Sample records for target waves emerge

  1. Emergence and robustness of target waves in a neuronal network

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Jin, Wuyin; Ma, Jun

    2015-08-01

    Target waves in excitable media such as neuronal network can regulate the spatial distribution and orderliness as a continuous pacemaker. Three different schemes are used to develop stable target wave in the network, and the potential mechanism for emergence of target waves in the excitable media is investigated. For example, a local pacing driven by external periodical forcing can generate stable target wave in the excitable media, furthermore, heterogeneity and local feedback under self-feedback coupling are also effective to generate continuous target wave as well. To discern the difference of these target waves, a statistical synchronization factor is defined by using mean field theory and artificial defects are introduced into the network to block the target wave, thus the robustness of these target waves could be detected. However, these target waves developed from the above mentioned schemes show different robustness to the blocking from artificial defects. A regular network of Hindmarsh-Rose neurons is designed in a two-dimensional square array, target waves are induced by using three different ways, and then some artificial defects, which are associated with anatomical defects, are set in the network to detect the effect of defects blocking on the travelling waves. It confirms that the robustness of target waves to defects blocking depends on the intrinsic properties (ways to generate target wave) of target waves.

  2. Combining spiral and target wave detection to analyze excitable media dynamics

    NASA Astrophysics Data System (ADS)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2010-01-01

    Excitable media dynamics is the lossless active transmission of waves of excitation over a field of coupled elements, such as electrical excitation in heart tissue or nerve fibers, cAMP signaling in the slime mold Dictyostelium discoideum or waves of chemical activity in the Belousov-Zhabotinsky reaction. All these systems follow essentially the same generic dynamics, including undamped wave transmission and the self-organized emergence of circular target and self-sustaining spiral waves. We combine spiral recognition, using the established phase singularity technique, and a novel three-dimensional fitting algorithm for noise-resistant target wave recognition to extract all important events responsible for the layout of the asymptotic large-scale pattern. Space-time plots of these combined events reveal signatures of events leading to spiral formation, illuminating the microscopic mechanisms at work. This strategy can be applied to arbitrary excitable media data from either models or experiments, giving insight into for example the microscopic causes for formation of pathological spiral waves in heart tissue, which could lead to novel techniques for diagnosis, risk evaluation and treatment.

  3. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    NASA Astrophysics Data System (ADS)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  4. Emergent geometries and nonlinear-wave dynamics in photon fluids.

    PubMed

    Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D

    2016-03-22

    Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.

  5. Emergent geometries and nonlinear-wave dynamics in photon fluids

    NASA Astrophysics Data System (ADS)

    Marino, F.; Maitland, C.; Vocke, D.; Ortolan, A.; Faccio, D.

    2016-03-01

    Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.

  6. Membrane-targeted WAVE mediates photoreceptor axon targeting in the absence of the WAVE complex in Drosophila

    PubMed Central

    Stephan, Raiko; Gohl, Christina; Fleige, Astrid; Klämbt, Christian; Bogdan, Sven

    2011-01-01

    A tight spatial-temporal coordination of F-actin dynamics is crucial for a large variety of cellular processes that shape cells. The Abelson interactor (Abi) has a conserved role in Arp2/3-dependent actin polymerization, regulating Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE). In this paper, we report that Abi exerts nonautonomous control of photoreceptor axon targeting in the Drosophila visual system through WAVE. In abi mutants, WAVE is unstable but restored by reexpression of Abi, confirming that Abi controls the integrity of the WAVE complex in vivo. Remarkably, expression of a membrane-tethered WAVE protein rescues the axonal projection defects of abi mutants in the absence of the other subunits of the WAVE complex, whereas cytoplasmic WAVE only slightly affects the abi mutant phenotype. Thus complex formation not only stabilizes WAVE, but also provides further membrane-recruiting signals, resulting in an activation of WAVE. PMID:21900504

  7. Rear surface light emission measurements from laser-produced shock waves in clear and Al-coated polystyrene targets

    NASA Astrophysics Data System (ADS)

    McLean, E. A.; Deniz, A. V.; Schmitt, A. J.; Stamper, J. A.; Obenschain, S. P.; Lehecka, T.; Mostovych, A. N.; Seely, J.

    1999-08-01

    The Nike KrF laser, with its very uniform focal distributions, has been used at intensities near 10 14 W/cm 2 to launch shock waves in polystyrene targets. The rear surface visible light emission differed between clear polystyrene (CH) targets and targets with a thin (125 nm) Al coating on the rear side. The uncoated CH targets showed a relatively slowly rising emission followed by a sudden fall when the shock emerges, while the Al-coated targets showed a rapid rise in emission when the shock emerges followed by a slower fall, allowing an unambiguous determination of the time the shock arrived at the rear surface. A half-aluminized target allowed us to observe this difference in a single shot. The brightness temperature of both the aluminized targets and the non-aluminized targets was slightly below but close to rear surface temperature predictions of a hydrodynamic code. A discussion of preheat effects is given.

  8. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality.

    PubMed

    George, Joseph; Sujith, R I

    2009-10-01

    Chagelishvili et al. [Phys. Rev. Lett. 79, 3178 (1997)] discovered a linear mechanism of acoustic wave emergence from vorticity fluctuations in shear flows. This paper illustrates how this "nonresonant" phenomenon is related to the non-normality of the operator governing the linear dynamics of disturbances in shear flows. The non-self-adjoint nature of the governing operator causes the emergent acoustic wave to interact strongly with the vorticity disturbance. Analytical expressions are obtained for the nondivergent vorticity perturbation. A discontinuity in the x component of the velocity field corresponding to the vorticity disturbance was originally identified to be the cause of acoustic wave emergence. However, a different mechanism is proposed in this paper. The correct "acoustic source" is identified and the reason for the abrupt nature of wave emergence is explained. The impact of viscous damping is also discussed.

  9. Emergent rogue wave structures and statistics in spontaneous modulation instability.

    PubMed

    Toenger, Shanti; Godin, Thomas; Billet, Cyril; Dias, Frédéric; Erkintalo, Miro; Genty, Goëry; Dudley, John M

    2015-05-20

    The nonlinear Schrödinger equation (NLSE) is a seminal equation of nonlinear physics describing wave packet evolution in weakly-nonlinear dispersive media. The NLSE is especially important in understanding how high amplitude "rogue waves" emerge from noise through the process of modulation instability (MI) whereby a perturbation on an initial plane wave can evolve into strongly-localised "breather" or "soliton on finite background (SFB)" structures. Although there has been much study of such structures excited under controlled conditions, there remains the open question of how closely the analytic solutions of the NLSE actually model localised structures emerging in noise-seeded MI. We address this question here using numerical simulations to compare the properties of a large ensemble of emergent peaks in noise-seeded MI with the known analytic solutions of the NLSE. Our results show that both elementary breather and higher-order SFB structures are observed in chaotic MI, with the characteristics of the noise-induced peaks clustering closely around analytic NLSE predictions. A significant conclusion of our work is to suggest that the widely-held view that the Peregrine soliton forms a rogue wave prototype must be revisited. Rather, we confirm earlier suggestions that NLSE rogue waves are most appropriately identified as collisions between elementary SFB solutions.

  10. Emergency shock wave lithotripsy for ureteric stones.

    PubMed

    Dasgupta, Ranan; Hegarty, Nicholas; Thomas, Kay

    2009-03-01

    Extracorporeal shock wave lithotripsy has been used for over 2 decades, but its application in the acute setting remains under review. With continuing refinements to the technology, it is timely to review its efficacy in the emergency setting. The procedure has an overall low morbidity and is generally well tolerated. Success rates of 70-80% are reported in a number of studies, with relatively low complication rates. Although much attention has been given to the improvements in the outcome of ureteroscopic stone clearance, the benefits of a noninvasive procedure which does not require general anaesthesia may be appealing and indeed preferable for many patients. This should remain a valid alternative treatment option offered to patients, and its provision may be restricted by resource availability rather than clinical evidence. Centres should be identified that can offer an emergency extracorporeal shock wave lithotripsy service and patients informed of outcome data from such centres.

  11. Computation of shock wave/target interaction

    NASA Technical Reports Server (NTRS)

    Mark, A.; Kutler, P.

    1983-01-01

    Computational results of shock waves impinging on targets and the ensuing diffraction flowfield are presented. A number of two-dimensional cases are computed with finite difference techniques. The classical case of a shock wave/cylinder interaction is compared with shock tube data and shows the quality of the computations on a pressure-time plot. Similar results are obtained for a shock wave/rectangular body interaction. Here resolution becomes important and the use of grid clustering techniques tend to show good agreement with experimental data. Computational results are also compared with pressure data resulting from shock impingement experiments for a complicated truck-like geometry. Here of significance are the grid generation and clustering techniques used. For these very complicated bodies, grids are generated by numerically solving a set of elliptic partial differential equations.

  12. Linear sine wave profiling to machine instability targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Derek William; Martinez, John Israel

    2016-08-01

    Specialized machining processes and programming have been developed to deliver thin tin and copper Richtmyer-Meshkov instability targets that have different amplitude perturbations across the face of one 4-in.-diameter target. Typical targets have anywhere from two to five different regions of sine waves that have different amplitudes varying from 4 to 200 μm across the face of the target. The puck is composed of multiple rings that are zero press fit together and diamond turned to create a flat platform with a tolerance of 2 μm for the shock experiment. A custom software program was written in Labview to write themore » point-to-point program for the diamond-turning profiler through the X-Y-Z movements to cut the pure planar straight sine wave geometry. As a result, the software is optimized to push the profile of the whole part into the face while eliminating any unneeded passes that do not cut any material.« less

  13. Emergent rogue wave structures and statistics in spontaneous modulation instability

    PubMed Central

    Toenger, Shanti; Godin, Thomas; Billet, Cyril; Dias, Frédéric; Erkintalo, Miro; Genty, Goëry; Dudley, John M.

    2015-01-01

    The nonlinear Schrödinger equation (NLSE) is a seminal equation of nonlinear physics describing wave packet evolution in weakly-nonlinear dispersive media. The NLSE is especially important in understanding how high amplitude “rogue waves” emerge from noise through the process of modulation instability (MI) whereby a perturbation on an initial plane wave can evolve into strongly-localised “breather” or “soliton on finite background (SFB)” structures. Although there has been much study of such structures excited under controlled conditions, there remains the open question of how closely the analytic solutions of the NLSE actually model localised structures emerging in noise-seeded MI. We address this question here using numerical simulations to compare the properties of a large ensemble of emergent peaks in noise-seeded MI with the known analytic solutions of the NLSE. Our results show that both elementary breather and higher-order SFB structures are observed in chaotic MI, with the characteristics of the noise-induced peaks clustering closely around analytic NLSE predictions. A significant conclusion of our work is to suggest that the widely-held view that the Peregrine soliton forms a rogue wave prototype must be revisited. Rather, we confirm earlier suggestions that NLSE rogue waves are most appropriately identified as collisions between elementary SFB solutions. PMID:25993126

  14. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  15. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.

    PubMed

    Vorontsov, Mikhail A; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  16. Dynamics of Laser-Driven Shock Waves in Solid Targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  17. Effect of target-fixture geometry on shock-wave compacted copper powders

    NASA Astrophysics Data System (ADS)

    Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop

    2018-01-01

    In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

  18. Laser backscattered from partially convex targets of large sizes in random media for E-wave polarization.

    PubMed

    El-Ocla, Hosam

    2006-08-01

    The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.

  19. Effect of different hormonal combinations on follicular wave emergence and superovulatory response in sheep.

    PubMed

    Souza-Fabjan, Joanna Maria Gonçalves; da Rosa, Rômulo Mendonça; Balaro, Mário Felipe Alvarez; Pinto, Pedro Henrique Nicolau; Dos Santos, Gustavo Bervian; Arashiro, Eduardo Kenji Nunes; da Fonseca, Jeferson Ferreira; Ungerfeld, Rodolfo; Brandão, Felipe Zandonadi

    2017-11-01

    The aim of the present study was to compare hormonal treatments to induce and synchronize follicular wave emergence to improve the results of superovulatory (SOV) treatments in ewes. In Experiment 1 (n = 66), ewes were treated with a progesterone intravaginal implant plus a PGF 2α analogue (group G P4 ), or with the same treatment plus estradiol benzoate (G P4+EB ), a GnRH agonist (G P4+GnRH ), or both, estradiol benzoate and a GnRH agonist (G P4+EB+GnRH ) in a 2 × 2 factorial arrangement. Follicular wave emergence was determined by ultrasound. Follicular wave did not emerge during the studied period in 10 females (one from G P4 , six from G P4+EB and three from G P4+EB+GnRH ). Follicular emergence was less synchronized (P = 0.007) when estradiol was administered (G P4+EB : 103.6 ± 22.0 h), without any interaction with GnRH treatment (G P4+EB+GnRH : 80.1 ± 21.4 h, G P4+GnRH : 52.5 ± 8.7 h, G P4 : 56.6 ± 10.4 h). Estradiol administration delayed the moment of follicular emergence (P = 0.007) and the follicular wave emergence moment in which follicular dominance was achieved (P = 0.009), without interactions between estradiol and GnRH in the moment of follicular wave emergence or dominance. In Experiment 2 (n = 22), two SOV protocols were compared: the best treatment of Experiment 1 (G P4 ) was used to synchronize follicular wave emergence, initiating the SOV treatment 2.5 days later; in the control treatment, SOV treatment started 80 h after a short-term protocol to synchronize ovulation (G control ). The number of corpora lutea (CL) and the evaluation of the collected embryos were performed six days after estrus. Blood samples were collected daily for plasma progesterone determination. Although the number of CL was similar in G control (7.1 ± 1.0) and G P4 (6.9 ± 5.1), the number of structures and viable embryos recovered were greater in G control (P < 0.05). The occurrence of luteal premature regression was significantly

  20. Development of novel entry inhibitors targeting emerging viruses

    PubMed Central

    Zhou, Yanchen; Simmons, Graham

    2013-01-01

    Emerging viral diseases pose a unique risk to public health, and thus there is a need to develop therapies. A current focus of funding agencies, and hence research, is the development of broad-spectrum antivirals, and in particular, those targeting common cellular pathways. The scope of this article is to review screening strategies and recent advances in this area, with a particular emphasis on antivirals targeting the step of viral entry for emerging lipid-enveloped viruses such as Ebola virus and SARS-coronavirus. PMID:23199399

  1. Investigation of radiant millimeter wave/terahertz radiation from low-infrared signature targets

    NASA Astrophysics Data System (ADS)

    Aytaç, B.; Alkuş, Ü.; Sivaslıgil, M.; Şahin, A. B.; Altan, H.

    2017-10-01

    Millimeter (mm) and sub-mm wave radiation is increasingly becoming a region of interest as better methods are developed to detect in this wavelength range. The development of sensitive focal plane array (FPA) architectures as well as single pixel scanners has opened up a new field of passive detection and imaging. Spectral signatures of objects, a long standing area of interest in the Short Wave Infrared (SWIR), Mid-Wave (MWIR) and Long Wave-IR (LWIR) bands can now be assessed in the mm-wave/terahertz (THz) region. The advantage is that this form of radiation is not as adversely affected by poor atmospheric conditions compared to other bands. In this study, a preliminary experiment in a laboratory environment is performed to assess the radiance from targets with low infrared signatures in the millimeter wave/terahertz (THz) band (<1 THz). The goal of this approach is to be able to model the experimental results to better understand the mm-wave/THz signature of targets with low observability in the IR bands.

  2. WAVE2 targeting to phosphatidylinositol 3,4,5-triphosphate mediated by insulin receptor substrate p53 through a complex with WAVE2.

    PubMed

    Takahashi, Kazuhide; Suzuki, Katsuo

    2010-11-01

    Membrane targeting of WAVE2 along microtubules to phosphatidylinositol 3,4,5-triphosphate (PIP(3)) in response to an extracellular stimulus requires Rac1, Pak1, stathmin, and EB1. However, whether WAVE2 interacts directly with PIP(3) or not remains unclear. We demonstrate that insulin-like growth factor I (IGF-I) induces WAVE2 membrane targeting, accompanied by phosphorylation of Pak1 at serine 199/204 (Ser199/204) and stathmin at Ser38 in the inner cytoplasmic region. This is spatially independent of the membrane region where the IGF-I receptor (IGF-IR) is locally activated. WAVE2, phosphorylated Pak1, and phosphorylated stathmin located at the microtubule ends began to accumulate at the leading edge of cells in close proximity to PIP(3) that was produced in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent manner. The PIP(3)-beads binding assay revealed that insulin receptor substrate p53 (IRSp53) and actin rather than WAVE2 bound to PIP(3). IRSp53 constitutively associated with WAVE2 and these two proteins colocalized with PIP(3) at the leading edge after IGF-I stimulation. Suppression of IRSp53 expression by two independent small interfering RNAs (siRNAs) completely inhibited IGF-I-induced membrane targeting and local accumulation of WAVE2 at the leading edge of cells. We propose that IRSp53 constitutively forms a complex with WAVE2 and is crucial for membrane targeting followed by local accumulation of WAVE2 at the leading edge of cells through linking WAVE2 to PIP(3) that is produced near locally activated IGF-IR in response to IGF-I. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Emerging preclinical pharmacological targets for Parkinson's disease

    PubMed Central

    More, Sandeep Vasant; Choi, Dong-Kug

    2016-01-01

    Parkinson's disease (PD) is a progressive neurological condition caused by the degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, tremors, and postural instability. Due to the multicentric pathology of PD involving inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it has become difficult to pin-point a single therapeutic target and evaluate its potential application. Currently available drugs for treating PD provide only symptomatic relief and do not decrease or avert disease progression resulting in poor patient satisfaction and compliance. Significant amount of understanding concerning the pathophysiology of PD has offered a range of potential targets for PD. Several emerging targets including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-1A/1B receptors are in different stages of clinical development. Additionally, alternative interventions such as deep brain stimulation, thalamotomy, transcranial magnetic stimulation, and gamma knife surgery, are also being developed for patients with advanced PD. As much as these therapeutic targets hold potential to delay the onset and reverse the disease, more targets and alternative interventions need to be examined in different stages of PD. In this review, we discuss various emerging preclinical pharmacological targets that may serve as a new promising neuroprotective strategy that could actually help alleviate PD and its symptoms. PMID:26988916

  4. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics

    NASA Astrophysics Data System (ADS)

    El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  5. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics.

    PubMed

    El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  6. Pulsatile LH secretion and ovarian follicular wave emergence and growth in anestrous ewes.

    PubMed

    Seekallu, Srinivas V; Barrett, David M W; Toosi, Behzad M; Clarke, Kelsey; Ewen, Kirk A; Duggavathi, Rajesha; Davies, Kate L; Pattullo, Kim M; Bagu, Edward T; Rawlings, Norman C

    2010-10-01

    The objective of this study was to determine if pulsatile LH secretion was needed for ovarian follicular wave emergence and growth in the anestrous ewe. In Experiment 1, ewes were either large or small (10 x 0.47 or 5 x 0.47 cm, respectively; n = 5/group) sc implants releasing estradiol-17 beta for 10 d (Day 0 = day of implant insertion), to suppress pulsed LH secretion, but not FSH secretion. Five sham-operated control ewes received no implants. In Experiment 2, 12 ewes received large estradiol-releasing implants for 12 d (Day 0 = day of implant insertion); six were given GnRH (200 ng IV) every 4 h for the last 6 d that the implants were in place (to reinitiate pulsed LH secretion) whereas six Control ewes were given saline. Ovarian ultrasonography and blood sampling were done daily; blood samples were also taken every 12 min for 6 h on Days 5 and 9, and on Days 6 and 12 of the treatment period in Experiments 1 and 2, respectively. Treatment with estradiol blocked pulsatile LH secretion (P < 0.001). In Experiment 1, implant treatment halted follicular wave emergence between Days 2 and 10. In Experiment 2, follicular waves were suppressed during treatment with estradiol, but resumed following GnRH treatment. In both experiments, the range of peaks in serum FSH concentrations that preceded and triggered follicular wave emergence was almost the same as control ewes and those given estradiol implants alone or with GnRH; mean concentrations did not differ (P < 0.05). We concluded that some level of pulsatile LH secretion was required for the emergence of follicular waves that were triggered by peaks in serum FSH concentrations in the anestrous ewe. (c) 2010 Elsevier Inc. All rights reserved.

  7. Directional control of WAVE2 membrane targeting by EB1 and phosphatidylinositol 3,4,5-triphosphate.

    PubMed

    Takahashi, Kazuhide; Tanaka, Tacu; Suzuki, Katsuo

    2010-03-01

    Membrane targeting of WAVE2 along microtubules is mediated by a motor protein kinesin and requires Pak1, a downstream effector of Rac1. However, the mechanism by which WAVE2 targeting to the leading edge is directionally controlled remains largely unknown. Here we demonstrate that EB1, a microtubule plus-end-binding protein, constitutively associates with stathmin, a microtubule-destabilizing protein, in human breast cancer cells. Stimulation of the cells with insulin-like growth factor I (IGF-I) induced Pak1-dependent binding of the EB1-stathmin complex to microtubules that bear WAVE2 and colocalization of the complex with WAVE2 at the leading edge. Depletion of EB1 by small interfering RNA (siRNA) abrogated the IGF-I-induced WAVE2 targeting and stathmin binding to microtubules. On the other hand, chemotaxis chamber assays indicated that the IGF-I receptor (IGF-IR) was locally activated in the region facing toward IGF-I. In addition, IGF-I caused phosphatidylinositol 3-kinase (PI 3-kinase)-dependent production of phosphatidylinositol 3,4,5-triphosphate (PIP3) near activated IGF-IR and WAVE2 colocalization with it. Collectively, WAVE2-membrane targeting is directionally controlled by binding of the EB1-stathmin complex to WAVE2-bearing microtubules and by the interaction between WAVE2 and PIP3 produced near IGF-IR that is locally activated by IGF-I.

  8. Emergent Topological order from Spin-Orbit Density wave

    NASA Astrophysics Data System (ADS)

    Gupta, Gaurav; Das, Tanmoy

    We study the emergence of a Z2 -type topological order because of Landau type symmetry breaking order parameter. When two Rashba type SOC bands of different chirality become nested by a magic wavevector [(0, ∖pi) or (∖pi,0)], it introduces the inversion of chirality between different lattice sites. Such a density wave state is known as spin-orbit density wave. The resulting quantum order is associated with the topological order which is classified by a Z2 invariant. So, this system can simultaneously be classified by both a symmetry breaking order parameter and the associated Z2 topological invariant. This order parameter can be realized or engineered in two- or quasi-two-dimensional fermionic lattices, quantum wires, with tunable RSOC and correlation strength. The work is facilitated by the computer cluster facility at Department of Physics, Indian Institute of Science.

  9. Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations

    NASA Astrophysics Data System (ADS)

    Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui

    2018-01-01

    Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.

  10. A ground moving target emergency tracking method for catastrophe rescue

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Li, D.; Li, G.

    2014-11-01

    In recent years, great disasters happen now and then. Disaster management test the emergency operation ability of the government and society all over the world. Immediately after the occurrence of a great disaster (e.g., earthquake), a massive nationwide rescue and relief operation need to be kicked off instantly. In order to improve the organizations efficiency of the emergency rescue, the organizers need to take charge of the information of the rescuer teams, including the real time location, the equipment with the team, the technical skills of the rescuers, and so on. One of the key factors for the success of emergency operations is the real time location of the rescuers dynamically. Real time tracking methods are used to track the professional rescuer teams now. But volunteers' participation play more and more important roles in great disasters. However, real time tracking of the volunteers will cause many problems, e.g., privacy leakage, expensive data consumption, etc. These problems may reduce the enthusiasm of volunteers' participation for catastrophe rescue. In fact, the great disaster is just small probability event, it is not necessary to track the volunteers (even rescuer teams) every time every day. In order to solve this problem, a ground moving target emergency tracking method for catastrophe rescue is presented in this paper. In this method, the handheld devices using GPS technology to provide the location of the users, e.g., smart phone, is used as the positioning equipment; an emergency tracking information database including the ID of the ground moving target (including the rescuer teams and volunteers), the communication number of the handheld devices with the moving target, and the usually living region, etc., is built in advance by registration; when catastrophe happens, the ground moving targets that living close to the disaster area will be filtered by the usually living region; then the activation short message will be sent to the selected

  11. Comparing the implementation consequences of the immunisation and emergency department health targets in New Zealand.

    PubMed

    Tenbensel, Tim; Chalmers, Linda; Willing, Esther

    2016-09-19

    Purpose Over the last decade there has been considerable debate about the merits of targets as a policy instrument. The purpose of this paper is to examine the implementation of two health targets that were cornerstones of New Zealand health policy between 2009 and 2012: immunisation rates for two-year-olds, and time to treatment, discharge or admission in hospital emergency departments. Design/methodology/approach For each policy target, the authors selected four case-study districts and conducted two waves of key-informant interviews (113 in total) with clinical and management staff involved in target implementation. Findings Despite almost identical levels of target achievement, the research reveals quite different mixes of positive and negative implementation consequences. The authors argue that the differences in implementation consequences are due to the characteristics of the performance measure; and the dynamics of the intra-organisational and inter-organisational implementation context. Research limitations/implications The research is based on interviews with clinical and management staff involved in target implementation, and this approach does not address the issue of effort substitution. Practical implications While literature on health targets pays attention to the attributes of target measures, the paper suggests that policymakers considering the use of targets pay more attention to broader implementation contexts, including the possible impact of, and effects on related services, organisations and staff. Originality/value The research focuses specifically on implementation consequences, as distinct from target success and/or changes in clinical and health outcomes. The paper also adopts a comparative approach to the study of target implementation.

  12. Emerging therapeutic targets for treatment of leishmaniasis.

    PubMed

    Sundar, Shyam; Singh, Bhawana

    2018-06-01

    Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.

  13. Effect of H-wave polarization on laser radar detection of partially convex targets in random media.

    PubMed

    El-Ocla, Hosam

    2010-07-01

    A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.

  14. Multiphase wavetrains, singular wave interactions and the emergence of the Korteweg–de Vries equation

    PubMed Central

    Bridges, Thomas J.

    2016-01-01

    Multiphase wavetrains are multiperiodic travelling waves with a set of distinct wavenumbers and distinct frequencies. In conservative systems, such families are associated with the conservation of wave action or other conservation law. At generic points (where the Jacobian of the wave action flux is non-degenerate), modulation of the wavetrain leads to the dispersionless multiphase conservation of wave action. The main result of this paper is that modulation of the multiphase wavetrain, when the Jacobian of the wave action flux vector is singular, morphs the vector-valued conservation law into the scalar Korteweg–de Vries (KdV) equation. The coefficients in the emergent KdV equation have a geometrical interpretation in terms of projection of the vector components of the conservation law. The theory herein is restricted to two phases to simplify presentation, with extensions to any finite dimension discussed in the concluding remarks. Two applications of the theory are presented: a coupled nonlinear Schrödinger equation and two-layer shallow-water hydrodynamics with a free surface. Both have two-phase solutions where criticality and the properties of the emergent KdV equation can be determined analytically. PMID:28119546

  15. Effects of temperature and heat waves on emergency department visits and emergency ambulance dispatches in Pudong New Area, China: a time series analysis.

    PubMed

    Sun, Xiaoming; Sun, Qiao; Yang, Minjuan; Zhou, Xianfeng; Li, Xiaopan; Yu, Aiqing; Geng, Fuhai; Guo, Yuming

    2014-10-02

    In July 2013, an extended heat episode with extreme high temperature covered Pudong New Area, the largest district in Shanghai. The current study estimates the impacts of temperature and heat waves on emergency department visits (EDV) and emergency ambulance dispatches (EAD) using time-series approaches in Pudong, from 2011 to 2013. An over-dispersed Poisson generalized additive model was used to examine the association between temperature and EDV and EAD. Heat wave effects with different heat wave definitions considering both the intensity and durations were also estimated. Immediate effects of temperature on EDV and EAD were detected, after controlling for trends of time and day of week. The exposure-response relationships showed J-shaped curves with higher threshold temperature of EDV than that of EAD visually. When estimating risk changes on heat days compared with non-heat days using different percentiles of daily mean temperature in definition, EAD showed significant increases while non-significant or even negative associations were found for EDV. Heat wave with intensity above the 90th percentile had 2.62% (95% CI: 1.78%, 3.46%) and 0.95% (95% CI: 0.22%, 1.69%) increases in EDV for a duration of at least 2 days and 3 days respectively. The relative increase of EAD were 4.85% (95% CI: 1.42%, 8.39%) and 3.94% (95% CI: 0.88%, 7.10%). Varied effects of temperature and heat waves on emergency department visits and emergency ambulance dispatches were investigated. This wider view of the health effect of temperature indicated that interventions for both public health education and health services management should be considered in the study region.

  16. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics.

    PubMed

    Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory

    2011-07-01

    Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.

  17. Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeri V.

    2004-10-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  18. Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes

    NASA Astrophysics Data System (ADS)

    Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert

    2018-05-01

    Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.

  19. A framework for assessing the uncertainty in wave energy delivery to targeted subsurface formations

    NASA Astrophysics Data System (ADS)

    Karve, Pranav M.; Kallivokas, Loukas F.; Manuel, Lance

    2016-02-01

    Stress wave stimulation of geological formations has potential applications in petroleum engineering, hydro-geology, and environmental engineering. The stimulation can be applied using wave sources whose spatio-temporal characteristics are designed to focus the emitted wave energy into the target region. Typically, the design process involves numerical simulations of the underlying wave physics, and assumes a perfect knowledge of the material properties and the overall geometry of the geostructure. In practice, however, precise knowledge of the properties of the geological formations is elusive, and quantification of the reliability of a deterministic approach is crucial for evaluating the technical and economical feasibility of the design. In this article, we discuss a methodology that could be used to quantify the uncertainty in the wave energy delivery. We formulate the wave propagation problem for a two-dimensional, layered, isotropic, elastic solid truncated using hybrid perfectly-matched-layers (PMLs), and containing a target elastic or poroelastic inclusion. We define a wave motion metric to quantify the amount of the delivered wave energy. We, then, treat the material properties of the layers as random variables, and perform a first-order uncertainty analysis of the formation to compute the probabilities of failure to achieve threshold values of the motion metric. We illustrate the uncertainty quantification procedure using synthetic data.

  20. The formation mechanism of defects, spiral wave in the network of neurons.

    PubMed

    Wu, Xinyi; Ma, Jun

    2013-01-01

    A regular network of neurons is constructed by using the Morris-Lecar (ML) neuron with the ion channels being considered, and the potential mechnism of the formation of a spiral wave is investigated in detail. Several spiral waves are initiated by blocking the target wave with artificial defects and/or partial blocking (poisoning) in ion channels. Furthermore, possible conditions for spiral wave formation and the effect of partial channel blocking are discussed completely. Our results are summarized as follows. 1) The emergence of a target wave depends on the transmembrane currents with diversity, which mapped from the external forcing current and this kind of diversity is associated with spatial heterogeneity in the media. 2) Distinct spiral wave could be induced to occupy the network when the target wave is broken by partially blocking the ion channels of a fraction of neurons (local poisoned area), and these generated spiral waves are similar with the spiral waves induced by artificial defects. It is confirmed that partial channel blocking of some neurons in the network could play a similar role in breaking a target wave as do artificial defects; 3) Channel noise and additive Gaussian white noise are also considered, and it is confirmed that spiral waves are also induced in the network in the presence of noise. According to the results mentioned above, we conclude that appropriate poisoning in ion channels of neurons in the network acts as 'defects' on the evolution of the spatiotemporal pattern, and accounts for the emergence of a spiral wave in the network of neurons. These results could be helpful to understand the potential cause of the formation and development of spiral waves in the cortex of a neuronal system.

  1. The Formation Mechanism of Defects, Spiral Wave in the Network of Neurons

    PubMed Central

    Wu, Xinyi; Ma, Jun

    2013-01-01

    A regular network of neurons is constructed by using the Morris-Lecar (ML) neuron with the ion channels being considered, and the potential mechnism of the formation of a spiral wave is investigated in detail. Several spiral waves are initiated by blocking the target wave with artificial defects and/or partial blocking (poisoning) in ion channels. Furthermore, possible conditions for spiral wave formation and the effect of partial channel blocking are discussed completely. Our results are summarized as follows. 1) The emergence of a target wave depends on the transmembrane currents with diversity, which mapped from the external forcing current and this kind of diversity is associated with spatial heterogeneity in the media. 2) Distinct spiral wave could be induced to occupy the network when the target wave is broken by partially blocking the ion channels of a fraction of neurons (local poisoned area), and these generated spiral waves are similar with the spiral waves induced by artificial defects. It is confirmed that partial channel blocking of some neurons in the network could play a similar role in breaking a target wave as do artificial defects; 3) Channel noise and additive Gaussian white noise are also considered, and it is confirmed that spiral waves are also induced in the network in the presence of noise. According to the results mentioned above, we conclude that appropriate poisoning in ion channels of neurons in the network acts as ‘defects’ on the evolution of the spatiotemporal pattern, and accounts for the emergence of a spiral wave in the network of neurons. These results could be helpful to understand the potential cause of the formation and development of spiral waves in the cortex of a neuronal system. PMID:23383179

  2. Techniques for Targeted Fermi-GBM Follow-Up of Gravitational-Wave Events

    NASA Technical Reports Server (NTRS)

    Blackburn, L.; Camp, J.; Briggs, M. S.; Connaughton, V.; Jenke, P.; Christensen, N.; Veitch, J.

    2012-01-01

    The Advanced LIGO and Advanced Virgo ground-based gravitational-wave (GW) detectors are projected to come online 2015 2016, reaching a final sensitivity sufficient to observe dozens of binary neutron star mergers per year by 2018. We present a fully-automated, targeted search strategy for prompt gamma-ray counterparts in offline Fermi-GBM data. The multi-detector method makes use of a detailed model response of the instrument, and benefits from time and sky location information derived from the gravitational-wave signal.

  3. A spatial analysis of heat stress related emergency room visits in rural Southern Ontario during heat waves.

    PubMed

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2015-08-06

    In Southern Ontario, climate change may have given rise to an increasing occurrence of heat waves since the year 2000, which can cause heat stress to the general public, and potentially have detrimental health consequences. Heat waves are defined as three consecutive days with temperatures of 32 °C and above. Heat stress is the level of discomfort. A variety of heat stress indices have been proposed to measure heat stress (e.g., the heat stress index (HSI)), and has been shown to predict increases in morbidity and/or mortality rates in humans and other species. Maps visualizing the distribution of heat stress can provide information about related health risks and insight for control strategies. Information to inform heat wave preparedness models in Ontario was previously only available for major metropolitan areas. Hospitals in communities of fewer than 100,000 individuals were recruited for a pilot study by telephone. The number of people visiting the emergency room or 24-hour urgent care service was collected for a total of 27 days, covering three heat waves and six 3-day control periods from 2010-2012. The heat stress index was spatially predicted using data from 37 weather stations across Southern Ontario by geostatistical kriging. Poisson regression modeling was applied to determine the rate of increased number of emergency room visits in rural hospitals with respect to the HSI. During a heat wave, the average rate of emergency room visits was 1.11 times higher than during a control period (IRR = 1.11, CI95% (IRR) = (1.07,1.15), p ≤ 0.001). In a univariable model, HSI was not a significant predictor of emergency room visits, but when accounting for the confounding effect of a spatial trend polynomial in the hospital location coordinates, a one unit increase in HSI predicted an increase in daily emergency rooms visits by 0.4% (IRR = 1.004, CI95%(IRR) = (1.0005,1.007), p = 0.024) across the region. One high-risk cluster and no low risk

  4. Emergence of charge density waves and a pseudogap in single-layer TiTe2.

    PubMed

    Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C

    2017-09-11

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.

  5. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Huang, Jianbin; Luo, Yong; Zhao, Zongci; Xu, Ying

    2017-05-01

    Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961-2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.

  6. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    PubMed

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  7. Injury resulting from targeted violence: An emergency department perspective.

    PubMed

    Sivarajasingam, Vaseekaran; Read, Simon; Svobodova, Martina; Wight, Lucy; Shepherd, Jonathan

    2018-06-01

    Hate crimes - those perpetrated because of perceived difference, including disability, race, religion, sexual orientation or transgender status - have not been studied at the point of the victim's hospital emergency department (ED) use. To investigate the frequency, levels of physical harm and circumstances of targeted violence in those seeking treatment at EDs in three UK cities. In a multimethods study, face-to-face semi-structured interviews were conducted with 124 adult ED attenders with violent injuries. Victim and perpetrator socio-demographics were recorded. Patient narratives about perceived motives and circumstances were transcribed, uploaded onto NVivo for thematic analysis. Nearly a fifth (23, 18.5%) of the injured patients considered themselves to have been attacked by others motivated by hostility or prejudice to their 'difference' (targeted violence). Thematic analyses suggested these prejudices were to appearance (7 cases), racial tension (5 cases), territorial association (3 cases) and race, religious or sexual orientation (8 cases). According to victims, alcohol intoxication was particularly relevant in targeted violence (estimated reported frequency 90% and 56% for targeted and non-targeted violence, respectively). Our findings support a broader concept of hate victimisation and suggest that emergency room violence surveys could act as a community tension sensor and early warning system in this regard. Tackling alcohol misuse seems as important in this as in other forms of violence perpetration. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Observations of Running Penumbral Waves Emerging in a Sunspot

    NASA Astrophysics Data System (ADS)

    Priya, T. G.; Wenda, Cao; Jiangtao, Su; Jie, Chen; Xinjie, Mao; Yuanyong, Deng; Robert, Erdélyi

    2018-01-01

    We present results from the investigation of 5 minute umbral oscillations in a single-polarity sunspot of active region NOAA 12132. The spectra of TiO, Hα, and 304 Å are used for corresponding atmospheric heights from the photosphere to lower corona. Power spectrum analysis at the formation height of Hα – 0.6 Å to the Hα center resulted in the detection of 5 minute oscillation signals in intensity interpreted as running waves outside the umbral center, mostly with vertical magnetic field inclination >15°. A phase-speed filter is used to extract the running wave signals with speed v ph > 4 km s‑1, from the time series of Hα – 0.4 Å images, and found twenty-four 3 minute umbral oscillatory events in a duration of one hour. Interestingly, the initial emergence of the 3 minute umbral oscillatory events are noticed closer to or at umbral boundaries. These 3 minute umbral oscillatory events are observed for the first time as propagating from a fraction of preceding running penumbral waves (RPWs). These fractional wavefronts rapidly separate from RPWs and move toward the umbral center, wherein they expand radially outwards suggesting the beginning of a new umbral oscillatory event. We found that most of these umbral oscillatory events develop further into RPWs. We speculate that the waveguides of running waves are twisted in spiral structures and hence the wavefronts are first seen at high latitudes of umbral boundaries and later at lower latitudes of the umbral center.

  9. Resource implications of a national health target: The New Zealand experience of a Shorter Stays in Emergency Departments target.

    PubMed

    Jones, Peter; Sopina, Elizaveta; Ashton, Toni

    2014-12-01

    The Shorter Stays in Emergency Departments health target was introduced in New Zealand in 2009. District Health Boards (DHBs) are expected to meet the target with no additional funding or incentives. The costs of implementing such targets have not previously been studied. A survey of clinical/service managers in ED throughout New Zealand determined the type and cost of resources used for the target. Responses to the target were classified according to their impact in ED, the hospital and the community. Quantifiable resource changes were assigned a financial value and grouped into categories: structure (facilities/beds), staff and processes. Simple statistics were used to describe the data, and the correlation between expenditure and target performance was determined. There was 100% response to the survey. Most DHBs reported some expenditure specifically on the target, with estimated total expenditure of over NZ$52 m. The majority of expenditure occurred in ED (60.8%) and hospital (38.7%) with little spent in the community. New staff accounted for 76.5% of expenditure. Per capita expenditure in the ED was associated with improved target performance (r = 0.48, P = 0.03), whereas expenditure in the hospital was not (r = 0.08, P = 0.75). The fact that estimated expenditure on the target was over $50 million without additional funding suggests that DHBs were able to make savings through improved efficiencies and/or that funds were reallocated from other services. The majority of expenditure occurred in the ED. Most of the funds were spent on staff, and this was associated with improved target performance. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  10. Travelling waves in somitogenesis: Collective cellular properties emerge from time-delayed juxtacrine oscillation coupling.

    PubMed

    Tomka, Tomas; Iber, Dagmar; Boareto, Marcelo

    2018-04-24

    The sculpturing of the vertebrate body plan into segments begins with the sequential formation of somites in the presomitic mesoderm (PSM). The rhythmicity of this process is controlled by travelling waves of gene expression. These kinetic waves emerge from coupled cellular oscillators and sweep across the PSM. In zebrafish, the oscillations are driven by autorepression of her genes and are synchronized via Notch signalling. Mathematical modelling has played an important role in explaining how collective properties emerge from the molecular interactions. Increasingly more quantitative experimental data permits the validation of those mathematical models, yet leads to increasingly more complex model formulations that hamper an intuitive understanding of the underlying mechanisms. Here, we review previous efforts, and design a mechanistic model of the her1 oscillator, which represents the experimentally viable her7;hes6 double mutant. This genetically simplified system is ideally suited to conceptually recapitulate oscillatory entrainment and travelling wave formation, and to highlight open questions. It shows that three key parameters, the autorepression delay, the juxtacrine coupling delay, and the coupling strength, are sufficient to understand the emergence of the collective period, the collective amplitude, and the synchronization of neighbouring Her1 oscillators. Moreover, two spatiotemporal time delay gradients, in the autorepression and in the juxtacrine signalling, are required to explain the collective oscillatory dynamics and synchrony of PSM cells. The highlighted developmental principles likely apply more generally to other developmental processes, including neurogenesis and angiogenesis. Copyright © 2018. Published by Elsevier Ltd.

  11. Wave Reflection and Loss Characteristics of an Emerged Quarter Circle Breakwater with Varying Seaside Perforations

    NASA Astrophysics Data System (ADS)

    Binumol, S.; Rao, Subba; Hegde, Arkal Vittal

    2017-09-01

    Breakwaters are one of the most important harbour structures constructed to withstand and dissipate the dynamic energy due to the action of the waves. Due to fast growing need of the universe and advances in technology different types of breakwaters are being developed. Quarter circle breakwater is a new type of breakwater emerged from semi circular breakwater and the first model was developed in Peoples Republic of China (2006). Quarter circle breakwater with perforations posses merits of caisson as well as perforated breakwaters such as low weight, requires less materials, suited for poor soil conditions, easily transported, handled and placed at the site, aesthetically pleasing, cost effective, eco-friendly and stable. Therefore it is necessary to carry out detailed studies on hydrodynamic characteristics to investigate the suitability and applicability of various types of quarter circle breakwaters. The present study investigates the wave reflection and loss characteristics of an emerged seaside perforated quarter circle breakwater of radius 55 cm and with varying ratios of spacing to diameter of perforations, for different water depths and wave conditions. The tests were conducted in the two-dimensional monochromatic wave flume available in Marine Structures laboratory of Department of Applied Mechanics and Hydraulics of National Institute of Technology, Surathkal, Karnataka, India. The results were plotted as non-dimensional graphs and it was observed that the reflection coefficient increases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth. For a constant water depth, wave reflection increases with increase in ratio of spacing to diameter of perforations. It was also found that the loss coefficient decreases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth, and ratio of spacing to diameter of perforations.

  12. Target contrast considerations in millimeter wave radiometry for airborne navigation

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1971-01-01

    Target signal requirements for aircraft navigation systems that use radiometric receivers which map thermally emitted power radiated by terrain or power radiated by ground-based beacons are discussed. For selected millimeter wavelength bands, microwaves suffer relatively little degradation by absorption or scattering on passage through the atmosphere, despite extreme weather variations. Interest centers on 8-millimeter waves because of component availability, portability (small size), high image resolution, and all-weather capability at this wavelength. The idea of radiometric airborne navigation is introduced. Elements of radiometry, terrain radiation, and atmospheric transmission characteristics are reviewed. Data pertaining to these elements at 8 mm wavelength are collected. Calculation of radiometric contrasts is discussed for some simple models of terrain targets.

  13. Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.

    2017-10-01

    We experimentally investigate the fast (< 1 {ps}) isochoric heating of multi-layer metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (< 1 {{J}}), the early-time high pressures and associated gradients launch inwards a strong compression wave developing over ≳ 10 ps into a ≈ 140 {Mbar} blast wave, according to hydrodynamic simulations, consistent with our measurements. These experimental and numerical findings pave the way to a short-pulse-laser-based platform dedicated to high-energy-density physics studies.

  14. Investigation of Slow-wave Activity Saturation during Surgical Anesthesia Reveals a Signature of Neural Inertia in Humans.

    PubMed

    Warnaby, Catherine E; Sleigh, Jamie W; Hight, Darren; Jbabdi, Saad; Tracey, Irene

    2017-10-01

    Previously, we showed experimentally that saturation of slow-wave activity provides a potentially individualized neurophysiologic endpoint for perception loss during anesthesia. Furthermore, it is clear that induction and emergence from anesthesia are not symmetrically reversible processes. The observed hysteresis is potentially underpinned by a neural inertia mechanism as proposed in animal studies. In an advanced secondary analysis of 393 individual electroencephalographic data sets, we used slow-wave activity dose-response relationships to parameterize slow-wave activity saturation during induction and emergence from surgical anesthesia. We determined whether neural inertia exists in humans by comparing slow-wave activity dose responses on induction and emergence. Slow-wave activity saturation occurs for different anesthetics and when opioids and muscle relaxants are used during surgery. There was wide interpatient variability in the hypnotic concentrations required to achieve slow-wave activity saturation. Age negatively correlated with power at slow-wave activity saturation. On emergence, we observed abrupt decreases in slow-wave activity dose responses coincident with recovery of behavioral responsiveness in ~33% individuals. These patients are more likely to have lower power at slow-wave activity saturation, be older, and suffer from short-term confusion on emergence. Slow-wave activity saturation during surgical anesthesia implies that large variability in dosing is required to achieve a targeted potential loss of perception in individual patients. A signature for neural inertia in humans is the maintenance of slow-wave activity even in the presence of very-low hypnotic concentrations during emergence from anesthesia.

  15. The National Emergency Access Target (NEAT) and the 4-hour rule: time to review the target.

    PubMed

    Sullivan, Clair; Staib, Andrew; Khanna, Sankalp; Good, Norm M; Boyle, Justin; Cattell, Rohan; Heiniger, Liam; Griffin, Bronwyn R; Bell, Anthony Jr; Lind, James; Scott, Ian A

    2016-05-16

    We explored the relationship between the National Emergency Access Target (NEAT) compliance rate, defined as the proportion of patients admitted or discharged from emergency departments (EDs) within 4 hours of presentation, and the risk-adjusted in-hospital mortality of patients admitted to hospital acutely from EDs. Retrospective observational study of all de-identified episodes of care involving patients who presented acutely to the EDs of 59 Australian hospitals between 1 July 2010 and 30 June 2014. The relationship between the risk-adjusted mortality of inpatients admitted acutely from EDs (the emergency hospital standardised mortality ratio [eHSMR]: the ratio of the numbers of observed to expected deaths) and NEAT compliance rates for all presenting patients (total NEAT) and admitted patients (admitted NEAT). ED and inpatient data were aggregated for 12.5 million ED episodes of care and 11.6 million inpatient episodes of care. A highly significant (P < 0.001) linear, inverse relationship between eHSMR and each of total and admitted NEAT compliance rates was found; eHSMR declined to a nadir of 73 as total and admitted NEAT compliance rates rose to about 83% and 65% respectively. Sensitivity analyses found no confounding by the inclusion of palliative care and/or short-stay patients. As NEAT compliance rates increased, in-hospital mortality of emergency admissions declined, although this direct inverse relationship is lost once total and admitted NEAT compliance rates exceed certain levels. This inverse association between NEAT compliance rates and in-hospital mortality should be considered when formulating targets for access to emergency care.

  16. Two-dimensional topological superconducting phases emerged from d-wave superconductors in proximity to antiferromagnets

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Yi; Wang, Ziqiang; Zhang, Guang-Ming

    2017-05-01

    Motivated by the recent observations of nodeless superconductivity in the monolayer CuO2 grown on the Bi2Sr2CaCu2O8+δ substrates, we study the two-dimensional superconducting (SC) phases described by the two-dimensional t\\text-J model in proximity to an antiferromagnetic (AF) insulator. We found that i) the nodal d-wave SC state can be driven via a continuous transition into a nodeless d-wave pairing state by the proximity-induced AF field. ii) The energetically favorable pairing states in the strong field regime have extended s-wave symmetry and can be nodal or nodeless. iii) Between the pure d-wave and s-wave paired phases, there emerge two topologically distinct SC phases with (s+\\text{i}d) symmetry, i.e., the weak and strong pairing phases, and the weak pairing phase is found to be a Z 2 topological superconductor protected by valley symmetry, exhibiting robust gapless nonchiral edge modes. These findings strongly suggest that the high-T c superconductors in proximity to antiferromagnets can realize fully gapped symmetry-protected topological SC.

  17. Anti-Obesity Pharmacotherapy: New Drugs and Emerging Targets

    PubMed Central

    Kim, Gilbert W.; Lin, Jieru E.; Blomain, Erik S.; Waldman, Scott A.

    2014-01-01

    Obesity is a growing pandemic and related health and economic costs are staggering. Pharmacotherapy partnered with lifestyle modifications form the core of current strategies to reduce the burden of this disease and its sequelae. However, therapies targeting weight loss have a significant history of safety risks, including cardiovascular and psychiatric events. Here, evolving strategies for developing anti-obesity therapies, including targets, mechanisms, and developmental status are highlighted. Progress in this field is underscored by Belviq® (lorcaserin) and Qsymia® (phentermine/topiramate), the first agents in more than 10 years to achieve regulatory approval for chronic management weight in obese patients. On the horizon, novel insights in metabolism and energy homeostasis reveal cGMP signaling circuits as emerging targets for anti-obesity pharmacotherapy. These innovations in molecular discovery may elegantly align with practical off-the-shelf approaches leveraging existing approved drugs that modulate cGMP levels for the management of obesity. PMID:24105257

  18. Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate.

    PubMed

    Mordant, Nicolas; Miquel, Benjamin

    2017-10-01

    We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.

  19. Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate

    NASA Astrophysics Data System (ADS)

    Mordant, Nicolas; Miquel, Benjamin

    2017-10-01

    We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.

  20. Emerging targets in lipid-based therapy☆

    PubMed Central

    Tucker, Stephanie C.; Honn, Kenneth V.

    2013-01-01

    The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to “biomarkers” does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery. PMID:23261527

  1. Simulation of sea surface wave influence on small target detection with airborne laser depth sounding.

    PubMed

    Tulldahl, H Michael; Steinvall, K Ove

    2004-04-20

    A theoretical model for simulation of airborne depth-sounding lidar is presented with the purpose of analyzing the influence from water surface waves on the ability to detect 1-m3 targets placed on the sea bottom. Although water clarity is the main limitation, sea surface waves can significantly affect the detectability. The detection probability for a target at a 9-m depth can be above 90% at 1-m/s wind and below 80% at 6-m/s wind for the same water clarity. The simulation model contains both numerical and analytical components. Simulated data are compared with measured data and give realistic results for bottom depths between 3 and 10 m.

  2. The 2006 California Heat Wave: Impacts on Hospitalizations and Emergency Department Visits

    PubMed Central

    Knowlton, Kim; Rotkin-Ellman, Miriam; King, Galatea; Margolis, Helene G.; Smith, Daniel; Solomon, Gina; Trent, Roger; English, Paul

    2009-01-01

    Background Climate models project that heat waves will increase in frequency and severity. Despite many studies of mortality from heat waves, few studies have examined morbidity. Objectives In this study we investigated whether any age or race/ethnicity groups experienced increased hospitalizations and emergency department (ED) visits overall or for selected illnesses during the 2006 California heat wave. Methods We aggregated county-level hospitalizations and ED visits for all causes and for 10 cause groups into six geographic regions of California. We calculated excess morbidity and rate ratios (RRs) during the heat wave (15 July to 1 August 2006) and compared these data with those of a reference period (8–14 July and 12–22 August 2006). Results During the heat wave, 16,166 excess ED visits and 1,182 excess hospitalizations occurred statewide. ED visits for heat-related causes increased across the state [RR = 6.30; 95% confidence interval (CI), 5.67–7.01], especially in the Central Coast region, which includes San Francisco. Children (0–4 years of age) and the elderly (≥ 65 years of age) were at greatest risk. ED visits also showed significant increases for acute renal failure, cardiovascular diseases, diabetes, electrolyte imbalance, and nephritis. We observed significantly elevated RRs for hospitalizations for heat-related illnesses (RR = 10.15; 95% CI, 7.79–13.43), acute renal failure, electrolyte imbalance, and nephritis. Conclusions The 2006 California heat wave had a substantial effect on morbidity, including regions with relatively modest temperatures. This suggests that population acclimatization and adaptive capacity influenced risk. By better understanding these impacts and population vulnerabilities, local communities can improve heat wave preparedness to cope with a globally warming future. PMID:19165388

  3. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors.

    PubMed

    Chaturvedi, Madhu; Schilling, Justin; Beautrait, Alexandre; Bouvier, Michel; Benovic, Jeffrey L; Shukla, Arun K

    2018-05-04

    G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Emergency department access targets and the older patient: a retrospective cohort study of emergency department presentations by people living in residential aged care facilities.

    PubMed

    Street, Maryann; Marriott, Jonathon R; Livingston, Patricia M

    2012-11-01

    There is limited research on the effect of emergency access targets on health outcomes for older patients from Residential Aged Care Facilities. The aims were to: (1) identify length of stay for Residential Aged Care patients relative to access targets; and (2) examine hospital admission rates, readmission rates, inpatient costs and mortality. Retrospective cohort study of all emergency presentations for Residential Aged Care patients in 2009 at one Australian metropolitan health service. The 4637 emergency presentations by 3184 Residential Aged Care patients in 2009 represented 3.4% of all emergency presentations. Mean length of stay was 7.9 hours (SD=4.5 hours); 84% of Residential Aged Care patients remained in the Emergency Department longer than four hours. Admitted patients were 3.6 times more likely to spend more than eight hours in the Emergency Department compared with those not admitted (p<0.001). Patients in the urgent triage category were 9.5 times more likely to spend more than eight hours in the Emergency Department compared to patients triaged as non-urgent (p<0.001). Inpatient costs were associated with length of admission and median cost per day was $AUD 1175. Few Residential Aged Care patients were discharged within the four hours access target. This has implications for health care outcomes and costs associated with providing emergency care for patients living in Residential Aged Care Facilities. Copyright © 2012 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Who breaches the four-hour emergency department wait time target? A retrospective analysis of 374,000 emergency department attendances between 2008 and 2013 at a type 1 emergency department in England.

