gradual discrepancy between the planned and actually delivered doses to the tumour and surrounding tissue. To appropriately weigh the treatment outcome against the planned dose distribution, target deformity and/or deviation should also be considered in addition to the immobilisation accuracy, as image guidance with bony anatomy alignment does not necessarily guarantee accurate target localisation until completion of FSRT. © 2014 The Royal Australian and New Zealand College of Radiologists.

  9. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    PubMed

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (< or = 2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging.

  10. Comparative ex vivo evaluation of two electronic percussive testing devices measuring the stability of dental implants.

    PubMed

    Geckili, Onur; Bilhan, Hakan; Cilingir, Altug; Bilmenoglu, Caglar; Ates, Gokcen; Urgun, Aliye Ceren; Bural, Canan

    2014-12-01

    A comparative ex vivo study was performed to determine electronic percussive test values (PTVs) measured by cabled and wireless electronic percussive testing (EPT) devices and to evaluate the intra- and interobserver reliability of the wireless EPT device. Forty implants were inserted into the vertebrae and forty into the pelvis of a steer, a safe distance apart. The implants were all 4.3 mm wide and 13 mm long, from the same manufacturer. PTV of each implant was measured by four different examiners, using both EPT devices, and compared. Additionally, the intra- and interobserver reliability of the wireless EPT device was evaluated. Statistically significant differences (P <0.05) were observed between PTVs made by the two EPT devices. PTVs measured by the wireless EPT device were significantly higher than the cabled EPT device (P <0.05), indicating lower implant stability. The intraobserver reliability of the wireless EPT device was evaluated as excellent for the measurements in type II bone and good-to-excellent in type IV bone; interobserver reliability was evaluated as fair-to-good in both bone types. The wireless EPT device gives PTVs higher than the cabled EPT device, indicating lower implant stability, and its inter- and intraobserver reliability is good and acceptable.

  11. SECOND TARGET STATION MODERATOR PERFORMANCE WITH A ROTATING TARGET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Gallmeier, Franz X; Rennich, Mark J

    2016-01-01

    Oak Ridge National Laboratory manages and operates the Spallation Neutron Source and the High Flux Isotope Reactor, two of the world's most advanced neutron scattering facilities. Both facilities are funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, and are available to researchers from all over the world. Delivering cutting edge science requires continuous improvements and development of the facilities and instruments. The SNS was designed from the outset to accommodate an additional target station, or Second Target Station (STS), and an upgraded accelerator feeding proton beams to STS and the existing First Targetmore » Station (FTS). Upgrade of the accelerator and the design and construction of STS are being proposed. The presently considered STS configuration is driven with short (<1 s) proton pulses at 10 Hz repetition rate and 467 kW proton beam power, and is optimized for high intensity and high resolution long wavelength neutron applications. STS will allow installation of 22 beamlines and will expand and complement the current national neutron scattering capabilities. In 2015 the STS studies were performed for a compact tungsten target; first a stationary tungsten plate target was analyzed to considerable details and then dropped in favor of a rotating target. For both target options the proton beam footprint as small as acceptable from mechanical and heat removal aspects is required to arrive at a compact-volume neutron production zone in the target, which is essential for tight coupling of target and moderators and for achieving high-intensity peak neutron fluxes. This paper will present recent STS work with the emphasis on neutronics and moderator performance.« less

  12. Method and apparatus for producing cryogenic targets

    DOEpatents

    Murphy, James T.; Miller, John R.

    1984-01-01

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

  13. Set-up uncertainties: online correction with X-ray volume imaging.

    PubMed

    Kataria, Tejinder; Abhishek, Ashu; Chadha, Pranav; Nandigam, Janardhan

    2011-01-01

    To determine interfractional three-dimensional set-up errors using X-ray volumetric imaging (XVI). Between December 2007 and August 2009, 125 patients were taken up for image-guided radiotherapy using online XVI. After matching of reference and acquired volume view images, set-up errors in three translation directions were recorded and corrected online before treatment each day. Mean displacements, population systematic (Σ), and random (σ) errors were calculated and analyzed using SPSS (v16) software. Optimum clinical target volume (CTV) to planning target volume (PTV) margin was calculated using Van Herk's (2.5Σ + 0.7 σ) and Stroom's (2Σ + 0.7 σ) formula. Patients were grouped in 4 cohorts, namely brain, head and neck, thorax, and abdomen-pelvis. The mean vector displacement recorded were 0.18 cm, 0.15 cm, 0.36 cm, and 0.35 cm for brain, head and neck, thorax, and abdomen-pelvis, respectively. Analysis of individual mean set-up errors revealed good agreement with the proposed 0.3 cm isotropic margins for brain and 0.5 cm isotropic margins for head-neck. Similarly, 0.5 cm circumferential and 1 cm craniocaudal proposed margins were in agreement with thorax and abdomen-pelvic cases. The calculated mean displacements were well within CTV-PTV margin estimates of Van Herk (90% population coverage to minimum 95% prescribed dose) and Stroom (99% target volume coverage by 95% prescribed dose). Employing these individualized margins in a particular cohort ensure comparable target coverage as described in literature, which is further improved if XVI-aided set-up error detection and correction is used before treatment.

  14. Draft Site Treatment Plan (DSTP), Volumes I and II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D`Amelio, J.

    1994-08-30

    Site Treatment Plans (STP) are required for facilities at which the DOE generates or stores mixed waste. This Draft Site Treatment Plan (DSTP) the second step in a three-phase process, identifies the currently preferred options for treating mixed waste at the Savannah River Site (SRS) or for developing treatment technologies where technologies do not exist or need modification. The DSTP reflects site-specific preferred options, developed with the state`s input and based on existing available information. To the extent possible, the DSTP identifies specific treatment facilities for treating the mixed waste and proposes schedules. Where the selection of specific treatment facilitiesmore » is not possible, schedules for alternative activities such as waste characterization and technology assessment are provided. All schedule and cost information presented is preliminary and is subject to change. The DSTP is comprised of two volumes: this Compliance Plan Volume and the Background Volume. This Compliance Plan Volume proposes overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) of RCRA and procedures for converting the target dates into milestones to be enforced under the Order. The more detailed discussion of the options contained in the Background Volume is provided for informational purposes only.« less

  15. Assessing the Dosimetric Accuracy of Magnetic Resonance-Generated Synthetic CT Images for Focal Brain VMAT Radiation Therapy.

    PubMed

    Paradis, Eric; Cao, Yue; Lawrence, Theodore S; Tsien, Christina; Feng, Mary; Vineberg, Karen; Balter, James M

    2015-12-01

    The purpose of this study was to assess the dosimetric accuracy of synthetic CT (MRCT) volumes generated from magnetic resonance imaging (MRI) data for focal brain radiation therapy. A study was conducted in 12 patients with gliomas who underwent both MR and CT imaging as part of their simulation for external beam treatment planning. MRCT volumes were generated from MR images. Patients' clinical treatment planning directives were used to create 12 individual volumetric modulated arc therapy (VMAT) plans, which were then optimized 10 times on each of their respective CT and MRCT-derived electron density maps. Dose metrics derived from optimization criteria, as well as monitor units and gamma analyses, were evaluated to quantify differences between the imaging modalities. Mean differences between planning target volume (PTV) doses on MRCT and CT plans across all patients were 0.0% (range: -0.1 to 0.2%) for D(95%); 0.0% (-0.7 to 0.6%) for D(5%); and -0.2% (-1.0 to 0.2%) for D(max). MRCT plans showed no significant changes in monitor units (-0.4%) compared to CT plans. Organs at risk (OARs) had average D(max) differences of 0.0 Gy (-2.2 to 1.9 Gy) over 85 structures across all 12 patients, with no significant differences when calculated doses approached planning constraints. Focal brain VMAT plans optimized on MRCT images show excellent dosimetric agreement with standard CT-optimized plans. PTVs show equivalent coverage, and OARs do not show any overdose. These results indicate that MRI-derived synthetic CT volumes can be used to support treatment planning of most patients treated for intracranial lesions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Radiotherapy treatment planning: benefits of CT-MR image registration and fusion in tumor volume delineation.

    PubMed

    Djan, Igor; Petrović, Borislava; Erak, Marko; Nikolić, Ivan; Lucić, Silvija

    2013-08-01

    Development of imaging techniques, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), made great impact on radiotherapy treatment planning by improving the localization of target volumes. Improved localization allows better local control of tumor volumes, but also minimizes geographical misses. Mutual information is obtained by registration and fusion of images achieved manually or automatically. The aim of this study was to validate the CT-MRI image fusion method and compare delineation obtained by CT versus CT-MRI image fusion. The image fusion software (XIO CMS 4.50.0) was applied to delineate 16 patients. The patients were scanned on CT and MRI in the treatment position within an immobilization device before the initial treatment. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated on CT alone and on CT+MRI images consecutively and image fusion was obtained. Image fusion showed that CTV delineated on a CT image study set is mainly inadequate for treatment planning, in comparison with CTV delineated on CT-MRI fused image study set. Fusion of different modalities enables the most accurate target volume delineation. This study shows that registration and image fusion allows precise target localization in terms of GTV and CTV and local disease control.

  17. Assessment of three-dimensional setup errors in image-guided pelvic radiotherapy for uterine and cervical cancer using kilovoltage cone-beam computed tomography and its effect on planning target volume margins.

    PubMed

    Patni, Nidhi; Burela, Nagarjuna; Pasricha, Rajesh; Goyal, Jaishree; Soni, Tej Prakash; Kumar, T Senthil; Natarajan, T

    2017-01-01

    To achieve the best possible therapeutic ratio using high-precision techniques (image-guided radiation therapy/volumetric modulated arc therapy [IGRT/VMAT]) of external beam radiation therapy in cases of carcinoma cervix using kilovoltage cone-beam computed tomography (kV-CBCT). One hundred and five patients of gynecological malignancies who were treated with IGRT (IGRT/VMAT) were included in the study. CBCT was done once a week for intensity-modulated radiation therapy and daily in IGRT/VMAT. These images were registered with the planning CT scan images and translational errors were applied and recorded. In all, 2078 CBCT images were studied. The margins of planning target volume were calculated from the variations in the setup. The setup variation was 5.8, 10.3, and 5.6 mm in anteroposterior, superoinferior, and mediolateral direction. This allowed adequate dose delivery to the clinical target volume and the sparing of organ at risks. Daily kV-CBCT is a satisfactory method of accurate patient positioning in treating gynecological cancers with high-precision techniques. This resulted in avoiding geographic miss.

  18. SU-F-T-121: Abdominal Compression Effectively Reduces the Interplay Effect and Enables Pencil Beam Scanning Proton Therapy of Liver Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souris, K; University of Pennsylvania, Philadelphia, PA; Glick, A

    Purpose: To study if abdominal compression can reduce breathing motion and mitigate interplay effect in pencil beam scanning proton therapy (PBSPT) treatment of liver tumors in order to better spare healthy liver volumes compared with photon therapy. Methods: Ten patients, six having large tumors initially treated with IMRT and four having small tumors treated with SBRT, were replanned for PBSPT. ITV and beam-specific PTVs based on 4D-CT were used to ensure target coverage in PBSPT. The use of an abdominal compression belt and volumetric repainting was investigated to mitigate the interplay effect between breathing motion and PBSPT dynamic delivery. Anmore » in-house Matlab script has been developed to simulate this interplay effect. The dose is computed on each phase individually by sorting all spots according to their simulated delivery timing. The final dose distribution is then obtained by accumulating all dose maps to a reference phase. Results: For equivalent target coverage PBSPT reduced average healthy liver dose by 9.5% of the prescription dose compared with IMRT/SBRT. Abdominal compression of 113.2±42.2 mmHg was effective for all 10 patients and reduced average motion by 2.25 mm. As a result, the average ITV volume decreased from 128.2% to 123.1% of CTV volume. Similarly, the average beam-specific PTV volume decreased from 193.2% to 183.3%. For 8 of the 10 patients, the average motion was reduced below 5 mm, and up to 3 repainting were sufficient to mitigate interplay. For the other two patients with larger residual motion, 4–5 repainting were needed. Conclusion: We recommend evaluation of the 4DCT motion histogram following simulation and the interplay effect following treatment planning in order to personalize the use of compression and volumetric repainting for each patient. Abdominal compression enables safe and more effective PBS treatment of liver tumors by reduction of motion and interplay effect. Kevin Souris is supported by IBA and Televie

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Casey W.; Green, Garrett; Noticewala, Sonal S.

    Purpose: Validated models are needed to justify strategies to define planning target volumes (PTVs) for intact cervical cancer used in clinical practice. Our objective was to independently validate a previously published shape model, using data collected prospectively from clinical trials. Methods and Materials: We analyzed 42 patients with intact cervical cancer treated with daily fractionated pelvic intensity modulated radiation therapy and concurrent chemotherapy in one of 2 prospective clinical trials. We collected online cone beam computed tomography (CBCT) scans before each fraction. Clinical target volume (CTV) structures from the planning computed tomography scan were cast onto each CBCT scan aftermore » rigid registration and manually redrawn to account for organ motion and deformation. We applied the 95% isodose cloud from the planning computed tomography scan to each CBCT scan and computed any CTV outside the 95% isodose cloud. The primary aim was to determine the proportion of CTVs that were encompassed within the 95% isodose volume. A 1-sample t test was used to test the hypothesis that the probability of complete coverage was different from 95%. We used mixed-effects logistic regression to assess effects of time and patient variability. Results: The 95% isodose line completely encompassed 92.3% of all CTVs (95% confidence interval, 88.3%-96.4%), not significantly different from the 95% probability anticipated a priori (P=.19). The overall proportion of missed CTVs was small: the grand mean of covered CTVs was 99.9%, and 95.2% of misses were located in the anterior body of the uterus. Time did not affect coverage probability (P=.71). Conclusions: With the clinical implementation of a previously proposed PTV definition strategy based on a shape model for intact cervical cancer, the probability of CTV coverage was high and the volume of CTV missed was low. This PTV expansion strategy is acceptable for clinical trials and practice; however, we recommend

  20. TH-CD-207A-12: Impacts of Inter- and Intra-Fractional Organ Motion for High-Risk Prostate Cancer Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan Rezaeian, N; Chi, Y; Zhou, Y

    2016-06-15

    Purpose: We are conducting a clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer. Doses to three targets, prostate, intra-prostatic lesion, and pelvic lymph node (PLN) region, are escalated to three different levels via simultaneous integrated boost technique. Inter-/intra-fractional organ motions deteriorate planned dose distribution. This study aims at developing a dose reconstruction system to comprehensively understand the impacts of organ motion in our clinical trial. Methods: A 4D dose reconstruction system has been developed for this study. Using a GPU-based Monte-Carlo dose engine and delivery log file, the system is able to reconstruct dose on staticmore » or dynamic anatomy. For prostate and intra-prostatic targets, intra-fractional motion is the main concern. Motion trajectory acquired from Calypso in previously treated SBRT patients were used to perform 4D dose reconstructions. For pelvic target, inter-fractional motion is one concern. Eight patients, each with four cone beam CTs, were used to derive fractional motion. The delivered dose was reconstructed on the deformed anatomy. Dosimetric parameters for delivered dose distributions of the three targets were extracted and compared with planned levels. Results: For prostate intra-fractional motion, the mean 3D motion amplitude during beam delivery ranged from 1.5mm to 5.0mm and the average among all patients was 2.61mm. Inter-fractional motion for the PLN target was more significant. The average amplitude among patients was 4mm with the largest amplitude up to 9.6mm. The D95% deviation from planned level for prostate PTVs and GTVs are on average less than<0.1% and this deviation for intra-prostatic lesion PTVs and GTVs were more prominent. The dose at PLN was significantly affected with D{sub 95}% reduced by up to 44%. Conclusion: Intra-/inter-fractional organ motion is a concern for high-risk prostate SBRT, particularly for the PLN target. Our dose

  1. SU-E-J-192: Verification of 4D-MRI Internal Target Volume Using Cine MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafata, K; Czito, B; Palta, M

    Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D imagesmore » were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation

  2. Evaluation of delivered dose for a clinical daily adaptive plan selection strategy for bladder cancer radiotherapy.

    PubMed

    Lutkenhaus, Lotte J; Visser, Jorrit; de Jong, Rianne; Hulshof, Maarten C C M; Bel, Arjan

    2015-07-01

    To account for variable bladder size during bladder cancer radiotherapy, a daily plan selection strategy was implemented. The aim of this study was to calculate the actually delivered dose using an adaptive strategy, compared to a non-adaptive approach. Ten patients were treated to the bladder and lymph nodes with an adaptive full bladder strategy. Interpolated delineations of bladder and tumor on a full and empty bladder CT scan resulted in five PTVs for which VMAT plans were created. Daily cone beam CT (CBCT) scans were used for plan selection. Bowel, rectum and target volumes were delineated on these CBCTs, and delivered dose for these was calculated using both the adaptive plan, and a non-adaptive plan. Target coverage for lymph nodes improved using an adaptive strategy. The full bladder strategy spared the healthy part of the bladder from a high dose. Average bowel cavity V30Gy and V40Gy significantly reduced with 60 and 69ml, respectively (p<0.01). Other parameters for bowel and rectum remained unchanged. Daily plan selection compared to a non-adaptive strategy yielded similar bladder coverage and improved coverage for lymph nodes, with a significant reduction in bowel cavity V30Gy and V40Gy only, while other sparing was limited. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Method and apparatus for producing cryogenic targets

    DOEpatents

    Murphy, J.T.; Miller, J.R.

    1984-08-07

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers. 6 figs.

  4. Thinkers on Education. Volume 2.

    ERIC Educational Resources Information Center

    Morsy, Zaghloul, Ed.

    This collection of essays targets universities, social science research institutes, teacher training colleges, and those who lecture and carry out research on the history of ideas and of education. It is the second volume in a series that presents, in English, French, and Spanish, a comprehensive view of great educators of every age and culture.…

  5. Thinkers on Education. Volume 1.

    ERIC Educational Resources Information Center

    Morsy, Zaghloul, Ed.

    This collection of essays targets universities, social science research institutes, teacher training colleges, and those who lecture and carry out research on the history of ideas and of education. It is the first volume in a series that presents, in English, French, and Spanish, a comprehensive view of great educators of every age and culture.…

  6. Thinkers on Education. Volume 4.

    ERIC Educational Resources Information Center

    Morsy, Zaghloul, Ed.

    This collection of essays targets universities, social science research institutes, teacher training colleges, and those who lecture and carry out research on the history of ideas and of education. It is the fourth volume in a series that presents, in English, French, and Spanish, a comprehensive view of great educators of every age and culture.…

  7. What Is the Optimal Target Convective Volume in On-Line Hemodiafiltration Therapy?

    PubMed

    Canaud, Bernard; Koehler, Katrin; Bowry, Sudhir; Stuard, Stefano

    2017-01-01

    Conventional diffusion-based dialysis modalities including high-flux hemodialysis are limited in their capacity to effectively remove large uremic toxins and to improve outcomes for end-stage chronic kidney disease (ESKD) patients. By increasing convective solute transport, hemodiafiltration (HDF) enhances solute removal capacity over a broad range of middle- and large-size uremic toxins implicated in the pathophysiology of chronic kidney disease. Furthermore, by offering flexible convection volume, on-line HDF permits customizing the treatment dose to the patient's needs. In addition, convective-based modalities have been shown to improve hemodynamic stability and to reduce patients' inflammation profile - both of which are implicated in CKD morbidity and mortality. Growing clinical evidence indicates that HDF-based modalities provide ESKD patients with a number of clinical and biological benefits, including improved outcomes. Interestingly, it has recently emerged that the clinical benefits associated with HDF are positively associated with the total ultrafiltered volume per session (and per week), namely convective dose. In this chapter, we revisit the concept of convective dose and discuss the threshold value above which an improvement in ESKD patient outcome can be expected. This particular point will be addressed by stratifying the level of efficacy of convective volumes, schematically defined as minimal, optimal, personalized, and maximal. In addition, factors and best clinical practices implicated in the achievement of an optimal convective dose are reviewed. To conclude, we show how HDF differs from standard hemodialysis and why HDF offers a paradigm shift in renal replacement therapy. © 2017 S. Karger AG, Basel.

  8. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosztyla, Robert, E-mail: rkosztyla@bccancer.bc.ca; Chan, Elisa K.; Hsu, Fred

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified bymore » the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2

  9. Quantitative targeting maps based on experimental investigations for a branched tube model in magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Gitter, K.; Odenbach, S.

    2011-12-01

    Magnetic drug targeting (MDT), because of its high targeting efficiency, is a promising approach for tumour treatment. Unwanted side effects are considerably reduced, since the nanoparticles are concentrated within the target region due to the influence of a magnetic field. Nevertheless, understanding the transport phenomena of nanoparticles in an artery system is still challenging. This work presents experimental results for a branched tube model. Quantitative results describe, for example, the net amount of nanoparticles that are targeted towards the chosen region due to the influence of a magnetic field. As a result of measurements, novel drug targeting maps, combining, e.g. the magnetic volume force, the position of the magnet and the net amount of targeted nanoparticles, are presented. The targeting maps are valuable for evaluation and comparison of setups and are also helpful for the design and the optimisation of a magnet system with an appropriate strength and distribution of the field gradient. The maps indicate the danger of accretion within the tube and also show the promising result of magnetic drug targeting that up to 97% of the nanoparticles were successfully targeted.

  10. Impact of 4D image quality on the accuracy of target definition.

    PubMed

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  11. Technology transfer from NASA to targeted industries, volume 1

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  12. Factors influencing the difference between forecasted and actual drug sales volumes under the price-volume agreement in South Korea.

    PubMed

    Park, Sun-Young; Han, Euna; Kim, Jini; Lee, Eui-Kyung

    2016-08-01

    This study analyzed factors contributing to increases in the actual sales volumes relative to forecasted volumes of drugs under price-volume agreement (PVA) policy in South Korea. Sales volumes of newly listed drugs on the national formulary are monitored under PVA policy. When actual sales volume exceeds the pre-agreed forecasted volume by 30% or more, the drug is subject to price-reduction. Logistic regression assessed the factors related to whether drugs were the PVA price-reduction drugs. A generalized linear model with gamma distribution and log-link assessed the factors influencing the increase in actual volumes compared to forecasted volume in the PVA price-reduction drugs. Of 186 PVA monitored drugs, 34.9% were price-reduction drugs. Drugs marketed by pharmaceutical companies with previous-occupation in the therapeutic markets were more likely to be PVA price-reduction drugs than drugs marketed by firms with no previous-occupation. Drugs of multinational pharmaceutical companies were more likely to be PVA price-reduction drugs than those of domestic companies. Having more alternative existing drugs was significantly associated with higher odds of being PVA price-reduction drugs. Among the PVA price-reduction drugs, the increasing rate of actual volume compared to forecasted volume was significantly higher in drugs with clinical usefulness. By focusing the negotiation efforts on those target drugs, PVA policy can be administered more efficiently with the improved predictability of the drug sales volumes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. SU-F-T-392: Superior Brainstem and Cochlea Sparing with VMAT for Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briere, TM; McAleer, MF; Levy, LB

    Purpose: Volumetric arc therapy (VMAT) can provide similar target coverage and normal tissue sparing as IMRT but with shorter treatment times. At our institution VMAT was adopted for the treatment glioblastoma multiforme (GBM) after a small number of test plans demonstrated its non-inferiority. In this study, we compare actual clinical treatment plans for a larger cohort of patients treated with either VMAT or IMRT. Methods: 90 GBM patients were included in this study, 45 treated with IMRT and 45 with VMAT. All planning target volumes (PTVs) were prescribed a dose of 50 Gy, with a simultaneous integrated boost to 60more » Gy. Most IMRT plans used 5 non-coplanar beams, while most VMAT plans used 2 coplanar beams. Statistical analysis was performed using Fisher’s exact test or the Wilcoxon-Mann-Whitney rank sum test. Included in the analysis were patient and treatment characteristics as well as the doses to the target volumes and organs at risk. Results: Treatment times for the VMAT plans were reduced by 5 minutes compared with IMRT. The PTV coverage was similar, with at least 95% covered for all plans, while the median boost PTV dose differed by 0.1 Gy between the IMRT and VMAT cohorts. The doses to the brain, optic chiasm, optic nerves and eyes were not significantly different. The mean dose to the brainstem, however, was 9.4 Gy less with VMAT (p<0.001). The dose to the ipsilateral and contralateral cochleae were respectively 19.7 and 9.5 Gy less (p<0.001). Conclusion: Comparison of clinical treatment plans for separate IMRT and VMAT cohorts demonstrates that VMAT can save substantial treatment time while providing similar target coverage and superior sparing of the brainstem and cochleae. To our knowledge this is the first study to demonstrate this benefit of VMAT in the management of GBM.« less

  14. Proposed definition of the vaginal cuff and paracolpium clinical target volume in postoperative uterine cervical cancer.

    PubMed

    Murakami, Naoya; Norihisa, Yoshiki; Isohashi, Fumiaki; Murofushi, Keiko; Ariga, Takuro; Kato, Tomoyasu; Inaba, Koji; Okamoto, Hiroyuki; Ito, Yoshinori; Toita, Takafumi; Itami, Jun

    2016-01-01

    The aim of this study was to develop an appropriate definition for vaginal cuff and paracolpium clinical target volume (CTV) for postoperative intensity modulated radiation therapy in patients with uterine cervical cancer. A working subgroup was organized within the Radiation Therapy Study Group of the Japan Clinical Oncology Group to develop a definition for the postoperative vaginal cuff and paracolpium CTV in December 2013. The group consisted of 5 radiation oncologists who specialized in gynecologic oncology and a gynecologic oncologist. A comprehensive literature review that included anatomy, surgery, and imaging fields was performed and was followed by multiple discreet face-to-face discussions and e-mail messages before a final consensus was reached. Definitions for the landmark structures in all directions that demarcate the vaginal cuff and paracolpium CTV were decided by consensus agreement of the working group. A table was created that showed boundary structures of the vaginal cuff and paracolpium CTV in each direction. A definition of the postoperative cervical cancer vaginal cuff and paracolpium CTV was developed. It is expected that this definition guideline will serve as a template for future radiation therapy clinical trial protocols, especially protocols involving intensity modulated radiation therapy. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  15. Limitations of the planning organ at risk volume (PRV) concept.

    PubMed

    Stroom, Joep C; Heijmen, Ben J M

    2006-09-01

    Previously, we determined a planning target volume (PTV) margin recipe for geometrical errors in radiotherapy equal to M(T) = 2 Sigma + 0.7 sigma, with Sigma and sigma standard deviations describing systematic and random errors, respectively. In this paper, we investigated margins for organs at risk (OAR), yielding the so-called planning organ at risk volume (PRV). For critical organs with a maximum dose (D(max)) constraint, we calculated margins such that D(max) in the PRV is equal to the motion averaged D(max) in the (moving) clinical target volume (CTV). We studied margins for the spinal cord in 10 head-and-neck cases and 10 lung cases, each with two different clinical plans. For critical organs with a dose-volume constraint, we also investigated whether a margin recipe was feasible. For the 20 spinal cords considered, the average margin recipe found was: M(R) = 1.6 Sigma + 0.2 sigma with variations for systematic and random errors of 1.2 Sigma to 1.8 Sigma and -0.2 sigma to 0.6 sigma, respectively. The variations were due to differences in shape and position of the dose distributions with respect to the cords. The recipe also depended significantly on the volume definition of D(max). For critical organs with a dose-volume constraint, the PRV concept appears even less useful because a margin around, e.g., the rectum changes the volume in such a manner that dose-volume constraints stop making sense. The concept of PRV for planning of radiotherapy is of limited use. Therefore, alternative ways should be developed to include geometric uncertainties of OARs in radiotherapy planning.

  16. SU-E-T-593: Clinical Evaluation of Direct Aperture Optimization in Head/Neck and Prostate IMRT Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosini, M; GALAL, M; Emam, I

    2014-06-01

    Purpose: To investigate the planning and dosimetric advantages of direct aperture optimization (DAO) over beam-let optimization in IMRT treatment of head and neck (H/N) and prostate cancers. Methods: Five Head and Neck as well as five prostate patients were planned using the beamlet optimizer in Elekta-Xio ver 4.6 IMRT treatment planning system. Based on our experience in beamlet IMRT optimization, PTVs in H/N plans were prescribed to 70 Gy delivered by 7 fields. While prostate PTVs were prescribed to 76 Gy with 9 fields. In all plans, fields were set to be equally spaced. All cases were re-planed using Directmore » Aperture optimizer in Prowess Panther ver 5.01 IMRT planning system at same configurations and dose constraints. Plans were evaluated according to ICRU criteria, number of segments, number of monitor units and planning time. Results: For H/N plans, the near maximum dose (D2) and the dose that covers 95% D95 of PTV has improved by 4% in DAO. For organs at risk (OAR), DAO reduced the volume covered by 30% (V30) in spinal cord, right parotid, and left parotid by 60%, 54%, and 53% respectively. This considerable dosimetric quality improvement achieved using 25% less planning time and lower number of segments and monitor units by 46% and 51% respectively. In DAO prostate plans, Both D2 and D95 for the PTV were improved by only 2%. The V30 of the right femur, left femur and bladder were improved by 35%, 15% and 3% respectively. On the contrary, the rectum V30 got even worse by 9%. However, number of monitor units, and number of segments decreased by 20% and 25% respectively. Moreover the planning time reduced significantly too. Conclusion: DAO introduces considerable advantages over the beamlet optimization in regards to organs at risk sparing. However, no significant improvement occurred in most studied PTVs.« less

  17. Youth Attitude Tracking Study. Volume 1. Spring 1980.

    DTIC Science & Technology

    1980-08-01

    JobICharacteristics 11 Active Duty Positive Propensity Respondents Target Market Profile 13 Advertising Awareness 14 ’LIAttitudes Toward Enlistment Incentives...service advertising awareness. The fact that target market men value job characteristics that pertain to improving oneself suggests that this change in copy...W,0-R143 ii4 YOUTH ATTITUDE TRACKING STUDY VOLUME i SPRING i988(U) 1/3 MARKET FACTS INC CHICAGO IL PUBLIC SECTOR RESEARCH CORP J T HEISLER AUG 80

  18. Volumetric modulated arc therapy vs. c-IMRT for the treatment of upper thoracic esophageal cancer.

    PubMed

    Zhang, Wu-Zhe; Zhai, Tian-Tian; Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen

    2015-01-01

    To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT.

  19. Volumetric Modulated Arc Therapy vs. c-IMRT for the Treatment of Upper Thoracic Esophageal Cancer

    PubMed Central

    Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen

    2015-01-01

    Objective To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. PMID:25815477

  20. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Amy V.; Department of Radiation Oncology, St. Luke's-Roosevelt Hospital, New York, NY; Wortham, Angela

    2011-03-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical targetmore » volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the

  1. Defining the "Hostile Pelvis" for Intensity Modulated Radiation Therapy: The Impact of Anatomic Variations in Pelvic Dimensions on Dose Delivered to Target Volumes and Organs at Risk in Patients With High-Risk Prostate Cancer Treated With Whole Pelvic Radiation Therapy.

    PubMed

    Yirmibeşoğlu Erkal, Eda; Karabey, Sinan; Karabey, Ayşegül; Hayran, Mutlu; Erkal, Haldun Şükrü

    2015-07-15

    The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to the Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (Dmin), maximum dose (Dmax), and mean dose (Dmean) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (VD) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Defining the “Hostile Pelvis” for Intensity Modulated Radiation Therapy: The Impact of Anatomic Variations in Pelvic Dimensions on Dose Delivered to Target Volumes and Organs at Risk in Patients With High-Risk Prostate Cancer Treated With Whole Pelvic Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yirmibeşoğlu Erkal, Eda, E-mail: eyirmibesoglu@yahoo.com; Karabey, Sinan; Karabey, Ayşegül

    2015-07-15

    Purpose: The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). Methods and Materials: In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to themore » Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (D{sub min}), maximum dose (D{sub max}), and mean dose (D{sub mean}) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (V{sub D}) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. Results: According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Conclusions: Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT.« less

  3. Laser Irradiated Foam Targets: Absorption and Radiative Properties

    NASA Astrophysics Data System (ADS)

    Salvadori, Martina; Luigi Andreoli, Pier; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; di Giorgio, Giorgio; Giulietti, Danilo; Ingenito, Francesco; Gus'kov, Sergey Yu.; Rupasov, Alexander A.

    2018-01-01

    An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminum targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target.

  4. Target motion tracking in MRI-guided transrectal robotic prostate biopsy.

    PubMed

    Tadayyon, Hadi; Lasso, Andras; Kaushal, Aradhana; Guion, Peter; Fichtinger, Gabor

    2011-11-01

    MRI-guided prostate needle biopsy requires compensation for organ motion between target planning and needle placement. Two questions are studied and answered in this paper: 1) is rigid registration sufficient in tracking the targets with an error smaller than the clinically significant size of prostate cancer and 2) what is the effect of the number of intraoperative slices on registration accuracy and speed? we propose multislice-to-volume registration algorithms for tracking the biopsy targets within the prostate. Three orthogonal plus additional transverse intraoperative slices are acquired in the approximate center of the prostate and registered with a high-resolution target planning volume. Both rigid and deformable scenarios were implemented. Both simulated and clinical MRI-guided robotic prostate biopsy data were used to assess tracking accuracy. average registration errors in clinical patient data were 2.6 mm for the rigid algorithm and 2.1 mm for the deformable algorithm. rigid tracking appears to be promising. Three tracking slices yield significantly high registration speed with an affordable error.

  5. A comparative study of the target volume definition in radiotherapy with «Slow CT Scan» vs. 4D PET/CT Scan in early stages non-small cell lung cancer.

    PubMed

    Molla, M; Anducas, N; Simó, M; Seoane, A; Ramos, M; Cuberas-Borros, G; Beltran, M; Castell, J; Giralt, J

    To evaluate the use of 4D PET/CT to quantify tumor respiratory motion compared to the «Slow»-CT (CTs) in the radiotherapy planning process. A total of 25 patients with inoperable early stage non small cell lung cancer (NSCLC) were included in the study. Each patient was imaged with a CTs (4s/slice) and 4D PET/CT. The adequacy of each technique for respiratory motion capture was evaluated using the volume definition for each of the following: Internal target volume (ITV) 4D and ITVslow in relation with the volume defined by the encompassing volume of 4D PET/CT and CTs (ITVtotal). The maximum distance between the edges of the volume defined by each technique to that of the total volume was measured in orthogonal beam's eye view. The ITV4D showed less differences in relation with the ITVtotal in both the cranio-caudal and the antero-posterior axis compared to the ITVslow. The maximum differences were 0.36mm in 4D PET/CTand 0.57mm in CTs in the antero-posterior axis. 4D PET/CT resulted in the definition of more accurate (ITV4D/ITVtotal 0.78 vs. ITVs/ITVtotal 0.63), and larger ITVs (19.9 cc vs. 16.3 cc) than those obtained with CTs. Planning with 4D PET/CT in comparison with CTs, allows incorporating tumor respiratory motion and improving planning radiotherapy of patients in early stages of lung cancer. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  6. Assessing the Dosimetric Accuracy of Magnetic Resonance-Generated Synthetic CT Images for Focal Brain VMAT Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paradis, Eric, E-mail: eparadis@umich.edu; Cao, Yue; Department of Radiology, University of Michigan Hospital and Health Systems, Ann Arbor, Michigan

    2015-12-01

    Purpose: The purpose of this study was to assess the dosimetric accuracy of synthetic CT (MRCT) volumes generated from magnetic resonance imaging (MRI) data for focal brain radiation therapy. Methods and Materials: A study was conducted in 12 patients with gliomas who underwent both MR and CT imaging as part of their simulation for external beam treatment planning. MRCT volumes were generated from MR images. Patients' clinical treatment planning directives were used to create 12 individual volumetric modulated arc therapy (VMAT) plans, which were then optimized 10 times on each of their respective CT and MRCT-derived electron density maps. Dosemore » metrics derived from optimization criteria, as well as monitor units and gamma analyses, were evaluated to quantify differences between the imaging modalities. Results: Mean differences between planning target volume (PTV) doses on MRCT and CT plans across all patients were 0.0% (range: −0.1 to 0.2%) for D{sub 95%}; 0.0% (−0.7 to 0.6%) for D{sub 5%}; and −0.2% (−1.0 to 0.2%) for D{sub max}. MRCT plans showed no significant changes in monitor units (−0.4%) compared to CT plans. Organs at risk (OARs) had average D{sub max} differences of 0.0 Gy (−2.2 to 1.9 Gy) over 85 structures across all 12 patients, with no significant differences when calculated doses approached planning constraints. Conclusions: Focal brain VMAT plans optimized on MRCT images show excellent dosimetric agreement with standard CT-optimized plans. PTVs show equivalent coverage, and OARs do not show any overdose. These results indicate that MRI-derived synthetic CT volumes can be used to support treatment planning of most patients treated for intracranial lesions.« less

  7. A scaling relationship for impact-induced melt volume

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Rubie, D. C.; Melosh, H., IV; Jacobson, S. A.; Golabek, G.; Nimmo, F.; Morbidelli, A.

    2016-12-01

    During the late stages of planetary accretion, protoplanets experience a number of giant impacts and extensive mantle melting. The impactor's core sinks through the molten part of the target mantle (magma ocean) and experiences metal-silicate partitioning (e.g., Stevenson, 1990). For understanding the chemical evolution of the planetary mantle and core, we need to determine the impact-induced melt volume because the partitioning strongly depends on the ranges of the pressures and temperatures within the magma ocean. Previous studies have investigated the effects of small impacts (i.e. impact cratering) on melt volume, but those for giant impacts are not well understood yet. Here, we perform giant impact simulations to derive a scaling law for melt volume as a function of impact velocity, impact angle, and impactor-to-target mass ratio. We use two different numerical codes, namely smoothed particle hydrodynamics we developed (SPH, a particle method) and the code iSALE (a grid-based method) to compare their outcomes. Our simulations show that these two codes generally agree as long as the same equation of state is used. We also find that some of the previous studies developed for small impacts (e.g., Abramov et al., 2012) overestimate giant impact melt volume by orders of magnitudes partly because these models do not consider self-gravity of the impacting bodies. Therefore, these models may not be extrapolated to large impacts. Our simulations also show that melt volume can be scaled by the total mass of the system. In this presentation, we further discuss geochemical implications for giant impacts on planets, including Earth and Mars.

  8. The ADVANCE project : formal evaluation of the targeted deployment. Volume 2

    DOT National Transportation Integrated Search

    1997-01-01

    This document reports on the formal evaluation of the targeted (limited but highly focused) deployment of the Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE), an in-vehicle advanced traveler information system designed to provide sh...

  9. A new brain positron emission tomography scanner with semiconductor detectors for target volume delineation and radiotherapy treatment planning in patients with nasopharyngeal carcinoma.