    PubMed

    Bobrovitz, Niklas; Lasserson, Daniel S; Briggs, Adam D M

    2017-11-02

    The four-hour target is a key hospital emergency department performance indicator in England and one that drives the physical and organisational design of the ED. Some studies have identified time of presentation as a key factor affecting waiting times. Few studies have investigated other determinants of breaching the four-hour target. Therefore, our objective was to describe patterns of emergency department breaches of the four-hour wait time target and identify patients at highest risk of breaching. This was a retrospective cohort study of a large type 1 Emergency department at an NHS teaching hospital in Oxford, England. We analysed anonymised individual level patient data for 378,873 emergency department attendances, representing all attendances between April 2008 and April 2013. We examined patient characteristics and emergency department presentation circumstances associated with the highest likelihood of breaching the four-hour wait time target. We used 374,459 complete cases for analysis. In total, 8.3% of all patients breached the four-hour wait time target. The main determinants of patients breaching the four-hour wait time target were hour of arrival to the ED, day of the week, patient age, ED referral source, and the types of investigations patients receive (p < 0.01 for all associations). Patients most likely to breach the four-hour target were older, presented at night, presented on Monday, received multiple types of investigation in the emergency department, and were not self-referred (p < 0.01 for all associations). Patients attending from October to February had a higher odds of breaching compared to those attending from March to September (OR 1.63, 95% CI 1.59 to 1.66). There are a number of independent patient and circumstantial factors associated with the probability of breaching the four-hour ED wait time target including patient age, ED referral source, the types of investigations patients receive, as well as the hour, day, and month of

  6. Emergence of charge density waves and a pseudogap in single-layer TiTe 2

    DOE PAGES

    Chen, P.; Pai, Woei Wu; Chan, Y. -H.; ...

    2017-09-11

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less

  7. Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012.

    PubMed

    Chen, Tianqi; Sarnat, Stefanie E; Grundstein, Andrew J; Winquist, Andrea; Chang, Howard H

    2017-05-31

    Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves' impact on population morbidity, such as emergency department (ED) visits. We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993-2012. Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945-2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03-1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02-1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00-1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44.

  8. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves.

    PubMed

    Marano, Francesca; Rinella, Letizia; Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D'Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect.

  9. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves

    PubMed Central

    Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D’Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect. PMID:28002459

  10. Pressure waves in liquid mercury target from pulsed heat loads and the possible way controlling their effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, L.; Skala, K.

    1996-06-01

    In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded themore » design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.« less

  11. National targets, process transformation and local consequences in an NHS emergency department (ED): a qualitative study

    PubMed Central

    2014-01-01

    Background In the attempt to reduce waiting times in emergency departments, various national health services have used benchmarking and the optimisation of patient flows. The aim of this study was to examine staff attitudes and experience of providing emergency care following the introduction of a 4 hour wait target, focusing on clinical, organisational and spatial issues. Methods A qualitative research design was used and semi-structured interviews were conducted with 28 clinical, managerial and administrative staff members working in an inner-city emergency department. A thematic analysis method was employed and NVivo 8 qualitative data analysis software was used to code and manage the emerging themes. Results The wait target came to regulate the individual and collective timescales of healthcare work. It has compartmentalised the previous unitary network of emergency department clinicians and their workspace. It has also speeded up clinical performance and patient throughput. It has disturbed professional hierarchies and facilitated the development of new professional roles. A new clinical information system complemented these reconfigurations by supporting advanced patient tracking, better awareness of time, and continuous, real-time management of emergency department staff. The interviewees had concerns that this target-oriented way of working forces them to have a less personal relationship with their patients. Conclusions The imposition of a wait-target in response to a perceived “crisis” of patients’ dissatisfaction led to the development of a new and sophisticated way of working in the emergency department, but with deep and unintended consequences. We show that there is a dynamic interrelation of the social and the technical in the complex environment of the ED. While the 4 hour wait target raised the profile of the emergency department in the hospital, the added pressure on clinicians has caused some concerns over the future of their

  12. Targeting smooth emergence: the effect site concentration of remifentanil for preventing cough during emergence during propofol-remifentanil anaesthesia for thyroid surgery.

    PubMed

    Lee, B; Lee, J-R; Na, S

    2009-06-01

    The administration of short-acting opioids can be a reliable and safe method to prevent coughing during emergence from anaesthesia but the proper dose or effect site concentration of remifentanil for this purpose has not been reported. We therefore investigated the effect site concentration (Ce) of remifentanil for preventing cough during emergence from anaesthesia with propofol-remifentanil target-controlled infusion. Twenty-three ASA I-II grade female patients, aged 23-66 yr undergoing elective thyroidectomy were enrolled in this study. EC(50) and EC(95) of remifentanil for preventing cough were determined using Dixon's up-and-down method and probit analysis. Propofol effect site concentration at extubation, mean arterial pressure, and heart rate (HR) were compared in patients with smooth emergence and without smooth emergence. Three out of 11 patients with remifentanil Ce of 1.5 ng ml(-1) and all seven patients with Ce of 2.0 ng ml(-1) did not cough during emergence; the EC(50) of remifentanil that suppressed coughing was 1.46 ng ml(-1) by Dixon's up-and-down method, and EC(95) was 2.14 ng ml(-1) by probit analysis. Effect site concentration of propofol at awakening was similar in patients with a smooth emergence and those without smooth emergence, but HR and arterial pressure were higher in those who coughed during emergence. Clinically significant hypoventilation was not seen in any patient. We found that the EC(95) of effect site concentration of remifentanil to suppress coughing at emergence from anaesthesia was 2.14 ng ml(-1). Maintaining an established Ce of remifentanil is a reliable method of abolishing cough and thereby targeting smooth emergence from anaesthesia.

  13. Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels

    NASA Astrophysics Data System (ADS)

    Wu, Xinyi; Ma, Jun; Li, Fan; Jia, Ya

    2013-12-01

    Some experimental evidences show that spiral wave could be observed in the cortex of brain, and the propagation of this spiral wave plays an important role in signal communication as a pacemaker. The profile of spiral wave generated in a numerical way is often perfect while the observed profile in experiments is not perfect and smooth. In this paper, formation and development of spiral wave in a regular network of Morris-Lecar neurons, which neurons are placed on nodes uniformly in a two-dimensional array and each node is coupled with nearest-neighbor type, are investigated by considering the effect of stochastic ion channels poisoning and channel noise. The formation and selection of spiral wave could be detected as follows. (1) External forcing currents with diversity are imposed on neurons in the network of excitatory neurons with nearest-neighbor connection, a target-like wave emerges and its potential mechanism is discussed; (2) artificial defects and local poisoned area are selected in the network to induce new wave to interact with the target wave; (3) spiral wave can be induced to occupy the network when the target wave is blocked by the artificial defects or poisoned area with regular border lines; (4) the stochastic poisoning effect is introduced by randomly modifying the border lines (areas) of specific regions in the network. It is found that spiral wave can be also developed to occupy the network under appropriate poisoning ratio. The process of growth for the poisoned area of ion channels poisoning is measured, the effect of channels noise is also investigated. It is confirmed that perfect spiral wave emerges in the network under gradient poisoning even if the channel noise is considered.

  14. Emerging Molecularly Targeted Therapies in Castration Refractory Prostate Cancer

    PubMed Central

    Patel, Jesal C.; Maughan, Benjamin L.; Agarwal, Archana M.; Batten, Julia A.; Zhang, Tian Y.; Agarwal, Neeraj

    2013-01-01

    Androgen deprivation therapy (ADT) with medical or surgical castration is the mainstay of therapy in men with metastatic prostate cancer. However, despite initial responses, almost all men eventually develop castration refractory metastatic prostate cancer (CRPC) and die of their disease. Over the last decade, it has been recognized that despite the failure of ADT, most prostate cancers maintain some dependence on androgen and/or androgen receptor (AR) signaling for proliferation. Furthermore, androgen independent molecular pathways have been identified as drivers of continued progression of CRPC. Subsequently, drugs have been developed targeting these pathways, many of which have received regulatory approval. Agents such as abiraterone, enzalutamide, orteronel (TAK-700), and ARN-509 target androgen signaling. Sipuleucel-T, ipilimumab, and tasquinimod augment immune-mediated tumor killing. Agents targeting classic tumorogenesis pathways including vascular endothelial growth factor, hepatocyte growth factor, insulin like growth factor-1, tumor suppressor, and those which regulate apoptosis and cell cycles are currently being developed. This paper aims to focus on emerging molecular pathways underlying progression of CRPC, and the drugs targeting these pathways, which have recently been approved or have reached advanced stages of development in either phase II or phase III clinical trials. PMID:23819055

  15. Precision targeting in guided munition using infrared sensor and millimeter wave radar

    NASA Astrophysics Data System (ADS)

    Sulochana, Sreeja; Hablani, Hari B.; Arya, Hemendra

    2016-07-01

    Conventional munitions are not guided with sensors and therefore miss the target, particularly if the target is mobile. The miss distance of these munitions can be decreased by incorporating sensors to detect the target and guide the munition during flight. This paper is concerned with a precision guided munition equipped with an infrared (IR) sensor and a millimeter wave radar (MmW). Three-dimensional flight of the munition and its pitch and yaw motion models are developed and simulated. The forward and lateral motion of a target tank on the ground is modeled as two independent second-order Gauss-Markov processes. To estimate the target location on the ground and the line-of-sight (LOS) rate to intercept it, an extended Kalman filter is composed whose state vector consists of cascaded state vectors of missile dynamics and target dynamics. The LOS angle measurement from the IR seeker is by centroiding the target image in 40 Hz. The centroid estimation of the images in the focal plane is at a frequency of 10 Hz. Every 10 Hz, centroids of four consecutive images are averaged, yielding a time-averaged centroid, implying some measurement delay. The miss distance achieved by including image processing delays is 1.45 m.

  16. Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012

    PubMed Central

    Chen, Tianqi; Sarnat, Stefanie E.; Grundstein, Andrew J.; Winquist, Andrea

    2017-01-01

    Background: Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves’ impact on population morbidity, such as emergency department (ED) visits. Objectives: We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993–2012. Methods: Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of ≥2 consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945–2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Results: Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03–1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02–1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00–1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Conclusions: Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44 PMID:28599264

  17. Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiyuan; Gao, Hua; Gao, Lu; Xing, Jie

    2014-11-01

    Acoustic waves generated in nanosecond pulsed-laser ablation of a solid target in both air and water-confined environments were measured experimentally. It was found that the amplitude of the acoustic wave tended to decrease with an increase in water thickness. The waves were analyzed by means of fast Fourier transform. It was shown that there are several frequency components in the acoustic waves with the dominant frequency shifting from high frequency to low frequency as the thickness of the water layer increases. Furthermore, strong acoustic pressure led to enhancement of the coupling of the laser energy to the target in laser plasma propulsion.

  18. Follicular wave emergence in Santa Inês ewes subjected to long-term, progesterone-based estrous synchronization protocols at different times of the year.

    PubMed

    Oliveira, M E F; Ayres, H; Oliveira, L G; Oba, E; Kridli, R T; Bartlewski, P M; Fonseca, J F; Bicudo, S D; Vicente, W R R

    2016-11-01

    This study was conducted to document the pattern of antral follicular wave emergence throughout the 14-day, progesterone (P 4 )-based estrous synchronization protocol in ewes that were maintained in subtropical conditions, during the period of increasing day lengths (ID), decreasing day lengths (DD), and the transitional period (TP). In addition, the influence of ovarian status (i.e., size of ovarian antral follicles and the presence of corpora lutea) at the outset of P 4 treatment on ensuing ovarian follicular wave development was examined. Sexually mature Santa Inês ewes (n=70) were subjected to one of the two estrous synchronization protocols in the three seasons. On Day 0, the ewes received an i.m. injection of prostaglandin F 2α and an intravaginal P 4 -releasing device that remained in place for 14days (G-1CIDR) or was replaced on Day 7 (G-2CIDR). Daily ultrasonography of ovaries was conducted from Days 0 to 15. Mean (±SEM) numbers of follicular waves per ewe were 3.7±0.1 and 3.6±0.1 for G-1CIDR and G-2CIDR (P>0.05). The number of emerging follicular waves was greater (P<0.05) during the ID period than during the TP and DD periods (4.0±0.1, 3.4±0.1 and 3.6±0.1, respectively). The presence of medium-sized antral follicles (4.0 to 5.75mm) in the absence of corpora lutea at the time of CIDR insertion tended to advance follicular wave emergence. Although the long-term P 4 treatment was not originally designed to synchronize follicular waves, there was a distinctive pattern of follicular wave dynamics during the period of application of CIDRs that was affected mainly by the number of emerging follicular waves and ovarian status at CIDR insertion. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Emerging therapeutic targets in metastatic progression: a focus on breast cancer

    PubMed Central

    Li, Zhuo; Kang, Yibin

    2016-01-01

    Metastasis is the underlying cause of death for the majority of breast cancer patients. Despite significant advances in recent years in basic research and clinical development, therapies that specifically target metastatic breast cancer remain inadequate, and represents the single greatest obstacle to reducing mortality of late-stage breast cancer. Recent efforts have leveraged genomic analysis of breast cancer and molecular dissection of tumor-stromal cross-talk to uncover a number of promising candidates for targeted treatment of metastatic breast cancer. Rational combinations of therapeutic agents targeting tumor-intrinsic properties and microenvironmental components provide a promising strategy to develop precision treatments with higher specificity and less toxicity. In this review, we discuss the emerging therapeutic targets in breast cancer metastasis, from tumor-intrinsic pathways to those that involve the host tissue components, including the immune system. PMID:27000769

  20. Print media representations of UK Accident and Emergency treatment targets: Winter 2014-2015.

    PubMed

    Grant, Aimee; Hoyle, Louise

    2017-12-01

    To undertake an analysis of UK national daily newspaper coverage of accident and emergency treatment targets, in order to understand whether the media could be seen to be creating a scandal. Emergency department treatment targets have become common in developed countries. In the UK, hospitals are required to treat and discharge patients within four hours, and statistics are published daily. Breaches of targets are regularly reported by the UK print media. Exploratory research of tabloid newspaper articles that reported on four-hour treatment targets in the UK during a seven-month period over the winter of 2014-2015 (n = 1,317). An interpretivist thematic approach was used during analysis. The main "problem" identified by newspapers was the failure to meet the target, rather than negative effects on patient care (where they existed). Proposed solutions were diverse. Many articles did not describe who was to blame for the failure. We conclude that the media created a feeling of scandal, and hypothesise that this is related to political reasons and the availability of data on a daily basis. It is important for nursing staff to understand the influence of the media on patients and how stories are reported. © 2017 John Wiley & Sons Ltd.

  1. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2.

    PubMed

    Abou-Kheir, Wassim; Isaac, Beth; Yamaguchi, Hideki; Cox, Dianne

    2008-02-01

    Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous (WAVE) proteins play a major role in Rac-induced actin dynamics, but Rac does not bind directly to WAVE proteins. It has been proposed that either the insulin receptor substrate protein 53 (IRSp53) or a complex of proteins containing Abelson interactor protein 1 (Abi1) mediates the interaction of WAVE2 and Rac. Depletion of endogenous IRSp53 by RNA-mediated interference (RNAi) in a RAW/LR5 macrophage cell line resulted in a significant reduction of Rac1Q61L-induced surface ruffles and colony-stimulating factor 1 (CSF-1)-induced actin polymerization, protrusion and cell migration. However, IRSp53 was not essential for Fcgamma-R-mediated phagocytosis, formation of podosomes or for formation of Cdc42V12-induced filopodia. IRSp53 was found to be present in an immunoprecipitable complex with WAVE2 and Abi1 in a Rac1-activation-dependent manner in RAW/LR5 cells in vivo. Importantly, reduction of endogenous IRSp53 or expression of IRSp53 lacking the WAVE2-binding site (IRSp53DeltaSH3) resulted in a significant reduction in the association of Rac1 with WAVE2 and Abi1, indicating that the association of Rac1 with WAVE2 and Abi1 is IRSp53 dependent. While it has been proposed that WAVE2 activity is regulated by membrane recruitment, membrane targeting of WAVE2 in RAW/LR5 and Cos-7 cells did not induce actin polymerization or protrusion, suggesting that membrane recruitment was insufficient for regulation of WAVE2. Combined, these data suggest that IRSp53 links Rac1 to WAVE2 in vivo and its function is crucial for production of CSF-1-induced F-actin-rich protrusions and cell migration in macrophages. This study indicates that Rac1, along with IRSp53 and Abi1, is involved in a more complex and tight regulation of WAVE2 than one operating solely through membrane localization.

  2. Membrane targeting of WAVE2 is not sufficient for WAVE2 dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2*

    PubMed Central

    Abou-Kheir, Wassim; Isaac, Beth; Yamaguchi, Hideki; Cox, Dianne

    2009-01-01

    Summary Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous (WAVE) proteins play a major role in Rac-induced actin dynamics, but Rac does not bind directly to WAVE proteins. It has been proposed that either the insulin receptor substrate protein 53 (IRSp53) or a complex of proteins containing Abelson interactor protein 1 (Abi1) mediate the interaction of WAVE2 and Rac. Depletion of endogenous IRSp53 by RNA-mediated interference (RNAi) in a RAW/LR5 macrophage cell line resulted in a significant reduction of Rac1Q61L-induced surface ruffles and colony stimulating factor-1 (CSF-1)-induced actin polymerization, protrusion, and cell migration. However, IRSp53 was not essential for Fcγ-R-mediated phagocytosis, formation of podosomes or for Cdc42V12-induced filopodia. IRSp53 was found to be present in an immunoprecipitatable complex with WAVE2 and Abi1 in a Rac1 activation-dependent manner in RAW/LR5 cells in vivo. Importantly, reduction of endogenous IRSp53 or expression of IRSp53 lacking the WAVE2 binding site (IRSp53ΔSH3) resulted in a significant reduction in the association of Rac1 with WAVE2 and Abi1, indicating that the association of Rac1 with WAVE2 and Abi1 is IRSp53 dependent. While it has been proposed that WAVE2 activity is regulated by membrane recruitment, membrane targeting of WAVE2 in RAW/LR5 and Cos-7 cells did not induce actin polymerization or protrusion suggesting thatt membrane recruitment was insufficient for WAVE2 regulation. Altogether, these data suggest that IRSp53 links Rac1 to WAVE2 in vivo and its function is crucial for CSF-1-induced F-actin rich protrusions and cell migration in macrophages. This study indicates that Rac1, along with IRSp53 and Abi1, is involved in a more complex and tight regulation of WAVE2 than solely through membrane localization. PMID:18198193

  3. Wave Function and Emergent SU(2) Symmetry in the νT=1 Quantum Hall Bilayer

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Zhang, Shou-Cheng

    2018-02-01

    We propose a trial wave function for the quantum Hall bilayer system of total filling factor νT=1 at a layer distance d to magnetic length ℓ ratio d /ℓ=κc 1≈1.1 , where the lowest charged excitation is known to have a level crossing. The wave function has two-particle correlations, which fit well with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free excitons formed by composite bosons and anticomposite bosons in different layers. We show the free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at d /ℓ=κc 1, which leads to the level crossing in low-lying charged excitations. We further show the overlap between the trial wave function, and the ground state of a small size exact diagonalization is peaked near d /ℓ=κc 1, which supports our theory.

  4. Multi Ray Model for Near-Ground Millimeter Wave Radar

    PubMed Central

    Litvak, Boris; Pinhasi, Yosef

    2017-01-01

    A quasi-optical multi-ray model for a short-range millimeter wave radar is presented. The model considers multi-path effects emerging while multiple rays are scattered from the target and reflected to the radar receiver. Among the examined scenarios, the special case of grazing ground reflections is analyzed. Such a case becomes relevant when short range anti-collision radars are employed in vehicles. Such radars operate at millimeter wavelengths, and are aimed at the detection of targets located several tens of meters from the transmitter. Reflections from the road are expected to play a role in the received signal strength, together with the direct line-of-sight beams illuminated and scattered from the target. The model is demonstrated experimentally using radar operating in the W-band. Controlled measurements were done to distinguish between several scattering target features. The experimental setup was designed to imitate vehicle near-ground millimeter wave radars operating in vehicles. A comparison between analytical calculations and experimental results is made and discussed. PMID:28867776

  5. Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach.

    PubMed

    Malhi, Sarandeep; Gu, Xiaochen

    2015-07-01

    Cancer stem cells (CSCs) play an important role in the development of drug resistance, metastasis and recurrence. Current conventional therapies do not commonly target CSCs. Nanocarrier-based delivery systems targeting cancer cells have entered a new era of treatment, where specific targeting to CSCs may offer superior outcomes to efficient cancer therapies. This review discusses the involvement of CSCs in tumor progression and relevant mechanisms associated with CSCs resistance to conventional chemo- and radio-therapies. It highlights CSCs-targeted strategies that are either under evaluation or could be explored in the near future, with a focus on various nanocarrier-based delivery systems of drugs and nucleic acids to CSCs. Novel nanocarriers targeting CSCs are presented in a cancer-specific way to provide a current perspective on anti-CSCs therapeutics. The field of CSCs-targeted therapeutics is still emerging with a few small molecules and macromolecules currently proving efficacy in clinical trials. However considering the complexities of CSCs and existing delivery difficulties in conventional anticancer therapies, CSC-specific delivery systems would face tremendous technical and clinical challenges. Nanocarrier-based approaches have demonstrated significant potential in specific drug delivery and targeting; their success in CSCs-targeted drug delivery would not only significantly enhance anticancer treatment but also address current difficulties associated with cancer resistance, metastasis and recurrence.

  6. Wave Function and Emergent SU(2) Symmetry in the ν_{T}=1 Quantum Hall Bilayer.

    PubMed

    Lian, Biao; Zhang, Shou-Cheng

    2018-02-16

    We propose a trial wave function for the quantum Hall bilayer system of total filling factor ν_{T}=1 at a layer distance d to magnetic length ℓ ratio d/ℓ=κ_{c1}≈1.1, where the lowest charged excitation is known to have a level crossing. The wave function has two-particle correlations, which fit well with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free excitons formed by composite bosons and anticomposite bosons in different layers. We show the free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at d/ℓ=κ_{c1}, which leads to the level crossing in low-lying charged excitations. We further show the overlap between the trial wave function, and the ground state of a small size exact diagonalization is peaked near d/ℓ=κ_{c1}, which supports our theory.

  7. Photoelectron wave function in photoionization: Plane wave or Coulomb wave? [Does photoionization of neutral targets produce Coulomb or plane waves?

    DOE PAGES

    Gozem, Samer; Gunina, Anastasia O.; Ichino, Takatoshi; ...

    2015-10-28

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectronmore » wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. Finally, the results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.« less

  8. First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-11-01

    We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.

  9. Central and Peripheral Molecular Targets for Anti-Obesity Pharmacotherapy

    PubMed Central

    Valentino, Michael A.; Lin, Jieru E.; Waldman, Scott A.

    2011-01-01

    Obesity has emerged as one of the principle worldwide health concerns of the modern era, and there exists a tremendous unmet clinical need for safe and effective therapies to combat this global pandemic. The prevalence of obesity and its associated co-morbidities, including cardiovascular and metabolic diseases, has focused drug discovery and development on generating effective modalities for the treatment and prevention of obesity. Early efforts in the field of obesity pharmacotherapy centered on agents with indeterminate mechanisms of action producing treatment paradigms characterized by significant off-target effects. During the past two decades, new insights have been made into the physiologic regulation of energy balance and the subordinate central and peripheral circuits coordinating appetite, metabolism, and lipogenesis. These studies have revealed previously unrecognized molecular targets for controlling appetite and managing weight from which has emerged a new wave of targeted pharmacotherapies to prevent and control obesity. PMID:20445536

  10. Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases

    PubMed Central

    Geldenhuys, Werner J.; Lin, Li; Darvesh, Altaf S.; Sadana, Prabodh

    2017-01-01

    Although statins and other pharmacological approaches have improved the management of lipid abnormalities, there exists a need for newer treatment modalities especially for the management of hypertriglyceridemia. Lipoprotein lipase (LPL), by promoting hydrolytic cleavage of the triglyceride core of lipoproteins, is a crucial node in the management of plasma lipid levels. Although LPL expression and activity modulation is observed as a pleiotropic action of some the commonly used lipid lowering drugs, the deliberate development of drugs targeting LPL has not occurred yet. In this review, we present the biology of LPL, highlight the LPL modulation property of currently used drugs and review the novel emerging approaches to target LPL. PMID:27771332

  11. Evanescent acoustic waves: Production and scattering by resonant targets

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.

    Small targets with acoustic resonances which may be excited by incident acoustic planewaves are shown to possess high-Q modes ("organ-pipe" modes) which may be suitable for ocean-based calibration and ranging purposes. The modes are modeled using a double point-source model; this, along with acoustic reciprocity and inversion symmetry, is shown to adequately model the backscattering form functions of the modes at low frequencies. The backscattering form-functions are extended to apply to any bistatic acoustic experiment using the targets when the target response is dominated by the modes in question. An interface between two fluids which each approximate an unbounded half-space has been produced in the laboratory. The fluids have different sound speeds. When sound is incident on this interface at beyond the critical angle from within the first fluid, the second fluid is made to evince a region dominated by evanescent acoustic energy. Such a system is shown to be an possible laboratory-based proxy for a flat sediment bottom in the ocean, or sloped (unrippled) bottom in littoral environments. The evanescent sound field is characterized and shown to have complicated features despite the simplicity of its production. Notable among these features is the presence of dips in the soundfield amplitude, or "quasi-nulls". These are proposed to be extremely important when considering the return from ocean-based experiments. The soundfield features are also shown to be accurately predicted and characterized by wavenumber-integration software. The targets which exhibit organ-pipe modes in the free-field are shown to also be excited by the evanescent waves, and may be used as soundfield probes when the target returns are well characterized. Alternately, if the soundfield is well-known, the target parameters may be extracted from back- or bistatic-scattering experiments in evanescent fields. It is shown that the spatial decay rate as measured by a probe directly in the evanescent

  12. RGS17: an emerging therapeutic target for lung and prostate cancers

    PubMed Central

    Bodle, Christopher R; Mackie, Duncan I; Roman, David L

    2013-01-01

    Ligands for G-protein-coupled receptors (GPCRs) represent approximately 50% of currently marketed drugs. RGS proteins modulate heterotrimeric G proteins and, thus, GPCR signaling, by accelerating the intrinsic GTPase activity of the Gα subunit. Given the prevalence of GPCR targeted therapeutics and the role RGS proteins play in G protein signaling, some RGS proteins are emerging as targets in their own right. One such RGS protein is RGS17. Increased RGS17 expression in some prostate and lung cancers has been demonstrated to support cancer progression, while reduced expression of RGS17 can lead to development of chemotherapeutic resistance in ovarian cancer. High-throughput screening is a powerful tool for lead compound identification, and utilization of high-throughput technologies has led to the discovery of several RGS inhibitors, thus far. As screening technologies advance, the identification of novel lead compounds the subsequent development of targeted therapeutics appears promising. PMID:23734683

  13. Global emergency medicine journal club: social media responses to the march 2014 annals of emergency medicine journal club on targeted temperature management.

    PubMed

    Thoma, Brent; Rolston, Daniel; Lin, Michelle

    2014-08-01

    In March 2014, Annals of Emergency Medicine continued a successful collaboration with an academic Web site, Academic Life in Emergency Medicine (ALiEM), to host another Global Emergency Medicine Journal Club session featuring the 2013 New England Journal of Medicine article "Targeted Temperature Management at 33°C (91.4°F) Versus 36°C (96.8°F) After Cardiac Arrest" by Nielsen et al. This online journal club used Twitter conversations, a live videocast with the authors, and detailed discussions on the ALiEM Web site's comment section. This summary article details the community discussion, shared insights, and analytic data generated using this novel, multiplatform approach. Copyright © 2014 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  14. Emerging pathways and future targets for the molecular therapy of pancreatic cancer.

    PubMed

    Vaccaro, Vanja; Melisi, Davide; Bria, Emilio; Cuppone, Federica; Ciuffreda, Ludovica; Pino, Maria Simona; Gelibter, Alain; Tortora, Giampaolo; Cognetti, Francesco; Milella, Michele

    2011-10-01

    Pancreatic cancer treatment remains a challenge for clinicians and researchers. Despite undisputable advances in the comprehension of the molecular mechanisms underlying cancer development and progression, early disease detection and clinical management of patients has made little, if any, progress in the past 20 years. Clinical development of targeted agents directed against validated pathways, such as the EGF/EGF receptor axis, the mutant KRAS protein, MMPs, and VEGF-mediated angiogenesis, alone or in combination with gemcitabine-based standard chemotherapy, has been disappointing. This review explores the preclinical rationale for clinical approaches aimed at targeting the TGF-β, IGF, Hedgehog, Notch and NF-κB signaling pathways, to develop innovative therapeutic strategies for pancreatic cancer. Although some of the already clinically explored approaches (particularly EGFR and KRAS targeting) deserve further clinical consideration, by employing more innovative and creative clinical trial designs than the gemcitabine-targeted agent paradigm that has thus far invariably failed, the targeting of emerging and relatively unexplored signaling pathways holds great promise to increase our understanding of the complex molecular biology and to advance the clinical management of pancreatic cancer.

  15. RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.

    PubMed

    Zhang, Chao; Chen, Dong; Jiang, Xuefeng

    2017-11-13

    An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.

  16. High mode magnetohydrodynamic waves propagation in a twisted rotating jet emerging from a filament eruption

    NASA Astrophysics Data System (ADS)

    Zhelyazkov, Ivan; Chandra, Ramesh

    2018-05-01

    We study the conditions under which high mode magnetohydrodynamic (MHD) waves propagating on a rotating jet emerging from the filament eruption on 2013 April 10-11 can became unstable against the Kelvin-Helmholtz instability (KHI). The evolution of jet indicates the blob like structure at its boundary which could be one of the observable features of the KHI development. We model the jet as a twisted rotating axially moving magnetic flux tube and explore the propagation characteristics of the running MHD modes on the basis of dispersion relations derived in the framework of the ideal magnetohydrodynamics. It is established that unstable MHD waves with wavelengths in the range of 12-15 Mm and instability developing times from 1.5 to 2.6 min can be detected at the excitation of high mode MHD waves. The magnitude of the azimuthal mode number m crucially depends upon the twist of the internal magnetic field. It is found that at slightly twisted magnetic flux tube the appropriate azimuthal mode number is m = 16 while in the case of a moderately twisted flux tube it is equal to 18.

  17. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  18. Serum hormone concentrations and ovarian follicular wave emergence in Jilin sika deer (Cervus nippon hortulorum) after synchronization of estrous cycles.

    PubMed

    Chen, X M; Wei, H J; Yang, Y F; Xue, H L; Zhao, W G; Zhao, M

    2015-02-01

    The study was conducted to investigate the serum hormone concentrations and follicular dynamics present after synchronous treatment (CIDR) in female Jilin sika deer (n = 15) of estrous cycles. Blood samples were collected to analyze the FSH, LH, estradiol and progesterone during the estrous cycles. Manual transrectal ultrasonography examination was conducted at least thrice weekly to monitor the follicular wave. Ultrasonography showed that follicle development occurred in waves, and most estrous cycles in Jilin sika deer consist of one, two, or three waves. The largest follicles of the interwaves of two- and three-wave cycles were different (P < 0.05). The mean interovulatory interval was 15.0 ± 4.6 d. There was a surge in circulating FSH in two- and three-wave cycles. The emergence of the largest follicle was related to the peak of serum concentration of estradiol. Serum progesterone concentrations were not different between one- and three-wave cycles (P < 0.05). We concluded that FSH and estradiol concentration may have an important role in controlling follicular development, that the estrous cycle in Jilin sika deer is characterized by one, two, or three waves of follicular development after synchronization. Copyright © 2015. Published by Elsevier B.V.

  19. Risk perception of heat waves and its spatial variation in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Yang, Qianqi; Li, Jie; Chen, Jin; He, Ruoying; Zhang, Can; Chen, Kai; Dong, Steven Guanpeng; Liu, Yang

    2018-05-01

    The intensity, frequency, and duration of heat waves are expected to increase with climate change. In this study, we found a significant difference of public perceived effects of heat waves and trust in government among urban, suburban, and rural districts. Rural residents had a significant higher effect perception than urbanites and also showed stronger willingness to have medical insurance or regular physical examinations. Meanwhile, suburban residents had the lowest trust perception in government among these three districts, which may be due to suburban districts' unique social structure and complex social issues. Besides, we assessed the relationship between the factor effect and demographic variables. The results showed that urban respondents' effect perception was significantly related to heat wave experiences. Suburban respondents' effect perception was significantly related to age, income, and heat wave experiences. And rural respondents' effect perception was significantly related to income and chronic diseases. Based on our results, much more attention needs to be paid to rural districts. The government should strengthen infrastructure construction such as cooling centers, improve emergency response plans and mechanisms, and increase reserves of emergency supplies in rural districts. Also, targeted risk communication is of the equal importance to aid the policy-makers improving the relationship with the public and regaining the public's trust and support.

  20. Risk perception of heat waves and its spatial variation in Nanjing, China.

    PubMed

    Huang, Lei; Yang, Qianqi; Li, Jie; Chen, Jin; He, Ruoying; Zhang, Can; Chen, Kai; Dong, Steven Guanpeng; Liu, Yang

    2018-05-01

    The intensity, frequency, and duration of heat waves are expected to increase with climate change. In this study, we found a significant difference of public perceived effects of heat waves and trust in government among urban, suburban, and rural districts. Rural residents had a significant higher effect perception than urbanites and also showed stronger willingness to have medical insurance or regular physical examinations. Meanwhile, suburban residents had the lowest trust perception in government among these three districts, which may be due to suburban districts' unique social structure and complex social issues. Besides, we assessed the relationship between the factor effect and demographic variables. The results showed that urban respondents' effect perception was significantly related to heat wave experiences. Suburban respondents' effect perception was significantly related to age, income, and heat wave experiences. And rural respondents' effect perception was significantly related to income and chronic diseases. Based on our results, much more attention needs to be paid to rural districts. The government should strengthen infrastructure construction such as cooling centers, improve emergency response plans and mechanisms, and increase reserves of emergency supplies in rural districts. Also, targeted risk communication is of the equal importance to aid the policy-makers improving the relationship with the public and regaining the public's trust and support.

  1. Risk perception of heat waves and its spatial variation in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Yang, Qianqi; Li, Jie; Chen, Jin; He, Ruoying; Zhang, Can; Chen, Kai; Dong, Steven Guanpeng; Liu, Yang

    2017-12-01

    The intensity, frequency, and duration of heat waves are expected to increase with climate change. In this study, we found a significant difference of public perceived effects of heat waves and trust in government among urban, suburban, and rural districts. Rural residents had a significant higher effect perception than urbanites and also showed stronger willingness to have medical insurance or regular physical examinations. Meanwhile, suburban residents had the lowest trust perception in government among these three districts, which may be due to suburban districts' unique social structure and complex social issues. Besides, we assessed the relationship between the factor effect and demographic variables. The results showed that urban respondents' effect perception was significantly related to heat wave experiences. Suburban respondents' effect perception was significantly related to age, income, and heat wave experiences. And rural respondents' effect perception was significantly related to income and chronic diseases. Based on our results, much more attention needs to be paid to rural districts. The government should strengthen infrastructure construction such as cooling centers, improve emergency response plans and mechanisms, and increase reserves of emergency supplies in rural districts. Also, targeted risk communication is of the equal importance to aid the policy-makers improving the relationship with the public and regaining the public's trust and support.

  2. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics.

    PubMed

    Ubaldi, Massimo; Cannella, Nazzareno; Ciccocioppo, Roberto

    2016-01-01

    Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory. © 2016 Elsevier B.V. All rights reserved.

  3. Two-dimensional wave patterns of spreading depolarization: Retracting, re-entrant, and stationary waves

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Graf, Rudolf; Strong, Anthony J.; Dreier, Jens P.; Dahlem, Yuliya A.; Sieber, Michaela; Hanke, Wolfgang; Podoll, Klaus; Schöll, Eckehard

    2010-06-01

    We present spatio-temporal characteristics of spreading depolarizations (SD) in two experimental systems: retracting SD wave segments observed with intrinsic optical signals in chicken retina, and spontaneously occurring re-entrant SD waves that repeatedly spread across gyrencephalic feline cortex observed by laser speckle flowmetry. A mathematical framework of reaction-diffusion systems with augmented transmission capabilities is developed to explain the emergence and transitions between these patterns. Our prediction is that the observed patterns are reaction-diffusion patterns controlled and modulated by weak nonlocal coupling such as long-range, time-delayed, and global coupling. The described spatio-temporal characteristics of SD are of important clinical relevance under conditions of migraine and stroke. In stroke, the emergence of re-entrant SD waves is believed to worsen outcome. In migraine, retracting SD wave segments cause neurological symptoms and transitions to stationary SD wave patterns may cause persistent symptoms without evidence from noninvasive imaging of infarction.

  4. Emerging targets and therapeutic approaches for the treatment of osteoarthritis pain.

    PubMed

    Rahman, Wahida; Dickenson, Anthony H

    2015-06-01

    Osteoarthritis is a complex and often painful disease that is inadequately controlled with current analgesics. This review discusses emerging targets and therapeutic approaches that may lead to the development of better analgesics. Aberrant excitability in peripheral and central pain pathways drives osteoarthritis pain, reversing this via modulation of nerve growth factor, voltage-gated sodium channel, voltage-gated calcium channel and transient receptor potential vanilloid one activity, and increasing inhibitory mechanisms through modulation of cannabinoid and descending modulatory systems hold promise for osteoarthritis pain therapy. Somatosensory phenotyping of chronic pain patients, as a surrogate of putative pain generating mechanisms, may predict patient response to treatment. Identification of new targets will inform and guide future research, aiding the development of more effective analgesics. Future clinical trial designs should implement sensory phenotyping of patients, as an inclusion or stratification criterion, in order to establish an individualized, mechanism-based treatment of osteoarthritis pain.

  5. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy

    PubMed Central

    Zhang, Yu; Sun, Xinghui; Icli, Basak

    2017-01-01

    Chronic, low-grade systemic inflammation and impaired microvascular function are critical hallmarks in the development of insulin resistance. Accordingly, insulin resistance is a major risk factor for type 2 diabetes and cardiovascular disease. Accumulating studies demonstrate that restoration of impaired function of the diabetic macro- and microvasculature may ameliorate a range of cardiovascular disease states and diabetes-associated complications. In this review, we focus on the emerging role of microRNAs (miRNAs), noncoding RNAs that fine-tune target gene expression and signaling pathways, in insulin-responsive tissues and cell types important for maintaining optimal vascular homeostasis and preventing the sequelae of diabetes-induced end organ injury. We highlight current pathophysiological paradigms of miRNAs and their targets involved in regulating the diabetic microvasculature in a range of diabetes-associated complications such as retinopathy, nephropathy, wound healing, and myocardial injury. We provide an update of the potential use of circulating miRNAs diagnostically in type I or type II diabetes. Finally, we discuss emerging delivery platforms for manipulating miRNA expression or function as the next frontier in therapeutic intervention to improve diabetes-associated microvascular dysfunction and its attendant clinical consequences. PMID:28323921

  6. Converging shock wave focusing and interaction with a target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitishinskiy, M.; Efimov, S.; Antonov, O.

    2016-04-15

    Converging shock waves in liquids can be used efficiently in the research of the extreme state of matter and in various applications. In this paper, the recent results related to the interaction of a shock wave with plasma preliminarily formed in the vicinity of the shock wave convergence are presented. The shock wave is produced by the underwater electrical explosion of a spherical wire array. The plasma is generated prior to the shock wave's arrival by a low-pressure gas discharge inside a quartz capillary placed at the equatorial plane of the array. Analysis of the Stark broadening of H{sub α}more » and H{sub β} spectral lines and line-to-continuum ratio, combined with the ratio of the relative intensities of carbon C III/C II and silicon Si III/Si II lines, were used to determine the plasma density and temperature evolution. It was found that during the first ∼200 ns with respect to the beginning of the plasma compression by the shock wave and when the spectral lines are resolved, the plasma density increases from 2 × 10{sup 17 }cm{sup −3} to 5 × 10{sup 17 }cm{sup −3}, while the temperature remains at the same value of 3–4 eV. Further, following the model of an adiabatically imploding capillary, the plasma density increases >10{sup 19 }cm{sup −3}, leading to the continuum spectra obtained experimentally, and the plasma temperature >30 eV at radii of compression of ≤20 μm. The data obtained indicate that the shock wave generated by the underwater electrical explosion of a spherical wire array retains its uniformity during the main part of its convergence.« less

  7. Comparison of Continuous-Wave CO2 Lidar Calibration by use of Earth-Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1998-01-01

    Backscatter of several Earth surfaces was characterized in the laboratory as a function of incidence angle with a focused continuous-wave 9.1 micro meter CO2 Doppler lidar for use as possible calibration targets. Some targets showed negligible angular dependence, while others showed a slight increase with decreasing angle. The Earth-surface signal measured over the complex Californian terrain during a 1995 NASA airborne mission compared well with laboratory data. Distributions of the Earth's surface signal shows that the lidar efficiency can be estimated with a fair degree of accuracy, preferably with uniform Earth-surface targets during flight for airborne or space-based lidar.

  8. Selection of Multiarmed Spiral Waves in a Regular Network of Neurons

    PubMed Central

    Hu, Bolin; Ma, Jun; Tang, Jun

    2013-01-01

    Formation and selection of multiarmed spiral wave due to spontaneous symmetry breaking are investigated in a regular network of Hodgkin-Huxley neuron by changing the excitability and imposing spatial forcing currents on the neurons in the network. The arm number of the multiarmed spiral wave is dependent on the distribution of spatial forcing currents and excitability diversity in the network, and the selection criterion for supporting multiarmed spiral waves is discussed. A broken spiral segment is measured by a short polygonal line connected by three adjacent points (controlled nodes), and a double-spiral wave can be developed from the spiral segment. Multiarmed spiral wave is formed when a group of double-spiral waves rotate in the same direction in the network. In the numerical studies, a group of controlled nodes are selected and spatial forcing currents are imposed on these nodes, and our results show that l-arm stable spiral wave (l = 2, 3, 4,...8) can be induced to occupy the network completely. It is also confirmed that low excitability is critical to induce multiarmed spiral waves while high excitability is important to propagate the multiarmed spiral wave outside so that distinct multiarmed spiral wave can occupy the network completely. Our results confirm that symmetry breaking of target wave in the media accounts for emergence of multiarmed spiral wave, which can be developed from a group of spiral waves with single arm under appropriate condition, thus the potential formation mechanism of multiarmed spiral wave in the media is explained. PMID:23935966

  9. Gutzwiller wave-function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states

    NASA Astrophysics Data System (ADS)

    Wysokiński, Marcin M.; Kaczmarczyk, Jan; Spałek, Jozef

    2015-09-01

    The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band originating from atomic f -electron states and subsequently interpret this behavior as a direct itineracy of f electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the emerging f -electron direct itineracy leads in a natural manner to three physically distinct regimes within a single model that are frequently discussed for 4 f - or 5 f -electron compounds as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo insulating regime, and (iii) the Kondo-lattice limit when the f -electron occupancy is very close to the f -state half filling, →1 . The nonstandard features of the emerging correlated quantum liquid state are stressed.

  10. Optical phase conjugation by four-wave mixing in Nd:YAG laser oscillator for optical energy transfer to a remote target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, K., E-mail: k.kawakami@al.t.u-tokyo.ac.jp; Komurasaki, K.; Okamura, H.

    2015-02-28

    A self-starting phase conjugator was designed for optical energy transfer to a remote target. Saturable-gain four-wave mixing in a laser resonator was achieved using a flash-lamp pumped Nd:YAG crystal and phase-conjugate light (PCL) generation were verified. Wavefront correction experimentation revealed that beam wander caused by air turbulence is compensated. Tracking capability was demonstrated in the range of 9 mrad with tracking accuracy of ±0.04 mrad. The maximum field of view was measured to be 4.7°. Dependence of phase-conjugate light energy on reference light energy was investigated. The maximum output of 320 mJ was obtained. The temporal behavior of PCL ismore » discussed based on the four-wave mixing mechanism. Unlike a conventional loop resonator type phase conjugator, this system is applicable for wireless energy transfer to a remote target.« less

  11. Emerging Therapeutics for Advanced Thyroid Malignancies: Rationale and Targeted Approaches

    PubMed Central

    Harris, Pamela; Bible, Keith C.

    2011-01-01

    Introduction Thyroid cancer is an emerging public health concern. In the U.S., its incidence has doubled in the past decade, making it the 8th most commonly diagnosed neoplasm in 2010. Despite this alarming increase, most thyroid cancer patients benefit from conventional approaches (surgery, radioiodine, radiotherapy, TSH suppression with levothyroxine) and are often cured. Nevertheless, a minority have aggressive tumors resistant to cytotoxic and other historical therapies; these patients sorely need new treatment options. Areas covered Herein the biology and molecular characteristics of the common histological types of thyroid cancer are reviewed to provide context for subsequent discussion of recent developments and emerging therapeutics for advanced thyroid cancers. Expert opinion Several kinase inhibitors, especially those targeting VEGFR and/or RET, have already demonstrated promising activity in differentiated and medullary thyroid cancers (DTC, MTC). Although of minimal benefit in DTC and MTC, cytotoxic chemotherapy with anti-microtubule agents and/or anthracyclines in combination with intensity modulated radiation therapy appears to extend survival for patients with locoregionally-confined anaplastic thyroid cancer (ATC), but to have only modest benefit in metastatic ATC. Further discovery and development of novel agents and combinations of agents will be critical to further progress in treating advanced thyroid cancers of all histotypes. PMID:21910667

  12. Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view

    NASA Astrophysics Data System (ADS)

    Laval, Guy; Pesme, Denis; Adam, Jean-Claude

    2016-11-01

    The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.

  13. Millimeter wave radars raise weapon IQ

    NASA Astrophysics Data System (ADS)

    Lerner, E. J.

    1985-02-01

    The problems encountered by laser and IR homing devices for guided munitions may be tractable with warhead-mounted mm-wave radars. Operating at about 100 GHz and having several kilometers range, mm-wave radars see through darkness, fog, rain and smoke. The radar must be coupled with an analyzer that discerns moving and stationary targets and higher priority targets. The target lock-on can include shut-off of the transmitter and reception of naturally-generated mm-waves bouncing off the target when in the terminal phase of the flight. Monopulse transmitters have simplified the radar design, although mass production of finline small radar units has yet to be accomplished, particularly in combining GaAs, ferrites and other materials on one monolithic chip.

  14. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    NASA Astrophysics Data System (ADS)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  15. Nonlinear mechanisms of two-dimensional wave-wave transformations in the initially coupled acoustic structure

    NASA Astrophysics Data System (ADS)

    Vorotnikov, K.; Starosvetsky, Y.

    2018-01-01

    The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.

  16. Emerging molecular therapeutic targets for cholangiocarcinoma.

    PubMed

    Rizvi, Sumera; Gores, Gregory J

    2017-09-01

    Cholangiocarcinomas (CCAs) are diverse epithelial tumors arising from the liver or large bile ducts with features of cholangiocyte differentiation. CCAs are classified anatomically into intrahepatic (iCCA), perihilar (pCCA), and distal CCA (dCCA). Each subtype has distinct risk factors, molecular pathogenesis, therapeutic options, and prognosis. CCA is an aggressive malignancy with a poor overall prognosis and median survival of less than 2years in patients with advanced disease. Potentially curative surgical treatment options are limited to the subset of patients with early-stage disease. Presently, the available systemic medical therapies for advanced or metastatic CCA have limited therapeutic efficacy. Molecular alterations define the differences in biological behavior of each CCA subtype. Recent comprehensive genetic analysis has better characterized the genomic and transcriptomic landscape of each CCA subtype. Promising candidates for targeted, personalized therapy have emerged, including potential driver fibroblast growth factor receptor (FGFR) gene fusions and somatic mutations in isocitrate dehydrogenase (IDH)1/2 in iCCA, protein kinase cAMP-activated catalytic subunit alpha (PRKACA) or beta (PRKACB) gene fusions in pCCA, and ELF3 mutations in dCCA/ampullary carcinoma. A precision genomic medicine approach is dependent on an enhanced understanding of driver mutations in each subtype and stratification of patients according to their genetic drivers. We review the current genomic landscape of CCA, the potentially actionable molecular aberrations in each CCA subtype, and the role of immunotherapy in CCA. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. Self-Organized Lattices of Nonlinear Optochemical Waves in Photopolymerizable Fluids: The Spontaneous Emergence of 3-D Order in a Weakly Correlated System.

    PubMed

    Ponte, Matthew R; Hudson, Alexander D; Saravanamuttu, Kalaichelvi

    2018-03-01

    Many of the extraordinary three-dimensional architectures that pattern our physical world emerge from complex nonlinear systems or dynamic populations whose individual constituents are only weakly correlated to each other. Shoals of fish, murmuration behaviors in birds, congestion patterns in traffic, and even networks of social conventions are examples of spontaneous pattern formation, which cannot be predicted from the properties of individual elements alone. Pattern formation at a different scale has been observed or predicted in weakly correlated systems including superconductors, atomic gases near Bose Einstein condensation, and incoherent optical fields. Understanding pattern formation in nonlinear weakly correlated systems, which are often unified through mathematical expression, could pave intelligent self-organizing pathways to functional materials, architectures, and computing technologies. However, it is experimentally difficult to directly visualize the nonlinear dynamics of pattern formation in most populations-especially in three dimensions. Here, we describe the collective behavior of large populations of nonlinear optochemical waves, which are poorly correlated in both space and time. The optochemical waves-microscopic filaments of white light entrapped within polymer channels-originate from the modulation instability of incandescent light traveling in photopolymerizable fluids. By tracing the three-dimensional distribution of optical intensity in the nascent polymerizing system, we find that populations of randomly distributed, optochemical waves synergistically and collectively shift in space to form highly ordered lattices of specific symmetries. These, to our knowledge, are the first three-dimensionally periodic structures to emerge from a system of weakly correlated waves. Their spontaneous formation in an incoherent and effectively chaotic field is counterintuitive, but the apparent contradiction of known behaviors of light including the laws

  18. Emerging drug targets for Aβ and tau in Alzheimer’s disease: a systematic review

    PubMed Central

    West, Sophie; Bhugra, Praveen

    2015-01-01

    Aims Currently, treatment for Alzheimer’s disease (AD) focuses on the cholinergic hypothesis and provides limited symptomatic effects. Research currently focuses on other factors that are thought to contribute to AD development such as tau proteins and Aβ deposits, and how modification of the associated pathology affects outcomes in patients. This systematic review summarizes and appraises the evidence for the emerging drugs affecting Aβ and tau pathology in AD. Methods A comprehensive, systematic online database search was conducted using the databases ScienceDirect and PubMed to include original research articles. A systematic review was conducted following a minimum set of standards, as outlined by The PRISMA Group 1. Specific inclusion and exclusion criteria were followed and studies fitting the criteria were selected. No human trials were included in this review. In vitro and in vivo AD models were used to assess efficacy to ensure studied agents were emerging targets without large bodies of evidence. Results The majority of studies showed statistically significant improvement (P < 0.05) of Aβ and/or tau pathology, or cognitive effects. Many studies conducted in AD animal models have shown a reduction in Aβ peptide burden and a reduction in tau phosphorylation post-intervention. This has the potential to reduce plaque formation and neuronal degeneration. Conclusions There are many emerging targets showing promising results in the effort to modify the pathological effects associated with AD. Many of the trials also provided evidence of the clinical effects of such drugs reducing pathological outcomes, which was often demonstrated as an improvement of cognition. PMID:25753046

  19. The Effect of Vegetation on Sea-Swell Waves, Infragravity Waves and Wave-Induced Setup

    NASA Astrophysics Data System (ADS)

    Roelvink, J. A.; van Rooijen, A.; McCall, R. T.; Van Dongeren, A.; Reniers, A.; van Thiel de Vries, J.

    2016-02-01

    Aquatic vegetation in the coastal zone (e.g. mangrove trees) attenuates wave energy and thereby reduces flood risk along many shorelines worldwide. However, in addition to the attenuation of incident-band (sea-swell) waves, vegetation may also affect infragravity-band (IG) waves and the wave-induced water level setup (in short: wave setup). Currently, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are they are key parameters for coastal risk assessment. In this study, the process-based storm impact model XBeach was extended with formulations for attenuation of sea-swell and IG waves as well as the effect on the wave setup, in two modes: the sea-swell wave phase-resolving (non-hydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode a wave shape model was implemented to estimate the wave phase and to capture the intra-wave scale effect of emergent vegetation and nonlinear waves on the wave setup. Both modeling modes were validated using data from two flume experiments and show good skill in computing the attenuation of both sea-swell and IG waves as well as the effect on the wave-induced water level setup. In surfbeat mode, the prediction of nearshore mean water levels greatly improved when using the wave shape model, while in non-hydrostatic mode this effect is directly accounted for. Subsequently, the model was used to study the influence of the bottom profile slope and the location of the vegetation field on the computed wave setup with and without vegetation. It was found that the reduction is wave setup is strongly related to the location of vegetation relative to the wave breaking point, and that the wave setup is lower for milder slopes. The extended version of XBeach developed within this study can be used to study the nearshore hydrodynamics on coasts fronted by vegetation such as mangroves. It can also serve as tool for storm impact studies on coasts with aquatic vegetation, and can help to quantify the

  20. Scattering of plane evanescent waves by cylindrical shells and wave vector coupling conditions for exciting flexural waves

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of flexural waves on buried shells by acoustic evanescent waves, the partial wave series for the scattering is found for cylindrical shells at normal incidence in an unbounded medium. The formulation uses the simplifications of thin-shell dynamics. In the case of ordinary waves incident on a shell, a ray formulation is available to describe the coupling to subsonic flexural waves [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. When the incident wave is evanescent, the distance between propagating plane wavefronts is smaller than the ordinary acoustical wavelength at the same frequency and the coupling condition for the excitation of flexural waves on shells or plates is modified. Instead of matching the flexural wave number with the propagating part of the acoustic wave number only at the coincidence frequency, a second low-frequency wave number matching condition is found for highly evanescent waves. Numerical evaluation of the modified partial-wave-series appropriate for an evanescent wave is used to investigate the low-frequency coupling of evanescent waves with flexural wave resonances of shells.

  1. Thermal targets for satellite calibration

    NASA Astrophysics Data System (ADS)

    Villa-Aleman, Eliel; Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Pendergast, Malcolm M.

    2001-03-01

    The Savannah River Technology Center (SRTC) is currently calibrating the Multispectral Thermal Imager (MTI) satellite sponsored by the Department of Energy. The MTI imager is a research and development project with 15 wavebands in the visible, near-infrared, short-wave infrared, mid-wave infrared and long-wave infrared spectral regions. A plethora of targets with known temperatures such as power plant heated lakes, volcano lava vents, desert playas and aluminized Mylar tarps are being used in the validation of the five thermal bands of the MTI satellite. SRTC efforts in the production of cold targets with aluminized Mylar tarps will be described. Visible and thermal imagery and wavelength dependent radiance measurements of the calibration targets will be presented.

  2. Improving angular resolution with Scan-MUSIC algorithm for real complex targets using 35-GHz millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Ly, Canh

    2004-08-01

    Scan-MUSIC algorithm, developed by the U.S. Army Research Laboratory (ARL), improves angular resolution for target detection with the use of a single rotatable radar scanning the angular region of interest. This algorithm has been adapted and extended from the MUSIC algorithm that has been used for a linear sensor array. Previously, it was shown that the SMUSIC algorithm and a Millimeter Wave radar can be used to resolve two closely spaced point targets that exhibited constructive interference, but not for the targets that exhibited destructive interference. Therefore, there were some limitations of the algorithm for the point targets. In this paper, the SMUSIC algorithm is applied to a problem of resolving real complex scatterer-type targets, which is more useful and of greater practical interest, particular for the future Army radar system. The paper presents results of the angular resolution of the targets, an M60 tank and an M113 Armored Personnel Carrier (APC), that are within the mainlobe of a Κα-band radar antenna. In particular, we applied the algorithm to resolve centroids of the targets that were placed within the beamwidth of the antenna. The collected coherent data using the stepped-frequency radar were compute magnitudely for the SMUSIC calculation. Even though there were significantly different signal returns for different orientations and offsets of the two targets, we resolved those two target centroids when they were as close as about 1/3 of the antenna beamwidth.

  3. Non-coding RNAs in cardiac fibrosis: emerging biomarkers and therapeutic targets.

    PubMed

    Chen, Zhongxiu; Li, Chen; Lin, Ke; Cai, Huawei; Ruan, Weiqiang; Han, Junyang; Rao, Li

    2017-12-14

    Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not encode proteins. ncRNAs are involved in cell proliferation, apoptosis, differentiation, metabolism, and other physiological processes as well as the pathogenesis of diseases. Cardiac fibrosis is increasingly recognized as a common final pathway in advanced heart diseases. Many studies have shown that the occurrence and development of cardiac fibrosis is closely related to the regulation of ncRNAs. This review will highlight recent updates regarding the involvement of ncRNAs in cardiac fibrosis, and their potential as emerging biomarkers and therapeutic targets.

  4. Density Shock Waves in Confined Microswimmers

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2016-01-01

    Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels.

  5. Acute effects of the electromagnetic waves emitted by mobile phones on attention in emergency physicians.

    PubMed

    Altuntas, Gurkan; Sadoglu, Davut; Ardic, Senol; Yilmaz, Hakan; Imamoglu, Melih; Turedi, Suleyman

    2018-03-01

    The purpose of this study was to investigate the acute effects of the electromagnetic waves (EMW) emitted by mobile phones on attention in emergency physicians. This single-center, prospective, randomized, double-blinded clinical study was performed among emergency physicians in a tertiary hospital. Thirty emergency physicians were enrolled in the study. Initial d2 test was applied in the evaluation of attention and concentration of all the physicians, who were randomly assigned into one of two groups. The control group members hold mobile phones in 'off' mode to their left ears for 15min. The members of the intervention group hold mobile phones in 'on' mode to their left ears for 15min, thus exposing them to 900-1800MHz EMW. The d2 test was re-applied to both groups after this procedure. Differences in attention and concentration levels between the groups were compared. Difference between initial and final d2 test in total performance (TN-E, p=0.319), in total number of figures marked (TN, p=0.177), in test performance percentile (PR, p=0.619) and in attention fluctuation (FR, p=0.083) were similar between the groups. However, difference in the number of figures missed (E1 selective attention, p=0.025), difference between numbers of incorrectly marked figures (E2, p=0,018) and difference in focus levels (E, p=0.016) were significantly in favor of the intervention group. According to our study findings, the EMW emitted by mobile phones has no deleterious effect on the attention and concentration levels of emergency physicians, and even has a positive impact on selective attention levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Scattering of plane evanescent waves by buried cylinders: Modeling the coupling to guided waves and resonances

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2003-04-01

    The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of guided waves on buried fluid cylinders and shells by acoustic evanescent waves and the associated target resonances, the two-dimensional partial wave series for the scattering is found for normal incidence in an unbounded medium. The shell formulation uses the simplifications of thin-shell dynamics. The expansion of the incident wave becomes a double summation with products of modified and ordinary Bessel functions [P. L. Marston, J. Acoust. Soc. Am. 111, 2378 (2002)]. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on depth. Some consequences of this imbalance of partial-wave amplitudes are given by modifying previous ray theory for the scattering [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. The exponential dependence of the scattering on the location of a scatterer was previously demonstrated in air [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  7. Ground wave emergency network final operational capability. Environmental assessment for southern Arkansas relay node site no. RN 8C912AR

    NASA Astrophysics Data System (ADS)

    1993-02-01

    The Ground Wave Emergency Network (GWEN) is a radio communication system designed to relay emergency messages between strategic military areas in the continental United States. The system is immune to the effects of high-attitude electromagnetic pulse (HEMP) energy surges caused by nuclear bursts in the ionosphere that would disrupt conventional communications equipment such as telephones and shortwave radios. A failure of such equipment would prevent timely communications among top military and civilian leaders and strategic Air Force locations and prevent U.S. assessment and retaliation during an attack. GWEN is an essential part of a defense modernization program to upgrade and improve our nation's communications system, thereby strengthening deterrence.

  8. A concise review on advances in development of small molecule anti-inflammatory therapeutics emphasising AMPK: An emerging target.

    PubMed

    Gejjalagere Honnappa, Chethan; Mazhuvancherry Kesavan, Unnikrishnan

    2016-12-01

    Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology. © The Author(s) 2016.

  9. Fe-S Clusters Emerging as Targets of Therapeutic Drugs

    PubMed Central

    2017-01-01

    Fe-S centers exhibit strong electronic plasticity, which is of importance for insuring fine redox tuning of protein biological properties. In accordance, Fe-S clusters are also highly sensitive to oxidation and can be very easily altered in vivo by different drugs, either directly or indirectly due to catabolic by-products, such as nitric oxide species (NOS) or reactive oxygen species (ROS). In case of metal ions, Fe-S cluster alteration might be the result of metal liganding to the coordinating sulfur atoms, as suggested for copper. Several drugs presented through this review are either capable of direct interaction with Fe-S clusters or of secondary Fe-S clusters alteration following ROS or NOS production. Reactions leading to Fe-S cluster disruption are also reported. Due to the recent interest and progress in Fe-S biology, it is very likely that an increasing number of drugs already used in clinics will emerge as molecules interfering with Fe-S centers in the near future. Targeting Fe-S centers could also become a promising strategy for drug development. PMID:29445445

  10. Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers.

    PubMed

    Feola, Iolanda; Volkers, Linda; Majumder, Rupamanjari; Teplenin, Alexander; Schalij, Martin J; Panfilov, Alexander V; de Vries, Antoine A F; Pijnappels, Daniël A

    2017-11-01

    Recently, a new ablation strategy for atrial fibrillation has emerged, which involves the identification of rotors (ie, local drivers) followed by the localized targeting of their core region by ablation. However, this concept has been subject to debate because the mode of arrhythmia termination remains poorly understood, as dedicated models and research tools are lacking. We took a unique optogenetic approach to induce and locally target a rotor in atrial monolayers. Neonatal rat atrial cardiomyocyte monolayers expressing a depolarizing light-gated ion channel (Ca 2+ -translocating channelrhodopsin) were subjected to patterned illumination to induce single, stable, and centralized rotors by optical S1-S2 cross-field stimulation. Next, the core region of these rotors was specifically and precisely targeted by light to induce local conduction blocks of circular or linear shapes. Conduction blocks crossing the core region, but not reaching any unexcitable boundary, did not lead to termination. Instead, electric waves started to propagate along the circumference of block, thereby maintaining reentrant activity, although of lower frequency. If, however, core-spanning lines of block reached at least 1 unexcitable boundary, reentrant activity was consistently terminated by wave collision. Lines of block away from the core region resulted merely in rotor destabilization (ie, drifting). Localized optogenetic targeting of rotors in atrial monolayers could lead to both stabilization and destabilization of reentrant activity. For termination, however, a line of block is required reaching from the core region to at least 1 unexcitable boundary. These findings may improve our understanding of the mechanisms involved in rotor-guided ablation. © 2017 American Heart Association, Inc.

  11. Between tide and wave marks: a unifying model of physical zonation on littoral shores

    PubMed Central

    Bird, Christopher E.; Franklin, Erik C.; Smith, Celia M.

    2013-01-01

    The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as ‘intertidal’, whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However mean significant wave height exceeds tidal range at many locations worldwide. Here we construct a simple sinusoidal model of coastal water level based on both tidal range and wave height. From the patterns of emergence and submergence predicted by the model, we derive four vertical shoreline benchmarks which bracket up to three novel, spatially distinct, and physically defined zones. The (1) emergent tidal zone is characterized by tidally driven emergence in air; the (2) wave zone is characterized by constant (not periodic) wave wash; and the (3) submergent tidal zone is characterized by tidally driven submergence. The decoupling of tidally driven emergence and submergence made possible by wave action is a critical prediction of the model. On wave-dominated shores (wave height ≫ tidal range), all three zones are predicted to exist separately, but on tide-dominated shores (tidal range ≫ wave height) the wave zone is absent and the emergent and submergent tidal zones overlap substantially, forming the traditional “intertidal zone”. We conclude by incorporating time and space in the model to illustrate variability in the physical conditions and zonation on littoral shores. The wave:tide physical zonation model is a unifying framework that can facilitate our understanding of physical conditions on littoral shores whether tropical or temperate, marine or lentic. PMID:24109544

  12. The Tuberculosis Drug Discovery and Development Pipeline and Emerging Drug Targets

    PubMed Central

    Mdluli, Khisimuzi; Kaneko, Takushi; Upton, Anna

    2015-01-01

    The recent accelerated approval for use in extensively drug-resistant and multidrug-resistant-tuberculosis (MDR-TB) of two first-in-class TB drugs, bedaquiline and delamanid, has reinvigorated the TB drug discovery and development field. However, although several promising clinical development programs are ongoing to evaluate new TB drugs and regimens, the number of novel series represented is few. The global early-development pipeline is also woefully thin. To have a chance of achieving the goal of better, shorter, safer TB drug regimens with utility against drug-sensitive and drug-resistant disease, a robust and diverse global TB drug discovery pipeline is key, including innovative approaches that make use of recently acquired knowledge on the biology of TB. Fortunately, drug discovery for TB has resurged in recent years, generating compounds with varying potential for progression into developable leads. In parallel, advances have been made in understanding TB pathogenesis. It is now possible to apply the lessons learned from recent TB hit generation efforts and newly validated TB drug targets to generate the next wave of TB drug leads. Use of currently underexploited sources of chemical matter and lead-optimization strategies may also improve the efficiency of future TB drug discovery. Novel TB drug regimens with shorter treatment durations must target all subpopulations of Mycobacterium tuberculosis existing in an infection, including those responsible for the protracted TB treatment duration. This review summarizes the current TB drug development pipeline and proposes strategies for generating improved hits and leads in the discovery phase that could help achieve this goal. PMID:25635061

  13. Optogenetic Stimulation Shifts the Excitability of Cerebral Cortex from Type I to Type II: Oscillation Onset and Wave Propagation.

    PubMed

    Heitmann, Stewart; Rule, Michael; Truccolo, Wilson; Ermentrout, Bard

    2017-01-01

    Constant optogenetic stimulation targeting both pyramidal cells and inhibitory interneurons has recently been shown to elicit propagating waves of gamma-band (40-80 Hz) oscillations in the local field potential of non-human primate motor cortex. The oscillations emerge with non-zero frequency and small amplitude-the hallmark of a type II excitable medium-yet they also propagate far beyond the stimulation site in the manner of a type I excitable medium. How can neural tissue exhibit both type I and type II excitability? We investigated the apparent contradiction by modeling the cortex as a Wilson-Cowan neural field in which optogenetic stimulation was represented by an external current source. In the absence of any external current, the model operated as a type I excitable medium that supported propagating waves of gamma oscillations similar to those observed in vivo. Applying an external current to the population of inhibitory neurons transformed the model into a type II excitable medium. The findings suggest that cortical tissue normally operates as a type I excitable medium but it is locally transformed into a type II medium by optogenetic stimulation which predominantly targets inhibitory neurons. The proposed mechanism accounts for the graded emergence of gamma oscillations at the stimulation site while retaining propagating waves of gamma oscillations in the non-stimulated tissue. It also predicts that gamma waves can be emitted on every second cycle of a 100 Hz oscillation. That prediction was subsequently confirmed by re-analysis of the neurophysiological data. The model thus offers a theoretical account of how optogenetic stimulation alters the excitability of cortical neural fields.

  14. Laser Beat-Wave Magnetization of a Dense Plasma

    NASA Astrophysics Data System (ADS)

    Yates, Kevin; Hsu, Scott; Montgomery, David; Dunn, John; Langendorf, Samuel; Pollock, Bradley; Johnson, Timothy; Welch, Dale; Thoma, Carsten

    2017-10-01

    We present results from the first of a series of experiments to demonstrate and characterize laser beat-wave magnetization of a dense plasma, motivated by the desire to create high-beta targets with standoff for magneto-inertial fusion. The experiments are being conducted at the Jupiter Laser Facility (JLF) at LLNL. The experiment uses the JLF Janus 1 ω (1053 nm) beam and a standalone Nd:YAG (1064 nm) to drive the beat wave, and the Janus 2 ω (526.5 nm) beam to ionize/heat a gas-jet target as well as to provide Thomson-scattering (TS) measurements of the target density/temperature and scattered light from the beat wave. Streaked TS data captured electron-plasma-wave and ion-acoustic-wave features utilizing either nitrogen or helium gas jets. Effects of initial gas density as well as laser intensity on target have been measured, with electron densities ranging from 1E18 to 1E19 cm-3 with temperatures of tens to hundreds of eV, near the desired range for optimal field generation. LSP simulations were run to aid experimental design and data interpretation. LANL LDRD Program.

  15. Target-oriented retrieval of subsurface wave fields - Pushing the resolution limits in seismic imaging

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci

    2017-04-01

    Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications

  16. Ground wave emergency network environmental assessment for northwestern Colorado relay node site number RN 8C924CO

    NASA Astrophysics Data System (ADS)

    1993-02-01

    The Ground Wave Emergency Network (GWEN) is a radio communication system designed to relay emergency messages between strategic military areas in the continental United States. The system is immune to the effects of high-altitude electromagnetic pulse (HEMP) energy surges caused by nuclear bursts in the ionosphere that would disrupt conventional communications equipment such as telephones and shortwave radios. A failure of such equipment would prevent timely communications among top military and civilian leaders and strategic Air Force locations and prevent U.S. assessment and retaliation during an attack. GWEN is an essential part of a defense modernization program to upgrade and improve our nation's communications system, thereby strengthening deterrence. The GWEN system consists of a network of relay nodes, receive-only stations, and input/output stations. Each relay node, such as the one proposed in southern Nevada consists of a guyed radio tower facility similar to those used by commercial AM broadcast transmitters.

  17. Emerging therapeutic targets currently under investigation for the treatment of systemic amyloidosis.

    PubMed

    Nuvolone, Mario; Merlini, Giampaolo

    2017-12-01

    Systemic amyloidosis occurs when one of a growing list of circulating proteins acquires an abnormal fold, aggregates and gives rise to extracellular amyloid deposits in different body sites, leading to organ dysfunction and eventually death. Current approaches are mainly aimed at lowering the supply of the amyloidogenic precursor or at stabilizing it in a non-amyloidogenic state, thus interfering with the initial phases of amyloid formation and toxicity. Areas covered: Improved understanding of the pathophysiology is indicating novel steps and molecules that could be therapeutically targeted. Here, we will review emerging molecular targets and therapeutic approaches against the main forms of systemic amyloidosis at the early preclinical level. Expert opinion: Conspicuous efforts in drug design and drug discovery have provided an unprecedented list of potential new drugs or therapeutic strategies, from gene-based therapies to small molecules and peptides, from novel monoclonal antibodies to engineered cell-based therapies. The challenge will now be to validate and optimize the most promising candidates, cross the bridge from the preclinical phase to the clinics and identify, through innovative trials design, the safest and most effective combination therapies, striving for a better care, possibly a definitive cure for these diseases.

  18. PCSK9: an emerging target for treatment of hypercholesterolemia.

    PubMed

    Duff, Christopher J; Hooper, Nigel M

    2011-02-01

    Increased plasma low-density lipoprotein (LDL) cholesterol is a significant risk factor for cardiovascular disease. Plasma LDL-cholesterol is controlled through its uptake into cells upon binding the LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the LDLR and promotes its degradation, resulting in increased plasma LDL-cholesterol. Inhibiting the action of PCSK9 on the LDLR has emerged as a novel therapeutic target for hypercholesterolemia. We briefly describe the identification and initial characterisation of PCSK9, before detailing the molecular mechanisms involved in its interaction with the LDLR. We highlight the potential sites for therapeutic intervention in this pathway and describe the current status of therapeutic approaches, including blocking antibodies, siRNA, antisense oligonucleotides and small-molecule inhibitors. The potential limitations of such approaches are also discussed. There is a wealth of evidence indicating that inhibition of PCSK9 is a highly desirable approach to combat hypercholesterolemia, with several agents in preclinical and clinical development. However, further research is required to fully understand the biological role of PCSK9 and whether its inhibition may have adverse effects in certain groups of patients, for example, those with liver disease.

  19. Synchronization of follicular wave emergence in the seasonally anestrous ewe: the effects of estradiol with or without medroxyprogesterone acetate.

    PubMed

    Barrett, D M W; Bartlewski, P M; Duggavathi, R; Davies, K L; Huchkowsky, S L; Epp, T; Rawlings, N C

    2008-04-15

    Fertility is often lower in anestrous compared to cyclic ewes, after conventional estrus synchronization. We hypothesized that synchronization of ovarian follicular waves and ovulation could improve fertility at controlled breeding in anestrous ewes. Estradiol-17beta synchronizes follicular waves in cattle. The objectives of the present experiments were to study the effect of an estradiol injection, with or without a 12-d medroxyprogesterone acetate (MAP) sponge treatment, on synchronization of follicular waves and ovulation in anestrous ewes. Twenty ewes received sesame oil (n=8) or estradiol-17beta (350 microg; n=12). Eleven ewes received MAP sponges for 12d and were treated with oil (n=5) or estradiol-17beta (n=6) 6d before sponge removal. Saline (n=6) or eCG (n=6) was subsequently given to separate groups of ewes at sponge removal in the MAP/estradiol-17beta protocol. Estradiol treatment alone produced a peak in serum FSH concentrations (4.73+/-0.53 vs. 2.36+/-0.39 ng/mL for treatment vs. control; mean+/-S.E.M.) after a short-lived (6 h) suppression. Six of twelve ewes given estradiol missed a follicular wave around the time of estradiol injection. Medroxyprogesterone acetate-treated ewes given estradiol had more prolonged suppression of serum FSH concentrations (6-18 h) and a delay in the induced FSH peak (32.3+/-3.3 vs. 17.5+/-0.5 h). Wave emergence was delayed (5.7+/-0.3 vs. 1.4+/-0.7d from the time of estradiol injection), synchronized, and occurred at a predictable time (5-7 vs. 0-4d) compared to ewes given MAP alone. All ewes given eCG ovulated 3-4d after injection; this predictable time of ovulation may be efficacious for AI and embryo transfer.

  20. Stress wave focusing transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visuri, S.R., LLNL

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where dmore » = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.« less

  1. Emergence of traveling waves in the spreading of dengue fever

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Faatz, Andrea; Cummings, Derek; Shaw, Leah

    2010-03-01

    Dengue fever is a multistrain mosquito-borne subtropical disease that exhibits complex oscillatory outbreaks. Epidemiological data from Thailand displays traveling waves of infection originating in Bangkok, the largest population center (Cummings et al., Nature 427: 344, 2004). We present a multistrain metapopulation model in which traveling wave like behavior results from migration coupling between heterogeneous regions. The region with the highest effective person-to-person contact rate leads the dynamics. A stochastic version of the model will also be presented.

  2. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target.

    PubMed

    Retzbach, Edward P; Sheehan, Stephanie A; Nevel, Evan M; Batra, Amber; Phi, Tran; Nguyen, Angels T P; Kato, Yukinari; Baredes, Soly; Fatahzadeh, Mahnaz; Shienbaum, Alan J; Goldberg, Gary S

    2018-03-01

    Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. On Hokusai's Great wave off Kanagawa: localization, linearity and a rogue wave in sub-Antarctic waters.

    PubMed

    Dudley, J M; Sarano, V; Dias, F

    2013-06-20

    The Hokusai woodcut entitled The great wave off Kanagawa has been interpreted as an unusually large storm wave, likely to be classed as a rogue wave, and possibly generated from nonlinear wave dynamics (J. H. E. Cartwright and H. Nakamura, Notes Rec. R. Soc. 63 , 119-135 (2009)). In this paper, we present a complementary discussion of this hypothesis, discussing in particular how linear and nonlinear mechanisms can both contribute to the emergence of rogue wave events. By making reference to the Great wave 's simultaneous transverse and longitudinal localization, we show that the purely linear mechanism of directional focusing also predicts characteristics consistent with those of the Great wave . In addition, we discuss the properties of a particular rogue wave photographed on the open ocean in sub-Antarctic waters, which shows two-dimensional localization and breaking dynamics remarkably similar to Hokusai's depiction in the woodcut.

  4. On Hokusai's Great wave off Kanagawa: localization, linearity and a rogue wave in sub-Antarctic waters

    PubMed Central

    Dudley, J. M.; Sarano, V.; Dias, F.

    2013-01-01

    The Hokusai woodcut entitled The great wave off Kanagawa has been interpreted as an unusually large storm wave, likely to be classed as a rogue wave, and possibly generated from nonlinear wave dynamics (J. H. E. Cartwright and H. Nakamura, Notes Rec. R. Soc. 63, 119–135 (2009)). In this paper, we present a complementary discussion of this hypothesis, discussing in particular how linear and nonlinear mechanisms can both contribute to the emergence of rogue wave events. By making reference to the Great wave's simultaneous transverse and longitudinal localization, we show that the purely linear mechanism of directional focusing also predicts characteristics consistent with those of the Great wave. In addition, we discuss the properties of a particular rogue wave photographed on the open ocean in sub-Antarctic waters, which shows two-dimensional localization and breaking dynamics remarkably similar to Hokusai's depiction in the woodcut. PMID:24687148

  5. Autogenic and Allogenic: Emergent Coastline Patterns Interact With Forcing Variations

    NASA Astrophysics Data System (ADS)

    Murray, A. B.; Alvarez Antolinez, J. A.; Mendez, F. J.; Moore, L. J.; Wood, J.; Farley, G.

    2017-12-01

    A range of coastline shapes can emerge from large-scale morphodynamic interactions. Coastline shape determines local wave influences. Local wave influences (fluxes of alongshore momentum), determine sediment fluxes, and gradients in these sediment fluxes, in turn, alter coastline shape. Modeling studies show that such feedbacks lead to an instability, and to subsequent finite-amplitude interactions, producing self-organized patterns and emergent structures including sandwaves, capes, and spits (e.g. Ashton and Murray, 2006; Ashton et al., 2015); spiral bays on rocky coastlines (e.g. Barkwith et al., 2014); and convex, spit-bounded coastlines (Ells et al., in prep.). Coastline shapes depend sensitively on wave climate, defined as the angular distribution of wave influences on alongshore sediment transport. Therefore, shifts in wave climate arising from shifts in storms (decadal scale fluctuations or longer-term trends) will tend to change coastline shape. Previous efforts have detected changing coastline shape, likely related to changing influence from hurricane-generated waves, as expressed in changes in the location and intensity of coastal erosion zones along the cuspate capes in North Carolina, USA (Moore et al., 2013). These efforts involved the assumption that coastline response to changing forcing occurs in a quasi-equilibrium manner. However, in some cases coastline responses can exhibit long-term memory and path dependence (Thomas et al., 2016). Recently, we have hindcast the wave climate affecting the North Carolina coast since 1870, using a series of statistical analyses to downscale from basin-scale surface pressure fields to regional deep-water wave climate, and then a numerical transformation to local offshore wave climate. We used this wave climate as input for the Coastline Evolution Model (CEM). The results show that the emergent coastline features respond to decadal-scale shifts in wave climate, but with time lags that complicate the relationship

  6. Theory of inertial waves in rotating fluids

    NASA Astrophysics Data System (ADS)

    Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir

    2017-04-01

    The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E

  7. Wave-ice interaction, observed and modelled

    NASA Astrophysics Data System (ADS)

    Gemmrich, Johannes

    2017-04-01

    The need for wide-spread, up-to-date sea state predictions and observations in the emerging ice-free Arctic will further increase as the region will open up to marine operations. Wave models for arctic regions have to capture the additional wave physics associated with wave-ice interactions, and different prediction schemes have to be tested against observations. Here we present examples of spatial wave field parameters obtained from TerraSAR-X StripMap swaths in the southern Beaufort Sea taken as part of the "Arctic Sea State and Boundary Layer DRI". Fetch evolution of the significant wave height and length in open waters, and dominant wave lengths and the high frequency cut-off of the wave spectrum in ice are readily extracted from the SAR (synthetic aperture radar) data. A surprising result is that wave evolution in off-ice wind conditions is more rapidly than the fetch evolution in off-land cases, suggesting seeding of the wave field within the ice-covered region.

  8. Die-target for dynamic powder consolidation

    DOEpatents

    Flinn, John E.; Korth, Gary E.

    1986-01-01

    A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block.

  9. Emerging paradigms in anti-infective drug design.

    PubMed

    Barrett, Michael P; Croft, Simon L

    2014-01-01

    The need for new drugs to treat microbial infections is pressing. The great progress made in the middle part of the twentieth Century was followed by a period of relative inactivity as the medical needs relating to infectious disease in the wealthier nations receded. Growing realisation that anti-infectives are needed in many parts of the world, to treat neglected diseases as well as to combat the burgeoning risk of resistance to existing drugs, has galvanised a new wave of research into anti-microbial drugs. The transfer of knowledge from the Pharmaceutical industry relating to the importance of understanding how to target drugs successfully within the body, and improved understanding of how pathogens interact with their hosts, is driving a series of new paradigms in anti-infective drug design. Here we provide an overview of those processes as an introduction to a series of articles from experts in this area that emerged from a meeting entitled "Emerging Paradigms in Anti-Infective Drug Design" held in London on the 17th and 18th September 2012. The symposium was organised jointly by British Society for Parasitology (BSP) and the Biological & Medicinal Chemistry sector of the Royal Society of Chemistry (RSC) and held at the London School of Hygiene & Tropical Medicine. The symposium set out to cover all aspects of the identification of new therapeutic modalities for the treatment of neglected and tropical diseases. We aimed to bring together leading scientists from all the disciplines working in this field and cover the pharmacology, medicinal chemistry and drug delivery of potential new medicines. Sessions were held on: "Target diseases and targets for drugs", "Target based medicinal chemistry", "Bioavailability and chemistry", "Targeting intracellular microbes", "Alternative approaches and models", and "New anti-infectives - how do we get there?" This symposium was organised by Simon Croft (LSHTM) and Mike Barrett (University of Glasgow) for the BSP, and David

  10. Remote Associates Test and Alpha Brain Waves

    ERIC Educational Resources Information Center

    Haarmann, Henk J.; George, Timothy; Smaliy, Alexei; Dien, Joseph

    2012-01-01

    Previous studies found that performance on the remote associates test (RAT) improves after a period of incubation and that increased alpha brain waves over the right posterior brain predict the emergence of RAT insight solutions. We report an experiment that tested whether increased alpha brain waves during incubation improve RAT performance.…

  11. Meeting national response time targets for priority 1 incidents in an urban emergency medical services system in South Africa: More ambulances won't help.

    PubMed

    Stein, Christopher; Wallis, Lee; Adetunji, Olufemi

    2015-09-19

    Response time is viewed as a key performance indicator in most emergency medical services (EMS) systems. To determine the effect of increased emergency vehicle numbers on response time performance for priority 1 incidents in an urban EMS system in Cape Town, South Africa, using discrete-event computer simulation. A simulation model was created, based on input data from part of the EMS operations. Two different versions of the model were used, one with primary response vehicles and ambulances and one with only ambulances. In both cases the models were run in seven different scenarios. The first scenario used the actual number of emergency vehicles in the real system, and in each subsequent scenario vehicle numbers were increased by adding the baseline number to the cumulative total. The model using only ambulances had shorter response times and a greater number of responses meeting national response time targets than models using primary response vehicles and ambulances. In both cases an improvement in response times and the number of responses meeting national response time targets was observed with the first incremental addition of vehicles. After this the improvements rapidly diminished and eventually became negligible with each successive increase in vehicle numbers. The national response time target for urban areas was never met, even with a seven-fold increase in vehicle numbers. The addition of emergency vehicles to an urban EMS system improves response times in priority 1 incidents, but alone is not capable of the magnitude of response time improvement needed to meet the national response time targets.

  12. Caustics for spherical waves

    DOE PAGES

    de Rham, Claudia; Motohashi, Hayato

    2017-03-07

    We study the development of caustics in shift-symmetric scalar field theories by focusing on simple waves with an S O ( p ) -symmetry in an arbitrary number of space dimensions. We show that the pure Galileon, the DBI–Galileon, and the extreme-relativistic Galileon naturally emerge as the unique set of caustic-free theories, highlighting a link between the caustic-free condition for simple S O ( p ) -waves and the existence of either a global Galilean symmetry or a global (extreme-)relativistic Galilean symmetry.

  13. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less

  14. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    NASA Astrophysics Data System (ADS)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; Dodin, I. Y.

    2018-05-01

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by the WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. We also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.

  15. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    DOE PAGES

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; ...

    2018-05-29

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less

  16. Non-target time trend screening: a data reduction strategy for detecting emerging contaminants in biological samples.

    PubMed

    Plassmann, Merle M; Tengstrand, Erik; Åberg, K Magnus; Benskin, Jonathan P

    2016-06-01

    Non-targeted mass spectrometry-based approaches for detecting novel xenobiotics in biological samples are hampered by the occurrence of naturally fluctuating endogenous substances, which are difficult to distinguish from environmental contaminants. Here, we investigate a data reduction strategy for datasets derived from a biological time series. The objective is to flag reoccurring peaks in the time series based on increasing peak intensities, thereby reducing peak lists to only those which may be associated with emerging bioaccumulative contaminants. As a result, compounds with increasing concentrations are flagged while compounds displaying random, decreasing, or steady-state time trends are removed. As an initial proof of concept, we created artificial time trends by fortifying human whole blood samples with isotopically labelled standards. Different scenarios were investigated: eight model compounds had a continuously increasing trend in the last two to nine time points, and four model compounds had a trend that reached steady state after an initial increase. Each time series was investigated at three fortification levels and one unfortified series. Following extraction, analysis by ultra performance liquid chromatography high-resolution mass spectrometry, and data processing, a total of 21,700 aligned peaks were obtained. Peaks displaying an increasing trend were filtered from randomly fluctuating peaks using time trend ratios and Spearman's rank correlation coefficients. The first approach was successful in flagging model compounds spiked at only two to three time points, while the latter approach resulted in all model compounds ranking in the top 11 % of the peak lists. Compared to initial peak lists, a combination of both approaches reduced the size of datasets by 80-85 %. Overall, non-target time trend screening represents a promising data reduction strategy for identifying emerging bioaccumulative contaminants in biological samples. Graphical abstract

  17. Sexual Debut Timing and Depressive Symptoms in Emerging Adulthood

    PubMed Central

    Spriggs, Aubrey L.; Halpern, Carolyn Tucker

    2008-01-01

    The association between sexual debut timing and depressive symptomatology in adolescence and emerging adulthood was examined using data from Waves I, II and III of the National Longitudinal Study of Adolescent Health. Respondents who reported never having sexual intercourse at Wave I and were 18–22 years of age at Wave III were included (n=5,061). Twenty percent of respondents experienced early (Wave II) depressive symptomatology, but only among female adolescents age less than sixteen. However, sexual debut timing was unassociated with emerging adult (Wave III) depressive symptomatology for both male and female respondents. Findings suggest sexual debut timing does not have implications for depressive symptomatology beyond adolescence. PMID:19802319

  18. Application of a post-collisional-interaction distorted-wave model for (e, 2e) of some atomic targets and methane

    NASA Astrophysics Data System (ADS)

    Chinoune, M.; Houamer, S.; Dal Cappello, C.; Galstyan, A.

    2016-10-01

    Recently Isik et al (2016 J. Phys B: At. Mol. Opt. Phys. 49 065203) performed measurements of the triple differential cross sections (TDCSs) of methane by electron impact. Their data clearly show that post-collisional interaction (PCI) effects are present in the angular distributions of ejected electrons. A model describing the ejected electron by a distorted wave and including PCI is applied for the single ionization of atomic targets and for methane. Extensive comparisons between this model and other previous models are made with available experiments.

  19. Identification of Langmuir wave turbulence-supercontinuum transition by application of von Neumann entropy

    NASA Astrophysics Data System (ADS)

    Kawamori, Eiichirou

    2017-09-01

    A transition from Langmuir wave turbulence (LWT) to coherent Langmuir wave supercontinuum (LWSC) is identified in one-dimensional particle-in-cell simulations as the emergence of a broad frequency band showing significant temporal coherence of a wave field accompanied by a decrease in the von Neumann entropy of classical wave fields. The concept of the von Neumann entropy is utilized for evaluation of the phase-randomizing degree of the classical wave fields, together with introduction of the density matrix of the wave fields. The transition from LWT to LWSC takes place when the energy per one plasmon (one wave quantum) exceeds a certain threshold. The coherent nature, which Langmuir wave systems acquire through the transition, is created by four wave mixings of the plasmons. The emergence of temporal coherence and the decrease in the phase randomization are considered as the development of long-range order and spontaneous symmetry breaking, respectively, indicating that the LWT-LWSC transition is a second order phase transition phenomenon.

  20. Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials

    PubMed Central

    Morvan, Claire; Halpern, David; Kénanian, Gérald; Hays, Constantin; Anba-Mondoloni, Jamila; Brinster, Sophie; Kennedy, Sean; Trieu-Cuot, Patrick; Poyart, Claire; Lamberet, Gilles; Gloux, Karine; Gruss, Alexandra

    2016-01-01

    The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. This strategy is based on previous reports indicating that self-synthesized fatty acids appear to be indispensable for Staphylococcus aureus growth and virulence, although other bacteria can use exogenous fatty acids to compensate FASII inhibition. Here we report that staphylococci can become resistant to the FASII-targeted inhibitor triclosan via high frequency mutations in fabD, one of the FASII genes. The fabD mutants can be conditional for FASII and not require exogenous fatty acids for normal growth, and can use diverse fatty acid combinations (including host fatty acids) when FASII is blocked. These mutants show cross-resistance to inhibitors of other FASII enzymes and are infectious in mice. Clinical isolates bearing fabD polymorphisms also bypass FASII inhibition. We propose that fatty acid-rich environments within the host, in the presence of FASII inhibitors, might favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors. PMID:27703138

  1. Scattering theory of stochastic electromagnetic light waves.

    PubMed

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  2. SAR imaging of ocean waves - Theory

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1981-01-01

    A SAR imaging integral for a rough surface is derived. Aspects of distributed target imaging and questions of ocean-wave imaging are considered. A description is presented of the results of analyses which are performed on aircraft and a spacecraft data in order to gain an understanding of the SAR imaging of ocean waves. The analyzed data illustrate the effect of radar resolution on the images of azimuthally traveling waves, the dependence of image distortion on the angle which the waves make with the radar flight path, and the dependence of the focusing parameter of the radar matched filter on the ocean wave period for azimuthally traveling waves. A dependence of ocean-wave modulation on significant wave height is also observed. The observed dependence of the modulations of azimuth waves on radar resolution is in contradiction to the hypothesis that these modulations are caused mainly by velocity bunching.

  3. Die-target for dynamic powder consolidation

    DOEpatents

    Flinn, J.E.; Korth, G.E.

    1985-06-27

    A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block. 4 figs.

  4. Rogue wave generation by inelastic quasi-soliton collisions in optical fibres

    NASA Astrophysics Data System (ADS)

    Eberhard, M.; Savojardo, A.; Maruta, A.; Römer, R. A.

    2017-11-01

    We demonstrate a simple cascade mechanism that drives the formation and emergence of rogue waves in the generalized non-linear Schr\\"{o}dinger equation with third-order dispersion. This conceptually novel generation mechanism is based on inelastic collisions of quasi-solitons and is well described by a resonant-like scattering behaviour for the energy transfer in pair-wise quasi-soliton collisions. Our results demonstrate a threshold for rogue wave emergence and the existence of a period of reduced amplitudes - a "calm before the storm" - preceding the arrival of a rogue wave event. Comparing with ultra-long time window simulations of $3.865\\times 10^{6}$ps we observe the statistics of rogue waves in optical fibres with an unprecedented level of detail and accuracy, unambiguously establishing the long-ranged character of the rogue wave power-distribution function over seven orders of magnitude.

  5. The destructive impact of the rogue waves

    NASA Astrophysics Data System (ADS)

    Shamin, Roman

    2013-04-01

    In our talk rogue waves at the ocean will be considered. By means of numerical modeling dangerous impact of rogue waves on the ships and oil rigs is calculated. Cases when these waves can bring in accident are considered. Using statistics of emergence of waves (see [1]-[2]), it is possible to estimate risks in each case. These results can be used for safety of the ships and oil rigs from rogue waves. References [1] V.E. Zakharov, A.I. Dyachenko, R.V. Shamin. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y [2] V.E. Zakharov, R.V. Shamin. Statistics of rogue waves in computer experiments // JETP Letters, 2012, V. 96, Issue 1, pp 66-69.

  6. USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy

    PubMed Central

    2013-01-01

    Reversible protein ubiquitination is emerging as a key process for maintaining cell homeostasis, and the enzymes that participate in this process, in particular E3 ubiquitin ligases and deubiquitinases (DUBs), are increasingly being regarded as candidates for drug discovery. Human DUBs are a group of approximately 100 proteins, whose cellular functions and regulatory mechanisms remain, with some exceptions, poorly characterized. One of the best-characterized human DUBs is ubiquitin-specific protease 1 (USP1), which plays an important role in the cellular response to DNA damage. USP1 levels, localization and activity are modulated through several mechanisms, including protein-protein interactions, autocleavage/degradation and phosphorylation, ensuring that USP1 function is carried out in a properly regulated spatio-temporal manner. Importantly, USP1 expression is deregulated in certain types of human cancer, suggesting that USP1 could represent a valid target in cancer therapy. This view has gained recent support with the finding that USP1 inhibition may contribute to revert cisplatin resistance in an in vitro model of non-small cell lung cancer (NSCLC). Here, we describe the current knowledge on the cellular functions and regulatory mechanisms of USP1. We also summarize USP1 alterations found in cancer, combining data from the literature and public databases with our own data. Finally, we discuss the emerging potential of USP1 as a target, integrating published data with our novel findings on the effects of the USP1 inhibitor pimozide in combination with cisplatin in NSCLC cells. PMID:23937906

  7. Arctic Climate and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Haekkinen, S.

    2000-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.

  8. Space gravitational wave antenna DECIGO and B-DECIGO

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru

    2017-12-01

    Since the direct detection of gravitational wave will give us a fruitful insight about the early universe or life of stars, laser interferometric gravitational wave detectors with the strain sensitivity of higher than 10-22 have been developed. In Japan, the space gravitational wave detector project named DECi-hertz Gravitational wave Observatory (DECIGO) has been promoted which consists of three satellites forming equilateral triangle-shaped Fabry-Perot laser interferometer with the arm length of 1000 km. The designed strain sensitivity of DECIGO is 2 × 10-24/√Hz around 0.1 Hz whose targets are gravitational waves originated from the inspiral and the merger of black hole or neutron star binaries and from the inflation at the early universe, and no ground-based gravitational wave detector can access this observation band. Before launching DECIGO in 2030s, a milestone mission named B-DECIGO is planned which is a downsized mission of DECIGO. B-DECIGO also has its own scientific targets in addition to the feasibility test for DECIGO. In the present paper, DECIGO and B-DECIGO projects are reviewed.

  9. Public health interventions for epidemics: implications for multiple infection waves.

    PubMed

    Wessel, Lindsay; Hua, Yi; Wu, Jianhong; Moghadas, Seyed M

    2011-02-25

    Epidemics with multiple infection waves have been documented for some human diseases, most notably during past influenza pandemics. While pathogen evolution, co-infection, and behavioural changes have been proposed as possible mechanisms for the occurrence of subsequent outbreaks, the effect of public health interventions remains undetermined. We develop mean-field and stochastic epidemiological models for disease transmission, and perform simulations to show how control measures, such as drug treatment and isolation of ill individuals, can influence the epidemic profile and generate sequences of infection waves with different characteristics. We demonstrate the impact of parameters representing the effectiveness and adverse consequences of intervention measures, such as treatment and emergence of drug resistance, on the spread of a pathogen in the population. If pathogen resistant strains evolve under drug pressure, multiple outbreaks are possible with variability in their characteristics, magnitude, and timing. In this context, the level of drug use and isolation capacity play an important role in the occurrence of subsequent outbreaks. Our simulations for influenza infection as a case study indicate that the intensive use of these interventions during the early stages of the epidemic could delay the spread of disease, but it may also result in later infection waves with possibly larger magnitudes. The findings highlight the importance of intervention parameters in the process of public health decision-making, and in evaluating control measures when facing substantial uncertainty regarding the epidemiological characteristics of an emerging infectious pathogen. Critical factors that influence population health including evolutionary responses of the pathogen under the pressure of different intervention measures during an epidemic should be considered for the design of effective strategies that address short-term targets compatible with long-term disease outcomes.

  10. Nonlinear Waves, Instabilities and Singularities in Plasma and Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Silantyev, Denis Albertovich

    Nonlinear effects are present in almost every area of science as soon as one tries to go beyond the first order approximation. In particular, nonlinear waves emerge in such areas as hydrodynamics, nonlinear optics, plasma physics, quantum physics, etc. The results of this work are related to nonlinear waves in two areas, plasma physics and hydrodynamics, united by concepts of instability, singularity and advanced numerical methods used for their investigation. The first part of this work concentrates on Langmuir wave filamentation instability in the kinetic regime of plasma. In Internal Confinement Fusion Experiments (ICF) at National Ignition Facility (NIF), where attempts are made to achieve fusion by compressing a small target by many powerful lasers to extremely high temperatures and pressures, plasma is created in the first moments of the laser reaching the target and undergoes complicated dynamics. Some of the most challenging difficulties arise from various plasma instabilities that occur due to interaction of the laser beam and a plasma surrounding the target. In this work we consider one of such instabilities that describes a decay of nonlinear plasma wave, initially excited due to interaction of the laser beam with the plasma, into many filaments in direction perpendicular to the laser beam, therefore named Langmuir filamentation instability. This instability occurs in the kinetic regime of plasma, klambda D > 0.2, where k is the wavenumber and lambda D is the Debye length. The filamentation of Langmuir waves in turn leads to the saturation of the stimulated Raman scattering (SRS) in laser-plasma interaction experiments which plays an essential role in ICF experiments. The challenging part of this work was that unlike in hydrodynamics we needed to use fully kinetic description of plasma to capture the physics in question properly, meaning that we needed to consider the distribution function of charged particles and its evolution in time not only with

  11. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes

    PubMed Central

    Kimple, Michelle E; Neuman, Joshua C; Linnemann, Amelia K; Casey, Patrick J

    2014-01-01

    The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology. PMID:24946790

  12. Ultrasonographic characterization of follicle deviation in follicular waves with single dominant and codominant follicles in dromedary camels (Camelus dromedarius).

    PubMed

    Manjunatha, B M; Al-Bulushi, S; Pratap, N

    2014-04-01

    Follicular wave emergence was synchronized by treating camels with GnRH when a dominant follicle (DF) was present in the ovaries. Animals were scanned twice a day from day 0 (day of GnRH treatment) to day 10, to characterize emergence and deviation of follicles during the development of the follicular wave. Follicle deviation in individual animals was determined by graphical method. Single DFs were found in 16, double DFs in 9 and triple DFs in two camels. The incidence of codominant (double and triple DFs) follicles was 41%. The interval from GnRH treatment to wave emergence, wave emergence to deviation, diameter and growth rate of F1 follicle before or after deviation did not differ between the animals with single and double DFs. The size difference between future DF(s) and the largest subordinate follicle (SF) was apparent from the day of wave emergence in single and double DFs. Overall, interval from GnRH treatment to wave emergence and wave emergence to the beginning of follicle deviation was 70.6 ± 1.4 and 58.6 ± 2.7 h, respectively. Mean size of the DF and largest SF at the beginning of deviation was 7.4 ± 0.2 and 6.3 ± 0.1 mm, respectively. In conclusion, the characteristics of follicle deviation are similar between the animals that developed single or double DFs. © 2013 Blackwell Verlag GmbH.

  13. Teaching Wave Propagation and the Emergence of Viete's Formula

    ERIC Educational Resources Information Center

    Cullerne, J. P.; Goekjian, M. C. Dunn

    2012-01-01

    The well-known result for the frequency of a simple spring-mass system may be combined with elementary concepts like speed = wavelength x frequency to obtain wave propagation speeds for an infinite chain of springs and masses (masses "m" held apart at equilibrium distance "a" by springs of stiffness "gamma"). These propagation speeds are dependent…

  14. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.

    PubMed

    Lopez Sanchez, M I G; Crowston, J G; Mackey, D A; Trounce, I A

    2016-09-01

    Optic neuropathies are an important cause of blindness worldwide. The study of the most common inherited mitochondrial optic neuropathies, Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) has highlighted a fundamental role for mitochondrial function in the survival of the affected neuron-the retinal ganglion cell. A picture is now emerging that links mitochondrial dysfunction to optic nerve disease and other neurodegenerative processes. Insights gained from the peculiar susceptibility of retinal ganglion cells to mitochondrial dysfunction are likely to inform therapeutic development for glaucoma and other common neurodegenerative diseases of aging. Despite it being a fast-evolving field of research, a lack of access to human ocular tissues and limited animal models of mitochondrial disease have prevented direct retinal ganglion cell experimentation and delayed the development of efficient therapeutic strategies to prevent vision loss. Currently, there are no approved treatments for mitochondrial disease, including optic neuropathies caused by primary or secondary mitochondrial dysfunction. Recent advances in eye research have provided important insights into the molecular mechanisms that mediate pathogenesis, and new therapeutic strategies including gene correction approaches are currently being investigated. Here, we review the general principles of mitochondrial biology relevant to retinal ganglion cell function and provide an overview of the major optic neuropathies with mitochondrial involvement, LHON and ADOA, whilst highlighting the emerging link between mitochondrial dysfunction and glaucoma. The pharmacological strategies currently being trialed to improve mitochondrial dysfunction in these optic neuropathies are discussed in addition to emerging therapeutic approaches to preserve retinal ganglion cell function. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The mare: a 1000-pound guinea pig for study of the ovulatory follicular wave in women.

    PubMed

    Ginther, O J

    2012-03-15

    The mare is a good comparative model for study of ovarian follicles in women, owing to striking similarities in follicular waves and the mechanism for selection of a dominant follicle. Commonality in follicle dynamics between mares and women include: (1) a ratio of 2.2:1 (mare:woman) in diameter of the largest follicle at wave emergence when the wave-stimulating FSH surge reaches maximum, in diameter increase of the two largest follicles between emergence and the beginning of deviation between the future dominant and subordinate follicles, in diameter of each of the two largest follicles at the beginning of deviation, and in maximum diameter of the preovulatory follicle; (2) emergence of the future ovulatory follicle before the largest subordinate follicle; (3) a mean interval of 1 day between emergence of individual follicles of the wave; (4) percentage increase in diameter of follicles for the 3 days before deviation; (5) deviation 3 or 4 days after emergence; (6) 25% incidence of a major anovulatory follicular wave emerging before the ovulatory wave; (7) 40% incidence of a predeviation follicle preceding the ovulatory wave; (8) small but significant increase in estradiol and LH before deviation; (9) cooperative roles of FSH and insulin-like growth factor 1 and its proteases in the deviation process; (10) age-related effects on the follicles and oocytes; (11) approximate 37-hour interval between administration of hCG and ovulation; and (12) similar gray-scale and color-Doppler ultrasound changes in the preovulatory follicle. In conclusion, the mare may be the premier nonprimate model for study of follicle dynamics in women. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Fuqiang; Hayat, Tasawar; Zhou, Ping; Tang, Jun

    2017-11-01

    Continuous wave emitting from sinus node of the heart plays an important role in wave propagating among cardiac tissue, while the heart beating can be terminated when the target wave is broken into turbulent states by electromagnetic radiation. In this investigation, local periodical forcing is applied on the media to induce continuous target wave in the improved cardiac model, which the effect of electromagnetic induction is considered by using magnetic flux, then external electromagnetic radiation is imposed on the media. It is found that target wave propagation can be blocked to stand in a local area and the excitability of media is suppressed to approach quiescent but homogeneous state when electromagnetic radiation is imposed on the media. The sampled time series for membrane potentials decrease to quiescent state due to the electromagnetic radiation. It could accounts for the mechanism of abnormality in heart failure exposed to continuous electromagnetic field.

  17. Targeting friend and foe: Emerging therapeutics in the age of gut microbiome and disease.

    PubMed

    Cho, Jin Ah; Chinnapen, Daniel J F

    2018-03-01

    Mucosal surfaces that line our gastrointestinal tract are continuously exposed to trillions of bacteria that form a symbiotic relationship and impact host health and disease. It is only beginning to be understood that the cross-talk between the host and microbiome involve dynamic changes in commensal bacterial population, secretion, and absorption of metabolites between the host and microbiome. As emerging evidence implicates dysbiosis of gut microbiota in the pathology and progression of various diseases such as inflammatory bowel disease, obesity, and allergy, conventional treatments that either overlook the microbiome in the mechanism of action, or eliminate vast populations of microbes via wide-spectrum antibiotics need to be reconsidered. It is also becoming clear the microbiome can influence the body's response to therapeutic treatments for cancers. As such, targeting the microbiome as treatment has garnered much recent attention and excitement from numerous research labs and biotechnology companies. Treatments range from fecal microbial transplantation to precision-guided molecular approaches. Here, we survey recent progress in the development of innovative therapeutics that target the microbiome to treat disease, and highlight key findings in the interplay between host microbes and therapy.

  18. Nystagmus Assessments Documented by Emergency Physicians in Acute Dizziness Presentations: A Target for Decision Support?

    PubMed Central

    Kerber, Kevin A.; Morgenstern, Lewis B.; Meurer, William J.; McLaughlin, Thomas; Hall, Pamela A.; Forman, Jane; Fendrick, A. Mark; Newman-Toker, David E.

    2011-01-01

    Objectives Dizziness is a common presenting complaint to the emergency department (ED), and emergency physicians (EPs) consider these presentations a priority for decision support. Assessing for nystagmus and defining its features are important steps for any acute dizziness decision algorithm. The authors sought to describe nystagmus documentation in routine ED care to determine if nystagmus assessments might be an important target in decision support efforts. Methods Medical records from ED visits for dizziness were captured as part of a surveillance study embedded within an ongoing population-based cohort study. Visits with documentation of a nystagmus assessment were reviewed and coded for presence or absence of nystagmus, ability to draw a meaningful inference from the description, and coherence with the final EP diagnosis when a peripheral vestibular diagnosis was made. Results Of 1,091 visits for dizziness, 887 (81.3%) documented a nystagmus assessment. Nystagmus was present in 185 out of 887 (20.9%) visits. When nystagmus was present, no further characteristics were recorded in 48 of the 185 visits (26%). The documentation of nystagmus (including all descriptors recorded) enabled a meaningful inference about the localization or cause in only 10 of the 185 (5.4%) visits. The nystagmus description conflicted with the EP diagnosis in 113 (80.7%) of the 140 visits that received a peripheral vestibular diagnosis. Conclusions Nystagmus assessments are frequently documented in acute dizziness presentations, but details do not generally enable a meaningful inference. Recorded descriptions usually conflict with the diagnosis when a peripheral vestibular diagnosis is rendered. Nystagmus assessments might be an important target in developing decision support for dizziness presentations. PMID:21676060

  19. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders.

    PubMed

    Aziz, Faisal

    2016-05-01

    Since their discovery of more than a decade ago, microRNAs have been demonstrated to have profound effects on almost every aspect of biology. Specific microRNAs have emerged as key players in disease biology by playing crucial role in disease development and progression. This review draws attention to miR-223 that has been reported to be abnormally expressed in several diseases like diabetes-type2, sepsis, rheumatoid arthritis, viral infections likes' human immunodeficiency virus-1 (HIV-1) and inflammatory disorders. It regulates inflammation by targeting different targets, including cytoplasmic activation/proliferation-associated protein-1 (Caprin-1), Insulin-like growth factor-1 receptor (IGF-1R), heat shock protein 90 (Hsp90), STAT5, artemin, EPB41L3, Ect2, Pknox1, C/EBPα, C/EBPβ, E2F1, FOXO1, NFI-A and other transcription factors. In this review, we summarized the recent studies of miR-223, their mechanisms to develop inflammation diseases and its importance role to use as biomarkers for early diagnosis and therapeutic target against inflammation diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The New Year Wave: Generation, Propagation, Kinematics and Dynamics - Registered in a Seakeeping Basin

    NASA Astrophysics Data System (ADS)

    Clauss, Günther; Klein, Marco

    2010-05-01

    In the past years the existence of freak waves has been affirmed by observations, registrations, and severe accidents. One of the famous real world registrations is the so called 'New Year wave,' recorded in the North Sea at the Draupner jacket platform on January 1st, 1995. Since there is only a single point registration available, it is not possible to draw conclusions on the spatial development in front of and behind the point of registration, which is indispensable for a complete understanding of this phenomenon. This paper presents the temporal and spatial development of the New Year Wave generated in a model basin. To simulate the recorded New Year wave in the wave tank, an optimization approach for the experimental generation of wave sequences with predefined characteristics is used. The method is applied to generate scenarios with a single high wave superimposed to irregular seas. During the experimental optimization special emphasis is laid on the exact reproduction of the wave height, crest height, wave period, as well as the vertical and horizontal asymmetries of the New Year Wave. The fully automated optimization process is carried out in a small wave tank. At the beginning of the optimization process, the scaled real-sea measured sea state is transformed back to the position of the piston type wave generator by means of linear wave theory and by multiplication with the electrical and hydrodynamic transfer functions in the frequency domain. As a result a preliminary control signal for the wave generator is obtained. Due to nonlinear effects in the wave tank, the registration of the freak wave at the target position generated by this preliminary control signal deviates from the predefined target parameters. To improve the target wave in the tank only a short section of the control signal in time domain has to be adapted. For these temporally limited local changes in the control signal, the discrete wavelet transformation is introduced into the

  1. Visual and refractive outcomes of LASIK with the SCHWIND ESIRIS and WaveLight ALLEGRETTO WAVE Eye-q excimer lasers: a prospective, contralateral study.