    PubMed

    Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki

    2012-03-15

    We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET(CONV)WB) versus the new brain (BR) PET system using semiconductor detectors (PET(NEW)BR). Twelve patients with NPC were enrolled in this study. [(18)F]Fluorodeoxyglucose-PET images were acquired using both the PET(NEW)BR and the PET(CONV)WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET(CONV)WB and PET(NEW)BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET(CONV)WB (GTV(CONV)) images or PET(NEW)BR (GTV(NEW)) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. The average absolute volume (±standard deviation [SD]) of GTV(NEW) was 15.7 ml (±9.9) ml, and that of GTV(CONV) was 34.0 (±20.5) ml. The average GTV(NEW) was significantly smaller than that of GTV(CONV) (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN(NEW)) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy treatment planning. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.

    PubMed

    Bradley, Jeffrey; Thorstad, Wade L; Mutic, Sasa; Miller, Tom R; Dehdashti, Farrokh; Siegel, Barry A; Bosch, Walter; Bertrand, Rudi J

    2004-05-01

    Locoregional failure remains a significant problem for patients receiving definitive radiation therapy alone or combined with chemotherapy for non-small-cell lung cancer (NSCLC). Positron emission tomography (PET) with [(18)F]fluoro-2-deoxy-d-glucose (FDG) has proven to be a valuable diagnostic and staging tool for NSCLC. This prospective study was performed to determine the impact of treatment simulation with FDG-PET and CT on radiation therapy target volume definition and toxicity profiles by comparison to simulation with computed tomography (CT) scanning alone. Twenty-six patients with Stages I-III NSCLC were studied. Each patient underwent sequential CT and FDG-PET simulation on the same day. Immobilization devices used for both simulations included an alpha cradle, a flat tabletop, 6 external fiducial markers, and a laser positioning system. A radiation therapist participated in both simulations to reproduce the treatment setup. Both the CT and fused PET/CT image data sets were transferred to the radiation treatment planning workstation for contouring. Each FDG-PET study was reviewed with the interpreting nuclear radiologist before tumor volumes were contoured. The fused PET/CT images were used to develop the three-dimensional conformal radiation therapy (3DCRT) plan. A second physician, blinded to the results of PET, contoured the gross tumor volumes (GTV) and planning target volumes (PTV) from the CT data sets, and these volumes were used to generate mock 3DCRT plans. The PTV was defined by a 10-mm margin around the GTV. The two 3DCRT plans for each patient were compared with respect to the GTV, PTV, mean lung dose, volume of normal lung receiving > or =20 Gy (V20), and mean esophageal dose. The FDG-PET findings altered the AJCC TNM stage in 8 of 26 (31%) patients; 2 patients were diagnosed with metastatic disease based on FDG-PET and received palliative radiation therapy. Of the 24 patients who were planned with 3DCRT, PET clearly altered the radiation

  11. Time to achieve target mean arterial pressure during resuscitation from experimental anaphylactic shock in an animal model. A comparison of adrenaline alone or in combination with different volume expanders.

    PubMed

    Tajima, K; Zheng, F; Collange, O; Barthel, G; Thornton, S N; Longrois, D; Levy, B; Audibert, G; Malinovsky, J M; Mertes, P M

    2013-11-01

    Anaphylactic shock is a rare, but potentially lethal complication, combining life-threatening circulatory failure and massive fluid shifts. Treatment guidelines rely on adrenaline and volume expansion by intravenous fluids, but there is no solid evidence for the choice of one specific type of fluid over another. Our purpose was to compare the time to achieve target mean arterial pressure upon resuscitation using adrenaline alone versus adrenaline with different resuscitation fluids in an animal model and to compare the tissue oxygen pressures (PtiO2) with the various strategies. Twenty-five ovalbumin-sensitised Brown Norway rats were allocated to five groups after anaphylactic shock induction: vehicle (CON), adrenaline alone (AD), or adrenaline with isotonic saline (AD+IS), hydroxyethyl starch (AD+HES) or hypertonic saline (AD+HS). Time to reach a target mean arterial pressure value of 75 mmHg, cardiac output, skeletal muscle PtiO2, lactate/pyruvate ratio and cumulative doses of adrenaline were recorded. Non-treated rats died within 15 minutes. The target mean arterial pressure value was reached faster with AD+HES (median: 10 minutes, range: 7.5 to 12.5 minutes) and AD+IS (median: 17.5 minutes, range: 5 to 25 minutes) versus adrenaline alone (median: 25 minutes, range: 20-30 minutes). There were also reduced adrenaline requirements in these groups. The skeletal muscle PtiO2 was restored only in the AD+HES group. Although direct extrapolation to humans should be made with caution, our results support the combined use of adrenaline and volume expansion for resuscitation from anaphylactic shock. When used with adrenaline the most effective fluid was hydroxyethyl starch, whereas hypertonic saline was the least effective.

  12. Dynamic magnetic resonance imaging assessment of vascular targeting agent effects in rat intracerebral tumor models

    PubMed Central

    Muldoon, Leslie L.; Gahramanov, Seymur; Li, Xin; Marshall, Deborah J.; Kraemer, Dale F.; Neuwelt, Edward A.

    2011-01-01

    We used dynamic MRI to evaluate the effects of monoclonal antibodies targeting brain tumor vasculature. Female athymic rats with intracerebral human tumor xenografts were untreated or treated with intetumumab, targeting αV-integrins, or bevacizumab, targeting vascular endothelial growth factor (n = 4–6 per group). Prior to treatment and at 1, 3, and 7 days after treatment, we performed standard MRI to assess tumor volume, dynamic susceptibility-contrast MRI with the blood-pool iron oxide nanoparticle ferumoxytol to evaluate relative cerebral blood volume (rCBV), and dynamic contrast-enhanced MRI to assess tumor vascular permeability. Tumor rCBV increased by 27 ± 13% over 7 days in untreated rats; intetumumab increased tumor rCBV by 65 ± 10%, whereas bevacizumab reduced tumor rCBV by 31 ± 10% at 7 days (P < .001 for group and day). Similarly, intetumumab increased brain tumor vascular permeability compared with controls at 3 and 7 days after treatment, whereas bevacizumab decreased tumor permeability within 24 hours (P = .0004 for group, P = .0081 for day). All tumors grew over the 7-day assessment period, but bevacizumab slowed the increase in tumor volume on MRI. We conclude that the vascular targeting agents intetumumab and bevacizumab had diametrically opposite effects on dynamic MRI of tumor vasculature in rat brain tumor models. Targeting αV-integrins increased tumor vascular permeability and blood volume, whereas bevacizumab decreased both measures. These findings have implications for chemotherapy delivery and antitumor efficacy. PMID:21123368

  13. Predicting Nonauditory Adverse Radiation Effects Following Radiosurgery for Vestibular Schwannoma: A Volume and Dosimetric Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayhurst, Caroline; Monsalves, Eric; Bernstein, Mark

    2012-04-01

    Purpose: To define clinical and dosimetric predictors of nonauditory adverse radiation effects after radiosurgery for vestibular schwannoma treated with a 12 Gy prescription dose. Methods: We retrospectively reviewed our experience of vestibular schwannoma patients treated between September 2005 and December 2009. Two hundred patients were treated at a 12 Gy prescription dose; 80 had complete clinical and radiological follow-up for at least 24 months (median, 28.5 months). All treatment plans were reviewed for target volume and dosimetry characteristics; gradient index; homogeneity index, defined as the maximum dose in the treatment volume divided by the prescription dose; conformity index; brainstem; andmore » trigeminal nerve dose. All adverse radiation effects (ARE) were recorded. Because the intent of our study was to focus on the nonauditory adverse effects, hearing outcome was not evaluated in this study. Results: Twenty-seven (33.8%) patients developed ARE, 5 (6%) developed hydrocephalus, 10 (12.5%) reported new ataxia, 17 (21%) developed trigeminal dysfunction, 3 (3.75%) had facial weakness, and 1 patient developed hemifacial spasm. The development of edema within the pons was significantly associated with ARE (p = 0.001). On multivariate analysis, only target volume is a significant predictor of ARE (p = 0.001). There is a target volume threshold of 5 cm3, above which ARE are more likely. The treatment plan dosimetric characteristics are not associated with ARE, although the maximum dose to the 5th nerve is a significant predictor of trigeminal dysfunction, with a threshold of 9 Gy. The overall 2-year tumor control rate was 96%. Conclusions: Target volume is the most important predictor of adverse radiation effects, and we identified the significant treatment volume threshold to be 5 cm3. We also established through our series that the maximum tolerable dose to the 5th nerve is 9 Gy.« less

  14. Focusing analytes from 50 μL into 500 pL: On-chip focusing from large sample volumes using isotachophoresis.

    PubMed

    van Kooten, Xander F; Truman-Rosentsvit, Marianna; Kaigala, Govind V; Bercovici, Moran

    2017-09-05

    The use of on-chip isotachophoresis assays for diagnostic applications is often limited by the small volumes of standard microfluidic channels. Overcoming this limitation is particularly important for detection of 'discrete' biological targets (such as bacteria) at low concentrations, where the volume of processed liquid in a standard microchannel might not contain any targets. We present a novel microfluidic chip that enables ITP focusing of target analytes from initial sample volumes of 50 μL into a concentrated zone with a volume of 500 pL, corresponding to a 100,000-fold increase in mean concentration, and a 300,000-fold increase in peak concentration. We present design considerations for limiting sample dispersion in such large-volume focusing (LVF) chips and discuss the trade-off between assay time and Joule heating, which ultimately governs the scalability of LVF designs. Finally, we demonstrate a 100-fold improvement of ITP focusing performance in the LVF chip as compared to conventional microchannels, and apply this enhancement to achieve highly sensitive detection of both molecular targets (DNA, down to 10 fM) and whole bacteria (down to 100 cfu/mL).

  15. Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and Reference Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.

    1994-12-22

    The Compliance Plan Volume provides overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) and contains procedures to establish milestones to be enforced under the Order. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume and is provided for informational purposes only.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Xiaodong, E-mail: lxdctopone@sina.com; Ni, Lingqin; Hu, Wei

    The objective of this study was to evaluate the dose conformity and feasibility of whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in patients with 1 to 3 brain metastases. Forward intensity-modulated radiation therapy plans were generated for 10 patients with 1 to 3 brain metastases on Pinnacle 6.2 Treatment Planning System. The prescribed dose was 30 Gy to the whole brain (planning target volume [PTV]{sub wbrt}) and 40 Gy to individual brain metastases (PTV{sub boost}) simultaneously, and both doses were given in 10 fractions. The maximum diameters of individual brain metastases ranged from 1.6 tomore » 6 cm, and the summated PTVs per patient ranged from 1.62 to 69.81 cm{sup 3}. Conformity and feasibility were evaluated regarding conformation number and treatment delivery time. One hundred percent volume of the PTV{sub boost} received at least 95% of the prescribed dose in all cases. The maximum doses were less than 110% of the prescribed dose to the PTV{sub boost}, and all of the hot spots were within the PTV{sub boost}. The volume of the PTV{sub wbrt} that received at least 95% of the prescribed dose ranged from 99.2% to 100%. The mean values of conformation number were 0.682. The mean treatment delivery time was 2.79 minutes. Ten beams were used on an average in these plans. Whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in 1 to 3 brain metastases is feasible, and treatment delivery time is short.« less

  17. A pilot prospective feasibility study of organ-at-risk definition using Target Contour Testing/Instructional Computer Software (TaCTICS), a training and evaluation platform for radiotherapy target delineation.

    PubMed

    Kalpathy-Cramer, Jayashree; Bedrick, Steven D; Boccia, Kelly; Fuller, Clifton D

    2011-01-01

    Target volume delineation is a critical, but time-consuming step in the creation of radiation therapy plans used in the treatment of many types of cancer. However, variability in target volume definitions can introduce substantial differences in resulting doses to tumors and critical structures. We developed TaCTICS, a web-based educational training software application targeted towards non-expert users. We report on a small, prospective study to evaluate the utility of this online tool in improving conformance of regions-of-interest (ROIs) with a reference set. Eight residents contoured a set of structures for a head-and-neck cancer case. Subsequently, they were provided access to TaCTICS as well as contouring atlases to allow evaluation of their contours in reference to other users as well as reference ROIs. The residents then contoured a second case using these resources. Volume overlap metrics between the users showed a substantial improvement following the intervention. Additionally, 66% of users reported that they found TaCTICS to be a useful educational tool and all participants reported they would like to use TaCTICS to track their contouring skills over the course of their residency.

  18. More Accurate Definition of Clinical Target Volume Based on the Measurement of Microscopic Extensions of the Primary Tumor Toward the Uterus Body in International Federation of Gynecology and Obstetrics Ib-IIa Squamous Cell Carcinoma of the Cervix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Wen-Jia; Wu, Xiao; Xue, Ren-Liang

    Purpose: To more accurately define clinical target volume for cervical cancer radiation treatment planning by evaluating tumor microscopic extension toward the uterus body (METU) in International Federation of Gynecology and Obstetrics stage Ib-IIa squamous cell carcinoma of the cervix (SCCC). Patients and Methods: In this multicenter study, surgical resection specimens from 318 cases of stage Ib-IIa SCCC that underwent radical hysterectomy were included. Patients who had undergone preoperative chemotherapy, radiation, or both were excluded from this study. Microscopic extension of primary tumor toward the uterus body was measured. The association between other pathologic factors and METU was analyzed. Results: Microscopicmore » extension toward the uterus body was not common, with only 12.3% of patients (39 of 318) demonstrating METU. The mean (±SD) distance of METU was 0.32 ± 1.079 mm (range, 0-10 mm). Lymphovascular space invasion was associated with METU distance and occurrence rate. A margin of 5 mm added to gross tumor would adequately cover 99.4% and 99% of the METU in the whole group and in patients with lymphovascular space invasion, respectively. Conclusion: According to our analysis of 318 SCCC specimens for METU, using a 5-mm gross tumor volume to clinical target volume margin in the direction of the uterus should be adequate for International Federation of Gynecology and Obstetrics stage Ib-IIa SCCC. Considering the discrepancy between imaging and pathologic methods in determining gross tumor volume extent, we recommend a safer 10-mm margin in the uterine direction as the standard for clinical practice when using MRI for contouring tumor volume.« less

  19. Raytracing and Direct-Drive Targets

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Bates, Jason; Fyfe, David; Eimerl, David

    2013-10-01

    Accurate simulation of the effects of laser imprinting and drive asymmetries in directly driven targets requires the ability to distinguish between raytrace noise and the intensity structure produced by the spatial and temporal incoherence of optical smoothing. We have developed and implemented a smoother raytrace algorithm for our mpi-parallel radiation hydrodynamics code, FAST3D. The underlying approach is to connect the rays into either sheets (in 2D) or volume-enclosing chunks (in 3D) so that the absorbed energy distribution continuously covers the propagation area illuminated by the laser. We will describe the status and show the different scalings encountered in 2D and 3D problems as the computational size, parallelization strategy, and number of rays is varied. Finally, we show results using the method in current NIKE experimental target simulations and in proposed symmetric and polar direct-drive target designs. Supported by US DoE/NNSA.

  20. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated bymore » attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.« less

  1. Helical Tomotherapy vs. Intensity-Modulated Proton Therapy for Whole Pelvis Irradiation in High-Risk Prostate Cancer Patients: Dosimetric, Normal Tissue Complication Probability, and Generalized Equivalent Uniform Dose Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widesott, Lamberto, E-mail: widesott@yahoo.it; Pierelli, Alessio; Fiorino, Claudio

    2011-08-01

    Purpose: To compare intensity-modulated proton therapy (IMPT) and helical tomotherapy (HT) treatment plans for high-risk prostate cancer (HRPCa) patients. Methods and Materials: The plans of 8 patients with HRPCa treated with HT were compared with IMPT plans with two quasilateral fields set up (-100{sup o}; 100{sup o}) and optimized with the Hyperion treatment planning system. Both techniques were optimized to simultaneously deliver 74.2 Gy/Gy relative biologic effectiveness (RBE) in 28 fractions on planning target volumes (PTVs)3-4 (P + proximal seminal vesicles), 65.5 Gy/Gy(RBE) on PTV2 (distal seminal vesicles and rectum/prostate overlapping), and 51.8 Gy/Gy(RBE) to PTV1 (pelvic lymph nodes). Normalmore » tissue calculation probability (NTCP) calculations were performed for the rectum, and generalized equivalent uniform dose (gEUD) was estimated for the bowel cavity, penile bulb and bladder. Results: A slightly better PTV coverage and homogeneity of target dose distribution with IMPT was found: the percentage of PTV volume receiving {>=}95% of the prescribed dose (V{sub 95%}) was on average >97% in HT and >99% in IMPT. The conformity indexes were significantly lower for protons than for photons, and there was a statistically significant reduction of the IMPT dosimetric parameters, up to 50 Gy/Gy(RBE) for the rectum and bowel and 60 Gy/Gy(RBE) for the bladder. The NTCP values for the rectum were higher in HT for all the sets of parameters, but the gain was small and in only a few cases statistically significant. Conclusions: Comparable PTV coverage was observed. Based on NTCP calculation, IMPT is expected to allow a small reduction in rectal toxicity, and a significant dosimetric gain with IMPT, both in medium-dose and in low-dose range in all OARs, was observed.« less

  2. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, L; Thomas, C; Syme, A

    2016-06-15

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depictingmore » the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial

  3. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a ⁶⁰Co Magnetic Resonance Image Guidance Radiation Therapy System.

    PubMed

    Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa

    2015-07-15

    This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Online compensation for target motion with scanned particle beams: simulation environment.

    PubMed

    Li, Qiang; Groezinger, Sven Oliver; Haberer, Thomas; Rietzel, Eike; Kraft, Gerhard

    2004-07-21

    Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.

  5. [Effect of image fusion technology of radioactive particles implantation before and after the planning target and dosimetry].

    PubMed

    Jiang, Y L; Yu, J P; Sun, H T; Guo, F X; Ji, Z; Fan, J H; Zhang, L J; Li, X; Wang, J J

    2017-08-01

    Objective: To compare the post-implant target volumes and dosimetric evaluation with pre-plan, the gross tumor volume(GTV) by CT image fusion-based and the manual delineation of target volume in CT guided radioactive seeds implantation. Methods: A total of 10 patients treated under CT-guidance (125)I seed implantation during March 2016 to April 2016 were analyzed in Peking University Third Hospital.All patients underwent pre-operative CT simulation, pre-operative planning, implantation seeds, CT scanning after seed implantation and dosimetric evaluation of GTV.In every patient, post-implant target volumes were delineated by both two methods, and were divided into two groups. Group 1: image fusion pre-implantation simulation and post-operative CT image, then the contours of GTV were automatically performed by brachytherapy treatment planning system; Group 2: the contouring of the GTV on post-operative CT image were performed manually by three senior radiation oncologists independently. The average of three data was sets. Statistical analyses were performed using SPSS software, version 3.2.0. The paired t -test was used to compare the target volumes and D(90) parameters in two modality. Results: In Group 1, average volume of GTV in post-operation group was 12-167(73±56) cm(3). D(90) was 101-153 (142±19)Gy. In Group 2, they were 14-186(80±58)cm(3) and 96-146(122±16) Gy respectively. In both target volumes and D(90), there was no statistical difference between pre-operation and post-operation in Group 1.The D(90) was slightly lower than that of pre-plan group, but there was no statistical difference ( P =0.142); in Group 2, between pre-operation and post-operation group, there was a significant statistical difference in the GTV ( P =0.002). The difference of D(90) was similarly ( P <0.01). Conclusion: The method of delineation of post-implant GTV through fusion pre-implantation simulation and post-operative CT scan images, the contours of GTV are automatically

  6. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, Scott; Sheffield, Stephen

    2005-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.

  7. Temperature Controller System for Gas Gun Targets

    NASA Astrophysics Data System (ADS)

    Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.

    2006-07-01

    A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.

  8. High-Target Versus Low-Target Blood Pressure Management During Cardiopulmonary Bypass to Prevent Cerebral Injury in Cardiac Surgery Patients: A Randomized Controlled Trial.

    PubMed

    Vedel, Anne G; Holmgaard, Frederik; Rasmussen, Lars S; Langkilde, Annika; Paulson, Olaf B; Lange, Theis; Thomsen, Carsten; Olsen, Peter Skov; Ravn, Hanne Berg; Nilsson, Jens C

    2018-04-24

    Cerebral injury is an important complication after cardiac surgery with the use of cardiopulmonary bypass. The rate of overt stroke after cardiac surgery is 1% to 2%, whereas silent strokes, detected by diffusion-weighted magnetic resonance imaging, are found in up to 50% of patients. It is unclear whether a higher versus a lower blood pressure during cardiopulmonary bypass reduces cerebral infarction in these patients. In a patient- and assessor-blinded randomized trial, we allocated patients to a higher (70-80 mm Hg) or lower (40-50 mm Hg) target for mean arterial pressure by the titration of norepinephrine during cardiopulmonary bypass. Pump flow was fixed at 2.4 L·min -1 ·m -2 . The primary outcome was the total volume of new ischemic cerebral lesions (summed in millimeters cubed), expressed as the difference between diffusion-weighted imaging conducted preoperatively and again postoperatively between days 3 and 6. Secondary outcomes included diffusion-weighted imaging-evaluated total number of new ischemic lesions. Among the 197 enrolled patients, mean (SD) age was 65.0 (10.7) years in the low-target group (n=99) and 69.4 (8.9) years in the high-target group (n=98). Procedural risk scores were comparable between groups. Overall, diffusion-weighted imaging revealed new cerebral lesions in 52.8% of patients in the low-target group versus 55.7% in the high-target group ( P =0.76). The primary outcome of volume of new cerebral lesions was comparable between groups, 25 mm 3 (interquartile range, 0-118 mm 3 ; range, 0-25 261 mm 3 ) in the low-target group versus 29 mm 3 (interquartile range, 0-143 mm 3 ; range, 0-22 116 mm 3 ) in the high-target group (median difference estimate, 0; 95% confidence interval, -25 to 0.028; P =0.99), as was the secondary outcome of number of new lesions (1 [interquartile range, 0-2; range, 0-24] versus 1 [interquartile range, 0-2; range, 0-29] respectively; median difference estimate, 0; 95% confidence interval, 0-0; P =0

  9. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, N. Andres; Maudsley, Andrew A.; Gupta, Rakesh K.

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients.more » Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based

  10. Locoregional control after intensity-modulated radiotherapy for nasopharyngeal carcinoma with an anatomy-based target definition.

    PubMed

    Kawashima, Mitsuhiko; Ariji, Takaki; Kameoka, Satoru; Ueda, Takashi; Kohno, Ryosuke; Nishio, Teiji; Arahira, Satoko; Motegi, Atsushi; Zenda, Sadamoto; Akimoto, Tetsuo; Tahara, Makoto; Hayashi, Ryuichi

    2013-12-01

    The objective of the study was to evaluate locoregional control after intensity-modulated radiotherapy for nasopharyngeal cancer using a target definition along with anatomical boundaries. Forty patients with biopsy-proven squamous cell or non-keratinizing carcinoma of the nasopharynx who underwent intensity-modulated radiotherapy between April 2006 and November 2009 were reviewed. There were 10 females and 30 males with a median age of 48 years (range, 17-74 years). More than half of the patients had T3/4 (n = 21) and/or N2/3 (n = 24) disease. Intensity-modulated radiotherapy was administered as 70 Gy/33 fractions with or without concomitant chemotherapy. The clinical target volume was contoured along with muscular fascia or periosteum, and the prescribed radiotherapy dose was determined for each anatomical compartment and lymph node level in the head and neck. One local recurrence was observed at Meckel's cave on the periphery of the high-risk clinical target volume receiving a total dose of <63 Gy. Otherwise, six locoregional failures were observed within irradiated volume receiving 70 Gy. Local and nodal control rates at 3 years were 91 and 89%, respectively. Adverse events were acceptable, and 25 (81%) of 31 patients who were alive without recurrence at 2 years had xerostomia of ≤Grade 1. The overall survival rate at 3 years was 87%. Target definition along with anatomically defined boundaries was feasible without compromise of the therapeutic ratio. It is worth testing this method further to minimize the unnecessary irradiated volume and to standardize the target definition in intensity-modulated radiotherapy for nasopharyngeal cancer.

  11. Moderator's view: High-volume plasma exchange: pro, con and consensus.

    PubMed

    Kaplan, Andre A

    2017-09-01

    I have been asked to comment on the pro and con opinions regarding high-volume plasma exchange. The authors of both positions have provided cogent arguments and a reasonable approach to choosing the exchange volume for any given therapeutic plasma exchange. The major issue of relevance in this discussion is the nature of the toxins targeted for removal. These parameters include molecular weight, the apparent volume of distribution, the degree of protein binding, the biologic and chemical half-life, and the severity and rapidity of its toxicity. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  12. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging.

    PubMed

    Scarfone, Christopher; Lavely, William C; Cmelak, Anthony J; Delbeke, Dominique; Martin, William H; Billheimer, Dean; Hallahan, Dennis E

    2004-04-01

    The aim of this investigation was to evaluate the influence and accuracy of (18)F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with (18)F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the (18)F-FDG PET and CT planning image datasets. (18)F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on (18)F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, (18)F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, (18)F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Inclusion of (18)F-FDG PET data resulted in modified target volumes in

  13. SINGLE INSTITUTION VARIABILITY IN INTENSITY MODULATED RADIATION TARGET DELINEATION FOR CANINE NASAL NEOPLASIA.

    PubMed

    Christensen, Neil I; Forrest, Lisa J; White, Pamela J; Henzler, Margaret; Turek, Michelle M

    2016-11-01

    Contouring variability is a significant barrier to the accurate delivery and reporting of radiation therapy. The aim of this descriptive study was to determine the variation in contouring radiation targets and organs at risk by participants within our institution. Further, we also aimed to determine if all individuals contoured the same normal tissues. Two canine nasal tumor datasets were selected and contoured by two ACVR-certified radiation oncologists and two radiation oncology residents from the same institution. Eight structures were consistently contoured including the right and left eye, the right and left lens, brain, the gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV). Spinal cord, hard and soft palate, and bulla were contoured on 50% of datasets. Variation in contouring occurred in both targets and normal tissues at risk and was particularly significant for the GTV, CTV, and PTV. The mean metric score and dice similarity coefficient were below the threshold criteria in 37.5-50% and 12.5-50% of structures, respectively, quantitatively indicating contouring variation. This study refutes our hypothesis that minimal variation in target and normal tissue delineation occurs. The variation in contouring may contribute to different tumor response and toxicity for any given patient. Our results also highlight the difficulty associated with replication of published radiation protocols or treatments, as even with replete contouring description the outcome of treatment is still fundamentally influenced by the individual contouring the patient. © 2016 American College of Veterinary Radiology.

  14. SU-F-J-115: Target Volume and Artifact Evaluation of a New Device-Less 4D CT Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R; Pan, T

    2016-06-15

    Purpose: 4DCT is often used in radiation therapy treatment planning to define the extent of motion of the visible tumor (IGTV). Recent available software allows 4DCT images to be created without the use of an external motion surrogate. This study aims to compare this device-less algorithm to a standard device-driven technique (RPM) in regards to artifacts and the creation of treatment volumes. Methods: 34 lung cancer patients who had previously received a cine 4DCT scan on a GE scanner with an RPM determined respiratory signal were selected. Cine images were sorted into 10 phases based on both the RPM signalmore » and the device-less algorithm. Contours were created on standard and device-less maximum intensity projection (MIP) images using a region growing algorithm and manual adjustment to remove other structures. Variations in measurements due to intra-observer differences in contouring were assessed by repeating a subset of 6 patients 2 additional times. Artifacts in each phase image were assessed using normalized cross correlation at each bed position transition. A score between +1 (artifacts “better” in all phases for device-less) and −1 (RPM similarly better) was assigned for each patient based on these results. Results: Device-less IGTV contours were 2.1 ± 1.0% smaller than standard IGTV contours (not significant, p = 0.15). The Dice similarity coefficient (DSC) was 0.950 ± 0.006 indicating good similarity between the contours. Intra-observer variation resulted in standard deviations of 1.2 percentage points in percent volume difference and 0.005 in DSC measurements. Only two patients had improved artifacts with RPM, and the average artifact score (0.40) was significantly greater than zero. Conclusion: Device-less 4DCT can be used in place of the standard method for target definition due to no observed difference between standard and device-less IGTVs. Phase image artifacts were significantly reduced with the device-less method.« less

  15. Component extraction on CT volumes of assembled products using geometric template matching

    NASA Astrophysics Data System (ADS)

    Muramatsu, Katsutoshi; Ohtake, Yutaka; Suzuki, Hiromasa; Nagai, Yukie

    2017-03-01

    As a method of non-destructive internal inspection, X-ray computed tomography (CT) is used not only in medical applications but also for product inspection. Some assembled products can be divided into separate components based on density, which is known to be approximately proportional to CT values. However, components whose densities are similar cannot be distinguished using the CT value driven approach. In this study, we proposed a new component extraction algorithm from the CT volume, using a set of voxels with an assigned CT value with the surface mesh as the template rather than the density. The method has two main stages: rough matching and fine matching. At the rough matching stage, the position of candidate targets is identified roughly from the CT volume, using the template of the target component. At the fine matching stage, these candidates are precisely matched with the templates, allowing the correct position of the components to be detected from the CT volume. The results of two computational experiments showed that the proposed algorithm is able to extract components with similar density within the assembled products on CT volumes.

  16. Significant Reduction of Late Toxicities in Patients With Extremity Sarcoma Treated With Image-Guided Radiation Therapy to a Reduced Target Volume: Results of Radiation Therapy Oncology Group RTOG-0630 Trial.

    PubMed

    Wang, Dian; Zhang, Qiang; Eisenberg, Burton L; Kane, John M; Li, X Allen; Lucas, David; Petersen, Ivy A; DeLaney, Thomas F; Freeman, Carolyn R; Finkelstein, Steven E; Hitchcock, Ying J; Bedi, Manpreet; Singh, Anurag K; Dundas, George; Kirsch, David G

    2015-07-10

    We performed a multi-institutional prospective phase II trial to assess late toxicities in patients with extremity soft tissue sarcoma (STS) treated with preoperative image-guided radiation therapy (IGRT) to a reduced target volume. Patients with extremity STS received IGRT with (cohort A) or without (cohort B) chemotherapy followed by limb-sparing resection. Daily pretreatment images were coregistered with digitally reconstructed radiographs so that the patient position could be adjusted before each treatment. All patients received IGRT to reduced tumor volumes according to strict protocol guidelines. Late toxicities were assessed at 2 years. In all, 98 patients were accrued (cohort A, 12; cohort B, 86). Cohort A was closed prematurely because of poor accrual and is not reported. Seventy-nine eligible patients from cohort B form the basis of this report. At a median follow-up of 3.6 years, five patients did not have surgery because of disease progression. There were five local treatment failures, all of which were in field. Of the 57 patients assessed for late toxicities at 2 years, 10.5% experienced at least one grade ≥ 2 toxicity as compared with 37% of patients in the National Cancer Institute of Canada SR2 (CAN-NCIC-SR2: Phase III Randomized Study of Pre- vs Postoperative Radiotherapy in Curable Extremity Soft Tissue Sarcoma) trial receiving preoperative radiation therapy without IGRT (P < .001). The significant reduction of late toxicities in patients with extremity STS who were treated with preoperative IGRT and absence of marginal-field recurrences suggest that the target volumes used in the Radiation Therapy Oncology Group RTOG-0630 (A Phase II Trial of Image-Guided Preoperative Radiotherapy for Primary Soft Tissue Sarcomas of the Extremity) study are appropriate for preoperative IGRT for extremity STS. © 2015 by American Society of Clinical Oncology.

  17. Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.

    PubMed

    Wacker, Irene; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R

    2016-12-12

    Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM

  18. Evolution of egg target size: an analysis of selection on correlated characters.

    PubMed

    Podolsky, R D

    2001-12-01

    In broadcast-spawning marine organisms, chronic sperm limitation should select for traits that improve chances of sperm-egg contact. One mechanism may involve increasing the size of the physical or chemical target for sperm. However, models of fertilization kinetics predict that increasing egg size can reduce net zygote production due to an associated decline in fecundity. An alternate method for increasing physical target size is through addition of energetically inexpensive external structures, such as the jelly coats typical of eggs in species from several phyla. In selection experiments on eggs of the echinoid Dendraster excentricus, in which sperm was used as the agent of selection, eggs with larger overall targets were favored in fertilization. Actual shifts in target size following selection matched quantitative predictions of a model that assumed fertilization was proportional to target size. Jelly volume and ovum volume, two characters that contribute to target size, were correlated both within and among females. A cross-sectional analysis of selection partitioned the independent effects of these characters on fertilization success and showed that they experience similar direct selection pressures. Coupled with data on relative organic costs of the two materials, these results suggest that, under conditions where fertilization is limited by egg target size, selection should favor investment in low-cost accessory structures and may have a relatively weak effect on the evolution of ovum size.

  19. SU-F-J-95: Impact of Shape Complexity On the Accuracy of Gradient-Based PET Volume Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, M; Wu, G; Gao, Y

    2016-06-15

    Purpose: Explore correlation of tumor complexity shape with PET target volume accuracy when delineated with gradient-based segmentation tool. Methods: A total of 24 clinically realistic digital PET Monte Carlo (MC) phantoms of NSCLC were used in the study. The phantom simulated 29 thoracic lesions (lung primary and mediastinal lymph nodes) of varying size, shape, location, and {sup 18}F-FDG activity. A program was developed to calculate a curvature vector along the outline and the standard deviation of this vector was used as a metric to quantify a shape’s “complexity score”. This complexity score was calculated for standard geometric shapes and MC-generatedmore » target volumes in PET phantom images. All lesions were contoured using a commercially available gradient-based segmentation tool and the differences in volume from the MC-generated volumes were calculated as the measure of the accuracy of segmentation. Results: The average absolute percent difference in volumes between the MC-volumes and gradient-based volumes was 11% (0.4%–48.4%). The complexity score showed strong correlation with standard geometric shapes. However, no relationship was found between the complexity score and the accuracy of segmentation by gradient-based tool on MC simulated tumors (R{sup 2} = 0.156). When the lesions were grouped into primary lung lesions and mediastinal/mediastinal adjacent lesions, the average absolute percent difference in volumes were 6% and 29%, respectively. The former group is more isolated and the latter is more surround by tissues with relatively high SUV background. Conclusion: The complexity shape of NSCLC lesions has little effect on the accuracy of the gradient-based segmentation method and thus is not a good predictor of uncertainty in target volume delineation. Location of lesion within a relatively high SUV background may play a more significant role in the accuracy of gradient-based segmentation.« less

  20. SU-E-T-513: Investigating Dose of Internal Target Volume After Correcting for Tissue Heterogeneity in SBRT Lung Plans with Homogeneity Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, P; Zhuang, T; Magnelli, A

    2015-06-15

    Purpose It was recommended to use the prescription of 54 Gy/3 with heterogeneity corrections for previously established dose scheme of 60 Gy/3 with homogeneity calculation. This study is to investigate dose coverage for the internal target volume (ITV) with and without heterogeneity correction. Methods Thirty patients who received stereotactic body radiotherapy (SBRT) to a dose of 60 Gy in 3 fractions with homogeneous planning for early stage non-small-cell lung cancer (NSCLC) were selected. ITV was created either from 4DCT scans or a fusion of multi-phase respiratory scans. Planning target volume (PTV) was a 5 mm expansion of the ITV. Formore » this study, we recalculated homogeneous clinical plans using heterogeneity corrections with monitor units set as clinically delivered. All plans were calculated with 3 mm dose grids and collapsed cone convolution algorithm. To account for uncertainties from tumor delineation and image-guided radiotherapy, a structure ITV2mm was created by expanding ITV with 2 mm margins. Dose coverage to the PTV, ITV and ITV2mm were compared with a student paired t-test. Results With heterogeneity corrections, the PTV V60Gy decreased by 10.1% ± 18.4% (p<0.01) while the maximum dose to the PTV increased by 3.7 ± 4.3% (p<0.01). With and without corrections, D99% was 65.8 ± 4.0 Gy and 66.7 ± 4.8 Gy (p=0.15) for the ITV, and 63.9 ± 3.4 Gy and 62.9 ± 4.6 Gy for the ITV2mm (p=0.22), respectively. The mean dose to the ITV and ITV2mm increased 3.6% ± 4.7% (p<0.01) and 2.3% ± 5.2% (p=0.01) with heterogeneity corrections. Conclusion After heterogeneity correction, the peripheral coverage of the PTV decreased to approximately 54 Gy, but D99% of the ITV and ITV2mm was unchanged and the mean dose to the ITV and ITV2mm was increased. Clinical implication of these results requires more investigation.« less

  1. Small-Volume Injections: Evaluation of Volume Administration Deviation From Intended Injection Volumes.

    PubMed

    Muffly, Matthew K; Chen, Michael I; Claure, Rebecca E; Drover, David R; Efron, Bradley; Fitch, William L; Hammer, Gregory B

    2017-10-01

    In the perioperative period, anesthesiologists and postanesthesia care unit (PACU) nurses routinely prepare and administer small-volume IV injections, yet the accuracy of delivered medication volumes in this setting has not been described. In this ex vivo study, we sought to characterize the degree to which small-volume injections (≤0.5 mL) deviated from the intended injection volumes among a group of pediatric anesthesiologists and pediatric postanesthesia care unit (PACU) nurses. We hypothesized that as the intended injection volumes decreased, the deviation from those intended injection volumes would increase. Ten attending pediatric anesthesiologists and 10 pediatric PACU nurses each performed a series of 10 injections into a simulated patient IV setup. Practitioners used separate 1-mL tuberculin syringes with removable 18-gauge needles (Becton-Dickinson & Company, Franklin Lakes, NJ) to aspirate 5 different volumes (0.025, 0.05, 0.1, 0.25, and 0.5 mL) of 0.25 mM Lucifer Yellow (LY) fluorescent dye constituted in saline (Sigma Aldrich, St. Louis, MO) from a rubber-stoppered vial. Each participant then injected the specified volume of LY fluorescent dye via a 3-way stopcock into IV tubing with free-flowing 0.9% sodium chloride (10 mL/min). The injected volume of LY fluorescent dye and 0.9% sodium chloride then drained into a collection vial for laboratory analysis. Microplate fluorescence wavelength detection (Infinite M1000; Tecan, Mannedorf, Switzerland) was used to measure the fluorescence of the collected fluid. Administered injection volumes were calculated based on the fluorescence of the collected fluid using a calibration curve of known LY volumes and associated fluorescence.To determine whether deviation of the administered volumes from the intended injection volumes increased at lower injection volumes, we compared the proportional injection volume error (loge [administered volume/intended volume]) for each of the 5 injection volumes using a linear

  2. Evaluation of target coverage and margins adequacy during CyberKnife Lung Optimized Treatment.

    PubMed

    Ricotti, Rosalinda; Seregni, Matteo; Ciardo, Delia; Vigorito, Sabrina; Rondi, Elena; Piperno, Gaia; Ferrari, Annamaria; Zerella, Maria Alessia; Arculeo, Simona; Francia, Claudia Maria; Sibio, Daniela; Cattani, Federica; De Marinis, Filippo; Spaggiari, Lorenzo; Orecchia, Roberto; Riboldi, Marco; Baroni, Guido; Jereczek-Fossa, Barbara Alicja

    2018-04-01

    Evaluation of target coverage and verification of safety margins, in motion management strategies implemented by Lung Optimized Treatment (LOT) module in CyberKnife system. Three fiducial-less motion management strategies provided by LOT can be selected according to tumor visibility in the X ray images acquired during treatment. In 2-view modality the tumor is visible in both X ray images and full motion tracking is performed. In 1-view modality the tumor is visible in a single X ray image, therefore, motion tracking is combined with an internal target volume (ITV)-based margin expansion. In 0-view modality the lesion is not visible, consequently the treatment relies entirely on an ITV-based approach. Data from 30 patients treated in 2-view modality were selected providing information on the three-dimensional tumor motion in correspondence to each X ray image. Treatments in 1-view and 0-view modalities were simulated by processing log files and planning volumes. Planning target volume (PTV) margins were defined according to the tracking modality: end-exhale clinical target volume (CTV) + 3 mm in 2-view and ITV + 5 mm in 0-view. In the 1-view scenario, the ITV encompasses only tumor motion along the non-visible direction. Then, non-uniform ITV to PTV margins were applied: 3 mm and 5 mm in the visible and non-visible direction, respectively. We defined the coverage of each voxel of the CTV as the percentage of X ray images where such voxel was included in the PTV. In 2-view modality coverage was calculated as the intersection between the CTV centred on the imaged target position and the PTV centred on the predicted target position, as recorded in log files. In 1-view modality, coverage was calculated as the intersection between the CTV centred on the imaged target position and the PTV centred on the projected predictor data. In 0-view modality coverage was calculated as the intersection between the CTV centred on the imaged target position and the non

  3. Consequences of anorectal cancer atlas implementation in the cooperative group setting: radiobiologic analysis of a prospective randomized in silico target delineation study.