    PubMed

    Mearza, Ali A; Muhtaseb, Mohammed; Aslanides, Ioannis M

    2008-11-01

    To compare the safety, efficacy, and predictability of LASIK with the SCHWIND ESIRIS and WaveLight ALLEGRETTO WAVE Eye-Q excimer laser platforms. This prospective study comprised 44 eyes of 22 consecutive patients who were treated with LASIK using the Moria M2 microkeratome. One eye was treated with the SCHWIND ESIRIS laser and the fellow eye treated with the WaveLight ALLEGRETTO WAVE Eye-Q laser. All eyes operated with the SCHWIND ESIRIS were treated with standard aspheric ablation, whereas the eyes operated with the WaveLight ALLEGRETTO WAVE Eye-Q received treatment with three different ablation types according to the common practice at our clinic. Outcome measures were uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refraction, and proximity to target refraction at 6-month follow-up. At 6 months postoperative, mean decimal UCVA was 0.96+/-0.22 (range: 0.3 to 1.2) for ESIRIS eyes and 0.98+/-0.17 (range: 0.6 to 1.2) for ALLEGRETTO eyes (P=.57). Mean postoperative spherical equivalent refraction was -0.02+/-0.28 diopters (D) (range: -0.75 to +0.75 D) for ESIRIS eyes and 0.11+/-0.91 D (range: -1.00 to +3.88 D) for ALLEGRETTO eyes (P=.49). Of the ESIRIS eyes, 20/22 (91%) were within +/-1.00 D of target refraction and 20/22 (91%) were within +/-0.50 D of target refraction. Of the ALLEGRETTO eyes, 20/22 (91%) and 19/22 (86%) were within +/-1.00 D and +/-0.50 D, respectively, of target refraction. No patient lost > or =2 lines of BSCVA in either group. No differences were seen in safety and efficacy outcome parameters between the SCHWIND ESIRIS and WaveLight ALLEGRETTO WAVE Eye-Q excimer lasers when used according to a previously established treatment algorithm at our clinic in the treatment of refractive error.

  2. Targeting monoamine oxidases with multipotent ligands: an emerging strategy in the search of new drugs against neurodegenerative diseases.

    PubMed

    Pisani, L; Catto, M; Leonetti, F; Nicolotti, O; Stefanachi, A; Campagna, F; Carotti, A

    2011-01-01

    The socioeconomic burden of multi-factorial pathologies, such as neurodegenerative diseases (NDs), is enormous worldwide. Unfortunately, no proven disease-modifying therapy is available yet and in most cases (e.g., Alzheimer's and Parkinson's disease) the approved drugs exert only palliative and symptomatic effects. Nowadays, an emerging strategy for the discovery of disease-modifying drugs is based on the multi-target directed ligand (MTDL) design, an innovative shift from the traditional approach one-drug-one-target to the more ambitious one-drug-more-targets goal. Herein, we review the discovery strategy, the mechanism of action and the biopharmacological evaluation of multipotent ligands exhibiting monoamine oxidase (MAO) inhibition as the core activity with a potential for the treatment of NDs. In particular, MAO inhibitors exhibiting additional acetylcholinesterase (AChE) or nitric oxide synthase (NOS) inhibition, or ion chelation/antioxidant-radical scavenging/anti-inflammatory/A2A receptor antagonist/APP processing modulating activities have been thoroughly examined.

  3. Ground wave emergency network final operational capability: Environmental assessment for northwestern Nebraska relay node, site number RN 8C930NE

    NASA Astrophysics Data System (ADS)

    1993-02-01

    The Ground Wave Emergency Network (GWEN) is a radio communication system designed to relay emergency messages between strategic military areas in the continental United States. The system is immune to the effects of high-altitude electromagnetic pulse (HEMP) energy surges caused by nuclear bursts in the ionosphere that would disrupt conventional communications equipment such as telephones and shortwave radios. A failure of such equipment would prevent timely communications among top military and civilian leaders and strategic Air Force locations and prevent U.S. assessment and retaliation during an attack. GWEN is an essential part of a defense modernization program to upgrade and improve our nation's communications system, thereby strengthening deterrence. The GWEN system consists of a network of relay nodes, receive-only stations, and input/output stations. Each relay node, such as the one proposed in northwestern Nebraska, consists of a guyed radio tower facility similar to those used by commercial AM broadcast transmitters.

  4. Ground wave emergency network final operational capability: Environmental assessment for southern Nevada relay node site number RN 8W918NV

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The Ground Wave Emergency Network (GWEN) is a radio communication system designed to relay emergency messages between strategic military areas in the continental United States. The system is immune to the effects of high-altitude electromagnetic pulse (HEMP) energy surges caused by nuclear bursts in the ionosphere that would disrupt conventional communications equipment such as telephones and shortwave radios. A failure of such equipment would prevent timely communications among top military and civilian leaders and strategic Air Force locations and prevent U.S. assessment and retaliation during an attack. GWEN is an essential part of a defense modernization program to upgrade and improve our nation's communications system, thereby strengthening deterrence. The GWEN system consists of a network of relay nodes, receive-only stations, and input/output stations. Each relay node, such as the one proposed in southern Nevada consists of a guyed radio tower facility similar to those used by commercial AM broadcast transmitters.

  5. Practical considerations in emergency management of bleeding in the setting of target-specific oral anticoagulants.

    PubMed

    Miller, Michael P; Trujillo, Toby C; Nordenholz, Kristen E

    2014-04-01

    The recent arrival of the target-specific oral anticoagulants (TSOACs) offers potential advantages in the field of anticoagulation. However, there are no rapid and accurate and routinely available laboratory assays to evaluate their contribution to clinical bleeding. With the expanding clinical indications for the TSOACs, and the arrival of newer reversal agents on the market, the emergency clinician will need to be familiar with drug specifics as well as methods for anticoagulation reversal. This review offers a summary of the literature and some practical strategies for the approach to the patient taking TSOACs and the management of bleeding in these cases. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Laser Driven Compression Equations of State and Hugoniot Pressure Measurements in Thick Solid Metallic Targets at ˜0.17-13 TW/cm2

    NASA Astrophysics Data System (ADS)

    Remo, John L.

    2010-10-01

    An electro-optic laser probe was developed to obtain parameters for high energy density equations of state (EoS), Hugoniot pressures (PH), and strain rates for high energy density laser irradiation intensity, I, experiments at ˜170 GW/cm2 (λ = 1064 nm) to ˜13 TW/cm2 (λ = 527 nm) on Al, Cu, Ti, Fe, Ni metal targets in a vacuum. At I ˜7 TW/cm2 front surface plasma pressures and temperatures reached 100's GPa and over two million K. Rear surface PH ranged from 7-120 GPa at average shock wave transit velocities 4.2-8.5 km/s, depending on target thickness and I. A surface plasma compression ˜100's GPa generated an impulsive radial expanding shock wave causing compression, rarefactions, and surface elastic and plastic deformations depending on I. A laser/fiber optic system measured rear surface shock wave emergence and particle velocity with ˜3 GHz resolution by monitoring light deflection from diamond polished rear surfaces of malleable metallic targets, analogous to an atomic force microscope. Target thickness, ˜0.5-2.9 mm, prevented front surface laser irradiation penetration, due to low radiation skin depth, from altering rear surface reflectivity (refractive index). At ˜10 TW electromagnetic plasma pulse noise generated from the target chamber overwhelmed detector signals. Pulse frequency analysis using Moebius loop antennae probed transient noise characteristics. Average shock (compression) and particle (rear surface displacement) velocity measurements determined rear surface PH and GPa) EoS that are compared with gas guns.

  7. Autapse-Induced Spiral Wave in Network of Neurons under Noise

    PubMed Central

    Qin, Huixin; Ma, Jun; Wang, Chunni; Wu, Ying

    2014-01-01

    Autapse plays an important role in regulating the electric activity of neuron by feedbacking time-delayed current on the membrane of neuron. Autapses are considered in a local area of regular network of neurons to investigate the development of spatiotemporal pattern, and emergence of spiral wave is observed while it fails to grow up and occupy the network completely. It is found that spiral wave can be induced to occupy more area in the network under optimized noise on the network with periodical or no-flux boundary condition being used. The developed spiral wave with self-sustained property can regulate the collective behaviors of neurons as a pacemaker. To detect the collective behaviors, a statistical factor of synchronization is calculated to investigate the emergence of ordered state in the network. The network keeps ordered state when self-sustained spiral wave is formed under noise and autapse in local area of network, and it independent of the selection of periodical or no-flux boundary condition. The developed stable spiral wave could be helpful for memory due to the distinct self-sustained property. PMID:24967577

  8. Autapse-induced spiral wave in network of neurons under noise.

    PubMed

    Qin, Huixin; Ma, Jun; Wang, Chunni; Wu, Ying

    2014-01-01

    Autapse plays an important role in regulating the electric activity of neuron by feedbacking time-delayed current on the membrane of neuron. Autapses are considered in a local area of regular network of neurons to investigate the development of spatiotemporal pattern, and emergence of spiral wave is observed while it fails to grow up and occupy the network completely. It is found that spiral wave can be induced to occupy more area in the network under optimized noise on the network with periodical or no-flux boundary condition being used. The developed spiral wave with self-sustained property can regulate the collective behaviors of neurons as a pacemaker. To detect the collective behaviors, a statistical factor of synchronization is calculated to investigate the emergence of ordered state in the network. The network keeps ordered state when self-sustained spiral wave is formed under noise and autapse in local area of network, and it independent of the selection of periodical or no-flux boundary condition. The developed stable spiral wave could be helpful for memory due to the distinct self-sustained property.

  9. Demonstration of a robust magnonic spin wave interferometer.

    PubMed

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-22

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  10. Demonstration of a robust magnonic spin wave interferometer

    PubMed Central

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-01-01

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe. PMID:27443989

  11. Acoustic Waves in Medical Imaging and Diagnostics

    PubMed Central

    Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.

    2013-01-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056

  12. Targeted Therapies in NSCLC: Emerging oncogene targets following the success of EGFR

    PubMed Central

    Berge, Eamon M; Doebele, Robert C

    2014-01-01

    The diagnostic testing, treatment and prognosis of non-small cell lung cancer (NSCLC) has undergone a paradigm shift since the discovery of sensitizing mutations in the epidermal growth factor receptor (EGFR) gene in a subset of NSCLC patients. Several additional oncogenic mutations, including gene fusions and amplifications have since been discovered, with a number of drugs that target each specific oncogene. This review focuses on oncogenes in NSCLC other than EGFR and their companion ‘targeted therapies’. Particular emphasis is placed on the role of ALK, ROS1, RET, MET, BRAF, and HER2 in NSCLC. PMID:24565585

  13. [Emergency department activity during the 2003 summer heat wave].

    PubMed

    Trejo, Olga; Miró, Oscar; de la Red, Gloria; Collvinent, Blanca; Bragulat, Ernest; Asenjo, Miguel A; Salmerón, Joan M; Sánchez, Miquel

    2005-07-09

    Several thousands deaths were attributed to a heatwave during the summer of 2003 in Europe. The aim of this study was to analyze its consequences in an emergency department. We performed a descriptive observational study of the patients admitted to our emergency unit between 15 July and 31 August, 2003. We also carried out a comparative study of these patients with those admitted during the same period of 2002. A total of 5197 patients were admitted in our unit during the summer of 2003, in comparison with 4672 in the same interval in 2002. An increase in rates of total fever (17% versus 12%; p < 0.001), non-infectious fever (29% versus 26%; p < 0.001), decompensation of a chronic cardiovascular or respiratory disease (14% versus 11%; p < 0.001), admission (28% versus 22%; p < 0.001), and mortality (2% versus 1%; p < 0.001) were registered during the summer of 2003, in comparison with the previous year. A multivariate study showed a higher risk of death in patients older than 70 years (p < 0.01), in fragile dependent people (p < 0.05), and upon the presence of abnormal blood levels of creatinine (p < 0.05) on arrival at the emergency department. We also found an association between daily maxim temperature and number of daily emergency visits (R2 = 0.15; p < 0.001), total percentage of patients with fever (R2 = 0.26; p < 0.001), percentage of patients with non-infectious fever (R2 = 0.07; p = 0.01), percentage of decreases (R2 = 0.04; p < 0.05), and percentage of hospital admissions (R2 = 0.15; p < 0.001). The summer 2003 heatwave resulted in an elevation of the total number of emergency visits and hospital admissions, and higher mortality and morbidity rates, especially in old people. In the future, preventive measures must be taken to limit the health consequences of any heatwaves to come.

  14. Hitting and missing targets by ambulance services for emergency calls: effects of different systems of performance measurement within the UK

    PubMed Central

    Bevan, Gwyn; Hamblin, Richard

    2009-01-01

    Following devolution, differences developed between UK countries in systems of measuring performance against a common target that ambulance services ought to respond to 75% of calls for what may be immediately life threatening emergencies (category A calls) within 8 minutes. Only in England was this target integral to a ranking system of ‘star rating’, which inflicted reputational damage on services that failed to hit targets, and only in England has this target been met. In other countries, the target has been missed by such large margins that services would have been publicly reported as failing, if they had been covered by the English system of star ratings. The paper argues that this case-study adds to evidence from comparisons of different systems of hospital performance measurement that, to have an effect, these systems need to be designed to inflict reputational damage on those that have performed poorly; and it explores implications of this hypothesis. The paper also asks questions about the adequacy of systems of performance measurement of ambulance services in UK countries. PMID:19381327

  15. Making the case for a 'fifth wave' in public health.

    PubMed

    Hanlon, P; Carlisle, S; Hannah, M; Reilly, D; Lyon, A

    2011-01-01

    This paper will argue that the UK has seen several phases of public health improvement since the Industrial Revolution, and that each of these can be linked to major shifts in thinking about the nature of society and health itself. The authors are not, however, attempting to delineate firm sequences of events (or imply causality) as this would require a level of analysis of the relationship between economy, society and culture which is beyond the scope of this paper. Rather, it is suggested that each phase of health improvement can be thought of in metaphorical terms as a 'wave'. The first wave is associated with great public works and other developments arising from social responses to the profound disruptions which followed the Industrial Revolution. The second wave saw the emergence of medicine as science. The third wave involved the redesign of our social institutions during the 20th Century and gave birth to the welfare state. The fourth wave has been dominated by efforts to combat disease risk factors and the emergence of systems thinking. Although a trough of public health activity continues from each wave, none exerts the same impact as when it first emerged. This paper will discuss the complex challenges of obesity, inequality and loss of wellbeing, together with the broader problems of exponential growth in population, money creation and energy usage. As exponential growth is unsustainable on a finite planet, inevitable change looms. Taken together, these analyses suggest that a fifth wave of public health development is now needed; one which will need to differ radically from its forerunners. The authors invite others to join them in envisioning its nature and in furthering the debate about future public health. Copyright © 2010 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  16. Coronal magnetohydrodynamic waves and oscillations: observations and quests.

    PubMed

    Aschwanden, Markus J

    2006-02-15

    Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.

  17. Impact of water drops on small targets

    NASA Astrophysics Data System (ADS)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  18. Passive sampling - a tool for targeted screening of emerging pollutants in rivers

    NASA Astrophysics Data System (ADS)

    Kodes, Vit; Grabic, Roman

    2016-04-01

    A screening of more than 300 pollutants such as pharmaceuticals (analgesics, psycholeptics, antidepressants, antibiotics, beta blockers), PCPs (UV blockers, musk's, repellents), illicit drugs, pesticides, perfluorinated compounds and their metabolites at 22 monitoring sites throughout the Czech Republic was conducted in 2013. POCIS samplers were used in this study. Two types of passive samplers (pesticide and pharmaceutical POCIS) were deployed for 14 days in May and in October, 88 samples were collected in total. In total 265 and 310 target compounds were analyzed in pharmaceutical and pesticide samplers respectively. The chemicals of interest were extracted from the passive samplers according to standardized procedures. LC -MS/MS and LC-MS/HRMS methods were applied for analyses of extracts. 150 of 310 (48%) and 127 of 265 (48%) analyzed substances had been found in pesticide and pharmaceutical samplers respectively. 27 substances (pharmaceuticals, PCPs, pesticides, caffeine, nicotine metabolite cotinine) occurred at all sampled sites, additional 39 substances (pharmaceuticals, PCPs, pesticides) occurred at more than 17 (75%) sites. One of perfluorinated compounds (PFOA) occurred at 68% of sites, whilst one of illicit drugs (Methamphetamine) was found at 61% of sites. The highest number of contaminants found in one POCIS at a single monitoring site was 111. The concentrations varied from nanograms to thousands of nanograms per sampler. Emerging contaminants occurring in highest concentrations (> 1000 ng/sampler) were BP-4 and PBSA (UV blockers), caffeine, DEET (insect repellent), imidacloprid (insecticide), telmisartan (hypertension drug) and tramadol (analgesic). Monitoring in the Czech Republic has demonstrated that many target compounds enter river waters and a number of these compounds reach high concentrations.

  19. Point prevalence of access block and overcrowding in New Zealand emergency departments in 2010 and their relationship to the 'Shorter Stays in ED' target.

    PubMed

    Jones, Peter G; Olsen, Sarah

    2011-10-01

    To document the extent of access block and ED overcrowding in New Zealand in 2010 and to determine whether these were linked to the hospital's ability to meet the Shorter Stays in ED target. Surveys of all New Zealand EDs were undertaken at two points in time in 2010 to determine ED occupancy. Data on target achievement during corresponding time periods were obtained from the Ministry of Health. In tertiary and secondary hospitals, respectively, access block was seen in 64% versus 23% (P= 0.05) and overcrowding was seen in 57.1% versus 39% (P= 0.45). No hospital with access block met the 'Shorter Stays' target, compared with 60% without access block (P= 0.001). Twenty-three per cent of hospitals with ED overcrowding met the target compared with 43% without ED overcrowding (P= 0.42). The number of patients experiencing ≥8 h delay to admission were 25 in May and 59 in August (P= 0.04). This represented 45.5% and 79.7% of patients waiting for admission, respectively (P= 0.08). Hospital access block was seen more often in larger hospitals and significantly associated with failure to meet the 'Shorter Stays in ED' health target, whereas ED overcrowding was seen in both small and large hospitals, but not associated with failure to meet the target. © 2011 The Authors. EMA © 2011 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  20. Propagating waves can explain irregular neural dynamics.

    PubMed

    Keane, Adam; Gong, Pulin

    2015-01-28

    Cortical neurons in vivo fire quite irregularly. Previous studies about the origin of such irregular neural dynamics have given rise to two major models: a balanced excitation and inhibition model, and a model of highly synchronized synaptic inputs. To elucidate the network mechanisms underlying synchronized synaptic inputs and account for irregular neural dynamics, we investigate a spatially extended, conductance-based spiking neural network model. We show that propagating wave patterns with complex dynamics emerge from the network model. These waves sweep past neurons, to which they provide highly synchronized synaptic inputs. On the other hand, these patterns only emerge from the network with balanced excitation and inhibition; our model therefore reconciles the two major models of irregular neural dynamics. We further demonstrate that the collective dynamics of propagating wave patterns provides a mechanistic explanation for a range of irregular neural dynamics, including the variability of spike timing, slow firing rate fluctuations, and correlated membrane potential fluctuations. In addition, in our model, the distributions of synaptic conductance and membrane potential are non-Gaussian, consistent with recent experimental data obtained using whole-cell recordings. Our work therefore relates the propagating waves that have been widely observed in the brain to irregular neural dynamics. These results demonstrate that neural firing activity, although appearing highly disordered at the single-neuron level, can form dynamical coherent structures, such as propagating waves at the population level. Copyright © 2015 the authors 0270-6474/15/351591-15$15.00/0.

  1. Omnidirectional spin-wave nanograting coupler

    PubMed Central

    Yu, Haiming; Duerr, G.; Huber, R.; Bahr, M.; Schwarze, T.; Brandl, F.; Grundler, D.

    2013-01-01

    Magnonics as an emerging nanotechnology offers functionalities beyond current semiconductor technology. Spin waves used in cellular nonlinear networks are expected to speed up technologically, demanding tasks such as image processing and speech recognition at low power consumption. However, efficient coupling to microelectronics poses a vital challenge. Previously developed techniques for spin-wave excitation (for example, by using parametric pumping in a cavity) may not allow for the relevant downscaling or provide only individual point-like sources. Here we demonstrate that a grating coupler of periodically nanostructured magnets provokes multidirectional emission of short-wavelength spin waves with giantly enhanced amplitude compared with a bare microwave antenna. Exploring the dependence on ferromagnetic materials, lattice constants and the applied magnetic field, we find the magnonic grating coupler to be more versatile compared with gratings in photonics and plasmonics. Our results allow one to convert, in particular, straight microwave antennas into omnidirectional emitters for short-wavelength spin waves, which are key to cellular nonlinear networks and integrated magnonics. PMID:24189978

  2. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Alexandra; Haller, Merrick; Walker, David

    -term phase-resolved predictions. Two recommendations for future work are as follows: first, we would recommend additional focused field campaigns for algorithm validation. The field campaign should be long enough to capture a range of wave conditions relevant to the target application and WEC site. In addition, it will be crucial to make sure the vessel of choice has high accuracy position and heading instrumentation (this instrumentation is commercially available but not standard on commercial fishing vessels). The second recommendation is to expand the model physics in the wave model backbone to include some nonlinear effects. Specifically, the third-order correction to the wave speed due to amplitude dispersion would be the next step in order to more accurately represent the phase speeds of large amplitude waves.« less

  3. Shock-induced perturbation evolution in planar laser targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2013-10-01

    Experimental studies of hydrodynamic perturbation evolution triggered by a laser-driven shock wave in a planar target done on the KrF Nike laser facility are reported. The targets were made of solid plastic and/or plastic foam with single mode sinusoidal perturbation on the front or back surface or plastic/foam interface. Two specific cases are discussed. When a planar solid plastic target rippled at the front side is irradiated with a 350 ps long laser pulse, ablative Richtmyer-Meshkov (RM) oscillation of its areal mass modulation amplitude is detected while the laser is on, followed by observed strong oscillations of the areal mass in the unsupported shock flow after the laser pulse ends. When the target is rippled at the rear side, the nature of the perturbation evolution after the shock breakout is determined by the strength of the laser-driven shock wave. At pressure below 1 Mbar shock interaction with rear-surface ripples produces planar collimated jets manifesting the development of a classical RM instability in a weakly compressible shocked fluid. At shock pressure ~ 8 Mbar sufficient for vaporizing the shocked target material we observed instead the strong areal mass oscillations characteristic of a rippled centered rarefaction wave. Work supported by US DOE, Defense Programs.

  4. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases.

    PubMed

    Al-Bari, Md Abdul Alim

    2017-02-01

    Emerging viruses such as HIV, dengue, influenza A, SARS coronavirus, Ebola, and other viruses pose a significant threat to human health. Majority of these viruses are responsible for the outbreaks of pathogenic lethal infections. To date, there are no effective therapeutic strategies available for the prophylaxis and treatment of these infections. Chloroquine analogs have been used for decades as the primary and most successful drugs against malaria. Concomitant with the emergence of chloroquine-resistant Plasmodium strains and a subsequent decrease in the use as antimalarial drugs, other applications of the analogs have been investigated. Since the analogs have interesting biochemical properties, these drugs are found to be effective against a wide variety of viral infections. As antiviral action, the analogs have been shown to inhibit acidification of endosome during the events of replication and infection. Moreover, immunomodulatory effects of analogs have been beneficial to patients with severe inflammatory complications of several viral diseases. Interestingly, one of the successful targeting strategies is the inhibition of HIV replication by the analogs in vitro which are being tested in several clinical trials. This review focuses on the potentialities of chloroquine analogs for the treatment of endosomal low pH dependent emerging viral diseases.

  5. A propagation method with adaptive mesh grid based on wave characteristics for wave optics simulation

    NASA Astrophysics Data System (ADS)

    Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan

    2015-10-01

    Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.

  6. The Role of Adoption Communicative Openness in Information Seeking Among Adoptees From Adolescence to Emerging Adulthood

    PubMed Central

    Skinner-Drawz, Brooke A.; Wrobel, Gretchen Miller; Grotevant, Harold D.; Von Korff, Lynn

    2013-01-01

    Adoption Communicative Openness was examined as a predictor of information seeking from adolescence to emerging adulthood in a group of adoptees who did not have direct contact with birth relatives during adolescence. Changes in information seeking intentions and behaviors between adolescence and emerging adulthood were also examined. Data from 119 infant-placed adoptees and their adoptive mothers were used from Waves 2 (1996–2000) and 3 (2005–2008) of the Minnesota-Texas Adoption Research Project (Grotevant & McRoy, 1998). Adoptive mothers’ Communicative Openness was positively associated with degree of information seeking in emerging adulthood. Degree of information seeking between adolescence (Wave 2) and emerging adulthood (Wave 3) increased for the majority of adoptees (62.2%). Approximately 16% of adoptees experienced no change in information seeking and 22% of adoptees experienced a decrease in information seeking. Females were more likely to exhibit a greater increase in information seeking change between Waves 2 and 3 and information seeking at Wave 3 than males. Results suggest that adoptee information seeking is a dynamic process that takes place over several life stages and that open communication about adoption within the adoptive family supports adoptee information seeking. PMID:23926444

  7. Effects of stress waves on cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, H L; Da Silva, L B; Visuri, S R

    Laser induced stress waves are being used in a variety of medical applications, including drug delivery and targeted tissue disruption. Stress waves can also be an undesirable side effect in laser procedures such as ophthalmology and angioplasty. Thus, a study of the effects of stress waves on a cellular level is useful. Thermoelastic stress waves were produced using a Q-switched frequency-doubled Nd:YAG laser (@.=532nm) with a pulse duration of 4 ns. The laser radiation was delivered to an absorbing media. A thermoelastic stress wave was produced in the absorbing media and propagated into plated cells. The energy per pulse deliveredmore » to a sample and the spot size were varied. Stress waves were quantified. We assayed for cell viability and damage using two methods. The laser parameters within which cells maintain viability were investigated and thresholds for cell damage were defined. A comparison of cell damage thresholds for different cell lines was made.« less

  8. Nine wave-length THz spectrum for identification using backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Lv, Mo; Zhong, Hua; Ge, Xin-hao; He, Ting; Mu, Kaijun; Zhang, Cun-lin

    2009-11-01

    The sensing of the explosive is very important for homeland security and defense. We present a nine-wavelength continuous wave (CW) Terahertz (THz) spectroscopy for identification of explosive compounds (2,4-DNT, RDX and TNT) using three Backward Wave Oscillator (BWO) sources, which emit radiations from 0.2 THz to 0.38THz, 0.18THz to 0.26THz and 0.6THz to 0.7THz, respectively. To identify the target materials, only the transmitted THz power through the explosive pellets are measured at the nine discrete wavelengths. A hole, which is the same size as these pellets, is used as references to normalize the transmitted THz power. The measured discrete spectra was successfully identified and classified by using self-organizing map (SOM). These results prove that the backward wave oscillator is a convenient and powerful solution in future development of a standoff THz sensing and identification unit.

  9. Emergence of order in visual system development.

    PubMed Central

    Shatz, C J

    1996-01-01

    Neural connections in the adult central nervous system are highly precise. In the visual system, retinal ganglion cells send their axons to target neurons in the lateral geniculate nucleus (LGN) in such a way that axons originating from the two eyes terminate in adjacent but nonoverlapping eye-specific layers. During development, however, inputs from the two eyes are intermixed, and the adult pattern emerges gradually as axons from the two eyes sort out to form the layers. Experiments indicate that the sorting-out process, even though it occurs in utero in higher mammals and always before vision, requires retinal ganglion cell signaling; blocking retinal ganglion cell action potentials with tetrodotoxin prevents the formation of the layers. These action potentials are endogenously generated by the ganglion cells, which fire spontaneously and synchronously with each other, generating "waves" of activity that travel across the retina. Calcium imaging of the retina shows that the ganglion cells undergo correlated calcium bursting to generate the waves and that amacrine cells also participate in the correlated activity patterns. Physiological recordings from LGN neurons in vitro indicate that the quasiperiodic activity generated by the retinal ganglion cells is transmitted across the synapse between ganglion cells to drive target LGN neurons. These observations suggest that (i) a neural circuit within the immature retina is responsible for generating specific spatiotemporal patterns of neural activity; (ii) spontaneous activity generated in the retina is propagated across central synapses; and (iii) even before the photoreceptors are present, nerve cell function is essential for correct wiring of the visual system during early development. Since spontaneously generated activity is known to be present elsewhere in the developing CNS, this process of activity-dependent wiring could be used throughout the nervous system to help refine early sets of neural connections into

  10. Controls of Multimodal Wave Conditions in a Complex Coastal Setting

    NASA Astrophysics Data System (ADS)

    Hegermiller, C. A.; Rueda, A.; Erikson, L. H.; Barnard, P. L.; Antolinez, J. A. A.; Mendez, F. J.

    2017-12-01

    Coastal hazards emerge from the combined effect of wave conditions and sea level anomalies associated with storms or low-frequency atmosphere-ocean oscillations. Rigorous characterization of wave climate is limited by the availability of spectral wave observations, the computational cost of dynamical simulations, and the ability to link wave-generating atmospheric patterns with coastal conditions. We present a hybrid statistical-dynamical approach to simulating nearshore wave climate in complex coastal settings, demonstrated in the Southern California Bight, where waves arriving from distant, disparate locations are refracted over complex bathymetry and shadowed by offshore islands. Contributions of wave families and large-scale atmospheric drivers to nearshore wave energy flux are analyzed. Results highlight the variability of influences controlling wave conditions along neighboring coastlines. The universal method demonstrated here can be applied to complex coastal settings worldwide, facilitating analysis of the effects of climate change on nearshore wave climate.

  11. Faraday wave lattice as an elastic metamaterial.

    PubMed

    Domino, L; Tarpin, M; Patinet, S; Eddi, A

    2016-05-01

    Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.

  12. Free fatty acid receptors: emerging targets for treatment of diabetes and its complications

    PubMed Central

    Vangaveti, Venkat; Shashidhar, Venkatesh; Jarrod, Ghassan; Baune, Bernhard T.; Kennedy, R. Lee

    2010-01-01

    Fatty acids (FAs) are important as metabolic substrates and as structural components of biological membranes. However, they also function as signalling molecules. Recently, a series of G protein-coupled receptors (GPRs) for FAs has been described and characterized. These receptors have differing specificities for FAs of differing chain length and degree of saturation, for FA derivatives such as oleoylethanolamide, and for oxidized FAs. They are a critical component of the body's nutrient sensing apparatus, and small molecule agonists and antagonists of these receptors show considerable promise in the management of diabetes and its complications. Agonists of the long-chain free fatty acid receptors FFAR1 and GPR119 act as insulin secretagogues, both directly and by increasing incretins. Although, drugs acting at short-chain FFA receptors (FFAR2 and FFAR3) have not yet been developed, they are attractive targets as they regulate nutrient balance through effects in the intestine and adipose tissue. These include regulation of the secretion of cholecystokinin, peptide YY and leptin. Finally, GPR132 is a receptor for oxidized FAs, which may be a sensor of lipid overload and oxidative stress, and which is involved in atherosclerosis. Regulation of its signalling pathways with drugs may decrease the macrovascular risk experienced by diabetic patients. In summary, FA receptors are emerging drug targets that are involved in the regulation of nutrient status and carbohydrate tolerance, and modulators of these receptors may well figure prominently in the next generation of antidiabetic drugs. PMID:23148161

  13. Gravitational Wave Science: Challenges for Numerical Relativistic Astrophysics

    NASA Technical Reports Server (NTRS)

    Cenrella, Joan

    2005-01-01

    Gravitational wave detectors on earth and in space will open up a new observational window on the universe. The new information about astrophysics and fundamental physics these observations will bring is expected to pose exciting challenges. This talk will provide an overview of this emerging area of gravitational wave science, with a focus on the challenges it will bring for numerical relativistic astrophysics and a look at some recent results.

  14. Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy

    PubMed Central

    Weigert, Martin; Bundschuh, Sebastian T.

    2018-01-01

    Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879

  15. Spallation and fracture resulting from reflected and intersecting stress waves.

    NASA Technical Reports Server (NTRS)

    Kinslow, R.

    1973-01-01

    Discussion of the effects of stress waves produced in solid by explosions or high-velocity impacts. These waves rebound from free surfaces in the form of tensile waves that are capable of causing internal fractures or spallation of the material. The high-speed framing camera is shown to be an important tool for observing the stress waves and fracture in transparent targets, and its photographs provide valuable information on the mechanics of fracture.

  16. New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases

    PubMed Central

    Williams, Jessica A; Manley, Sharon; Ding, Wen-Xing

    2014-01-01

    Alcoholic liver disease is a major health problem in the United States and worldwide. Chronic alcohol consumption can cause steatosis, inflammation, fibrosis, cirrhosis and even liver cancer. Significant progress has been made to understand key events and molecular players for the onset and progression of alcoholic liver disease from both experimental and clinical alcohol studies. No successful treatments are currently available for treating alcoholic liver disease; therefore, development of novel pathophysiological-targeted therapies is urgently needed. This review summarizes the recent progress on animal models used to study alcoholic liver disease and the detrimental factors that contribute to alcoholic liver disease pathogenesis including miRNAs, S-adenosylmethionine, Zinc deficiency, cytosolic lipin-1β, IRF3-mediated apoptosis, RIP3-mediated necrosis and hepcidin. In addition, we summarize emerging adaptive protective effects induced by alcohol to attenuate alcohol-induced liver pathogenesis including FoxO3, IL-22, autophagy and nuclear lipin-1α. PMID:25278688

  17. Emergency Nursing--N421.

    ERIC Educational Resources Information Center

    Tate, Elizabeth

    A description is provided of "Emergency Nursing," an undergraduate nursing course designed to provide a concentrated learning experience in emergency care. The description first provides information on the curriculum placement of the course, allotment of class time, and the targeted student population, followed by a glossary of relevant…

  18. Experimental evidence of solitary wave interaction in Hertzian chains

    NASA Astrophysics Data System (ADS)

    Santibanez, Francisco; Munoz, Romina; Caussarieu, Aude; Job, Stéphane; Melo, Francisco

    2011-08-01

    We study experimentally the interaction between two solitary waves that approach one another in a linear chain of spheres interacting via the Hertz potential. When these counterpropagating waves collide, they cross each other and a phase shift in respect to the noninteracting waves is introduced as a result of the nonlinear interaction potential. This observation is well reproduced by our numerical simulations and is shown to be independent of viscoelastic dissipation at the bead contact. In addition, when the collision of equal amplitude and synchronized counterpropagating waves takes place, we observe that two secondary solitary waves emerge from the interacting region. The amplitude of the secondary solitary waves is proportional to the amplitude of incident waves. However, secondary solitary waves are stronger when the collision occurs at the middle contact in chains with an even number of beads. Although numerical simulations correctly predict the existence of these waves, experiments show that their respective amplitudes are significantly larger than predicted. We attribute this discrepancy to the rolling friction at the bead contact during solitary wave propagation.

  19. HELIOSEISMOLOGY OF PRE-EMERGING ACTIVE REGIONS. I. OVERVIEW, DATA, AND TARGET SELECTION CRITERIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leka, K. D.; Barnes, G.; Birch, A. C.

    2013-01-10

    This first paper in a series describes the design of a study testing whether pre-appearance signatures of solar magnetic active regions were detectable using various tools of local helioseismology. The ultimate goal is to understand flux-emergence mechanisms by setting observational constraints on pre-appearance subsurface changes, for comparison with results from simulation efforts. This first paper provides details of the data selection and preparation of the samples, each containing over 100 members, of two populations: regions on the Sun that produced a numbered NOAA active region, and a 'control' sample of areas that did not. The seismology is performed on datamore » from the GONG network; accompanying magnetic data from SOHO/MDI are used for co-temporal analysis of the surface magnetic field. Samples are drawn from 2001-2007, and each target is analyzed for 27.7 hr prior to an objectively determined time of emergence. The results of two analysis approaches are published separately: one based on averages of the seismology- and magnetic-derived signals over the samples, another based on Discriminant Analysis of these signals, for a statistical test of detectable differences between the two populations. We include here descriptions of a new potential-field calculation approach and the algorithm for matching sample distributions over multiple variables. We describe known sources of bias and the approaches used to mitigate them. We also describe unexpected bias sources uncovered during the course of the study and include a discussion of refinements that should be included in future work on this topic.« less

  20. NDCX-II target experiments and simulations

    DOE PAGES

    Barnard, J. J.; More, R. M.; Terry, M.; ...

    2013-06-13

    The ion accelerator NDCX-II is undergoing commissioning at Lawrence Berkeley National Laboratory (LBNL). Its principal mission is to explore ion-driven High Energy Density Physics (HEDP) relevant to Inertial Fusion Energy (IFE) especially in the Warm Dense Matter (WDM) regime. We have carried out hydrodynamic simulations of beam-heated targets for parameters expected for the initial configuration of NDCX-II. For metal foils of order one micron thick (thin targets), the beam is predicted to heat the target in a timescale comparable to the hydrodynamic expansion time for experiments that infer material properties from measurements of the resulting rarefaction wave. We have alsomore » carried out hydrodynamic simulations of beam heating of metallic foam targets several tens of microns thick (thick targets) in which the ion range is shorter than the areal density of the material. In this case shock waves will form and we derive simple scaling laws for the efficiency of conversion of ion energy into kinetic energy of fluid flow. Geometries with a tamping layer may also be used to study the merging of a tamper shock with the end-of-range shock. As a result, this process can occur in tamped, direct drive IFE targets.« less

  1. Emerging molecular therapies targeting myocardial infarction-related arrhythmias.

    PubMed

    Driessen, Helen E; van Veen, Toon A B; Boink, Gerard J J

    2017-04-01

    Cardiac disease is the leading cause of death in the developed world. Ventricular arrhythmias associated with myocardial ischaemia and/or infarction are a major contributor to cardiovascular mortality, and require improved prevention and treatment. Drugs, devices, and radiofrequency catheter ablation have made important inroads, but have significant limitations ranging from incomplete success to undesired toxicities and major side effects. These limitations derive from the nature of the intervention. Drugs are frequently ineffective, target the entire heart, and often do not deal with the specific arrhythmia trigger or substrate. Devices can terminate rapid rhythms but at best indirectly affect the underlying disease, while ablation, even when appropriately targeted, induces additional tissue damage. In contrast, exploration of gene and cell therapies are expected to provide a targeted, non-destructive, and potentially regenerative approach to ischaemia- and infarction-related arrhythmias. Although these approaches are in the early stages of development, they carry substantial potential to advance arrhythmia prevention and treatment. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  2. The gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.

    1992-01-01

    Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.

  3. Electroencephalographic Variation during End Maintenance and Emergence from Surgical Anesthesia

    PubMed Central

    MacColl, Jono N.; Illing, Sam; Sleigh, Jamie W.

    2014-01-01

    The re-establishment of conscious awareness after discontinuing general anesthesia has often been assumed to be the inverse of loss of consciousness. This is despite the obvious asymmetry in the initiation and termination of natural sleep. In order to characterize the restoration of consciousness after surgery, we recorded frontal electroencephalograph (EEG) from 100 patients in the operating room during maintenance and emergence from general anesthesia. We have defined, for the first time, 4 steady-state patterns of anesthetic maintenance based on the relative EEG power in the slow-wave (<14 Hz) frequency bands that dominate sleep and anesthesia. Unlike single-drug experiments performed in healthy volunteers, we found that surgical patients exhibited greater electroencephalographic heterogeneity while re-establishing conscious awareness after drug discontinuation. Moreover, these emergence patterns could be broadly grouped according to the duration and rapidity of transitions amongst these slow-wave dominated brain states that precede awakening. Most patients progressed gradually from a pattern characterized by strong peaks of delta (0.5–4 Hz) and alpha/spindle (8–14 Hz) power (‘Slow-Wave Anesthesia’) to a state marked by low delta-spindle power (‘Non Slow-Wave Anesthesia’) before awakening. However, 31% of patients transitioned abruptly from Slow-Wave Anesthesia to waking; they were also more likely to express pain in the post-operative period. Our results, based on sleep-staging classification, provide the first systematized nomenclature for tracking brain states under general anesthesia from maintenance to emergence, and suggest that these transitions may correlate with post-operative outcomes such as pain. PMID:25264892

  4. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    PubMed

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Sharp-front wave of strong magnetic field diffusion in solid metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Bo; Gu, Zhuo-wei; Kan, Ming-xian

    When a strong magnetic field diffuses into a solid metal, if the metal's resistance possesses an abrupt rise at some critical temperature and the magnetic field strength is above some critical value, the magnetic field will diffuse into the metal in the form of a sharp-front wave. Formulas for the critical conditions under which a sharp-front magnetic diffusion wave emerges and a formula for the wave-front velocity are derived in this work.

  6. Adding teeth to wave action: the destructive effects of wave-borne rocks on intertidal organisms.

    PubMed

    Shanks, Alan L; Wright, William G

    1986-06-01

    Observations in rocky intertidal areas demonstrate that breaking waves 'throw' rocks and cobbles and that these missiles can damage and kill organisms. Targets in the intertidal were dented by impacts from wave-borne rocks. New dents/day in these targets was positively correlated with the daily maximum significant wave height and with new patches/day in aggregations of the barnacle Chthamalus fissus. Impact frequency was highest in the upper intertidal and varied dramatically between microhabitats on individual boulders (edges, tops and faces). These patterns were reflected in the microhabitat abundances of 'old' and 'young' barnacles. Comparisons were made of the survivorship and the frequency of shell damage in two populations of the limpet Lottia gigantea living in habitats which differed primarily in the number of moveable rocks (i.e. potential projectiles). The mortality rate and frequency of shell damage were significantly higher in the projectilerich habitat. In addition only in this habitat did the frequency of shell damage covary significantly with seasonal periods of high surf. Investigation of the response of limpet shells to impacts suggests that shell strength varies between species and increases with shell size. Species-specific patterns of non-fatal shell breakage may have evolved to absorb the energy of impacts. In two of the intertidal habitats studied, wave-borne rock damage was chronic and, at least in part, may have governed the faunal makeup of the community by contributing to the physical 'boundaries" of the environment within which the inhabitants must survive.

  7. Tropical cyclogenesis in a tropical wave critical layer: easterly waves

    NASA Astrophysics Data System (ADS)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-08-01

    resolved flow, (ii) containment of moisture entrained by the developing gyre and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. The entire sequence is likened to the development of a marsupial infant in its mother's pouch. These ideas are formulated in three new hypotheses describing the flow kinematics and dynamics, moist thermodynamics and wave/vortex interactions comprising the "marsupial paradigm". A survey of 55 named tropical storms in 1998-2001 reveals that actual critical layers sometimes resemble the ideal east-west train of cat's eyes, but are usually less regular, with one or more recirculation regions in the co-moving frame. It is shown that the kinematics of isolated proto-vortices carried by the wave also can be visualized in a frame of reference translating at or near the phase speed of the parent wave. The proper translation speeds for wave and vortex may vary with height owing to vertical shear and wave-vortex interaction. Some implications for entrainment/containment of vorticity and moisture in the cat's eye are discussed from this perspective, based on the observational survey.

  8. Targeted HIV Screening in Eight Emergency Departments: The DICI-VIH Cluster-Randomized Two-Period Crossover Trial.

    PubMed

    Leblanc, Judith; Hejblum, Gilles; Costagliola, Dominique; Durand-Zaleski, Isabelle; Lert, France; de Truchis, Pierre; Verbeke, Geert; Rousseau, Alexandra; Piquet, Hélène; Simon, François; Pateron, Dominique; Simon, Tabassome; Crémieux, Anne-Claude

    2018-07-01

    This study compares the effectiveness and cost-effectiveness of nurse-driven targeted HIV screening alongside physician-directed diagnostic testing (intervention strategy) with diagnostic testing alone (control strategy) in 8 emergency departments. In this cluster-randomized, 2-period, crossover trial, 18- to 64-year-old patients presenting for reasons other than potential exposure to HIV were included. The strategy applied first was randomly assigned. During both periods, diagnostic testing was prescribed by physicians following usual care. During the intervention periods, patients were asked to complete a self-administered questionnaire. According to their answers, the triage nurse suggested performing a rapid test to patients belonging to a high-risk group. The primary outcome was the proportion of new diagnoses among included patients, which further refers to effectiveness. A secondary outcome was the intervention's incremental cost (health care system perspective) per additional diagnosis. During the intervention periods, 74,161 patients were included, 16,468 completed the questionnaire, 4,341 belonged to high-risk groups, and 2,818 were tested by nurses, yielding 13 new diagnoses. Combined with 9 diagnoses confirmed through 97 diagnostic tests, 22 new diagnoses were established. During the control periods, 74,166 patients were included, 92 were tested, and 6 received a new diagnosis. The proportion of new diagnoses among included patients was higher during the intervention than in the control periods (3.0 per 10,000 versus 0.8 per 10,000; difference 2.2 per 10,000, 95% CI 1.3 to 3.6; relative risk 3.7, 95% CI 1.4 to 9.8). The incremental cost was €1,324 per additional new diagnosis. The combined strategy of targeted screening and diagnostic testing was effective. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  9. Target recognition in passive terahertz image of human body

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Zhao, Yuan-meng; Deng, Chao; Zhang, Cun-lin; Li, Yue

    2014-11-01

    THz radiation can penetrate through many nonpolar dielectric materials and can be used for nondestructive/noninvasive sensing and imaging of targets under nonpolar, nonmetallic covers or containers. Thus using THz systems to "see through" concealing barriers (i.e. packaging, corrugated cardboard, clothing) has been proposed as a new security screening method. Objects that can be detected by THz include concealed weapons, explosives, and chemical agents under clothing. Passive THz imaging system can detect THz wave from human body without transmit any electromagnetic wave, and the suspicious objects will become visible because the THz wave is blocked by this items. We can find out whether or not someone is carrying dangerous objects through this image. In this paper, the THz image enhancement, segmentation and contour extraction algorithms were studied to achieve effective target image detection. First, the terahertz images are enhanced and their grayscales are stretched. Then we apply global threshold segmentation to extract the target, and finally the targets are marked on the image. Experimental results showed that the algorithm proposed in this paper can extract and mark targets effectively, so that people can identify suspicious objects under clothing quickly. The algorithm can significantly improve the usefulness of the terahertz security apparatus.

  10. A guided wave dispersion compensation method based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Xu, Cai-bin; Yang, Zhi-bo; Chen, Xue-feng; Tian, Shao-hua; Xie, Yong

    2018-03-01

    The ultrasonic guided wave has emerged as a promising tool for structural health monitoring (SHM) and nondestructive testing (NDT) due to their capability to propagate over long distances with minimal loss and sensitivity to both surface and subsurface defects. The dispersion effect degrades the temporal and spatial resolution of guided waves. A novel ultrasonic guided wave processing method for both single mode and multi-mode guided waves dispersion compensation is proposed in this work based on compressed sensing, in which a dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave modes in order to sparsely decompose the recorded dispersive guided waves. Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal dictionary and the results of sparse decomposition. Numerical simulations and experiments are implemented to verify the effectiveness of the developed method for both single mode and multi-mode guided waves.

  11. Wave Phenomena in Reaction-Diffusion Systems

    NASA Astrophysics Data System (ADS)

    Steinbock, Oliver; Engel, Harald

    2013-12-01

    Pattern formation in excitable and oscillatory reaction-diffusion systems provides intriguing examples for the emergence of macroscopic order from molecular reaction events and Brownian motion. Here we review recent results on several aspects of excitation waves including anomalous dispersion, vortex pinning, and three-dimensional scroll waves. Anomalies in the speed-wavelength dependence of pulse trains include nonmonotonic behavior, bistability, and velocity gaps. We further report on the hysteresis effects during the pinning-depinning transition of twodimensional spiral waves. The pinning of three-dimensional scroll waves shows even richer dynamic complexity, partly due to the possibility of geometric and topological mismatches between the unexcitable, pinning heterogeneities and the one-dimensional rotation backbone of the vortex. As examples we present results on the pinning of scroll rings to spherical, C-shaped, and genus-2-type heterogeneities. We also review the main results of several experimental studies employing the Belousov-Zhabotinsky reaction and briefly discuss the biomedical relevance of this research especially in the context of cardiology.

  12. Wave-Based Algorithms and Bounds for Target Support Estimation

    DTIC Science & Technology

    2015-05-15

    vector electromagnetic formalism in [5]. This theory leads to three main variants of the optical theorem detector, in particular, three alternative...further expands the applicability for transient pulse change detection of ar- bitrary nonlinear-media and time-varying targets [9]. This report... electromagnetic methods a new methodology to estimate the minimum convex source region and the (possibly nonconvex) support of a scattering target from knowledge of

  13. Controls of multi-modal wave conditions in a complex coastal setting

    USGS Publications Warehouse

    Hegermiller, Christie; Rueda, Ana C.; Erikson, Li H.; Barnard, Patrick L.; Antolinez, J.A.A.; Mendez, Fernando J.

    2017-01-01

    Coastal hazards emerge from the combined effect of wave conditions and sea level anomalies associated with storms or low-frequency atmosphere-ocean oscillations. Rigorous characterization of wave climate is limited by the availability of spectral wave observations, the computational cost of dynamical simulations, and the ability to link wave-generating atmospheric patterns with coastal conditions. We present a hybrid statistical-dynamical approach to simulating nearshore wave climate in complex coastal settings, demonstrated in the Southern California Bight, where waves arriving from distant, disparate locations are refracted over complex bathymetry and shadowed by offshore islands. Contributions of wave families and large-scale atmospheric drivers to nearshore wave energy flux are analyzed. Results highlight the variability of influences controlling wave conditions along neighboring coastlines. The universal method demonstrated here can be applied to complex coastal settings worldwide, facilitating analysis of the effects of climate change on nearshore wave climate.

  14. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Mechanism for shock wave merging in magnetised plasma: criteria and efficiency of formation of low-frequency magnetosonic waves

    NASA Astrophysics Data System (ADS)

    Tishchenko, V. N.; Shaikhislamov, I. F.

    2010-08-01

    The mechanism of merging of shock waves produced by a pulsating energy source is considered for magnetised plasma. The criteria for the emergence of this mechanism are found and its high efficiency for producing low-frequency magnetosonic waves, which have the form of a jet and propagate at large distances without attenuation, is shown.

  15. The emerging role and targetability of the TCA cycle in cancer metabolism.

    PubMed

    Anderson, Nicole M; Mucka, Patrick; Kern, Joseph G; Feng, Hui

    2018-02-01

    The tricarboxylic acid (TCA) cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.

  16. Recent developments in emerging therapeutic targets of osteoarthritis.

    PubMed

    Sun, Margaret Man-Ger; Beier, Frank; Pest, Michael A

    2017-01-01

    Despite the tremendous individual suffering and socioeconomic burden caused by osteoarthritis, there are currently no effective disease-modifying treatment options. This is in part because of our incomplete understanding of osteoarthritis disease mechanism. This review summarizes recent developments in therapeutic targets identified from surgical animal models of osteoarthritis that provide novel insight into osteoarthritis pathology and possess potential for progression into preclinical studies. Several candidate pathways and processes that have been identified include chondrocyte autophagy, growth factor signaling, inflammation, and nociceptive signaling. Major strategies that possess therapeutic potential at the cellular level include inhibiting autophagy suppression and decreasing reactive oxygen species (ROS) production. Cartilage anabolism and prevention of cartilage degradation has been shown to result from growth factor signaling modulation, such as TGF-β, TGF-α, and FGF; however, the results are context-dependent and require further investigation. Pain assessment studies in rodent surgical models have demonstrated potential in employing anti-NGF strategies for minimizing osteoarthritis-associated pain. Studies of potential therapeutic targets in osteoarthritis using animal surgical models are helping to elucidate osteoarthritis pathology and propel therapeutics development. Further studies should continue to elucidate pathological mechanisms and therapeutic targets in various joint tissues to improve overall joint health.

  17. Workshop on wave-ice interaction

    NASA Astrophysics Data System (ADS)

    Wadhams, Peter; Squire, Vernon; Rottier, Philip; Liu, Antony; Dugan, John; Czipott, Peter; Shen, Hayley

    The subject of wave-ice interaction has been advanced in recent years by small groups of researchers working on a similar range of topics in widely separated geographic locations. Their recent studies inspired a workshop on wave-ice interaction held at the Scott Polar Research Institute, University of Cambridge, England, December 16-18, 1991, where theories in all aspects of the physics of wave-ice interaction were compared.Conveners of the workshop hoped that plans for future observational and theoretical work dealing with outstanding issues in a collaborative way would emerge. The workshop, organized by the Commission on Sea Ice of the International Association for Physical Sciences of the Ocean (IAPSO), was co-chaired by Vernon Squire, professor of mathematics and statistics at the University of Otago, New Zealand, and Peter Wadhams, director of the Scott Polar Research Institute. Participants attended from Britain, Finland, New Zealand, Norway, and the United States.

  18. Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers

    NASA Astrophysics Data System (ADS)

    Huang, Xiaohua; Kang, Bin; Qian, Wei; Mackey, Megan A.; Chen, Po C.; Oyelere, Adegboyega K.; El-Sayed, Ivan H.; El-Sayed, Mostafa A.

    2010-09-01

    We conduct a comparative study on the efficiency and cell death pathways of continuous wave (cw) and nanosecond pulsed laser photothermal cancer therapy using gold nanospheres delivered to either the cytoplasm or nucleus of cancer cells. Cytoplasm localization is achieved using arginine-glycine-aspartate peptide modified gold nanospheres, which target integrin receptors on the cell surface and are subsequently internalized by the cells. Nuclear delivery is achieved by conjugating the gold nanospheres with nuclear localization sequence peptides originating from the simian virus. Photothermal experiments show that cell death can be induced with a single pulse of a nanosecond laser more efficiently than with a cw laser. When the cw laser is applied, gold nanospheres localized in the cytoplasm are more effective in inducing cell destruction than gold nanospheres localized at the nucleus. The opposite effect is observed when the nanosecond pulsed laser is used, suggesting that plasmonic field enhancement of the nonlinear absorption processes occurs at high localization of gold nanospheres at the nucleus. Cell death pathways are further investigated via a standard apoptosis kit to show that the cell death mechanisms depend on the type of laser used. While the cw laser induces cell death via apoptosis, the nanosecond pulsed laser leads to cell necrosis. These studies add mechanistic insight to gold nanoparticle-based photothermal therapy of cancer.

  19. Measurement of wave-front aberration in a small telescope remote imaging system using scene-based wave-front sensing

    DOEpatents

    Poyneer, Lisa A; Bauman, Brian J

    2015-03-31

    Reference-free compensated imaging makes an estimation of the Fourier phase of a series of images of a target. The Fourier magnitude of the series of images is obtained by dividing the power spectral density of the series of images by an estimate of the power spectral density of atmospheric turbulence from a series of scene based wave front sensor (SBWFS) measurements of the target. A high-resolution image of the target is recovered from the Fourier phase and the Fourier magnitude.

  20. Gender and Casual Sexual Activity From Adolescence to Emerging Adulthood: Social and Life Course Correlates

    PubMed Central

    Lyons, Heidi A.; Manning, Wendy D.; Longmore, Monica A.; Giordano, Peggy C.

    2015-01-01

    The prevalence of casual sexual activity among teens and emerging adults has led to much public attention. Yet limited research has investigated whether the number of casual sexual partners per year changes as heterosexual men and women transition from adolescence into emerging adulthood. We considered the influence of social context and life course factors on the number of casual sex partners. We examined four waves of interviews from the Toledo Adolescent Relationships Study (TARS) and used negative binomial growth curve models to investigate patterns of change in the number of casual sex partners (N = 1,196) ages 15 to 22. Men and women both reported increases in the number of casual sex partners over time and did not differ from each other in the rate of change over time. In all, 40% of respondents reported a recent casual sex partner at age 22. Number of prior dating relationships, education status, substance use, and perceptions of peer sexual behavior significantly influenced the number of casual sex partners. Emerging adults who did not complete high school, compared to those enrolled in four-year degree programs, reported significantly more partners. The findings contribute to research on intimate relationships and provide insights for programs targeting emerging adults. PMID:24992285

  1. Surface Wave Cloak from Graded Refractive Index Nanocomposites

    PubMed Central

    La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.