    PubMed

    Mavroidis, Panayiotis; Giantsoudis, Drosoula; Awan, Musaddiq J; Nijkamp, Jasper; Rasch, Coen R N; Duppen, Joop C; Thomas, Charles R; Okunieff, Paul; Jones, William E; Kachnic, Lisa A; Papanikolaou, Niko; Fuller, Clifton D

    2014-09-01

    The aim of this study is to ascertain the subsequent radiobiological impact of using a consensus guideline target volume delineation atlas. Using a representative case and target volume delineation instructions derived from a proposed IMRT rectal cancer clinical trial, gross tumor volume (GTV) and clinical/planning target volumes (CTV/PTV) were contoured by 13 physician observers (Phase 1). The observers were then randomly assigned to follow (atlas) or not-follow (control) a consensus guideline/atlas for anorectal cancers, and instructed to re-contour the same case (Phase 2). The atlas group was found to have increased tumor control probability (TCP) after the atlas intervention for both the CTV (p<0.0001) and PTV1 (p=0.0011) with decreasing normal tissue complication probability (NTCP) for small intestine, while the control group did not. Additionally, the atlas group had reduced variance in TCP for all target volumes and reduced variance in NTCP for the bowel. In Phase 2, the atlas group had increased TCP relative to the control for CTV (p=0.03). Visual atlas and consensus treatment guideline usage in the development of rectal cancer IMRT treatment plans reduced the inter-observer radiobiological variation, with clinically relevant TCP alteration for CTV and PTV volumes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. MO-F-CAMPUS-T-02: Optimizing Orientations of Hundreds of Intensity-Modulated Beams to Treat Multiple Brain Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L; Dong, P; Larson, D

    Purpose: To investigate a new modulated beam orientation optimization (MBOO) approach maximizing treatment planning quality for the state-of-the-art flattening filter free (FFF) beam that has enabled rapid treatments of multiple brain targets. Methods: MBOO selects and optimizes a large number of intensity-modulated beams (400 or more) from all accessible beam angles surrounding a patient’s skull. The optimization algorithm was implemented on a standalone system that interfaced with the 3D Dicom images and structure sets. A standard published data set that consisted of 1 to 12 metastatic brain tumor combinations was selected for MBOO planning. The planning results from various coplanarmore » and non-coplanar configurations via MBOO were then compared with the results obtained from a clinical volume modulated arc therapy (VMAT) delivery system (Truebeam RapidArc, Varian Oncology). Results: When planning a few number of targets (n<4), MBOO produced results equivalent to non-coplanar multi-arc VMAT planning in terms of target volume coverage and normal tissue sparing. For example, the 12-Gy and 4-Gy normal brain volumes for the 3-target plans differed by less than 1 mL ( 3.0 mLvs 3.8 mL; and 35.2 mL vs 36.3 mL, respectively) for MBOO versus VMAT. However, when planning a larger number of targets (n≥4), MBOO significantly reduced the dose to the normal brain as compared to VMAT, though the target volume coverage was equivalent. For example, the 12-Gy and 4-Gy normal brain volumes for the 12-target plans were 10.8 mL vs. 18.0 mL and 217.9 mL vs. 390.0 mL, respectively for the non-coplanar MBOO versus the non-coplanar VMAT treatment plans, yielding a reduction in volume of more than 60% for the case. Conclusion: MBOO is a unique approach for maximizing normal tissue sparing when treating a large number (n≥4) of brain tumors with FFF linear accelerators. Dr Ma and Dr Sahgal are currently on the board of international society of stereotactic radiosurgery. Dr Sahgal

  5. Dose-volume histogram prediction using density estimation.

    PubMed

    Skarpman Munter, Johanna; Sjölund, Jens

    2015-09-07

    Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.

  6. Radiation Dose-Volume Effects and the Penile Bulb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Mack, E-mail: mroach@radonc.ucsf.ed; Nam, Jiho; Gagliardi, Giovanna

    2010-03-01

    The dose, volume, and clinical outcome data for penile bulb are reviewed for patients treated with external-beam radiotherapy. Most, but not all, studies find an association between impotence and dosimetric parameters (e.g., threshold doses) and clinical factors (e.g., age, comorbid diseases). According to the data available, it is prudent to keep the mean dose to 95% of the penile bulb volume to <50 Gy. It may also be prudent to limit the D70 and D90 to 70 Gy and 50 Gy, respectively, but coverage of the planning target volume should not be compromised. It is acknowledged that the penile bulbmore » may not be the critical component of the erectile apparatus, but it seems to be a surrogate for yet to be determined structure(s) critical for erectile function for at least some techniques.« less

  7. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  8. Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: pharmacokinetic, toxicity and pharmacodynamic evaluation.

    PubMed

    Pawar, Smita; Shevalkar, Ganesh; Vavia, Pradeep

    2016-09-01

    Efficacy of anticancer drug is limited due to non-selectivity and toxicities allied with the drug; therefore the heart of the present work is to formulate drug delivery systems targeted selectively towards cancer cells with minimal toxicity to normal cells. Targeted drug delivery system of doxorubicin (DOX)-loaded niosomes using synthesized N-lauryl glucosamine (NLG) as a targeting ligand. NLG-anchored DOX niosomes were developed using ethanol injection method. Developed niosomes had particle size <150 nm and high entrapment efficiency ∼90%. In vivo pharmacokinetics exhibited long circulating nature of targeted niosomes with improved bioavailability, which significantly reduced CL and Vd than DOX solution and non-targeted niosomes (35 fold and 2.5 fold, respectively). Tissue-distribution study and enzymatic assays revealed higher concentration of DOX solution in heart while no toxicity to major organs with developed targeted niosomes was observed. Solid skin melanoma tumor model in mice manifested the commendable targeting potential of targeted niosomes with significant reduction in tumor volume and high % survival rate without drop in body weight in comparison with DOX solution and non-targeted niosomes of DOX. The glucosamine-anchored DOX-loaded targeted niosomes showed its potential in cancer targeted drug therapy with reduced toxicity. Abbreviations ALT alanine transaminase CL clearance CPK creatinine phosphokinase DOX doxorubicin EDC.HCL ethyl carbidimide hydrochloride GLUT glucose transporter GSH glutathione S-transferase LDH lactate dehydrogenase LHRH luteinizing hormone-releasing hormone MDA malonaldehyde NHS N-hydroxy succinimide NLG N-lauryl glucosamine NTAR DoxNio non-targeted doxorubicin niosomes PBS phosphate buffer saline RGD argynyl glycyl aspartic acid SGOT serum glutamate oxaloacetate transaminase SGPT serum glutamate pyruvate transaminase SOD superoxide dismutase TAR DoxNio targeted doxorubicin niosomes Vd volume of distribution.

  9. A novel, volumizing cosmetic formulation significantly improves the appearance of target Glabellar lines, nasolabial folds, and crow's feet in a double-blind, vehicle-controlled clinical trial.

    PubMed

    Farris, Patricia K; Edison, Brenda L; Weinkauf, Ronni L; Green, Barbara A

    2014-01-01

    Facial lines and wrinkles are caused by many factors including constant exposure to external elements, such as UV rays, as well as the dynamic nature of facial expression. Many cosmetic products and procedures provide global improvement to aging skin, whereas injectable therapies are frequently utilized to diminish specific, target wrinkles. Despite their broad availability, some patients are unwilling to undergo injectables and would benefit from an effective topical option. A noninvasive option to volumize target wrinkle areas could also extend benefits of commonly used cosmetic anti-aging products. To this end, a two-step formulation containing the novel, cosmetic anti-aging ingredient, N-acetyl tyrosinamide, was developed for use on targeted wrinkle areas. The tolerability and efficacy of the serum plus cream were tested for 16 weeks in women with moderate facial photodamage on predetermined wrinkle areas (glabellar lines, nasolabial folds, under eye lines, and lateral canthal (crow's feet) wrinkles) in a single-center, randomized, double-blind, vehicle-controlled, clinical trial. Seventy women (47 Active group, 23 Vehicle group) completed the study. Digital photography, clinical grading, ultrasound and self-assessment scores confirmed improvement to wrinkle areas. The topical cosmetic formulation was statistically superior (P<0.05) to its vehicle in visually improving nasolabial folds, glabellar lines, crow's feet, and under eye wrinkles and in reducing pinch recoil time. Both the test formulation and its vehicle were tolerated well. The novel, two-step cosmetic formulation reduced the appearance of wrinkles and increased skin elasticity thus providing an effective anti-aging option for target wrinkle areas. This study suggests that in addition to its use as monotherapy for reducing targeted lines and wrinkles this cosmetic formulation may be also serve as an adjuvant to injectable therapies.

  10. [Radiotherapy volume delineation based on (18F)-fluorodeoxyglucose positron emission tomography for locally advanced or inoperable oesophageal cancer].

    PubMed

    Encaoua, J; Abgral, R; Leleu, C; El Kabbaj, O; Caradec, P; Bourhis, D; Pradier, O; Schick, U

    2017-06-01

    To study the impact on radiotherapy planning of an automatically segmented target volume delineation based on ( 18 F)-fluorodeoxy-D-glucose (FDG)-hybrid positron emission tomography-computed tomography (PET-CT) compared to a manually delineation based on computed tomography (CT) in oesophageal carcinoma patients. Fifty-eight patients diagnosed with oesophageal cancer between September 2009 and November 2014 were included. The majority had squamous cell carcinoma (84.5 %), and advanced stage (37.9 % were stade IIIA) and 44.8 % had middle oesophageal lesion. Gross tumour volumes were retrospectively defined based either manually on CT or automatically on coregistered PET/CT images using three different threshold methods: standard-uptake value (SUV) of 2.5, 40 % of maximum intensity and signal-to-background ratio. Target volumes were compared in length, volume and using the index of conformality. Radiotherapy plans to the dose of 50Gy and 66Gy using intensity-modulated radiotherapy were generated and compared for both data sets. Planification target volume coverage and doses delivered to organs at risk (heart, lung and spinal cord) were compared. The gross tumour volume based manually on CT was significantly longer than that automatically based on signal-to-background ratio (6.4cm versus 5.3cm; P<0.008). Doses to the lungs (V20, D mean ), heart (V40), and spinal cord (D max ) were significantly lower on plans using the PTV SBR . The PTV SBR coverage was statistically better than the PTV CT coverage on both plans. (50Gy: P<0.0004 and 66Gy: P<0.0006). The automatic PET segmentation algorithm based on the signal-to-background ratio method for the delineation of oesophageal tumours is interesting, and results in better target volume coverage and decreased dose to organs at risk. This may allow dose escalation up to 66Gy to the gross tumour volume. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights

  11. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors.

    PubMed

    Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang

    2016-09-21

    Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.

  12. Variability in target delineation of cervical carcinoma: A Korean radiation oncology group study (KROG 15-06)

    PubMed Central

    Joo, Ji Hyeon; Cho, Byung Chul; Jeong, Chi Young; Park, Won; Kim, Hak Jae; Yoon, Won Sup; Yoon, Mee Sun; Kim, Ji-Yoon; Choi, Jin Hwa; Choi, Youngmin; Kim, Joo-Young

    2017-01-01

    Purpose To determine inter-observer variability in target volume definition of cervical cancer in radical and adjuvant radiotherapy (RT) settings. Methods Eight physicians contoured CTVs of 2 patients underwent definitive and postoperative RT. Each volume was analyzed using the individual/median volume ratio and generalized conformity index (CIgen). And center of mass (COM) of each contour was calculated. Expert agreement was quantified using an expectation maximization algorithm for Simultaneous Truth and Performance Level Estimation (STAPLE). Results For definitive RT, the individual/median volume ratio ranged from 0.51 to 1.41, and CIgen was 0.531. Mean 3-dimensional distances of average to each COM were 7.8 mm. For postoperative RT setting, corresponding values were 0.65–1.38, 0.563, and 5.3 mm. Kappa value of expert agreement was 0.65 and 0.67, respectively. STAPLE estimates of the sensitivity, specificity, and kappa measures of inter-physician agreement were 0.73, 0.98, and 0.65 for the definitive and 0.75, 0.98, and 0.67 for the adjuvant radiotherapy setting. The largest difference was observed in the superior-inferior direction, particularly in the upper vagina and the common iliac area. Conclusion As there was still some variability in target delineation, more detailed guidelines for target volume delineation and continuing education would help to reduce this uncertainty. PMID:28301492

  13. Residual tumor after neoadjuvant chemoradiation outside the radiation therapy target volume: a new prognostic factor for survival in esophageal cancer.

    PubMed

    Muijs, Christina; Smit, Justin; Karrenbeld, Arend; Beukema, Jannet; Mul, Veronique; van Dam, Go; Hospers, Geke; Kluin, Phillip; Langendijk, Johannes; Plukker, John

    2014-03-15

    The aim of this study was to analyze the accuracy of gross tumor volume (GTV) delineation and clinical target volume (CTV) margins for neoadjuvant chemoradiation therapy (neo-CRT) in esophageal carcinoma at pathologic examination and to determine the impact on survival. The study population consisted of 63 esophageal cancer patients treated with neo-CRT. GTV and CTV borders were demarcated in situ during surgery on the esophagus, using anatomical reference points to provide accurate information regarding tumor location at pathologic evaluation. To identify prognostic factors for disease-free survival (DFS) and overall survival (OS), a Cox regression analysis was performed. After resection, macroscopic residual tumor was found outside the GTV in 7 patients (11%). Microscopic residual tumor was located outside the CTV in 9 patients (14%). The median follow-up was 15.6 months. With multivariate analysis, only microscopic tumor outside the CTV (hazard ratio [HR], 4.96; 95% confidence interval [CI], 1.03-15.36), and perineural growth (HR, 5.77; 95% CI, 1.27-26.13) were identified as independent prognostic factors for OS. The 1-year OS was 20% for patients with tumor outside the CTV and 86% for those without (P<.01). For DFS, microscopic tumor outside the CTV (HR, 5.92; 95% CI, 1.89-18.54) and ypN+ (HR, 3.36; 95% CI, 1.33-8.48) were identified as independent adverse prognostic factors. The 1-year DFS was 23% versus 77% for patients with or without tumor outside the CTV (P<.01). Microscopic tumor outside the CTV is associated with markedly worse OS after neo-CRT. This may either stress the importance of accurate tumor delineation or reflect aggressive tumor behavior requiring new adjuvant treatment modalities. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Analysis of radiation exposure for naval units of Operation Crossroads. Volume 3. (Appendix B) support ships. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitz, R.; Thomas, C.; Klemm, J.

    1982-03-03

    External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details themore » results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.« less

  15. [State of the art in fluid and volume therapy : A user-friendly staged concept].

    PubMed

    Rehm, M; Hulde, N; Kammerer, T; Meidert, A S; Hofmann-Kiefer, K

    2017-03-01

    Adequate fluid therapy is highly important for the perioperative outcome of our patients. Both, hypovolemia and hypervolemia can lead to an increase in perioperative complications and can impair the outcome. Therefore, perioperative infusion therapy should be target-oriented. The main target is to maintain the patient's preoperative normovolemia by using a sophisticated, rational infusion strategy.Perioperative fluid losses should be discriminated from volume losses (surgical blood loss or interstitial volume losses containing protein). Fluid losses as urine or perspiratio insensibilis (0.5-1.0 ml/kg/h) should be replaced by balanced crystalloids in a ratio of 1:1. Volume therapy step 1: Blood loss up to a maximum value of 20% of the patient's blood volume should be replaced by balanced crystalloids in a ratio of 4(-5):1. Volume therapy step 2: Higher blood losses should be treated by using iso-oncotic, preferential balanced colloids in a ratio of 1:1. For this purpose hydroxyethyl starch can also be used perioperatively if there is no respective contraindication, such as sepsis, burn injuries, critically ill patients, renal impairment or renal replacement therapy, and severe coagulopathy. Volume therapy step 3: If there is an indication for red cell concentrates or coagulation factors, a differentiated application of blood and blood products should be performed.

  16. Anterior Insula Volume and Guilt

    PubMed Central

    Belden, Andy C.; Barch, Deanna M.; Oakberg, Timothy J.; April, Laura M.; Harms, Michael P.; Botteron, Kelly N.; Luby, Joan L.

    2016-01-01

    IMPORTANCE This is the first study to date to examine volumetric alterations in the anterior insula (AI) as a potential biomarker for the course of childhood major depressive disorder (MDD). OBJECTIVES To examine whether children with a history of preschool-onset (PO) MDD show reduced AI volume, whether a specific symptom of PO MDD (pathological guilt) is related to AI volume reduction (given the known relationship between AI and guilt processing), and whether AI volumes predict subsequent likelihood of having an episode of MDD. DESIGN, SETTING, AND PARTICIPANTS In a prospective longitudinal study, 306 children (age range, 3.00–5.11 years) and caregivers completed DSM diagnostic assessments at 6 annual time points during 10 years as part of the Preschool Depression Study. Magnetic resonance imaging was completed on a subset of 145 school-age children (age range, 6.11–12.11 years). MAIN OUTCOMES AND MEASURES Whole-brain–adjusted AI volume measured using magnetic resonance imaging at school age and children’s diagnosis of MDD any time after their imaging. RESULTS Compared with children without a history of PO MDD, school-age children previously diagnosed as having PO MDD had smaller left and right AI volumes (Wilks Λ = 0.94, F2,124 = 3.37, P = .04, Cohen d = 0.23). However, the effect of PO MDD on reduced AI volumes was better explained by children’s experience of pathological guilt during preschool (Λ = 0.91, F2,120 = 6.17, P = .003, d = .30). When covarying for children’s lifetime history of MDD episodes, their experience of pathological guilt during preschool, as well as their sex and age at the time of imaging, schoolchildren’s right-side AI volume was a significant predictor of being diagnosed as having an MDD episode after imaging (odds ratio, 0.96; 95% CI, 0.01–0.75; P = .03). CONCLUSIONS AND RELEVANCE These results provide evidence that structural abnormalities in AI volume are related to the neurobiology of depressive disorders starting in

  17. Toward Prostate Cancer Contouring Guidelines on Magnetic Resonance Imaging: Dominant Lesion Gross and Clinical Target Volume Coverage Via Accurate Histology Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Eli; Biomedical Engineering, University of Western Ontario, London, Ontario; Centre for Medical Image Computing, University College London, London

    Purpose: Defining prostate cancer (PCa) lesion clinical target volumes (CTVs) for multiparametric magnetic resonance imaging (mpMRI) could support focal boosting or treatment to improve outcomes or lower morbidity, necessitating appropriate CTV margins for mpMRI-defined gross tumor volumes (GTVs). This study aimed to identify CTV margins yielding 95% coverage of PCa tumors for prospective cases with high likelihood. Methods and Materials: Twenty-five men with biopsy-confirmed clinical stage T1 or T2 PCa underwent pre-prostatectomy mpMRI, yielding T2-weighted, dynamic contrast-enhanced, and apparent diffusion coefficient images. Digitized whole-mount histology was contoured and registered to mpMRI scans (error ≤2 mm). Four observers contoured lesion GTVs onmore » each mpMRI scan. CTVs were defined by isotropic and anisotropic expansion from these GTVs and from multiparametric (unioned) GTVs from 2 to 3 scans. Histologic coverage (proportions of tumor area on co-registered histology inside the CTV, measured for Gleason scores [GSs] ≥6 and ≥7) and prostate sparing (proportions of prostate volume outside the CTV) were measured. Nonparametric histologic-coverage prediction intervals defined minimal margins yielding 95% coverage for prospective cases with 78% to 92% likelihood. Results: On analysis of 72 true-positive tumor detections, 95% coverage margins were 9 to 11 mm (GS ≥ 6) and 8 to 10 mm (GS ≥ 7) for single-sequence GTVs and were 8 mm (GS ≥ 6) and 6 mm (GS ≥ 7) for 3-sequence GTVs, yielding CTVs that spared 47% to 81% of prostate tissue for the majority of tumors. Inclusion of T2-weighted contours increased sparing for multiparametric CTVs with 95% coverage margins for GS ≥6, and inclusion of dynamic contrast-enhanced contours increased sparing for GS ≥7. Anisotropic 95% coverage margins increased the sparing proportions to 71% to 86%. Conclusions: Multiparametric magnetic resonance imaging–defined GTVs expanded by appropriate

  18. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, Helen A.; Harisinghani, Mukesh; Zietman, Anthony L.

    2005-11-15

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to amore » common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities.« less

  19. Validation of a reaction volume reduction protocol for analysis of Y chromosome haplotypes targeting DNA databases.

    PubMed

    Souza, C A; Oliveira, T C; Crovella, S; Santos, S M; Rabêlo, K C N; Soriano, E P; Carvalho, M V D; Junior, A F Caldas; Porto, G G; Campello, R I C; Antunes, A A; Queiroz, R A; Souza, S M

    2017-04-28

    The use of Y chromosome haplotypes, important for the detection of sexual crimes in forensics, has gained prominence with the use of databases that incorporate these genetic profiles in their system. Here, we optimized and validated an amplification protocol for Y chromosome profile retrieval in reference samples using lesser materials than those in commercial kits. FTA ® cards (Flinders Technology Associates) were used to support the oral cells of male individuals, which were amplified directly using the SwabSolution reagent (Promega). First, we optimized and validated the process to define the volume and cycling conditions. Three reference samples and nineteen 1.2 mm-diameter perforated discs were used per sample. Amplification of one or two discs (samples) with the PowerPlex ® Y23 kit (Promega) was performed using 25, 26, and 27 thermal cycles. Twenty percent, 32%, and 100% reagent volumes, one disc, and 26 cycles were used for the control per sample. Thereafter, all samples (N = 270) were amplified using 27 cycles, one disc, and 32% reagents (optimized conditions). Data was analyzed using a study of equilibrium values between fluorophore colors. In the samples analyzed with 20% volume, an imbalance was observed in peak heights, both inside and in-between each dye. In samples amplified with 32% reagents, the values obtained for the intra-color and inter-color standard balance calculations for verification of the quality of the analyzed peaks were similar to those of samples amplified with 100% of the recommended volume. The quality of the profiles obtained with 32% reagents was suitable for insertion into databases.

  20. Planning Target Volume D95 and Mean Dose Should Be Considered for Optimal Local Control for Stereotactic Ablative Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lina; Zhou, Shouhao; Balter, Peter

    Purpose: To identify the optimal dose parameters predictive for local/lobar control after stereotactic ablative radiation therapy (SABR) in early-stage non-small cell lung cancer (NSCLC). Methods and Materials: This study encompassed a total of 1092 patients (1200 lesions) with NSCLC of clinical stage T1-T2 N0M0 who were treated with SABR of 50 Gy in 4 fractions or 70 Gy in 10 fractions, depending on tumor location/size, using computed tomography-based heterogeneity corrections and a convolution superposition calculation algorithm. Patients were monitored by chest CT or positron emission tomography/CT and/or biopsy after SABR. Factors predicting local/lobar recurrence (LR) were determined by competing risk multivariate analysis.more » Continuous variables were divided into 2 subgroups at cutoff values identified by receiver operating characteristic curves. Results: At a median follow-up time of 31.7 months (interquartile range, 14.8-51.3 months), the 5-year time to local recurrence within the same lobe and overall survival rates were 93.8% and 44.8%, respectively. Total cumulative number of patients experiencing LR was 40 (3.7%), occurring at a median time of 14.4 months (range, 4.8-46 months). Using multivariate competing risk analysis, independent predictive factors for LR after SABR were minimum biologically effective dose (BED{sub 10}) to 95% of planning target volume (PTVD95 BED{sub 10}) ≤86 Gy (corresponding to PTV D95 physics dose of 42 Gy in 4 fractions or 55 Gy in 10 fractions) and gross tumor volume ≥8.3 cm{sup 3}. The PTVmean BED{sub 10} was highly correlated with PTVD95 BED{sub 10.} In univariate analysis, a cutoff of 130 Gy for PTVmean BED{sub 10} (corresponding to PTVmean physics dose of 55 Gy in 4 fractions or 75 Gy in 10 fractions) was also significantly associated with LR. Conclusions: In addition to gross tumor volume, higher radiation dose delivered to the PTV predicts for better local/lobar control. We recommend that both PTVD

  1. Portal imaging based definition of the planning target volume during pelvic irradiation for gynecological malignancies.

    PubMed

    Mock, U; Dieckmann, K; Wolff, U; Knocke, T H; Pötter, R

    1999-08-01

    Geometrical accuracy in patient positioning can vary substantially during external radiotherapy. This study estimated the set-up accuracy during pelvic irradiation for gynecological malignancies for determination of safety margins (planning target volume, PTV). Based on electronic portal imaging devices (EPID), 25 patients undergoing 4-field pelvic irradiation for gynecological malignancies were analyzed with regard to set-up accuracy during the treatment course. Regularly performed EPID images were used in order to systematically assess the systematic and random component of set-up displacements. Anatomical matching of verification and simulation images was followed by measuring corresponding distances between the central axis and anatomical features. Data analysis of set-up errors referred to the x-, y-,and z-axes. Additionally, cumulative frequencies were evaluated. A total of 50 simulation films and 313 verification images were analyzed. For the anterior-posterior (AP) beam direction mean deviations along the x- and z-axes were 1.5 mm and -1.9 mm, respectively. Moreover, random errors of 4.8 mm (x-axis) and 3.0 mm (z-axis) were determined. Concerning the latero-lateral treatment fields, the systematic errors along the two axes were calculated to 2.9 mm (y-axis) and -2.0 mm (z-axis) and random errors of 3.8 mm and 3.5 mm were found, respectively. The cumulative frequency of misalignments < or =5 mm showed values of 75% (AP fields) and 72% (latero-lateral fields). With regard to cumulative frequencies < or =10 mm quantification revealed values of 97% for both beam directions. During external pelvic irradiation therapy for gynecological malignancies, EPID images on a regular basis revealed acceptable set-up inaccuracies. Safety margins (PTV) of 1 cm appear to be sufficient, accounting for more than 95% of all deviations.

  2. Specific storage volumes: A useful tool for CO2 storage capacity assessment

    USGS Publications Warehouse

    Brennan, S.T.; Burruss, R.C.

    2006-01-01

    Subsurface geologic strata have the potential to store billions of tons of anthropogenic CO2; therefore, geologic carbon sequestration can be an effective mitigation tool used to slow the rate at which levels of atmospheric CO2 are increasing. Oil and gas reservoirs, coal beds, and saline reservoirs can be used for CO2 storage; however, it is difficult to assess and compare the relative storage capacities of these different settings. Typically, CO2 emissions are reported in units of mass, which are not directly applicable to comparing the CO2 storage capacities of the various storage targets. However, if the emission values are recalculated to volumes per unit mass (specific volume) then the volumes of geologic reservoirs necessary to store CO2 emissions from large point sources can be estimated. The factors necessary to convert the mass of CO2 emissions to geologic storage volume (referred to here as Specific Storage Volume or 'SSV') can be reported in units of cubic meters, cubic feet, and petroleum barrels. The SSVs can be used to estimate the reservoir volume needed to store CO2 produced over the lifetime of an individual point source, and to identify CO2 storage targets of sufficient size to meet the demand from that given point source. These storage volumes also can then be projected onto the land surface to outline a representative "footprint," which marks the areal extent of storage. This footprint can be compared with the terrestrial carbon sequestration capacity of the same land area. The overall utility of this application is that the total storage capacity of any given parcel of land (from surface to basement) can be determined, and may assist in making land management decisions. ?? Springer Science+Business Media, LLC 2006.

  3. Disease Control After Reduced Volume Conformal and Intensity Modulated Radiation Therapy for Childhood Craniopharyngioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org; Kun, Larry E.; Hua, Chia-Ho

    2013-03-15

    Purpose: To estimate the rate of disease control after conformal radiation therapy using reduced clinical target volume (CTV) margins and to determine factors that predict for tumor progression. Methods and Materials: Eighty-eight children (median age, 8.5 years; range, 3.2-17.6 years) received conformal or intensity modulated radiation therapy between 1998 and 2009. The study group included those prospectively treated from 1998 to 2003, using a 10-mm CTV, defined as the margin surrounding the solid and cystic tumor targeted to receive the prescription dose of 54 Gy. The CTV margin was subsequently reduced after 2003, yielding 2 groups of patients: those treatedmore » with a CTV margin greater than 5 mm (n=26) and those treated with a CTV margin less than or equal to 5 mm (n=62). Disease progression was estimated on the basis of additional variables including sex, race, extent of resection, tumor interventions, target volume margins, and frequency of weekly surveillance magnetic resonance (MR) imaging during radiation therapy. Median follow-up was 5 years. Results: There was no difference between progression-free survival rates based on CTV margins (>5 mm vs ≤5 mm) at 5 years (88.1% ± 6.3% vs 96.2% ± 4.4% [P=.6386]). There were no differences based on planning target volume (PTV) margins (or combined CTV plus PTV margins). The PTV was systematically reduced from 5 to 3 mm during the time period of the study. Factors predictive of superior progression-free survival included Caucasian race (P=.0175), no requirement for cerebrospinal fluid shunting (P=.0066), and number of surveillance imaging studies during treatment (P=.0216). Patients whose treatment protocol included a higher number of weekly surveillance MR imaging evaluations had a lower rate of tumor progression. Conclusions: These results suggest that targeted volume reductions for radiation therapy using smaller margins are feasible and safe but require careful monitoring. We are currently

  4. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad

    2005-12-15

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CTmore » scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging.« less

  5. SU-E-J-123: Assessing Segmentation Accuracy of Internal Volumes and Sub-Volumes in 4D PET/CT of Lung Tumors Using a Novel 3D Printed Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soultan, D; Murphy, J; James, C

    2015-06-15

    Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images weremore » binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing.« less

  6. SU-C-BRA-02: Gradient Based Method of Target Delineation On PET/MR Image of Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, M; Chera, B; Falchook, A

    2015-06-15

    Purpose: Validate the consistency of a gradient-based segmentation tool to facilitate accurate delineation of PET/CT-based GTVs in head and neck cancers by comparing against hybrid PET/MR-derived GTV contours. Materials and Methods: A total of 18 head and neck target volumes (10 primary and 8 nodal) were retrospectively contoured using a gradient-based segmentation tool by two observers. Each observer independently contoured each target five times. Inter-observer variability was evaluated via absolute percent differences. Intra-observer variability was examined by percentage uncertainty. All target volumes were also contoured using the SUV percent threshold method. The thresholds were explored case by case so itsmore » derived volume matched with the gradient-based volume. Dice similarity coefficients (DSC) were calculated to determine overlap of PET/CT GTVs and PET/MR GTVs. Results: The Levene’s test showed there was no statistically significant difference of the variances between the observer’s gradient-derived contours. However, the absolute difference between the observer’s volumes was 10.83%, with a range from 0.39% up to 42.89%. PET-avid regions with qualitatively non-uniform shapes and intensity levels had a higher absolute percent difference near 25%, while regions with uniform shapes and intensity levels had an absolute percent difference of 2% between observers. The average percentage uncertainty between observers was 4.83% and 7%. As the volume of the gradient-derived contours increased, the SUV threshold percent needed to match the volume decreased. Dice coefficients showed good agreement of the PET/CT and PET/MR GTVs with an average DSC value across all volumes at 0.69. Conclusion: Gradient-based segmentation of PET volume showed good consistency in general but can vary considerably for non-uniform target shapes and intensity levels. PET/CT-derived GTV contours stemming from the gradient-based tool show good agreement with the anatomically and

  7. Ambient temperature and volume of perihematomal edema in acute intracerebral haemorrhage: the INTERACT1 study.

    PubMed

    Zheng, Danni; Arima, Hisatomi; Heeley, Emma; Karpin, Anne; Yang, Jie; Chalmers, John; Anderson, Craig S

    2015-01-01

    As no human data exist, we aimed to determine the relation between ambient temperature and volume of perihematomal 'cerebral' edema in acute spontaneous intracerebral haemorrhage (ICH) among Chinese participants of the pilot phase, Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT1). INTERACT1 was a multicenter, open, blind outcome assessed, randomized controlled trial of intensive (systolic target <140 mmHg) vs. guideline-recommended (systolic target <180 mmHg) blood pressure (BP) lowering in 404 patients with acute ICH. Data on ambient temperature (mean, minimum, maximum, and range) on the day of each participant's ICH obtained from China Meteorological Data Sharing Service System were linked to other data including edema volumes. Multivariable regression analyses were performed to evaluate association between ambient temperature and edema volumes. A generalized linear regression model with a generalized estimating equations approach (GEE) was used to assess any association of ambient temperature and change in edema volume over 72 h. A total of 250 of all 384 Chinese participants had complete data that showed positive associations between ambient temperature (mean and minimum temperatures) and edema volumes at each time point over 72 h after hospital admission (all P < 0·05). All temperature parameters except diurnal temperature range were positively associated with edema volume after adjustment for confounding variables (all P < 0·02). An apparent positive association exists between ambient temperature and perihematomal edema volume in acute spontaneous ICH. © 2014 World Stroke Organization.

  8. Rain Volume Estimation over Areas Using Satellite and Radar Data

    NASA Technical Reports Server (NTRS)

    Doneaud, A. A.; Miller, J. R., Jr.; Johnson, L. R.; Vonderhaar, T. H.; Laybe, P.

    1984-01-01

    The application of satellite data to a recently developed radar technique used to estimate convective rain volumes over areas on a dry environment (the northern Great Plains) is discussed. The area time integral technique (ATI) provides a means of estimating total rain volumes over fixed and floating target areas of the order of 1,000 to 100,000 km(2) for clusters lasting 40 min. The basis of the method is the existence of a strong correlation between the area coverage integrated over the lifetime of the storm (ATI) and the rain volume. One key element in this technique is that it does not require the consideration of the structure of the radar intensities inside the area coverage to generate rain volumes, but only considers the rain event per se. This fact might reduce or eliminate some sources of error in applying the technique to satellite data. The second key element is that the ATI once determined can be converted to total rain volume by using a constant factor (average rain rate) for a given locale.

  9. An Analysis of Scalable GPU-Based Ray-Guided Volume Rendering

    PubMed Central

    Fogal, Thomas; Schiewe, Alexander; Krüger, Jens

    2014-01-01

    Volume rendering continues to be a critical method for analyzing large-scale scalar fields, in disciplines as diverse as biomedical engineering and computational fluid dynamics. Commodity desktop hardware has struggled to keep pace with data size increases, challenging modern visualization software to deliver responsive interactions for O(N3) algorithms such as volume rendering. We target the data type common in these domains: regularly-structured data. In this work, we demonstrate that the major limitation of most volume rendering approaches is their inability to switch the data sampling rate (and thus data size) quickly. Using a volume renderer inspired by recent work, we demonstrate that the actual amount of visualizable data for a scene is typically bound considerably lower than the memory available on a commodity GPU. Our instrumented renderer is used to investigate design decisions typically swept under the rug in volume rendering literature. The renderer is freely available, with binaries for all major platforms as well as full source code, to encourage reproduction and comparison with future research. PMID:25506079

  10. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?

    PubMed

    Hanna, Gerard G; Carson, Kathryn J; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P; Eakin, Ruth L; Stewart, David P; Zatari, Ashraf; O'Sullivan, Joe M; Hounsell, Alan R

    2010-11-15

    (18)F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV(CT)) and on fused PET/CT images (GTV(PETCT)). The mean percentage volume change (PVC) between GTV(CT) and GTV(PETCT) for the radiation oncologists and the PVC between GTV(CT) and GTV(PETCT) for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV(CT) and GTV(PETCT) in a single measurement. For all patients, a significant difference in PVC from GTV(CT) to GTV(PETCT) exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV(CT) and GTV(FUSED) for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Percentage volume changes from GTV(CT) to GTV(PETCT) were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Target Volume Delineation in Oropharyngeal Cancer: Impact of PET, MRI, and Physical Examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiagarajan, Anuradha, E-mail: anu_thiagarajan@hotmail.com; Caria, Nicola; Schoeder, Heiko

    2012-05-01

    Introduction: Sole utilization of computed tomography (CT) scans in gross tumor volume (GTV) delineation for head-and-neck cancers is subject to inaccuracies. This study aims to evaluate contributions of magnetic resonance imaging (MRI), positron emission tomography (PET), and physical examination (PE) to GTV delineation in oropharyngeal cancer (OPC). Methods: Forty-one patients with OPC were studied. All underwent contrast-enhanced CT simulation scans (CECTs) that were registered with pretreatment PETs and MRIs. For each patient, three sets of primary and nodal GTV were contoured. First, reference GTVs (GTVref) were contoured by the treating radiation oncologist (RO) using CT, MRI, PET, and PE findings.more » Additional GTVs were created using fused CT/PET scans (GTVctpet) and CT/MRI scans (GTVctmr) by two other ROs blinded to GTVref. To compare GTVs, concordance indices (CI) were calculated by dividing the respective overlap volumes by overall volumes. To evaluate the contribution of PE, composite GTVs derived from CT, MRI, and PET (GTVctpetmr) were compared with GTVref. Results: For primary tumors, GTVref was significantly larger than GTVctpet and GTVctmr (p < 0.001). Although no significant difference in size was noted between GTVctpet and GTVctmr (p = 0.39), there was poor concordance between them (CI = 0.62). In addition, although CI (ctpetmr vs. ref) was low, it was significantly higher than CI (ctpet vs. ref) and CI (ctmr vs. ref) (p < 0.001), suggesting that neither modality should be used alone. Qualitative analyses to explain the low CI (ctpetmr vs. ref) revealed underestimation of mucosal disease when GTV was contoured without knowledge of PE findings. Similar trends were observed for nodal GTVs. However, CI (ctpet vs. ref), CI (ctmr vs. ref), and CI (ctpetmr vs. ref) were high (>0.75), indicating that although the modalities were complementary, the added benefit was small in the context of CECTs. In addition, PE did not aid greatly in nodal GTV

  12. Reduced lung dose during radiotherapy for thoracic esophageal carcinoma: VMAT combined with active breathing control for moderate DIBH.