    2016-01-01

    Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas. PMID:27416815

  2. Breather Rogue Waves in Random Seas

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ma, Q. W.; Yan, S.; Chabchoub, A.

    2018-01-01

    Rogue or freak waves are extreme wave events that have heights exceeding 8 times the standard deviation of surrounding waves and emerge, for instance, in the ocean as well as in other physical dispersive wave guides, such as in optical fibers. One effective and convenient way to model such an extreme dynamics in laboratory environments within a controlled framework as well as for short process time and length scales is provided through the breather formalism. Breathers are pulsating localized structures known to model extreme waves in several nonlinear dispersive media in which the initial underlying process is assumed to be narrow banded. On the other hand, several recent studies suggest that breathers can also persist in more complex environments, such as in random seas, beyond the attributed physical limitations. In this work, we study the robustness of the Peregrine breather (PB) embedded in Joint North Sea Wave Project (JONSWAP) configurations using fully nonlinear hydrodynamic numerical simulations in order to validate its practicalness for ocean engineering applications. We provide a specific range for both the spectral bandwidth of the dynamical process as well as the background wave steepness and, thus, quantify the applicability of the PB in modeling rogue waves in realistic oceanic conditions. Our results may motivate analogous studies in fields of physics such as optics and plasma to quantify the limitations of exact weakly nonlinear models, such as solitons and breathers, within the framework of the fully nonlinear governing equations of the corresponding medium.

  3. Emerging mechanisms and novel targets in allergic inflammation and asthma.

    PubMed

    Weiss, Scott T

    2017-12-04

    Airway inflammation is key to the severity and persistence of asthma. Recent studies have revealed novel immune mechanisms that target dendritic cells, T helper 2 cytokines, regulatory T cells, and type 2 innate lymphoid cells in allergic inflammation, as well as novel approaches that target airway smooth muscle in asthma. These advances inform the development of new targeted treatments for allergic inflammation and asthma with the potential to provide therapeutic benefit.

  4. 47 CFR 73.1250 - Broadcasting emergency information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1250 Broadcasting emergency..., tidal waves, earthquakes, icing conditions, heavy snows, widespread fires, discharge of toxic gasses, widspread power failures, industrial explosions, civil disorders and school closing and changes in school...

  5. 47 CFR 73.1250 - Broadcasting emergency information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... RADIO BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.1250 Broadcasting emergency..., tidal waves, earthquakes, icing conditions, heavy snows, widespread fires, discharge of toxic gasses, widspread power failures, industrial explosions, civil disorders and school closing and changes in school...

  6. Health impacts of the July 2010 heat wave in Québec, Canada.

    PubMed

    Bustinza, Ray; Lebel, Germain; Gosselin, Pierre; Bélanger, Diane; Chebana, Fateh

    2013-01-21

    One of the consequences of climate change is the increased frequency and intensity of heat waves which can cause serious health impacts. In Québec, July 2010 was marked by an unprecedented heat wave in recent history. The purpose of this study is to estimate certain health impacts of this heat wave. The crude daily death and emergency department admission rates during the heat wave were analyzed in relation to comparison periods using 95% confidence intervals. During the heat wave, the crude daily rates showed a significant increase of 33% for deaths and 4% for emergency department admissions in relation to comparison periods. No displacement of mortality was observed over a 60-day horizon. The all-cause death indicator seems to be sufficiently sensitive and specific for surveillance of exceedences of critical temperature thresholds, which makes it useful for a heat health-watch system. Many public health actions combined with the increased use of air conditioning in recent decades have contributed to a marked reduction in mortality during heat waves. However, an important residual risk remains, which needs to be more vigorously addressed by public health authorities in light of the expected increase in the frequency and severity of heat waves and the aging of the population.

  7. Laboratory-Scale Internal Wave Apparatus for Studying Copepod Behavior

    NASA Astrophysics Data System (ADS)

    Jung, S.; Webster, D. R.; Haas, K. A.; Yen, J.

    2016-02-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. The objective is to provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in two-layer stratification. Two cases were chosen with density jump of 1 and 1.5 sigma-t units. Analytical analysis of the two-layer system provided guidance to the target forcing frequency needed to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location were used to quantify the wave characteristics. The results show a close match to the target wave parameters. Marine copepod (mixed population of Acartia tonsa, Temora longicornis, and Eurytemora affinis) behavior assays were conducted for three different physical arrangements: (1) no density stratification, (2) stagnant two-layer density stratification, and (3) two-layer density stratification with internal wave motion. Digitized trajectories of copepod swimming behavior indicate that in the control (case 1) the animals showed no preferential motion in terms of direction. In the stagnant density jump treatment (case 2) copepods preferentially moved horizontally, parallel to the density interface. In the internal wave treatment (case 3) copepods demonstrated orbital trajectories near the density interface.

  8. Heat Waves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review

    PubMed Central

    Li, Mengmeng; Gu, Shaohua; Bi, Peng; Yang, Jun; Liu, Qiyong

    2015-01-01

    In the past few decades, several devastating heat wave events have significantly challenged public health. As these events are projected to increase in both severity and frequency in the future, it is important to assess the relationship between heat waves and the health indicators that can be used in the early warning systems to guide the public health response. Yet there is a knowledge gap in the impact of heat waves on morbidity. In this study, a comprehensive review was conducted to assess the relationship between heat waves and different morbidity indicators, and to identify the vulnerable populations. The PubMed and ScienceDirect database were used to retrieve published literature in English from 1985 to 2014 on the relationship between heat waves and morbidity, and the following MeSH terms and keywords were used: heat wave, heat wave, morbidity, hospital admission, hospitalization, emergency call, emergency medical services, and outpatient visit. Thirty-three studies were included in the final analysis. Most studies found a short-term negative health impact of heat waves on morbidity. The elderly, children, and males were more vulnerable during heat waves, and the medical care demand increased for those with existing chronic diseases. Some social factors, such as lower socioeconomic status, can contribute to heat-susceptibility. In terms of study methods and heat wave definitions, there remain inconsistencies and uncertainties. Relevant policies and guidelines need to be developed to protect vulnerable populations. Morbidity indicators should be adopted in heat wave early warning systems in order to guide the effective implementation of public health actions. PMID:25993103

  9. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system.

    PubMed

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng

    2011-01-01

    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  10. Self-Organization of Embryonic Genetic Oscillators into Spatiotemporal Wave Patterns

    PubMed Central

    Tsiairis, Charisios D.; Aulehla, Alexander

    2016-01-01

    Summary In vertebrate embryos, somites, the precursor of vertebrae, form from the presomitic mesoderm (PSM), which is composed of cells displaying signaling oscillations. Cellular oscillatory activity leads to periodic wave patterns in the PSM. Here, we address the origin of such complex wave patterns. We employed an in vitro randomization and real-time imaging strategy to probe for the ability of cells to generate order from disorder. We found that, after randomization, PSM cells self-organized into several miniature emergent PSM structures (ePSM). Our results show an ordered macroscopic spatial arrangement of ePSM with evidence of an intrinsic length scale. Furthermore, cells actively synchronize oscillations in a Notch-signaling-dependent manner, re-establishing wave-like patterns of gene activity. We demonstrate that PSM cells self-organize by tuning oscillation dynamics in response to surrounding cells, leading to collective synchronization with an average frequency. These findings reveal emergent properties within an ensemble of coupled genetic oscillators. PMID:26871631

  11. Gravitational Wave Detection in the Introductory Lab

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2017-05-01

    A long time ago in a galaxy far, far away, two black holes, one of mass 36 solar masses and the other of mass 29 solar masses, were dancing their death waltz, leading to their coalescence and the emission of gravitational waves carrying away with them three solar masses of energy. More precisely, it happened 1.3 billion years ago at a distance of 410 Mpc. When the waves were emitted, the most complex life forms on Earth were eukaryotes. As the gravitational waves propagated toward Earth, it changed much. Five hundred million years after the waves were emitted, or 800 million years ago, the first multicellular life forms emerged on Earth. Earth saw the Cambrian explosion 500 million years ago. Sixty-six million years ago the Cretaceous-Paleogene extinction event caused the disappearance of the dinosaurs. The first modern humans appeared 250,000 years ago.

  12. Emerging therapeutic targets in the short QT syndrome.

    PubMed

    Hancox, Jules C; Whittaker, Dominic G; Du, Chunyun; Stuart, A Graham; Zhang, Henggui

    2018-05-01

    Short QT Syndrome (SQTS) is a rare but dangerous condition characterised by abbreviated repolarisation, atrial and ventricular arrhythmias and risk of sudden death. Implantable cardioverter defibrillators (ICDs) are a first line protection against sudden death, but adjunct pharmacology is beneficial and desirable. Areas covered: The genetic basis for genotyped SQTS variants (SQT1-SQT8) and evidence for arrhythmia substrates from experimental and simulation studies are discussed. The main ion channel/transporter targets for antiarrhythmic pharmacology are considered in respect of potential genotype-specific and non-specific treatments for the syndrome. Expert opinion: Potassium channel blockade is valuable for restoring repolarisation and QT interval, though genotype-specific limitations exist in the use of some K + channel inhibitors. A combination of K + current inhibition during the action potential plateau, with sodium channel inhibition that collectively result in delaying repolarisation and post-repolarisation refractoriness is likely to be valuable in prolonging effective refractory period and wavelength for re-entry. Genotype-specific K + channel inhibition is limited by a lack of targeted inhibitors in clinical use, though experimentally available selective inhibitors now exist. The relatively low proportion of successfully genotyped cases justifies an exome or genome sequencing approach, to reveal new mediators and targets, as demonstrated recently for SLC4A3 in SQT8.

  13. High-order rogue waves in vector nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Guo, Boling; Zhao, Li-Chen

    2014-04-01

    We study the dynamics of high-order rogue waves (RWs) in two-component coupled nonlinear Schrödinger equations. We find that four fundamental rogue waves can emerge from second-order vector RWs in the coupled system, in contrast to the high-order ones in single-component systems. The distribution shape can be quadrilateral, triangle, and line structures by varying the proper initial excitations given by the exact analytical solutions. The distribution pattern for vector RWs is more abundant than that for scalar rogue waves. Possibilities to observe these new patterns for rogue waves are discussed for a nonlinear fiber.

  14. Review of interventions to reduce ultraviolet tanning: Need for treatments targeting excessive tanning, an emerging addictive behavior.

    PubMed

    Stapleton, Jerod L; Hillhouse, Joel; Levonyan-Radloff, Kristine; Manne, Sharon L

    2017-12-01

    Millions of Americans engage in tanning each year, defined as intentional ultraviolet radiation (UVR) exposure in the form of sunbathing or the use of indoor tanning beds. An emerging body of research suggests that UVR has addictive properties and some tanners engage in excessive tanning. This article provides an overview of the evidence of tanning addiction and a systematic review of existing tanning interventions with the goal of evaluating their potential to impact addicted tanners. Our search identified 24 intervention studies that were summarized and discussed according to 3 primary themes. First, there is a dearth of tanning interventions that target excessive tanning or are designed as treatments for tanning addiction. Second, tanning interventions are primarily educational interventions designed to increase knowledge of the risks of tanning. Third, there are notable aspects of existing tanning interventions that are relevant to addiction science, including the use of brief motivational and cognitive-behavioral-based interventions. Future directions are considered including recommendations for utilizing the existing evidence base to formulate interventions targeting excessive tanners. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. The rarefaction wave propagation in transparent windows

    NASA Astrophysics Data System (ADS)

    Glam, B.; Porat, E.; Horovitz, Y.; Yosef-Hai, A.

    2017-01-01

    The radial (lateral) rarefaction wave velocity of polymethyl methacrylate (PMMA) and Lithium Fluoride (LiF) windows were studied by plate impact experiments that were carried out at Soreq NRC up to a pressure of 146 kbar in the PMMA and 334 kbar in the LiF. The windows were glued to Lead targets that were impacted by a copper impactor. The VISAR measurement was done in the window interface with the target. This information was utilized to identify the radial rarefaction arrival time at the center of different diameter windows after the shock event, and served as a measurement to the radial wave velocity in the shocked material. It was found that for both windows, LiF or PMMA, the measured radial wave velocity increases with the pressure. Furthermore, this velocity is significantly higher compared to the expected longitudinal sound velocity at the same pressure, calculated by the Steinberg EOS in the PMMA and by ab initio calculation in the LiF. Here we present the experimental results and a comparison with analytical calculation of the sound velocity using the Steinberg EOS.

  16. Assessment of wave energy potential along the south coast of Java Island

    NASA Astrophysics Data System (ADS)

    Song, Qingyang; Mayerle, Roberto

    2018-04-01

    The south coast of Java Island has a great potential for wave energy. A long-term analysis of a 10-year wave dataset obtained from the ERA-Interim database is performed for preliminary wave energy assessment in this area, and it was seen that the annual median power is expected to exceed 20kW/m along the coast. A coastal wave model with an unstructured grid was run to reveal the wave conditions and to assess the wave energy potential along the coast in detail. The effect of swells and local wind on the wave conditions is investigated. Annual median wave power, water depth and distance from the coast are selected as criteria for the identification of suitable locations for wave energy conversion. Two zones within the study area emerge to be suitable for wave energy extraction. Swells from the southwest turned out to be the major source of wave energy and highest monthly median wave power reached about 33kW/m.

  17. Central blood pressure and pulse wave velocity: relationship to target organ damage and cardiovascular morbidity-mortality in diabetic patients or metabolic syndrome. An observational prospective study. LOD-DIABETES study protocol.

    PubMed

    Gómez-Marcos, Manuel A; Recio-Rodríguez, José I; Rodríguez-Sánchez, Emiliano; Castaño-Sánchez, Yolanda; de Cabo-Laso, Angela; Sánchez-Salgado, Benigna; Rodríguez-Martín, Carmela; Castaño-Sánchez, Carmen; Gómez-Sánchez, Leticia; García-Ortiz, Luis

    2010-03-18

    Diabetic patients show an increased prevalence of non-dipping arterial pressure pattern, target organ damage and elevated arterial stiffness. These alterations are associated with increased cardiovascular risk.The objectives of this study are the following: to evaluate the prognostic value of central arterial pressure and pulse wave velocity in relation to the incidence and outcome of target organ damage and the appearance of cardiovascular episodes (cardiovascular mortality, myocardial infarction, chest pain and stroke) in patients with type 2 diabetes mellitus or metabolic syndrome. This is an observational prospective study with 5 years duration, of which the first year corresponds to patient inclusion and initial evaluation, and the remaining four years to follow-up. The study will be carried out in the urban primary care setting. Consecutive sampling will be used to include patients diagnosed with type 2 diabetes between 20-80 years of age. A total of 110 patients meeting all the inclusion criteria and none of the exclusion criteria will be included. Patient age and sex, family and personal history of cardiovascular disease, and cardiovascular risk factors. Height, weight, heart rate and abdominal circumference. Laboratory tests: hemoglobin, lipid profile, creatinine, microalbuminuria, glomerular filtration rate, blood glucose, glycosylated hemoglobin, blood insulin, fibrinogen and high sensitivity C-reactive protein. Clinical and 24-hour ambulatory (home) blood pressure monitoring and self-measured blood pressure. Common carotid artery ultrasound for the determination of mean carotid intima-media thickness. Electrocardiogram for assessing left ventricular hypertrophy. Ankle-brachial index. Retinal vascular study based on funduscopy with non-mydriatic retinography and evaluation of pulse wave morphology and pulse wave velocity using the SphygmoCor system. The medication used for diabetes, arterial hypertension and hyperlipidemia will be registered, together

  18. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets.

    PubMed

    Szebeni, Gabor J; Vizler, Csaba; Nagy, Lajos I; Kitajka, Klara; Puskas, Laszlo G

    2016-11-23

    Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs.

  19. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants.

    PubMed

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence

  20. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants

    PubMed Central

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence

  1. Electromagnetic Moments of Radioactive 136Te and the Emergence of Collectivity 2p ⊕ 2n outside of Double-Magic 132Sn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allmond, James M; Stuchberry, A. E.; Danchev, M.

    Radioactive 136Te has two valence protons and two valence neutrons outside of the 132Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon- nucleon interactions. Coulomb excitation of 136Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0more » $$+\\atop{1}$$→ 2$$+\\atop{1}$$ ), Q(2$$+\\atop{1}$$ ), and g(2$$+\\atop{1}$$ ). The results indicate that the first-excited state, 2$$+\\atop{1}$$ , composed of the simple 2p ⊕ 2n system, is prolate deformed, and its wave function is dominated by neutron degrees of freedom, but not to the extent previously suggested. It is demonstrated that extreme sensitivity of g(2$$+\\atop{1}$$) to the proton and neutron contributions to the wave function provides unique insight into the nature of emerging collectivity, and g(2$$+\\atop{1}$$ ) was used to differentiate among several state-of-the-art theoretical calculations. Finally, our results are best described by the most recent shell model calculations.« less

  2. Electromagnetic Moments of Radioactive 136Te and the Emergence of Collectivity 2p ⊕ 2n outside of Double-Magic 132Sn

    DOE PAGES

    Allmond, James M; Stuchberry, A. E.; Danchev, M.; ...

    2017-03-03

    Radioactive 136Te has two valence protons and two valence neutrons outside of the 132Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon- nucleon interactions. Coulomb excitation of 136Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0more » $$+\\atop{1}$$→ 2$$+\\atop{1}$$ ), Q(2$$+\\atop{1}$$ ), and g(2$$+\\atop{1}$$ ). The results indicate that the first-excited state, 2$$+\\atop{1}$$ , composed of the simple 2p ⊕ 2n system, is prolate deformed, and its wave function is dominated by neutron degrees of freedom, but not to the extent previously suggested. It is demonstrated that extreme sensitivity of g(2$$+\\atop{1}$$) to the proton and neutron contributions to the wave function provides unique insight into the nature of emerging collectivity, and g(2$$+\\atop{1}$$ ) was used to differentiate among several state-of-the-art theoretical calculations. Finally, our results are best described by the most recent shell model calculations.« less

  3. New Zealand's emergency department target - did it reduce ED length of stay, and if so, how and when?

    PubMed

    Tenbensel, Tim; Chalmers, Linda; Jones, Peter; Appleton-Dyer, Sarah; Walton, Lisa; Ameratunga, Shanthi

    2017-09-26

    In 2009, the New Zealand government introduced a hospital emergency department (ED) target - 95% of patients seen, treated or discharged within 6 h - in order to alleviate crowding in public hospital EDs. While these targets were largely met by 2012, research suggests that such targets can be met without corresponding overall reductions in ED length-of-stay (LOS). Our research explores whether the NZ ED time target actually reduced ED LOS, and if so, how and when. We adopted a mixed-methods approach with integration of data sources. After selecting four hospitals as case study sites, we collected all ED utilisation data for the period 2006 to 2012. ED LOS data was derived in two forms-reported ED LOS, and total ED LOS - which included time spent in short-stay units. This data was used to identify changes in the length of ED stay, and describe the timing of these changes to these indicators. Sixty-eight semi-structured interviews and two surveys of hospital clinicians and managers were conducted between 2011 and 2013. This data was then explored to identify factors that could account for ED LOS changes and their timing. Reported ED LOS reduced in all sites after the introduction of the target, and continued to reduce in 2011 and 2012. However, total ED LOS only decreased from 2008 to 2010, and did not reduce further in any hospital. Increased use of short-stay units largely accounted for these differences. Interview and survey data showed changes to improve patient flow were introduced in the early implementation period, whereas increased ED resources, better information systems to monitor target performance, and leadership and social marketing strategies mainly took throughout 2011 and 2012 when total ED LOS was not reducing. While the ED target clearly stimulated improvements in patient flow, our analysis also questions the value of ED targets as a long term approach. Increased use of short-stay units suggests that the target became less effective in 'standing

  4. Optical shaping of gas targets for laser–plasma ion sources

    DOE PAGES

    Dover, N. P.; Cook, N.; Tresca, O.; ...

    2016-02-09

    In this paper, we report on the experimental demonstration of a technique to generate steep density gradients in gas-jet targets of interest to laser–plasma ion acceleration. By using an intentional low-energy prepulse, we generated a hydrodynamic blast wave in the gas to shape the target prior to the arrival of an intense COmore » $$_{2}$$($${\\it\\lambda}\\approx 10~{\\rm\\mu}\\text{m}$$) drive pulse. This technique has been recently shown to facilitate the generation of ion beams by shockwave acceleration (Trescaet al.,Phys. Rev. Lett., vol. 115 (9), 2015, 094802). Here, we discuss and introduce a model to understand the generation of these blast waves and discuss in depth the experimental realisation of the technique, supported by hydrodynamics simulations. With appropriate prepulse energy and timing, this blast wave can generate steepened density gradients as short as$$l\\approx 20~{\\rm\\mu}\\text{m}$$($1/e$), opening up new possibilities for laser–plasma studies with near-critical gaseous targets.« less

  5. Numerical investigation of freak waves

    NASA Astrophysics Data System (ADS)

    Chalikov, D.

    2009-04-01

    of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).

  6. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy

    PubMed Central

    Suret, Pierre; Koussaifi, Rebecca El; Tikan, Alexey; Evain, Clément; Randoux, Stéphane; Szwaj, Christophe; Bielawski, Serge

    2016-01-01

    Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented—up to now—time-resolved observations of the awaited dynamics. Here, we report temporal ‘snapshots' of random light using a specially designed ‘time-microscope'. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by ‘breather-like' structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence. PMID:27713416

  7. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yunsong; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhang, Lu

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wavemore » front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.« less

  8. Self-organizing Large-scale Structures in Earth's Foreshock Waves

    NASA Astrophysics Data System (ADS)

    Ganse, U.; Pfau-Kempf, Y.; Turc, L.; Hoilijoki, S.; von Alfthan, S.; Vainio, R. O.; Palmroth, M.

    2017-12-01

    Earth's foreshock is populated by plasma waves in the ULF regime, assumed to be caused by wave instabilities of shock-reflected particle beams. While in-situ observation of these waves has provided plentiful data of their amplitudes, frequencies, obliquities and relation to local plasma conditions, global-scale structures are hard to grasp from observation data alone. The hybrid-Vlasov simulation system Vlasiator, designed for kinetic modeling of the Earth's magnetosphere, has been employed to study foreshock formation under radial and near-radial IMF conditions on global scales. Structures arising in the foreshock can be comprehensively studied and directly compared to observation results. Our modeling results show that foreshock waves present emergent large-scale structures, in which regions of waves with similar phase exist. At the interfaces of these regions ("spines") we observe high wave obliquity, higher beam densities and lower beam velocities than inside them. We characterize these apparently self-organizing structures through the interplay between wave- and beam properties and present the microphysical mechanisms involved in their creation.

  9. Umbral oscillations and penumbral waves in H alpha. [in sunspots

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Tang, F.

    1975-01-01

    Examples are presented of umbral oscillations observed on Big Bear H-alpha filtergram movies, and the relation between umbral oscillations and running penumbral waves occurring in the same sunspot is investigated. Umbral oscillations near the center of the umbra are probably physically independent of the penumbral waves because the period of these umbral oscillations (150 sec) is shorter than the penumbral wave period (270 sec), but not a harmonic. Dark puffs emerge from the edge of the umbra and move outward across the penumbra, and have the same period as the running penumbral waves. These dark puffs are interpreted to be the extension of chromospheric umbral oscillations at the edge of the umbra. It is suggested that the dark puffs and the running penumbral waves have a common source: photospheric oscillations just inside the umbra.

  10. Evaluation of a targeted prescriber education intervention on emergency department discharge oxycodone prescribing.

    PubMed

    Donaldson, Síne R; Harding, Andrew M; Taylor, Simone E; Vally, Hassan; Greene, Shaun L

    2017-08-01

    The objective of this study was to evaluate the impact of an educational intervention on ED discharge opioid analgesic (OA) prescribing. A brief, one-on-one, educational intervention was delivered to ED OA prescribers by an ED clinical champion. The percentage of patients receiving (i) written advice regarding appropriate oxycodone use, (ii) written or verbal advice regarding appropriate post-discharge follow up and (iii) written general practitioner notification that oxycodone had been prescribed were determined pre- and post-intervention, through review of electronic patient records and structured patient telephone interviews conducted 3-7 days after ED attendance. Secondary outcomes included total amount prescribed and use of non-OA therapies. ED OA prescribers were surveyed to evaluate perceived effectiveness and intervention acceptability. A total of 30 ED OA prescribers received the 5-min intervention. Pre- and post-intervention, 80 and 81 patients were interviewed, respectively. Percentage of patients given written OA information increased from 10% to 22% (P = 0.04) and those receiving follow-up advice increased from 61 to 94% (P < 0.01). General practitioner notification of OA prescription increased from 15% to 88% (P < 0.01). Risk ratio for achieving all three end-points was 7.5 (95% confidence interval 1.8-32, P = 0.01). Median total amount of oxycodone prescribed/patient decreased from 100mg to 50mg (P = 0.04). Non-OA therapies were used by 49% of pre-intervention and 85% of post-intervention patients (P = <0.01). All ED OA prescribers agreed the intervention would change their prescribing practices; 70% deemed the intervention appropriate for delivery in their work environment. A brief, one-on-one educational intervention targeting ED OA prescribers was well received by clinicians and associated with improved quality of OA prescribing. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency

  11. Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2013-05-10

    We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].

  12. Climate and heat-related emergencies in Chicago, Illinois (2003-2006).

    PubMed

    Hartz, Donna A; Golden, Jay S; Sister, Chona; Chuang, Wen-Ching; Brazel, Anthony J

    2012-01-01

    Extreme heat events are responsible for more deaths in the United States than floods, hurricanes and tornados combined. Yet, highly publicized events, such as the 2003 heat wave in Europe which caused in excess of 35,000 deaths, and the Chicago heat wave of 1995 that produced over 500 deaths, draw attention away from the countless thousands who, each year, fall victim to nonfatal health emergencies and illnesses directly attributed to heat. The health impact of heat waves and excessive heat are well known. Cities worldwide are seeking to better understand heat-related illnesses with respect to the specifics of climate, social demographics and spatial distributions. This information can support better preparation for heat-related emergency situations with regards to planning for response capacity and placement of emergency resources and personnel. This study deals specifically with the relationship between climate and heat-related dispatches (HRD, emergency 911 calls) in Chicago, Illinois, between 2003 and 2006. It is part of a larger, more in-depth, study that includes urban morphology and social factors that impact heat-related emergency dispatch calls in Chicago. The highest occurrences of HRD are located in the central business district, but are generally scattered across the city. Though temperature can be a very good predictor of high HRD, heat index is a better indicator. We determined temperature and heat index thresholds for high HRD. We were also able to identify a lag in HRD as well as other situations that triggered higher (or lower) HRD than would typically be generated for the temperature and humidity levels, such as early afternoon rainfall and special events.

  13. Climate and heat-related emergencies in Chicago, Illinois (2003-2006)

    NASA Astrophysics Data System (ADS)

    Hartz, Donna A.; Golden, Jay S.; Sister, Chona; Chuang, Wen-Ching; Brazel, Anthony J.

    2012-01-01

    Extreme heat events are responsible for more deaths in the United States than floods, hurricanes and tornados combined. Yet, highly publicized events, such as the 2003 heat wave in Europe which caused in excess of 35,000 deaths, and the Chicago heat wave of 1995 that produced over 500 deaths, draw attention away from the countless thousands who, each year, fall victim to nonfatal health emergencies and illnesses directly attributed to heat. The health impact of heat waves and excessive heat are well known. Cities worldwide are seeking to better understand heat-related illnesses with respect to the specifics of climate, social demographics and spatial distributions. This information can support better preparation for heat-related emergency situations with regards to planning for response capacity and placement of emergency resources and personnel. This study deals specifically with the relationship between climate and heat-related dispatches (HRD, emergency 911 calls) in Chicago, Illinois, between 2003 and 2006. It is part of a larger, more in-depth, study that includes urban morphology and social factors that impact heat-related emergency dispatch calls in Chicago. The highest occurrences of HRD are located in the central business district, but are generally scattered across the city. Though temperature can be a very good predictor of high HRD, heat index is a better indicator. We determined temperature and heat index thresholds for high HRD. We were also able to identify a lag in HRD as well as other situations that triggered higher (or lower) HRD than would typically be generated for the temperature and humidity levels, such as early afternoon rainfall and special events.

  14. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Kukreja, R.; Chen, Z.; Macià, F.; Hernàndez, J. M.; Eklund, A.; Backes, D.; Frisch, J.; Katine, J.; Malm, G.; Urazhdin, S.; Kent, A. D.; Stöhr, J.; Ohldag, H.; Dürr, H. A.

    2015-11-01

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.

  15. Elucidation of Inflammation Processes Exacerbating Neuronal Cell Damage to the Retina and Brain Visual Centers as Quest for Therapeutic Drug Targets in Rat Model of Blast Overpressure Wave Exposure

    DTIC Science & Technology

    tissues, as carried out by immune cells; and thus is a promising target. Scope and timing, however, of this process must be better understood. Our study...uses an adult rat model of eye and brain injuries, as produced by exposure to simulated blast waves in a shock tube. Rats were kept on an omega-3

  16. Research Centre for the Study of the Rogue Waves

    NASA Astrophysics Data System (ADS)

    Shamin, Roman

    2013-04-01

    In 2012, in Sakhalin (Russia) was established Research Center for the Study of the Rogue Waves. This center unites many known scientists, who study rogue waves. The center is founded by the following scientific organizations: - The Institute of Marine Geology and Geophysics of FEB RAS - The Far Eastern Federal University - Special Research Bureau for Automation of Marine Researches of FEB RAS - The Institute of Applied Physics of RAS - Shirshov Institute of Oceanology of RAS Heads this center Dr. Roman V. Shamin (Russia). Topics projects: - Probability of emergence of rogue waves - Finding of the sites of the Ocean most dangerous from the point of view of rogue waves - Assessment of risk of dangerous impact of rogue waves - and many others... Our Center is open for new participants from all countries. Our Centre have web-site: roguewaves.ru For contacts: center@roguewaves.ru (Dr. Roman Shamin)

  17. Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model

    NASA Astrophysics Data System (ADS)

    Marsooli, Reza; Orton, Philip M.; Mellor, George

    2017-07-01

    Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.

  18. Narrowing the Search After Gravitational-Wave Detections

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    -consuming. Could we possibly take a more targeted approach?The key, say a team of scientists led by Leo Singer (NASA Goddard SFC), is in using 3D estimates of the source location, rather than 2D sky maps: we need to produce distance estimates for the gravitational-wave source as well. Singer and collaborators have developed an algorithm that, from a gravitational-wave signal, can produce a fast full-volume estimate of the probability distribution for its sources location.Volume rendering of the 90% credible region for a simulated gravitational-wave event, superimposed over a galaxy map for the region. Green crosshairs represent the true location of the source; the most massive galaxies inside the credible region are highlighted. Searching only these galaxies could significantly reduce the observing time needed to detect an electromagnetic counterpart. [Singer et al. 2016]We can then easily cross-reference the volume predicted to contain the source against a galaxy catalog to identify the most probable host galaxies for the signal. This approach allows us to target specific galaxies for rapid observations with follow-up campaigns in the search for a counterpart.Targeted EfficiencySinger and collaborators approach would make searching for electromagnetic counterparts to gravitational-wave events a much more efficient process. One particular advantage would be in reducing the number of false positives: for a typical wide-field follow-up campaign searching 100 square degrees, hundreds of contaminatingsupernovae would be in the field. Targeting only 10 x 10 patches around 100 nearby galaxies, however, reduces the background to fewer than 10 contaminatingsupernovae.An additional benefit is that this targeted strategy opens the door of gravitational-wave follow-up to many small-field-of-view, large-aperture telescopes, instead of limiting the task to broad synoptic surveys. This permits the involvement of many more campaigns in the hunt for the important electromagnetic counterparts to

  19. Detection and Tracking of Moving Targets Behind Cluttered Environments Using Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Dang, Vinh Quang

    Detection and tracking of moving targets (target's motion, vibration, etc.) in cluttered environments have been receiving much attention in numerous applications, such as disaster search-and-rescue, law enforcement, urban warfare, etc. One of the popular techniques is the use of stepped frequency continuous wave radar due to its low cost and complexity. However, the stepped frequency radar suffers from long data acquisition time. This dissertation focuses on detection and tracking of moving targets and vibration rates of stationary targets behind cluttered medium such as wall using stepped frequency radar enhanced by compressive sensing. The application of compressive sensing enables the reconstruction of the target space using fewer random frequencies, which decreases the acquisition time. Hardware-accelerated parallelization on GPU is investigated for the Orthogonal Matching Pursuit reconstruction algorithm. For simulation purpose, two hybrid methods have been developed to calculate the scattered fields from the targets through the wall approaching the antenna system, and to convert the incoming fields into voltage signals at terminals of the receive antenna. The first method is developed based on the plane wave spectrum approach for calculating the scattered fields of targets behind the wall. The method uses Fast Multiple Method (FMM) to calculate scattered fields on a particular source plane, decomposes them into plane wave components, and propagates the plane wave spectrum through the wall by integrating wall transmission coefficients before constructing the fields on a desired observation plane. The second method allows one to calculate the complex output voltage at terminals of a receiving antenna which fully takes into account the antenna effects. This method adopts the concept of complex antenna factor in Electromagnetic Compatibility (EMC) community for its calculation.

  20. Surfing the big WAVE: Insights into the role of WAVE3 as a driving force in cancer progression and metastasis.

    PubMed

    Sossey-Alaoui, Khalid

    2013-04-01

    WAVE3 belongs to the WASP/WAVE family of actin cytoskeleton remodeling proteins. These proteins are known to be involved in several biological functions ranging from controlling cell shape and movement, to being closely associated with pathological conditions such as cancer progression and metastasis. Last decade has seen an explosion in the literature reporting significant scientific advances on the molecular mechanisms whereby the WASP/WAVE proteins are regulated both in normal physiological as well as pathological conditions. The purpose of this review is to present the major findings pertaining to how WAVE3 has become a critical player in the regulation of signaling pathways involved in cancer progression and metastasis. The review will conclude with suggesting options for the potential use of WAVE3 as a therapeutic target to prevent the progression of cancer to the lethal stage that is the metastatic disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Surfing the Big WAVE: Insights into the Role of WAVE3 as a Driving Force in Cancer Progression and Metastasis

    PubMed Central

    Sossey-Alaoui, Khalid

    2014-01-01

    WAVE3 belongs to the WASP/WAVE family of actin cytoskeleton remodeling proteins. These proteins are known to be involved in several biological functions ranging from controlling cell shape and movement, to being closely associated with pathological conditions such as cancer progression and metastasis. Last decade has seen an explosion in the literature reporting significant scientific advances on the molecular mechanisms whereby the WASP/WAVE proteins are regulated both in normal physiological as well as pathological conditions. The purpose of this review is to present the major findings pertaining to how WAVE3 has become a critical player in the regulation of signaling pathways involved in cancer progression and metastasis. The review will conclude with suggesting options for the potential use of WAVE3 as a therapeutic target to prevent the progression of cancer to the lethal stage that is the metastatic disease. PMID:23116924

  2. Calcium spikes, waves and oscillations in a large, patterned epithelial tissue

    PubMed Central

    Balaji, Ramya; Bielmeier, Christina; Harz, Hartmann; Bates, Jack; Stadler, Cornelia; Hildebrand, Alexander; Classen, Anne-Kathrin

    2017-01-01

    While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-range intercellular calcium waves and the emergence of oscillations in a highly coupled multicellular sheet. PMID:28218282

  3. Isentropic compressive wave generator and method of making same

    DOEpatents

    Barker, L.M.

    An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.

  4. A novel neural network based image reconstruction model with scale and rotation invariance for target identification and classification for Active millimetre wave imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad

    2014-12-01

    Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.

  5. A Comprehensive Analysis of Ion Cyclotron Waves in the Equatorial Magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Z. C.; Simon, S.

    2016-12-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field. Reference: Meeks, Z., Simon, S., Kabanovic, S

  6. Experimental study on impact-induced seismic wave propagation through granular materials

    NASA Astrophysics Data System (ADS)

    Yasui, Minami; Matsumoto, Eri; Arakawa, Masahiko

    2015-11-01

    Impact-induced seismic waves are supposed to cause movements of regolith particles, resulting in modifications of asteroidal surfaces. The imparted seismic energy is thus a key parameter to determining the scale and magnitude of this seismic shaking process. It is important to study the propagation velocity, attenuation rate, and vibration period of the impact-induced seismic wave to estimate the seismic energy. Hence, we conducted impact cratering experiments at Kobe University using a 200-μm glass beads target to simulate a regolith layer, and measured the impact-induced seismic wave using three accelerometers set on the target surface at differences ranging from 3.2 to 12.7 cm. The target was impacted with three kinds of projectiles at ∼100 m s-1 using a one-stage gas gun. The propagation velocity of the seismic wave in the beads target was 108.9 m s-1, and the maximum acceleration, gmax, in the unit of m s-2, measured by each accelerometer showed good correlation with the distance from the impact point normalized by the crater radius, x/R, irrespective of projectile type. They also were fitted by one power-law equation, gmax = 102.19 (x/R)-2.21. The half period of the first peak of the measured seismic waves was ∼0.72 ms, and this duration was almost consistent with the penetration time of each projectile into the target. According to these measurements, we estimated the impact seismic efficiency factor, that is, the ratio of seismic energy to kinetic energy of the projectile, to be almost constant, 5.7 × 10-4 inside the crater rim, while it exponentially decreased with distance from the impact point outside the crater rim. At a distance quadruple of the crater radius, the efficiency factors were 4.4 × 10-5 for polycarbonate projectile and 9.5 × 10-5 for alumina and stainless steel projectiles.

  7. Improving Thermal Ablation Delineation With Electrode Vibration Elastography Using a Bidirectional Wave Propagation Assumption

    PubMed Central

    DeWall, Ryan J.; Varghese, Tomy

    2013-01-01

    Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. PMID:22293748

  8. Improving thermal ablation delineation with electrode vibration elastography using a bidirectional wave propagation assumption.

    PubMed

    DeWall, Ryan J; Varghese, Tomy

    2012-01-01

    Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. © 2012 IEEE

  9. Scattering of matter waves in spatially inhomogeneous environments

    DOE PAGES

    Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; ...

    2015-03-30

    In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numericallymore » and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed.« less

  10. Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2012-01-01

    We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.

  11. WAVE3-NFκB interplay is essential for the survival and invasion of cancer cells.

    PubMed

    Davuluri, Gangarao; Augoff, Katarzyna; Schiemann, William P; Plow, Edward F; Sossey-Alaoui, Khalid

    2014-01-01

    The WAVE3 cytoskeletal protein promotes cancer invasion and metastasis. We have shown that the WAVE3-mediated activation of cancer cell invasion is due, in part, to its regulation of expression and activity of key metalloproteinases (MMPs), including MMP9, which is centrally involved in invadopodia-mediated degradation of the extracellular matrix (ECM). MMP9 is also a major NFκB target gene, suggesting a potential linkage of WAVE3 to this pathway, which we sought to investigate. Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes. Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity. Both pharmacologic and genetic manipulations of NFκB effector molecules show that the biological consequence of loss of WAVE3 function in the NFκB pathway result the inhibition of invadopodia formation and ECM degradation by cancer cells, and these changes are a consequence of decreased MMP9 expression and activity. Loss of WAVE3 also sensitized cancer cells to apoptosis and cell death driven by TNFα, through the inhibition of the AKT pro-survival pathway. Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation. Therefore, targeted therapeutic inhibition of WAVE3 will sensitize cancer cells to apoptosis and cell death, and suppress cancer invasion and metastasis.

  12. WAVE3-NFκB Interplay Is Essential for the Survival and Invasion of Cancer Cells

    PubMed Central

    Davuluri, Gangarao; Augoff, Katarzyna; Schiemann, William P.; Plow, Edward F.; Sossey-Alaoui, Khalid

    2014-01-01

    The WAVE3 cytoskeletal protein promotes cancer invasion and metastasis. We have shown that the WAVE3-mediated activation of cancer cell invasion is due, in part, to its regulation of expression and activity of key metalloproteinases (MMPs), including MMP9, which is centrally involved in invadopodia-mediated degradation of the extracellular matrix (ECM). MMP9 is also a major NFκB target gene, suggesting a potential linkage of WAVE3 to this pathway, which we sought to investigate. Mechanistically, we found that loss of WAVE3 in cancer cells leads to inhibition of NFκB signaling as a result of a decrease in the nuclear translocation of NFκB and therefore loss of activation of NFκB target genes. Conversely, overexpression of WAVE3 was sufficient to enhance NFκB activity. Both pharmacologic and genetic manipulations of NFκB effector molecules show that the biological consequence of loss of WAVE3 function in the NFκB pathway result the inhibition of invadopodia formation and ECM degradation by cancer cells, and these changes are a consequence of decreased MMP9 expression and activity. Loss of WAVE3 also sensitized cancer cells to apoptosis and cell death driven by TNFα, through the inhibition of the AKT pro-survival pathway. Our results identify a novel function of WAVE3 in NFκB signaling, where its activity is essential for the regulation of invadopodia and ECM degradation. Therefore, targeted therapeutic inhibition of WAVE3 will sensitize cancer cells to apoptosis and cell death, and suppress cancer invasion and metastasis. PMID:25329315

  13. Diagnostic Imaging of Detonation Waves for Waveshaper Development

    DTIC Science & Technology

    2009-07-01

    it is difficult to determine the depth of the detonation wave (due to the translucency of the sensitised nitromethane) and when it reaches the bottom...Charges For Use against Concrete Targerts, DSTO Client Report, DSTO-CR-2005-0164, 2005. [2] M. J. Murphy, R. M. Kuklo, T. A. Rambur, L. L. Switzer & M...Resnyansky, S. A. Weckert & T. Delaney, Shaping of Detonation Waves in Shaped Charges for Use against Concrete Targets: Part II, in preparation

  14. Functional Neuroimaging of Spike-Wave Seizures

    PubMed Central

    Motelow, Joshua E.; Blumenfeld, Hal

    2013-01-01

    Generalized spike-wave seizures are typically brief events associated with dynamic changes in brain physiology, metabolism, and behavior. Functional magnetic resonance imaging (fMRI) provides a relatively high spatio-temporal resolution method for imaging cortical-subcortical network activity during spike-wave seizures. Patients with spike-wave seizures often have episodes of staring and unresponsiveness which interfere with normal behavior. Results from human fMRI studies suggest that spike-wave seizures disrupt specific networks in the thalamus and fronto-parietal association cortex which are critical for normal attentive consciousness. However, the neuronal activity underlying imaging changes seen during fMRI is not well understood, particularly in abnormal conditions such as seizures. Animal models have begun to provide important fundamental insights into the neuronal basis for fMRI changes during spike-wave activity. Work from these models including both fMRI and direct neuronal recordings suggest that, like in humans, specific cortical-subcortical networks are involved in spike-wave, while other regions are spared. Regions showing fMRI increases demonstrate correlated increases in neuronal activity in animal models. The mechanisms of fMRI decreases in spike-wave will require further investigation. A better understanding of the specific brain regions involved in generating spike-wave seizures may help guide efforts to develop targeted therapies aimed at preventing or reversing abnormal excitability in these brain regions, ultimately leading to a cure for this disorder. PMID:18839093

  15. Instability of a planar expansion wave.

    PubMed

    Velikovich, A L; Zalesak, S T; Metzler, N; Wouchuk, J G

    2005-10-01

    An expansion wave is produced when an incident shock wave interacts with a surface separating a fluid from a vacuum. Such an interaction starts the feedout process that transfers perturbations from the rippled inner (rear) to the outer (front) surface of a target in inertial confinement fusion. Being essentially a standing sonic wave superimposed on a centered expansion wave, a rippled expansion wave in an ideal gas, like a rippled shock wave, typically produces decaying oscillations of all fluid variables. Its behavior, however, is different at large and small values of the adiabatic exponent gamma. At gamma > 3, the mass modulation amplitude delta(m) in a rippled expansion wave exhibits a power-law growth with time alpha(t)beta, where beta = (gamma - 3)/(gamma - 1). This is the only example of a hydrodynamic instability whose law of growth, dependent on the equation of state, is expressed in a closed analytical form. The growth is shown to be driven by a physical mechanism similar to that of a classical Richtmyer-Meshkov instability. In the opposite extreme gamma - 1 < 1, delta(m) exhibits oscillatory growth, approximately linear with time, until it reaches its peak value approximately (gamma - 1)(-1/2), and then starts to decrease. The mechanism driving the growth is the same as that of Vishniac's instability of a blast wave in a gas with low . Exact analytical expressions for the growth rates are derived for both cases and favorably compared to hydrodynamic simulation results.

  16. An optical technique for detecting minute-amplitude standing waves on a liquid jet

    NASA Astrophysics Data System (ADS)

    Takahashi, I.; Mori, Y. H.

    1995-10-01

    A liquid jet emerging from a nozzle or an orifice whose outlet is slightly elliptic has a series of minute-amplitude waves on its surface. A quite simple technique is proposed which enables detecting such waves even if they are no longer recognizable with the aid of ordinary backlighting of the jet.

  17. Exploring the sensitivity of next generation gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bock, O.; Bogan, C.; Bohe, A.; Bond, C.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Buonanno, A.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C. B.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Dal Canton, T.; Danilishin, S. L.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dave, I.; Davies, G. S.; Daw, E. J.; De, S.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferreira, E. C.; Fisher, R. P.; Fletcher, M.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gaonkar, S. G.; Gaur, G.; Gehrels, N.; Geng, P.; George, J.; Gergely, L.; Ghosh, Abhirup; Ghosh, Archisman; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Green, A. C.; Grote, H.; Grunewald, S.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heintze, M. C.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jang, H.; Jani, K.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lormand, M.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Mohapatra, S. R. P.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nayak, R. K.; Nedkova, K.; Nelson, T. J. N.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poe, M.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Raymond, V.; Read, J.; Reed, C. M.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V. J.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Szczepańczyk, M. J.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Traylor, G.; Trifirò, D.; Tse, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vander-Hyde, D. C.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vinciguerra, S.; Vine, D. J.; Vitale, S.; Vo, T.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Zanolin, M.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; (LIGO Scientific Collaboration; Harms, J.

    2017-02-01

    The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.

  18. Green‐wave surfing increases fat gain in a migratory ungulate

    USGS Publications Warehouse

    Middleton, Arthur D.; Merkle, Jerod A.; McWhirter, Douglas E.; Cook, John G.; Cook, Rachel C.; White, P.J.; Kauffman, Matthew J.

    2018-01-01

    Each spring, migratory herbivores around the world track or ‘surf’ green waves of newly emergent vegetation to distant summer or wet‐season ranges. This foraging tactic may help explain the great abundance of migratory herbivores on many seasonal landscapes. However, the underlying fitness benefits of this life‐history strategy remain poorly understood. A fundamental prediction of the green‐wave hypothesis is that migratory herbivores obtain fitness benefits from surfing waves of newly emergent vegetation more closely than their resident counterparts. Here we evaluate whether this behavior increases body‐fat levels – a critically important correlate of reproduction and survival for most ungulates – in elk Cervus elaphus of the Greater Yellowstone Ecosystem. Using satellite imagery and GPS tracking data, we found evidence that migrants (n = 23) indeed surfed the green wave, occupying sites 12.7 days closer to peak green‐up than residents (n = 16). Importantly, individual variation in surfing may help account for up to 6 kg of variation in autumn body‐fat levels. Our findings point to a pathway for anthropogenic changes to the green wave (e.g. climate change) or migrants’ ability to surf it (e.g. development) to impact migratory populations. To explore this possibility, we evaluated potential population‐level consequences of constrained surfing with a heuristic model. If green‐wave surfing deteriorates by 5–15 days from observed, our model predicts up to a 20% decrease in pregnancy rates, a 2.5% decrease in population growth, and a 30% decrease in abundance over 50 years. By linking green‐wave surfing to fitness and illustrating potential effects on population growth, our study provides new insights into the evolution of migratory behavior and the prospects for the persistence of migratory ungulate populations in a changing world.

  19. Caustics and Rogue Waves in an Optical Sea.

    PubMed

    Mathis, Amaury; Froehly, Luc; Toenger, Shanti; Dias, Frédéric; Genty, Goëry; Dudley, John M

    2015-08-06

    There are many examples in physics of systems showing rogue wave behaviour, the generation of high amplitude events at low probability. Although initially studied in oceanography, rogue waves have now been seen in many other domains, with particular recent interest in optics. Although most studies in optics have focussed on how nonlinearity can drive rogue wave emergence, purely linear effects have also been shown to induce extreme wave amplitudes. In this paper, we report a detailed experimental study of linear rogue waves in an optical system, using a spatial light modulator to impose random phase structure on a coherent optical field. After free space propagation, different random intensity patterns are generated, including partially-developed speckle, a broadband caustic network, and an intermediate pattern with characteristics of both speckle and caustic structures. Intensity peaks satisfying statistical criteria for rogue waves are seen especially in the case of the caustic network, and are associated with broader spatial spectra. In addition, the electric field statistics of the intermediate pattern shows properties of an "optical sea" with near-Gaussian statistics in elevation amplitude, and trough-to-crest statistics that are near-Rayleigh distributed but with an extended tail where a number of rogue wave events are observed.

  20. Caustics and Rogue Waves in an Optical Sea

    PubMed Central

    Mathis, Amaury; Froehly, Luc; Toenger, Shanti; Dias, Frédéric; Genty, Goëry; Dudley, John M.

    2015-01-01

    There are many examples in physics of systems showing rogue wave behaviour, the generation of high amplitude events at low probability. Although initially studied in oceanography, rogue waves have now been seen in many other domains, with particular recent interest in optics. Although most studies in optics have focussed on how nonlinearity can drive rogue wave emergence, purely linear effects have also been shown to induce extreme wave amplitudes. In this paper, we report a detailed experimental study of linear rogue waves in an optical system, using a spatial light modulator to impose random phase structure on a coherent optical field. After free space propagation, different random intensity patterns are generated, including partially-developed speckle, a broadband caustic network, and an intermediate pattern with characteristics of both speckle and caustic structures. Intensity peaks satisfying statistical criteria for rogue waves are seen especially in the case of the caustic network, and are associated with broader spatial spectra. In addition, the electric field statistics of the intermediate pattern shows properties of an “optical sea” with near-Gaussian statistics in elevation amplitude, and trough-to-crest statistics that are near-Rayleigh distributed but with an extended tail where a number of rogue wave events are observed. PMID:26245864

  1. The Effect of Area Variation on Wave Rotor Elements

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    1997-01-01

    The effect of varying the cross-sectional flow area of the passages of a wave rotor is examined by means of the method of characteristics. An idealized expansion wave, an idealized inlet port, and an idealized compression stage are considered. It is found that area variation does not have a very significant effect on the expansion wave, nor on the compression stage. For the expansion wave, increasing the passage area in the flow direction has the same effect as a diffuser, so that the flow emerges at a lower velocity than it would for the constant area case. This could be advantageous. The inlet is strongly affected by the area variation, as it changes the strength of the hammer shock wave, thereby changing the pressure behind it. In this case, reduction in the passage area in the flow direction leads to increased pressure. However, this result is dependent on the assumption that the inlet conditions remain constant with area variation. This may not be the case.

  2. On the interaction between ocean surface waves and seamounts

    NASA Astrophysics Data System (ADS)

    Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús

    2017-12-01

    Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.

  3. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    DOE PAGES

    Bonetti, S.; Kukreja, R.; Chen, Z.; ...

    2015-11-16

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Moreover, micromagnetic simulations explain the measurements and reveal that the symmetrymore » of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.« less

  4. The Effectiveness of an Emergent Literacy Intervention for Teenage Parents

    ERIC Educational Resources Information Center

    Scott, Amy; van Bysterveldt, Anne; McNeill, Brigid

    2016-01-01

    This study determined the effectiveness of an experimental emergent literacy intervention, targeting teenage mothers attending an educational facility. Using a pretest/posttest research design, 27 participants completed a 7­-week intervention based in the classroom, targeting a range of emergent literacy skills that they could utilize when reading…

  5. Process quality indicators targeting cognitive impairment to support quality of care for older people with cognitive impairment in emergency departments.

    PubMed

    Schnitker, Linda M; Martin-Khan, Melinda; Burkett, Ellen; Beattie, Elizabeth R A; Jones, Richard N; Gray, Len C

    2015-03-01

    The objective of this study was to develop process quality indicators (PQIs) to support the improvement of care services for older people with cognitive impairment in emergency departments (ED). A structured research approach was taken for the development of PQIs for the care of older people with cognitive impairment in EDs, including combining available evidence with expert opinion (phase 1), a field study (phase 2), and formal voting (phase 3). A systematic review of the literature identified ED processes targeting the specific care needs of older people with cognitive impairment. Existing relevant PQIs were also included. By integrating the scientific evidence and clinical expertise, new PQIs were drafted and, along with the existing PQIs, extensively discussed by an advisory panel. These indicators were field tested in eight hospitals using a cohort of older persons aged 70 years and older. After analysis of the field study data (indicator prevalence, variability across sites), in a second meeting, the advisory panel further defined the PQIs. The advisory panel formally voted for selection of those PQIs that were most appropriate for care evaluation. In addition to seven previously published PQIs relevant to the care of older persons, 15 new indicators were created. These 22 PQIs were then field tested. PQIs designed specifically for the older ED population with cognitive impairment were only scored for patients with identified cognitive impairment. Following formal voting, a total of 11 PQIs were included in the set. These PQIs targeted cognitive screening, delirium screening, delirium risk assessment, evaluation of acute change in mental status, delirium etiology, proxy notification, collateral history, involvement of a nominated support person, pain assessment, postdischarge follow-up, and ED length of stay. This article presents a set of PQIs for the evaluation of the care for older people with cognitive impairment in EDs. The variation in indicator

  6. Phase portrait analysis of super solitary waves and flat top solutions

    NASA Astrophysics Data System (ADS)

    Steffy, S. V.; Ghosh, S. S.

    2018-06-01

    The phase portrait analysis of super solitary waves has revealed a new kind of intermediate solution which defines the boundary between the two types of super solitary waves, viz., Type I and Type II. A Type I super solitary wave is known to be associated with an intermediate double layer while a Type II solution has no such association. The intermediate solution at the boundary has a flat top structure and is called a flat top solitary wave. Its characteristics resemble an amalgamation of a solitary wave and a double layer. It was found that, mathematically, such kinds of structures may emerge due to the presence of an extra nonlinearity. Although they are relatively unfamiliar in the realm of plasma physics, they have much wider applications in other physical systems.