    PubMed

    Gong, Guanzhong; Wang, Ruozheng; Guo, Yujie; Zhai, Deyin; Liu, Tonghai; Lu, Jie; Chen, Jinhu; Liu, Chengxin; Yin, Yong

    2013-12-20

    Lung radiation injury is a critical complication of radiotherapy (RT) for thoracic esophageal carcinoma (EC). Therefore, the goal of this study was to investigate the feasibility and dosimetric effects of reducing the lung tissue irradiation dose during RT for thoracic EC by applying volumetric modulated arc radiotherapy (VMAT) combined with active breathing control (ABC) for moderate deep inspiration breath-hold (mDIBH). Fifteen patients with thoracic EC were randomly selected to undergo two series of computed tomography (CT) simulation scans with ABC used to achieve mDIBH (representing 80% of peak DIBH value) versus free breathing (FB). Gross tumor volumes were contoured on different CT images, and planning target volumes (PTVs) were obtained using different margins. For PTV-FB, intensity-modulated radiotherapy (IMRT) was designed with seven fields, and VMAT included two whole arcs. For PTV-DIBH, VMAT with three 135° arcs was applied, and the corresponding plans were named: IMRT-FB, VMAT-FB, and VMAT-DIBH, respectively. Dosimetric differences between the different plans were compared. The heart volumes decreased by 19.85%, while total lung volume increased by 52.54% in mDIBH, compared to FB (p < 0.05). The mean conformality index values and homogeneity index values for VMAT-DIBH (0.86, 1.07) were slightly worse than those for IMRT-FB (0.90, 1.05) and VMAT-FB (0.90, 1.06) (p > 0.05). Furthermore, compared to IMRT-FB and VMAT-FB, VMAT-DIBH reduced the mean total lung dose by 18.64% and 17.84%, respectively (p < 0.05); moreover, the V5, V10, V20, and V30 values for IMRT-FB and VMAT-FB were reduced by 10.84% and 10.65% (p > 0.05), 12.5% and 20% (p < 0.05), 30.77% and 33.33% (p < 0.05), and 50.33% and 49.15% (p < 0.05), respectively. However, the heart dose-volume indices were similar between VMAT-DIBH and VMAT-FB which were lower than IMRT-FB without being statistically significant (p > 0.05). The monitor units and treatment time of VMAT-DIBH were also the lowest (p

  13. Microfluidic devices for the controlled manipulation of small volumes

    DOEpatents

    Ramsey, Michael J; Jacobson, Stephen C

    2012-09-18

    A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.

  14. Microfluidic devices for the controlled manipulation of small volumes

    DOEpatents

    Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN

    2007-07-03

    A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.

  15. Regional Disparities in Online Map User Access Volume and Determining Factors

    NASA Astrophysics Data System (ADS)

    Li, R.; Yang, N.; Li, R.; Huang, W.; Wu, H.

    2017-09-01

    The regional disparities of online map user access volume (use `user access volume' in this paper to indicate briefly) is a topic of growing interest with the increment of popularity in public users, which helps to target the construction of geographic information services for different areas. At first place we statistically analysed the online map user access logs and quantified these regional access disparities on different scales. The results show that the volume of user access is decreasing from east to the west in China as a whole, while East China produces the most access volume; these cities are also the crucial economic and transport centres. Then Principal Component Regression (PCR) is applied to explore the regional disparities of user access volume. A determining model for Online Map access volume is proposed afterwards, which indicates that area scale is the primary determining factor for regional disparities, followed by public transport development level and public service development level. Other factors like user quality index and financial index have very limited influence on the user access volume. According to the study of regional disparities in user access volume, map providers can reasonably dispatch and allocate the data resources and service resources in each area and improve the operational efficiency of the Online Map server cluster.

  16. SU-G-JeP3-09: Tumor Location Prediction Using Natural Respiratory Volume for Respiratory Gated Radiation Therapy (RGRT): System Verification Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Jung, J; Yoon, D

    Purpose: Respiratory gated radiation therapy (RGRT) gives accurate results when a patient’s breathing is stable and regular. Thus, the patient should be fully aware during respiratory pattern training before undergoing the RGRT treatment. In order to bypass the process of respiratory pattern training, we propose a target location prediction system for RGRT that uses only natural respiratory volume, and confirm its application. Methods: In order to verify the proposed target location prediction system, an in-house phantom set was used. This set involves a chest phantom including target, external markers, and motion generator. Natural respiratory volume signals were generated using themore » random function in MATLAB code. In the chest phantom, the target takes a linear motion based on the respiratory signal. After a four-dimensional computed tomography (4DCT) scan of the in-house phantom, the motion trajectory was derived as a linear equation. The accuracy of the linear equation was compared with that of the motion algorithm used by the operating motion generator. In addition, we attempted target location prediction using random respiratory volume values. Results: The correspondence rate of the linear equation derived from the 4DCT images with the motion algorithm of the motion generator was 99.41%. In addition, the average error rate of target location prediction was 1.23% for 26 cases. Conclusion: We confirmed the applicability of our proposed target location prediction system for RGRT using natural respiratory volume. If additional clinical studies can be conducted, a more accurate prediction system can be realized without requiring respiratory pattern training.« less

  17. Perioperative patient safety indicators and hospital surgical volumes.

    PubMed

    Kitazawa, Takefumi; Matsumoto, Kunichika; Fujita, Shigeru; Yoshida, Ai; Iida, Shuhei; Nishizawa, Hirotoshi; Hasegawa, Tomonori

    2014-02-28

    Since the late 1990s, patient safety has been an important policy issue in developed countries. To evaluate the effectiveness of the activities of patient safety, it is necessary to quantitatively assess the incidence of adverse events by types of failure mode using tangible data. The purpose of this study is to calculate patient safety indicators (PSIs) using the Japanese Diagnosis Procedure Combination/per-diem payment system (DPC/PDPS) reimbursement data and to elucidate the relationship between perioperative PSIs and hospital surgical volume. DPC/PDPS data of the Medi-Target project managed by the All Japan Hospital Association were used. An observational study was conducted where PSIs were calculated using an algorithm proposed by the US Agency for Healthcare Research and Quality. We analyzed data of 1,383,872 patients from 188 hospitals who were discharged from January 2008 to December 2010. Among 20 provider level PSIs, four PSIs (three perioperative PSIs and decubitus ulcer) and mortality rates of postoperative patients were related to surgical volume. Low-volume hospitals (less than 33rd percentiles surgical volume per month) had higher mortality rates (5.7%, 95% confidence interval (CI), 3.9% to 7.4%) than mid- (2.9%, 95% CI, 2.6% to 3.3%) or high-volume hospitals (2.7%, 95% CI, 2.5% to 2.9%). Low-volume hospitals had more deaths among surgical inpatients with serious treatable complications (38.5%, 95% CI, 33.7% to 43.2%) than high-volume hospitals (21.4%, 95% CI, 19.0% to 23.9%). Also Low-volume hospitals had lower proportion of difficult surgeries (54.9%, 95% CI, 50.1% to 59.8%) compared with high-volume hospitals (63.4%, 95% CI, 62.3% to 64.6%). In low-volume hospitals, limited experience may have led to insufficient care for postoperative complications. We demonstrated that PSIs can be calculated using DPC/PDPS data and perioperative PSIs were related to hospital surgical volume. Further investigations focusing on identifying risk factors for poor

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, J; Sintay, B; Manning, M

    Purpose: This study evaluates a novel algorithm that can be used with any treatment planning system for simple and rapid generation of stereotactic radiosurgery (SRS) plans for treating multiple brain metastases using a single isocenter dynamic conformal arc (DCA) approach. This technique is compared with a single isocenter volumetric modulated arc therapy (VMAT) technique in terms of delivery time, conformity, low dose spread and delivery accuracy. Methods: Five patients, with a total of 37 (5 – 11) targets were planned using a previously published method for generating optimal VMAT plans and using the proposed DCA algorithm. All planning target volumesmore » (PTVs) were planned to 20 Gy, meeting a minimum 99% coverage and maximum 135 % hot spot for both techniques. Quality assurance was performed using radiochromic film, with films placed in the high dose regions of each PTV. Normal tissue volumes receiving 12 Gy and 6 Gy (V12 and V6) were computed for each plan. Conformity index (CI) and gamma evaluations (95% of points passing 4%/0.5mm) were computed for each PTV. Results: Delivery times, including beam on and table rotation times, were comparable: 17 – 22 minutes for all deliveries. V12s for DCA plans were (18.5±15.2 cc) vs. VMAT (19.7±14.4 cc). V6s were significantly lower for DCA (69.0±52.0 cc) compared with VMAT (154.0±91.0 cc) (p <<0.05). CIs for VMAT targets were (1.38±0.50) vs. DCA (1.61±0.41). 36 of 37 DCA planned targets passed gamma tests, while 29 of 37 VMAT planned targets passed. Conclusion: Single isocenter DCA plans were easily achieved. The evaluation suggests that DCA may represent a favorable technique compared with VMAT for multiple target SRS by reducing dose to normal tissue and more accurately depicting deliverable dose.« less

  19. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deasy, Joseph O., E-mail: jdeasy@radonc.wustl.ed; Moiseenko, Vitali; Marks, Lawrence

    2010-03-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than {approx}20 Gy or if both glands are spared to less than {approx}25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. Amore » lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk.« less

  20. Automatic detection of sweep-meshable volumes

    DOEpatents

    Tautges,; Timothy J. , White; David, R [Pittsburgh, PA

    2006-05-23

    A method of and software for automatically determining whether a mesh can be generated by sweeping for a representation of a geometric solid comprising: classifying surface mesh schemes for surfaces of the representation locally using surface vertex types; grouping mappable and submappable surfaces of the representation into chains; computing volume edge types for the representation; recursively traversing surfaces of the representation and grouping the surfaces into source, target, and linking surface lists; and checking traversal direction when traversing onto linking surfaces.

  1. Feasibility and Initial Dosimetric Findings for a Randomized Trial Using Dose-Painted Multiparametric Magnetic Resonance Imaging–Defined Targets in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossart, Elizabeth L., E-mail: EBossart@med.miami.edu; Stoyanova, Radka; Sandler, Kiri

    2016-06-01

    Purpose: To compare dosimetric characteristics with multiparametric magnetic resonance imaging–identified imaging tumor volume (gross tumor volume, GTV), prostate clinical target volume and planning target volume, and organs at risk (OARs) for 2 treatment techniques representing 2 arms of an institutional phase 3 randomized trial of hypofractionated external beam image guided highly targeted radiation therapy. Methods and Materials: Group 1 (n=20) patients were treated before the trial inception with the standard dose prescription. Each patient had an additional treatment plan generated per the experimental arm. A total of 40 treatment plans were compared (20 plans for each technique). Group 2 (n=15)more » consists of patients currently accrued to the hypofractionated external beam image guided highly targeted radiation therapy trial. Plans were created as per the treatment arm, with additional plans for 5 of the group 2 experimental arm with a 3-mm expansion in the imaging GTV. Results: For all plans in both patient groups, planning target volume coverage ranged from 95% to 100%; GTV coverage of 89.3 Gy for the experimental treatment plans ranged from 95.2% to 99.8%. For both groups 1 and 2, the percent volumes of rectum/anus and bladder receiving 40 Gy, 65 Gy, and 80 Gy were smaller in the experimental plans than in the standard plans. The percent volume at 1 Gy per fraction and 1.625 Gy per fraction were compared between the standard and the experimental arms, and these were found to be equivalent. Conclusions: The dose per fraction to the OARs can be made equal even when giving a large simultaneous integrated boost to the GTV. The data suggest that a GTV margin may be added without significant dose effects on the OARs.« less

  2. Effects of breathing variation on gating window internal target volume in respiratory gated radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Jing; McLawhorn, Robert; Read, Paul W.

    Purpose: To investigate the effects of breathing variation on gating window internal target volume (ITV{sub GW}) in respiratory gated radiation therapy. Method and Materials: Two-dimensional dynamic MRI (dMRI) of lung motion was acquired in ten volunteers and eight lung cancer patients. Resorted dMRI using 4DCT acquisition method (RedCAM) was generated for selected subjects by simulating the image rebinning process. A dynamic software generated phantom (dSGP) was created by moving a solid circle (to mimic the ''tumor'') with dMRI-determined motion trajectories. The gating window internal target area (ITA{sub GW}, 2D counterpart of ITV{sub GW}) was determined from both RedCAM and dSGP/dMRI.more » Its area (A), major axis (L1), minor axis (L2), and similarity (S) were calculated and compared. Results: In the phantom study of 3 cm tumor, measurements of the ITA{sub GW} from dSGP (A=10.0{+-}1.3 cm{sup 2}, L1=3.8{+-}0.4 cm, and L2=3.3{+-}0.1 cm) are significantly (p<0.001) greater than those from RedCAM (A=8.5{+-}0.7 cm{sup 2}, L1=3.5{+-}0.2 cm, and L2=3.1{+-}0.1 cm). Similarly, the differences are significantly greater (p<0.001) for the 1 cm tumor (A=1.9{+-}0.5 cm{sup 2}, L1=1.9{+-}0.4 cm, and L2=1.3{+-}0.1 cm in dSGP; A=1.3{+-}0.1 cm{sup 2}, L1=1.5{+-}0.2 cm, and L2=1.1{+-}0.1 cm in RedCAM). In patient studies, measurements of the ITA{sub GW} from dMRI (A=15.5{+-}8.2 cm{sup 2}, L1=5.0{+-}1.1 cm, and L2=3.8{+-}1.2 cm) are also significantly greater (p<0.05) than those from RedCAM (A=13.2{+-}8.5 cm{sup 2}, L1=4.3{+-}1.4 cm, and L2=3.7{+-}1.2 cm). Similarities were 0.9{+-}0.1, 0.8{+-}0.1, and 0.8{+-}0.1 in the 3 cm tumor phantom, 1 cm tumor phantom, and patient studies, respectively. Conclusion: ITV{sub GW} can be underestimated by 4DCT due to breathing variations. An additional margin may be needed to account for this potential error in generating a PTV{sub GW}. Cautions need to be taken when generating ITV{sub GW} from 4DCT in respiratory gated radiation therapy

  3. Hypervelocity Impact (HVI). Volume 1; General Introduction

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. This volume contains an executive summary, overview of the method, brief descriptions of all targets, and highlights of results and conclusions.

  4. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  5. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

    PubMed

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2008-03-15

    Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

  6. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  7. Maximum static inspiratory and expiratory pressures with different lung volumes

    PubMed Central

    Lausted, Christopher G; Johnson, Arthur T; Scott, William H; Johnson, Monique M; Coyne, Karen M; Coursey, Derya C

    2006-01-01

    Background Maximum pressures developed by the respiratory muscles can indicate the health of the respiratory system, help to determine maximum respiratory flow rates, and contribute to respiratory power development. Past measurements of maximum pressures have been found to be inadequate for inclusion in some exercise models involving respiration. Methods Maximum inspiratory and expiratory airway pressures were measured over a range of lung volumes in 29 female and 19 male adults. A commercial bell spirometry system was programmed to occlude airflow at nine target lung volumes ranging from 10% to 90% of vital capacity. Results In women, maximum expiratory pressure increased with volume from 39 to 61 cmH2O and maximum inspiratory pressure decreased with volume from 66 to 28 cmH2O. In men, maximum expiratory pressure increased with volume from 63 to 97 cmH2O and maximum inspiratory pressure decreased with volume from 97 to 39 cmH2O. Equations describing pressures for both sexes are: Pe/Pmax = 0.1426 Ln( %VC) + 0.3402 R2 = 0.95 Pi/Pmax = 0.234 Ln(100 - %VC) - 0.0828 R2 = 0.96 Conclusion These results were found to be consistent with values and trends obtained by other authors. Regression equations may be suitable for respiratory mechanics models. PMID:16677384

  8. Communications strategies on alcohol and highway safety. Volume 2, High school youth

    DOT National Transportation Integrated Search

    1975-02-01

    The study is in two volumes, the first dealing with adults aged 18-55, the second with high school youth. Both identify target populations and communications strategies for encouraging personal action steps to prevent drunk driving. One fourth of hig...

  9. Communications strategies on alcohol and highway safety. Volume 1, Adults 18-55

    DOT National Transportation Integrated Search

    1975-02-01

    The study is in two volumes, the first dealing with adults aged 18-55, the second with high school youth. Both identify target populations and communications strategies for encouraging personal action steps to prevent drunk driving. Fully 54% of adul...

  10. A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy.

    PubMed

    Roland, Teboh; Hales, Russell; McNutt, Todd; Wong, John; Simari, Patricio; Tryggestad, Erik

    2012-01-01

    Tumor control and normal tissue toxicity are strongly correlated to the tumor and normal tissue volumes receiving high prescribed dose levels in the course of radiotherapy. Planning target definition is, therefore, crucial to ensure favorable clinical outcomes. This is especially important for stereotactic body radiation therapy of lung cancers, characterized by high fractional doses and steep dose gradients. The shift in recent years from population-based to patient-specific treatment margins, as facilitated by the emergence of 4D medical imaging capabilities, is a major improvement. The commonly used motion-encompassing, or internal-target volume (ITV), target definition approach provides a high likelihood of coverage for the mobile tumor but inevitably exposes healthy tissue to high prescribed dose levels. The goal of this work was to generate an interpolated balanced planning target that takes into account both tumor coverage and normal tissue sparing from high prescribed dose levels, thereby improving on the ITV approach. For each 4DCT dataset, 4D deformable image registration was used to derive two bounding targets, namely, a 4D-intersection and a 4D-composite target which minimized normal tissue exposure to high prescribed dose levels and maximized tumor coverage, respectively. Through definition of an "effective overlap volume histogram" the authors derived an "interpolated balanced planning target" intended to balance normal tissue sparing from prescribed doses with tumor coverage. To demonstrate the dosimetric efficacy of the interpolated balanced planning target, the authors performed 4D treatment planning based on deformable image registration of 4D-CT data for five previously treated lung cancer patients. Two 4D plans were generated per patient, one based on the interpolated balanced planning target and the other based on the conventional ITV target. Plans were compared for tumor coverage and the degree of normal tissue sparing resulting from the new

  11. Optoacoustic imaging of gold nanoparticles targeted to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Motamedi, Massoud; Popov, Vsevolod L.; Kotov, Nicholas A.; Oraevsky, Alexander A.

    2004-07-01

    Optoacoustic Tomography (OAT) is a rapidly growing technology that enables noninvasive deep imaging of biological tissues based on their light absorption. In OAT, the interaction of a pulsed laser with tissue increases the temperature of the absorbing components in a confined volume of tissue. Rapid perturbation of the temperature (<1°C) deep within tissue produces weak acoustic waves that easily travel to the surface of the tissue with minor attenuation. Abnormal angiogenesis in a malignant tumor, that increases its blood content, makes a native contrast for optoacoustic imaging; however, the application of OAT for early detection of malignant tumors requires the enhancement of optoacoustic signals originated from tumor by using an exogenous contrast agent. Due to their strong absorption, we have used gold nanoparticles (NP) as a contrast agent. 40nm spherical gold nanoparticles were attached to monoclonal antibody to target cell surface of breast cancer cells. The targeted cancer cells were implanted at depth of 5-6cm within a gelatinous object that optically resembles human breast. Experimental sensitivity measurements along with theoretical analysis showed that our optoacoustic imaging system is capable of detecting a phantom breast tumor with the volume of 0.15ml, which is composed of 25 million NP-targeted cancer cells, at a depth of 5 centimeters in vitro.

  12. Polarimetric LIDAR with FRI sampling for target characterization

    NASA Astrophysics Data System (ADS)

    Wijerathna, Erandi; Creusere, Charles D.; Voelz, David; Castorena, Juan

    2017-09-01

    Polarimetric LIDAR is a significant tool for current remote sensing applications. In addition, measurement of the full waveform of the LIDAR echo provides improved ranging and target discrimination, although, data storage volume in this approach can be problematic. In the work presented here, we investigated the practical issues related to the implementation of a full waveform LIDAR system to identify polarization characteristics of multiple targets within the footprint of the illumination beam. This work was carried out on a laboratory LIDAR testbed that features a flexible arrangement of targets and the ability to change the target polarization characteristics. Targets with different retardance characteristics were illuminated with a linearly polarized laser beam and the return pulse intensities were analyzed by rotating a linear analyzer polarizer in front of a high-speed detector. Additionally, we explored the applicability and the limitations of applying a sparse sampling approach based on Finite Rate of Innovations (FRI) to compress and recover the characteristic parameters of the pulses reflected from the targets. The pulse parameter values extracted by the FRI analysis were accurate and we successfully distinguished the polarimetric characteristics and the range of multiple targets at different depths within the same beam footprint. We also demonstrated the recovery of an unknown target retardance value from the echoes by applying a Mueller matrix system model.

  13. A dimensionless dynamic contrast enhanced MRI parameter for intra-prostatic tumour target volume delineation: initial comparison with histology

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Gibson, Eli; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; McKenzie, Charles A.; Bauman, Glenn S.; Ward, Aaron D.; Fenster, Aaron; Wong, Eugene

    2014-03-01

    Purpose: T2 weighted and diffusion weighted magnetic resonance imaging (MRI) show promise in isolating prostate tumours. Dynamic contrast enhanced (DCE)-MRI has also been employed as a component in multi-parametric tumour detection schemes. Model-based parameters such as Ktrans are conventionally used to characterize DCE images and require arterial contrast agent (CR) concentration. A robust parameter map that does not depend on arterial input may be more useful for target volume delineation. We present a dimensionless parameter (Wio) that characterizes CR wash-in and washout rates without requiring arterial CR concentration. Wio is compared to Ktrans in terms of ability to discriminate cancer in the prostate, as demonstrated via comparison with histology. Methods: Three subjects underwent DCE-MRI using gadolinium contrast and 7 s imaging temporal resolution. A pathologist identified cancer on whole-mount histology specimens, and slides were deformably registered to MR images. The ability of Wio maps to discriminate cancer was determined through receiver operating characteristic curve (ROC) analysis. Results: There is a trend that Wio shows greater area under the ROC curve (AUC) than Ktrans with median AUC values of 0.74 and 0.69 respectively, but the difference was not statistically significant based on a Wilcoxon signed-rank test (p = 0.13). Conclusions: Preliminary results indicate that Wio shows potential as a tool for Ktrans QA, showing similar ability to discriminate cancer in the prostate as Ktrans without requiring arterial CR concentration.

  14. Calculation of the Frequency Distribution of the Energy Deposition in DNA Volumes by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cicinotta, Francis A.

    2012-01-01

    Radiation quality effects are largely determined by energy deposition in small volumes of characteristic sizes less than 10 nm representative of short-segments of DNA, the DNA nucleosome, or molecules initiating oxidative stress in the nucleus, mitochondria, or extra-cellular matrix. On this scale, qualitatively distinct types of molecular damage are possible for high linear energy transfer (LET) radiation such as heavy ions compared to low LET radiation. Unique types of DNA lesions or oxidative damages are the likely outcome of the energy deposition. The frequency distribution for energy imparted to 1-20 nm targets per unit dose or particle fluence is a useful descriptor and can be evaluated as a function of impact parameter from an ions track. In this work, the simulation of 1-Gy irradiation of a cubic volume of 5 micron by: 1) 450 (1)H(+) ions, 300 MeV; 2) 10 (12)C(6+) ions, 290 MeV/amu and 3) (56)Fe(26+) ions, 1000 MeV/amu was done with the Monte-Carlo simulation code RITRACKS. Cylindrical targets are generated in the irradiated volume, with random orientation. The frequency distribution curves of the energy deposited in the targets is obtained. For small targets (i.e. <25 nm size), the probability of an ion to hit a target is very small; therefore a large number of tracks and targets as well as a large number of histories are necessary to obtain statistically significant results. This simulation is very time-consuming and is difficult to perform by using the original version of RITRACKS. Consequently, the code RITRACKS was adapted to use multiple CPU on a workstation or on a computer cluster. To validate the simulation results, similar calculations were performed using targets with fixed position and orientation, for which experimental data are available [5]. Since the probability of single- and double-strand breaks in DNA as function of energy deposited is well know, the results that were obtained can be used to estimate the yield of DSB, and can be extended

  15. Bronchoscopic Thermal Vapor Ablation: Best Practice Recommendations from an Expert Panel on Endoscopic Lung Volume Reduction.

    PubMed

    Gompelmann, Daniela; Shah, Pallav L; Valipour, Arschang; Herth, Felix J F

    2018-06-12

    Bronchoscopic thermal vapor ablation (BTVA) represents one of the endoscopic lung volume reduction (ELVR) techniques that aims at hyperinflation reduction in patients with advanced emphysema to improve respiratory mechanics. By targeted segmental vapor ablation, an inflammatory response leads to tissue and volume reduction of the most diseased emphysematous segments. So far, BTVA has been demonstrated in several single-arm trials and 1 multinational randomized controlled trial to improve lung function, exercise capacity, and quality of life in patients with upper lobe-predominant emphysema irrespective of the collateral ventilation. In this review, we emphasize the practical aspects of this ELVR method. Patients with upper lobe-predominant emphysema, forced expiratory volume in 1 second (FEV1) between 20 and 45% of predicted, residual volume (RV) > 175% of predicted, and carbon monoxide diffusing capacity (DLCO) ≥20% of predicted can be considered for BTVA treatment. Prior to the procedure, a special software assists in identifying the target segments with the highest emphysema index, volume and the highest heterogeneity index to the untreated ipsilateral lung lobes. The procedure may be performed under deep sedation or preferably under general anesthesia. After positioning of the BTVA catheter and occlusion of the target segment by the occlusion balloon, heated water vapor is delivered in a predetermined specified time according to the vapor dose. After the procedure, patients should be strictly monitored to proactively detect symptoms of localized inflammatory reaction that may temporarily worsen the clinical status of the patient and to detect complications. As the data are still very limited, BTVA should be performed within clinical trials or comprehensive registries where the product is commercially available. © 2018 S. Karger AG, Basel.

  16. SU-E-J-35: Using CBCT as the Alternative Method of Assessing ITV Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Y; Turian, J; Templeton, A

    2015-06-15

    Purpose To study the accuracy of Internal Target Volumes (ITVs) created on cone beam CT (CBCT) by comparing the visible target volume on CBCT to volumes (GTV, ITV, and PTV) outlined on free breathing (FB) CT and 4DCT. Methods A Quasar Cylindrical Motion Phantom with a 3cm diameter ball (14.14 cc) embedded within a cork insert was set up to simulate respiratory motion with a period of 4 seconds and amplitude of 2cm superioinferiorly and 1cm anterioposteriorly. FBCT and 4DCT images were acquired. A PTV-4D was created on the 4DCT by applying a uniform margin of 5mm to the ITV-CT.more » PTV-FB was created by applying a margin of the motion range plus 5mm, i.e. total of 1.5cm laterally and 2.5cm superioinferiorly to the GTV outlined on the FBCT. A dynamic conformal arc was planned to treat the PTV-FB with 1mm margin. A CBCT was acquired before the treatment, on which the target was delineated. During the treatment, the position of the target was monitored using the EPID in cine mode. Results ITV-CBCT and ITV-CT were measured to be 56.6 and 62.7cc, respectively, with a Dice Coefficient (DC) of 0.94 and disagreement in center of mass (COM) of 0.59 mm. On the other hand, GTV-FB was 11.47cc, 19% less than the known volume of the ball. PTV-FB and PTV-4D were 149 and 116 cc, with a DC of 0.71. Part of the ITV-CT was not enclosed by the PTV-FB despite the large margin. The cine EPID images have confirmed geometrical misses of the target. Similar under-coverage was observed in one clinical case and captured by the CBCT, where the implanted fiducials moved outside PTV-FB. Conclusion ITV-CBCT is in good agreement with ITV-CT. When 4DCT was not available, CBCT can be an effective alternative in determining and verifying the PTV margin.« less

  17. The performance of the progressive resolution optimizer (PRO) for RapidArc planning in targets with low-density media.

    PubMed

    Kan, Monica W K; Leung, Lucullus H T; Yu, Peter K N

    2013-11-04

    A new version of progressive resolution optimizer (PRO) with an option of air cavity correction has been implemented for RapidArc volumetric-modulated arc therapy (RA). The purpose of this study was to compare the performance of this new PRO with the use of air cavity correction option (PRO10_air) against the one without the use of the air cavity correction option (PRO10_no-air) for RapidArc planning in targets with low-density media of different sizes and complexities. The performance of PRO10_no-air and PRO10_air was initially compared using single-arc plans created for four different simple heterogeneous phantoms with virtual targets and organs at risk. Multiple-arc planning of 12 real patients having nasopharyngeal carcinomas (NPC) and ten patients having non-small cell lung cancer (NSCLC) were then performed using the above two options for further comparison. Dose calculations were performed using both the Acuros XB (AXB) algorithm with the dose to medium option and the analytical anisotropic algorithm (AAA). The effect of using intermediate dose option after the first optimization cycle in PRO10_air and PRO10_no-air was also investigated and compared. Plans were evaluated and compared using target dose coverage, critical organ sparing, conformity index, and dose homogeneity index. For NSCLC cases or cases for which large volumes of low-density media were present in or adjacent to the target volume, the use of the air cavity correction option in PRO10 was shown to be beneficial. For NPC cases or cases for which small volumes of both low- and high-density media existed in the target volume, the use of air cavity correction in PRO10 did not improve the plan quality. Based on the AXB dose calculation results, the use of PRO10_air could produce up to 18% less coverage to the bony structures of the planning target volumes for NPC cases. When the intermediate dose option in PRO10 was used, there was negligible difference observed in plan quality between

  18. The performance of the progressive resolution optimizer (PRO) for RapidArc planning in targets with low‐density media

    PubMed Central

    Leung, Lucullus H.T.; Yu, Peter K.N.

    2013-01-01

    A new version of progressive resolution optimizer (PRO) with an option of air cavity correction has been implemented for RapidArc volumetric‐modulated arc therapy (RA). The purpose of this study was to compare the performance of this new PRO with the use of air cavity correction option (PRO10_air) against the one without the use of the air cavity correction option (PRO10_no‐air) for RapidArc planning in targets with low‐density media of different sizes and complexities. The performance of PRO10_no‐air and PRO10_air was initially compared using single‐arc plans created for four different simple heterogeneous phantoms with virtual targets and organs at risk. Multiple‐arc planning of 12 real patients having nasopharyngeal carcinomas (NPC) and ten patients having non‐small cell lung cancer (NSCLC) were then performed using the above two options for further comparison. Dose calculations were performed using both the Acuros XB (AXB) algorithm with the dose to medium option and the analytical anisotropic algorithm (AAA). The effect of using intermediate dose option after the first optimization cycle in PRO10_air and PRO10_no‐air was also investigated and compared. Plans were evaluated and compared using target dose coverage, critical organ sparing, conformity index, and dose homogeneity index. For NSCLC cases or cases for which large volumes of low‐density media were present in or adjacent to the target volume, the use of the air cavity correction option in PROIO was shown to be beneficial. For NPC cases or cases for which small volumes of both low‐ and high‐density media existed in the target volume, the use of air cavity correction in PRO10 did not improve the plan quality. Based on the AXB dose calculation results, the use of PRO10_air could produce up to 18% less coverage to the bony structures of the planning target volumes for NPC cases. When the intermediate dose option in PRO10 was used, there was negligible difference observed in plan

  19. SU-E-T-548: How To Decrease Spine Dose In Patients Who Underwent Sterotactic Spine Radiosurgery?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, H; Altinok, A; Kucukmorkoc, E

    2014-06-01

    Purpose: Stereotactic radiosurgery for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to dosimetrically compare stereotactic spine radiosurgery(SRS) plans using a recently new volumetric modulated arc therapy(VMAT) technique against fix-field intensity-modulated radiotherapy(IMRT). Plans were evaluated for target conformity and spinal cord sparing. Methods: Fifteen previously treated patients were replanned using the Eclipse 10.1 TPS AAA calculation algorithm. IMRT plans with 7 fields were generated. The arc plans used 2 full arc configurations. Arc and IMRT plans were normalized and prescribed to deliver 16.0 Gy in a single fraction to 90% of themore » planning target volume(PTV). PTVs consisted of the vertebral body expanded by 3mm, excluding the PRV-cord, where the cord was expanded by 2mm.RTOG 0631 recommendations were applied for treatment planning. Partial spinal cord volume was defined as 5mm above and below the radiosurgery target volume. Plans were compared for conformity and gradient index as well as spinal cord sparing. Results: The conformity index values of fifteen patients for two different treatment planning techniques were shown in table 1. Conformity index values for 2 full arc planning (average CI=0.84) were higher than that of IMRT planning (average CI=0.79). The gradient index values of fifteen patients for two different treatment planning techniques were shown in table 2. Gradient index values for 2 full arc planning (average GI=3.58) were higher than that of IMRT planning (average GI=2.82).The spinal cord doses of fifteen patients for two different treatment planning techniques were shown in table 3. D0.35cc, D0.03cc and partial spinal cord D10% values in 2 full arc plannings (average D0.35cc=819.3cGy, D0.03cc=965.4cGy, 10%partial spinal=718.1cGy) were lower than IMRT plannings (average D0.35cc=877.4cGy, D0.03c=1071.4cGy, 10%partial spinal=805.1cGy). Conclusions: The two arc VMAT

  20. DVH- and NTCP-based dosimetric comparison of different longitudinal margins for VMAT-IMRT of esophageal cancer.

    PubMed

    Münch, S; Oechsner, M; Combs, S E; Habermehl, D

    2017-08-15

    To cover the microscopic tumor spread in squamous cell carcinoma of the esophagus (SCC), longitudinal margins of 3-4 cm are used for radiotherapy (RT) protocols. However, smaller margins of 2-3 cm might be reasonable when advanced diagnostic imaging is integrated into target volume delineation. Purpose of this study was to compare the dose distribution and deposition to the organs at risk (OAR) for different longitudinal margins using a DVH- and NTCP-based approach. Ten patients with SCC of the middle or lower third were retrospectively selected. Three planning target volumes (PTV) with longitudinal margins of 4 cm, 3 cm and 2 cm and an axial margin of 1.5 cm to the gross target volume (GTV) were defined for each patient. For each PTV two treatment plans with total doses of 41.4 Gy (neoadjuvant treatment) and 50.4 Gy (definite treatment) were calculated. Dose to the lungs, heart, myelon and liver were then evaluated and compared between different PTVs. When using a longitudinal margin of 3 cm instead of 4 cm, all dose parameters (Dmin, Dmean, Dmedian and V5-V35), except Dmax could be significantly reduced for the lungs. Regarding the heart, a significant reduction was seen for Dmean and V5, but not for Dmin, Dmax, Dmedian and V10-V35. When comparing a longitudinal margin of 4 cm to a longitudinal margin of 2 cm, a significant difference was calculated for Dmin, Dmean, Dmedian and V5-V35 of the lungs and for Dmax, Dmean and V5-V35 of the heart. Nevertheless, no difference was seen for median heart dose. An additional dose reduction for V10 of the heart was achieved for definite treatment plans when using a longitudinal margin of 3 cm. The NTCP-based risk of pneumonitis was significantly reduced by a margin reduction to 2 cm for neoadjuvant and definite treatment plans. Reduction of longitudinal margins from 4 cm to 3 cm can significantly reduce the dose to lungs and Dmean of the heart. Despite clinical benefit and oncologic outcome remain unclear

  1. SU-G-BRA-11: Tumor Tracking in An Iterative Volume of Interest Based 4D CBCT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R; Pan, T; Ahmad, M

    2016-06-15

    Purpose: 4D CBCT can allow evaluation of tumor motion immediately prior to radiation therapy, but suffers from heavy artifacts that limit its ability to track tumors. Various iterative and compressed sensing reconstructions have been proposed to reduce these artifacts, but are costly time-wise and can degrade the image quality of bony anatomy for alignment with regularization. We have previously proposed an iterative volume of interest (I4D VOI) method which minimizes reconstruction time and maintains image quality of bony anatomy by focusing a 4D reconstruction within a VOI. The purpose of this study is to test the tumor tracking accuracy ofmore » this method compared to existing methods. Methods: Long scan (8–10 mins) CBCT data with corresponding RPM data was collected for 12 lung cancer patients. The full data set was sorted into 8 phases and reconstructed using FDK cone beam reconstruction to serve as a gold standard. The data was reduced in way that maintains a normal breathing pattern and used to reconstruct 4D images using FDK, low and high regularization TV minimization (λ=2,10), and the proposed I4D VOI method with PTVs used for the VOI. Tumor trajectories were found using rigid registration within the VOI for each reconstruction and compared to the gold standard. Results: The root mean square error (RMSE) values were 2.70mm for FDK, 2.50mm for low regularization TV, 1.48mm for high regularization TV, and 2.34mm for I4D VOI. Streak artifacts in I4D VOI were reduced compared to FDK and images were less blurred than TV reconstructed images. Conclusion: I4D VOI performed at least as well as existing methods in tumor tracking, with the exception of high regularization TV minimization. These results along with the reconstruction time and outside VOI image quality advantages suggest I4D VOI to be an improvement over existing methods. Funding support provided by CPRIT grant RP110562-P2-01.« less

  2. SU-F-J-148: A Collapsed Cone Algorithm Can Be Used for Quality Assurance for Monaco Treatment Plans for the MR-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, S; Asselen, B van; Wolthaus, J

    2016-06-15

    Purpose: Treatment plans for the MR-linac, calculated in Monaco v5.19, include direct simulation of the effects of the 1.5T B{sub 0}-field. We tested the feasibility of using a collapsed-cone (CC) algorithm in Oncentra, which does not account for effects of the B{sub 0}-field, as a fast online, independent 3D check of dose calculations. Methods: Treatment plans for six patients were generated in Monaco with a 6 MV FFF beam and the B{sub 0}-field. All plans were recalculated with a CC model of the same beam. Plans for the same patients were also generated in Monaco without the B{sub 0}-field. Themore » mean dose (Dmean) and doses to 10% (D10%) and 90% (D90%) of the volume were determined, as percentages of the prescribed dose, for target volumes and OARs in each calculated dose distribution. Student’s t-tests between paired parameters from Monaco plans and corresponding CC calculations were performed. Results: Figure 1 shows an example of the difference between dose distributions calculated in Monaco, with the B{sub 0}-field, and the CC algorithm. Figure 2 shows distributions of (absolute) difference between parameters for Monaco plans, with the B{sub 0}-field, and CC calculations. The Dmean and D90% values for the CTVs and PTVs were significantly different, but differences in dose distributions arose predominantly at the edges of the target volumes. Inclusion of the B{sub 0}-field had little effect on agreement of the Dmean values, as illustrated by Figure 3, nor on agreement of the D10% and D90% values. Conclusion: Dose distributions recalculated with a CC algorithm show good agreement with those calculated with Monaco, for plans both with and without the B{sub 0}-field, indicating that the CC algorithm could be used to check online treatment planning for the MRlinac. Agreement for a wider range of treatment sites, and the feasibility of using the γ-test as a simple pass/fail criterion, will be investigated.« less

  3. Total marrow irradiation using Helical TomoTherapy

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, Lourdes Maria

    Clinical dose response data of human tumours are limited or restricted to a radiation dose range determined by the level of toxicity to the normal tissues. This is the case for the most common disseminated plasma cell neoplasm, multiple myeloma, where the maximum dose deliverable to the entire bony skeleton using a standard total body irradiation (TBI) technique is limited to about 12 Gy. This study is part of scientific background of a phase I/II dose escalation clinical trial for multiple myeloma using image-guided intensity modulated radiotherapy (IG-IMRT) to deliver high dose to the entire volume of bone marrow with Helical TomoTherapy (HT). This relatively new technology can deliver highly conformal dose distributions to complex target shapes while reducing the dose to critical normal tissues. In this study tools for comparing and predicting the effectiveness of different approaches to total marrow irradiation (TMI) using HT were provided. The expected dose response for plasma cell neoplasms was computed and a radiobiological evaluation of different treatment cohorts in a dose escalating study was performed. Normal tissue complication probability (NTCP) and tumour control probability (TCP) models were applied to an actual TMI treatment plan for a patient and the implications of using different longitudinal field widths were assessed. The optimum dose was ˜39 Gy for which a predicted tumour control of 95% (+/-3%) was obtained, with a predicted 3% (0, 8%) occurrence of radiation pneumonitis. Tissue sparing was seen by using smaller field widths only in the organs of the head. This suggests it would be beneficial to use the small fields in the head only since using small fields for the whole treatment would lead to long treatment times. In TMI it may be necessary to junction two longitudinally adjacent treatment volumes to form a contiguous planning target volume PTV. For instance, this is the case when a different SUP-INF spatial resolution is required or when

  4. Short Communication: Conformal Therapy for Peri-Ventricular Brain Tumors: Is Target Volume Deformation an Issue?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, Glenn; Woodford, Curtis; Yartsev, Slav

    2008-04-01

    Physiologic variations in ventricular volumes could have important implications for treating patients with peri-ventricular brain tumors, yet no data exist in the literature addressing this issue. Daily megavoltage computed tomography (CT) scans in a patient with neurocytoma receiving fractionated radiation revealed minimal changes, suggesting that margins accounting for ventricular deformation are not necessary.

  5. Method to Reduce Target Motion Through Needle-Tissue Interactions.

    PubMed

    Oldfield, Matthew J; Leibinger, Alexander; Seah, Tian En Timothy; Rodriguez Y Baena, Ferdinando

    2015-11-01

    During minimally invasive surgical procedures, it is often important to deliver needles to particular tissue volumes. Needles, when interacting with a substrate, cause deformation and target motion. To reduce reliance on compensatory intra-operative imaging, a needle design and novel delivery mechanism is proposed. Three-dimensional finite element simulations of a multi-segment needle inserted into a pre-existing crack are presented. The motion profiles of the needle segments are varied to identify methods that reduce target motion. Experiments are then performed by inserting a needle into a gelatine tissue phantom and measuring the internal target motion using digital image correlation. Simulations indicate that target motion is reduced when needle segments are stroked cyclically and utilise a small amount of retraction instead of being held stationary. Results are confirmed experimentally by statistically significant target motion reductions of more than 8% during cyclic strokes and 29% when also incorporating retraction, with the same net insertion speed. By using a multi-segment needle and taking advantage of frictional interactions on the needle surface, it is demonstrated that target motion ahead of an advancing needle can be substantially reduced.

  6. Wyoming Low-Volume Roads Traffic Volume Estimation

    DOT National Transportation Integrated Search

    2015-10-01

    Low-volume roads are excluded from regular traffic counts except on a need to know basis. But needs for traffic volume data on low-volume roads in road infrastructure management, safety, and air quality analysis have necessitated regular traffic volu...

  7. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  8. Computer-aided target tracking in motion analysis studies

    NASA Astrophysics Data System (ADS)

    Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.

    1990-08-01

    Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.

  9. Infusion volume control and calculation using metronome and drop counter based intravenous infusion therapy helper.

    PubMed

    Park, Kyungnam; Lee, Jangyoung; Kim, Soo-Young; Kim, Jinwoo; Kim, Insoo; Choi, Seung Pill; Jeong, Sikyung; Hong, Sungyoup

    2013-06-01

    This study assessed the method of fluid infusion control using an IntraVenous Infusion Controller (IVIC). Four methods of infusion control (dial flow controller, IV set without correction, IV set with correction and IVIC correction) were used to measure the volume of each technique at two infusion rates. The infused fluid volume with a dial flow controller was significantly larger than other methods. The infused fluid volume was significantly smaller with an IV set without correction over time. Regarding the concordance correlation coefficient (CCC) of infused fluid volume in relation to a target volume, IVIC correction was shown to have the highest level of agreement. The flow rate measured in check mode showed a good agreement with the volume of collected fluid after passing through the IV system. Thus, an IVIC could assist in providing an accurate infusion control. © 2013 Wiley Publishing Asia Pty Ltd.

  10. Measuring pedestrian volumes and conflicts. Volume 1, Pedestrian volume sampling

    DOT National Transportation Integrated Search

    1987-12-01

    This final report presents the findings, conclusions, and recommendations of the study conducted to develop a model to predict pedestrian volumes using small sampling schemes. This research produced four pedestrian volume prediction models (i.e., 1-,...

  11. Time-Adjusted Internal Target Volume: A Novel Approach Focusing on Heterogeneity of Tumor Motion Based on 4-Dimensional Computed Tomography Imaging for Radiation Therapy Planning of Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishibuchi, Ikuno; Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima; Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp

    2014-08-01

    Purpose: To consider nonuniform tumor motion within the internal target volume (ITV) by defining time-adjusted ITV (TTV), a volume designed to include heterogeneity of tumor existence on the basis of 4-dimensional computed tomography (4D-CT). Methods and Materials: We evaluated 30 lung cancer patients. Breath-hold CT (BH-CT) and free-breathing 4D-CT scans were acquired for each patient. The tumors were manually delineated using a lung CT window setting (window, 1600 HU; level, −300 HU). Tumor in BH-CT images was defined as gross tumor volume (GTV), and the sum of tumors in 4D-CT images was defined as ITV-4D. The TTV images were generatedmore » from the 4D-CT datasets, and the tumor existence probability within ITV-4D was calculated. We calculated the TTV{sub 80} value, which is the percentage of the volume with a tumor existence probability that exceeded 80% on ITV-4D. Several factors that affected the TTV{sub 80} value, such as the ITV-4D/GTV ratio or tumor centroid deviation, were evaluated. Results: Time-adjusted ITV images were acquired for all patients, and tumor respiratory motion heterogeneity was visualized. The median (range) ITV-4D/GTV ratio and median tumor centroid deviation were 1.6 (1.0-4.1) and 6.3 mm (0.1-30.3 mm), respectively. The median TTV{sub 80} value was 43.3% (2.9-98.7%). Strong correlations were observed between the TTV{sub 80} value and the ITV-4D/GTV ratio (R=−0.71) and tumor centroid deviation (R=−0.72). The TTV images revealed the tumor motion pattern features within ITV. Conclusions: The TTV images reflected nonuniform tumor motion, and they revealed the tumor motion pattern features, suggesting that the TTV concept may facilitate various aspects of radiation therapy planning of lung cancer while incorporating respiratory motion in the future.« less

  12. Influence of gestational age on dead space and alveolar ventilation in preterm infants ventilated with volume guarantee.

    PubMed

    Neumann, Roland P; Pillow, Jane J; Thamrin, Cindy; Larcombe, Alexander N; Hall, Graham L; Schulzke, Sven M

    2015-01-01

    Ventilated preterm infant lungs are vulnerable to overdistension and underinflation. The optimal ventilator-delivered tidal volume (VT) in these infants is unknown and may depend on the extent of alveolarisation at birth. We aimed to calculate respiratory dead space (VD) from the molar mass (MM) signal of an ultrasonic flowmeter (VD,MM) in very preterm infants on volume-targeted ventilation (VT target, 4-5 ml/kg) and to study the association between gestational age (GA) and VD,MM-to-VT ratio (VD,MM/VT), alveolar tidal volume (VA) and alveolar minute volume (AMV). This was a single-centre, prospective, observational, cohort study in a neonatal intensive care unit. Tidal breathing analysis was performed in ventilated very preterm infants (GA range 23-32 weeks) on day 1 of life. Valid measurements were obtained in 43/51 (87%) infants. Tidal breathing variables were analysed using multivariable linear regression. VD,MM/VT was negatively associated with GA after adjusting for birth weight Z score (p < 0.001, R(2) = 0.26). This association was primarily influenced by the appliance dead space. Despite similar VT/kg and VA/kg across all studied infants, respiratory rate and AMV/kg increased with GA. VD,app rather than anatomical VD is the major factor influencing increased VD,MM/VT at a younger GA. A volume guarantee setting of 4-5 ml/kg in the Dräger Babylog® 8000 plus ventilator may be inappropriate as a universal target across the GA range of 23-32 weeks. Differences between measured and set VT and the dependence of this difference on GA require further investigation. © 2014 S. Karger AG, Basel.

  13. Methods and computer executable instructions for rapidly calculating simulated particle transport through geometrically modeled treatment volumes having uniform volume elements for use in radiotherapy

    DOEpatents

    Frandsen, Michael W.; Wessol, Daniel E.; Wheeler, Floyd J.

    2001-01-16

    Methods and computer executable instructions are disclosed for ultimately developing a dosimetry plan for a treatment volume targeted for irradiation during cancer therapy. The dosimetry plan is available in "real-time" which especially enhances clinical use for in vivo applications. The real-time is achieved because of the novel geometric model constructed for the planned treatment volume which, in turn, allows for rapid calculations to be performed for simulated movements of particles along particle tracks there through. The particles are exemplary representations of neutrons emanating from a neutron source during BNCT. In a preferred embodiment, a medical image having a plurality of pixels of information representative of a treatment volume is obtained. The pixels are: (i) converted into a plurality of substantially uniform volume elements having substantially the same shape and volume of the pixels; and (ii) arranged into a geometric model of the treatment volume. An anatomical material associated with each uniform volume element is defined and stored. Thereafter, a movement of a particle along a particle track is defined through the geometric model along a primary direction of movement that begins in a starting element of the uniform volume elements and traverses to a next element of the uniform volume elements. The particle movement along the particle track is effectuated in integer based increments along the primary direction of movement until a position of intersection occurs that represents a condition where the anatomical material of the next element is substantially different from the anatomical material of the starting element. This position of intersection is then useful for indicating whether a neutron has been captured, scattered or exited from the geometric model. From this intersection, a distribution of radiation doses can be computed for use in the cancer therapy. The foregoing represents an advance in computational times by multiple factors of

  14. SU-F-T-377: Monte Carlo Re-Evaluation of Volumetric-Modulated Arc Plans of Advanced Stage Nasopharygeal Cancers Optimized with Convolution-Superposition Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K; Leung, R; Law, G

    Background: Commercial treatment planning system Pinnacle3 (Philips, Fitchburg, WI, USA) employs a convolution-superposition algorithm for volumetric-modulated arc radiotherapy (VMAT) optimization and dose calculation. Study of Monte Carlo (MC) dose recalculation of VMAT plans for advanced-stage nasopharyngeal cancers (NPC) is currently limited. Methods: Twenty-nine VMAT prescribed 70Gy, 60Gy, and 54Gy to the planning target volumes (PTVs) were included. These clinical plans achieved with a CS dose engine on Pinnacle3 v9.0 were recalculated by the Monaco TPS v5.0 (Elekta, Maryland Heights, MO, USA) with a XVMC-based MC dose engine. The MC virtual source model was built using the same measurement beam datasetmore » as for the Pinnacle beam model. All MC recalculation were based on absorbed dose to medium in medium (Dm,m). Differences in dose constraint parameters per our institution protocol (Supplementary Table 1) were analyzed. Results: Only differences in maximum dose to left brachial plexus, left temporal lobe and PTV54Gy were found to be statistically insignificant (p> 0.05). Dosimetric differences of other tumor targets and normal organs are found in supplementary Table 1. Generally, doses outside the PTV in the normal organs are lower with MC than with CS. This is also true in the PTV54-70Gy doses but higher dose in the nasal cavity near the bone interfaces is consistently predicted by MC, possibly due to the increased backscattering of short-range scattered photons and the secondary electrons that is not properly modeled by the CS. The straight shoulders of the PTV dose volume histograms (DVH) initially resulted from the CS optimization are merely preserved after MC recalculation. Conclusion: Significant dosimetric differences in VMAT NPC plans were observed between CS and MC calculations. Adjustments of the planning dose constraints to incorporate the physics differences from conventional CS algorithm should be made when VMAT optimization is carried out

  15. Analysis of nodal coverage utilizing image guided radiation therapy for primary gynecologic tumor volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Faisal; Loma Linda University Medical Center, Department of Radiation Oncology, Loma Linda, CA; Sarkar, Vikren

    Purpose: To evaluate radiation dose delivered to pelvic lymph nodes, if daily Image Guided Radiation Therapy (IGRT) was implemented with treatment shifts based on the primary site (primary clinical target volume [CTV]). Our secondary goal was to compare dosimetric coverage with patient outcomes. Materials and methods: A total of 10 female patients with gynecologic malignancies were evaluated retrospectively after completion of definitive intensity-modulated radiation therapy (IMRT) to their pelvic lymph nodes and primary tumor site. IGRT consisted of daily kilovoltage computed tomography (CT)-on-rails imaging fused with initial planning scans for position verification. The initial plan was created using Varian's Eclipsemore » treatment planning software. Patients were treated with a median radiation dose of 45 Gy (range: 37.5 to 50 Gy) to the primary volume and 45 Gy (range: 45 to 64.8 Gy) to nodal structures. One IGRT scan per week was randomly selected from each patient's treatment course and re-planned on the Eclipse treatment planning station. CTVs were recreated by fusion on the IGRT image series, and the patient's treatment plan was applied to the new image set to calculate delivered dose. We evaluated the minimum, maximum, and 95% dose coverage for primary and nodal structures. Reconstructed primary tumor volumes were recreated within 4.7% of initial planning volume (0.9% to 8.6%), and reconstructed nodal volumes were recreated to within 2.9% of initial planning volume (0.01% to 5.5%). Results: Dosimetric parameters averaged less than 10% (range: 1% to 9%) of the original planned dose (45 Gy) for primary and nodal volumes on all patients (n = 10). For all patients, ≥99.3% of the primary tumor volume received ≥ 95% the prescribed dose (V95%) and the average minimum dose was 96.1% of the prescribed dose. In evaluating nodal CTV coverage, ≥ 99.8% of the volume received ≥ 95% the prescribed dose and the average minimum dose was 93%. In evaluating

  16. Autoradiography imaging in targeted alpha therapy with Timepix detector.

    PubMed

    A L Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.

  17. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector

    PubMed Central

    AL Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy. PMID:25688285

  18. Dosimetric evaluation of synthetic CT for magnetic resonance-only based radiotherapy planning of lung cancer.

    PubMed

    Wang, Hesheng; Chandarana, Hersh; Block, Kai Tobias; Vahle, Thomas; Fenchel, Matthias; Das, Indra J

    2017-06-26

    Interest in MR-only treatment planning for radiation therapy is growing rapidly with the emergence of integrated MRI/linear accelerator technology. The purpose of this study was to evaluate the feasibility of using synthetic CT images generated from conventional Dixon-based MRI scans for radiation treatment planning of lung cancer. Eleven patients who underwent whole-body PET/MR imaging following a PET/CT exam were randomly selected from an ongoing prospective IRB-approved study. Attenuation maps derived from the Dixon MR Images and atlas-based method was used to create CT data (synCT). Treatment planning for radiation treatment of lung cancer was optimized on the synCT and subsequently copied to the registered CT (planCT) for dose calculation. Planning target volumes (PTVs) with three sizes and four different locations in the lung were planned for irradiation. The dose-volume metrics comparison and 3D gamma analysis were performed to assess agreement between the synCT and CT calculated dose distributions. Mean differences between PTV doses on synCT and CT across all the plans were -0.1% ± 0.4%, 0.1% ± 0.5%, and 0.4% ± 0.5% for D95, D98 and D100, respectively. Difference in dose between the two datasets for organs at risk (OARs) had average differences of -0.14 ± 0.07 Gy, 0.0% ± 0.1%, and -0.1% ± 0.2% for maximum spinal cord, lung V20, and heart V40 respectively. In patient groups based on tumor size and location, no significant differences were observed in the PTV and OARs dose-volume metrics (p > 0.05), except for the maximum spinal-cord dose when the target volumes were located at the lung apex (p = 0.001). Gamma analysis revealed a pass rate of 99.3% ± 1.1% for 2%/2 mm (dose difference/distance to agreement) acceptance criteria in every plan. The synCT generated from Dixon-based MRI allows for dose calculation of comparable accuracy to the standard CT for lung cancer treatment planning. The dosimetric agreement

  19. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  20. When high-volume PCI operators in high-volume hospitals move to lower volume hospitals-Do they still maintain high volume and quality of outcomes?

    PubMed

    Lu, Tsung-Hsueh; Li, Sheng-Tun; Liang, Fu-Wen; Lee, Jo-Chi; Yin, Wei-Hsian

    2017-10-31

    The aim of this quasi-experimental study was to examine whether high-volume percutaneous coronary intervention (PCI) operators still maintain high volume and quality of outcomes when they moved to lower volume hospitals. Systematic reviews have indicated that high-volume PCI operators and hospitals have higher quality outcomes. However, little is known on whether high PCI volume and high quality outcomes are mainly due to operator characteristics (i.e., skill and experience) and is portable across organizations or whether it is due to hospital characteristics (i.e., equipment, team, and management system) and is less portable. We used Taiwan National Health Insurance claims data 2000-2012 to identify 98 high-volume PCI operators, 10 of whom moved from one hospital to another during the study period. We compared the PCI volume, risk-adjusted mortality ratio, and major adverse cardiovascular event (MACE) ratio before and after moving. Of the 10 high-volume operators who moved, 6 moved from high- to moderate- or low-volume hospitals, with median annual PCI volumes (interquartile range) of 130 (117-165) in prior hospitals and 54 (46-84) in subsequent hospitals (the hospital the operator moved to), and the remaining 4 moved from high to high-volume hospitals, with median annual PCI volumes (interquartile range) of 151 (133-162) in prior hospitals and 193 (178-239) in subsequent hospitals. No significant differences were observed in the risk-adjusted mortality ratios and MACE ratios between high-volume operators and matched controls before and after moving. High-volume operators cannot maintain high volume when they moved from high to moderate or low-volume hospitals; however, the quality of care is maintained. High PCI volume and high-quality outcomes are less portable and more hospital bound. © 2017 Wiley Periodicals, Inc.

  1. On the interplay effects with proton scanning beams in stage III lung cancer

    PubMed Central

    Li, Yupeng; Kardar, Laleh; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y.; Liao, Li; Zhu, Ronald X.; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D.; Lim, Gino; Zhang, Xiaodong

    2014-01-01

    Purpose: To assess the dosimetric impact of interplay between spot-scanning proton beam and respiratory motion in intensity-modulated proton therapy (IMPT) for stage III lung cancer. Methods: Eleven patients were sampled from 112 patients with stage III nonsmall cell lung cancer to well represent the distribution of 112 patients in terms of target size and motion. Clinical target volumes (CTVs) and planning target volumes (PTVs) were defined according to the authors' clinical protocol. Uniform and realistic breathing patterns were considered along with regular- and hypofractionation scenarios. The dose contributed by a spot was fully calculated on the computed tomography (CT) images corresponding to the respiratory phase that the spot is delivered, and then accumulated to the reference phase of the 4DCT to generate the dynamic dose that provides an estimation of what might be delivered under the influence of interplay effect. The dynamic dose distributions at different numbers of fractions were compared with the corresponding 4D composite dose which is the equally weighted average of the doses, respectively, computed on respiratory phases of a 4DCT image set. Results: Under regular fractionation, the average and maximum differences in CTV coverage between the 4D composite and dynamic doses after delivery of all 35 fractions were no more than 0.2% and 0.9%, respectively. The maximum differences between the two dose distributions for the maximum dose to the spinal cord, heart V40, esophagus V55, and lung V20 were 1.2 Gy, 0.1%, 0.8%, and 0.4%, respectively. Although relatively large differences in single fraction, correlated with small CTVs relative to motions, were observed, the authors' biological response calculations suggested that this interfractional dose variation may have limited biological impact. Assuming a hypofractionation scenario, the differences between the 4D composite and dynamic doses were well confined even for single fraction. Conclusions: Despite

  2. On the interplay effects with proton scanning beams in stage III lung cancer.

    PubMed

    Li, Yupeng; Kardar, Laleh; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y; Liao, Li; Zhu, Ronald X; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D; Lim, Gino; Zhang, Xiaodong

    2014-02-01

    To assess the dosimetric impact of interplay between spot-scanning proton beam and respiratory motion in intensity-modulated proton therapy (IMPT) for stage III lung cancer. Eleven patients were sampled from 112 patients with stage III nonsmall cell lung cancer to well represent the distribution of 112 patients in terms of target size and motion. Clinical target volumes (CTVs) and planning target volumes (PTVs) were defined according to the authors' clinical protocol. Uniform and realistic breathing patterns were considered along with regular- and hypofractionation scenarios. The dose contributed by a spot was fully calculated on the computed tomography (CT) images corresponding to the respiratory phase that the spot is delivered, and then accumulated to the reference phase of the 4DCT to generate the dynamic dose that provides an estimation of what might be delivered under the influence of interplay effect. The dynamic dose distributions at different numbers of fractions were compared with the corresponding 4D composite dose which is the equally weighted average of the doses, respectively, computed on respiratory phases of a 4DCT image set. Under regular fractionation, the average and maximum differences in CTV coverage between the 4D composite and dynamic doses after delivery of all 35 fractions were no more than 0.2% and 0.9%, respectively. The maximum differences between the two dose distributions for the maximum dose to the spinal cord, heart V40, esophagus V55, and lung V20 were 1.2 Gy, 0.1%, 0.8%, and 0.4%, respectively. Although relatively large differences in single fraction, correlated with small CTVs relative to motions, were observed, the authors' biological response calculations suggested that this interfractional dose variation may have limited biological impact. Assuming a hypofractionation scenario, the differences between the 4D composite and dynamic doses were well confined even for single fraction. Despite the presence of interplay effect, the

  3. Dosimetric feasibility of an “off-target isocenter” technique for cranial intensity-modulated radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo-Ortega, Juan Francisco, E-mail: jfcdrr@yahoo.es; Moragues, Sandra; Pozo, Miquel

    2015-01-01

    To evaluate the dosimetric effect of placing the isocenter away from the planning target volume (PTV) on intensity-modulated radiosurgery (IMRS) plans to treat brain lesions. A total of 15 patients who received cranial IMRS at our institution were randomly selected. Each patient was treated with an IMRS plan designed with the isocenter located at the target center (plan A). A second off-target isocenter plan (plan B) was generated for each case. In all the plans,100% of the prescription dose covered 99% of the target volume. The plans A and B were compared for the target dosage (conformity index [CI] andmore » homogeneity index) and organs-at-risk (OAR) dose sparing. Peripheral dose falloff was compared by using the metrics volume of normal brain receiving more than 12-Gy dose (V12) and CI at the level of the 50% of the prescription dose (CI 50%). The values found for each metric (plan B vs plan A) were (mean ± standard deviation [SD]) as follows—CI: 1.28 ± 0.15 vs 1.28 ± 0.15, p = 0.978; homogeneity index (HI): 1.29 ± 0.14 vs 1.34 ± 0.17, p = 0.079; maximum dose to the brainstem: 2.95 ± 2.11 vs 2.89 ± 1.88 Gy, p = 0.813; maximum dose to the optical pathway: 2.65 ± 4.18 vs 2.44 ± 4.03 Gy, p = 0.195; and maximum dose to the eye lens: 0.33 ± 0.73 vs 0.33 ± 0.53 Gy, p = 0.970. The values of the peripheral dose falloff were (plan B vs plan A) as follows—V12: 5.98 ± 4.95 vs 6.06 ± 4.92 cm{sup 3}, p = 0.622, and CI 50%: 6.08 ± 2.77 vs 6.28 ± 3.01, p = 0.119. The off-target isocenter solution resulted in dosimetrically comparable plans as the center-target isocenter technique, by avoiding the risk of gantry-couch collision during the cone beam computed tomography (CBCT) acquisition.« less

  4. Dosimetric comparison between conventional and conformal radiotherapy for carcinoma cervix: Are we treating the right volumes?

    PubMed Central

    Goswami, Jyotirup; Patra, Niladri B.; Sarkar, Biplab; Basu, Ayan; Pal, Santanu

    2013-01-01

    Background and Purpose: Conventional portals, based on bony anatomy, for external beam radiotherapy for cervical cancer have been repeatedly demonstrated as inadequate. Conversely, with image-based conformal radiotherapy, better target coverage may be offset by the greater toxicities and poorer compliance associated with treating larger volumes. This study was meant to dosimetrically compare conformal and conventional radiotherapy. Materials and Methods: Five patients of carcinoma cervix underwent planning CT scan with IV contrast and targets, and organs at risk (OAR) were contoured. Two sets of plans-conventional and conformal were generated for each patient. Field sizes were recorded, and dose volume histograms of both sets of plans were generated and compared on the basis of target coverage and OAR sparing. Results: Target coverage was significantly improved with conformal plans though field sizes required were significantly larger. On the other hand, dose homogeneity was not significantly improved. Doses to the OARs (rectum, urinary bladder, and small bowel) were not significantly different across the 2 arms. Conclusion: Three-dimensional conformal radiotherapy gives significantly better target coverage, which may translate into better local control and survival. On the other hand, it also requires significantly larger field sizes though doses to the OARs are not significantly increased. PMID:24455584

  5. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brainmore » were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.« less

  6. The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting

    PubMed Central

    Huang, Yu; Parra, Lucas C.; Haufe, Stefan

    2018-01-01

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semiautomated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an ‘arbitrary’ individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebrospinal fluid (CSF), and their field of view excludes portions of the head and neck—two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or “New York Head”. It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5 mm 3 resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the ‘ground truth’) is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an ‘individualized’ BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM

  7. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.

    PubMed

    Huang, Yu; Parra, Lucas C; Haufe, Stefan

    2016-10-15

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semi-automated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an 'arbitrary' individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebro-spinal fluid (CSF), and their field of view excludes portions of the head and neck-two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or "New York Head". It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5mm(3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the 'ground truth') is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an 'individualized' BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms

  8. Laser-induced extreme magnetic field in nanorod targets

    NASA Astrophysics Data System (ADS)

    Lécz, Zsolt; Andreev, Alexander

    2018-03-01

    The application of nano-structured target surfaces in laser-solid interaction has attracted significant attention in the last few years. Their ability to absorb significantly more laser energy promises a possible route for advancing the currently established laser ion acceleration concepts. However, it is crucial to have a better understanding of field evolution and electron dynamics during laser-matter interactions before the employment of such exotic targets. This paper focuses on the magnetic field generation in nano-forest targets consisting of parallel nanorods grown on plane surfaces. A general scaling law for the self-generated quasi-static magnetic field amplitude is given and it is shown that amplitudes up to 1 MT field are achievable with current technology. Analytical results are supported by three-dimensional particle-in-cell simulations. Non-parallel arrangements of nanorods has also been considered which result in the generation of donut-shaped azimuthal magnetic fields in a larger volume.

  9. Relationships between residue Voronoi volume and sequence conservation in proteins.

    PubMed

    Liu, Jen-Wei; Cheng, Chih-Wen; Lin, Yu-Feng; Chen, Shao-Yu; Hwang, Jenn-Kang; Yen, Shih-Chung

    2018-02-01

    Functional and biophysical constraints can cause different levels of sequence conservation in proteins. Previously, structural properties, e.g., relative solvent accessibility (RSA) and packing density of the weighted contact number (WCN), have been found to be related to protein sequence conservation (CS). The Voronoi volume has recently been recognized as a new structural property of the local protein structural environment reflecting CS. However, for surface residues, it is sensitive to water molecules surrounding the protein structure. Herein, we present a simple structural determinant termed the relative space of Voronoi volume (RSV); it uses the Voronoi volume and the van der Waals volume of particular residues to quantify the local structural environment. RSV (range, 0-1) is defined as (Voronoi volume-van der Waals volume)/Voronoi volume of the target residue. The concept of RSV describes the extent of available space for every protein residue. RSV and Voronoi profiles with and without water molecules (RSVw, RSV, VOw, and VO) were compared for 554 non-homologous proteins. RSV (without water) showed better Pearson's correlations with CS than did RSVw, VO, or VOw values. The mean correlation coefficient between RSV and CS was 0.51, which is comparable to the correlation between RSA and CS (0.49) and that between WCN and CS (0.56). RSV is a robust structural descriptor with and without water molecules and can quantitatively reflect evolutionary information in a single protein structure. Therefore, it may represent a practical structural determinant to study protein sequence, structure, and function relationships. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An estimation of vehicle kilometer traveled and on-road emissions using the traffic volume and travel speed on road links in Incheon City.

    PubMed

    Jung, Sungwoon; Kim, Jounghwa; Kim, Jeongsoo; Hong, Dahee; Park, Dongjoo

    2017-04-01

    The objective of this study is to estimate the vehicle kilometer traveled (VKT) and on-road emissions using the traffic volume in urban. We estimated two VKT; one is based on registered vehicles and the other is based on traffic volumes. VKT for registered vehicles was 2.11 times greater than that of the applied traffic volumes because each VKT estimation method is different. Therefore, we had to define the inner VKT is moved VKT inner in urban to compare two values. Also, we focused on freight modes because these are discharged much air pollutant emissions. From analysis results, we found middle and large trucks registered in other regions traveled to target city in order to carry freight, target city has included many industrial and logistics areas. Freight is transferred through the harbors, large logistics centers, or via locations before being moved to the final destination. During this process, most freight is moved by middle and large trucks, and trailers rather than small trucks for freight import and export. Therefore, these trucks from other areas are inflow more than registered vehicles. Most emissions from diesel trucks had been overestimated in comparison to VKT from applied traffic volumes in target city. From these findings, VKT is essential based on traffic volume and travel speed on road links in order to estimate accurately the emissions of diesel trucks in target city. Our findings support the estimation of the effect of on-road emissions on urban air quality in Korea. Copyright © 2016. Published by Elsevier B.V.

  11. Effects of voxelization on dose volume histogram accuracy

    NASA Astrophysics Data System (ADS)

    Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor

    2016-03-01

    PURPOSE: In radiotherapy treatment planning systems, structures of interest such as targets and organs at risk are stored as 2D contours on evenly spaced planes. In order to be used in various algorithms, contours must be converted into binary labelmap volumes using voxelization. The voxelization process results in lost information, which has little effect on the volume of large structures, but has significant impact on small structures, which contain few voxels. Volume differences for segmented structures affects metrics such as dose volume histograms (DVH), which are used for treatment planning. Our goal is to evaluate the impact of voxelization on segmented structures, as well as how factors like voxel size affects metrics, such as DVH. METHODS: We create a series of implicit functions, which represent simulated structures. These structures are sampled at varying resolutions, and compared to labelmaps with high sub-millimeter resolutions. We generate DVH and evaluate voxelization error for the same structures at different resolutions by calculating the agreement acceptance percentage between the DVH. RESULTS: We implemented tools for analysis as modules in the SlicerRT toolkit based on the 3D Slicer platform. We found that there were large DVH variation from the baseline for small structures or for structures located in regions with a high dose gradient, potentially leading to the creation of suboptimal treatment plans. CONCLUSION: This work demonstrates that labelmap and dose volume voxel size is an important factor in DVH accuracy, which must be accounted for in order to ensure the development of accurate treatment plans.

  12. 800-MeV proton irradiation of thorium and depleted uranium targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G.J.; Brun, T.O.; Pitcher, E.J.

    As part of the Los Alamos Fertile-to-Fissile-Conversion (FERFICON) program in the late 1980`s, thick targets of the fertile materials thorium and depleted uranium were bombarded by 800-MeV protons to produce the fissile materials {sup 233}U and {sup 239}Pu, respectively. The amount of {sup 233}U made was determined by measuring the {sup 233}Pa activity, and the yield of {sup 239}Pu was deduced by measuring the activity of {sup 239}Np. For the thorium target, 4 spallation products and 34 fission products were also measured. For the depleted uranium target, 3 spallation products and 16 fission products were also measured. The number ofmore » fissions in each target was deduced from fission product mass-yield curves. In actuality, axial distributions of the products were measured, and the distributions were then integrated over the target volume to obtain the total number of products for each reaction.« less

  13. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial.

    PubMed

    Khan, Fakhar Z; Virdee, Mumohan S; Palmer, Christopher R; Pugh, Peter J; O'Halloran, Denis; Elsik, Maros; Read, Philip A; Begley, David; Fynn, Simon P; Dutka, David P

    2012-04-24

    This study sought to assess the impact of targeted left ventricular (LV) lead placement on outcomes of cardiac resynchronization therapy (CRT). Placement of the LV lead to the latest sites of contraction and away from the scar confers the best response to CRT. We conducted a randomized, controlled trial to compare a targeted approach to LV lead placement with usual care. A total of 220 patients scheduled for CRT underwent baseline echocardiographic speckle-tracking 2-dimensional radial strain imaging and were then randomized 1:1 into 2 groups. In group 1 (TARGET [Targeted Left Ventricular Lead Placement to Guide Cardiac Resynchronization Therapy]), the LV lead was positioned at the latest site of peak contraction with an amplitude of >10% to signify freedom from scar. In group 2 (control) patients underwent standard unguided CRT. Patients were classified by the relationship of the LV lead to the optimal site as concordant (at optimal site), adjacent (within 1 segment), or remote (≥2 segments away). The primary endpoint was a ≥15% reduction in LV end-systolic volume at 6 months. Secondary endpoints were clinical response (≥1 improvement in New York Heart Association functional class), all-cause mortality, and combined all-cause mortality and heart failure-related hospitalization. The groups were balanced at randomization. In the TARGET group, there was a greater proportion of responders at 6 months (70% vs. 55%, p = 0.031), giving an absolute difference in the primary endpoint of 15% (95% confidence interval: 2% to 28%). Compared with controls, TARGET patients had a higher clinical response (83% vs. 65%, p = 0.003) and lower rates of the combined endpoint (log-rank test, p = 0.031). Compared with standard CRT treatment, the use of speckle-tracking echocardiography to the target LV lead placement yields significantly improved response and clinical status and lower rates of combined death and heart failure-related hospitalization. (Targeted Left Ventricular Lead

  14. Stereotactic body radiotherapy for primary lung cancer at a dose of 50 Gy total in five fractions to the periphery of the planning target volume calculated using a superposition algorithm.

    PubMed

    Takeda, Atsuya; Sanuki, Naoko; Kunieda, Etsuo; Ohashi, Toshio; Oku, Yohei; Takeda, Toshiaki; Shigematsu, Naoyuki; Kubo, Atsushi

    2009-02-01

    To retrospectively analyze the clinical outcomes of stereotactic body radiotherapy (SBRT) for patients with Stages 1A and 1B non-small-cell lung cancer. We reviewed the records of patients with non-small-cell lung cancer treated with curative intent between Dec 2001 and May 2007. All patients had histopathologically or cytologically confirmed disease, increased levels of tumor markers, and/or positive findings on fluorodeoxyglucose positron emission tomography. Staging studies identified their disease as Stage 1A or 1B. Performance status was 2 or less according to World Health Organization guidelines in all cases. The prescribed dose of 50 Gy total in five fractions, calculated by using a superposition algorithm, was defined for the periphery of the planning target volume. One hundred twenty-one patients underwent SBRT during the study period, and 63 were eligible for this analysis. Thirty-eight patients had Stage 1A (T1N0M0) and 25 had Stage 1B (T2N0M0). Forty-nine patients were not appropriate candidates for surgery because of chronic pulmonary disease. Median follow-up of these 49 patients was 31 months (range, 10-72 months). The 3-year local control, disease-free, and overall survival rates in patients with Stages 1A and 1B were 93% and 96% (p = 0.86), 76% and 77% (p = 0.83), and 90% and 63% (p = 0.09), respectively. No acute toxicity was observed. Grade 2 or higher radiation pneumonitis was experienced by 3 patients, and 1 of them had fatal bacterial pneumonia. The SBRT at 50 Gy total in five fractions to the periphery of the planning target volume calculated by using a superposition algorithm is feasible. High local control rates were achieved for both T2 and T1 tumors.