  7. TNNI3K, a novel cardiac-specific kinase, emerging as a molecular target for the treatment of cardiac disease

    PubMed Central

    Lal, Hind; Ahmad, Firdos; Parikh, Shan; Force, Thomas

    2014-01-01

    Coronary heart disease (AHD) is the leading cause of death and disability worldwide. In patients with acute coronary syndromes (ACS), timely and effective myocardial reperfusion by percutaneous coronary intervention (PCI) is the primary treatment of choice to minimize the ischemic injury and limit MI size. However, reperfusion can itself promote cardiomyocyte death which leads to cardiac dysfunction via reperfusion injury. The molecular mechanisms of ischemia/reperfusion (I/R) injury are not completely understood and new drug targets are needed. Recently we reported that cardiac troponin I-interacting protein kinase (TNNI3K), a cardiomyocyte-specific kinase, promotes I/R injury via profound oxidative stress, thereby promoting cardiomyocyte death. By using novel genetic animal models and newly developed small-molecule TNNI3K inhibitors, we demonstrate that TNNI3K-mediated I/R injury occurs through impaired mitochondrial function and is in part dependent on p38 MAPK. Herein we discuss the emerging role of TNNI3K as a promising new drug target to limit the I/R-induced myocardial injury. We will also examine the underlying mechanisms that drive the profoundly reduced infarct size in mice in which TNNI3K is specifically deleted in cardiomyocytes. Since TNNI3K is a cardiac-specific kinase, it could be an ideal molecular target since inhibiting it would have little or no effect on other organ systems, a serious problem associated with the use of kinase inhibitors targeting kinases that are more widely expressed. PMID:24899531

  8. BH3-only protein BIM: An emerging target in chemotherapy.

    PubMed

    Shukla, Shatrunajay; Saxena, Sugandh; Singh, Brijesh Kumar; Kakkar, Poonam

    2017-12-01

    BH3-only proteins constitute major proportion of pro-apoptotic members of B-cell lymphoma 2 (Bcl-2) family of apoptotic regulatory proteins and participate in embryonic development, tissue homeostasis and immunity. Absence of BH3-only proteins contributes to autoimmune disorders and tumorigenesis. Bim (Bcl-2 Interacting Mediator of cell death), most important member of BH3-only proteins, shares a BH3-only domain (9-16 aa) among 4 domains (BH1-BH4) of Bcl-2 family proteins and highly pro-apoptotic in nature. Bim initiates the intrinsic apoptotic pathway under both physiological and patho-physiological conditions. Reduction in Bim expression was found to be associated with tumor promotion and autoimmunity, while overexpression inhibited tumor growth and drug resistance as cancer cells suppress Bim expression and stability. Apart from its role in normal homeostasis, Bim has emerged as a central player in regulation of tumorigenesis, therefore gaining attention as a plausible target for chemotherapy. Regulation of Bim expression and stability is complicated and regulated at multiple levels viz. transcriptional, post-transcriptional, post-translational (preferably by phosphorylation and ubiquitination), epigenetic (by promoter acetylation or methylation) including miRNAs. Furthermore, control over Bim expression and stability may be exploited to enhance chemotherapeutic efficacy, overcome drug resistance and select anticancer drug regimen as various chemotherapeutic agents exploit Bim as an executioner of cell death. Owing to its potent anti-tumorigenic activity many BH3 mimetics e.g. ABT-737, ABT-263, obatoclax, AT-101and A-1210477 have been developed and entered in clinical trials. It is more likely that in near future strategies commanding Bim expression and stability ultimately lead to Bim based therapeutic regimen for cancer treatment. Copyright © 2017. Published by Elsevier GmbH.

  9. Quantum oscillations in a biaxial pair density wave state.

    PubMed

    Norman, M R; Davis, J C Séamus

    2018-05-22

    There has been growing speculation that a pair density wave state is a key component of the phenomenology of the pseudogap phase in the cuprates. Recently, direct evidence for such a state has emerged from an analysis of scanning tunneling microscopy data in halos around the vortex cores. By extrapolation, these vortex halos would then overlap at a magnetic-field scale where quantum oscillations have been observed. Here, we show that a biaxial pair density wave state gives a unique description of the quantum oscillation data, bolstering the case that the pseudogap phase in the cuprates may be a pair density wave state. Copyright © 2018 the Author(s). Published by PNAS.

  10. Attraction and repulsion of spiral waves by inhomogeneity of conduction anisotropy--a model of spiral wave interaction with electrical remodeling of heart tissue.

    PubMed

    Kuklik, Pawel; Sanders, Prashanthan; Szumowski, Lukasz; Żebrowski, Jan J

    2013-01-01

    Various forms of heart disease are associated with remodeling of the heart muscle, which results in a perturbation of cell-to-cell electrical coupling. These perturbations may alter the trajectory of spiral wave drift in the heart muscle. We investigate the effect of spatially extended inhomogeneity of transverse cell coupling on the spiral wave trajectory using a simple active media model. The spiral wave was either attracted or repelled from the center of inhomogeneity as a function of cell excitability and gradient of the cell coupling. High levels of excitability resulted in an attraction of the wave to the center of inhomogeneity, whereas low levels resulted in an escape and termination of the spiral wave. The spiral wave drift velocity was related to the gradient of the coupling and the initial position of the wave. In a diseased heart, a region of altered transverse coupling corresponds with local gap junction remodeling that may be responsible for stabilization-destabilization of spiral waves and hence reflect potentially important targets in the treatment of heart arrhythmias.

  11. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Zachary; Simon, Sven; Kabanovic, Slawa

    2016-09-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field.

  12. [Factorial division of the visual N1 wave and functional significance].

    PubMed

    Munoz-Ruata, J; Caro-Martinez, E

    2011-05-16

    It has been argued if the frontal, N1a, is the early part of the occipito-temporal, N1b, or there are two different waves. It is also not clear whether the N1 of distractor is equivalent to the target N1, neither to distinguish these four waves has some functional value. We performed a principal component analysis of latencies and amplitudes of N1 derived from an oddball visual paradigm in a sample of 82 persons with intellectual disability, and factor scores were correlated with measures of intellectual performance on the Wechsler Intelligence Scale for Children-Fourth Edition. There is not significant dependency between N1a and N1b waves. The N1 from the target stimulus is functionally different to the N1 from the distractor. The N1a 'target' is related to the perceptual reasoning while the N1a 'distractor' is related to the working memory. The correlation between latencies and amplitudes of the target stimuli in posterior locations suggests that, similar to as observed in auditory areas, there is a visual synchronization with the prefrontal cortex; its dysfunction may explain some of the perceptual problems of people with intellectual disabilities.

  13. Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.

    PubMed

    Heitmann, Stewart; Ermentrout, G Bard

    2015-06-01

    Spatiotemporal waves of synchronized activity are known to arise in oscillatory neural networks with lateral inhibitory coupling. How such patterns respond to dynamic changes in coupling strength is largely unexplored. The present study uses analysis and simulation to investigate the evolution of wave patterns when the strength of lateral inhibition is varied dynamically. Neural synchronization was modeled by a spatial ring of Kuramoto oscillators with Mexican hat lateral coupling. Broad bands of coexisting stable wave solutions were observed at all levels of inhibition. The stability of these waves was formally analyzed in both the infinite ring and the finite ring. The broad range of multi-stability predicted hysteresis in transitions between neighboring wave solutions when inhibition is slowly varied. Numerical simulation confirmed the predicted transitions when inhibition was ramped down from a high initial value. However, non-wave solutions emerged from the uniform solution when inhibition was ramped upward from zero. These solutions correspond to spatially periodic deviations of phase that we call ripple states. Numerical continuation showed that stable ripple states emerge from synchrony via a supercritical pitchfork bifurcation. The normal form of this bifurcation was derived analytically, and its predictions compared against the numerical results. Ripple states were also found to bifurcate from wave solutions, but these were locally unstable. Simulation also confirmed the existence of hysteresis and ripple states in two spatial dimensions. Our findings show that spatial synchronization patterns can remain structurally stable despite substantial changes in network connectivity.

  14. Central blood pressure and pulse wave velocity: relationship to target organ damage and cardiovascular morbidity-mortality in diabetic patients or metabolic syndrome. An observational prospective study. LOD-DIABETES study protocol

    PubMed Central

    2010-01-01

    Background Diabetic patients show an increased prevalence of non-dipping arterial pressure pattern, target organ damage and elevated arterial stiffness. These alterations are associated with increased cardiovascular risk. The objectives of this study are the following: to evaluate the prognostic value of central arterial pressure and pulse wave velocity in relation to the incidence and outcome of target organ damage and the appearance of cardiovascular episodes (cardiovascular mortality, myocardial infarction, chest pain and stroke) in patients with type 2 diabetes mellitus or metabolic syndrome. Methods/Design Design: This is an observational prospective study with 5 years duration, of which the first year corresponds to patient inclusion and initial evaluation, and the remaining four years to follow-up. Setting: The study will be carried out in the urban primary care setting. Study population: Consecutive sampling will be used to include patients diagnosed with type 2 diabetes between 20-80 years of age. A total of 110 patients meeting all the inclusion criteria and none of the exclusion criteria will be included. Measurements: Patient age and sex, family and personal history of cardiovascular disease, and cardiovascular risk factors. Height, weight, heart rate and abdominal circumference. Laboratory tests: hemoglobin, lipid profile, creatinine, microalbuminuria, glomerular filtration rate, blood glucose, glycosylated hemoglobin, blood insulin, fibrinogen and high sensitivity C-reactive protein. Clinical and 24-hour ambulatory (home) blood pressure monitoring and self-measured blood pressure. Common carotid artery ultrasound for the determination of mean carotid intima-media thickness. Electrocardiogram for assessing left ventricular hypertrophy. Ankle-brachial index. Retinal vascular study based on funduscopy with non-mydriatic retinography and evaluation of pulse wave morphology and pulse wave velocity using the SphygmoCor system. The medication used for

  15. Mesospheric gravity-wave climatology at Adelaide

    NASA Technical Reports Server (NTRS)

    Vincent, R. A.

    1986-01-01

    The MF Adelaide partial-reflection radar has been operating continuously since November 1983. This has enabled a climatology of gravity-wave activity to be constructed for the mesosphere. The data have been analyzed for a medium-period range of 1 to 8 hr. and a longer period range between 8 and 24 hr. covering the inertio-period waves. The tidal motions have been filtered out prior to analysis. For the data analyses so far (Nov. 1983 to Dec. 1984), a number of interesting features emerged. Firstly, the wave activity at heights above 80 km shows a small seimannual variation with season with the activity being strongest in summer and winter. At heights below 80 km however, there is a similar but more marked variation with the weakest amplitudes occurring at the time of the changeovers in the prevailing circulation. If breaking gravity waves are responsible for much of the turbulence in the mesosphere, then the periods March to April and September to October might also be expected to be periods of weak turbulence. The wave field appears to be partially polarized. The meridional amplitudes are larger than the zonal amplitudes, especially in water. It is found that the degree of polarization is about 15% in summer and 30% in winter. The polarized component is found to propagate in the opposite direction to the background flow in the stratosphere, which suggests that the polarization arises through directional filtering of the waves as they propagate up from below.

  16. Emerging drugs which target the renin-angiotensin-aldosterone system.

    PubMed

    Steckelings, Ulrike Muscha; Paulis, Ludovit; Unger, Thomas; Bader, Michael

    2011-12-01

    The renin-angiotensin-aldosterone system (RAAS) is already the most important target for drugs in the cardiovascular system. However, still new developments are underway to interfere with the system on different levels. The novel strategies to interfere with RAAS aim to reduce the synthesis of the two major RAAS effector hormones, angiotensin (Ang) II and aldosterone, or interfere with their receptors, AT1 and mineralocorticoid receptor, respectively. Moreover, novel targets have been identified in RAAS, such as the (pro)renin receptor, and molecules, which counteract the classical actions of Ang II and are therefore beneficial in cardiovascular diseases. These include the AT2 receptor and the ACE2/Ang-(1-7)/Mas axis. The search for drugs activating these tissue-protective arms of RAAS is therefore the most innovative field in RAAS pharmacology. Most of the novel pharmacological strategies to inhibit the classical RAAS need to prove their superiority above the existing treatment in clinical trials and then have to compete against these now quite cheap drugs in a competitive market. The newly discovered targets have functions beyond the cardiovascular system opening up novel therapeutic areas for drugs interfering with RAAS components.

  17. Internal Wave Apparatus for Copepod Behavior Assays

    NASA Astrophysics Data System (ADS)

    Jung, S.; Haas, K. A.; Webster, D. R.

    2015-11-01

    Internal waves are ubiquitous features in coastal marine environments and have been observed to mediate vertical distributions of zooplankton in situ. Internal waves are generated through oscillations of the pycnocline in stratified waters and thereby create fine-scale hydrodynamic cues that copepods and other zooplankton are known to sense, such as fluid density gradients and velocity gradients (quantified as shear deformation rate). The role of copepod behavior in response to cues associated with internal waves is largely unknown. Thus, a coupled quantification of copepod behavior and hydrodynamic cues will provide insight to the bio-physical interaction and the role of biological versus physical forcing in mediating organism distributions. We constructed a laboratory-scale internal wave apparatus to facilitate fine-scale observations of copepod behavior in flows that replicate in situ conditions of internal waves in a two-layer stratification. Three cases are chosen with density jump ranging between 0.75 - 1.5 kg/m3. Analytical analysis of the two-layer system provides guidance of the target forcing frequency to generate a standing internal wave with a single dominate frequency of oscillation. Flow visualization and signal processing of the interface location are used to quantify the wave characteristics. A copepod behavior assay is conducted, and sample trajectories are analyzed to identify copepod response to internal wave structure.

  18. Optical Rogue Waves: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Taki, M.; Mussot, A.; Kudlinski, A.; Louvergneaux, E.; Kolobov, M.

    2010-05-01

    In the ocean, giant waves (also called killer waves, freak or rogue waves) are extremely rare and strong events. They are not well understood yet and the conditions which favour their emergence are unclear. Very recently, it was shown that the governing equations [1] as well as the statistical properties of an optical pulse propagating inside an optical fibre [2] mimic very well these gigantic surface waves in the ocean. Here we generate both experimentally and numerically optical rogue waves in a photonic crystal fiber (microstructured fiber) with continuous wave (CW) pumps. This is relevant for establishing an analogy with rogue waves in an open ocean. After recalling fundamental rogue waves [3] known as Akhmediev breathers that are solutions of pure nonlinear Schrödinger (NLS) equation, we analytically demonstrate that a generalized NLS equation, which governs the propagation of light in the fiber, exhibits convective modulationnal instability [4]. The latter provides one of the main explanations of the optical rogue wave extreme sensitivity to noisy initial conditions at the linear stage of their formation [5]. In the highly nonlinear regime, we provide the evidence that optical rogue waves result from soliton collisions leading to the rapid appearance/disappearance of a powerful optical pulse [6]. REFERENCES [1] C. Kharif, E. Pelinovsky, and A. Slunyaev, "Rogue Waves in the ocean", Springer Berlin Heidelberg, 2009 [2] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves" Nature 450, 1054-1058, (2008). [3] N. Akhmediev, A. Ankiewicz, and M. Taki, "Waves that appear from nowhere and disappear without a trace", Phys. Lett. A 373, 675 (2009). [4] A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, Delage, and M. Taki, "Optical fiber systems are convectively unstable", Phys. Rev. Lett. 101, 113904 (2008). [5] M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, "Third-order dispersion for generating optical rogue solitons

  19. Observation and Control of Shock Waves in Individual Nanoplasmas

    DTIC Science & Technology

    2014-03-18

    Observation and Control of Shock Waves in Individual Nanoplasmas Daniel D. Hickstein,1 Franklin Dollar,1 Jim A. Gaffney,2 Mark E. Foord,2 George M...distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas . We demonstrate that...i Nanoscale plasmas ( nanoplasmas ) offer enhanced laser absorption compared to solid or gas targets [1], enabling high-energy physics with tabletop

  20. Are snakes particles or waves? Scattering of a limbless locomotor through a single slit

    NASA Astrophysics Data System (ADS)

    Qian, Feifei; Dai, Jin; Gong, Chaohui; Choset, Howie; Goldman, Daniel

    Droplets on vertically vibrated fluid surfaces can walk and diffract through a single slit by a pilot wave hydrodynamic interaction [Couder, 2006; Bush, 2015]. Inspired by the correspondence between emergent macroscale dynamics and phenomena in quantum systems, we tested if robotic snakes, which resemble wave packets, behave emergently like particles or waves when interacting with an obstacle. In lab experiments and numerical simulations we measured how a multi-module snake-like robot swam through a single slit. We controlled the snake undulation gait as a fixed serpenoid traveling wave pattern with varying amplitude and initial phase, and we examined the snake trajectory as it swam through a slit with width d. Robot trajectories were straight before interaction with the slit, then exited at different scattering angle θ after the interaction due to a complex interaction of the body wave with the slit. For fixed amplitude and large d, the snake passed through the slit with minimal interaction and theta was ~ 0 . For sufficiently small d, θ was finite and bimodally distributed, depending on the initial phase. For intermediate d, θ was sensitive to initial phase, and the width of the distribution of θ increased with decreasing d.

  1. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus.

    PubMed

    Vergara-Alert, Júlia; Vidal, Enric; Bensaid, Albert; Segalés, Joaquim

    2017-06-01

    Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013-2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV), which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV), associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.

  2. Prospects and applicability of wave energy for South Africa

    NASA Astrophysics Data System (ADS)

    Lavidas, George; Venugopal, Vengatesan

    2018-03-01

    Renewable energy offers significant opportunities for electricity diversification. South Africa belongs to the group of developing nations and encompasses a lot of potential for renewable energy developments. Currently, the majority of its electricity production originates from fossil fuels; however, incorporation of clean coal technologies will aid in reaching the assigned targets. This study offers a long-term wave power quantification analysis with a numerical wave model. The investigation includes long-term resource assessment in the region, variability, seasonal and monthly wave energy content. Locations with high-energy content but low variability pose an opportunity that can contribute in the alleviation of energy poverty. Application of wave converters depends on the combination of complex terms. The study presents resource levels and the joint distributions, which indicate suitability for converter selection. Depending on the region of interest, these characteristics change. Thus, this resource assessment adds knowledge on wave power and optimal consideration for wave energy applicability.

  3. Number of Sexual Partners and Relationship Status Are Associated With Unprotected Sex Across Emerging Adulthood

    PubMed Central

    Wilhite, Emily R.; Harden, K. Paige; Fromme, Kim

    2018-01-01

    Sex with multiple partners, consecutively or concurrently, is a risk factor for contracting sexually transmitted infections (STIs) as multiple partner–partner contacts present increased opportunity for transmission. It is unclear, however, if individuals who tend to have more partners also use protection less reliably than those with sexual histories of fewer partners. Longitudinal data can elucidate whether an individual shows a consistent pattern of sex with multiple partners. We used latent class growth analyses to examine emerging adult survey data (N = 2244) spanning 10 waves of assessment across 6 years. We identified three trajectory classes described with respect to number of partners as (a) Multiple, (b) Single, and (c) Rare. Trajectory group, relationship status, and their interactions were tested as predictors of using protection against STIs and pregnancy at each wave. The Multiple Partners class had the greatest odds ratio of reporting sex without protection against STIs and pregnancy, followed by the Single and Rare classes. Exclusive relationship status was a risk factor for unprotected sex at earlier waves, but a protective factor at most later waves. There was no significant interaction between relationship status and trajectory class in predicting use of protection. The Multiple Partners class reported more permissive values on sex and an elevated proportion of homosexual behavior. This group overlaps with an already identified at-risk population, men who have sex with men. Potential mechanisms explaining the increased risk for sex without protection, including communication, risk assessment, and co-occurring risk behaviors are discussed as targets for intervention. PMID:26940966

  4. Number of Sexual Partners and Relationship Status Are Associated With Unprotected Sex Across Emerging Adulthood.

    PubMed

    Ashenhurst, James R; Wilhite, Emily R; Harden, K Paige; Fromme, Kim

    2017-02-01

    Sex with multiple partners, consecutively or concurrently, is a risk factor for contracting sexually transmitted infections (STIs) as multiple partner-partner contacts present increased opportunity for transmission. It is unclear, however, if individuals who tend to have more partners also use protection less reliably than those with sexual histories of fewer partners. Longitudinal data can elucidate whether an individual shows a consistent pattern of sex with multiple partners. We used latent class growth analyses to examine emerging adult survey data (N = 2244) spanning 10 waves of assessment across 6 years. We identified three trajectory classes described with respect to number of partners as (a) Multiple, (b) Single, and (c) Rare. Trajectory group, relationship status, and their interactions were tested as predictors of using protection against STIs and pregnancy at each wave. The Multiple Partners class had the greatest odds ratio of reporting sex without protection against STIs and pregnancy, followed by the Single and Rare classes. Exclusive relationship status was a risk factor for unprotected sex at earlier waves, but a protective factor at most later waves. There was no significant interaction between relationship status and trajectory class in predicting use of protection. The Multiple Partners class reported more permissive values on sex and an elevated proportion of homosexual behavior. This group overlaps with an already identified at-risk population, men who have sex with men. Potential mechanisms explaining the increased risk for sex without protection, including communication, risk assessment, and co-occurring risk behaviors are discussed as targets for intervention.

  5. Wave Velocity Attenuation and Sediment Retention among Different Vegetation Types in a Pacific Northwest Estuary

    NASA Astrophysics Data System (ADS)

    Lemein, T.; Cox, D. T.; Albert, D.; Blackmar, P.

    2012-12-01

    Feedbacks between vegetation, wave climate, and sedimentation create stable ecosystem states within estuaries that provide ecosystem services such as wildlife habitat, erosion control, and pollution filtration. Flume and field studies conducted with cordgrass (Spartina spp.) and sea grasses (Zostera spp., Halodule spp.) have demonstrated that the presence of vegetation reduces wave energy and increases sediment retention. Since the spatial distribution of plant species and the presence of unique plant species differ between estuaries, there is a need to understand how individual plant species, or groups of species with similar morphology, influence wave characteristics and sedimentation. Within Tillamook Bay, Oregon, three species of emergent vascular vegetation species (Carex lyngbyei, Eleocharis sp., Schoenoplectus pungens) and one species of submergent vascular vegetation species (Zostera marina) are present in the high wave energy portion of the estuary at the border of open water and the start of vegetation. These species represent three distinct growth forms (emergent reeds, emergent grasses, submergent grasses) and occur at varying densities relative to each other, as well as within the estuary. Using paired acoustic Doppler velocimeters (ADVs), we quantify the relative attenuation of wave velocity between vegetation types and densities within the estuary and compare these results with published attenuation rates from flume and field studies in different environments. The effect of decreased wave velocity on sediment retention is measured using permanent sediment markers within and outside of vegetation stands and paired with ADV data. Sediment retention is predicted to vary seasonally with seasonal vegetation composition changes and remain constant in unvegetated areas. From this experiment we expect to identify like groups of plant species whose attenuation characteristics are the same, allowing for models of wave-vegetation-sediment interaction to be

  6. Principles and application of extracorporeal shock wave lithotripsy.

    PubMed

    Robinson, S N; Crane, V S; Jones, D G; Cochran, J S; Williams, O B

    1987-04-01

    The physics, instrumentation, and patient-care aspects of extracorporeal shock wave lithotripsy (ESWL) in the treatment of kidney stone disease are described. The kidney stone is located through the use of two integrated roentgenographic imaging systems. The x-ray tubes, fixed on either side of a tub of water in which the patient is partially immersed, are directed upward. The patient is maneuvered until the imaging systems indicate the kidney stone is within the second focus of the reflector and within the 1.5-cu cm target area. Once within this alignment, the stone is ready for shock wave treatment; general or regional anesthesia is used to immobilize the patient so that the position of the stone can be maintained within the focus of the shock wave. When the stone is repeatedly subjected to this high-energy force, it begins to disintegrate until fragments of less than 1 mm are left. ESWL can (1) disintegrate kidney stones of all types, (2) be efficiently transmitted over distances that allow the shock wave source to be outside the body, (3) safely pass through living tissue, and (4) be precisely controlled and focused into a small target area. ESWL is a safe, effective, and cost-saving treatment that can be used for 90% of all kidney stone disease that previously required surgery.

  7. Integrated hospital emergency care improves efficiency.

    PubMed

    Boyle, A A; Robinson, S M; Whitwell, D; Myers, S; Bennett, T J H; Hall, N; Haydock, S; Fritz, Z; Atkinson, P

    2008-02-01

    There is uncertainty about the most efficient model of emergency care. An attempt has been made to improve the process of emergency care in one hospital by developing an integrated model. The medical admissions unit was relocated into the existing emergency department and came under the 4-hour target. Medical case records were redesigned to provide a common assessment document for all patients presenting as an emergency. Medical, surgical and paediatric short-stay wards were opened next to the emergency department. A clinical decision unit replaced the more traditional observation unit. The process of patient assessment was streamlined so that a patient requiring admission was fully clerked by the first attending doctor to a level suitable for registrar or consultant review. Patients were allocated directly to specialty on arrival. The effectiveness of this approach was measured with routine data over the same 3-month periods in 2005 and 2006. There was a 16.3% decrease in emergency medical admissions and a 3.9% decrease in emergency surgical admissions. The median length of stay for emergency medical patients was reduced from 7 to 5 days. The efficiency of the elective surgical services was also improved. Performance against the 4-hour target declined but was still acceptable. The number of bed days for admitted surgical and medical cases rose slightly. There was an increase in the number of medical outliers on surgical wards, a reduction in the number of incident forms and formal complaints and a reduction in income for the hospital. Integrated emergency care has the ability to use spare capacity within emergency care. It offers significant advantages beyond the emergency department. However, improved efficiency in processing emergency patients placed the hospital at a financial disadvantage.

  8. Space-based infrared sensors of space target imaging effect analysis

    NASA Astrophysics Data System (ADS)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  9. Storm wave buoy equipped with micromechanical inertial unit: Results of development and testing

    NASA Astrophysics Data System (ADS)

    Gryazin, D. G.; Staroselcev, L. P.; Belova, O. O.; Gleb, K. A.

    2017-07-01

    The article describes the results of developing a wave buoy to measure the statistical characteristics of waves and the characteristics of directional spectra of three-dimensional waves. The device is designed for long-term measurements lasting up to a season, which can help solve problems in forecasting waves and preventing emergencies from wave impact on offshore platforms, hydraulic structures, and other marine facilities. The measuring unit involves triads of micromechanical gyroscopes, accelerometers, and a three-component magnetometer. A description of the device, results of laboratory research of its characteristics, and bench and full-scale tests are offered. It is noted that to assess the performance characteristics, comparative tests of the Storm wave buoy were conducted with a standard string wave probe installed on an offshore platform. It is shown that the characteristics and capabilities of the wave buoy make it possible to oust foreign devices from the domestic market.

  10. Extended wave-packet model to calculate energy-loss moments of protons in matter

    NASA Astrophysics Data System (ADS)

    Archubi, C. D.; Arista, N. R.

    2017-12-01

    In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.

  11. Wave Coupling in the Atmosphere-Ionosphere System

    NASA Astrophysics Data System (ADS)

    Forbes, J. M.

    2016-12-01

    Vertically-propagating solar and lunar tides, Kelvin waves, gravity waves (GW) and planetary waves (PW) constitute the primary mechanism for transmitting lower atmosphere variability to the upper atmosphere and ionosphere. Vertically propagating waves grow exponentially with height into the more rarified atmosphere where they dissipate, deposit net momentum and heat, and induce net constituent transport. Some waves penetrate to the base of the exosphere (ca. 500-600 km). Over the past decade, a mature knowledge of the tidal part of the spectrum has emerged, in an average or climatological sense, up to about 110 km. This knowledge has largely accrued as a result of remote sensing observations made from the TIMED satellite. These observations have also enabled limited studies on day-to-day variability of atmospheric tides, the PW and Kelvin wave spectra up to 110 km, and PW-tide coupling. Complementary ionospheric observations made by GPS receivers, COSMIC, CHAMP, and ROCSAT contain signatures of plasma redistributions induced by these waves, and ionosphere-thermosphere (IT) general circulation models have been developed that provide a corroborating theoretical foundation. Pioneering theoretical and modeling work also demonstrate the importance of the GW part of the spectrum on thermosphere circulation and thermal structure. While significant strides have been made, critical shortcomings in our understanding of atmosphere-IT coupling remain. In particular, we are practically absent any observations of the vertical evolution and dissipation of the wave spectrum between 100 and 200 km, which is also the region where electric fields and currents are generated by dynamo action. Moreover, the day-to-day variability of the wave spectrum and secondary wave generation remain to be quantified in this critical region. In this talk, the above progress and knowledge gaps will be examined in light of imminent and potential future missions.

  12. Bright-dark rogue wave in mode-locked fibre laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kbashi, Hani; Kolpakov, Stanislav; Martinez, Amós; Mou, Chengbo; Sergeyev, Sergey V.

    2017-05-01

    Bright-Dark Rogue Wave in Mode-Locked Fibre Laser Hani Kbashi1*, Amos Martinez1, S. A. Kolpakov1, Chengbo Mou, Alex Rozhin1, Sergey V. Sergeyev1 1Aston Institute of Photonic Technologies, School of Engineering and Applied Science Aston University, Birmingham, B4 7ET, UK kbashihj@aston.ac.uk , 0044 755 3534 388 Keywords: Optical rogue wave, Bright-Dark rogue wave, rogue wave, mode-locked fiber laser, polarization instability. Abstract: Rogue waves (RWs) are statistically rare localized waves with high amplitude that suddenly appear and disappear in oceans, water tanks, and optical systems [1]. The investigation of these events in optics, optical rogue waves, is of interest for both fundamental research and applied science. Recently, we have shown that the adjustment of the in-cavity birefringence and pump polarization leads to emerge optical RW events [2-4]. Here, we report the first experimental observation of vector bright-dark RWs in an erbium-doped stretched pulse mode-locked fiber laser. The change of induced in-cavity birefringence provides an opportunity to observe RW events at pump power is a little higher than the lasing threshold. Polarization instabilities in the laser cavity result in the coupling between two orthogonal linearly polarized components leading to the emergence of bright-dark RWs. The observed clusters belongs to the class of slow optical RWs because their lifetime is of order of a thousand of laser cavity roundtrip periods. References: 1. D. R. Solli, C. Ropers, P. Koonath,and B. Jalali, Optical rogue waves," Nature, 450, 1054-1057, 2007. 2. S. V. Sergeyev, S. A. Kolpakov, C. Mou, G. Jacobsen, S. Popov, and V. Kalashnikov, "Slow deterministic vector rogue waves," Proc. SPIE 9732, 97320K (2016). 3. S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev, "Dynamics of vector rogue waves in a fiber laser with a ring cavity," Optica, 3, 8, 870, (2016). 5. S. Kolpakov, H. Kbashi, and S. Sergeyev, "Slow optical rogue waves in a unidirectional fiber laser

  13. Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric

    2013-10-01

    The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.

  14. The cell's nucleolus: an emerging target for chemotherapeutic intervention.

    PubMed

    Pickard, Amanda J; Bierbach, Ulrich

    2013-09-01

    The transient nucleolus plays a central role in the up-regulated synthesis of ribosomal RNA (rRNA) to sustain ribosome biogenesis, a hallmark of aberrant cell growth. This function, in conjunction with its unique pathohistological features in malignant cells and its ability to mediate apoptosis, renders this sub-nuclear structure a potential target for chemotherapeutic agents. In this Minireview, structurally and functionally diverse small molecules are discussed that have been reported to either interact with the nucleolus directly or perturb its function indirectly by acting on its dynamic components. These molecules include all major classes of nucleic-acid-targeted agents, antimetabolites, kinase inhibitors, anti-inflammatory drugs, natural product antibiotics, oligopeptides, as well as nanoparticles. Together, these molecules are invaluable probes of structure and function of the nucleolus. They also provide a unique opportunity to develop novel strategies for more selective and therefore better-tolerated chemotherapeutic intervention. In this regard, inhibition of RNA polymerase-I-mediated rRNA synthesis appears to be a promising mechanism for killing cancer cells. The recent development of molecules targeted at G-quadruplex-forming rRNA gene sequences, which are currently undergoing clinical trials, seems to attest to the success of this approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method

    NASA Astrophysics Data System (ADS)

    Descouvemont, P.; Itagaki, N.

    2018-01-01

    We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.

  16. Effects of Pre-Existing Target Structure on the Formation of Large Craters

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Cintala, M. J.; Crawford, D. A.

    2003-01-01

    The shapes of large-scale craters and the mechanics responsible for melt generation are influenced by broad and small-scale structures present in a target prior to impact. For example, well-developed systems of fractures often create craters that appear square in outline, good examples being Meteor Crater, AZ and the square craters of 433 Eros. Pre-broken target material also affects melt generation. Kieffer has shown how the shock wave generated in Coconino sandstone at Meteor crater created reverberations which, in combination with the natural target heterogeneity present, created peaks and troughs in pressure and compressed density as individual grains collided to produce a range of shock mineralogies and melts within neighboring samples. In this study, we further explore how pre-existing target structure influences various aspects of the cratering process. We combine experimental and numerical techniques to explore the connection between the scales of the impact generated shock wave and the pre-existing target structure. We focus on the propagation of shock waves in coarse, granular media, emphasizing its consequences on excavation, crater growth, ejecta production, cratering efficiency, melt generation, and crater shape. As a baseline, we present a first series of results for idealized targets where the particles are all identical in size and possess the same shock impedance. We will also present a few results, whereby we increase the complexities of the target properties by varying the grain size, strength, impedance and frictional properties. In addition, we investigate the origin and implications of reverberations that are created by the presence of physical and chemical heterogeneity in a target.

  17. Scattered P'P' waves observed at short distances

    USGS Publications Warehouse

    Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine

    2011-01-01

    We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.

  18. Experimental study on the impact-induced seismic wave propagating through granular materials: Implications for a future asteroid mission

    NASA Astrophysics Data System (ADS)

    Yasui, M.; Matsumoto, E.; Arakawa, M.; Matsue, K.; Kobayashi, N.

    2014-07-01

    Introduction: A seismic wave survey is a direct method to investigate the sub-surface structures of solid bodies, so we measured and analyzed these seismic waves propagating through these interiors. Earthquake and Moonquake are the only two phenomena that have been observed to explore these interiors until now, while the future surveys on the other bodies, (solid planets and/or asteroids) are now planned. To complete a seismic wave survey during the mission period, an artificial method that activates the seismic wave is necessary and one candidate is a projectile collision on the target body. However, to utilize the artificial seismic wave generated on the target body, the relationship between the impact energy and the amplitude and the decay process of the seismic wave should be examined. If these relationships are clarified, we can estimate the required sensitivity of seismometers installed on the target body and the possible distance from the seismic origin measurable for the seismometer. Furthermore, if we can estimate the impact energy from the observed seismic wave, we expect to be able to estimate the impact flux of impactors that collided on the target body. McGarr et al. (1969) did impact experiments by using the lexan projectile and two targets, quartz sand and sand bonded by epoxy cement, at 0.8-7 km/s. They found a difference of seismic wave properties between the two targets, and calculated the conversion efficiency to discuss the capability of detection of seismic waves on the Moon. However, they did not examine the excitation and propagation properties of the seismic waves in detail. In this study, we carried out impact experiments in the laboratory to observe the seismic waves by accelerometers, and examined the effects of projectile properties on the excitation and propagation properties of the seismic waves. Experimental methods: We made impact experiments by using a one-stage gas gun at Kobe University. Projectiles were a polycarbonate cylinder

  19. Emergent symmetries in the canonical tensor model

    NASA Astrophysics Data System (ADS)

    Obster, Dennis; Sasakura, Naoki

    2018-04-01

    The canonical tensor model (CTM) is a tensor model proposing a classically and quantum mechanically consistent description of gravity, formulated as a first-class constraint system with structural similarities to the ADM formalism of general relativity. The classical CTM produces a general relativistic system in a formal continuum limit, the emergence of which should be explained by the quantum CTM. In this paper we study the symmetry properties of a wave function that exactly solves the quantum constraints of the CTM. We have found that it has strong peaks at configurations invariant under some Lie groups, as predicted by a mechanism described in our previous paper. A surprising result is the preference for configurations invariant not only under Lie groups with positive definite signature, but also with Lorentzian signature. Such symmetries could characterize the global structures of spacetimes, and our results are encouraging towards showing spacetime emergence in the CTM. To verify the asymptotic convergence of the wave function we have also analyzed the asymptotic behavior, which for the most part seems to be well under control.

  20. A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data

    PubMed Central

    He, Jingjing; Ran, Yunmeng; Liu, Bin; Yang, Jinsong; Guan, Xuefei

    2017-01-01

    This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions. PMID:28902148

  1. A mass filter based on an accelerating traveling wave.

    PubMed

    Wiedenbeck, Michael; Kasemset, Bodin; Kasper, Manfred

    2008-01-01

    We describe a novel mass filtering concept based on the acceleration of a pulsed ion beam through a stack of electrostatic plates. A precisely controlled traveling wave generated within such an ion guide will induce a mass-selective ion acceleration, with mass separation ultimately accomplished via a simple energy-filtering system. Crucial for successful filtering is that the velocity with which the traveling wave passes through the ion guide must be dynamically controlled in order to accommodate the acceleration of the target ion species. Mass selection is determined by the velocity and acceleration with which the wave traverses the ion guide, whereby the target species will acquire a higher kinetic energy than all other lighter as well as heaver species. Finite element simulations of this design demonstrate that for small masses a mass resolution M/DeltaM approximately 1000 can be achieved within an electrode stack containing as few as 20 plates. Some of the possible advantages and drawbacks which distinguish this concept from established mass spectrometric technologies are discussed.

  2. Effect of emergency physician burnout on patient waiting times.

    PubMed

    De Stefano, Carla; Philippon, Anne-Laure; Krastinova, Evguenia; Hausfater, Pierre; Riou, Bruno; Adnet, Frederic; Freund, Yonathan

    2018-04-01

    Burnout is common in emergency physicians. This syndrome may negatively affect patient care and alter work productivity. We seek to assess whether burnout of emergency physicians impacts waiting times in the emergency department. Prospective study in an academic ED. All patients who visited the main ED for a 4-month period in 2016 were included. Target waiting times are assigned by triage nurse to patients on arrival depending on their severity. The primary endpoint was an exceeded target waiting time for ED patients. All emergency physicians were surveyed by a psychologist to assess their level of burnout using the Maslach Burnout Inventory. We defined the level of burnout of the day in the ED as the mean burnout level of the physicians working that day (8:30 to the 8:30 the next day). A logistic regression model was performed to assess whether burnout level of the day was independently associated with prolonged waiting times, along with previously reported predictors. Target waiting time was exceeded in 7524 patients (59%). Twenty-six emergency physicians were surveyed. Median burnout score was 35 [Interquartile (24-49)]. A burnout level of the day higher than 35 was independently associated with an exceeded target waiting time (adjusted odds ratio 1.54, 95% confidence interval 1.39-1.70), together with previously reported predictors (i.e., day of the week, time of the day, trauma, age and daily census). Burnout of emergency physicians was independently associated with a prolonged waiting time for patients visiting the ED.

  3. A multi-decadal wind-wave hindcast for the North Sea 1949-2014: coastDat2

    NASA Astrophysics Data System (ADS)

    Groll, Nikolaus; Weisse, Ralf

    2017-12-01

    Long and consistent wave data are important for analysing wave climate variability and change. Moreover, such wave data are also needed in coastal and offshore design and for addressing safety-related issues at sea. Using the third-generation spectral wave model WAM a multi-decadal wind-wave hindcast for the North Sea covering the period 1949-2014 was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis. In particular, comparisons of hindcast data with in situ and satellite observations show on average a reasonable agreement, while a tendency towards overestimation of the highest waves could be inferred. Despite these limitations, the wave hindcast still provides useful data for assessing wave climate variability and change as well as for risk analysis, in particular when conservative estimates are needed. Hindcast data are stored at the World Data Center for Climate (WDCC) and can be freely accessed using the target="_blank">doi:10.1594/WDCC/coastDat-2_WAM-North_Sea Groll and Weisse(2016) or via the coastDat web-page target="_blank">http://www.coastdat.de.

  4. Wave energy transfer in elastic half-spaces with soft interlayers.

    PubMed

    Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey

    2015-04-01

    The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.

  5. Regionally dependent summer heat wave response to increased surface temperature in the US

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Dong, S.; Kirtman, B. P.; Goni, G. J.; Lee, S. K.; Atlas, R. M.; West, R.

    2017-12-01

    Climate projections for the 21st Century suggest an increase in the occurrence of heat waves. However, the time it takes for the externally forced signal of climate change to emerge against the background of natural variability (i.e., Time of Emergence, ToE) particularly on the regional scale makes reliable future projection of heat waves challenging. Here, we combine observations and model simulations under present and future climate forcing to assess internal variability versus external forcing in modulating US heat waves. We characterized the most common heat wave patterns over the US by the use of clustering of extreme events by their spatial distribution. For each heat wave cluster, we assess changes in the probability density function (PDF) of summer temperature extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution. The probability of necessary causation for each heat wave cluster was also quantified, allowing to make assessments of heat extreme attribution to anthropogenic climate change. The results suggest that internal variability will dominate heat wave occurrence over the Great Plains with ToE occurring in the 2050s (2070s) and of occurrence of ratio of warm-to-cold extremes of 1.7 (1.7) for the Northern (Southern) Plains. In contrast, external forcing will dominate over the Western (Great Lakes) region with ToE occurring as early as in the 2020s (2030s) and warm-to-cold extremes ratio of 6.4 (10.2), suggesting caution in attributing heat extremes to external forcing due to their regional dependence.

  6. Riemann solvers and Alfven waves in black hole magnetospheres

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip

    2016-09-01

    In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.

  7. Tracking kidney stones with sound during shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Kracht, Jonathan M.

    The prevalence of kidney stones has increased significantly over the past decades. One of the primary treatments for kidney stones is shock wave lithotripsy which focuses acoustic shock waves onto the stone in order to fragment it into pieces that are small enough to pass naturally. This typically requires a few thousand shock waves delivered at a rate of about 2 Hz. Although lithotripsy is the only non-invasive treatment option for kidney stories, both acute and chronic complications have been identified which could be reduced if fewer shock waves were used. One factor that could be used to reduce the number of shock waves is accounting for the motion of the stone which causes a portion of the delivered shock waves to miss the stone, yielding no therapeutic benefit. Therefore identifying when the stone is not in focus would allow tissue to be spared without affecting fragmentation. The goal of this thesis is to investigate acoustic methods to track the stone in real-time during lithotripsy in order to minimize poorly-targeted shock waves. A relatively small number of low frequency ultrasound transducers were used in pulse-echo mode and a novel optimization routine based on time-of-flight triangulation is used to determine stone location. It was shown that the accuracy of the localization may be estimated without knowing the true stone location. This method performed well in preliminary experiments but the inclusion of tissue-like aberrating layers reduced the accuracy of the localization. Therefore a hybrid imaging technique employing DORT (Decomposition of the Time Reversal Operator) and the MUSIC (Multiple Signal Classification) algorithm was developed. This method was able to localize kidney stories to within a few millimeters even in the presence of an aberrating layer. This would be sufficient accuracy for targeting lithotripter shock waves. The conclusion of this work is that tracking kidney stones with low frequency ultrasound should be effective clinically.

  8. New and emerging targeted therapies for cystic fibrosis

    PubMed Central

    Rowe, Steven M

    2016-01-01

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder that affects about 70 000 people worldwide. The clinical manifestations of the disease are caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The discovery of the CFTR gene in 1989 has led to a sophisticated understanding of how thousands of mutations in the CFTR gene affect the structure and function of the CFTR protein. Much progress has been made over the past decade with the development of orally bioavailable small molecule drugs that target defective CFTR proteins caused by specific mutations. Furthermore, there is considerable optimism about the prospect of gene replacement or editing therapies to correct all mutations in cystic fibrosis. The recent approvals of ivacaftor and lumacaftor represent the genesis of a new era of precision medicine in the treatment of this condition. These drugs are having a positive impact on the lives of people with cystic fibrosis and are potentially disease modifying. This review provides an update on advances in our understanding of the structure and function of the CFTR, with a focus on state of the art targeted drugs that are in development. PMID:27030675

  9. Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.

    PubMed

    Whitfield, A J; Johnson, E R

    2015-05-01

    The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.

  10. Development of a coupled wave-flow-vegetation interaction model

    USGS Publications Warehouse

    Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.

    2017-01-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  11. Site specific wave parameters for Texas coastal bridges : final report.

    DOT National Transportation Integrated Search

    2010-04-01

    There are about 20 coastal bridges located in hurricane evacuation routes in the State of Texas that are : vulnerable to hurricane surge and wave action. Damage to these bridges could hamper emergency response : and other services, and also cause tre...

  12. Using Wave-Current Observations to Predict Bottom Sediment Processes on Muddy Beaches

    DTIC Science & Technology

    2012-09-30

    Hill and Foda , 1999; Chan and Liu, 2009; Holland et al., 2009; and others). Many theoretical models of wave-mud interaction have been proposed...transformation (see Section Figure 5) emerges from the analysis Sheremet et al., 2005; Jaramillo et al., 2008; Robillard, 2009; ?; ?. Under energetic waves, the...et al., 2010). The ongoing work has three directions of research: Data analysis : reconstruct the sequence of bed states in storms captured in the

  13. Generation of spiral waves pinned to obstacles in a simulated excitable system

    NASA Astrophysics Data System (ADS)

    Phantu, Metinee; Kumchaiseemak, Nakorn; Porjai, Porramain; Sutthiopad, Malee; Müller, Stefan C.; Luengviriya, Chaiya; Luengviriya, Jiraporn

    2017-09-01

    Pinning phenomena emerge in many dynamical systems. They are found to stabilize extreme conditions such as superconductivity and super fluidity. The dynamics of pinned spiral waves, whose tips trace the boundary of obstacles, also play an important role in the human health. In heart, such pinned waves cause longer tachycardia. In this article, we present two methods for generating pinned spiral waves in a simulated excitable system. In method A, an obstacle is set in the system prior to an ignition of a spiral wave. This method may be suitable only for the case of large obstacles since it often fails when used for small obstacles. In method B, a spiral wave is generated before an obstacle is placed at the spiral tip. With this method, a pinned spiral wave is always obtained, regardless the obstacle size. We demonstrate that after a transient interval the dynamics of the pinned spiral waves generated by the methods A and B are identical. The initiation of pinned spiral waves in both two- and three-dimensional systems is illustrated.

  14. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves

    NASA Astrophysics Data System (ADS)

    Grava, T.; Klein, C.; Pitton, G.

    2018-02-01

    A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

  15. Control of wave propagation in a biological excitable medium by an external electric field.

    PubMed

    Sebestikova, Lenka; Slamova, Elena; Sevcikova, Hana

    2005-03-01

    We present an experimental evidence of effects of external electric fields (EFs) on the velocity of pulse waves propagating in a biological excitable medium. The excitable medium used is formed by a layer of starving cells of Dictyostelium discoideum through which the waves of increased concentration of cAMP propagate by reaction-diffusion mechanism. External dc EFs of low intensities (up to 5 V/cm) are shown to speed up the propagation of cAMP waves towards the positive electrode and slow it down towards the negative electrode. Electric fields were also found to support an emergence of new centers, emitting cAMP waves, in front of cAMP waves propagating towards the negative electrode.

  16. Critical differences between elective and emergency surgery: identifying domains for quality improvement in emergency general surgery.

    PubMed

    Columbus, Alexandra B; Morris, Megan A; Lilley, Elizabeth J; Harlow, Alyssa F; Haider, Adil H; Salim, Ali; Havens, Joaquim M

    2018-04-01

    The objective of our study was to characterize providers' impressions of factors contributing to disproportionate rates of morbidity and mortality in emergency general surgery to identify targets for care quality improvement. Emergency general surgery is characterized by a high-cost burden and disproportionate morbidity and mortality. Factors contributing to these observed disparities are not comprehensively understood and targets for quality improvement have not been formally developed. Using a grounded theory approach, emergency general surgery providers were recruited through purposive-criterion-based sampling to participate in semi-structured interviews and focus groups. Participants were asked to identify contributors to emergency general surgery outcomes, to define effective care for EGS patients, and to describe operating room team structure. Interviews were performed to thematic saturation. Transcripts were iteratively coded and analyzed within and across cases to identify emergent themes. Member checking was performed to establish credibility of the findings. A total of 40 participants from 5 academic hospitals participated in either individual interviews (n = 25 [9 anesthesia, 12 surgery, 4 nursing]) or focus groups (n = 2 [15 nursing]). Emergency general surgery was characterized by an exceptionally high level of variability, which can be subcategorized as patient-variability (acute physiology and comorbidities) and system-variability (operating room resources and workforce). Multidisciplinary communication is identified as a modifier to variability in emergency general surgery; however, nursing is often left out of early communication exchanges. Critical variability in emergency general surgery may impact outcomes. Patient-variability and system-variability, with focus on multidisciplinary communication, represent potential domains for quality improvement in this field. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. What can we learn about cosmic structure from gravitational waves?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2003-01-01

    Observations of low frequency gravitational waves by the space-based LISA mission will open a new observational window on the early universe and the emergence of structure. LISA will observe the dynamical coalescence of massive black hole binaries at high redshifts, giving an unprecedented look at the merger history of galaxies and the reionization epoch. LISA will also observe gravitational waves from the collapse of supermassive stars to form black holes, and will map the spacetime in the central regions of galaxy cusps at high precision.

  18. Targeting the tumor microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenny, P.A.; Lee, G.Y.; Bissell, M.J.

    2006-11-07

    Despite some notable successes cancer remains, for the most part, a seemingly intractable problem. There is, however, a growing appreciation that targeting the tumor epithelium in isolation is not sufficient as there is an intricate mutually sustaining synergy between the tumor epithelial cells and their surrounding stroma. As the details of this dialogue emerge, new therapeutic targets have been proposed. The FDA has already approved drugs targeting microenvironmental components such as VEGF and aromatase and many more agents are in the pipeline. In this article, we describe some of the 'druggable' targets and processes within the tumor microenvironment and reviewmore » the approaches being taken to disrupt these interactions.« less

  19. Exotic s-wave superconductivity in alkali-doped fullerides.

    PubMed

    Nomura, Yusuke; Sakai, Shiro; Capone, Massimo; Arita, Ryotaro

    2016-04-20

    Alkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund's coupling within the C60 molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-Tc superconductivity.

  20. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  1. Continuous-wave Submillimeter-wave Gyrotrons

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2007-01-01

    Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605

  2. Evaluation of the ultrasound image attributes of developing ovarian follicles in the four follicular waves of the interovulatory interval in ewes

    PubMed Central

    Toosi, B.M.; Seekallu, S.V.; Pierson, R.A.; Rawlings, N.C.

    2010-01-01

    Computer-assisted quantitative echotextural analysis was applied to ultrasound images of antral follicles in the follicular waves of an interovulatory interval in sheep. The ewe has three or four waves per cycle. Seven healthy, cyclic Western White Face ewes (Ovis aris) underwent daily, transrectal, ovarian ultrasonography for an interovulatory interval. Follicles in the third wave of the ovulatory interval had a longer static phase than that of those in Waves 1 and 2 (P < 0.05). The numeric pixel value for the wall of anovulatory follicles emerging in the third wave of the cycle was significantly higher than that for Waves 1 and 2 at the time of emergence (156.7 ± 8.09, 101.6 ± 3.72, and 116.5 ± 13.93, respectively), and it decreased as follicles in Wave 3 reached maximum follicular diameter (P < 0.05). The numeric pixel value of the antrum in the ovulatory follicles decreased as follicular diameter increased to ≥5 mm in diameter (P < 0.05). The pixel heterogeneity of the follicular antrum in Wave 1 increased from the end of the growth phase to the end of the regression phase for follicles in that wave (P < 0.05). The total area for the wall and antrum of the follicles studied were correlated with follicular diameter in all follicular waves (r = 0.938, P < 0.01 and r = 0.941, P < 0.01 for the wall and antrum, respectively). Changes in image attributes of the follicular wall and antrum indicate potential morphologic and functional differences among antral follicles emerging at different stages of the interovulatory interval in cyclic ewes. PMID:19665782

  3. Shock wave lithotripsy: advances in technology and technique

    PubMed Central

    Lingeman, James E.; McAteer, James A.; Gnessin, Ehud; Evan, Andrew P.

    2010-01-01

    Shock wave lithotripsy (SWL) is the only noninvasive method for stone removal. Once considered as a primary option for the treatment of virtually all stones, SWL is now recognized to have important limitations that restrict its use. In particular, the effectiveness of SWL is severely limited by stone burden, and treatment with shock waves carries the risk of acute injury with the potential for long-term adverse effects. Research aiming to characterize the renal response to shock waves and to determine the mechanisms of shock wave action in stone breakage and renal injury has begun to suggest new treatment strategies to improve success rates and safety. Urologists can achieve better outcomes by treating at slower shock wave rate using a step-wise protocol. The aim is to achieve stone comminution using as few shock waves and at as low a power level as possible. Important challenges remain, including the need to improve acoustic coupling, enhance stone targeting, better determine when stone breakage is complete, and minimize the occurrence of residual stone fragments. New technologies have begun to address many of these issues, and hold considerable promise for the future. PMID:19956196

  4. Spiral actin-polymerization waves can generate amoeboidal cell crawling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreher, A.; Aranson, I. S.; Kruse, K.

    2014-05-01

    Amoeboidal cell crawling on solid substrates is characterized by protrusions that seemingly appear randomly along the cell periphery and drive the cell forward. For many cell types, it is known that the protrusions result from polymerization of the actin cytoskeleton. However, little is known about how the formation of protrusions is triggered and whether the appearance of subsequent protrusions is coordinated. Recently, the spontaneous formation of actin-polymerization waves was observed. These waves have been proposed to orchestrate the cytoskeletal dynamics during cell crawling. Here, we study the impact of cytoskeletal polymerization waves on cell migration using a phase-field approach. Inmore » addition to directionally moving cells, we find states reminiscent of amoeboidal cell crawling. In this framework, new protrusions are seen to emerge from a nucleation process, generating spiral actin waves in the cell interior. Nucleation of new spirals does not require noise, but occurs in a state that is apparently displaying spatio-temporal chaos.« less

  5. Analytical study of laser-supported combustion waves in hydrogen

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Root, R. G.

    1978-01-01

    Laser supported combustion (LSC) waves are an important ingredient in the fluid mechanics of CW laser propulsion using a hydrogen propellant and 10.6 micron lasers. Therefore, a computer model has been constructed to solve the one-dimensional energy equation with constant pressure and area. Physical processes considered include convection, conduction, absorption of laser energy, radiation energy loss, and accurate properties of equilibrium hydrogen. Calculations for 1, 3, 10 and 30 atm were made for intensities of 10 to the 4th to 10 to the 6th W/sq cm, which gave temperature profiles, wave speed, etc. To pursue the propulsion application, a second computer model was developed to describe the acceleration of the gas emerging from the LSC wave into a variable-pressure, converging streamtube, still including all the above-mentioned physical processes. The results show very high temperatures in LSC waves which absorb all the laser energy, and high radiative losses.

  6. Medical Emergencies in Goa

    PubMed Central

    Saddichha, Sahoo; Saxena, Mukul Kumar

    2010-01-01

    Background: Most emergencies in Goa arise due to road traffic accidents and drowning, which have been compounded by the rise in number of recorded accidents in 2007 to be above 4000. It is believed that 11 people meet with an accident on Goa's roads every day and this is expected to rise by 10% by next year. Similar is the case with drownings and other medical emergencies. We therefore aimed to conduct a cross-sectional survey of medical emergencies and identify various types of emergencies presenting to emergency departments. Materials and Methods: Using a stratified random sampling design, all emergencies presenting to the three government hospitals in Goa, which handle 90% of all emergencies currently, were studied on specially designed data sheets in order to collect data. Emergency medical technicians (ETs) were placed in the Casualty Ward of the medical colleges and they recorded all emergencies on the data sheet. The collected data were then analyzed for stratification and mapping of emergencies. Results: GMC Hospital attended to majority of emergencies (62%), which were mainly of the nature of accidents or assaults (17%) and fever related (17%). Most emergencies were noncritical and about 1% expired. Maximum emergencies also presented from Salcette and Bardez, and occurred among young males in the age group of 19-45 years. Males were also more prone to accidents while females had pregnancies as emergencies. Conclusion: Potential emergency services need to target young males with higher concentrations required in Salcette in South Goa and Bardez in North Goa. PMID:20606921

  7. Wireless power transmission using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Kural, A.; Pullin, R.; Featherston, C.; Paget, C.; Holford, K.