  15. Measurement of limb volume: laser scanning versus volume displacement.

    PubMed

    McKinnon, John Gregory; Wong, Vanessa; Temple, Walley J; Galbraith, Callum; Ferry, Paul; Clynch, George S; Clynch, Colin

    2007-10-01

    Determining the prevalence and treatment success of surgical lymphedema requires accurate and reproducible measurement. A new method of measurement of limb volume is described. A series of inanimate objects of known and unknown volume was measured using digital laser scanning and water displacement. A similar comparison was made with 10 human volunteers. Digital scanning was evaluated by comparison to the established method of water displacement, then to itself to determine reproducibility of measurement. (1) Objects of known volume: Laser scanning accurately measured the calculated volume but water displacement became less accurate as the size of the object increased. (2) Objects of unknown volume: As average volume increased, there was an increasing bias of underestimation of volume by the water displacement method. The coefficient of reproducibility of water displacement was 83.44 ml. In contrast, the reproducibility of the digital scanning method was 19.0 ml. (3) Human data: The mean difference between water displacement volume and laser scanning volume was 151.7 ml (SD +/- 189.5). The coefficient of reproducibility of water displacement was 450.8 ml whereas for laser scanning it was 174 ml. Laser scanning is an innovative method of measuring tissue volume that combines precision and reproducibility and may have clinical utility for measuring lymphedema. 2007 Wiley-Liss, Inc

  16. Inter- and intra-observer variation in soft-tissue sarcoma target definition.

    PubMed

    Roberge, D; Skamene, T; Turcotte, R E; Powell, T; Saran, N; Freeman, C

    2011-08-01

    To evaluate inter- and intra-observer variability in gross tumor volume definition for adult limb/trunk soft tissue sarcomas. Imaging studies of 15 patients previously treated with preoperative radiation were used in this study. Five physicians (radiation oncologists, orthopedic surgeons and a musculoskeletal radiologist) were asked to contour each of the 15 tumors on T1-weighted, gadolinium-enhanced magnetic resonance images. These contours were drawn twice by each physician. The volume and center of mass coordinates for each gross tumor volume were extracted and a Boolean analysis was performed to measure the degree of volume overlap. The median standard deviation in gross tumor volumes across observers was 6.1% of the average volume (range: 1.8%-24.9%). There was remarkably little variation in the 3D position of the gross tumor volume center of mass. For the 15 patients, the standard deviation of the 3D distance between centers of mass ranged from 0.06 mm to 1.7 mm (median 0.1mm). Boolean analysis demonstrated that 53% to 90% of the gross tumor volume was common to all observers (median overlap: 79%). The standard deviation in gross tumor volumes on repeat contouring was 4.8% (range: 0.1-14.4%) with a standard deviation change in the position of the center of mass of 0.4mm (range: 0mm-2.6mm) and a median overlap of 93% (range: 73%-98%). Although significant inter-observer differences were seen in gross tumor volume definition of adult soft-tissue sarcoma, the center of mass of these volumes was remarkably consistent. Variations in volume definition did not correlate with tumor size. Radiation oncologists should not hesitate to review their contours with a colleague (surgeon, radiologist or fellow radiation oncologist) to ensure that they are not outliers in sarcoma gross tumor volume definition. Protocols should take into account variations in volume definition when considering tighter clinical target volumes. Copyright © 2011 Société française de radioth

  17. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer.

    PubMed

    Zheng, Yuanda; Sun, Xiaojiang; Wang, Jian; Zhang, Lingnan; DI, Xiaoyun; Xu, Yaping

    2014-04-01

    18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has the potential to improve the staging and radiation treatment (RT) planning of various tumor sites. However, from a clinical standpoint, questions remain with regard to what extent PET/CT changes the target volume and whether PET/CT reduces interobserver variability in target volume delineation. The present study analyzed the use of FDG-PET/CT images for staging and evaluated the impact of FDG-PET/CT on the radiotherapy volume delineation compared with CT in patients with non-small cell lung cancer (NSCLC) who were candidates for radiotherapy. Intraobserver variation in delineating tumor volumes was also observed. In total, 23 patients with stage I-III NSCLC were enrolled and treated with fractionated RT-based therapy with or without chemotherapy. FDG-PET/CT scans were acquired within two weeks prior to RT. PET and CT data sets were sent to the treatment planning system, Pinnacle, through compact discs. The CT and PET images were subsequently fused by means of a dedicated RT planning system. Gross tumor volume (GTV) was contoured by four radiation oncologists on CT (GTV-CT) and PET/CT images (GTV-PET/CT). The resulting volumes were analyzed and compared. For the first phase, two radiation oncologists outlined the contours together, achieving a final consensus. Based on PET/CT, changes in tumor-node-metastasis categories occurred in 8/23 cases (35%). Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in 12/20 patients (60%) in comparison with CT targeting. The most prominent changes in GTV were observed in cases with atelectasis. For the second phase, the variation in delineating tumor volumes was assessed by four observers. The mean ratio of largest to smallest CT-based GTV was 2.31 (range, 1.01-5.96). The addition of the PET results reduced the mean ratio to 1.46 (range, 1.02-2.27). PET/CT fusion images may have a

  18. Assessment of Prospectively Assigned Likert Scores for Targeted Magnetic Resonance Imaging-Transrectal Ultrasound Fusion Biopsies in Patients with Suspected Prostate Cancer.

    PubMed

    Costa, Daniel N; Lotan, Yair; Rofsky, Neil M; Roehrborn, Claus; Liu, Alexander; Hornberger, Brad; Xi, Yin; Francis, Franto; Pedrosa, Ivan

    2016-01-01

    We assess the performance of prospectively assigned magnetic resonance imaging based Likert scale scores for the detection of clinically significant prostate cancer, and analyze the pre-biopsy imaging variables associated with increased cancer detection using targeted magnetic resonance imaging-transrectal ultrasound fusion biopsy. In this retrospective review of prospectively generated data including men with abnormal multiparametric prostate magnetic resonance imaging (at least 1 Likert score 3 or greater lesion) who underwent subsequent targeted magnetic resonance imaging-transrectal ultrasound fusion biopsy, we determined the association between different imaging variables (Likert score, lesion size, lesion location, prostate volume, radiologist experience) and targeted biopsy positivity rate. We also compared the detection of clinically significant cancer according to Likert scale scores. Tumors with high volume (50% or more of any core) Gleason score 3+4 or any tumor with greater Gleason score were considered clinically significant. Each lesion served as the elementary unit for analysis. We used logistic regression for univariate and multivariate (stepwise selection) analysis to assess for an association between targeted biopsy positivity rate and each tested variable. The relationship between Likert scale and Gleason score was evaluated using the Spearman correlation coefficient. A total of 161 men with 244 lesions met the study eligibility criteria. Targeted biopsies diagnosed cancer in 41% (66 of 161) of the men and 41% (99 of 244) of the lesions. The Likert score was the strongest predictor of targeted biopsy positivity (OR 3.7, p <0.0001). Other imaging findings associated with a higher targeted biopsy positivity rate included smaller prostate volume (OR 0.7, p <0.01), larger lesion size (OR 2.2, p <0.001) and anterior location (OR 2.0, p=0.01). On multiple logistic regression analysis Likert score, lesion size and prostate volume were significant

  19. Microfluidic devices for the controlled manipulation of small volumes

    DOEpatents

    Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN

    2003-02-25

    A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The method and apparatus are implemented on a fluidic microchip to provide high serial throughput. The method and device of the invention also lend themselves to multiple parallel analyses and manipulation to provide greater throughput for the generation of biochemical information. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter biochemical reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The individual reaction volumes are manipulated in serial fashion analogous to a digital shift register. The method and apparatus according to this invention have application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.

  20. Liquid crystal films as on-demand, variable thickness (50–5000 nm) targets for intense lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, P. L., E-mail: poole.134@osu.edu; Andereck, C. D.; Schumacher, D. W.

    2014-06-15

    We have developed a new type of target for intense laser-matter experiments that offers significant advantages over those currently in use. The targets consist of a liquid crystal film freely suspended within a metal frame. They can be formed rapidly on-demand with thicknesses ranging from nanometers to micrometers, where the particular value is determined by the liquid crystal temperature and initial volume as well as by the frame geometry. The liquid crystal used for this work, 8CB (4′-octyl-4-cyanobiphenyl), has a vapor pressure below 10{sup −6} Torr, so films made at atmospheric pressure maintain their initial thickness after pumping to high vacuum.more » Additionally, the volume per film is such that each target costs significantly less than one cent to produce. The mechanism of film formation and relevant physics of liquid crystals are described, as well as ion acceleration data from the first shots on liquid crystal film targets at the Ohio State University Scarlet laser facility.« less

  1. LLE Review Quarterly Report (October-December 2001). Volume 89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, William R.

    2001-12-01

    This volume of the LLE Review, covering October-December 2001, features “Time-Integrated Light Images of OMEGA Implosions” by P. Morley and W. Seka (p. 1). E. Kowaluk initiated this project for aesthetic rather than scientific reasons when he began taking visible light photographs of imploding OMEGA targets. These beautiful images are used to communicate LLE’s mission to the general public. A closer examination of the images revealed a one-to-one correspondence between the bright spots in the image and each of the 60 laser beams. The intensity of the bright spots has been related to refraction and absorption in the plasma surroundingmore » the imploding target. These photographs are now proving to be the basis of a new laser-plasma interaction diagnostic. Other articles in this volume are titled the following: Analytical Model of Nonlinear, Single-Mode, Classical Rayleigh-Taylor Instability at Arbitrary Atwood Numbers; A High-Pass Phase Plate Design for OMEGA and the NIF; Advanced Tritium Recovery System; Establishing Links Between Single Gold Nanoparticles Buried Inside SiO 2 Thin Film and 351-nm Pulsed-Laser-Damage Morphology; Resistive Switching Dynamics in Current-Biased Y-Ba-Cu-O Microbridges Excited by Nanosecond Electrical Pulses; and, Properties of Amorphous Carbon Films.« less

  2. SU-F-T-615: Comparison of Plan Quality for Linac-Based Stereotactic Radiosurgery (SRS) Using Single- and Multi-Isocenter Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J; Dept of Radiation Oncology, NewYork Hospital/Weill Cornell Medical College, New York, NY; Wernicke, A

    2016-06-15

    Purpose: To compare the plan quality of linear accelerator (linac)-based stereotactic radiosurgery (SRS) using single-isocenter volumetric arc therapy (SI-VMAT), restricted single-isocenter dynamic-arc (RSI-DARC), and multi-isocenter DARC (MI-DARC) techniques. Methods: Fifteen SRS cases were randomly selected and re-planned using the SI-VMAT (Pinnacle), RSI-DARC (iPlanNet) and MI-DARC (iPlanNet). The number of planning target volumes (PTVs) for each plan ranged from 1 to 6. For SI-VMAT, a single isocenter and 3-4 VMAT beams are used for all PTVs, while for MI-DARC, each PTV has its own isocetner with 3 DARC beams. RSI-DARC uses one isocnter with 3-6 DARC beams to irradiate all PTVsmore » within 2.5-cm radius. Both SI-DARC and RSI-DARC plans were optimized manually. The prescription dose was 20 Gy to each PTV. The maximal dose was 25 Gy for RSI-DARC and MI-DARC, but could not be controlled for SI-VMAT due to the nature of VMAT planning. Plan quality indexes including PTV coverage, mean dose of PTV (PTVmean) and tissue (Tmean), V12Gy, conformity index (CI), and V10Gy/VPTV were calculated and compared. Results: Full PTV coverage was achieved for all three techniques. Using the MI-DARC plans as the gold standard, the PTVmean of the SI-VMAT plans was 12.5%±8.3% (mean±standard deviation) higher, in comparison to 0.7%±1.4% for the RSI-DARC plans. Similar trend was observed for other indexes including V12Gy (39.4%±27.3% vs. 9.3%±7.8%), Tmean (35.0%±26.8% vs. 2.8%±3.4%), and V10Gy/VPTV (42.2%±31.5% vs. 9.9%±8.2%). CI is comparable (6.2%±14.2% vs. 6.3%±7.2%). Assuming the treatment time is proportional to the number of isocenters, the reduction of the treatment time in comparison to MI-DARC was 70% for SI-VMAT and 42% for RSI-DARC. Conclusion: Although the SI-VMAT can save a considerable amount of treatment time, the plan indexes also significantly deviates from the gold standard, MI-DARC. RSI-DARC, on the other hand, provides a good compromise between the

  3. SU-G-JeP2-10: On the Need for a Dynamic Model for Patient-Specific Distortion Corrections for MR-Only Pelvis Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glide-Hurst, C; Zheng, W; Stehning, C

    Purpose: Patient-specific distortions, particularly near tissue/air interfaces, require assessment and possible corrections for MRI-only radiation treatment planning (RTP). However, patients are dynamic due to changes in physiological status and motion during imaging sessions. This work investigated the need for dynamic patient-specific distortion corrections to support pelvis MR-only RTP. Methods: The pelvises of healthy volunteers were imaged at 1.0T, 1.5T, and 3.0T. Patient-specific distortion field maps were generated using a dual-echo gradient-recalled echo (GRE) sequence with B0 field maps obtained from the phase difference between the two echoes acquired at two timepoints: empty and full bladders. To quantify changes arising frommore » respiratory state, end-inhalation and end-expiration data were acquired. Distortion map differences were computed between the empty/full bladder and inhalation/expiration to characterize local changes. The normalized frequency distortion distributions in T2-weighted TSE images were characterized, particularly for simulated prostate planning target volumes (PTVs). Results: Changes in rectal and bowel air location were observed, likely due to changes in bladder filling. Within the PTVs, displacement differences (mean ± stdev, range) were −0.02 ± 0.02 mm (−0.13 to 0.07 mm) for 1.0T, −0.1 ± 0.2 mm (−0.92 to 0.74 mm) for 1.5T, and −0.20 ± 0.03 mm (−0.61 to 0.38 mm) for 3.0T. Local changes of ∼1 mm at the prostate-rectal interface were observed for an extreme case at 1.5T. For end-inhale and end-exhale scans at 3.0T, 99% of the voxels had Δx differences within ±0.25mm, thus the displacement differences due to respiratory state appear negligible in the pelvis. Conclusion: Our work suggests that transient bowel/rectal gas due to bladder filling may yield non-negligible patient-specific distortion differences near the prostate/rectal interface, whereas respiration had minimal effect. A temporal patient model for

  4. Prediction of resource volumes at untested locations using simple local prediction models

    USGS Publications Warehouse

    Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.

    2006-01-01

    This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses. ?? Springer Science+Business Media, LLC 2007.

  5. SU-E-J-44: A Novel Approach to Quantify Patient Setup and Target Motion for Real-Time Image-Guided Radiotherapy (IGRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S; Charpentier, P; Sayler, E

    2015-06-15

    Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection andmore » principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large

  6. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  7. Targeted Antiangiogenesis Gene Therapy Using Targeted Cationic Microbubbles Conjugated with CD105 Antibody Compared with Untargeted Cationic and Neutral Microbubbles

    PubMed Central

    Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong

    2015-01-01

    Objective This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). Methods CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. Results CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×108 microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble

  8. Targeted antiangiogenesis gene therapy using targeted cationic microbubbles conjugated with CD105 antibody compared with untargeted cationic and neutral microbubbles.

    PubMed

    Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong

    2015-01-01

    This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×10(8) microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble destruction (UTMD

  9. Speed-up of the volumetric method of moments for the approximate RCS of large arbitrary-shaped dielectric targets

    NASA Astrophysics Data System (ADS)

    Moreno, Javier; Somolinos, Álvaro; Romero, Gustavo; González, Iván; Cátedra, Felipe

    2017-08-01

    A method for the rigorous computation of the electromagnetic scattering of large dielectric volumes is presented. One goal is to simplify the analysis of large dielectric targets with translational symmetries taken advantage of their Toeplitz symmetry. Then, the matrix-fill stage of the Method of Moments is efficiently obtained because the number of coupling terms to compute is reduced. The Multilevel Fast Multipole Method is applied to solve the problem. Structured meshes are obtained efficiently to approximate the dielectric volumes. The regular mesh grid is achieved by using parallelepipeds whose centres have been identified as internal to the target. The ray casting algorithm is used to classify the parallelepiped centres. It may become a bottleneck when too many points are evaluated in volumes defined by parametric surfaces, so a hierarchical algorithm is proposed to minimize the number of evaluations. Measurements and analytical results are included for validation purposes.

  10. [Target and non-target screening of volatile organic compounds in industrial exhaust gas using thermal desorption-gas chromatography-mass spectrometry].

    PubMed

    Ma, Huilian; Jin, Jing; Li, Yun; Chen, Jiping

    2017-10-08

    A method of comprehensive screening of the target and non-target volatile organic compounds (VOCs) in industrial exhaust gas using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed. In this paper, two types of solid phase adsorption column were compared, and the Tenex SS TD Tube was selected. The analytes were enriched into the adsorption tube by constant flow sampling, and detected by TD-GC-MS in full scan mode. Target compounds were quantified by internal standard method, and the quantities of non-target compounds were calculated by response coefficient of toluene. The method detection limits (MDLs) for the 24 VOCs were 1.06 to 5.44 ng, and MDLs could also be expressed as 0.004 to 0.018 mg/m 3 assuming that the sampling volume was 300 mL. The average recoveries were in the range of 78.4% to 89.4% with the relative standard deviations (RSDs) of 3.9% to 14.4% ( n =7). The established analytical method was applied for the comprehensive screening of VOCs in a waste incineration power plant in Dalian city. Twenty-nine VOCs were identified. In these compounds, only five VOCs were the target compounds set in advance, which accounted for 26.7% of the total VOCs identified. Therefore, this study further proved the importance of screening non-target compounds in the analysis of VOCs in industrial exhaust gas, and has certain reference significance for the complete determination of VOCs distribution.

  11. Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?

    PubMed

    Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto

    2002-09-01

    Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore

  12. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.

    PubMed

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2014-12-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  13. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    PubMed Central

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2015-01-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs. PMID:26146475

  14. Volume hologram with random encoded reference beam for secure data encryption

    NASA Astrophysics Data System (ADS)

    Markov, Vladimir B.; Weber, David C.; Trolinger, James D.

    2000-04-01

    A method is presented to store biometric and/or other important information on an ID card in the form of a Card Hologram that cannot be read or duplicated without the use of a special Key Hologram that is secured inside of an automated reader. The Key Hologram produces the unique wavefront required to release the information contained in a complex, 3D diffraction pattern recorded in a volume hologram attached to the card. Experimental results are presented in which the image of an Air Force resolution target are recorded and reconstructed in a volume material using a random speckle wavefront and that cannot be viewed using a simple wavefront such as a collimated or diverging laser beam.

  15. VARIATION OF LUNG DEPOSITION OF MICRON SIZE PARTICLES WITH LUNG VOLUME AND BREATHING PATTERN

    EPA Science Inventory

    Lung volume and breathing pattern are the source of inter-and intra-subject variability of lung deposition of inhaled particles. Controlling these factors may help optimize delivery of aerosol medicine to the target site within the lung. In the present study we measured total lu...

  16. The effect of perfluorocarbon vapour on the measurement of respiratory tidal volume during partial liquid ventilation.

    PubMed

    Davies, M W; Dunster, K R

    2000-08-01

    During partial liquid ventilation perfluorocarbon vapour is present in the exhaled gases. The volumes of these gases are measured by pneumotachometers. Error in measuring tidal volumes will give erroneous measurement of lung compliance during partial liquid ventilation. We aim to compare measured tidal volumes with and without perfluorocarbon vapour using tidal volumes suitable for use in neonates. Tidal volumes were produced with a 100 ml calibration syringe from 20 to 100 ml and with a calibrated Harvard rodent ventilator from 2.5 to 20 ml. Control tidal volumes were drawn from a humidifier chamber containing water vapour and the PFC tidal volumes were drawn from a humidifier chamber containing water and perfluorocarbon (FC-77) vapour. Tidal volumes were measured by a fixed orifice, target, differential pressure flowmeter (VenTrak) or a hot-wire anenometer (Bear Cub) placed between the calibration syringe or ventilator and the humidifier chamber. All tidal volumes measured with perfluorocarbon vapour were increased compared with control (ANOVA p < 0.001 and post t-test p < 0.0001). Measured tidal volume increased from 7 to 16% with the fixed orifice type flow-meter, and from 35 to 41% with the hot-wire type. In conclusion, perfluorocarbon vapour flowing through pneumotachometers gives falsely high tidal volume measurements. Calculation of lung compliance must take into account the effect of perfluorocarbon vapour on the measurement of tidal volume.

  17. Envisaging bacteria as phage targets

    PubMed Central

    Abedon, Stephen T.

    2011-01-01

    It can be difficult to appreciate just how small bacteria and phages are or how large, in comparison, the volumes that they occupy. A single milliliter, for example, can represent to a phage what would be, with proper scaling, an “ocean” to you and me. Here I illustrate, using more easily visualized macroscopic examples, the difficulties that a phage, as a randomly diffusing particle, can have in locating bacteria to infect. I conclude by restating the truism that the rate of phage adsorption to a given target bacterium is a function of phage density, that is, titer, in combination with the degree of bacterial susceptibility to adsorption by an encountering phage. PMID:23616932

  18. How Actuated Particles Effectively Capture Biomolecular Targets

    PubMed Central

    2017-01-01

    Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude. PMID:28192952

  19. Target-locking acquisition with real-time confocal (TARC) microscopy.

    PubMed

    Lu, Peter J; Sims, Peter A; Oki, Hidekazu; Macarthur, James B; Weitz, David A

    2007-07-09

    We present a real-time target-locking confocal microscope that follows an object moving along an arbitrary path, even as it simultaneously changes its shape, size and orientation. This Target-locking Acquisition with Realtime Confocal (TARC) microscopy system integrates fast image processing and rapid image acquisition using a Nipkow spinning-disk confocal microscope. The system acquires a 3D stack of images, performs a full structural analysis to locate a feature of interest, moves the sample in response, and then collects the next 3D image stack. In this way, data collection is dynamically adjusted to keep a moving object centered in the field of view. We demonstrate the system's capabilities by target-locking freely-diffusing clusters of attractive colloidal particles, and activelytransported quantum dots (QDs) endocytosed into live cells free to move in three dimensions, for several hours. During this time, both the colloidal clusters and live cells move distances several times the length of the imaging volume.

  20. Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG

    PubMed Central

    Ng, Julian; Browning, Alyssa; Lechner, Lorenz; Terada, Masako; Howard, Gillian; Jefferis, Gregory S. X. E.

    2016-01-01

    Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition. PMID:27958322

  1. Is the Ellipsoid Formula the New Standard for 3-Tesla MRI Prostate Volume Calculation without Endorectal Coil?

    PubMed

    Haas, Matthias; Günzel, Karsten; Miller, Kurt; Hamm, Bernd; Cash, Hannes; Asbach, Patrick

    2017-01-01

    Prostate volume in multiparametric MRI (mpMRI) is of clinical importance. For 3-Tesla mpMRI without endorectal coil, there is no distinctive standard for volume calculation. We tested the accuracy of the ellipsoid formula with planimetric volume measurements as reference and investigated the correlation of gland volume and cancer detection rate on MRI/ultrasound (MRI/US) fusion-guided biopsy. One hundred forty-three patients with findings on 3-Tesla mpMRI suspicious of cancer and subsequent MRI/US fusion-guided targeted biopsy and additional systematic biopsy were analyzed. T2-weighted images were used for measuring the prostate diameters and for planimetric volume measurement by a segmentation software. Planimetric and calculated prostate volumes were compared with clinical data. The median prostate volume was 48.1 ml (interquartile range (IQR) 36.9-62.1 ml). Volume calculated by the ellipsoid formula showed a strong concordance with planimetric volume, with a tendency to underestimate prostate volume (median volume 43.1 ml (IQR 31.2-58.8 ml); r = 0.903, p < 0.001). There was a moderate, significant inverse correlation of prostate volume to a positive biopsy result (r = -0.24, p = 0.004). The ellipsoid formula gives sufficient approximation of prostate volume on 3-Tesla mpMRI without endorectal coil. It allows a fast, valid volume calculation in prostate MRI datasets. © 2016 S. Karger AG, Basel.

  2. Novel GABA receptor pesticide targets.

    PubMed

    Casida, John E; Durkin, Kathleen A

    2015-06-01

    The γ-aminobutyric acid (GABA) receptor has four distinct but overlapping and coupled targets of pesticide action importantly associated with little or no cross-resistance. The target sites are differentiated by binding assays with specific radioligands, resistant strains, site-directed mutagenesis and molecular modeling. Three of the targets are for non-competitive antagonists (NCAs) or channel blockers of widely varied chemotypes. The target of the first generation (20th century) NCAs differs between the larger or elongated compounds (NCA-IA) including many important insecticides of the past (cyclodienes and polychlorocycloalkanes) or present (fiproles) and the smaller or compact compounds (NCA-IB) highly toxic to mammals and known as cage convulsants, rodenticides or chemical threat agents. The target of greatest current interest is designated NCA-II for the second generation (21st century) of NCAs consisting for now of isoxazolines and meta-diamides. This new and uniquely different NCA-II site apparently differs enough between insects and mammals to confer selective toxicity. The fourth target is the avermectin site (AVE) for allosteric modulators of the chloride channel. NCA pesticides vary in molecular surface area and solvent accessible volume relative to avermectin with NCA-IBs at 20-22%, NCA-IAs at 40-45% and NCA-IIs at 57-60%. The same type of relationship relative to ligand-docked length is 27-43% for NCA-IBs, 63-71% for NCA-IAs and 85-105% for NCA-IIs. The four targets are compared by molecular modeling for the Drosophila melanogaster GABA-R. The principal sites of interaction are proposed to be: pore V1' and A2' for NCA-IB compounds; pore A2', L6' and T9' for NCA-IA compounds; pore T9' to S15' in proximity to M1/M3 subunit interface (or alternatively an interstitial site) for NCA-II compounds; and M1/M3, M2 interfaces for AVE. Understanding the relationships of these four binding sites is important in resistance management and in the discovery and use

  3. Feasibility of Pathology-Correlated Lung Imaging for Accurate Target Definition of Lung Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroom, Joep; Blaauwgeers, Hans; Baardwijk, Angela van

    2007-09-01

    Purpose: To accurately define the gross tumor volume (GTV) and clinical target volume (GTV plus microscopic disease spread) for radiotherapy, the pretreatment imaging findings should be correlated with the histopathologic findings. In this pilot study, we investigated the feasibility of pathology-correlated imaging for lung tumors, taking into account lung deformations after surgery. Methods and Materials: High-resolution multislice computed tomography (CT) and positron emission tomography (PET) scans were obtained for 5 patients who had non-small-cell lung cancer (NSCLC) before lobectomy. At the pathologic examination, the involved lung lobes were inflated with formalin, sectioned in parallel slices, and photographed, and microscopic sectionsmore » were obtained. The GTVs were delineated for CT and autocontoured at the 42% PET level, and both were compared with the histopathologic volumes. The CT data were subsequently reformatted in the direction of the macroscopic sections, and the corresponding fiducial points in both images were compared. Hence, the lung deformations were determined to correct the distances of microscopic spread. Results: In 4 of 5 patients, the GTV{sub CT} was, on average, 4 cm{sup 3} ({approx}53%) too large. In contrast, for 1 patient (with lymphangitis carcinomatosa), the GTV{sub CT} was 16 cm{sup 3} ({approx}40%) too small. The GTV{sub PET} was too small for the same patient. Regarding deformations, the volume of the well-inflated lung lobes on pathologic examination was still, on average, only 50% of the lobe volume on CT. Consequently, the observed average maximal distance of microscopic spread (5 mm) might, in vivo, be as large as 9 mm. Conclusions: Our results have shown that pathology-correlated lung imaging is feasible and can be used to improve target definition. Ignoring deformations of the lung might result in underestimation of the microscopic spread.« less

  4. Comparison of pencil beam–based homogeneous vs inhomogeneous target dose planning for stereotactic body radiotherapy of peripheral lung tumors through Monte Carlo–based recalculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtakara, Kazuhiro, E-mail: ohtakara@murakami.asahi-u.ac.jp; Hoshi, Hiroaki

    2015-10-01

    This study was conducted to ascertain whether homogeneous target dose planning is suitable for stereotactic body radiotherapy (SBRT) of peripheral lung cancer under appropriate breath-holding. For 20 peripheral lung tumors, paired dynamic conformal arc plans were generated by only adjusting the leaf margin to the planning target volume (PTV) edge for fulfilling the conditions such that the prescription isodose surface (IDS) encompassing exactly 95% of the PTV (PTV D{sub 95}) corresponds to 95% and 80% IDS, normalized to 100% at the PTV isocenter under a pencil beam (PB) algorithm with radiologic path length correction. These plans were recalculated using themore » x-ray voxel Monte Carlo (XVMC) algorithm under otherwise identical conditions, and then compared. Lesions abutting the parietal pleura or not were defined as edge or island tumors, respectively, and the influences of the target volume and its location relative to the chest wall on the target dose were examined. The median (range) leaf margin required for the 95% and 80% plans was 3.9 mm (1.3 to 5.0) and −1.2 mm (−1.8 to 0.1), respectively. Notably, the latter was significantly correlated negatively with PTV. In the 80% plans, the PTV D{sub 95} was slightly higher under XVMC, whereas the PTV D{sub 98} was significantly lower, irrespective of the dose calculation algorithm used. Other PTV and all gross tumor volume doses were significantly higher, while the lung doses outside the PTV were slightly lower. The target doses increased as a function of PTV and were significantly lower for island tumors than for edge tumors. In conclusion, inhomogeneous target dose planning using smaller leaf margin for a larger tumor volume was deemed suitable in ensuring more sufficient target dose while slightly reducing lung dose. In addition, more inhomogeneous target dose planning using <80% IDS (e.g., 70%) for PTV covering would be preferable for island tumors.« less

  5. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    PubMed

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pertinent anatomy and analysis for midface volumizing procedures.

    PubMed

    Surek, Christopher C; Beut, Javier; Stephens, Robert; Jelks, Glenn; Lamb, Jerome

    2015-05-01

    The study was conducted to construct an anatomically inspired midfacial analysis facilitating safe, accurate, and dynamic nonsurgical rejuvenation. Emphasis is placed on determining injection target areas and adverse event zones. Twelve hemifacial fresh cadavers were dissected in a layered fashion. Dimensional measurements between the midfacial fat compartments, prezygomatic space, mimetic muscles, and neurovascular bundles were used to develop a topographic analysis for clinical injections. A longitudinal line from the base of the alar crease to the medial edge of the levator anguli oris muscle (1.9 cm), lateral edge of the levator anguli oris muscle (2.6 cm), and zygomaticus major muscle (4.6 cm) partitions the cheek into two aesthetic regions. A six-step facial analysis outlines three target zones and two adverse event zones and triangulates the point of maximum cheek projection. The lower adverse event zone yields an anatomical explanation to inadvertent jowling during anterior cheek injection. The upper adverse event zone localizes the palpebral branch of the infraorbital artery. The medial malar target area isolates quadrants for anterior cheek projection and tear trough effacement. The middle malar target area addresses lid-cheek blending and superficial compartment turgor. The lateral malar target area highlights lateral cheek projection and locates the prezygomatic space. This stepwise analysis illustrates target areas and adverse event zones to achieve midfacial support, contour, and profile in the repose position and simultaneous molding of a natural shape during animation. This reproducible method can be used both procedurally and in record-keeping for midface volumizing procedures.

  7. [Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].

    PubMed

    Terahara, A; Nakano, T; Tsujii, H

    1998-01-01

    Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.

  8. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing highmore » enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.« less

  9. The National Spallation Neutron Source Target Station.

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.

    1997-05-01

    The technologies that are being utilized to design and build a state-of-the-art high powered (>= 1 MW), short pulsed (<= 1 μsec), and reliable spallation neutron source target station are discussed. The protons which directly and indirectly produce the neutrons will be obtained from a 1 GeV proton accelerator composed of an ion gun, rfq, linac, and storage ring. Many scientific and technical disciplines are required to produce a successful target station. These disciplines include engineering, remote handling, neutronics, materials, thermal hydraulics, shock analysis, etc. In the areas of engineering and remote handling special emphasis is being given to rapid and efficient assembly and disassembly of critical parts of the target station. In the neutronics area, emphasis is being given to neutron yield and pulse optimization from the moderators, and heating and activation rates throughout the station. Development of structural materials to withstand aggressive radiation environments and that are compatible with other materials is also an important area. Thermal hydraulics and shock analysis are being closely studied since large amounts of energy are being deposited in small volumes in relatively short time periods (< 1 μsec). These areas will be expanded upon in the paper.

  10. Reading, writing, and reserve: Literacy activities are linked to hippocampal volume and memory in multiple sclerosis.

    PubMed

    Sumowski, James F; Rocca, Maria A; Leavitt, Victoria M; Riccitelli, Gianna; Meani, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2016-10-01

    Engagement in cognitive leisure activities during early adulthood has been linked to preserved memory and larger hippocampal volume in persons with multiple sclerosis (MS). To investigate which specific types of cognitive leisure activities contribute to hippocampal volume and memory. We investigated links between three types of cognitive activities (Reading-Writing, Art-Music, Games-Hobbies) and (a) hippocampal volume within independent samples of Italian (n=187) and American (n=55) MS patients and (b) memory in subsamples of Italian (n=97) and American (n=53) patients. Reading-Writing was the only predictor of hippocampal volume (rp=.204, p=.002), and the best predictor of memory (rp=.288, p=.001). Findings inform the development of targeted evidence-based enrichment programs aiming to bolster reserve against memory decline. © The Author(s), 2016.

  11. Predicting uncertainty in future marine ice sheet volume using Bayesian statistical methods

    NASA Astrophysics Data System (ADS)

    Davis, A. D.

    2015-12-01

    The marine ice instability can trigger rapid retreat of marine ice streams. Recent observations suggest that marine ice systems in West Antarctica have begun retreating. However, unknown ice dynamics, computationally intensive mathematical models, and uncertain parameters in these models make predicting retreat rate and ice volume difficult. In this work, we fuse current observational data with ice stream/shelf models to develop probabilistic predictions of future grounded ice sheet volume. Given observational data (e.g., thickness, surface elevation, and velocity) and a forward model that relates uncertain parameters (e.g., basal friction and basal topography) to these observations, we use a Bayesian framework to define a posterior distribution over the parameters. A stochastic predictive model then propagates uncertainties in these parameters to uncertainty in a particular quantity of interest (QoI)---here, the volume of grounded ice at a specified future time. While the Bayesian approach can in principle characterize the posterior predictive distribution of the QoI, the computational cost of both the forward and predictive models makes this effort prohibitively expensive. To tackle this challenge, we introduce a new Markov chain Monte Carlo method that constructs convergent approximations of the QoI target density in an online fashion, yielding accurate characterizations of future ice sheet volume at significantly reduced computational cost.Our second goal is to attribute uncertainty in these Bayesian predictions to uncertainties in particular parameters. Doing so can help target data collection, for the purpose of constraining the parameters that contribute most strongly to uncertainty in the future volume of grounded ice. For instance, smaller uncertainties in parameters to which the QoI is highly sensitive may account for more variability in the prediction than larger uncertainties in parameters to which the QoI is less sensitive. We use global sensitivity

  12. Radioiodine therapy in Graves' disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome.

    PubMed

    Reinhardt, Michael J; Brink, Ingo; Joe, Alexius Y; Von Mallek, Dirk; Ezziddin, Samer; Palmedo, Holger; Krause, Thomas M

    2002-09-01

    This study was performed with three aims. The first was to analyse the effectiveness of radioiodine therapy in Graves' disease patients with and without goitres under conditions of mild iodine deficiency using several tissue-absorbed doses. The second aim was to detect further parameters which might be predictive for treatment outcome. Finally, we wished to determine the deviation of the therapeutically achieved dose from that intended. Activities of 185-2,220 MBq radioiodine were calculated by means of Marinelli's formula to deliver doses of 150, 200 or 300 Gy to the thyroids of 224 patients with Graves' disease and goitres up to 130 ml in volume. Control of hyperthyroidism, change in thyroid volume and thyrotropin-receptor antibodies were evaluated 15+/-9 months after treatment for each dose. The results were further evaluated with respect to pre-treatment parameters which might be predictive for therapy outcome. Thyroidal radioiodine uptake was measured every day during therapy to determine the therapeutically achieved target dose and its coefficient of variation. There was a significant dose dependency in therapeutic outcome: frequency of hypothyroidism increased from 27.4% after 150 Gy to 67.7% after 300 Gy, while the frequency of persistent hyperthyroidism decreased from 27.4% after 150 Gy to 8.1% after 300 Gy. Patients who became hypothyroid had a maximum thyroid volume of 42 ml and received a target dose of 256+/-80 Gy. The coefficient of variation for the achieved target dose ranged between 27.7% for 150 Gy and 17.8% for 300 Gy. When analysing further factors which might influence therapeutic outcome, only pre-treatment thyroid volume showed a significant relationship to the result of treatment. It is concluded that a target dose of 250 Gy is essential to achieve hypothyroidism within 1 year after radioiodine therapy in Graves' disease patients with goitres up to 40 ml in volume. Patients with larger goitres might need higher doses.

  13. Imaging Ca2+ nanosparks in heart with a new targeted biosensor.

    PubMed

    Shang, Wei; Lu, Fujian; Sun, Tao; Xu, Jiejia; Li, Lin-Lin; Wang, Yanru; Wang, Gang; Chen, Liangyi; Wang, Xianhua; Cannell, Mark B; Wang, Shi-Qiang; Cheng, Heping

    2014-01-31

    In cardiac dyads, junctional Ca2+ directly controls the gating of the ryanodine receptors (RyRs), and is itself dominated by RyR-mediated Ca2+ release from the sarcoplasmic reticulum. Existing probes do not report such local Ca2+ signals because of probe diffusion, so a junction-targeted Ca2+ sensor should reveal new information on cardiac excitation-contraction coupling and its modification in disease states. To investigate Ca2+ signaling in the nanoscopic space of cardiac dyads by targeting a new sensitive Ca2+ biosensor (GCaMP6f) to the junctional space. By fusing GCaMP6f to the N terminus of triadin 1 or junctin, GCaMP6f-triadin 1/junctin was targeted to dyadic junctions, where it colocalized with t-tubules and RyRs after adenovirus-mediated gene transfer. This membrane protein-tagged biosensor displayed ≈4× faster kinetics than native GCaMP6f. Confocal imaging revealed junctional Ca2+ transients (Ca2+ nanosparks) that were ≈50× smaller in volume than conventional Ca2+ sparks (measured with diffusible indicators). The presence of the biosensor did not disrupt normal Ca2+ signaling. Because no indicator diffusion occurred, the amplitude and timing of release measurements were improved, despite the small recording volume. We could also visualize coactivation of subclusters of RyRs within a single junctional region, as well as quarky Ca2+ release events. This new, targeted biosensor allows selective visualization and measurement of nanodomain Ca2+ dynamics in intact cells and can be used to give mechanistic insights into dyad RyR operation in health and in disease states such as when RyRs become orphaned.

  14. Impact of Volume Management on Volume Overload and Rehospitalization in CAPD Patients.

    PubMed

    Xu, Yi; Yang, Shen-Min; Wang, Xiao-Hua; Wang, Hai-Fang; Niu, Mei-E; Yang, Yi-Qun; Lu, Guo-Yuan; Pang, Jian-Hong; Wang, Fei; Li, Lin

    2018-05-01

    Heart failure due to volume overload is a major reason for rehospitalization in continuous ambulatory peritoneal dialysis patients. Strict volume control provides better cardiac functions and blood pressure in this population. Volume management, which is a volume control strategy, may decrease volume overload and related complications. Using a quasi-experimental design, 66 continuous ambulatory peritoneal dialysis patients were randomly assigned to the intervention group ( n = 34) and control group ( n = 32). The patients were followed up for 6 months with scheduled clinic and/or telephone visits; the intervention group adopted volume management strategy, while the control group adopted conventional care. Volume overload and cardiac function were compared between the two groups at the baseline and at 6 months. At Month 6, the intervention group resulted in significant improvement in volume overloaded status, cardiac function, and volume-overload-related rehospitalization. Volume management strategy allows for better control of volume overload and is associated with fewer volume-related readmissions.