    2011-07-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  8. Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method.

    PubMed

    Xu, Hao; Chen, Shigao; An, Kai-Nan; Luo, Zong-Ping

    2017-10-30

    Cartilage elasticity changes with cartilage degeneration. Hence, cartilage elasticity detection might be an alternative to traditional imaging methods for the early diagnosis of osteoarthritis. Based on the wave propagation measurement, Shear wave elastography (SWE) become an emerging non-invasive elasticity detection method. The wave propagation model, which is affected by tissue shapes, is crucial for elasticity estimating in SWE. However, wave propagation model for cartilage was unclear. This study aimed to establish a wave propagation model for the cartilage-bone structure. We fabricated a cartilage-bone structure, and studied the elasticity measurement and wave propagation by experimental and numerical Lamb wave method (LWM). Results indicated the wave propagation model satisfied the lamb wave theory for two-layered structure. Moreover, a near field region, which affects wave speed measurements and whose occurrence can be prevented if the wave frequency is larger than one critical frequency, was observed. Our findings would provide a theoretical foundation for further application of LWM in elasticity measurement of cartilage in vivo. It can help the application of LWM to the diagnosis of osteoarthritis.

  9. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.

    PubMed

    Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav

    2017-03-01

    Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Seasonality in risk of pandemic influenza emergence

    PubMed Central

    Meyers, Lauren Ancel

    2017-01-01

    Influenza pandemics can emerge unexpectedly and wreak global devastation. However, each of the six pandemics since 1889 emerged in the Northern Hemisphere just after the flu season, suggesting that pandemic timing may be predictable. Using a stochastic model fit to seasonal flu surveillance data from the United States, we find that seasonal flu leaves a transient wake of heterosubtypic immunity that impedes the emergence of novel flu viruses. This refractory period provides a simple explanation for not only the spring-summer timing of historical pandemics, but also early increases in pandemic severity and multiple waves of transmission. Thus, pandemic risk may be seasonal and predictable, with the accuracy of pre-pandemic and real-time risk assessments hinging on reliable seasonal influenza surveillance and precise estimates of the breadth and duration of heterosubtypic immunity. PMID:29049288

  11. Slow wave contraction frequency plateaus in the small intestine are composed of discrete waves of interval increase associated with dislocations.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2018-06-03

    What is the central question of this study? What is the nature of slow wave driven contraction frequency gradients in the small intestine? What is the main finding and its importance? Frequency plateaus are composed of discrete waves of increased interval, each wave associated with a contraction dislocation. Smooth frequency gradients are generated by localised neural modulation of wave frequency, leading to functionally important wave turbulence. Both patterns are emergent properties of a network of coupled oscillators, the interstitial cells of Cajal. A gut-wide network of interstitial cells of Cajal (ICC) generate electrical oscillations (slow waves) that orchestrate waves of muscle contraction. In the small intestine there is a gradient in slow wave frequency from high at the duodenum to low at the terminal ileum. Time-averaged measurements of frequency have suggested either a smooth or stepped (plateaued) gradient. We measured individual contraction intervals from diameter maps of the mouse small intestine to create interval maps (IMaps). IMaps showed that each frequency plateau was composed of discrete waves of increased interval. Each interval wave originated at a terminating contraction wave, a "dislocation", at the plateau's proximal boundary. In a model chain of coupled phase oscillators, interval wave frequency increased as coupling decreased or as the natural frequency gradient or noise increased. Injuring the intestine at a proximal point to destroy coupling, suppressed distal steps which then reappeared with gap junction block by carbenoxolone. This lent further support to our previous hypothesis that lines of dislocations were fixed by points of low coupling strength. Dislocations induced by electrical field pulses in the intestine and by equivalent phase shift in the model, were associated with interval waves. When the enteric nervous system was active, IMaps showed a chaotic, turbulent pattern of interval change with no frequency steps or plateaus

  12. Emergence of fully gapped s++-wave and nodal d-wave states mediated by orbital and spin fluctuations in a ten-orbital model of KFe2Se2

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuro; Onari, Seiichiro; Kontani, Hiroshi

    2011-04-01

    We study the superconducting state in recently discovered high-Tc superconductor KxFe2Se2 based on the ten-orbital Hubbard-Holstein model without hole pockets. When the Coulomb interaction is large, a spin-fluctuation-mediated d-wave state appears due to the nesting between electron pockets. Interestingly, the symmetry of the body-centered tetragonal structure in KxFe2Se2 requires the existence of nodes in the d-wave gap, although a fully gapped d-wave state is realized in the case of a simple tetragonal structure. In the presence of moderate electron-phonon interaction due to Fe-ion optical modes, however, orbital fluctuations give rise to the fully gapped s++-wave state without sign reversal. Therefore, both superconducting states are distinguishable by careful measurements of the gap structure or the impurity effect on Tc.

  13. Positive T wave in lead aVR as an independent predictor for 1-year major adverse cardiac events in patients with first anterior wall ST-segment elevation myocardial infarction.

    PubMed

    Kobayashi, Akihiro; Misumida, Naoki; Aoi, Shunsuke; Kanei, Yumiko

    2017-11-01

    Positive T wave in lead aVR has been shown to predict an adverse in-hospital outcome in patients with anterior wall ST-segment elevation myocardial infarction (STEMI). However, the prognostic value of positive T wave in lead aVR on a long-term outcome has not been fully explored. We performed a retrospective analysis of 190 consecutive patients with first anterior wall STEMI who underwent an emergent coronary angiogram. Patients were divided into those with positive T wave > 0 mV and those with negative T wave ≦ 0 mV in lead aVR. Baseline and angiographic characteristics, and in-hospital revascularization procedures were recorded. In addition, in-hospital and 1-year major adverse cardiac events (MACE) including death, recurrent myocardial infarction, and target vessel revascularization were recorded. Among 190 patients, 37 patients (19%) had positive T wave and 153 patients (81%) had negative T wave in lead aVR. Patients with positive T wave had higher rate of left main disease defined as stenosis ≥50% (11% vs. 2%, p = .028) than those with negative T wave. Patients with positive T wave had higher rate of 1-year MACE (38% vs. 13%, p < .001) driven by higher all-cause mortality (27% vs. 5%, p < .001). Positive T wave was an independent predictor for 1-year MACE (OR 2.74; 95% CI 1.04-7.15; p = .04). Positive T wave in lead aVR was an independent predictor for 1-year MACE in patients with first anterior wall STEMI. © 2017 Wiley Periodicals, Inc.

  14. Flyer Target Acceleration and Energy Transfer at its Collision with Massive Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.

    2006-01-15

    Numerical modelling was aimed at simulation of successive events resulting from interaction of laser beam-single and double targets. It was performed by means of the 2D Lagrangian hydrodynamics code ATLANT-HE. This code is based on one-fluid and two-temperature model of plasma with electron and ion heat conductivity considerations. The code has an advanced treatment of laser light propagation and absorption. This numerical modelling corresponds to the experiment, which was carried out with the use of the PALS facility. Two types of planar solid targets, i.e. single massive Al slabs and double targets consisting of 6 {mu}m thick Al foil andmore » Al slab were applied. The targets were irradiated by the iodine laser pulses of two wavelengths: 1.315 and 0.438 {mu}m. A pulse duration of 0.4 ns and a focal spot diameter of 250 {mu}m at a laser energy of 130 J were used. The numerical modelling allowed us to obtain a more detailed description of shock wave propagation and crater formation.« less

  15. Three-dimensional freak waves and higher-order wave-wave resonances

    NASA Astrophysics Data System (ADS)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover

  16. Factorization breaking of A d T for polarized deuteron targets in a relativistic framework

    DOE PAGES

    Jeschonnek, Sabine; Van Orden, J. W.

    2017-04-17

    We discuss the possible factorization of the tensor asymmetrymore » $$A^T_d$$ measured for polarized deuteron targets within a relativistic framework. We define a reduced asymmetry and find that factorization holds only in plane wave impulse approximation and if $p$-waves are neglected. Our numerical results show a strong factorization breaking once final state interactions are included. We also compare the $d$-wave content of the wave functions with the size of the factored, reduced asymmetry and find that there is no systematic relationship of this quantity to the d-wave probability of the various wave functions.« less

  17. Predicting the Emergence of Sexual Violence in Adolescence.

    PubMed

    Ybarra, Michele L; Thompson, Richard E

    2018-05-01

    This study aims to report the epidemiology of sexual violence (SV) perpetration for both female and male youth across a broad age spectrum. Additionally, the etiology of SV perpetration is examined by identifying prior exposures that predict a first SV perpetration. Six waves of data were collected nationally online, between 2006 and 2012, from 1586 youth between 10 and 21 years of age. Five types of SV were assessed: sexual harassment, sexual assault, coercive sex, attempted rape, and rape. To identify how prior exposures may predict the emergence of SV in adolescence, parsimonious lagged multivariable logistic regression models estimated the odds of first perpetrating each of the five types of SV within the context of other variables (e.g., rape attitudes). Average age at first perpetration was between 15 and 16 years of age, depending on SV type. Several characteristics were more commonly reported by perpetrators than non-perpetrators (e.g., alcohol use, other types of SV perpetration and victimization). After adjusting for potentially influential characteristics, prior exposure to parental spousal abuse and current exposure to violent pornography were each strongly associated with the emergence of SV perpetration-attempted rape being the exception for violent pornography. Current aggressive behavior was also significantly implicated in all types of first SV perpetration except rape. Previous victimization of sexual harassment and current victimization of psychological abuse in relationships were additionally predictive of one's first SV perpetration, albeit in various patterns. In this national longitudinal study of different types of SV perpetration among adolescent men and women, findings suggest several malleable factors that need to be targeted, especially scripts of inter-personal violence that are being modeled by abusive parents in youths' homes and also reinforced by violent pornography. The predictive value of victimization for a subsequent first SV

  18. Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas in Multilayer Targets

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.

    2014-10-01

    Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~ 860 μ m. A series of experiments studied the effect of higher electron temperature near the 3 ω quarter-critical surface (~ 2 . 5 ×1021 cm-3) on laser-plasma interactions resulting from a Si layer in the target. Electron temperatures and densities were measured from 150 to 400 μm from the initial target surface. Standard CH shells were compared to two-layered shells of CH and Si and three-layered shells of CH, Si, and CH. These multilayer targets have less hot-electron energy than standard CH shells as a result of higher electron temperature in the coronal plasmas. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. The emergence of consensus: a primer

    NASA Astrophysics Data System (ADS)

    Baronchelli, Andrea

    2018-02-01

    The origin of population-scale coordination has puzzled philosophers and scientists for centuries. Recently, game theory, evolutionary approaches and complex systems science have provided quantitative insights on the mechanisms of social consensus. However, the literature is vast and widely scattered across fields, making it hard for the single researcher to navigate it. This short review aims to provide a compact overview of the main dimensions over which the debate has unfolded and to discuss some representative examples. It focuses on those situations in which consensus emerges `spontaneously' in the absence of centralized institutions and covers topics that include the macroscopic consequences of the different microscopic rules of behavioural contagion, the role of social networks and the mechanisms that prevent the formation of a consensus or alter it after it has emerged. Special attention is devoted to the recent wave of experiments on the emergence of consensus in social systems.

  20. Formation of wave packets in the Ostrovsky equation for both normal and anomalous dispersion

    PubMed Central

    Grimshaw, Roger; Stepanyants, Yury; Alias, Azwani

    2016-01-01

    It is well known that the Ostrovsky equation with normal dispersion does not support steady solitary waves. An initial Korteweg–de Vries solitary wave decays adiabatically through the radiation of long waves and is eventually replaced by an envelope solitary wave whose carrier wave and envelope move with different velocities (phase and group velocities correspondingly). Here, we examine the same initial condition for the Ostrovsky equation with anomalous dispersion, when the wave frequency increases with wavenumber in the limit of very short waves. The essential difference is that now there exists a steady solitary wave solution (Ostrovsky soliton), which in the small-amplitude limit can be described asymptotically through the solitary wave solution of a nonlinear Schrödinger equation, based at that wavenumber where the phase and group velocities coincide. Long-time numerical simulations show that the emergence of this steady envelope solitary wave is a very robust feature. The initial Korteweg–de Vries solitary wave transforms rapidly to this envelope solitary wave in a seemingly non-adiabatic manner. The amplitude of the Ostrovsky soliton strongly correlates with the initial Korteweg–de Vries solitary wave. PMID:26997887

  1. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  2. Wind wave prediction in shallow water: Theory and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavaleri, L.; Rizzoli, P.M.

    1981-11-20

    A wind wave forecasting model is described, based upon the ray technique, which is specifically designed for shallow water areas. The model explicitly includes wave generation, refraction, and shoaling, while nonlinear dissipative processes (breaking and bottom fricton) are introduced through a suitable parametrization. The forecast is provided at a specified time and target position, in terms of a directional spectrum, from which the one-dimensional spectrum and the significant wave height are derived. The model has been used to hindcast storms both in shallow water (Northern Adriatic Sea) and in deep water conditions (Tyrrhenian Sea). The results have been compared withmore » local measurements, and the rms error for the significant wave height is between 10 and 20%. A major problems has been found in the correct evaluation of the wind field.« less

  3. Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations.

    PubMed

    Zhou, Stanley; Treloar, Aislinn E; Lupien, Mathieu

    2016-11-01

    The emergence of whole-genome annotation approaches is paving the way for the comprehensive annotation of the human genome across diverse cell and tissue types exposed to various environmental conditions. This has already unmasked the positions of thousands of functional cis-regulatory elements integral to transcriptional regulation, such as enhancers, promoters, and anchors of chromatin interactions that populate the noncoding genome. Recent studies have shown that cis-regulatory elements are commonly the targets of genetic and epigenetic alterations associated with aberrant gene expression in cancer. Here, we review these findings to showcase the contribution of the noncoding genome and its alteration in the development and progression of cancer. We also highlight the opportunities to translate the biological characterization of genetic and epigenetic alterations in the noncoding cancer genome into novel approaches to treat or monitor disease. The majority of genetic and epigenetic alterations accumulate in the noncoding genome throughout oncogenesis. Discriminating driver from passenger events is a challenge that holds great promise to improve our understanding of the etiology of different cancer types. Advancing our understanding of the noncoding cancer genome may thus identify new therapeutic opportunities and accelerate our capacity to find improved biomarkers to monitor various stages of cancer development. Cancer Discov; 6(11); 1215-29. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Nonlinear physics of electrical wave propagation in the heart: a review

    NASA Astrophysics Data System (ADS)

    Alonso, Sergio; Bär, Markus; Echebarria, Blas

    2016-09-01

    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.

  5. Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells.

    PubMed

    Ahmed, Mehreen; Chaudhari, Kritika; Babaei-Jadidi, Roya; Dekker, Lodewijk V; Shams Nateri, Abdolrahman

    2017-04-01

    Increasing evidence suggests that cancer cell populations contain a small proportion of cells that display stem-like cell properties and which may be responsible for overall tumor maintenance. These cancer stem-like cells (CSCs) appear to have unique tumor-initiating ability and innate survival mechanisms that allow them to resist cancer therapies, consequently promoting relapses. Selective targeting of CSCs may provide therapeutic benefit and several recent reports have indicated this may be possible. In this article, we review drugs targeting CSCs, in selected epithelial cell-derived cancers. Stem Cells 2017;35:839-850. © 2017 AlphaMed Press.

  6. Performance of different theories for the angular distribution of bremsstrahlung produced by keV electrons incident upon a target

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Andreo, Pedro; Poludniowski, Gavin

    2018-07-01

    Different theories of the intrinsic bremsstrahlung angular distribution (i.e., the shape function) have been evaluated using Monte Carlo calculations for various target materials and incident electron energies between 20 keV and 300 keV. The shape functions considered were the plane-wave first Born approximation cross sections (i) 2BS [high-energy result, screened nucleus], (ii) 2BN [general result, bare nucleus], (iii) KM [2BS modified to emulate 2BN], and (iv) SIM [leading term of 2BN]; (v) expression based on partial-waves expansion, KQP; and (vi) a uniform spherical distribution, UNI [a common approximation in certain analytical models]. The shape function was found to have an important impact on the bremsstrahlung emerging from thin foil targets in which the incident electrons undergo few elastic scatterings before exiting the target material. For thick transmission and reflection targets the type of shape function had less importance, as the intrinsic bremsstrahlung angular distribution was masked by the diffuse directional distribution of multiple scattered electrons. Predictions made using the 2BN and KQP theories were generally in good agreement, suggesting that the effect of screening and the constraints of the Born approximation on the intrinsic angular distribution may be acceptable. The KM and SIM shape functions deviated notably from KQP for low electron energies (< 50 keV), while 2BS and UNI performed poorly over most of the energy range considered; the 2BS shape function was found to be too forward-focused in emission, while UNI was not forward-focused enough. The results obtained emphasize the importance of the intrinsic bremsstrahlung angular distribution for theoretical predictions of x-ray emission, which is relevant in various applied disciplines, including x-ray crystallography, electron-probe microanalysis, security and industrial inspection, medical imaging, as well as low- and medium (orthovoltage) energy radiotherapy.

  7. Small molecules targeting viral RNA.

    PubMed

    Hermann, Thomas

    2016-11-01

    Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug-like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug-like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA-binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect-borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726-743. doi: 10.1002/wrna.1373 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  8. Tailored ramp wave generation in gas gun experiments

    NASA Astrophysics Data System (ADS)

    Cotton, Matthew; Chapman, David; Winter, Ron; Harris, Ernie; Eakins, Daniel

    2015-09-01

    Gas guns are traditionally used as platforms to introduce a planar shock wave to a material using plate impact methods, generating states on the Hugoniot. The ability to deliver a ramp wave to a target during a gas gun experiment enables access to different regions of the equation-of-state surface, making it a valuable technique for characterising material behaviour. Previous techniques have relied on the use of multi-material impactors to generate a density gradient, which can be complex to manufacture. In this paper we describe the use of an additively manufactured steel component consisting of an array of tapered spikes which can deliver a ramp wave over ˜ 2 μs. The ability to tailor the input wave by varying the component design is discussed, an approach which makes use of the design freedom offered by additive manufacturing techniques to rapidly iterate the spike profile. Results from gas gun experiments are presented to evaluate the technique, and compared with 3D hydrodynamic simulations.

  9. Wave energy focusing to subsurface poroelastic formations to promote oil mobilization

    NASA Astrophysics Data System (ADS)

    Karve, Pranav M.; Kallivokas, Loukas F.

    2015-07-01

    We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within the target formation. The underlying forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroelastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of perfectly matched layers. The inverse source algorithm is based on a systematic framework of partial-differential-equation-constrained optimization. It is demonstrated, via numerical experiments, that the algorithm is capable of converging to the spatial and temporal characteristics of surface loads that maximize energy delivery to the target formation. Consequently, the methodology is well-suited for designing field implementations that could meet a desired oil mobility threshold. Even though the methodology, and the results presented herein are in two dimensions, extensions to three dimensions are straightforward.

  10. Emergency healthcare of the future.

    PubMed

    FitzGerald, Gerry; Toloo, Ghasem Sam; Romeo, Michele

    2014-06-01

    Emergency healthcare is a high profile component of modern healthcare systems, which over the past three decades has fundamentally transformed in many countries. However, despite this rapid development, and associated investments in service standards, there is a high level of concern with the performance of emergency health services relating principally to system wide congestion. The factors driving this problem are complex but relate largely to the combined impact of growing demand, expanded scope of care and blocked access to inpatient beds. These factors are unlikely to disappear in the medium term despite the National Emergency Access Target. The aim of this article is to stimulate a conversation about the future design and functioning of emergency healthcare systems; examining what we understand about the problem and proposing a rationale that may underpin future strategic approaches. This is also an invitation to join the conversation. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  11. Detecting Moving Targets by Use of Soliton Resonances

    NASA Technical Reports Server (NTRS)

    Zak, Michael; Kulikov, Igor

    2003-01-01

    A proposed method of detecting moving targets in scenes that include cluttered or noisy backgrounds is based on a soliton-resonance mathematical model. The model is derived from asymptotic solutions of the cubic Schroedinger equation for a one-dimensional system excited by a position-and-time-dependent externally applied potential. The cubic Schroedinger equation has general significance for time-dependent dispersive waves. It has been used to approximate several phenomena in classical as well as quantum physics, including modulated beams in nonlinear optics, and superfluids (in particular, Bose-Einstein condensates). In the proposed method, one would take advantage of resonant interactions between (1) a soliton excited by the position-and-time-dependent potential associated with a moving target and (2) eigen-solitons, which represent dispersive waves and are solutions of the cubic Schroedinger equation for a time-independent potential.

  12. Spontaneous long-range calcium waves in developing butterfly wings.

    PubMed

    Ohno, Yoshikazu; Otaki, Joji M

    2015-03-25

    Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca(2+) waves in wing development. Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca(2+) waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca(2+) waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca(2+)-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca(2+) levels and halted the spontaneous Ca(2+) waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. We identified a novel form of Ca(2+) waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca(2+) waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies.

  13. Three-wave and four-wave interactions in gravity wave turbulence

    NASA Astrophysics Data System (ADS)

    Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2017-11-01

    Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.

  14. New and emerging targeted therapies for cystic fibrosis.

    PubMed

    Quon, Bradley S; Rowe, Steven M

    2016-03-30

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder that affects about 70,000 people worldwide. The clinical manifestations of the disease are caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The discovery of the CFTR gene in 1989 has led to a sophisticated understanding of how thousands of mutations in the CFTR gene affect the structure and function of the CFTR protein. Much progress has been made over the past decade with the development of orally bioavailable small molecule drugs that target defective CFTR proteins caused by specific mutations. Furthermore, there is considerable optimism about the prospect of gene replacement or editing therapies to correct all mutations in cystic fibrosis. The recent approvals of ivacaftor and lumacaftor represent the genesis of a new era of precision medicine in the treatment of this condition. These drugs are having a positive impact on the lives of people with cystic fibrosis and are potentially disease modifying. This review provides an update on advances in our understanding of the structure and function of the CFTR, with a focus on state of the art targeted drugs that are in development. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Major influence of a 'smoke and mirrors' effect caused by wave reflection on early diastolic coronary arterial wave intensity.

    PubMed

    Mynard, Jonathan P; Penny, Daniel J; Smolich, Joseph J

    2018-03-15

    Coronary wave intensity analysis (WIA) is an emerging technique for assessing upstream and downstream influences on myocardial perfusion. It is thought that a dominant backward decompression wave (BDW dia ) is generated by a distal suction effect, while early-diastolic forward decompression (FDW dia ) and compression (FCW dia ) waves originate in the aorta. We show that wave reflection also makes a substantial contribution to FDW dia , FCW dia and BDW dia , as quantified by a novel method. In 18 sheep, wave reflection accounted for ∼70% of BDW dia , whereas distal suction dominated in a computer model representing a hypertensive human. Non-linear addition/subtraction of mechanistically distinct waves (e.g. wave reflection and distal suction) obfuscates the true contribution of upstream and downstream forces on measured waves (the 'smoke and mirrors' effect). The mechanisms underlying coronary WIA are more complex than previously thought and the impact of wave reflection should be considered when interpreting clinical and experimental data. Coronary arterial wave intensity analysis (WIA) is thought to provide clear insight into upstream and downstream forces on coronary flow, with a large early-diastolic surge in coronary flow accompanied by a prominent backward decompression wave (BDW dia ), as well as a forward decompression wave (FDW dia ) and forward compression wave (FCW dia ). The BDW dia is believed to arise from distal suction due to release of extravascular compression by relaxing myocardium, while FDW dia and FCW dia are thought to be transmitted from the aorta into the coronary arteries. Based on an established multi-scale computational model and high-fidelity measurements from the proximal circumflex artery (Cx) of 18 anaesthetized sheep, we present evidence that wave reflection has a major impact on each of these three waves, with a non-linear addition/subtraction of reflected waves obscuring the true influence of upstream and downstream forces

  16. Surface Acoustic Waves to Drive Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  17. Surface Acoustic Waves to Drive Plant Transpiration.

    PubMed

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  18. Using Wave-Current Observation to Predict Bottom Sediment Processes on Muddy Beaches

    DTIC Science & Technology

    2011-09-30

    as 80% of wave energy over a distance of just a few wave lengths (Gade, 1957; Jiang and Mehta, 1995; deWitt, 1995; Hill and Foda , 1999; Chan and Liu...bed transformation (see Section Figure 1) emerges from the analysis Sheremet et al., 2005; Jaramillo et al., 2008; Robillard, 2009; Sahin et al...Kaihatu et al., 2007; Sheremet et al., 2010). The ongoing work has three directions of research: Data analysis : reconstruct the sequence of bed

  19. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  20. The impact of heat waves on children's health: a systematic review.

    PubMed

    Xu, Zhiwei; Sheffield, Perry E; Su, Hong; Wang, Xiaoyu; Bi, Yan; Tong, Shilu

    2014-03-01

    Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children's health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: "heatwave", "heat wave", "child health", "morbidity", "hospital admission", "emergency department visit", "family practice", "primary health care", "death" and "mortality". Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children's health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children's health perspective, identifying the best measure of children's exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children's birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children's disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.

  1. The impact of heat waves on children's health: a systematic review

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Sheffield, Perry E.; Su, Hong; Wang, Xiaoyu; Bi, Yan; Tong, Shilu

    2014-03-01

    Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children's health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: "heatwave", "heat wave", "child health", "morbidity", "hospital admission", "emergency department visit", "family practice", "primary health care", "death" and "mortality". Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children's health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children's health perspective, identifying the best measure of children's exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children's birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children's disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.

  2. A feasibility study of the use of bounded beams resembling the shape of evanescent and inhomogeneous waves.

    PubMed

    Declercq, Nico F; Leroy, Oswald

    2011-08-01

    Plane waves are solutions of the visco-elastic wave equation. Their wave vector can be real for homogeneous plane waves or complex for inhomogeneous and evanescent plane waves. Although interesting from a theoretical point of view, complex wave vectors normally only emerge naturally when propagation or scattering is studied of sound under the appearance of damping effects. Because of the particular behavior of inhomogeneous and evanescent waves and their estimated efficiency for surface wave generation, bounded beams, experimentally mimicking their infinite counterparts similar to (wide) Gaussian beams imitating infinite harmonic plane waves, are of special interest in this report. The study describes the behavior of bounded inhomogeneous and bounded evanescent waves in terms of amplitude and phase distribution as well as energy flow direction. The outcome is of importance to the applicability of bounded inhomogeneous ultrasonic waves for nondestructive testing. Copyright © 2011. Published by Elsevier B.V.

  3. A double-taper optical fiber-based radiation wave other than evanescent wave in all-fiber immunofluorescence biosensor for quantitative detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Zhonghuan; Hua, Fei; Liu, Ting; Zhao, Yong; Li, Jun; Yang, Ruifu; Yang, Changxi; Zhou, Lei

    2014-01-01

    Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a "ferrule connector" optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the "all-fiber" method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 10(3) cfu · mL(-1). Quantitation could be achieved within the concentration range of 10(3) cfu · mL(-1) to 107 cfu · mL(-1). No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.

  4. Complementary Approaches to Existing Target Based Drug Discovery for Identifying Novel Drug Targets.

    PubMed

    Vasaikar, Suhas; Bhatia, Pooja; Bhatia, Partap G; Chu Yaiw, Koon

    2016-11-21

    In the past decade, it was observed that the relationship between the emerging New Molecular Entities and the quantum of R&D investment has not been favorable. There might be numerous reasons but few studies stress the introduction of target based drug discovery approach as one of the factors. Although a number of drugs have been developed with an emphasis on a single protein target, yet identification of valid target is complex. The approach focuses on an in vitro single target, which overlooks the complexity of cell and makes process of validation drug targets uncertain. Thus, it is imperative to search for alternatives rather than looking at success stories of target-based drug discovery. It would be beneficial if the drugs were developed to target multiple components. New approaches like reverse engineering and translational research need to take into account both system and target-based approach. This review evaluates the strengths and limitations of known drug discovery approaches and proposes alternative approaches for increasing efficiency against treatment.

  5. Emerging potential of natural products for targeting mucins for therapy against inflammation and cancer.

    PubMed

    Macha, Muzafar A; Krishn, Shiv Ram; Jahan, Rahat; Banerjee, Kasturi; Batra, Surinder K; Jain, Maneesh

    2015-03-01

    Deregulated mucin expression is a hallmark of several inflammatory and malignant pathologies. Emerging evidence suggests that, apart from biomarkers, these deregulated mucins are functional contributors to the pathogenesis in inflammation and cancer. Both overexpression and downregulation of mucins in various organ systems is associated with pathobiology of inflammation and cancer. Restoration of mucin homeostasis has become an important goal for therapy and management of such disorders has fueled the quest for selective mucomodulators. With improved understanding of mucin regulation and mechanistic insights into their pathobiological roles, there is optimism to find selective non-toxic agents capable of modulating mucin expression and function. Recently, natural compounds derived from dietary sources have drawn attention due to their anti-inflammatory and anti-oxidant properties and low toxicity. Considerable efforts have been directed towards evaluating dietary natural products as chemopreventive and therapeutic agents; identification, characterization and synthesis of their active compounds; and improving their delivery and bioavailability. We describe the current understanding of mucin regulation, rationale for targeting mucins with natural products and discuss some natural products that modulate mucin expression and functions. We further discuss the approaches and parameters that should guide future research to identify and evaluate selective natural mucomodulators for therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Emerging Potential of Natural Products for Targeting Mucins for Therapy Against Inflammation and Cancer

    PubMed Central

    Macha, Muzafar A.; Krishn, Shiv Ram; Jahan, Rahat; Banerjee, Kasturi; Batra, Surinder K.; Jain, Maneesh

    2015-01-01

    Deregulated mucin expression is a hallmark of several inflammatory and malignant pathologies. Emerging evidence suggests that, apart from biomarkers, these deregulated mucins are functional contributors to pathogenesis in inflammation and cancer. Both overexpression and downregulation of mucins in various organ systems is associated with pathobiology of inflammation and cancer. Restoration of mucin homeostasis has become an important goal for therapy and management of such disorders and has fueled the quest for selective mucomodulators. With improved understanding of mucin regulation and mechanistic insights into their pathobiological roles, there is optimism to find selective non-toxic agents capable of modulating mucin expression and function. Recently, natural compounds derived from dietary sources have drawn attention due to their anti-inflammatory and anti-oxidant properties and low toxicity. Considerable efforts have been directed towards evaluating dietary natural products as chemopreventive and therapeutic agents; identification, characterization and synthesis of their active compounds; and improving their delivery and bioavailability. We describe the current understanding of mucin regulation, rationale for targeting mucins with natural products and discuss some natural products that modulate mucin expression and functions. We further discuss the approaches and parameters that should guide future research to identify and evaluate selective natural mucomodulators for therapy. PMID:25624117

  7. Plane Evanescent Waves and Interface Waves

    NASA Astrophysics Data System (ADS)

    Luppé, F.; Conoir, J. M.; El Kettani, M. Ech-Cherif; Lenoir, O.; Izbicki, J. L.; Duclos, J.; Poirée, B.

    The evanescent plane wave formalism is used to obtain the characteristic equation of the normal vibration modes of a plane elastic solid embedded in a perfect fluid. Simple drawings of the real and imaginary parts of complex wave vectors make quite clear the choice of the Riemann sheets on which the roots of the characteristic equation are to be looked for. The generalized Rayleigh wave and the Scholte - Stoneley wave are then described. The same formalism is used to describe Lamb waves on an elastic plane plate immersed in water. The damping, due to energy leaking in the fluid, is shown to be directly given by the projection of evanescence vectors on the interface. Measured values of the damping coefficient are in good agreement with those derived from calculations. The width of the angular resonances associated to Lamb waves or Rayleigh waves is also directly related to this same evanescence vectors projection, as well as the excitation coefficient of a given Lamb wave excited by a plane incident wave. This study shows clearly the strong correlation between the resonance point of view and the wave one in plane interface problems.

  8. The Human Kinome Targeted by FDA Approved Multi-Target Drugs and Combination Products: A Comparative Study from the Drug-Target Interaction Network Perspective.

    PubMed

    Li, Ying Hong; Wang, Pan Pan; Li, Xiao Xu; Yu, Chun Yan; Yang, Hong; Zhou, Jin; Xue, Wei Wei; Tan, Jun; Zhu, Feng

    2016-01-01

    The human kinome is one of the most productive classes of drug target, and there is emerging necessity for treating complex diseases by means of polypharmacology (multi-target drugs and combination products). However, the advantages of the multi-target drugs and the combination products are still under debate. A comparative analysis between FDA approved multi-target drugs and combination products, targeting the human kinome, was conducted by mapping targets onto the phylogenetic tree of the human kinome. The approach of network medicine illustrating the drug-target interactions was applied to identify popular targets of multi-target drugs and combination products. As identified, the multi-target drugs tended to inhibit target pairs in the human kinome, especially the receptor tyrosine kinase family, while the combination products were able to against targets of distant homology relationship. This finding asked for choosing the combination products as a better solution for designing drugs aiming at targets of distant homology relationship. Moreover, sub-networks of drug-target interactions in specific disease were generated, and mechanisms shared by multi-target drugs and combination products were identified. In conclusion, this study performed an analysis between approved multi-target drugs and combination products against the human kinome, which could assist the discovery of next generation polypharmacology.

  9. Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus'kov, Sergei Yu; Borodziuk, S; Kasperczuk, A

    2004-11-30

    The results of investigations are presented which are concerned with laser radiation absorption in a target, the plasma state of its ablated material, the energy transfer to the solid target material, the characteristics of the shock wave and craters on the target surface. The investigation involved irradiation of a planar target by a subnanosecond plasma-producing laser pulse. The experiments were carried out with massive aluminium targets using the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the shock wave attenuation and on-target crater formation times (50-200 ns). The investigations were conducted for a laser radiation energymore » of 100 J at two wavelengths of 0.438 and 1.315 {mu}m. For a given pulse energy, the irradiation intensity was varied in a broad range (10{sup 13}-10{sup 16} W cm{sup -2}) by varying the radius of the laser beam. The efficiency of laser radiation-to-shock energy transfer was determined as a function of the intensity and wavelength of laser radiation; also determined were the characteristics of the plasma plume and the shock wave propagating in the solid target, including the experimental conditions under which two-dimensional effects are highly significant. (invited paper)« less

  10. The emergence of consensus: a primer

    PubMed Central

    2018-01-01

    The origin of population-scale coordination has puzzled philosophers and scientists for centuries. Recently, game theory, evolutionary approaches and complex systems science have provided quantitative insights on the mechanisms of social consensus. However, the literature is vast and widely scattered across fields, making it hard for the single researcher to navigate it. This short review aims to provide a compact overview of the main dimensions over which the debate has unfolded and to discuss some representative examples. It focuses on those situations in which consensus emerges ‘spontaneously’ in the absence of centralized institutions and covers topics that include the macroscopic consequences of the different microscopic rules of behavioural contagion, the role of social networks and the mechanisms that prevent the formation of a consensus or alter it after it has emerged. Special attention is devoted to the recent wave of experiments on the emergence of consensus in social systems. PMID:29515905

  11. Harmonic Phase Response of Nonlinear Radar Targets

    DTIC Science & Technology

    2015-10-01

    while allowing its harmonics to pass through. The weak harmonic responses are then amplified to allow for easier detection and measurement . 4...where the phase of the 2nd and 3rd harmonic of the received electromagnetic wave from nonlinear targets was measured and plotted against the frequency

  12. The dynamics of magnetic Rossby waves in spherical dynamo simulations: A signature of strong-field dynamos?

    NASA Astrophysics Data System (ADS)

    Hori, K.; Teed, R. J.; Jones, C. A.

    2018-03-01

    We investigate slow magnetic Rossby waves in convection-driven dynamos in rotating spherical shells. Quasi-geostrophic waves riding on a mean zonal flow may account for some of the geomagnetic westward drifts and have the potential to allow the toroidal field strength within the planetary fluid core to be estimated. We extend the work of Hori et al. (2015) to include a wider range of models, and perform a detailed analysis of the results. We find that a predicted dispersion relation matches well with the longitudinal drifts observed in our strong-field dynamos. We discuss the validity of our linear theory, since we also find that the nonlinear Lorentz terms influence the observed waveforms. These wave motions are excited by convective instability, which determines the preferred azimuthal wavenumbers. Studies of linear rotating magnetoconvection have suggested that slow magnetic Rossby modes emerge in the magnetostrophic regime, in which the Lorentz and Coriolis forces are in balance in the vorticity equation. We confirm this to be predominant balance for the slow waves we have detected in nonlinear dynamo systems. We also show that a completely different wave regime emerges if the magnetic field is not present. Finally we report the corresponding radial magnetic field variations observed at the surface of the shell in our simulations and discuss the detectability of these waves in the geomagnetic secular variation.

  13. Viral proteases: an emerging therapeutic target.

    PubMed

    Korant, B D

    1988-01-01

    Only a few viral diseases are presently treatable because of our limited knowledge of specific viral target molecules. An attractive class of viral molecules toward which chemotherapeutic agents could be aimed are proteases coded by some virus groups such as retro- or picornaviruses (poliomyelitis, common cold virus). The picornavirus enzymes were discovered first, and they have now been characterized by a combination of molecular-genetic and biochemical approaches. Several laboratories have expressed the picornaviral enzymes in heterologous systems and have reported proteolytic activity, as well as the high cleavage fidelity diagnostic of the viral proteases. After dealing with several technical difficulties often encountered in standard genetic engineering approaches, one viral protease is now available to us in quantity and is amendable to mutagenic procedures. The initial outcome of the mutagenesis studies has been the confirmation of our earlier work with inhibitors, which suggested a cysteine active-site class. There is a clustering of active-site residues which may be unique to these viruses. The requirement for an active-site cysteine-histidine pair in combination with detailed information on the viral cleavage sites has permitted design of selective inhibitors with attractive antiviral properties. Future goals include investigation of the structural basis for selective processing and application of the cleavage specificity to general problems in genetic engineering.

  14. Freak Waves In The Ocean A~é­ We Need Continuous Measurements!

    NASA Astrophysics Data System (ADS)

    Liu, P.; Teng, C.; Mori, N.

    Freak waves, sometimes also known as rogue waves, are a particular kind of ocean waves that displays a singular, unexpected, and unusually high wave profile with an extraordinarily large and steep trough or crest. The existence of freak waves has be- come widely accepted while it always poses severe hazard to the navy fleets, merchant marines, offshore structures, and virtually all oceanic ventures. Multitudes of seagoing vessels and mariners have encountered freak waves over the years, many had resulted in disasters. The emerging interest in freak waves and the quest to grasp an understand- ing of the phenomenon have inspired numerous theoretical conjectures in recent years. But the practical void of actual field observation on freak waves renders even the well- developed theories remain unverified. Furthermore, the present wave measurement systems, which have been in practice for the last 5 decades, are not at all designed to capture freak waves. We wish therefore to propose and petition to all oceanic scientist and engineers to consider undertaking an unprecedented but technologically feasible practice of making continuous and uninterrupted wave measurements. As freak waves can happen anywhere in the ocean and at anytime, the continuous and uninterrupted measurements at a fixed station would certainly be warranted to document the occur- rence of freak waves, if present, and thus lead to basic realizations of the underlying driving mechanisms.

  15. Passive millimeter-wave imaging

    NASA Technical Reports Server (NTRS)

    Young, Stephen K.; Davidheiser, Roger A.; Hauss, Bruce; Lee, Paul S. C.; Mussetto, Michael; Shoucri, Merit M.; Yujiri, Larry

    1993-01-01

    Millimeter-wave hardware systems are being developed. Our approach begins with identifying and defining the applications. System requirements are then specified based on mission needs using our end-to-end performance model. The model was benchmarked against existing data bases and, where data is deficient, it is acquired via field measurements. The derived system requirements are then validated with the appropriate field measurements using our imaging testbeds and hardware breadboards. The result is a final system that satisfies all the requirements of the target mission.

  16. The use of shock waves in peripheral nerve regeneration: new perspectives?

    PubMed

    Hausner, Thomas; Nógrádi, Antal

    2013-01-01

    Low-energy extracorporeal shock wave treatment (ESWT) is a relatively new therapeutic tool that is widely used for the treatment of epicondylitis and plantar fasciitis and to foster bone and wound healing. Shock waves, sonic pulses with high energy impact, are thought to induce biochemical changes within the targeted tissues through mechanotransduction. The biological effects of ESWT are manifested in improved vascularization, the local release of growth factors, and local anti-inflammatory effects, but the target cells too are influenced. ESWT appears to have differential effects on peripheral nerves and has been proved to promote axonal regeneration after axotomy. This review discusses the effects of ESWT on intact and injured peripheral nerves and suggests a multiple mechanism of action. © 2013 Elsevier Inc. All rights reserved.

  17. Heat, heat waves, and out-of-hospital cardiac arrest.

    PubMed

    Kang, Si-Hyuck; Oh, Il-Young; Heo, Jongbae; Lee, Hyewon; Kim, Jungeun; Lim, Woo-Hyun; Cho, Youngjin; Choi, Eue-Keun; Yi, Seung-Muk; Sang, Do Shin; Kim, Ho; Youn, Tae-Jin; Chae, In-Ho; Oh, Seil

    2016-10-15

    Cardiac arrest is one of the common presentations of cardiovascular disorders and a leading cause of death. There are limited data on the relationship between out-of-hospital cardiac arrest (OHCA) and ambient temperatures, specifically extreme heat. This study investigated how heat and heat waves affect the occurrence of OHCA. Seven major cities in Korea with more than 1 million residents were included in this study. A heat wave was defined as a daily mean temperature above the 98th percentile of the yearly distribution for at least two consecutive days. A total of 50,318 OHCAs of presumed cardiac origin were identified from the nationwide emergency medical service database between 2006 and 2013. Ambient temperature and OHCA had a J-shaped relationship with a trough at 28°C. Heat waves were shown to be associated with a 14-% increase in the risk of OHCA. Adverse effects were apparent from the beginning of each heat wave period and slightly increased during its continuation. Excess OHCA events during heat waves occurred between 3PM and 5PM. Subgroup analysis showed that those 65years or older were significantly more susceptible to heat waves. Ambient temperature and OHCA had a J-shaped relationship. The risk of OHCA was significantly increased with heat waves. Excess OHCA events primarily occurred during the afternoon when the temperature was high. We found that the elderly were more susceptible to the deleterious effects of heat waves. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Mitotic Cortical Waves Predict Future Division Sites by Encoding Positional and Size Information.

    PubMed

    Xiao, Shengping; Tong, Cheesan; Yang, Yang; Wu, Min

    2017-11-20

    Dynamic spatial patterns such as traveling waves could theoretically encode spatial information, but little is known about whether or how they are employed by biological systems, especially higher eukaryotes. Here, we show that concentric target or spiral waves of active Cdc42 and the F-BAR protein FBP17 are invoked in adherent cells at the onset of mitosis. These waves predict the future sites of cell divisions and represent the earliest known spatial cues for furrow assembly. Unlike interphase waves, the frequencies and wavelengths of the mitotic waves display size-dependent scaling properties. While the positioning role of the metaphase waves requires microtubule dynamics, spindle and microtubule-independent inhibitory signals are propagated by the mitotic waves to ensure the singularity of furrow formation. Taken together, we propose that metaphase cortical waves integrate positional and cell size information for division-plane specification in adhesion-dependent cytokinesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. All-Electrical Measurement of Interfacial Dzyaloshinskii-Moriya Interaction Using Collective Spin-Wave Dynamics.

    PubMed

    Lee, Jong Min; Jang, Chaun; Min, Byoung-Chul; Lee, Seo-Won; Lee, Kyung-Jin; Chang, Joonyeon

    2016-01-13

    Dzyaloshinskii-Moriya interaction (DMI), which arises from the broken inversion symmetry and spin-orbit coupling, is of prime interest as it leads to a stabilization of chiral magnetic order and provides an efficient manipulation of magnetic nanostructures. Here, we report all-electrical measurement of DMI using propagating spin wave spectroscopy based on the collective spin wave with a well-defined wave vector. We observe a substantial frequency shift of spin waves depending on the spin chirality in Pt/Co/MgO structures. After subtracting the contribution from other sources to the frequency shift, it is possible to quantify the DMI energy in Pt/Co/MgO systems. The result reveals that the DMI in Pt/Co/MgO originates from the interfaces, and the sign of DMI corresponds to the inversion asymmetry of the film structures. The electrical excitation and detection of spin waves and the influence of interfacial DMI on the collective spin-wave dynamics will pave the way to the emerging field of spin-wave logic devices.

  20. Clinical audit of emergency unit before and after establishment of the emergency medicine department.

    PubMed

    Amini, Afshin; Dindoost, Payam; Moghimi, Mehrdad; Kariman, Hamid; Shahrami, Ali; Dolatabadi, Ali Arhami; Ali-Mohammadi, Hossein; Alavai-Moghaddam, Mostafa; Derakhshanfar, Hojjat; Hatamabadi, HamidReza; Heidari, Kamran; Alamdari, Shahram; Meibodi, Mohammad Kalantar; Shojaee, Majid; Foroozanfar, Mohammad Mehdi; Hashemi, Behrooz; Sabzeghaba, Anita; Kabir, Ali

    2012-02-01

    To assess the deficiencies and potential areas through a medical audit of the emergency departments, in six general hospitals affiliated to Shahid Beheshti University of Medical Sciences at Tehran, Iran, after preparing specific wards-based international standards. A checklist was completed for all hospitals which met our eligibility criteria mainly observation and interviews with head nurses and managers of the emergency medicine unit of the hospitals before (2003) and after (2008) the establishment of emergency departments there. Domains studied included staffing, education and continuing professional development (CPD), facility (design), equipment, ancillary services, medical records, manuals and references, research, administration, pre-hospital care, information systems, disaster planning, bench-marking and hospital accreditation. Education and CPD (p = 0.042), design and facility (p = 0.027), equipment (p = 0.028), and disaster (p = 0.026) had significantly improved after the establishment of emergency departments. Nearly all domains showed a positive change though it was non-significant in a few. In terms of observation, better improvement was seen in disaster, security, design, and research. According to the score for each domain compared to what it was in the earlier phase, better improvement was observed in hospital accreditation, information systems, security, disaster planning, and research. Security, disaster planning, research, design and facility had improved in hospitals that wave studied, while equipment, records, ancillary services, administration and bench-marking had the lowest improvement even after the establishment of emergency department, and, hence, needed specific attention.

  1. Improved target detection by IR dual-band image fusion

    NASA Astrophysics Data System (ADS)

    Adomeit, U.; Ebert, R.

    2009-09-01

    Dual-band thermal imagers acquire information simultaneously in both the 8-12 μm (long-wave infrared, LWIR) and the 3-5 μm (mid-wave infrared, MWIR) spectral range. Compared to single-band thermal imagers they are expected to have several advantages in military applications. These advantages include the opportunity to use the best band for given atmospheric conditions (e. g. cold climate: LWIR, hot and humid climate: MWIR), the potential to better detect camouflaged targets and an improved discrimination between targets and decoys. Most of these advantages have not yet been verified and/or quantified. It is expected that image fusion allows better exploitation of the information content available with dual-band imagers especially with respect to detection of targets. We have developed a method for dual-band image fusion based on the apparent temperature differences in the two bands. This method showed promising results in laboratory tests. In order to evaluate its performance under operational conditions we conducted a field trial in an area with high thermal clutter. In such areas, targets are hardly to detect in single-band images because they vanish in the clutter structure. The image data collected in this field trial was used for a perception experiment. This perception experiment showed an enhanced target detection range and reduced false alarm rate for the fused images compared to the single-band images.

  2. Autophagy as an emerging therapy target for ovarian carcinoma

    PubMed Central

    Zhan, Lei; Zhang, Yu; Wang, Wenyan; Song, Enxue; Fan, Yijun; Li, Jun; Wei, Bing

    2016-01-01

    Autophagy is a conserved cellular self-digestion pathway for maintenance of homeostasis under basal and stressed conditions. Autophagy plays pivotal roles in the pathogenesis of many diseases, such as aging-related diseases, autoimmune diseases, cardiovascular diseases, and cancers. Of special note is that accumulating data suggest an intimate relationship between autophagy and ovarian carcinoma. Autophagy is well identified to act as either as a tumor-suppressor or as a tumor-promoter in ovarian carcinoma. The exact function of autophagy in ovarian carcinoma is highly dependent on the circumstances of cancer including hypoxic, nutrient-deficient, chemotherapy and so on. However, the mechanism underlying autophagy associated with ovarian carcinoma remains elusive, the precise role of autophagy in ovarian carcinoma also remains undetermined. In this review, we tried to sum up and discuss recent research achievements of autophagy in ovarian cancer. Moreover, waves of novel therapies ways for ovarian carcinoma based on the functions of autophagy were collected. PMID:27825125

  3. The Environmental Impact of a Wave Dragon Array Operating in the Black Sea

    PubMed Central

    Rusu, Eugen

    2013-01-01

    The present work describes a study related to the influence on the shoreline dynamics of a wave farm consisting of Wave Dragon devices operating in the western side of the Black Sea. Based on historical data analysis of the wave climate, the most relevant environmental conditions that could occur were defined, and for these cases, simulations with SWAN spectral phase averaged wave model were performed. Two situations were considered for the most representative patterns: model simulations without any wave energy converter and simulations considering a wave farm consisting of six Wave Dragon devices. Comparisons of the wave model outputs have been carried out in both geographical and spectral spaces. The results show that although a significant influence appears near the wave farm, this gradually decreases to the coast line level. In order to evaluate the influence of the wave farm on the longshore currents, a nearshore circulation modeling system was used. In relative terms, the longshore current velocities appear to be more sensitive to the presence of the wave farm than the significant wave height. Finally, the possible impact on the marine flora and fauna specific to the target area was also considered and discussed. PMID:23844401

  4. The environmental impact of a Wave Dragon array operating in the Black Sea.

    PubMed

    Diaconu, Sorin; Rusu, Eugen

    2013-01-01

    The present work describes a study related to the influence on the shoreline dynamics of a wave farm consisting of Wave Dragon devices operating in the western side of the Black Sea. Based on historical data analysis of the wave climate, the most relevant environmental conditions that could occur were defined, and for these cases, simulations with SWAN spectral phase averaged wave model were performed. Two situations were considered for the most representative patterns: model simulations without any wave energy converter and simulations considering a wave farm consisting of six Wave Dragon devices. Comparisons of the wave model outputs have been carried out in both geographical and spectral spaces. The results show that although a significant influence appears near the wave farm, this gradually decreases to the coast line level. In order to evaluate the influence of the wave farm on the longshore currents, a nearshore circulation modeling system was used. In relative terms, the longshore current velocities appear to be more sensitive to the presence of the wave farm than the significant wave height. Finally, the possible impact on the marine flora and fauna specific to the target area was also considered and discussed.

  5. Integrated modeling/analyses of thermal-shock effects in SNS targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, R.P.; Haines, J.

    1996-06-01

    In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies,more » especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.« less

  6. EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory

    PubMed Central

    Wang, Kaier; Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, Marcus T.; Sleigh, Jamie W.

    2014-01-01

    The electroencephalogram (EEG) patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf), modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing–Hopf balance (wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05–1.5 Hz) slow-wave coherence between frontal, occipital, and frontal–occipital electrode pairs, with the most pronounced wake-vs.-unconscious coherence changes occurring at the frontal cortex. PMID:25400558

  7. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeesh, G.; Steiner, O.; Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in themore » Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.« less

  8. Spiral density waves and vertical circulation in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Riols, A.; Latter, H.

    2018-06-01

    Spiral density waves dominate several facets of accretion disc dynamics - planet-disc interactions and gravitational instability (GI) most prominently. Though they have been examined thoroughly in two-dimensional simulations, their vertical structures in the non-linear regime are somewhat unexplored. This neglect is unwarranted given that any strong vertical motions associated with these waves could profoundly impact dust dynamics, dust sedimentation, planet formation, and the emissivity of the disc surface. In this paper, we combine linear calculations and shearing box simulations in order to investigate the vertical structure of spiral waves for various polytropic stratifications and wave amplitudes. For sub-adiabatic profiles, we find that spiral waves develop a pair of counter-rotating poloidal rolls. Particularly strong in the non-linear regime, these vortical structures issue from the baroclinicity supported by the background vertical entropy gradient. They are also intimately connected to the disc's g modes which appear to interact non-linearly with the density waves. Furthermore, we demonstrate that the poloidal rolls are ubiquitous in gravitoturbulence, emerging in the vicinity of GI spiral wakes, and potentially transporting grains off the disc mid-plane. Other than hindering sedimentation and planet formation, this phenomena may bear on observations of the disc's scattered infrared luminosity. The vortical features could also impact on the turbulent dynamo operating in young protoplanetary discs subject to GI, or possibly even galactic discs.

  9. Alfvén Waves Generated by Expanding Plasmas in the Laboratory and in Space

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; Vanzeeland, M.; Vincena, S.; Pribyl, P.

    2002-12-01

    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma, that can support Alfvén waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvén waves propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. Then a new class of experiments which involve the expansion of a dense (initially, n/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvén waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The laser beam impacts a solid target such that the initial plasma burst is directed either along or across the magnetic field. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. The magnetic fields of the waves are obtained with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are measured at over {10}4 locations and will be shown in dramatic movies. These are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, which replace fast electrons escaping the initial blast. Work supported by ONR, DOE, and NSF

  10. Heart failure—potential new targets for therapy

    PubMed Central

    Nabeebaccus, Adam; Zheng, Sean; Shah, Ajay M.

    2016-01-01

    Abstract Introduction/background Heart failure is a major cause of cardiovascular morbidity and mortality. This review covers current heart failure treatment guidelines, emerging therapies that are undergoing clinical trial, and potential new therapeutic targets arising from basic science advances. Sources of data A non-systematic search of MEDLINE was carried out. International guidelines and relevant reviews were searched for additional articles. Areas of agreement Angiotensin-converting enzyme inhibitors and beta-blockers are first line treatments for chronic heart failure with reduced left ventricular function. Areas of controversy Treatment strategies to improve mortality in heart failure with preserved left ventricular function are unclear. Growing points Many novel therapies are being tested for clinical efficacy in heart failure, including those that target natriuretic peptides and myosin activators. A large number of completely novel targets are also emerging from laboratory-based research. Better understanding of pathophysiological mechanisms driving heart failure in different settings (e.g. hypertension, post-myocardial infarction, metabolic dysfunction) may allow for targeted therapies. Areas timely for developing research Therapeutic targets directed towards modifying the extracellular environment, angiogenesis, cell viability, contractile function and microRNA-based therapies. PMID:27365454

  11. The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins.

    PubMed

    Bhattacharya, Abhishek; Li, Ke; Quiquand, Manon; Rimesso, Gerard; Baker, Nicholas E

    2017-11-15

    Notch regulates both neurogenesis and cell cycle activity to coordinate precursor cell generation in the differentiating Drosophila eye. Mosaic analysis with mitotic clones mutant for Notch components was used to identify the pathway of Notch signaling that regulates the cell cycle in the Second Mitotic Wave. Although S phase entry depends on Notch signaling and on the transcription factor Su(H), the transcriptional co-activator Mam and the bHLH repressor genes of the E(spl)-Complex were not essential, although these are Su(H) coactivators and targets during the regulation of neurogenesis. The Second Mitotic Wave showed little dependence on ubiquitin ligases neuralized or mindbomb, and although the ligand Delta is required non-autonomously, partial cell cycle activity occurred in the absence of known Notch ligands. We found that myc was not essential for the Second Mitotic Wave. The Second Mitotic Wave did not require the HLH protein Extra macrochaetae, and the bHLH protein Daughterless was required only cell-nonautonomously. Similar cell cycle phenotypes for Daughterless and Atonal were consistent with requirement for neuronal differentiation to stimulate Delta expression, affecting Notch activity in the Second Mitotic Wave indirectly. Therefore Notch signaling acts to regulate the Second Mitotic Wave without activating bHLH gene targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves

    DTIC Science & Technology

    2017-07-01

    reradiated wave is captured by the radar’s receive antenna. The presence of measurable EM energy at any discrete multiple of the audio frequency away...the radar receiver (Rx). The presence of measurable EM energy at any discrete multiple of faudio away from the original RF carrier fRF (i.e., at any n

  13. Emergent thermodynamics in a system of macroscopic, chaotic surface waves

    NASA Astrophysics Data System (ADS)

    Welch, Kyle J.

    The properties of conventional materials are inextricably linked with their molecular composition; to make water flow like wine would require changing its molecular identity. To circumvent this restriction, I have constructed and characterized a two-dimensional metafluid, so-called because its constitutive dynamics are derived not from atoms and molecules but from macroscopic, chaotic surface waves excited on a vertically agitated fluid. Unlike in conventional fluids, the viscosity and temperature of this metafluid are independently tunable. Despite this unconventional property, our system is surprisingly consistent with equilibrium thermodynamics, despite being constructed from macroscopic, non-equilibrium elements. As a programmable material, our metafluid represents a new platform on which to study complex phenomena such as self-assembly and pattern formation. We demonstrate one such application in our study of short-chain polymer analogs embedded in our system.

  14. Wind and wave dataset for Matara, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Luo, Yao; Wang, Dongxiao; Priyadarshana Gamage, Tilak; Zhou, Fenghua; Madusanka Widanage, Charith; Liu, Taiwei

    2018-01-01

    We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1) is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017) is publicly available from Science Data Bank (target="_blank">https://doi.org/10.11922/sciencedb.447).

  15. Searching for Fast Radio Bursts with the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)

    NASA Astrophysics Data System (ADS)

    Fisher, Ryan Patrick; Hughey, Brennan; Howell, Eric; LIGO Collaboration

    2018-01-01

    Although Fast Radio Bursts (FRB) are being detected with increasing frequency, their progenitor systems are still mostly a mystery. We present the plan to conduct targeted searches for gravitational-wave counterparts to these FRB events in the data from the first and second observing runs of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).

  16. THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.

    PubMed

    Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2013-09-15

    We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.

  17. Emerging targets for treating sulfur mustard-induced injuries.

    PubMed

    Ahmad, Shama; Ahmad, Aftab

    2016-06-01

    Sulfur mustard (SM; bis-(2-chlororethyl) sulfide) is a highly reactive, potent warfare agent that has recently reemerged as a major threat to military and civilians. Exposure to SM is often fatal, primarily due to pulmonary injuries and complications caused by its inhalation. Profound inflammation, hypercoagulation, and oxidative stress are the hallmarks that define SM-induced pulmonary toxicities. Despite advances, effective therapies are still limited. This current review focuses on inflammatory and coagulation pathways that influence the airway pathophysiology of SM poisoning and highlights the complexity of developing an effective therapeutic target. © 2016 New York Academy of Sciences.

  18. A continuous-wave ultrasound system for displacement amplitude and phase measurement.

    PubMed

    Finneran, James J; Hastings, Mardi C

    2004-06-01

    A noninvasive, continuous-wave ultrasonic technique was developed to measure the displacement amplitude and phase of mechanical structures. The measurement system was based on a method developed by Rogers and Hastings ["Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated," U.S. Patent No. 4,819,643 (1989)] and expanded to include phase measurement. A low-frequency sound source was used to generate harmonic vibrations in a target of interest. The target was simultaneously insonified by a low-power, continuous-wave ultrasonic source. Reflected ultrasound was phase modulated by the target motion and detected with a separate ultrasonic transducer. The target displacement amplitude was obtained directly from the received ultrasound frequency spectrum by comparing the carrier and sideband amplitudes. Phase information was obtained by demodulating the received signal using a double-balanced mixer and low-pass filter. A theoretical model for the ultrasonic receiver field is also presented. This model coupled existing models for focused piston radiators and for pulse-echo ultrasonic fields. Experimental measurements of the resulting receiver fields compared favorably with theoretical predictions.

  19. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility.

    PubMed

    Yan, Catherine; Martinez-Quiles, Narcisa; Eden, Sharon; Shibata, Tomoyuki; Takeshima, Fuminao; Shinkura, Reiko; Fujiwara, Yuko; Bronson, Roderick; Snapper, Scott B; Kirschner, Marc W; Geha, Raif; Rosen, Fred S; Alt, Frederick W

    2003-07-15

    The Wiskott-Aldrich syndrome related protein WAVE2 is implicated in the regulation of actin-cytoskeletal reorganization downstream of the small Rho GTPase, Rac. We inactivated the WAVE2 gene by gene-targeted mutation to examine its role in murine development and in actin assembly. WAVE2-deficient embryos survived until approximately embryonic day 12.5 and displayed growth retardation and certain morphological defects, including malformations of the ventricles in the developing brain. WAVE2-deficient embryonic stem cells displayed normal proliferation, whereas WAVE2-deficient embryonic fibroblasts exhibited severe growth defects, as well as defective cell motility in response to PDGF, lamellipodium formation and Rac-mediated actin polymerization. These results imply a non-redundant role for WAVE2 in murine embryogenesis and a critical role for WAVE2 in actin-based processes downstream of Rac that are essential for cell movement.

  20. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  1. Shock and Rarefaction Waves in a Heterogeneous Mantle

    NASA Astrophysics Data System (ADS)

    Jordan, J.; Hesse, M. A.

    2012-12-01

    We explore the effect of heterogeneities on partial melting and melt migration during active upwelling in the Earth's mantle. We have constructed simple, explicit nonlinear models in one dimension to examine heterogeneity and its dynamic affects on porosity, temperature and the magnesium number in a partially molten, porous medium comprised of olivine. The composition of the melt and solid are defined by a closed, binary phase diagram for a simplified, two-component olivine system. The two-component solid solution is represented by a phase loop where concentrations 0 and 1 to correspond to fayalite and forsterite, respectively. For analysis, we examine an advective system with a Riemann initial condition. Chromatographic tools and theory have primarily been used to track large, rare earth elements as tracers. In our case, we employ these theoretical tools to highlight the importance of the magnesium number, enthalpy and overall heterogeneity in the dynamics of melt migration. We calculate the eigenvectors and eigenvalues in the concentration-enthalpy space in order to glean the characteristics of the waves emerging the Riemann step. Analysis on Riemann problems of this nature shows us that the composition-enthalpy waves can be represented by self-similar solutions. The eigenvalues of the composition-enthalpy system represent the characteristic wave propagation speeds of the compositions and enthalpy through the domain. Furthermore, the corresponding eigenvectors are the directions of variation, or ``pathways," in concentration-enthalpy space that the characteristic waves follow. In the two-component system, the Riemann problem yields two waves connected by an intermediate concentration-enthalpy state determined by the intersections of the integral curves of the eigenvectors emanating from both the initial and boundary states. The first wave, ``slow path," and second wave, ``fast path," follow the aformentioned pathways set by the eigenvectors. The slow path wave

  2. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    NASA Astrophysics Data System (ADS)

    Wen, Biyang; Li, Ke

    2016-08-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  3. Shock waves in binary oxides memristors

    NASA Astrophysics Data System (ADS)

    Tesler, Federico; Tang, Shao; Dobrosavljević, Vladimir; Rozenberg, Marcelo

    2017-09-01

    Progress of silicon based technology is nearing its physical limit, as minimum feature size of components is reaching a mere 5 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next generation electronics. Significant progress has already been made in the past decade and devices are beginning to hit the market; however, it has been mainly the result of empirical trial and error. Hence, gaining theoretical insight is of essence. In the present work we report a new connection between the resistive switching and shock wave formation, a classic topic of non-linear dynamics. We argue that the profile of oxygen ions that migrate during the commutation in insulating binary oxides may form a shock wave, which propagates through a poorly conductive region of the device. We validate the scenario by means of model simulations.

  4. Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.

    PubMed

    Alkhamaali, Zaied K; Crocombe, Andrew D; Solan, Matthew C; Cirovic, Srdjan

    2016-01-01

    Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain a better understanding of the mechanical stimuli that SWT produces in the context of plantar fasciitis treatment. The model of the shock wave source was based on the geometry of an actual radial shock wave device, in which pressure waves are generated through the collision of two metallic objects: a projectile and an applicator. The foot model was based on the geometry reconstructed from magnetic resonance images of a volunteer and it comprised bones, cartilage, soft tissue, plantar fascia, and Achilles tendon. Dynamic simulations were conducted of a single and of two successive shock wave pulses administered to the foot. The collision between the projectile and the applicator resulted in a stress wave in the applicator. This wave was transmitted into the soft tissue in the form of compression-rarefaction pressure waves with an amplitude of the order of several MPa. The negative pressure at the plantar fascia reached values of over 1.5 MPa, which could be sufficient to generate cavitation in the tissue. The results also show that multiple shock wave pulses may have a cumulative effect in terms of strain energy accumulation in the foot.

  5. Simulation of systems for shock wave/compression waves damping in technological plants

    NASA Astrophysics Data System (ADS)

    Sumskoi, S. I.; Sverchkov, A. M.; Lisanov, M. V.; Egorov, A. F.

    2016-09-01

    At work of pipeline systems, flow velocity decrease can take place in the pipeline as a result of the pumps stop, the valves shutdown. As a result, compression waves appear in the pipeline systems. These waves can propagate in the pipeline system, leading to its destruction. This phenomenon is called water hammer (water hammer flow). The most dangerous situations occur when the flow is stopped quickly. Such urgent flow cutoff often takes place in an emergency situation when liquid hydrocarbons are being loaded into sea tankers. To prevent environment pollution it is necessary to stop the hydrocarbon loading urgently. The flow in this case is cut off within few seconds. To prevent an increase in pressure in a pipeline system during water hammer flow, special protective systems (pressure relief systems) are installed. The approaches to systems of protection against water hammer (pressure relief systems) modeling are described in this paper. A model of certain pressure relief system is considered. It is shown that in case of an increase in the intensity of hydrocarbons loading at a sea tanker, presence of the pressure relief system allows to organize safe mode of loading.

  6. Educating Emergency Managers About Weather -Related Hazards

    NASA Astrophysics Data System (ADS)

    Spangler, T. C.; Johnson, V.

    2006-12-01

    The most common crises that emergency managers face are those related to hazardous weather - snowstorms, floods, hurricanes, heat waves, tornadoes, etc. However, man-made disasters, such as accidental releases of hazardous substances or terrorist acts, also often have a weather component. For example, after the bombing of the Alfred P. Murrah Federal Building in Oklahoma City, emergency managers were concerned that thunderstorms in the area might cause the building to collapse, putting rescuers in further danger. Training emergency managers to recognize the importance of weather in disaster planning and response has been a small but important focus of the COMET Program's educational development effort. Topics addressed in COMET training modules that are pertinent to emergency management include fire weather, hurricanes, flood events, and air contaminant dispersion. Additionally, the module entitled Anticipating Hazardous Weather and Community Risk provides an overview of basic meteorological processes, describes a broad range of weather phenomenon, and then addresses what forecast products are available to emergency managers to assess a threat to their community. In many of the modules, learners are presented with scenarios that give them the opportunity to practice decision-making in hazardous weather situations. We will demonstrate some of those scenarios and discuss how training can be used to model good emergency management skills. We will discuss ways to communicate with the emergency management community and provide examples of how distance learning can be used to educate and train emergency managers.

  7. Online social communication patterns among emerging adult women with histories of childhood attention-deficit/hyperactivity disorder.

    PubMed

    Mikami, Amori Yee; Szwedo, David E; Ahmad, Shaikh I; Samuels, Andrea Stier; Hinshaw, Stephen P

    2015-08-01

    Little is known about adult women with attention-deficit/hyperactivity disorder (ADHD); however, available evidence suggests that they experience social impairment. Online social networking websites such as Facebook have become endemic outlets through which emerging adults communicate with peers. No study has examined the peer interactions of emerging adults with childhood histories of ADHD in this developmentally relevant online domain. Participants in the current study were an ethnically diverse sample of 228 women, 140 of whom met diagnostic criteria for ADHD in childhood and 88 who composed a matched comparison sample. These women were assessed at 3 time points spanning 10 years (mean age = 9.6 at Wave 1, 14.1 at Wave 2, 19.6 at Wave 3). After statistical control of demographic covariates and comorbidities, childhood ADHD diagnosis predicted, by emerging adulthood, a greater stated preference for online social communication and a greater tendency to have used online methods to interact with strangers. A childhood diagnosis of ADHD also predicted observations of fewer Facebook friends and less closeness and support from Facebook friends in emerging adulthood. These associations were mediated by a composite of face-to-face peer relationship impairment during childhood and adolescence. Intriguingly, women with persistent diagnoses of ADHD from childhood to emerging adulthood differed from women with consistent comparison status in their online social communication; women with intermittent diagnoses of ADHD had scores intermediate between the other 2 groups. Results are discussed within the context of understanding the social relationships of women with childhood histories of ADHD. (c) 2015 APA, all rights reserved).

  8. Optimal directed searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Ming, Jing; Krishnan, Badri; Papa, Maria Alessandra; Aulbert, Carsten; Fehrmann, Henning

    2016-03-01

    Wide parameter space searches for long-lived continuous gravitational wave signals are computationally limited. It is therefore critically important that the available computational resources are used rationally. In this paper we consider directed searches, i.e., targets for which the sky position is known accurately but the frequency and spin-down parameters are completely unknown. Given a list of such potential astrophysical targets, we therefore need to prioritize. On which target(s) should we spend scarce computing resources? What parameter space region in frequency and spin-down should we search through? Finally, what is the optimal search setup that we should use? In this paper we present a general framework that allows us to solve all three of these problems. This framework is based on maximizing the probability of making a detection subject to a constraint on the maximum available computational cost. We illustrate the method for a simplified problem.

  9. Do incest, depression, parental drinking, serious romantic relationships, and living with parents influence patterns of substance use during emerging adulthood?

    PubMed

    Snyder, Susan M; Rubenstein, Casey

    2014-01-01

    This study examined how incest, depression, parental drinking, relationship status, and living with parents affect patterns of substance use among emerging adults, 18 to 25 years old. The study sample included (n = 11,546) individuals who participated in Waves I, II, and III of the National Longitudinal Study of Adolescent Health (Add Health). The study used separate latent class analysis for males and females to determine how patterns of substance use clustered together. The study identified the following three classes of substance use: heavy, moderate, and normative substance use patterns. Multinomial logistic regression indicated that, for females only, incest histories also nearly doubled the risk of heavy-use class membership. In addition, experiencing depression, being single, and not living with parents serve as risk factors for males and females in the heavy-use group. Conversely, being Black, Hispanic, or living with parents lowered the likelihood of being in the group with the most substance use behaviors (i.e., heavy use). Findings highlight the need for interventions that target depression and female survivors of incest among emerging adults.

  10. Do Incest, Depression, Parental Drinking, Serious Romantic Relationships, and Living with Parents Influence Patterns of Substance Use During Emerging Adulthood?

    PubMed Central

    Snyder, Susan M.; Rubenstein, Casey

    2016-01-01

    This study examined how incest, depression, parental drinking, relationship status, and living with parents affect patterns of substance use among emerging adults, 18 to 25 years old. The study sample included (n = 11,546) individuals who participated in Waves I, II, and III of the National Longitudinal Study of Adolescent Health (Add Health). The study used separate latent class analysis for males and females to determine how patterns of substance use clustered together. The study identified the following three classes of substance use: heavy, moderate, and normative substance use patterns. Multinomial logistic regression indicated that, for females only, incest histories also nearly doubled the risk of heavy-use class membership. In addition, experiencing depression, being single, and not living with parents serve as risk factors for males and females in the heavy-use group. Conversely, being Black, Hispanic, or living with parents lowered the likelihood of being in the group with the most substance use behaviors (i.e., heavy use). Findings highlight the need for interventions that target depression and female survivors of incest among emerging adults. PMID:25052877

  11. A proposal of utilization of penetrators as a quick deployment system of instruments in an emergency

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Kobayashi, N.; Tanaka, S.; Shiraishi, H.; Hayakawa, M.; Yamada, R.; Takeuchi, N.; Okamoto, T.; Ishihara, Y.; Hayakawa, H.; Working Group, T.

    2011-12-01

    In the 2011 Tohoku Great earthquake, towns and lifelines were completely destroyed mainly by the mega Tsunami-waves induced by the earthquake. Many people were killed and injured. In addition to the direct destroy of seismic stations, cut-off of electronic power and communication lines made a seismic measurement impossible after the earthquake. The data of seismicity near the destroyed area had been lacked. The quake also destroyed the Fukushima atomic plant that emitted a lot of radioactive elements such as iodine 131 and cesium 137 around the plant. The area of the inside of a circle with a distance of 20 km from the plant has been kept out soon after the failure, where people exactly desire to know what happens and exact quantities of some geophysical and geochemical measurements. In this presentation, we propose a penetrator system as an efficient way to deploy measurement stations for an emergent event such as the 2011 Tohoku Great earthquake. The penetrator technique has been developed in the former Japanese lunar exploration project LUNAR-A and after the cancelation of the project. The penetrator was planned to carry seismic sensors and heat flow probes into the surface regolith of the moon in the project. It collides with the lunar surface with a speed of 300 m/s. We have established a technique to survive the sensors in the penetrator throughout the hard landing. The technique is of course applicable for terrestrial measurements. A measurement in an emergent area is suitable for the penetrator system. Using penetrators, we can deploy sensors in a kept-out area by throwing them into target sites from a flying boat. Penetrators can be used to establish communication lines in a damaged area by carrying a translator of radio waves. Because of the easiness of deployment of sensors, utilization of penetrators as a quick deployment device in an emergent event is expected.

  12. See-through Detection and 3D Reconstruction Using Terahertz Leaky-Wave Radar Based on Sparse Signal Processing

    NASA Astrophysics Data System (ADS)

    Murata, Koji; Murano, Kosuke; Watanabe, Issei; Kasamatsu, Akifumi; Tanaka, Toshiyuki; Monnai, Yasuaki

    2018-02-01

    We experimentally demonstrate see-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing. The application of terahertz waves to radar has received increasing attention in recent years for its potential to high-resolution and see-through detection. Among others, the implementation using a leaky-wave antenna is promising for compact system integration with beam steering capability based on frequency sweep. However, the use of a leaky-wave antenna poses a challenge on signal processing. Since a leaky-wave antenna combines the entire signal captured by each part of the aperture into a single output, the conventional array signal processing assuming access to a respective antenna element is not applicable. In this paper, we apply an iterative recovery algorithm "CoSaMP" to signals acquired with terahertz leaky-wave radar for clutter mitigation and aperture synthesis. We firstly demonstrate see-through detection of target location even when the radar is covered with an opaque screen, and therefore, the radar signal is disturbed by clutter. Furthermore, leveraging the robustness of the algorithm against noise, we also demonstrate 3D reconstruction of distributed targets by synthesizing signals collected from different orientations. The proposed approach will contribute to the smart implementation of terahertz leaky-wave radar.

  13. Techniques for Strength Measurement at High Pressures and Strain-Rates Using Transverse Waves

    NASA Astrophysics Data System (ADS)

    Richmond, Victoria Stolyar

    The study of the strength of a material is relevant to a variety of applications including automobile collisions, armor penetration and inertial confinement fusion. Although dynamic behavior of materials at high pressures and strain-rates has been studied extensively using plate impact experiments, the results provide measurements in one direction only. Material behavior that is dependent on strength is unaccounted for. The research in this study proposes two novel configurations to mitigate this problem. The first configuration introduced is the oblique wedge experiment, which is comprised of a driver material, an angled target of interest and a backing material used to measure in-situ velocities. Upon impact, a shock wave is generated in the driver material. As the shock encounters the angled target, it is reflected back into the driver and transmitted into the target. Due to the angle of obliquity of the incident wave, a transverse wave is generated that allows the target to be subjected to shear while being compressed by the initial longitudinal shock such that the material does not slip. Using numerical simulations, this study shows that a variety of oblique wedge configurations can be used to study the shear response of materials and this can be extended to strength measurement as well. Experiments were performed on an oblique wedge setup with a copper impactor, polymethylmethacrylate driver, aluminum 6061-t6 target, and a lithium fluoride window. Particle velocities were measured using laser interferometry and results agree well with the simulations. The second novel configuration is the y-cut quartz sandwich design, which uses the anisotropic properties of y-cut quartz to generate a shear wave that is transmitted into a thin sample. By using an anvil material to back the thin sample, particle velocities measured at the rear surface of the backing plate can be implemented to calculate the shear stress in the material and subsequently the strength. Numerical

  14. Wave functions of symmetry-protected topological phases from conformal field theories

    NASA Astrophysics Data System (ADS)

    Scaffidi, Thomas; Ringel, Zohar

    2016-03-01

    We propose a method for analyzing two-dimensional symmetry-protected topological (SPT) wave functions using a correspondence with conformal field theories (CFTs) and integrable lattice models. This method generalizes the CFT approach for the fractional quantum Hall effect wherein the wave-function amplitude is written as a many-operator correlator in the CFT. Adopting a bottom-up approach, we start from various known microscopic wave functions of SPTs with discrete symmetries and show how the CFT description emerges at large scale, thereby revealing a deep connection between group cocycles and critical, sometimes integrable, models. We show that the CFT describing the bulk wave function is often also the one describing the entanglement spectrum, but not always. Using a plasma analogy, we also prove the existence of hidden quasi-long-range order for a large class of SPTs. Finally, we show how response to symmetry fluxes is easily described in terms of the CFT.

  15. Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M

    2014-01-01

    Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.

  16. Magnetic domain walls as reconfigurable spin-wave nano-channels

    NASA Astrophysics Data System (ADS)

    Wagner, Kai

    Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.

  17. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-01

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  18. Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe

    2014-09-01

    The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics.

  19. CMS-Wave

    DTIC Science & Technology

    2015-10-30

    Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can

  20. Targeting the proteasome pathway.

    PubMed

    Tsukamoto, Sachiko; Yokosawa, Hideyoshi

    2009-05-01

    The ubiquitin-proteasome pathway functions as a main pathway in intracellular protein degradation and plays a vital role in almost all cellular events. Various inhibitors of this pathway have been developed for research purposes. The recent approval of bortezomib (PS-341, Velcade, a proteasome inhibitor, for the treatment of multiple myeloma has opened the way to the discovery of drugs targeting the proteasome and other components of the ubiquitin-proteasome pathway. We review the current understanding of the ubiquitin-proteasome pathway and inhibitors targeting this pathway, including proteasome inhibitors, as candidate drugs for chemical therapy. Preclinical and clinical data for inhibitors of the proteasome and the ubiquitin-proteasome pathway are discussed. The proteasome and other members in the ubiquitin-proteasome pathway have emerged as novel therapeutic targets.

  1. Models for Convectively Coupled Tropical Waves

    NASA Astrophysics Data System (ADS)

    Majda, A. J.

    2001-05-01

    \\small{The tropical Western Pacific is a key area with large input on short-term climate. There are many recent observations of convective complexes feeding into equatorially trapped planetary waves [5], [6] which need a theoretical explanation and also are poorly treated in contemporary General Circulation Models (GCM's). This area presents wonderful new research opportunities for applied mathematicians interested in nonlinear waves interacting over many spatio-temporal scales. This talk describes some ongoing recent activities of the speaker related to these important issues. A simplified intermediate model for analyzing and parametrizing convectively coupled tropical waves is introduced in [2]. This model has two baroclinic modes of vertical structure, a direct heating mode and a stratiform mode. The key essential parameter in these models is the area fraction occupied by deep convection, σ c. The unstable convectively coupled waves that emerge from perturbation of a radiative convective equilibrium are discussed in detail through linearized stability analysis. Without any mean flow, for an overall cooling rate of 1 K/day as the area fraction parameter increases from σ c=0.001 to σ c=0.0014 the waves pass from a regime with stable moist convective damping (MCD) to a regime of ``stratiform'' instability with convectively coupled waves propagating at speeds of roughly 15~m~s-1,instabilities for a band wavelengths in the super-cluster regime, O(1000) to O(2000) km, and a vertical structure in the upper troposphere lags behind that in the lower troposphere - thus, these convectively coupled waves in the model reproduce several key features of convectively coupled waves in the troposphere processed from recent observational data by Wheeler and Kiladis ([5], [6]). As the parameter σ c is increased further to values such as σ c=0.01, the band of unstable waves increase and spreads toward mesoscale wavelengths of O(100) km while the same wave structure and

  2. Threats from emerging and re-emerging neglected tropical diseases (NTDs).

    PubMed

    Mackey, Tim K; Liang, Bryan A

    2012-01-01

    Neglected tropical diseases impact over 1 billion of the world's poorest populations and require special attention. However, within the NTDs recognized by the World Health Organization, some are also dually categorized as emerging and re-emerging infectious diseases requiring more detailed examination on potential global health risks. We reviewed the 17 NTDs classified by the WHO to determine if those NTDs were also categorized by the US Centers for Disease Control and Prevention as emerging and re-emerging infectious diseases (''EReNTDs''). We then identified common characteristics and risks associated with EReNTDs. Identified EReNTDs of dengue, rabies, Chagas Disease, and cysticercosis disproportionately impact resource-poor settings with poor social determinants of health, spread through globalization, are impacted by vector control, lack available treatments, and threaten global health security. This traditionally neglected subset of diseases requires urgent attention and unique incentive structures to encourage investment in innovation and coordination. Multi-sectorial efforts and targeted public-private partnerships would spur needed R&D for effective and accessible EReNTD treatments, improvement of social determinants of health, crucial low-income country development, and health system strengthening efforts. Utilization of One Health principles is essential for enhancing knowledge to efficaciously address public health aspects of these EReNTDs globally.

  3. WET-NZ Multi-Mode Wave Energy Converter Advancement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopf, Steven

    2013-10-15

    The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: Wave Tank Testing to Characterize Hydrodynamic Characteristics;  Open-Sea Testing of a New 1:2 Scale Experimental Model;  Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status;  Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.

  4. Emerging principles in protease-based drug discovery

    PubMed Central

    Drag, Marcin; Salvesen, Guy S.

    2010-01-01

    Proteases have an important role in many signalling pathways, and represent potential drug targets for diseases ranging from cardiovascular disorders to cancer, as well as for combating many parasites and viruses. Although inhibitors of well-established protease targets such as angiotensin-converting enzyme and HIV protease have shown substantial therapeutic success, developing drugs for new protease targets has proved challenging in recent years. This in part could be due to issues such as the difficulty of achieving selectivity when targeting protease active sites. This Perspective discusses the general principles in protease-based drug discovery, highlighting the lessons learned and the emerging strategies, such as targeting allosteric sites, which could help harness the therapeutic potential of new protease targets. PMID:20811381

  5. Long-range intercellular Ca2+ wave patterns

    NASA Astrophysics Data System (ADS)

    Tabi, C. B.; Maïna, I.; Mohamadou, A.; Ekobena, H. P. F.; Kofané, T. C.

    2015-10-01

    Modulational instability is utilized to investigate intercellular Ca2+ wave propagation in an array of diffusively coupled cells. Cells are supposed to be connected via paracrine signaling, where long-range effects, due to the presence of extracellular messengers, are included. The multiple-scale expansion is used to show that the whole dynamics of Ca2+ waves, from the endoplasmic reticulum to the cytosol, can be reduced to a single differential-difference nonlinear equation whose solutions are assumed to be plane waves. Their linear stability analysis is studied, with emphasis on the impact of long-range coupling, via the range parameter s. It is shown that s, as well as the number of interacting cells, importantly modifies the features of modulational instability, as small values of s imply a strong coupling, and increasing its value rather reduces the problem to a first-neighbor one. Our theoretical findings are numerically tested, as the generic equations are fully integrated, leading to the emergence of nonlinear patterns of Ca2+ waves. Strong long-range coupling is pictured by extended trains of breather-like structures whose frequency decreases with increasing s. We also show numerically that the number of interacting cells plays on the spatio-temporal formation of Ca2+ patterns, whilst the quasi-perfect intercellular communication depends on the paracrine coupling parameter.

  6. Effects of wind waves versus ship waves on tidal marsh plants: a flume study on different life stages of Scirpus maritimus.

    PubMed

    Silinski, Alexandra; Heuner, Maike; Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival.

  7. Effects of Wind Waves versus Ship Waves on Tidal Marsh Plants: A Flume Study on Different Life Stages of Scirpus maritimus

    PubMed Central

    Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J.; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival. PMID:25799017

  8. Quasiperiodic waves at the onset of zero-Prandtl-number convection with rotation.

    PubMed

    Kumar, Krishna; Chaudhuri, Sanjay; Das, Alaka

    2002-02-01

    We show the possibility of temporally quasiperiodic waves at the onset of thermal convection in a thin horizontal layer of slowly rotating zero-Prandtl-number Boussinesq fluid confined between stress-free conducting boundaries. Two independent frequencies emerge due to an interaction between straight rolls and waves along these rolls in the presence of Coriolis force, if the Taylor number is raised above a critical value. Constructing a dynamical system for the hydrodynamical problem, the competition between the interacting instabilities is analyzed. The forward bifurcation from the conductive state is self-tuned.

  9. Acoustically excited surface waves on empty or fluid-filled cylindrical and spherical shells

    NASA Astrophysics Data System (ADS)

    Ahyi, A. Claude; Cao, H.; Raju, P. K.; Werby, M. F.; Bao, X. L.; Überall, H.

    2002-05-01

    A comparative study is presented of the acoustical excitation of circumferential (surface) waves on fluid-immersed cylindrical or spherical metal shells, which may be either evacuated, or filled with the same or a different fluid. The excited surface waves can manifest themselves by the resonances apparent in the sound scattering amplitude, which they cause upon phase matching following repeated circumnavigations of the target object, or by their re-radiation into the external fluid in the manner of head waves. We plot dispersion curves versus frequency of the surface waves, which for evacuated shells have a generally rising character, while the fluid filling adds an additional set of circumferential waves that descend with frequency. The resonances of these latter waves may also be interpreted as being due to phase matching, but they may alternately be interpreted as constituting the eigenfrequencies of the internal fluid contained in an elastic enclosure.

  10. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility

    PubMed Central

    Yan, Catherine; Martinez-Quiles, Narcisa; Eden, Sharon; Shibata, Tomoyuki; Takeshima, Fuminao; Shinkura, Reiko; Fujiwara, Yuko; Bronson, Roderick; Snapper, Scott B.; Kirschner, Marc W.; Geha, Raif; Rosen, Fred S.; Alt, Frederick W.

    2003-01-01

    The Wiskott–Aldrich syndrome related protein WAVE2 is implicated in the regulation of actin-cytoskeletal reorganization downstream of the small Rho GTPase, Rac. We inactivated the WAVE2 gene by gene-targeted mutation to examine its role in murine development and in actin assembly. WAVE2-deficient embryos survived until approximately embryonic day 12.5 and displayed growth retardation and certain morphological defects, including malformations of the ventricles in the developing brain. WAVE2-deficient embryonic stem cells displayed normal proliferation, whereas WAVE2-deficient embryonic fibroblasts exhibited severe growth defects, as well as defective cell motility in response to PDGF, lamellipodium formation and Rac-mediated actin polymerization. These results imply a non-redundant role for WAVE2 in murine embryogenesis and a critical role for WAVE2 in actin-based processes downstream of Rac that are essential for cell movement. PMID:12853475

  11. Analysis and measurement of the modulation transfer function of harmonic shear wave induced phase encoding imaging.

    PubMed

    McAleavey, Stephen A

    2014-05-01

    Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.

  12. Correlated waves of actin filaments and PIP3 in Dictyostelium cells.

    PubMed

    Asano, Yukako; Nagasaki, Akira; Uyeda, Taro Q P

    2008-12-01

    Chemotaxis-deficient amiB-null mutant Dictyostelium cells show two distinct movements: (1) they extend protrusions randomly without net displacements; (2) they migrate persistently and unidirectionally in a keratocyte-like manner. Here, we monitored the intracellular distribution of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) to gain insight into roles PIP(3) plays in those spontaneous motilities. In keratocyte-like cells, PIP(3) showed convex distribution over the basal membrane, with no anterior enrichment. In stalled cells, as well as in wild type cells, PIP(3) repeated wave-like changes, including emergence, expansion and disappearance, on the basal membrane. The waves induced lamellipodia when they approached the cell edge, and the advancing speed of the waves was comparable to the migration speed of the keratocyte-like cells. LY294002, an inhibitor of PI3 kinase, abolished PIP(3) waves in stalled cells and stopped keratocyte-like cells. These results together suggested that keratocyte-like cells are "surfing" on the PIP(3) waves by coupling steady lamellipodial protrusions to the PIP(3) waves. Simultaneous live observation of actin filaments and PIP(3) in wild type or stalled amiB(-) cells indicated that the PIP(3) waves were correlated with wave-like distributions of actin filaments. Most notably, PIP(3) waves often followed actin waves, suggesting that PIP(3) induces local depolymerization of actin filaments. Consistent with this idea, cortical accumulation of PIP(3) was often correlated with local retraction of the periphery. We propose that the waves of PIP(3) and actin filaments are loosely coupled with each other and play important roles in generating spontaneous cell polarity. Copyright 2008 Wiley-Liss, Inc.

  13. Persistent current and zero-energy Majorana modes in a p -wave disordered superconducting ring

    NASA Astrophysics Data System (ADS)

    Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico

    2017-04-01

    We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p -wave one-dimensional superconducting ring, pierced by a magnetic flux Φ tuned at an appropriate value Φ =Φ* . In the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the discontinuities in the persistent current I [Φ ] at Φ =Φ* . By monitoring the discontinuities in I [Φ ] , we map out the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.

  14. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation tomore » the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.« less

  15. Rogue waves and lump solutions for a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid mechanics

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Sun, Yan

    2017-08-01

    Under investigation in this letter is a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves propagating in a fluid. Employing the Hirota method and symbolic computation, we obtain the lump, breather-wave and rogue-wave solutions under certain constraints. We graphically study the lump waves with the influence of the parameters h1, h3 and h5 which are all the real constants: When h1 increases, amplitude of the lump wave increases, and location of the peak moves; when h3 increases, lump wave’s amplitude decreases, but location of the peak keeps unchanged; when h5 changes, lump wave’s peak location moves, but amplitude keeps unchanged. Breather waves and rogue waves are displayed: Rogue waves emerge when the periods of the breather waves go to the infinity.

  16. Fast Electron Deposition in Laser Shock Compressed Plastic Targets

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Ellwi, S.; Batani, D.; Bernardinello, A.; Masella, V.; Koenig, M.; Benuzzi, A.; Krishnan, J.; Pisani, F.; Djaoui, A.; Norreys, P.; Neely, D.; Rose, S.; Key, M. H.; Fews, P.

    1998-08-01

    We present the first results of fast electron deposition in a laser shock compressed plasma. The interaction of a 3 ps, 15 J laser pulse with solid polyethylene targets is used to produce fast electrons on one side of foil targets and a 2 ns duration laser pulse is used to drive a shock wave into the target from the opposite side. Kα emission from chlorine fluor buried layers is used to measure the electron transport. The hot electron range in the shock compressed plastic is found to be approximately twice as large as the range in the solid density plastic.

  17. Ligand design for riboswitches, an emerging target class for novel antibiotics.

    PubMed

    Rekand, Illimar Hugo; Brenk, Ruth

    2017-09-01

    Riboswitches are cis-acting gene regulatory elements and constitute potential targets for new antibiotics. Recent studies in this field have started to explore these targets for drug discovery. New ligands found by fragment screening, design of analogs of the natural ligands or serendipitously by phenotypic screening have shown antibacterial effects in cell assays against a range of bacteria strains and in animal models. In this review, we highlight the most advanced drug design work of riboswitch ligands and discuss the challenges in the field with respect to the development of antibiotics with a new mechanism of action.

  18. Modern Microwave and Millimeter-Wave Power Electronics

    NASA Astrophysics Data System (ADS)

    Barker, Robert J.; Luhmann, Neville C.; Booske, John H.; Nusinovich, Gregory S.

    2005-04-01

    A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: * Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems * Microfabricated MVEDs and advanced electron beam sources * Klystrons, gyro-amplifiers, and crossed-field devices * "Virtual prototyping" of MVEDs via advanced 3-D computational models * High-Power Microwave (HPM) sources * Next-generation microwave structures and circuits * How to achieve linear amplification * Advanced materials technologies for MVEDs * A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from

  19. Spontaneous generation and reversals of mean flows in a convectively-generated internal gravity wave field

    NASA Astrophysics Data System (ADS)

    Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael

    2017-11-01

    We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.

  20. Transitional Life Events and Trajectories of Cigarette and Alcohol Use During Emerging Adulthood: Latent Class Analysis and Growth Mixture Modeling

    PubMed Central

    Huh, Jimi; Huang, Zhaoqing; Liao, Yue; Pentz, Maryann; Chou, Chih-Ping

    2013-01-01

    Objective: Emerging adulthood (ages 18–25 years) has been associated with elevated substance use. Transitional life events (TLEs) during emerging adulthood in relation to substance use are usually examined separately, rather than as a constellation. The purposes of this study were (a) to explore distinct subgroups experiencing various TLEs during emerging adulthood, (b) to identify heterogeneous trajectories of cigarette and alcohol use during emerging adulthood, and (c) to examine the association of TLEs with cigarette and alcohol use trajectories. Method: Five waves of longitudinal data (mean age range: 19.5–26.0 years) were used from a community-based drug prevention program (n = 946, 49.9% female). Distinct subgroups of emerging adults who experienced various TLEs were identified using latent class analysis. Cigarette and alcohol use were examined using a latent growth mixture model. Results: A three-class model fit the data best in identifying TLE subgroups (new family, college attenders [NFCA]; uncommitted relationships, college attenders [URCA]; hibernators [HBN]). Three-trajectory models fit the data best for cigarette and alcohol use during emerging adulthood. The TLE categories were significantly associated with the cigarette (p < .05) and alcohol use groups (p < .001); specifically, the URCA and HBN groups were significantly more likely to be classified as accelerating cigarette users, relative to NFCA (ps < .05). The NFCA and HBN groups were significantly more likely to be classified as accelerating alcohol users, relative to URCA (ps < .01). Conclusions: To characterize an “at-risk” emerging adult group for cigarette and alcohol use over time, a range of life events during emerging adulthood should be considered. Interventions tailored to young adulthood may benefit from targeting the absence of these life events typifying “independence” as a potential marker for underlying substance use problems and provide supplemental screening methods

  1. Imitation-tumor targeting based on continuous-wave near-infrared tomography.

    PubMed

    Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang; Sun, Jinwei

    2017-12-01

    Continuous-wave Near-Infrared (NIR) optical spectroscopy has shown great diagnostic capability in the early tumor detection with advantages of low-cost, portable, non-invasive, and non-radiative. In this paper, Modified Lambert-Beer Theory is deployed to address the low-resolution issues of the NIR technique and to design the tumor detecting and imaging system. Considering that tumor tissues have features such as high blood flow and hypoxia, the proposed technique can detect the location, size, and other information of the tumor tissues by comparing the absorbance between pathological and normal tissues. Finally, the tumor tissues can be imaged through tomographic method. The simulation experiments prove that the proposed technique and designed system can efficiently detect the tumor tissues, achieving imaging precision within 1 mm. The work of the paper has shown great potential in the diagnosis of tumor close to body surface.

  2. Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.

    ERIC Educational Resources Information Center

    Leung, W. P.

    1980-01-01

    Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)

  3. Arterial waveguide model for shear wave elastography: implementation and in vitro validation

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.

    2017-07-01

    Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.

  4. Stochastic generation of MAC waves and implications for convection in Earth's core

    NASA Astrophysics Data System (ADS)

    Buffett, Bruce; Knezek, Nicholas

    2018-03-01

    Convection in Earth's core can sustain magnetic-Archemedes-Coriolis (MAC) waves through a variety of mechanisms. Buoyancy and Lorentz forces are viable sources for wave motion, together with the effects of magnetic induction. We develop a quantitative description for zonal MAC waves and assess the source mechanisms using a numerical dynamo model. The largest sources at conditions accessible to the dynamo model are due to buoyancy forces and magnetic induction. However, when these sources are extrapolated to conditions expected in Earth's core, the Lorentz force emerges as the dominant generation mechanism. This source is expected to produce wave velocities of roughly 2 km yr-1 when the internal magnetic field is characterized by a dimensionless Elsasser number of roughly Λ ≈ 10 and the root-mean-square convective velocity defines a magnetic Reynolds number of Rm ≈ 103. Our preferred model has a radially varying stratification and a constant (radial) background magnetic field. It predicts a broad power spectrum for the wave velocity with most power distributed across periods from 30 to 100 yr.

  5. Wave-filter-based approach for generation of a quiet space in a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Iwamoto, Hiroyuki; Tanaka, Nobuo; Sanada, Akira

    2018-02-01

    This paper is concerned with the generation of a quiet space in a rectangular cavity using active wave control methodology. It is the purpose of this paper to present the wave filtering method for a rectangular cavity using multiple microphones and its application to an adaptive feedforward control system. Firstly, the transfer matrix method is introduced for describing the wave dynamics of the sound field, and then feedforward control laws for eliminating transmitted waves is derived. Furthermore, some numerical simulations are conducted that show the best possible result of active wave control. This is followed by the derivation of the wave filtering equations that indicates the structure of the wave filter. It is clarified that the wave filter consists of three portions; modal group filter, rearrangement filter and wave decomposition filter. Next, from a numerical point of view, the accuracy of the wave decomposition filter which is expressed as a function of frequency is investigated using condition numbers. Finally, an experiment on the adaptive feedforward control system using the wave filter is carried out, demonstrating that a quiet space is generated in the target space by the proposed method.

  6. Imaging near surface mineral targets with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Dales, P.; Audet, P.; Olivier, G.

    2017-12-01

    To keep up with global metal and mineral demand, new ore-deposits have to be discovered on a regular basis. This task is becoming increasingly difficult, since easily accessible deposits have been exhausted to a large degree. The typical procedure for mineral exploration begins with geophysical surveys followed by a drilling program to investigate potential targets. Since the retrieved drill core samples are one-dimensional observations, the many holes needed to interpolate and interpret potential deposits can lead to very high costs. To reduce the amount of drilling, active seismic imaging is sometimes used as an intermediary, however the active sources (e.g. large vibrating trucks or explosive shots) are expensive and unsuitable for operation in remote or environmentally sensitive areas. In recent years, passive seismic imaging using ambient noise has emerged as a novel, low-cost and environmentally sensitive approach for exploring the sub-surface. This technique dispels with active seismic sources and instead uses ambient seismic noise such as ocean waves, traffic or minor earthquakes. Unfortunately at this point, passive surveys are not capable of reaching the required resolution to image the vast majority of the ore-bodies that are being explored. In this presentation, we will show the results of an experiment where ambient seismic noise recorded on 60 seismic stations was used to image a near-mine target. The target consists of a known ore-body that has been partially exhausted by mining efforts roughly 100 years ago. The experiment examined whether ambient seismic noise interferometry can be used to image the intact and exhausted ore deposit. A drilling campaign was also conducted near the target which offers the opportunity to compare the two methods. If the accuracy and resolution of passive seismic imaging can be improved to that of active surveys (and beyond), this method could become an inexpensive intermediary step in the exploration process and result

  7. Effects of ship-induced waves on aquatic ecosystems.

    PubMed

    Gabel, Friederike; Lorenz, Stefan; Stoll, Stefan

    2017-12-01

    Most larger water bodies worldwide are used for navigation, and the intensity of commercial and recreational navigation is expected to further increase. Navigation profoundly affects aquatic ecosystems. To facilitate navigation, rivers are trained and developed, and the direct effects of navigation include chemical and biological impacts (e.g., inputs of toxic substances and dispersal of non-native species, respectively). Furthermore, propagating ships create hydrodynamic alterations, often simply summarized as waves. Although ship-induced waves are recognized as influential stressors, knowledge on their effects is poorly synthesized. We present here a review on the effects of ship-induced waves on the structure, function and services of aquatic ecosystems based on more than 200 peer reviewed publications and technical reports. Ship-induced waves act at multiple organizational levels and different spatial and temporal scales. All the abiotic and biotic components of aquatic ecosystems are affected, from the sediment and nutrient budget to the planktonic, benthic and fish communities. We highlight how the effects of ship-induced waves cascade through ecosystems and how different effects interact and feed back into the ecosystem finally leading to altered ecosystem services and human health effects. Based on this synthesis of wave effects, we discuss strategies for mitigation. This may help to develop scientifically based and target-oriented management plans for navigational waters that optimize abiotic and biotic integrity and their ecosystem services and uses. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Comments on the possibility of cavitation in liquid metal targets for pulsed spallation neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter J.M.

    When short pulses of protons strike the volume of a liquid target, the rapid heating produces a pressurized region which relaxes as the pressure wave propagates outward. Skala and Bauer have modeled the effects of the pressure wave impinging on the container walls of a liquid mercury target under ESS conditions. They find that high pressures and high wall stresses result if the medium is uniform, nearly incompressible liquid. The pressure and the stresses are much reduced if the liquid contains bubbles of helium, due to their high compressibility. However, according to the calculation, the pressure still reaches an atmospheremore » or so at the surface, which reflects the compressive wave as a rarefaction wave of the same magnitude. Even such modest underpressures can lead to the growth of bubbles (cavitation) at or near the surface, which can collapse violently and erode the container surface. It is necessary to avoid this. Leighton provides a wide ranging discussion of pressure waves in bubbly media, which may provide insights into the nature and control of cavitation phenomena. The paper surveys some of the relevant information from that source.« less

  9. Nonlinear water waves: introduction and overview

    NASA Astrophysics Data System (ADS)

    Constantin, A.

    2017-12-01

    For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme `Nonlinear water waves' that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results. This article is part of the theme issue 'Nonlinear water waves'.

  10. Nonlinear water waves: introduction and overview.

    PubMed

    Constantin, A

    2018-01-28

    For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme 'Nonlinear water waves' that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).

  11. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  12. Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation

    NASA Astrophysics Data System (ADS)

    Tan, Wei; Dai, Houping; Dai, Zhengde; Zhong, Wenyong

    2017-11-01

    A periodic breather-wave solution is obtained using homoclinic test approach and Hirota's bilinear method with a small perturbation parameter u0 for the (2+1)-dimensional generalized Kadomtsev-Petviashvili equation. Based on the periodic breather-wave, a lump solution is emerged by limit behaviour. Finally, three different forms of the space-time structure of the lump solution are investigated and discussed using the extreme value theory.

  13. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.

  14. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less

  15. Allosteric Modulators for the Treatment of Schizophrenia: Targeting Glutamatergic Networks

    PubMed Central

    Menniti, Frank S.; Lindsley, Craig W.; Conn, P. Jeffrey; Pandit, Jayvardhan; Zagouras, Panayiotis; Volkmann, Robert A.

    2013-01-01

    Schizophrenia is a highly debilitating mental disorder which afflicts approximately 1% of the global population. Cognitive and negative deficits account for the lifelong disability associated with schizophrenia, whose symptoms are not effectively addressed by current treatments. New medicines are needed to treat these aspects of the disease. Neurodevelopmental, neuropathological, genetic, and behavioral pharmacological data indicate that schizophrenia stems from a dysfunction of glutamate synaptic transmission, particularly in frontal cortical networks. A number of novel pre- and postsynaptic mechanisms affecting glutamatergic synaptic transmission have emerged as viable targets for schizophrenia. While developing orthosteric glutamatergic agents for these targets has proven extremely difficult, targeting allosteric sites of these targets has emerged as a promising alternative. From a medicinal chemistry perspective, allosteric sites provide an opportunity of finding agents with better drug-like properties and greater target specificity. Furthermore, allosteric modulators are better suited to maintaining the highly precise temporal and spatial aspects of glutamatergic synaptic transmission. Herein, we review neuropathological and genomic/genetic evidence underscoring the importance of glutamate synaptic dysfunction in the etiology of schizophrenia and make a case for allosteric targets for therapeutic intervention. We review progress in identifying allosteric modulators of AMPA receptors, NMDA receptors, and metabotropic glutamate receptors, all with the aim of restoring physiological glutamatergic synaptic transmission. Challenges remain given the complexity of schizophrenia and the difficulty in studying cognition in animals and humans. Nonetheless, important compounds have emerged from these efforts and promising preclinical and variable clinical validation has been achieved. PMID:23409764

  16. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    USGS Publications Warehouse

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  17. Comprehensive Prediction of Large-height Swell-like Waves in East Coast of Korea

    NASA Astrophysics Data System (ADS)

    Kwon, S. J.; Lee, C.; Ahn, S. J.; Kim, H. K.

    2014-12-01

    There have been growing interests in the large-height swell-like wave (LSW) in the east coast of Korea because such big waves have caused human victims as well as damages to facilities such as breakwaters in the coast. The LSW was found to be generated due to an atmospherically great valley in the north area of the East Sea and then propagate long distance to the east coast of Korea in prominently southwest direction (Oh et al., 2010).In this study, we will perform two methods, real-time data based and numerical-model based predictions in order to predict the LSW in the east coast of Korea. First, the real-time data based prediction method uses information which is collected by the directional wave gauge installed near Sokcho. Using the wave model SWAN (Booij et al., 1999) and the wave ray method (Munk and Arthur, 1952), we will estimate wave data in open sea from the real-time data and predict the travel time of LSW from the measurement site (near Sokcho) to several target points in the east coast of Korea. Second, the numerical-model based method uses three different numerical models; WW3 in deep water, SWAN in shallow water, and CADMAS-SURF for wave run-up (CDIT). The surface winds from the 72 hours prediction system of NCEP (National Centers for Environmental Prediction) GFS (Global Forecast System) will be inputted in finer grids after interpolating these in certain domains of WW3 and SWAN models. The significant wave heights and peak wave directions predicted by the two methods will be compared to the measured data of LSW at several target points near the coasts. Further, the prediction method will be improved using more measurement sites which will be installed in the future. ReferencesBooij, N., Ris, R.C., and Holthuijsen, L.H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. J. of Geophysical Research, 103(C4), 7649-7666.Munk, W.H. and Arthur, R.S. (1952). Gravity Waves. 13. Wave Intensity along a Refracted Ray

  18. Resource waves: phenological diversity enhances foraging opportunities for mobile consumers

    USGS Publications Warehouse

    Armstrong, Jonathan B.; Takimoto, Gaku; Schindler, Daniel E.; Hayes, Matthew M.; Kauffman, Matthew J.

    2016-01-01

    Time can be a limiting constraint for consumers, particularly when resource phenology mediates foraging opportunity. Though a large body of research has explored how resource phenology influences trophic interactions, this work has focused on the topics of trophic mismatch or predator swamping, which typically occur over short periods, at small spatial extents or coarse resolutions. In contrast many consumers integrate across landscape heterogeneity in resource phenology, moving to track ephemeral food sources that propagate across space as resource waves. Here we provide a conceptual framework to advance the study of phenological diversity and resource waves. We define resource waves, review evidence of their importance in recent case studies, and demonstrate their broader ecological significance with a simulation model. We found that consumers ranging from fig wasps (Chalcidoidea) to grizzly bears (Ursus arctos) exploit resource waves, integrating across phenological diversity to make resource aggregates available for much longer than their component parts. In model simulations, phenological diversity was often more important to consumer energy gain than resource abundance per se. Current ecosystem-based management assumes that species abundance mediates the strength of trophic interactions. Our results challenge this assumption and highlight new opportunities for conservation and management. Resource waves are an emergent property of consumer–resource interactions and are broadly significant in ecology and conservation.

  19. Pre-supernova outbursts via wave heating in massive stars - II. Hydrogen-poor stars

    NASA Astrophysics Data System (ADS)

    Fuller, Jim; Ro, Stephen

    2018-05-01

    Pre-supernova (SN) outbursts from massive stars may be driven by hydrodynamical wave energy emerging from the core of the progenitor star during late nuclear-burning phases. Here, we examine the effects of wave heating in stars containing little or no hydrogen, i.e. progenitors of Type IIb/Ib SNe. Because there is no massive hydrogen envelope, wave energy is thermalized near the stellar surface where the overlying atmospheric mass is small but the optical depth is large. Wave energy can thus unbind this material, driving an optically thick, super-Eddington wind. Using 1D hydrodynamic MESA simulations of ˜5 M⊙ He stars, we find that wave heating can drive pre-SN outbursts composed of a dense wind whose mass-loss rate can exceed ˜0.1 M⊙ yr-1. The wind terminal velocities are a few 100 km s-1, and outburst luminosities can reach ˜106 L⊙. Wave-driven outbursts may be linked with observed or inferred pre-SN outbursts of Type Ibn/transitional/transformational SNe, and pre-SN wave-driven mass loss is a good candidate to produce these types of SNe. However, we also show that non-linear wave breaking in the core of the star may prevent such outbursts in stars with thick convective helium-burning shells. Hence, only a limited subset of SN progenitors is likely to experience wave-driven pre-SN outbursts.

  20. The mm-wave compact component of an AGN

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Vogel, Stuart; Baldi, Ranieri D.; Smith, Krista L.; Mushotzky, Richard F.

    2018-07-01

    mm-wave emission from active galactic nuclei (AGNs) may hold the key to understanding the physical origin of their radio cores. The correlation between radio/mm and X-ray luminosity may suggest a similar physical origin of the two sources. Since synchrotron self-absorption decreases with frequency, mm-waves probe smaller length-scales than cm-waves. We report on 100 GHz (3 mm) observations with the Combined Array for Research in Millimeter-wave Astronomy of 26 AGNs selected from the hard X-ray Swift/Burst Alert Telescope survey. 20/26 targets were detected at 100 GHz down to the 1 mJy (3σ) sensitivity, which corresponds to optically thick synchrotron source sizes of 10-4-10-3 pc. Most sources show a 100 GHz flux excess with respect to the spectral slope extrapolated from low frequencies. This mm spectral component likely originates from smaller scales than the few-GHz emission. The measured mm sources lie roughly around the Lmm (100 GHz) ˜10-4LX (2-10 keV) relation, similar to a few previously published X-ray selected sources, and hinting perhaps at a common coronal origin.