  15. The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.

    PubMed

    Hunjan, Jagtar Singh; Eu, Byung Chan

    2010-04-07

    The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.

  16. Conformal and intensity modulated irradiation of head and neck cancer: the potential for improved target irradiation, salivary gland function, and quality of life.

    PubMed

    Eisbruch, A; Dawson, L A; Kim, H M; Bradford, C R; Terrell, J E; Chepeha, D B; Teknos, T N; Anzai, Y; Marsh, L H; Martel, M K; Ten Haken, R K; Wolf, G T; Ship, J A

    1999-01-01

    To develop techniques which facilitate sparing of the major salivary glands while adequately treating the targets in patients requiring comprehensive bilateral neck irradiation (RT). Conformal and static, multisegmental intensity modulated (IMRT) techniques have been developed. The salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms. Subjective xerostomia questionnaires have been developed and validated. The pattern of local-regional recurrences has been examined using CT scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans and regenerating the dose distributions at the recurrence sites. Target coverage and dose homogeneity in IMRT treatment plans were found to be significantly better than standard RT plans. Significant parotid gland sparing was achieved. The relationships among dose, irradiated volume and saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean dose of 26 Gy was found to be the threshold for stimulated saliva. Subjective xerostomia was significantly reduced in patients irradiated with parotid sparing techniques, compared to patients with similar tumors treated with standard RT. The large majority of recurrences occurred inside high-risk targets. Tangible gains in salivary gland sparing and target coverage are being achieved and an improvement in some measures of quality of life is suggested by our findings. A mean parotid gland dose of < or = 26 Gy should be a planning objective if significant parotid function preservation is desired. The pattern of recurrence suggests that careful escalation of the dose to targets judged to be at highest risk may improve tumor control.

  17. Optimal volume of injectate for fluoroscopy-guided cervical interlaminar epidural injection in patients with neck and upper extremity pain

    PubMed Central

    Park, Jun Young; Kim, Doo Hwan; Lee, Kunhee; Choi, Seong-Soo; Leem, Jeong-Gil

    2016-01-01

    Abstract There is no study of optimal volume of contrast medium to use in cervical interlaminar epidural injections (CIEIs) for appropriate spread to target lesions. To determine optimal volume of contrast medium to use in CIEIs. We analyzed the records of 80 patients who had undergone CIEIs. Patients were divided into 3 groups according to the amount of contrast: 3, 4.5, and 6 mL. The spread of medium to the target level was analyzed. Numerical rating scale data were also analyzed. The dye had spread to a point above the target level in 15 (78.9%), 22 (84.6%), and 32 (91.4%) patients in groups 1 to 3, respectively. The dye reached both sides in 14 (73.7%), 18 (69.2%), and 23 (65.7%) patients, and reached the ventral epidural space in 15 (78.9%), 22 (84.6%), and 30 (85.7%) patients, respectively. There were no significant differences of contrast spread among the groups. There were no significant differences in the numerical rating scale scores among the groups during the 3 months. When performing CIEIs, 3 mL medication is sufficient volume for the treatment of neck and upper-extremity pain induced by lower cervical degenerative disease. PMID:27787378

  18. Optimal volume of injectate for fluoroscopy-guided cervical interlaminar epidural injection in patients with neck and upper extremity pain.

    PubMed

    Park, Jun Young; Kim, Doo Hwan; Lee, Kunhee; Choi, Seong-Soo; Leem, Jeong-Gil

    2016-10-01

    There is no study of optimal volume of contrast medium to use in cervical interlaminar epidural injections (CIEIs) for appropriate spread to target lesions. To determine optimal volume of contrast medium to use in CIEIs. We analyzed the records of 80 patients who had undergone CIEIs. Patients were divided into 3 groups according to the amount of contrast: 3, 4.5, and 6 mL. The spread of medium to the target level was analyzed. Numerical rating scale data were also analyzed. The dye had spread to a point above the target level in 15 (78.9%), 22 (84.6%), and 32 (91.4%) patients in groups 1 to 3, respectively. The dye reached both sides in 14 (73.7%), 18 (69.2%), and 23 (65.7%) patients, and reached the ventral epidural space in 15 (78.9%), 22 (84.6%), and 30 (85.7%) patients, respectively. There were no significant differences of contrast spread among the groups. There were no significant differences in the numerical rating scale scores among the groups during the 3 months. When performing CIEIs, 3 mL medication is sufficient volume for the treatment of neck and upper-extremity pain induced by lower cervical degenerative disease.

  19. Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentrations.

    PubMed

    McCafferty, J B; Bradshaw, T A; Tate, S; Greening, A P; Innes, J A

    2004-08-01

    The effects of breathing pattern and inspired air conditions on the volume and content of exhaled breath condensate (EBC) were investigated. Total exhaled water (TEW), EBC volume, pH, nitrite and protein concentrations were measured in three groups of 10 healthy subjects breathing into a condenser at different target minute ventilations (Vm), tidal volumes (Vt), and inspired air conditions. The volumes of both TEW and EBC increased significantly with Vm. For Vm 7.5, 15 and 22.5 l/min, mean (SD) EBC was 627 (258) microl, 1019 (313) microl, and 1358 (364) microl, respectively (p<0.001) and TEW was 1879 (378) microl, 2986 (496) microl, and 4679 (700) microl, respectively (p<0.001). TEW was significantly higher than EBC, reflecting a condenser efficiency of 40% at a target Vm of 7.5 l/min which reduced to 29% at Vm 22.5 l/min. Lower Vt gave less TEW than higher Vt (26.6 v 30.7 microl/l, mean difference 4.1 (95% CI 2.6 to 5.6), p<0.001) and a smaller EBC volume (4.3 v 7.6 microl/l, mean difference 3.4 (95% CI 2.3 to 4.5), p<0.001). Cooler and drier inspired air yielded less water vapour and less breath condensate than standard conditions (p<0.05). Changes in the breathing pattern had no effect on EBC protein and nitrite concentrations and pH. These results show that condensate volume can be increased by using high Vt and increased Vm without compromising the dilution of the sample.

  20. Dosimetric planning study for the prevention of anal complications after post-operative whole pelvic radiotherapy in cervical cancer patients with hemorrhoids.

    PubMed

    Baek, J G; Kim, E C; Kim, S K; Jang, H

    2015-01-01

    Radiation-induced anal toxicity can be induced by low radiation doses in patients with haemorrhoids. The object of this study was to determine the dosimetric benefits of different whole pelvic radiotherapy (WPRT) techniques in terms of dose delivered to the anal canal in post-operative patients with cervical cancer. The planning CT images of 10 patients with cervical cancer undergoing postoperative radiotherapy were used for comparison of three different plans. All patients had been treated using the conventional box technique WPRT (CV-WPRT), and we tried low-margin-modified WPRT (LM-WPRT), three-dimensional conformal techniques WPRT (CF-WPRT) and intensity-modulated WPRT (IM-WPRT) planning for dosimetric comparison of the anal canal, retrospectively. Mean anal canal doses of the IM-WPRT were significantly lower (p < 0.05) than those of CV-WPRT, LM-WPRT and CF-WPRT, and V10, V20, V30 and V40 to the anal canal were also significantly lower for IM-WPRT (p < 0.05). The proportion of planning target volumes (PTVs) that received ≥98% of the prescribed dose for all plans was >99%, and the proportion that received ≥108% of the prescribed dose for IM-WPRT was <2%. Volumes of bladders and rectums that received ≥30 or ≥40 Gy were significantly lower for IM-WPRT than for three of the four-field WPRT plans (p = 0.000). IM-WPRT can significantly reduce radiation dose delivered to the anal canal and does not compromise PTV coverage. In patients with haemorrhoids, IM-WPRT may be of value for the prevention of anal complications. Although tolerance of the anal canal tends to be ignored in patients undergoing post-operative WPRT, patients with haemorrhoids may suffer complications at low radiation doses. The present study shows IM-WPRT can be meaningful in these patients.

  1. Bowel sparing in pediatric cranio-spinal radiotherapy: a comparison of combined electron and photon and helical TomoTherapy techniques to a standard photon method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harron, Elizabeth, E-mail: elizabeth.harron@nuh.nhs.uk; Lewis, Joanne

    2012-07-01

    The aim of this study was to compare the dose to organs at risk (OARs) from different craniospinal radiotherapy treatment approaches available at the Northern Centre for Cancer Care (NCCC), with a particular emphasis on sparing the bowel. Method: Treatment plans were produced for a pediatric medulloblastoma patient with inflammatory bowel disease using 3D conformal 6-MV photons (3DCP), combined 3D 6-MV photons and 18-MeV electrons (3DPE), and helical photon TomoTherapy (HT). The 3DPE plan was a modification of the standard 3DCP technique, using electrons to treat the spine inferior to the level of the diaphragm. The plans were compared inmore » terms of the dose-volume data to OARs and the nontumor integral dose. Results: The 3DPE plan was found to give the lowest dose to the bowel and the lowest nontumor integral dose of the 3 techniques. However, the coverage of the spine planning target volume (PTV) was least homogeneous using this technique, with only 74.6% of the PTV covered by 95% of the prescribed dose. HT was able to achieve the best coverage of the PTVs (99.0% of the whole-brain PTV and 93.1% of the spine PTV received 95% of the prescribed dose), but delivered a significantly higher integral dose. HT was able to spare the heart, thyroid, and eyes better than the linac-based techniques, but other OARs received a higher dose. Conclusions: Use of electrons was the best method for reducing the dose to the bowel and the integral dose, at the expense of compromised spine PTV coverage. For some patients, HT may be a viable method of improving dose homogeneity and reducing selected OAR doses.« less

  2. Comparing Treatment Plan in All Locations of Esophageal Cancer

    PubMed Central

    Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu

    2015-01-01

    Abstract The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations. This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle3 with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume. In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques. IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted. PMID:25929910

  3. Comparing treatment plan in all locations of esophageal cancer: volumetric modulated arc therapy versus intensity-modulated radiotherapy.

    PubMed

    Lin, Jang-Chun; Tsai, Jo-Ting; Chang, Chih-Chieh; Jen, Yee-Min; Li, Ming-Hsien; Liu, Wei-Hsiu

    2015-05-01

    The aim of this study was to compare treatment plans of volumetric modulated arc therapy (VMAT) with intensity-modulated radiotherapy (IMRT) for all esophageal cancer (EC) tumor locations.This retrospective study from July 2009 to June 2014 included 20 patients with EC who received definitive concurrent chemoradiotherapy with radiation doses >50.4 Gy. Version 9.2 of Pinnacle with SmartArc was used for treatment planning. Dosimetric quality was evaluated based on doses to several organs at risk, including the spinal cord, heart, and lung, over the same coverage of gross tumor volume.In upper thoracic EC, the IMRT treatment plan had a lower lung mean dose (P = 0.0126) and lung V5 (P = 0.0037) compared with VMAT; both techniques had similar coverage of the planning target volumes (PTVs) (P = 0.3575). In middle thoracic EC, a lower lung mean dose (P = 0.0010) and V5 (P = 0.0145), but higher lung V20 (P = 0.0034), spinal cord Dmax (P = 0.0262), and heart mean dose (P = 0.0054), were observed for IMRT compared with VMAT; IMRT provided better PTV coverage. Patients with lower thoracic ECs had a lower lung mean dose (P = 0.0469) and V5 (P = 0.0039), but higher spinal cord Dmax (P = 0.0301) and heart mean dose (P = 0.0020), with IMRT compared with VMAT. PTV coverage was similar (P = 0.0858) for the 2 techniques.IMRT provided a lower mean dose and lung V5 in upper thoracic EC compared with VMAT, but exhibited different advantages and disadvantages in patients with middle or lower thoracic ECs. Thus, choosing different techniques for different EC locations is warranted.

  4. A randomized phase III study between sequential versus simultaneous integrated boost intensity-modulated radiation therapy in nasopharyngeal carcinoma.

    PubMed

    Lertbutsayanukul, Chawalit; Prayongrat, Anussara; Kannarunimit, Danita; Chakkabat, Chakkapong; Netsawang, Buntipa; Kitpanit, Sarin

    2018-05-01

    This study was performed to compare the acute and late toxicities between sequential (SEQ) and simultaneous integrated boost (SIB) intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma (NPC). Stage I-IVB NPC patients were randomized to receive SEQ-IMRT or SIB-IMRT. SEQ-IMRT consisted of two plans: 2 Gy × 25 fractions to low-risk planning target volume (PTV) followed by a sequential boost (2 Gy × 10 fractions) to high-risk PTV, while SIB-IMRT treated low- and high-risk PTVs with doses of 56 and 70 Gy in 33 fractions. Toxicities and survival outcomes were analyzed. Between October 2010 and September 2015, of the 209 patients who completed treatment, 102 in the SEQ and 107 in the SIB arm were analyzed. The majority had undifferentiated squamous cell carcinoma (82%). Mucositis and dysphagia were the most common grade 3-5 acute toxicities. There were no statistically significant differences in the cumulative incidence of grade 3-4 acute toxicities between the two arms (59.8% in SEQ vs. 58.9% in SIB; P = 0.892). Common grade 3-4 late toxicities for SEQ and SIB included hearing loss (2.9 vs. 8.4%), temporal lobe injury (2.9 vs. 0.9%), cranial nerve injury (0 vs. 2.8%), and xerostomia (2 vs. 0.9%). With the median follow-up of 41 months, 3‑year progression-free and overall survival rates were 72.7 vs. 73.4% (P = 0.488) and 86.3 vs. 83.6% (P = 0.938), respectively. SEQ and SIB provide excellent survival outcomes with few late toxicities. According to our study, SIB with a satisfactory dose-volume constraint to nearby critical organs is the technique of choice for NPC treatment due to its convenience.

  5. SU-E-T-52: A New Device for Quality Assurance of a Single Isocenter Technique for the Simultaneous Treatment of Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, J; Sintay, B; Varchena, V

    2015-06-15

    Purpose: Comprehensive quality assurance (QA) of a single isocenter technique for the simultaneous treatment of multiple brain metastases is presently impractical due to the time consuming nature of measuring each lesion’s dose on film or with a micro-chamber. Three dimensional diode array and full field film measurements are sometimes used to evaluate these plans, but gamma analysis may not reveal local errors that have significant effects on one or a few of several targets. This work aimed to design, build and test a phantom to simplify comprehensive measurement and evaluation. Methods: A phantom was designed with 28 stackable slabs. Themore » top and bottom slabs are 1.5 centimeters (cm) in thickness, and central 26 slabs are 0.5 cm thick. When assembled with radiochromic film in all 27 gaps, the phantom measures 16.5 x 15 x 19 cm. Etchings were designed to aide in identification of specific film planes on computed tomography (CT) images and correlation of individual PTVs with closest bisecting planes. Patient verification plans with a total of 16 PTVs were calculated on the phantom CT, and test deliveries both with and without couch kicks were performed to test the ability to identify correct film placements and subsequent PTV specific dose distributions on the films. Results: Bisecting planes corresponding to PTV locations were easily identified, and PTV specific dose distributions were clear for all 16 targets. For deliveries with couch kicks, the phantom PTV dose distributions closely approximated those calculated on the patient’s CT. For deliveries without couch kicks, PTV specific dosimetry was also possible, although the distributions had ‘ghosts’ equaling the number of couch kicks, with distance between ghosts increasing with distance from the isocenter. Conclusion: A new phantom facilitates fast comprehensive commissioning validation and PTV specific dosimetry for a single isocenter technique for treating multiple brain metastases. This work

  6. Total target volume is a better predictor of whole brain dose from gamma stereotactic radiosurgery than the number, shape, or location of the lesions

    PubMed Central

    Narayanasamy, Ganesh; Smith, Adam; Van Meter, Emily; McGarry, Ronald; Molloy, Janelle A.

    2013-01-01

    Purpose: To assess the hypothesis that the volume of whole brain that receives a certain dose level is primarily dependent on the treated volume rather than on the number, shape, or location of the lesions. This would help a physician validate the suitability of GammaKnife® based stereotactic radiosurgery (GKSR) prior to treatment. Methods: Simulation studies were performed to establish the hypothesis for both oblong and spherical shaped lesions of various numbers and sizes. Forty patients who underwent GKSR [mean age of 54 years (range 7–80), mean number of lesions of 2.5 (range 1–6), and mean lesion volume of 4.4 cm3 (range 0.02–22.2 cm3)] were also studied retrospectively. Following recommendations of QUANTEC, the volume of brain irradiated by the 12 Gy (VB12) isodose line was measured and a power-law based relation is proposed here for estimating VB12 from the known tumor volume and the prescription dose. Results: In the simulation study on oblong, spherical, and multiple lesions, the volume of brain irradiated by 50%, 10%, and 1% of maximum dose was found to have linear, linear, and exponentially increasing dependence on the volume of the treated region, respectively. In the retrospective study on 40 GKSR patients, a similar relationship was found to predict the brain dose with a Spearman correlation coefficient >0.9. In both the studies, the volume of brain irradiated by a certain dose level does not have a statistically significant relationship (p ≥ 0.05) with the number, shape, or position of the lesions. The measured VB12 agrees with calculation to within 1.7%. Conclusions: The results from the simulation and the retrospective clinical studies indicate that the volume of whole brain that receives a certain percentage of the maximum dose is primarily dependent on the treated volume and less on the number, shape, and location of the lesions. PMID:24007147

  7. Development of automatic visceral fat volume calculation software for CT volume data.

    PubMed

    Nemoto, Mitsutaka; Yeernuer, Tusufuhan; Masutani, Yoshitaka; Nomura, Yukihiro; Hanaoka, Shouhei; Miki, Soichiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni

    2014-01-01

    To develop automatic visceral fat volume calculation software for computed tomography (CT) volume data and to evaluate its feasibility. A total of 24 sets of whole-body CT volume data and anthropometric measurements were obtained, with three sets for each of four BMI categories (under 20, 20 to 25, 25 to 30, and over 30) in both sexes. True visceral fat volumes were defined on the basis of manual segmentation of the whole-body CT volume data by an experienced radiologist. Software to automatically calculate visceral fat volumes was developed using a region segmentation technique based on morphological analysis with CT value threshold. Automatically calculated visceral fat volumes were evaluated in terms of the correlation coefficient with the true volumes and the error relative to the true volume. Automatic visceral fat volume calculation results of all 24 data sets were obtained successfully and the average calculation time was 252.7 seconds/case. The correlation coefficients between the true visceral fat volume and the automatically calculated visceral fat volume were over 0.999. The newly developed software is feasible for calculating visceral fat volumes in a reasonable time and was proved to have high accuracy.

  8. Modeling the target dose fall-off in IMRT and VMAT planning techniques for cervical SBRT.

    PubMed

    Brito Delgado, A; Cohen, D; Eng, T Y; Stanley, D N; Shi, Z; Charlton, M; Gutiérrez, A N

    2018-01-01

    There has been growing interest in the use of stereotactic body radiotherapy (SBRT) technique for the treatment of cervical cancer. The purpose of this study was to characterize dose distributions as well as model the target dose fall-off for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques using 6 and 10 MV photon beam energies. Fifteen (n = 15) patients with non-bulky cervical tumors were planned in Pinnacle 3 with a Varian Novalis Tx (HD120 MLC) using 6 and 10 MV photons with the following techniques: (1) IMRT with 10 non-coplanar beams (2) dual, coplanar 358° VMAT arcs (4° spacing), and (3) triple, non-coplanar VMAT arcs. Treatment volumes and dose prescriptions were segmented according to University of Texas Southwestern (UTSW) Phase II study. All plans were normalized such that 98% of the planning target volume (PTV) received 28 Gy (4 fractions). For the PTV, the following metrics were evaluated: homogeneity index, conformity index, D 2cc , D mean , D max , and dose fall-off parameters. For the organs at risk (OARs), D 2cc , D 15cc , D 0.01cc , V 20 , V 40 , V 50 , V 60 , and V 80 were evaluated for the bladder, bowel, femoral heads, rectum, and sigmoid. Statistical differences were evaluated using a Friedman test with a significance level of 0.05. To model dose fall-off, expanding 2-mm-thick concentric rings were created around the PTV, and doses were recorded. Statistically significant differences (p < 0.05) were noted in the dose fall-off when using 10 MV and VMAT 3-arc , as compared with IMRT. VMAT 3-arc improved the bladder V 40 , V 50 , and V 60 , and the bowel V 20 and V 50 . All fitted regressions had an R 2  ≥ 0.98. For cervical SBRT plans, a VMAT 3-arc approach offers a steeper dose fall-off outside of the target volume. Faster dose fall-off was observed in smaller targets as opposed to medium and large targets, denoting that OAR sparing is dependent on target size. These

  9. Manipulating biological agents and cells in micro-scale volumes for applications in medicine

    PubMed Central

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi

    2013-01-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660

  10. SU-E-J-127: Real-Time Dosimetric Assessment for Adaptive Head-And-Neck Treatment Via A GPU-Based Deformable Image Registration Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, S; Neylon, J; Chen, A

    2014-06-01

    Purposes: To systematically monitor anatomic variations and their dosimetric consequences during head-and-neck (H'N) radiation therapy using a GPU-based deformable image registration (DIR) framework. Methods: Eleven H'N IMRT patients comprised the subject population. The daily megavoltage CT and weekly kVCT scans were acquired for each patient. The pre-treatment CTs were automatically registered with their corresponding planning CT through an in-house GPU-based DIR framework. The deformation of each contoured structure was computed to account for non-rigid change in the patient setup. The Jacobian determinant for the PTVs and critical structures was used to quantify anatomical volume changes. Dose accumulation was performed tomore » determine the actual delivered dose and dose accumulation. A landmark tool was developed to determine the uncertainty in the dose distribution due to registration error. Results: Dramatic interfraction anatomic changes leading to dosimetric variations were observed. During the treatment courses of 6–7 weeks, the parotid gland volumes changed up to 34.7%, the center-of-mass displacement of the two parotids varied in the range of 0.9–8.8mm. Mean doses were within 5% and 3% of the planned mean doses for all PTVs and CTVs, respectively. The cumulative minimum/mean/EUD doses were lower than the planned doses by 18%, 2%, and 7%, respectively for the PTV1. The ratio of the averaged cumulative cord maximum doses to the plan was 1.06±0.15. The cumulative mean doses assessed by the weekly kVCTs were significantly higher than the planned dose for the left-parotid (p=0.03) and right-parotid gland (p=0.006). The computation time was nearly real-time (∼ 45 seconds) for registering each pre-treatment CT to the planning CT and dose accumulation with registration accuracy (for kVCT) at sub-voxel level (<1.5mm). Conclusions: Real-time assessment of anatomic and dosimetric variations is feasible using the GPU-based DIR framework. Clinical

  11. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOEpatents

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  12. External Validation and Optimization of International Consensus Clinical Target Volumes for Adjuvant Radiation Therapy in Bladder Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Abhinav V.; Christodouleas, John P.; Wu, Tianming

    Purpose: International consensus (IC) clinical target volumes (CTVs) have been proposed to standardize radiation field design in the treatment of patients at high risk of locoregional failure (LRF) after radical cystectomy. The purpose of this study was to externally validate the IC CTVs in a cohort of postsurgical patients followed up for LRF and identify revisions that might improve the IC CTVs' performance. Methods and Materials: Among 334 patients with pT3 to pT4 bladder cancer treated with radical cystectomy, LRF developed in 58 (17%), of whom 52 had computed tomography scans available for review. Images with LRF were exported intomore » a treatment planning system, and IC CTVs were contoured and evaluated for adequacy of coverage of each LRF with respect to both the patient and each of 6 pelvic subsites: common iliac (CI) region, obturator region (OR), external and internal iliac region, presacral region, cystectomy bed, or other pelvic site. Revisions to the IC contours were proposed based on the findings. Results: Of the 52 patients with documented LRF, 13 (25%) had LRFs that were outside of the IC CTV involving 17 pelvic subsites: 5 near the CI CTV, 5 near the OR CTV, 1 near the external and internal iliac region, and 6 near the cystectomy bed. The 5 CI failures were located superior to the CTV, and the 5 OR failures were located medial to the CTV. Increasing the superior boundary of the CI to a vessel-based definition of the aortic bifurcation, as well as increasing the medial extension of the OR by an additional 9 mm, decreased the number of patients with LRF outside of the IC CTV to 7 (13%). Conclusions: Modified IC CTVs inclusive of a slight adjustment superiorly for the CI region and medially for the OR may reduce the risk of pelvic failure in patients treated with adjuvant radiation therapy.« less

  13. Feasibility study of stereotactic body radiotherapy for peripheral lung tumors with a maximum dose of 100 Gy in five fractions and a heterogeneous dose distribution in the planning target volume.

    PubMed

    Takeda, Atsuya; Oku, Yohei; Sanuki, Naoko; Eriguchi, Takahisa; Aoki, Yousuke; Enomoto, Tatsuji; Kaneko, Takeshi; Nishimura, Shuichi; Kunieda, Etsuo

    2014-09-01

    We evaluated toxicity and outcomes for patients with peripheral lung tumors treated with stereotactic body radiation therapy (SBRT) in a dose-escalation and dose-convergence study. A total of 15 patients were enrolled. SBRT was performed with 60 Gy in 5 fractions (fr.) prescribed to the 60% isodose line of maximum dose, which was 100 Gy in 5 fr., covering the planning target volume (PTV) surface (60 Gy/5 fr. - (60%-isodose)) using dynamic conformal multiple arc therapy (DCMAT). The primary endpoint was radiation pneumonitis (RP) ≥ Grade 2 within 6 months. Toxicities were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. Using dose-volumetric analysis, the trial regimen of 60 Gy/5 fr. - (60%-isodose) was compared with our institutional conventional regimen of 50 Gy/5 fr. - (80%-isodose). The enrolled consecutive patients had either a solitary peripheral tumor or two ipsilateral tumors. The median follow-up duration was 22.0 (12.0-27.0) months. After 6 months post-SBRT, the respective number of RP Grade 0, 1 and 2 cases was 5, 9 and 1. In the Grade 2 RP patient, the image showed an organizing pneumonia pattern at 6.0 months post-SBRT. No other toxicity was found. At last follow-up, there was no evidence of recurrence of the treated tumors. The target volumes of 60 Gy/ 5 fr. - (60%-isodose) were irradiated with a significantly higher dose than those of 50 Gy/5 fr. - (80%-isodose), while the former dosimetric parameters of normal lung were almost equivalent to the latter. SBRT with 60 Gy/5 fr. - (60%-isodose) using DCMAT allowed the delivery of very high and convergent doses to peripheral lung tumors with feasibility in the acute and subacute phases. Further follow-up is required to assess for late toxicity. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  14. Targets of perioperative fluid therapy and their effects on postoperative outcome: a systematic review and meta-analysis.

    PubMed

    Berger, M M; Gradwohl-Matis, I; Brunauer, A; Ulmer, H; Dünser, M W

    2015-07-01

    Perioperative fluid management plays a fundamental role in maintaining organ perfusion, and is considered to affect morbidity and mortality. Targets according to which fluid therapy should be administered are poorly defined. This systematic review aimed to identify specific targets for perioperative fluid therapy. The PubMed database (January 1993-December 2013) and reference lists were searched to identify clinical trials which evaluated specific targets of perioperative fluid therapy and reported clinically relevant perioperative endpoints in adult patients. Only studies in which targeted fluid therapy was the sole intervention were included into the main data analysis. A pooled data analysis was used to compare mortality between goal-directed fluid therapy and control interventions. Thirty-six clinical studies were selected. Sixteen studies including 1224 patients specifically evaluated targeted fluid therapy and were included into the main data analysis. Three specific targets for perioperative fluid therapy were identified: a systolic or pulse pressure variation <10-12%, an increase in stroke volume <10%, and a corrected flow time of 0.35-0.4 s in combination with an increase in stroke volume <10%. Targeting any one of these goals resulted in less postoperative complications (pooled data analysis: OR 0.53; CI95, 0.34-0.83; P=0.005) and a shorter length of intensive care unit/hospital stay, but no difference in postoperative mortality (pooled data analysis: OR 0.61; CI95, 0.33-1.11; P=0.12). This systematic review identified three goals for perioperative fluid administration, targeting of which appeared to be associated with less postoperative complications and shorter intensive care unit/hospital lengths of stay. Perioperative mortality remained unaffected.

  15. Target-oriented imaging of hydraulic fractures by applying the staining algorithm for downhole microseismic migration

    NASA Astrophysics Data System (ADS)

    Lin, Ye; Zhang, Haijiang; Jia, Xiaofeng

    2018-03-01

    For microseismic monitoring of hydraulic fracturing, microseismic migration can be used to image the fracture network with scattered microseismic waves. Compared with conventional microseismic location-based fracture characterization methods, microseismic migration can better constrain the stimulated reservoir volume regardless of the completeness of detected and located microseismic sources. However, the imaging results from microseismic migration may suffer from the contamination of other structures and thus the target fracture zones may not be illuminated properly. To solve this issue, in this study we propose a target-oriented staining algorithm for microseismic reverse-time migration. In the staining algorithm, the target area is first stained by constructing an imaginary velocity field and then a synchronized source wavefield only concerning the target structure is produced. As a result, a synchronized image from imaging with the synchronized source wavefield mainly contains the target structures. Synthetic tests based on a downhole microseismic monitoring system show that the target-oriented microseismic reverse-time migration method improves the illumination of target areas.

  16. Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors: a feasibility study

    PubMed Central

    2013-01-01

    Introduction Glycolytic activity and hypoxia are associated with poor prognosis and radiation resistance. Including both the tumor uptake of 2-deoxy-2-[18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer copper(II)diacetyl-bis(N4)-methylsemithio-carbazone (Cu-ATSM) in targeted therapy planning may therefore lead to improved tumor control. In this study we analyzed the overlap between sub-volumes of FDG and hypoxia assessed by the uptake of 64Cu-ATSM in canine solid tumors, and evaluated the possibilities for dose redistribution within the gross tumor volume (GTV). Materials and methods Positron emission tomography/computed tomography (PET/CT) scans of five spontaneous canine solid tumors were included. FDG-PET/CT was obtained at day 1, 64Cu-ATSM at day 2 and 3 (3 and 24 h pi.). GTV was delineated and CT images were co-registered. Sub-volumes for 3 h and 24 h 64Cu-ATSM (Cu3 and Cu24) were defined by a threshold based method. FDG sub-volumes were delineated at 40% (FDG40) and 50% (FDG50) of SUVmax. The size of sub-volumes, intersection and biological target volume (BTV) were measured in a treatment planning software. By varying the average dose prescription to the tumor from 66 to 85 Gy, the possible dose boost (D B ) was calculated for the three scenarios that the optimal target for the boost was one, the union or the intersection of the FDG and 64Cu-ATSM sub-volumes. Results The potential boost volumes represented a fairly large fraction of the total GTV: Cu3 49.8% (26.8-72.5%), Cu24 28.1% (2.4-54.3%), FDG40 45.2% (10.1-75.2%), and FDG50 32.5% (2.6-68.1%). A BTV including the union (∪) of Cu3 and FDG would involve boosting to a larger fraction of the GTV, in the case of Cu3∪FDG40 63.5% (51.8-83.8) and Cu3∪FDG50 48.1% (43.7-80.8). The union allowed only a very limited D B whereas the intersection allowed a substantial dose escalation. Conclusions FDG and 64Cu-ATSM sub-volumes were only partly overlapping, suggesting that the tracers offer

  17. Communications Strategies on Alcohol and Highway Safety. Volume II. High School Youth. Final Report.

    ERIC Educational Resources Information Center

    Grey Advertising, Inc., New York, NY.

    The second part of a two-part, two volume study deals with high school youth and identifies target populations and communications strategies for encouraging personal action steps to prevent drunk driving. Data, collected from interviews and questionnaires, are summarized and presented in tabular form. One fourth of high schoolers in a…

  18. A numerically optimized active shield for improved TMS targeting

    PubMed Central

    Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric

    2010-01-01

    Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region (“sharpness”), while simultaneously increase the induced electric field deep in the target region relative to the surface (“penetration”). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1 % and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9 %) PMID:20965451

  19. 3D prostate MR-TRUS non-rigid registration using dual optimization with volume-preserving constraint

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Yuan, Jing; Fenster, Aaron

    2016-03-01

    We introduce an efficient and novel convex optimization-based approach to the challenging non-rigid registration of 3D prostate magnetic resonance (MR) and transrectal ultrasound (TRUS) images, which incorporates a new volume preserving constraint to essentially improve the accuracy of targeting suspicious regions during the 3D TRUS guided prostate biopsy. Especially, we propose a fast sequential convex optimization scheme to efficiently minimize the employed highly nonlinear image fidelity function using the robust multi-channel modality independent neighborhood descriptor (MIND) across the two modalities of MR and TRUS. The registration accuracy was evaluated using 10 patient images by calculating the target registration error (TRE) using manually identified corresponding intrinsic fiducials in the whole prostate gland. We also compared the MR and TRUS manually segmented prostate surfaces in the registered images in terms of the Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). Experimental results showed that the proposed method with the introduced volume-preserving prior significantly improves the registration accuracy comparing to the method without the volume-preserving constraint, by yielding an overall mean TRE of 2:0+/-0:7 mm, and an average DSC of 86:5+/-3:5%, MAD of 1:4+/-0:6 mm and MAXD of 6:5+/-3:5 mm.

  20. Defining the optimal method for reporting prostate cancer grade and tumor extent on magnetic resonance/ultrasound fusion-targeted biopsies.

    PubMed

    Gordetsky, Jennifer B; Schultz, Luciana; Porter, Kristin K; Nix, Jeffrey W; Thomas, John V; Del Carmen Rodriguez Pena, Maria; Rais-Bahrami, Soroush

    2018-06-01

    Magnetic resonance (MR)/ultrasound fusion-targeted biopsy (TB) routinely samples multiple cores from each MR lesion of interest. Pathologists can evaluate the extent of cancer involvement and grade using an individual core (IC) or aggregate (AG) method, which could potentially lead to differences in reporting. We reviewed patients who underwent TB followed by radical prostatectomy (RP). TB cores were evaluated for grade and tumor extent by 2 methods. In the IC method, the grade for each TB lesion was based on the core with the highest Gleason score. Tumor extent for each TB was based on the core with the highest percent of tumor involvement. In the AG method, the tumor from all cores within each TB lesion was aggregated to determine the final composite grade and percentage of tumor involvement. Each method was compared with MR lesional volume, MR lesional density (lesion volume/prostate volume), and RP. Fifty-five patients underwent TB followed by RP. Extent of tumor by the AG method showed a better correlation with target lesion volume (r= 0.27,P= .022) and lesional density (r = 0.32, P = .008) than did the IC method (r= 0.19 [P = .103] andr= 0.22 [P = .062]), respectively. Extent of tumor on TB was associated with extraprostatic extension on RP by the AG method (P= .04), but not by the IC method. This association was significantly higher in patients with a grade group (GG) of 3 or higher (P= .03). A change in cancer grade occurred in 3 patients when comparing methods (2 downgraded GG3 to GG2, 1 downgraded GG4 to GG3 by the AG method). For multiple cores obtained via TB, the AG method better correlates with target lesion volume, lesional density, and extraprostatic extension. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. High-power liquid-lithium jet target for neutron production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based onmore » a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.« less

  2. Use of Maximum Intensity Projections (MIPs) for target outlining in 4DCT radiotherapy planning.

    PubMed

    Muirhead, Rebecca; McNee, Stuart G; Featherstone, Carrie; Moore, Karen; Muscat, Sarah

    2008-12-01

    Four-dimensional computed tomography (4DCT) is currently being introduced to radiotherapy centers worldwide, for use in radical radiotherapy planning for non-small cell lung cancer (NSCLC). A significant drawback is the time required to delineate 10 individual CT scans for each patient. Every department will hence ask the question if the single Maximum Intensity Projection (MIP) scan can be used as an alternative. Although the problems regarding the use of the MIP in node-positive disease have been discussed in the literature, a comprehensive study assessing its use has not been published. We compared an internal target volume (ITV) created using the MIP to an ITV created from the composite volume of 10 clinical target volumes (CTVs) delineated on the 10 phases of the 4DCT. 4DCT data was collected from 14 patients with NSCLC. In each patient, the ITV was delineated on the MIP image (ITV_MIP) and a composite ITV created from the 10 CTVs delineated on each of the 10 scans in the dataset. The structures were compared by assessment of volumes of overlap and exclusion. There was a median of 19.0% (range, 5.5-35.4%) of the volume of ITV_10phase not enclosed by the ITV_MIP, demonstrating that the use of the MIP could result in under-treatment of disease. In contrast only a very small amount of the ITV_MIP was not enclosed by the ITV_10phase (median of 2.3%, range, 0.4-9.8%), indicating the ITV_10phase covers almost all of the tumor tissue as identified by MIP. Although there were only two Stage I patients, both demonstrated very similar ITV_10phase and ITV_MIP volumes. These findings suggest that Stage I NSCLC tumors could be outlined on the MIP alone. In Stage II and III tumors the ITV_10phase would be more reliable. To prevent under-treatment of disease, the MIP image can only be used for delineation in Stage I tumors.

  3. The area-time-integral technique to estimate convective rain volumes over areas applied to satellite data - A preliminary investigation

    NASA Technical Reports Server (NTRS)

    Doneaud, Andre A.; Miller, James R., Jr.; Johnson, L. Ronald; Vonder Haar, Thomas H.; Laybe, Patrick

    1987-01-01

    The use of the area-time-integral (ATI) technique, based only on satellite data, to estimate convective rain volume over a moving target is examined. The technique is based on the correlation between the radar echo area coverage integrated over the lifetime of the storm and the radar estimated rain volume. The processing of the GOES and radar data collected in 1981 is described. The radar and satellite parameters for six convective clusters from storm events occurring on June 12 and July 2, 1981 are analyzed and compared in terms of time steps and cluster lifetimes. Rain volume is calculated by first using the regression analysis to generate the regression equation used to obtain the ATI; the ATI versus rain volume relation is then employed to compute rain volume. The data reveal that the ATI technique using satellite data is applicable to the calculation of rain volume.

  4. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    PubMed

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  5. Salivary gland sparing and improved target irradiation by conformal and intensity modulated irradiation of head and neck cancer.

    PubMed

    Eisbruch, Avraham; Ship, Jonathan A; Dawson, Laura A; Kim, Hyungjin M; Bradford, Carol R; Terrell, Jeffrey E; Chepeha, Douglas B; Teknos, Theodore N; Hogikyan, Norman D; Anzai, Yoshimi; Marsh, Lon H; Ten Haken, Randall K; Wolf, Gregory T

    2003-07-01

    The goals of this study were to facilitate sparing of the major salivary glands while adequately treating tumor targets in patients requiring comprehensive bilateral neck irradiation (RT), and to assess the potential for improved xerostomia. Since 1994 techniques of target irradiation and locoregional tumor control with conformal and intensity modulated radiation therapy (IMRT) have been developed. In patients treated with these modalities, the salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms (DVHs). In addition, subjective xerostomia questionnaires have been developed and validated. The pattern of locoregional recurrence has been examined from computed tomography (CT) scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans, and regenerating the dose distributions at the recurrence sites. Treatment plans for target coverage and dose homogeneity using static, multisegmental IMRT were found to be significantly better than standard RT plans. In addition, significant parotid gland sparing was achieved in the conformal plans. The relationships among dose, irradiated volume, and the residual saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean radiation dose of 26 Gy was found to be the threshold for preserved stimulated saliva flow. Xerostomia questionnaire scores suggested that xerostomia was significantly reduced in patients irradiated with bilateral neck, parotid-sparing RT, compared to patients with similar tumors treated with standard RT. Examination of locoregional tumor recurrence patterns revealed that the large majority of recurrences occurred inside targets, in areas that had been judged to be at high risk and that had received RT doses according to the perceived risk. Tangible gains in salivary gland sparing and target coverage are being

  6. Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel

    NASA Astrophysics Data System (ADS)

    Larimi, M. M.; Ramiar, A.; Ranjbar, A. A.

    2014-08-01

    Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of super paramagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. The present paper is devoted to study on MDT (Magnetic Drug Targeting) technique by particle tracking in the presence of magnetic field in a bifurcation vessel. The blood flow in bifurcation is considered incompressible, unsteady and Newtonian. The flow analysis applies the time dependent, two dimensional, incompressible Navier-Stokes equations for Newtonian fluids. The Lagrangian particle tracking is performed to estimate particle behavior under influence of imposed magnetic field gradients along the bifurcation. According to the results, the magnetic field increased the volume fraction of particle in target region, but in vessels with high Reynolds number, the efficiency of MDT technique is very low. Also the results showed that in the bifurcation vessels with lower angles, wall shear stress is higher and consequently the risk of the vessel wall rupture increases.

  7. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.

    PubMed

    Sloth Møller, Ditte; Knap, Marianne Marquard; Nyeng, Tine Bisballe; Khalil, Azza Ahmed; Holt, Marianne Ingerslev; Kandi, Maria; Hoffmann, Lone

    2017-11-01

    Minimizing the planning target volume (PTV) while ensuring sufficient target coverage during the entire respiratory cycle is essential for free-breathing radiotherapy of lung cancer. Different methods are used to incorporate the respiratory motion into the PTV. Fifteen patients were analyzed. Respiration can be included in the target delineation process creating a respiratory GTV, denoted iGTV. Alternatively, the respiratory amplitude (A) can be measured based on the 4D-CT and A can be incorporated in the margin expansion. The GTV expanded by A yielded GTV + resp, which was compared to iGTV in terms of overlap. Three methods for PTV generation were compared. PTV del (delineated iGTV expanded to CTV plus PTV margin), PTV σ (GTV expanded to CTV and A was included as a random uncertainty in the CTV to PTV margin) and PTV ∑ (GTV expanded to CTV, succeeded by CTV linear expansion by A to CTV + resp, which was finally expanded to PTV ∑ ). Deformation of tumor and lymph nodes during respiration resulted in volume changes between the respiratory phases. The overlap between iGTV and GTV + resp showed that on average 7% of iGTV was outside the GTV + resp implying that GTV + resp did not capture the tumor during the full deformable respiration cycle. A comparison of the PTV volumes showed that PTV σ was smallest and PTV Σ largest for all patients. PTV σ was in mean 14% (31 cm 3 ) smaller than PTV del , while PTV del was 7% (20 cm 3 ) smaller than PTV Σ . PTV σ yields the smallest volumes but does not ensure coverage of tumor during the full respiratory motion due to tumor deformation. Incorporating the respiratory motion in the delineation (PTV del ) takes into account the entire respiratory cycle including deformation, but at the cost, however, of larger treatment volumes. PTV Σ should not be used, since it incorporates the disadvantages of both PTV del and PTV σ .

  8. Skin Cancer of the Head and Neck With Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluck, Iris; Ibrahim, Mohannad; Popovtzer, Aron

    2009-05-01

    Purpose: To analyze patterns of failure in patients with head-and-neck cutaneous squamous cell carcinoma (HNCSCC) and clinical/radiologic evidence of perineural invasion (CPNI), in order to define neural clinical target volume (CTV) for treatment planning. Methods and Materials: Patients treated with three-dimensional (3D) conformal or intensity-modulated radiotherapy (IMRT) for HNCSCC with CPNI were included in the study. A retrospective review of the clinical charts, radiotherapy (RT) plans and radiologic studies has been conducted. Results: Eleven consecutive patients with HNCSCCs with CPNI were treated from 2000 through 2007. Most patients underwent multiple surgical procedures and RT courses. The most prevalent failure patternmore » was along cranial nerves (CNs), and multiple CNs were ultimately involved in the majority of cases. In all cases the involved CNs at recurrence were the main nerves innervating the primary tumor sites, as well as their major communicating nerves. We have found several distinct patterns of disease spread along specific CNs depending on the skin regions harboring the primary tumors, including multiple branches of CN V and VII. These patterns and the pertinent anatomy are detailed in the this article. Conclusions: Predictable disease spread patterns along cranial nerves supplying the primary tumor sites were found in this study. Awareness of these patterns, as well as knowledge of the relevant cranial nerve anatomy, should be the basis for CTV definition and delineation for RT treatment planning.« less

  9. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy in Postoperative Treatment of Endometrial and Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, William; Mell, Loren K.; Anderson, Penny

    2008-06-01

    Purpose: To develop an atlas of the clinical target volume (CTV) definitions for postoperative radiotherapy of endometrial and cervical cancer to be used for planning pelvic intensity-modulated radiotherapy. Methods and Materials: The Radiation Therapy Oncology Group led an international collaberation of cooperative groups in the development of the atlas. The groups included the Radiation Therapy Oncology Group, Gynecologic Oncology Group, National Cancer Institute of Canada, European Society of Therapeutic Radiology and Oncology, and American College of Radiology Imaging Network. The members of the group were asked by questionnaire to define the areas that were to be included in the CTVmore » and to outline theses areas on individual computed tomography images. The initial formulation of the group began in late 2004 and culminated with a formal consensus conference in June 2005. Results: The committee achieved a consensus CTV definition for postoperative therapy for endometrial and cervical cancer. The CTV should include the common, external, and internal iliac lymph node regions. The upper 3.0 cm of the vagina and paravaginal soft tissue lateral to the vagina should also be included. For patients with cervical cancer, or endometrial cancer with cervical stromal invasion, it is also recommended that the CTV include the presacral lymph node region. Conclusion: This report serves as an international template for the definition of the CTV for postoperative intensity-modulated radiotherapy for endometrial and cervical cancer.« less

  10. Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentrations

    PubMed Central

    McCafferty, J; Bradshaw, T; Tate, S; Greening, A; Innes, J

    2004-01-01

    Background: The effects of breathing pattern and inspired air conditions on the volume and content of exhaled breath condensate (EBC) were investigated. Methods: Total exhaled water (TEW), EBC volume, pH, nitrite and protein concentrations were measured in three groups of 10 healthy subjects breathing into a condenser at different target minute ventilations (Vm), tidal volumes (Vt), and inspired air conditions. Results: The volumes of both TEW and EBC increased significantly with Vm. For Vm 7.5, 15 and 22.5 l/min, mean (SD) EBC was 627 (258) µl, 1019 (313) µl, and 1358 (364) µl, respectively (p<0.001) and TEW was 1879 (378) µl, 2986 (496) µl, and 4679 (700) µl, respectively (p<0.001). TEW was significantly higher than EBC, reflecting a condenser efficiency of 40% at a target Vm of 7.5 l/min which reduced to 29% at Vm 22.5 l/min. Lower Vt gave less TEW than higher Vt (26.6 v 30.7 µl/l, mean difference 4.1 (95% CI 2.6 to 5.6), p<0.001) and a smaller EBC volume (4.3 v 7.6 µl/l, mean difference 3.4 (95% CI 2.3 to 4.5), p<0.001). Cooler and drier inspired air yielded less water vapour and less breath condensate than standard conditions (p<0.05). Changes in the breathing pattern had no effect on EBC protein and nitrite concentrations and pH. Conclusion: These results show that condensate volume can be increased by using high Vt and increased Vm without compromising the dilution of the sample. PMID:15282391

  11. SU-E-T-72: A Retrospective Correlation Analysis On Dose-Volume Control Points and Treatment Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, A; Nohadani, O; Refaat, T

    2015-06-15

    Purpose: To quantify correlation between dose-volume control points and treatment outcomes. Specifically, two outcomes are analyzed: occurrence of radiation induced dysphagia and target complications. The results inform the treatment planning process when competing dose-volume criteria requires relaxations. Methods: 32 patients, treated with whole-field sequential intensity modulated radiation therapy during 2009–2010 period, are considered for this study. Acute dysphagia that is categorized into 3 grades is observed on all patients. 3 patients are observed in grade 1, 17 patients in grade 2, and 12 patients in grade 3. Ordinal logistic regression is employed to establish correlations between grades of dysphagia andmore » dose to cervico-thoracic esophagus. Particularly, minimum (Dmin), mean (Dmean), and maximum (Dmax) dose control points are analyzed. Additionally, target complication, which includes local-regional recurrence and/or distant metastasis, is observed on 4 patients. Binary logistic regression is used to quantify correlation between target complication and four dose control points. Namely, ICRU recommended dose control points, D2, D50, D95, and D98 are analyzed. Results: For correlation with dysphagia, Dmin on cervico-thoracic esophagus is statistically significant (p-value = 0.005). Additionally, Dmean on cervico-thoracic esophagus is also significant in association with dysphagia (p-value = 0.012). However, no correlation was observed between Dmax and dysphagia (p-value = 0.263). For target complications, D50 on the target is a statistically significant dose control point (p-value = 0.032). No correlations were observed between treatment complications and D2 (p-value = 0.866), D95 (p-value = 0.750), and D98 (p-value = 0.710) on the target. Conclusion: Significant correlations are observed between radiation induced dysphagia and Dmean (and Dmin) to cervico-thoracic esophagus. Additionally, correlation between target complications and median dose

  12. Monte Carlo evaluation of RapidArc™ oropharynx treatment planning strategies for sparing of midline structures

    NASA Astrophysics Data System (ADS)

    Bush, K.; Zavgorodni, S.; Gagne, I.; Townson, R.; Ansbacher, W.; Beckham, W.

    2010-08-01

    The aim of the study was to perform the Monte Carlo (MC) evaluation of RapidArc™ (Varian Medical Systems, Palo Alto, CA) dose calculations for four oropharynx midline sparing planning strategies. Six patients with squamous cell cancer of the oropharynx were each planned with four RapidArc head and neck treatment strategies consisting of single and double photon arcs. In each case, RTOG0522 protocol objectives were used during planning optimization. Dose calculations performed with the analytical anisotropic algorithm (AAA) are compared against BEAMnrc/DOSXYZnrc dose calculations for the 24-plan dataset. Mean dose and dose-to-98%-of-structure-volume (D98%) were used as metrics in the evaluation of dose to planning target volumes (PTVs). Mean dose and dose-to-2%-of-structure-volume (D2%) were used to evaluate dose differences within organs at risk (OAR). Differences in the conformity index (CI) and the homogeneity index (HI) as well as 3D dose distributions were also observed. AAA calculated PTV mean dose, D98%, and HIs showed very good agreement with MC dose calculations within the 0.8% MC (statistical) calculation uncertainty. Regional node volume (PTV-80%) mean dose and D98% were found to be overestimated (1.3%, σ = 0.8% and 2.3%, σ = 0.8%, respectively) by the AAA with respect to MC calculations. Mean dose and D2% to OAR were also observed to be consistently overestimated by the AAA. Increasing dose calculation differences were found in planning strategies exhibiting a higher overall fluence modulation. From the plan dataset, the largest local dose differences were observed in heavily shielded regions and within the esophageal and sinus cavities. AAA dose calculations as implemented in RapidArc™ demonstrate excellent agreement with MC calculations in unshielded regions containing moderate inhomogeneities. Acceptable agreement is achieved in regions of increased MLC shielding. Differences in dose are attributed to inaccuracies in the AAA-modulated fluence

  13. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart

    2015-02-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  14. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging.

    PubMed

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L; Beauchemin, Steven S; Rodrigues, George; Gaede, Stewart

    2015-02-21

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  15. Targeted Single-Shot Methods for Diffusion-Weighted Imaging in the Kidneys

    PubMed Central

    Jin, Ning; Deng, Jie; Zhang, Longjiang; Zhang, Zhuoli; Lu, Guangming; Omary, Reed A.; Larson, Andrew C.

    2011-01-01

    Purpose To investigate the feasibility of combining the inner-volume-imaging (IVI) technique with single-shot diffusion-weighted (DW) spin-echo echo-planar imaging (SE-EPI) and DW-SPLICE (split acquisition of fast spin-echo) sequences for renal DW imaging. Materials and Methods Renal DW imaging was performed in 10 healthy volunteers using single-shot DW-SE-EPI, DW-SPLICE, targeted-DW-SE-EPI and targeted-DW-SPLICE. We compared the quantitative diffusion measurement accuracy and image quality of these targeted-DW-SE-EPI and targeted DW-SPLICE methods with conventional full FOV DW-SE-EPI and DW-SPLICE measurements in phantoms and normal volunteers. Results Compared with full FOV DW-SE-EPI and DW-SPLICE methods, targeted-DW-SE-EPI and targeted-DW-SPLICE approaches produced images of superior overall quality with fewer artifacts, less distortion and reduced spatial blurring in both phantom and volunteer studies. The ADC values measured with each of the four methods were similar and in agreement with previously published data. There were no statistically significant differences between the ADC values and intra-voxel incoherent motion (IVIM) measurements in the kidney cortex and medulla using single-shot DW-SE-EPI, targeted-DW-EPI and targeted-DW-SPLICE (p > 0.05). Conclusion Compared with full-FOV DW imaging methods, targeted-DW-SE-EPI and targeted-DW-SPLICE techniques reduced image distortion and artifacts observed in the single-shot DW-SE-EPI images, reduced blurring in DW-SPLICE images and produced comparable quantitative DW and IVIM measurements to those produced with conventional full-FOV approaches. PMID:21591023

  16. Remote liquid target loading system for LANL two-stage gas gun

    NASA Astrophysics Data System (ADS)

    Gibson, L. L.; Bartram, B.; Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.

    2009-06-01

    A Remote Liquid Loading System (RLLS) was designed to load high hazard liquid materials into targets for gas-gun driven impact experiments. These high hazard liquids tend to react with confining materials in a short period of time, degrading target assemblies and potentially building up pressure through the evolution of gas in the reactions. Therefore, the ability to load a gas gun target in place immediately prior to firing the gun, provides the most stable and reliable target fielding approach. We present the design and evaluation of a RLLS built for the LANL two-stage gas gun. Targets for the gun are made of PMMA and assembled to form a liquid containment cell with a volume of approximately 25 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with highly concentrated hydrogen peroxide. Teflon and 304-stainless steel were the two most compatible materials with the materials to be tested. Teflon valves and tubing, as well as stainless steel tubing, were used to handle the liquid, along with a stainless steel reservoir. Preliminary testing was done to ensure proper flow rate and safety. The system has been used to successfully load 97.5 percent hydrogen peroxide into a target cell just prior to a successful multiple magnetic gauge experiment. TV cameras on the target verified the bubble-free filling operation.

  17. Long-Term Occupational Stress Is Associated with Regional Reductions in Brain Tissue Volumes

    PubMed Central

    Blix, Eva; Perski, Aleksander; Berglund, Hans; Savic, Ivanka

    2013-01-01

    There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM) and white matter (WM) volumes, and the volumes of hippocampus, caudate, and putamen – structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment. PMID:23776438

  18. Birds and insects as radar targets - A review

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R.

    1985-01-01

    A review of radar cross-section measurements of birds and insects is presented. A brief discussion of some possible theoretical models is also given and comparisons made with the measurements. The comparisons suggest that most targets are, at present, better modeled by a prolate spheroid having a length-to-width ratio between 3 and 10 than by the often used equivalent weight water sphere. In addition, many targets observed with linear horizontal polarization have maximum cross sections much better estimated by a resonant half-wave dipole than by a water sphere. Also considered are birds and insects in the aggregate as a local radar 'clutter' source. Order-of-magnitude estimates are given for many reasonable target number densities. These estimates are then used to predict X-band volume reflectivities. Other topics that are of interest to the radar engineer are discussed, including the doppler bandwidth due to the internal motions of a single bird, the radar cross-section probability densities of single birds and insects, the variability of the functional form of the probability density functions, and the Fourier spectra of single birds and insects.

  19. SU-F-T-36: Dosimetric Comparison of Point Based Vs. Target Based Prescription for Intracavitary Brachytherapy in Cancer of the Cervix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashenafi, M; McDonald, D; Peng, J

    Purpose: Improved patient imaging used for planning the treatment of cervical cancer with Tandem and Ovoid (T&O) Intracavitary high-dose-rate brachytherapy (HDR) now allows for 3D delineation of target volumes and organs-at-risk. However, historical data relies on the conventional point A-based planning technique. A comparative dosimetric study was performed by generating both target-based (TBP) and point-based (PBP) plans for ten clinical patients. Methods: Treatment plans created using Elekta Oncentra v. 4.3 for ten consecutive cervical cancer patients were analyzed. All patients were treated with HDR using the Utrecht T&O applicator. Both CT and MRI imaging modalities were utilized to delineate clinicalmore » target volume (CTV) and organs-at-risk (rectum, sigmoid, bladder, and small bowel). Point A (left and right), vaginal mucosa, and ICRU rectum and bladder points were defined on CT. Two plans were generated for each patient using two prescription methods (PBP and TBP). 7Gy was prescribed to each point A for each PBP plan and to the target D90% for each TBP plan. Target V90%, V100%, and V200% were evaluated. In addition, D0.1cc and D2cc were analyzed for each organ-at-risk. Differences were assessed for statistical significance (p<0.05) by use of Student’s t-test. Results: Target coverage was comparable for both planning methods, with each method providing adequate target coverage. TBP showed lower absolute dose to the target volume than PBP (D90% = 7.0Gy vs. 7.4Gy, p=0.028), (V200% = 10.9cc vs. 12.8cc, p=0.014), (ALeft = 6.4Gy vs. 7Gy, p=0.009), and (ARight = 6.4Gy vs. 7Gy, p=0.013). TBP also showed a statistically significant reduction in bladder, rectum, small bowel, and sigmoid doses compared to PBP. There was no statistically significant difference in vaginal mucosa or ICRU-defined rectum and bladder dose. Conclusion: Target based prescription resulted in substantially lower dose to delineated organs-at-risk compared to point based prescription

  20. Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles

    NASA Astrophysics Data System (ADS)

    Chang, Jenghwa; Aronson, Raphael; Graber, Harry L.; Barbour, Randall L.

    1995-05-01

    We present results examining the dependence of image quality for imaging in dense scattering media as influenced by the choice of parameters pertaining to the physical measurement and factors influencing the efficiency of the computation. The former includes the density of the weight matrix as affected by the target volume, view angle, and source condition. The latter includes the density of the weight matrix and type of algorithm used. These were examined by solving a one-step linear perturbation equation derived from the transport equation using three different algorithms: POCS, CGD, and SART algorithms with contraints. THe above were explored by evaluating four different 3D cylindrical phantom media: a homogeneous medium, an media containing a single black rod on the axis, a single black rod parallel to the axis, and thirteen black rods arrayed in the shape of an 'X'. Solutions to the forward problem were computed using Monte Carlo methods for an impulse source, from which was calculated time- independent and time harmonic detector responses. The influence of target volume on image quality and computational efficiency was studied by computing solution to three types of reconstructions: 1) 3D reconstruction, which considered each voxel individually, 2) 2D reconstruction, which assumed that symmetry along the cylinder axis was know a proiri, 3) 2D limited reconstruction, which assumed that only those voxels in the plane of the detectors contribute information to the detecot readings. The effect of view angle was explored by comparing computed images obtained from a single source, whose position was varied, as well as for the type of tomographic measurement scheme used (i.e., radial scan versus transaxial scan). The former condition was also examined for the dependence of the above on choice of source condition [ i.e., cw (2D reconstructions) versus time-harmonic (2D limited reconstructions) source]. The efficiency of the computational effort was explored

  1. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Adam K.; Gallagher, Molly; Usero, Antonio

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less

  2. Basic as well as detailed neurosonograms can be performed by offline analysis of three-dimensional fetal brain volumes.

    PubMed

    Bornstein, E; Monteagudo, A; Santos, R; Strock, I; Tsymbal, T; Lenchner, E; Timor-Tritsch, I E

    2010-07-01

    To evaluate the feasibility and the processing time of offline analysis of three-dimensional (3D) brain volumes to perform a basic, as well as a detailed, targeted, fetal neurosonogram. 3D fetal brain volumes were obtained in 103 consecutive healthy fetuses that underwent routine anatomical survey at 20-23 postmenstrual weeks. Transabdominal gray-scale and power Doppler volumes of the fetal brain were acquired by one of three experienced sonographers (an average of seven volumes per fetus). Acquisition was first attempted in the sagittal and coronal planes. When the fetal position did not enable easy and rapid access to these planes, axial acquisition at the level of the biparietal diameter was performed. Offline analysis of each volume was performed by two of the authors in a blinded manner. A systematic technique of 'volume manipulation' was used to identify a list of 25 brain dimensions/structures comprising a complete basic evaluation, intracranial biometry and a detailed targeted fetal neurosonogram. The feasibility and reproducibility of obtaining diagnostic-quality images of the different structures was evaluated, and processing times were recorded, by the two examiners. Diagnostic-quality visualization was feasible in all of the 25 structures, with an excellent visualization rate (85-100%) reported in 18 structures, a good visualization rate (69-97%) reported in five structures and a low visualization rate (38-54%) reported in two structures, by the two examiners. An average of 4.3 and 5.4 volumes were used to complete the examination by the two examiners, with a mean processing time of 7.2 and 8.8 minutes, respectively. The overall agreement rate for diagnostic visualization of the different brain structures between the two examiners was 89.9%, with a kappa coefficient of 0.5 (P < 0.001). In experienced hands, offline analysis of 3D brain volumes is a reproducible modality that can identify all structures necessary to complete both a basic and a detailed

  3. SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bichay, T; Mayville, A

    2016-06-15

    Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fractionmore » and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.« less

  4. Measurement of track structure parameters of low and medium energy helium and carbon ions in nanometric volumes

    NASA Astrophysics Data System (ADS)

    Hilgers, G.; Bug, M. U.; Rabus, H.

    2017-10-01

    Ionization cluster size distributions produced in the sensitive volume of an ion-counting wall-less nanodosimeter by monoenergetic carbon ions with energies between 45 MeV and 150 MeV were measured at the TANDEM-ALPI ion accelerator facility complex of the LNL-INFN in Legnaro. Those produced by monoenergetic helium ions with energies between 2 MeV and 20 MeV were measured at the accelerator facilities of PTB and with a 241Am alpha particle source. C3H8 was used as the target gas. The ionization cluster size distributions were measured in narrow beam geometry with the primary beam passing the target volume at specified distances from its centre, and in broad beam geometry with a fan-like primary beam. By applying a suitable drift time window, the effective size of the target volume was adjusted to match the size of a DNA segment. The measured data were compared with the results of simulations obtained with the PTB Monte Carlo code PTra. Before the comparison, the simulated cluster size distributions were corrected with respect to the background of additional ionizations produced in the transport system of the ionized target gas molecules. Measured and simulated characteristics of the particle track structure are in good agreement for both types of primary particles and for both types of the irradiation geometry. As the range in tissue of the ions investigated is within the typical extension of a spread-out Bragg peak, these data are useful for benchmarking not only ‘general purpose’ track structure simulation codes, but also treatment planning codes used in hadron therapy. Additionally, these data sets may serve as a data base for codes modelling the induction of radiation damages at the DNA-level as they almost completely characterize the ionization component of the nanometric track structure.

  5. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.

  6. Longitudinal trends in use and costs of targeted therapies for common cancers in Taiwan: a retrospective observational study

    PubMed Central

    Hsu, Jason C; Lu, Christine Y

    2016-01-01

    Objectives Some targeted therapies have improved survival and overall quality of cancer care generally, but these increasingly expensive medicines have led to increases in pharmaceutical expenditure. This study examined trends in use and expenditures of antineoplastic agents in Taiwan, and estimated market shares by prescription volume and costs of targeted therapies over time. We also determined which cancer types accounted for the highest use of targeted therapies. Design This is a retrospective observational study focusing on the utilisation of targeted therapies for treatment of cancer. Setting The monthly claims data for antineoplastic agents were retrieved from Taiwan's National Health Insurance Research Database (2009–2012). Main outcome measures We calculated market shares by prescription volume and costs for each class of antineoplastic agent by cancer type. Using a time series design with Autoregressive Integrated Moving Average (ARIMA) models, we estimated trends in use and costs of targeted therapies. Results Among all antineoplastic agents, use of targeted therapies grew from 6.24% in 2009 to 12.29% in 2012, but their costs rose from 26.16% to 41.57% in that time. Monoclonal antibodies and protein kinase inhibitors contributed the most (respectively, 23.84% and 16.12% of costs for antineoplastic agents in 2012). During 2009–2012, lung (44.64% of use; 28.26% of costs), female breast (16.49% of use; 27.18% of costs) and colorectal (12.11% of use; 13.16% of costs) cancers accounted for the highest use of targeted therapies. Conclusions In Taiwan, targeted therapies are increasingly used for different cancers, representing a substantial economic burden. It is important to establish mechanisms to monitor their use and outcomes. PMID:27266775

  7. Communications Strategies on Alcohol and Highway Safety. Volume I. Adults 18-55. Final Report.

    ERIC Educational Resources Information Center

    Grey Advertising, Inc., New York, NY.

    The first part of a two-part, two volume study deals with adults aged 18-55 and identifies target populations and communications strategies for encouraging personal action steps to prevent drunk driving. Fully 54% of adult Americans participate once a month in social or business situations where alcohol is served. They are termed Alcohol Related…

  8. Botulinum Toxin Type A Injections in the Psoas Muscle of Children with Cerebral Palsy: Muscle Atrophy after Motor End Plate-Targeted Injections

    ERIC Educational Resources Information Center

    Van Campenhout, Anja; Verhaegen, Ann; Pans, Steven; Molenaers, Guy

    2013-01-01

    MEP targeting during BoNT-A injections has been demonstrated to improve outcome. Two injection techniques of the psoas muscle--proximal MEP targeting versus a widely used more distal injection technique--are compared using muscle volume assessment by digital MRI segmentation as outcome measure. Method: 7 spastic diplegic children received…

  9. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Phipps, C. R., Jr.; Harrison, R. F.; Shimada, T.; York, G. W.; Turner, R. F.

    1990-03-01

    This paper reports measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single microsec-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10- and 3-micron wavelengths. The physical distinctions are discussed between this important case and that of simple, planar surface absorbers (such as metals) which were studied in the same experimental series, in light of the predictions of a simple theoretical model.

  10. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed Central

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    Background In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. Aim To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Subjects & Methods Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (N=88), and brain and visual cortex (N=99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. Results A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes, (iii) different visual cortical areas, independently of overall brain volume. Conclusion In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices. PMID:23879766

  11. Device overlay method for high volume manufacturing

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Han, Sangjun; Kim, Youngsik; Kim, Myoungsoo; Heo, Hoyoung; Jeon, Sanghuck; Choi, DongSub; Nabeth, Jeremy; Brinster, Irina; Pierson, Bill; Robinson, John C.

    2016-03-01

    Advancing technology nodes with smaller process margins require improved photolithography overlay control. Overlay control at develop inspection (DI) based on optical metrology targets is well established in semiconductor manufacturing. Advances in target design and metrology technology have enabled significant improvements in overlay precision and accuracy. One approach to represent in-die on-device as-etched overlay is to measure at final inspection (FI) with a scanning electron microscope (SEM). Disadvantages to this approach include inability to rework, limited layer coverage due to lack of transparency, and higher cost of ownership (CoO). A hybrid approach is investigated in this report whereby infrequent DI/FI bias is characterized and the results are used to compensate the frequent DI overlay results. The bias characterization is done on an infrequent basis, either based on time or triggered from change points. On a per-device and per-layer basis, the optical target overlay at DI is compared with SEM on-device overlay at FI. The bias characterization results are validated and tracked for use in compensating the DI APC controller. Results of the DI/FI bias characterization and sources of variation are presented, as well as the impact on the DI correctables feeding the APC system. Implementation details in a high volume manufacturing (HVM) wafer fab will be reviewed. Finally future directions of the investigation will be discussed.

  12. Analytical dose modeling for preclinical proton irradiation of millimetric targets.

    PubMed

    Vanstalle, Marie; Constanzo, Julie; Karakaya, Yusuf; Finck, Christian; Rousseau, Marc; Brasse, David

    2018-01-01

    Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse

  13. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes

    NASA Astrophysics Data System (ADS)

    Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Dübner, Matthias; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.

    2016-07-01

    Therapeutic drug monitoring (TDM) typically requires painful blood drawn from patients. We propose a painless and minimally-invasive alternative for TDM using hollow microneedles suitable to extract extremely small volumes (<1 nL) of interstitial fluid to measure drug concentrations. The inner lumen of a microneedle is functionalized to be used as a micro-reactor during sample collection to trap and bind target drug candidates during extraction, without requirements of sample transfer. An optofluidic device is integrated with this microneedle to rapidly quantify drug analytes with high sensitivity using a straightforward absorbance scheme. Vancomycin is currently detected by using volumes ranging between 50-100 μL with a limit of detection (LoD) of 1.35 μM. The proposed microneedle-optofluidic biosensor can detect vancomycin with a sample volume of 0.6 nL and a LoD of <100 nM, validating this painless point of care system with significant potential to reduce healthcare costs and patients suffering.

  14. Correlation of ultrasound estimated placental volume and umbilical cord blood volume in term pregnancy.

    PubMed

    Pannopnut, Papinwit; Kitporntheranunt, Maethaphan; Paritakul, Panwara; Kongsomboon, Kittipong

    2015-01-01

    To investigate the correlation between ultrasound measured placental volume and collected umbilical cord blood (UCB) volume in term pregnancy. An observational cross-sectional study of term singleton pregnant women in the labor ward at Maha Chakri Sirindhorn Medical Center was conducted. Placental thickness, height, and width were measured using two-dimensional (2D) ultrasound and calculated for placental volume using the volumetric mathematic model. After the delivery of the baby, UCB was collected and measured for its volume immediately. Then, birth weight, placental weight, and the actual placental volume were analyzed. The Pearson's correlation was used to determine the correlation between each two variables. A total of 35 pregnant women were eligible for the study. The mean and standard deviation of estimated placental volume and actual placental volume were 534±180 mL and 575±118 mL, respectively. The median UCB volume was 140 mL (range 98-220 mL). The UCB volume did not have a statistically significant correlation with the estimated placental volume (correlation coefficient 0.15; p=0.37). However, the UCB volume was significantly correlated with the actual placental volume (correlation coefficient 0.62; p<0.001) and birth weight (correlation coefficient 0.38; p=0.02). The estimated placental volume by 2D ultrasound was not significantly correlated with the UCB volume. Further studies to establish the correlation between the UCB volume and the estimated placental volume using other types of placental imaging may be needed.

  15. LLE Review Quarterly Report (January-March 2002). Volume 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, William R.

    2002-03-01

    This volume of the LLE Review, covering January-March 2002, features “First Results from Cryogenic Target Implosions on OMEGA” by C. Stoeckl et al. (p. 49). This article describes initial results from direct-drive spherical cryogenic target implosions on the 60-beam OMEGA laser system. These experiments are part of the scientific base leading to direct-drive ignition implosions planned for the National Ignition Facility (NIF). Results shown include neutron yield, secondary-neutron and proton yields, the time of peak neutron emission, and both time-integrated and time-resolved x-ray images of the imploding core. The experimental values are compared with 1-D numerical simulations. The target withmore » an ice-layer nonuniformity of srms = 9 mm showed 30% of the 1-D predicted neutron yield. These initial results are encouraging for future cryogenic implosions on OMEGA and the NIF. Other articles in this issue are titled the following: Equation-of-State Measurements of Porous Materials on OMEGA: Numerical Modeling; Observations of Modulated Shock Waves in Solid Targets Driven by Spatially Modulated Laser Beams; Time-Dependent Electron Thermal Flux Inhibition in direct-Drive Laser Implosions; Precision Spectral Sculpting of Broadband FM Pulses Amplified in a Narrowband Medium; Electric-Field-Induced Motion of Polymer Cholesteric Liquid Crystal Flakes in a Moderately Conductive Fluid; and, Femtosecond Response of a Freestanding LT-GaAs Photoconductive Switch.« less

  16. Air & Space Power Journal. Volume 26, Number 2, March-April 2012

    DTIC Science & Technology

    2012-03-01

    subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE ...MAR 2012 2. REPORT TYPE 3. DATES COVERED 00-03-2012 to 00-04-2012 4. TITLE AND SUBTITLE Air & Space Power Journal. Volume 26, Number 2, March...Adversaries increasingly target energy as a center of gravity. To date , more than 3,000 American Sol- diers and contractors have been killed or

  17. High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate

    NASA Astrophysics Data System (ADS)

    Salgaonkar, Vasant A.; Scott, Serena; Kurhanewicz, John; Diederich, Chris J.

    2017-03-01

    Recent advances in image based techniques such as multi-parametric MRI (MP-MRI) can provide precise targeting of focal disease in the prostate. Thermal ablation of such cancer targets while avoiding rectum, urethra, neurovascular bundles (NVB) and sphincter is clinically challenging. The approach described here employs multi-element ultrasound linear arrays designed for transperineal placement within prostate. They consist of independently powered sectored tubular transducers (6.5 - 8.0 MHz) that provide spatial control of energy deposition in angle and length. Volumetric ablation strategies were investigated through patient-specific biothermal models based on Pennes bioheat transfer equation. The acoustic and heat transfer models used here have been validated in several previous simulation and experimental studies. Focal disease sites in prostate were identified through multi-parametric MR images of representative patient cases (n=3). Focal cancer lesions and critical anatomy (prostate, urethra, rectum, bladder, seminal vesicles) were manually segmented (Mimics, Materialise) and converted to 3D finite element meshes (3-Matic, Materialise). The chosen test cases consisted of patients with medium and large sized glands and models of bulk tissue ablation covered volumes in a single quadrant in posterior prostate, hemi-gland targets and "hockey-stick" targets (lesions in three quadrants). Ultrasound applicator placement was determined such that devices were positioned along the prostate periphery while avoiding surrounding anatomy. Transducer sector angles were chosen based on applicator location within limits of fabrication practicability. Thermal models were numerically solved using finite element methods (FEM) in COMSOL Multiphysics. Temperature and thermal dose distributions were calculated to determine treated volumes (> 240 CEM43C, >52 °C) and safety profiles (<10 CEM43C, <45 °C) for nerve, rectal and urethral sparing. Modeling studies indicated that focal

  18. Feasibility of large volume tumor ablation using multiple-mode strategy with fast scanning method: A numerical study

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Shen, Guofeng; Qiao, Shan; Chen, Yazhu

    2017-03-01

    Sonication with fast scanning method can generate homogeneous lesions without complex planning. But when the target region is large, switching focus too fast will reduce the heat accumulation, the margin of which may not ablated. Furthermore, high blood perfusion rate will reduce this maximum volume that can be ablated. Therefore, fast scanning method may not be applied to large volume tumor. To expand the therapy scope, this study combines the fast scan method with multiple mode strategy. Through simulation and experiment, the feasibility of this new strategy is evaluated and analyzed.

  19. Atelectasis and survival after bronchoscopic lung volume reduction for COPD.

    PubMed

    Hopkinson, N S; Kemp, S V; Toma, T P; Hansell, D M; Geddes, D M; Shah, P L; Polkey, M I

    2011-06-01

    Bronchoscopic therapies to reduce lung volumes in chronic obstructive pulmonary disease are intended to avoid the risks associated with lung volume reduction surgery (LVRS) or to be used in patient groups in whom LVRS is not appropriate. Bronchoscopic lung volume reduction (BLVR) using endobronchial valves to target unilateral lobar occlusion can improve lung function and exercise capacity in patients with emphysema. The benefit is most pronounced in, though not confined to, patients where lobar atelectasis has occurred. Few data exist on their long-term outcome. 19 patients (16 males; mean±sd forced expiratory volume in 1 s 28.4±11.9% predicted) underwent BLVR between July 2002 and February 2004. Radiological atelectasis was observed in five patients. Survival data was available for all patients up to February 2010. None of the patients in whom atelectasis occurred died during follow-up, whereas eight out of 14 in the nonatelectasis group died (Chi-squared p=0.026). There was no significant difference between the groups at baseline in lung function, quality of life, exacerbation rate, exercise capacity (shuttle walk test or cycle ergometry) or computed tomography appearances, although body mass index was significantly higher in the atelectasis group (21.6±2.9 versus 28.4±2.9 kg·m(-2); p<0.001). The data in the present study suggest that atelectasis following BLVR is associated with a survival benefit that is not explained by baseline differences.

  20. Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy.

    PubMed

    Vali, Faisal S; Nagda, Suneel; Hall, William; Sinacore, James; Gao, Mingcheng; Lee, Steven H; Hong, Robert; Shoup, Margaret; Emami, Bahman

    2010-11-15

    To study various standardized uptake value (SUV)-based approaches to ascertain the best strategy for delineating metabolic tumor volumes (MTV). Twenty-two consecutive previously treated esophageal cancer patients with positron emission tomography (PET) imaging and computed tomography (CT)-based radiotherapy plans were studied. At the level of the tumor epicenter, MTVs were delineated at 11 different thresholds: SUV ≥2, ≥2.5, ≥3, ≥3.5 (SUV(n)); ≥40%, ≥45%, and ≥50% of the maximum (SUV(n%)); and mean liver SUV + 1, 2, 3, and 4 standard deviations (SUV(Lnσ)). The volume ratio and conformality index were determined between MTVs, and the corresponding CT/endoscopic ultrasound-based gross tumor volume (GTV) at the epicenter. Means were analyzed by one-way analysis of variance for repeated measures and further compared using a paired t test for repeated measures. The mean conformality indices ranged from 0.33 to 0.48, being significantly (p < 0.05) closest to 1 at SUV(2.5) (0.47 ± 0.03) and SUV(L4σ) (0.48 ± 0.03). The mean volume ratios ranged from 0.39 to 2.82, being significantly closest to 1 at SUV(2.5) (1.18 ± 0.36) and SUV(L4σ) (1.09 ± 0.15). The mean value of the SUVs calculated using the SUV(L4σ) approach was 2.4. Regardless of the SUV thresholding method used (i.e., absolute or relative to liver mean), a threshold of approximately 2.5 yields the highest conformality index and best approximates the CT-based GTV at the epicenter. These findings may ultimately aid radiation oncologists in the delineation of the entire GTV in esophageal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.